SPC560D30x
SPC560D40x
32-bit MCU family built on the Power Architecture®
for automotive body electronics applications
Datasheet production data
– Cross triggering unit (CTU)
Dedicated diagnostic module for lighting
– Advanced PWM generation
– Time-triggered diagnostics
– PWM-synchronized ADC measurements
LQFP64 (10 x 10 x 1.4 mm)
LQFP100 (14 x 14 x 1.4 mm)
Features
AEC-Q100 qualified
High-performance up to 48 MHz e200z0h CPU
– 32-bit Power Architecture® technology
CPU
– Variable length encoding (VLE)
Memory
– Up to 256 KB Code Flash with ECC
– Up to 64 (4x16) KB Data Flash with ECC
– Up to 16 KB SRAM with ECC
Interrupts
– 16 priority levels
– Non-maskable interrupt (NMI)
– Up to 38 external interrupts including
18 wakeup lines
GPIOs: 45 (LQFP64), 79 (LQFP100)
Timer units
– 4-channel 32-bit periodic interrupt timers
– 4-channel 32-bit system timer module
– System watchdog timer
– 32-bit real-time clock timer
16-bit counter time-triggered I/Os
– Up to 28 channels with PWM/MC/IC/OC
– 5 independent counters
– 27-channels with ADC trigger capability
12-bit analog-to-digital converter (ADC) with up
to 33 channels
– Up to 61 channels via external multiplexing
– Individual conversion registers
This is information on a product in full production.
Clock generation
– 4 to 16 MHz fast external crystal oscillator
– 16 MHz fast internal RC oscillator
– 128 kHz slow internal RC oscillator
– Software-controlled FMPLL
– Clock monitoring unit
Exhaustive debugging capability
– Nexus1 on all packages
– Nexus2+ available on emulation device
(SPC560B64B2-ENG)
On-chip CAN/UART bootstrap loader
16-channel eDMA
November 2018
Communications interfaces
– 1 FlexCAN interface (2.0B active) with
32 message buffers
– 3 LINFlex/UART, 1 with DMA capability
– 2 DSPI
Low power capabilities
– Several low power mode configurations
– Ultra-low power standby with RTC, SRAM
and CAN monitoring
– Fast wakeup schemes
Single 5 V or 3.3 V supply
Operates in ambient temperature range of
-40 to 125 °C
Table 1. Device summary
Part number
Package
128 Kbyte code
Flash
256 Kbyte code
Flash
LQFP100
SPC560D30L3
SPC560D40L3
LQFP64
SPC560D30L1
SPC560D40L1
DS6494 Rev 8
1/82
www.st.com
1
Contents
SPC560D30x, SPC560D40x
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1
Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . 9
4
3.1
Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2
Pad configuration during reset phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4
Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.5
System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.6
Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2
Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3
NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2
NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 25
4.3.3
NVUSRO[WATCHDOG_EN] field description . . . . . . . . . . . . . . . . . . . . 25
4.4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7
4.8
2/82
4.3.1
4.6.1
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6.2
Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7.1
I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7.2
I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7.3
I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7.4
Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7.5
I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DS6494 Rev 8
SPC560D30x, SPC560D40x
4.9
4.9.1
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 40
4.9.2
Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . 43
Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.11
Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11.1
Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11.2
Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11.3
Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 48
4.12.1
Designing hardened software to avoid noise problems . . . . . . . . . . . . . 48
4.12.2
Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.12.3
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 49
4.13
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 50
4.14
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.15
Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 54
4.16
Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 54
4.17
ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.18
6
Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 40
4.10
4.12
5
Contents
4.17.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.17.2
Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.17.3
ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.18.1
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.18.2
DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.18.3
JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1
ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1
LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2
LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Appendix A Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DS6494 Rev 8
3/82
3
Introduction
SPC560D30x, SPC560D40x
1
Introduction
1.1
Document overview
This document describes the device features and highlights the important electrical and
physical characteristics.
1.2
Description
These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices
designed to be central to the development of the next wave of central vehicle body
controller, smart junction box, front module, peripheral body, door control and seat control
applications.
This family is one of a series of next-generation integrated automotive microcontrollers
based on the Power Architecture technology and designed specifically for embedded
applications.
The advanced and cost-efficient e200z0h host processor core of this automotive controller
family complies with the Power Architecture technology and only implements the VLE
(variable-length encoding) APU (auxiliary processing unit) and provides improved code
density. It operates at speed of up to 48 MHz and offers high performance processing
optimized for low power consumption. It capitalizes on the available development
infrastructure of current power architecture devices and is supported with software drivers,
operating systems and configuration code to assist with the user’s implementations.
The device platform has a single level of memory hierarchy and can support a wide range of
on-chip static random access memory (SRAM) and internal flash memory.
Table 2. SPC560D30x and SPC560D40x device comparison
Device
Feature
SPC560D30L1
SPC560D30L3
CPU
Static – up to 48 MHz
Code flash memory
128 KB
256 KB
Data flash memory
64 KB (4 × 16 KB)
SRAM
12 KB
16 KB
eDMA
16 ch
ADC (12-bit)
16 ch
33 ch
CTU
16 ch
33 ch
16 ch
Total timer I/O (1)
eMIOS
Type X(2)
(3)
Type G(4)
4/82
SPC560D40L3
e200z0h
Execution speed
Type Y
SPC560D40L1
14 ch, 16-bit
28 ch, 16-bit
14 ch, 16-bit
28 ch, 16-bit
2 ch
5 ch
2 ch
5 ch
—
9 ch
—
9 ch
7 ch
7 ch
7 ch
7 ch
DS6494 Rev 8
SPC560D30x, SPC560D40x
Introduction
Table 2. SPC560D30x and SPC560D40x device comparison (continued)
Device
Feature
Type H(5)
SPC560D30L1
SPC560D30L3
SPC560D40L1
SPC560D40L3
4 ch
7 ch
4 ch
7 ch
45
79
LQFP64
LQFP100
SCI (LINFlex)
3
SPI (DSPI)
2
CAN (FlexCAN)
1
GPIO(6)
45
79
Debug
Package
JTAG
LQFP64
LQFP100
1. Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions.
2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC
3. Type Y = OPWMT + OPWMB + SAIC + SAOC
4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC
5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC
6. I/O count based on multiplexing with peripherals.
DS6494 Rev 8
5/82
77
Block diagram
2
SPC560D30x, SPC560D40x
Block diagram
Figure 1 shows a top-level block diagram of the SPC560D30x and SPC560D40x device
series.
Figure 1. SPC560D30x and SPC560D40x series block diagram
SRAM
16 KB
JTAG
Code Flash
256 KB
Data Flash
64 KB
JTAG Port
64-bit 3 x 3 Crossbar Switch
Instructions
(Master)
Nexus 1
e200z0h
Data
NMI
(Master)
SIUL
Voltage
Regulator
Interrupt requests
from peripheral
blocks
NMI
Flash
Controller
(Slave)
(Slave)
(Slave)
(Master)
INTC
Clocks
SRAM
Controller
eDMA
CMU
FMPLL
RTC
STM
SWT
MC_RGM MC_CGM
PIT
ECSM
MC_ME
MC_PCU
BAM
SSCM
Peripheral Bridge
Interrupt
Request
SIUL
Reset Control
33 ch.
ADC
1x
eMIOS
CTU
3x
LINFlex
2x
DSPI
1x
FlexCAN
WKPU
External
Interrupt
Request
IMUX
Interrupt
Request
GPIO &
Pad Control
I/O
Legend:
ADC
BAM
CMU
CTU
DSPI
ECSM
eDMA
eMIOS
Flash
FlexCAN
FMPLL
IMUX
INTC
JTAG
LINFlex
6/82
...
...
Analog-to-Digital Converter
Boot Assist Module
Clock Monitor Unit
Cross Triggering Unit
Deserial Serial Peripheral Interface
Error Correction Status Module
Enhanced Direct Memory Access
Enhanced Modular Input Output System
Flash memory
Controller Area Network (FlexCAN)
Frequency-Modulated Phase-Locked Loop
Internal Multiplexer
Interrupt Controller
JTAG Controller
Serial Communication Interface (LIN support)
MC_CGM
MC_ME
MC_PCU
MC_RGM
NMI
PIT
RTC
SIUL
SRAM
SSCM
STM
SWT
WKPU
XBAR
DS6494 Rev 8
...
...
Clock Generation Module
Mode Entry Module
Power Control Unit
Reset Generation Module
Non-Maskable Interrupt
Periodic Interrupt Timer
Real-Time Clock
System Integration Unit Lite
Static Random-Access Memory
System Status Configuration Module
System Timer Module
Software Watchdog Timer
Wakeup Unit
Crossbar switch
SPC560D30x, SPC560D40x
Block diagram
Table 3 summarizes the functions of all the blocks present in the SPC560D30x and
SPC560D40x series of microcontrollers. Note that the presence and number of blocks
varies by device and package.
Table 3. SPC560D30x and SPC560D40x series block summary
Block
Function
Analog-to-digital converter (ADC) Multi-channel, 12-bit analog-to-digital converter
Boot assist module (BAM)
A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock generation module
(MC_CGM)
Provides logic and control required for the generation of system and peripheral
clocks
Clock monitor unit (CMU)
Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)
Enables synchronization of ADC conversions with a timer event from the
eMIOS or PIT
Crossbar switch (XBAR)
Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width.
Deserial serial peripheral
interface (DSPI)
Provides a synchronous serial interface for communication with external
devices
Enhanced direct memory access
(eDMA)
Performs complex data transfers with minimal intervention from a host
processor via “n” programmable channels.
Enhanced modular input output
system (eMIOS)
Provides the functionality to generate or measure events
Error correction status module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
Flash memory
Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area
network)
Supports the standard CAN communications protocol
Frequency-modulated phaselocked loop (FMPLL)
Generates high-speed system clocks and supports programmable frequency
modulation
Internal multiplexer (IMUX) SIU
subblock
Allows flexible mapping of peripheral interface on the different pins of the
device
Interrupt controller (INTC)
Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)
Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINFlex controller
Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with a minimum of CPU load
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states. It also manages the power control
unit, reset generation module, clock generation module, and holds the
configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI)
Handles external events which produces an immediate response, such as
power down detection
DS6494 Rev 8
7/82
77
Block diagram
SPC560D30x, SPC560D40x
Table 3. SPC560D30x and SPC560D40x series block summary (continued)
Block
Function
Periodic interrupt timer (PIT)
Produces periodic interrupts and triggers
Power control unit (MC_PCU)
Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Real-time counter (RTC)
Provides a free-running counter and interrupt generation capability that can be
used for timekeeping applications
Reset generation module
(MC_RGM)
Centralizes reset sources and manages the device reset sequence of the
device
Static random-access memory
(SRAM)
Provides storage for program code, constants, and variables
Provides control over all the electrical pad controls and up 32 ports with 16-bits
System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
System status and configuration
module (SSCM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)
Provides a set of output compare events to support AUTOSAR (Automotive
Open System Architecture) and operating system tasks
Software watchdog timer (SWT)
Provides protection from runaway code
Wakeup unit (WKPU)
Supports up to 18 external sources that can generate interrupts or wakeup
events, of which one can cause non-maskable interrupt requests or wakeup
events.
8/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
3
Package pinouts and signal descriptions
3.1
Package pinouts
The available LQFP pinouts are provided in the following figures. For pin signal
descriptions, refer to Table 6.
Figure 2 shows the SPC560D30x and SPC560D40x in the LQFP100 package.
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PE[12]
Figure 2. LQFP100 LQFP pin configuration (top view)
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
DS6494 Rev 8
9/82
77
Package pinouts and signal descriptions
SPC560D30x, SPC560D40x
Figure 3 shows the SPC560D30x and SPC560D40x in the LQFP64 package.
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
Figure 3. LQFP64 LQFP pin configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
LQFP64
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PA[3]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PB[3]
PC[9]
PA[2]
PA[1]
PA[0]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
3.2
Pad configuration during reset phases
All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are forced to tristate with the following exceptions:
3.3
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.
PA[8] (ABS[0]) is pull-up.
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
JTAG pads (TCK, TMS and TDI) are pull-up while TDO remains tristate.
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
Main oscillator pads (EXTAL, XTAL) are tristate.
Voltage supply pins
Voltage supply pins are used to provide power to the device. Two dedicated pins are used
for 1.2 V regulator stabilization.
10/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
Table 4. Voltage supply pin descriptions
Pin number
Port pin
Function
LQFP64
LQFP100
7, 28, 34, 56
15, 37, 52, 70, 84
6, 8, 26, 33, 55
14, 16, 35, 51, 69, 83
VDD_HV
Digital supply voltage
VSS_HV
Digital ground
VDD_LV
1.2 V decoupling pins. Decoupling capacitor must be
connected between these pins and the nearest VSS_LV
pin(1)
11, 23, 57
19, 32, 85
VSS_LV
1.2 V decoupling pins. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV
pin(1)
10, 24, 58
18, 33, 86
VDD_BV
Internal regulator supply voltage
12
20
1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage
(refer the Section 4.5: Recommended operating conditions in the device datasheet for details).
3.4
Pad types
In the device the following types of pads are available for system pins and functional port
pins:
S = Slow (1)
M = Medium (1) (2)
F = Fast (1) (2)
I = Input only with analog feature (1)
J = Input/Output (‘S’ pad) with analog feature
X = Oscillator
3.5
System pins
The system pins are listed in Table 5.
1. Refer, Section 4.7: I/O pad electrical characteristics in the device datasheet for details.
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium
(see the PCR[SRC] description in the device reference manual).
DS6494 Rev 8
11/82
77
Package pinouts and signal descriptions
SPC560D30x, SPC560D40x
Table 5. System pin descriptions
Port
pin
RESET
I/O
Function
Bidirectional reset with Schmitt-Trigger
characteristics and noise filter
Analog output of the oscillator amplifier
circuit, when the oscillator is not in bypass
EXTAL
mode. Analog input for the clock generator
when the oscillator is in bypass mode(1)
XTAL
Analog input of the oscillator amplifier
circuit. Needs to be grounded if oscillator is
used in bypass mode(1)
direction
Pad
type
I/O
RESET
Pin number
configuration
LQFP64
LQFP100
M
Input, weak
pull-up only
after PHASE2
9
17
I/O
X
Tristate
27
36
I
X
Tristate
25
34
1. Refer to the relevant section of the device datasheet.
3.6
Functional ports
The functional port pins are listed in Table 6.
Table 6. Functional port pin descriptions
Port pin
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
Port A
PA[0]
PA[1]
PA[2]
12/82
PCR[0]
AF0
AF1
AF2
AF3
—
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKPU[19](3)
SIUL
eMIOS_0
CGL
eMIOS_0
WKPU
I/O
I/O
O
I/O
I
M
Tristate
5
12
PCR[1]
AF0
AF1
AF2
AF3
—
—
GPIO[1]
E0UC[1]
—
—
NMI(4)
WKPU[2](3)
SIUL
eMIOS_0
—
—
WKPU
WKPU
I/O
I/O
—
—
I
I
S
Tristate
4
7
PCR[2]
AF0
AF1
AF2
AF3
—
GPIO[2]
E0UC[2]
—
MA[2]
WKPU[3](3)
SIUL
eMIOS_0
—
ADC
WKPU
I/O
I/O
—
O
I
S
Tristate
3
5
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin
PA[3]
PA[4]
PA[5]
PA[6]
PA[7]
PA[8]
PA[9]
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[3]
AF0
AF1
AF2
AF3
—
—
GPIO[3]
E0UC[3]
—
CS4_0
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
—
DSPI_0
SIUL
ADC
I/O
I/O
—
I/O
I
I
S
Tristate
43
68
PCR[4]
AF0
AF1
AF2
AF3
—
GPIO[4]
E0UC[4]
—
CS0_1
WKPU[9](3)
SIUL
eMIOS_0
—
DSPI_1
WKPU
I/O
I/O
—
I/O
I
S
Tristate
20
29
PCR[5]
AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
M
Tristate
51
79
PCR[6]
AF0
AF1
AF2
AF3
—
GPIO[6]
E0UC[6]
—
CS1_1
EIRQ[1]
SIUL
eMIOS_0
—
DSPI_1
SIUL
I/O
I/O
—
I/O
I
S
Tristate
52
80
PCR[7]
AF0
AF1
AF2
AF3
—
—
GPIO[7]
E0UC[7]
—
—
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
—
—
SIUL
ADC
I/O
I/O
—
—
I
I
S
Tristate
44
71
PCR[8]
AF0
AF1
AF2
AF3
—
N/A(5)
GPIO[8]
E0UC[8]
E0UC[14]
—
EIRQ[3]
ABS[0]
SIUL
eMIOS_0
eMIOS_0
—
SIUL
BAM
I/O
I/O
—
—
I
I
S
Input,
weak
pull-up
45
72
PCR[9]
AF0
AF1
AF2
AF3
N/A(5)
GPIO[9]
E0UC[9]
—
CS2_1
FAB
SIUL
eMIOS_0
—
DSPI_1
BAM
I/O
I/O
—
I/O
I
S
Pulldown
46
73
DS6494 Rev 8
13/82
77
Package pinouts and signal descriptions
SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin
PA[10]
PA[11]
PA[12]
PA[13]
PA[14]
PA[15]
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[10]
AF0
AF1
AF2
AF3
—
GPIO[10]
E0UC[10]
—
LIN2TX
ADC1_S[2]
SIUL
eMIOS_0
—
LINFlex_2
ADC
I/O
I/O
—
O
I
S
Tristate
47
74
PCR[11]
AF0
AF1
AF2
AF3
—
—
—
GPIO[11]
E0UC[11]
—
—
EIRQ[16]
ADC1_S[3]
LIN2RX
SIUL
eMIOS_0
—
—
SIUL
ADC
LINFlex_2
I/O
I/O
—
—
I
I
I
S
Tristate
48
75
PCR[12]
AF0
AF1
AF2
AF3
—
—
GPIO[12]
—
—
—
EIRQ[17]
SIN_0
SIUL
—
—
—
SIUL
DSPI_0
I/O
—
—
—
I
I
S
Tristate
22
31
PCR[13]
AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
—
CS3_1
SIUL
DSPI_0
—
DSPI_1
I/O
O
—
I/O
M
Tristate
21
30
PCR[14]
AF0
AF1
AF2
AF3
—
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
I/O
I/O
I/O
I/O
I
M
Tristate
19
28
PCR[15]
AF0
AF1
AF2
AF3
—
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKPU[10](3)
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKPU
I/O
I/O
I/O
I/O
I
M
Tristate
18
27
I/O
O
—
O
M
Tristate
14
23
Port B
PB[0]
14/82
PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
—
LIN2TX
SIUL
FlexCAN_0
—
LINFlex_2
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin
PB[1]
PB[2]
PB[3]
PB[4]
PB[5]
PB[6]
PB[7]
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[17]
AF0
AF1
AF2
AF3
—
—
GPIO[17]
—
—
LIN0RX
WKPU[4](3)
CAN0RX
SIUL
—
—
LINFlex_0
WKPU
FlexCAN_0
I/O
—
—
I
I
I
S
Tristate
15
24
PCR[18]
AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
—
—
SIUL
LINFlex_0
—
—
I/O
O
—
—
M
Tristate
64
100
PCR[19]
AF0
AF1
AF2
AF3
—
—
GPIO[19]
—
—
—
WKPU[11](3)
LIN0RX
SIUL
—
—
—
WKPU
LINFlex_0
I/O
—
—
—
I
I
S
Tristate
1
1
PCR[20]
AF0
AF1
AF2
AF3
—
GPIO[20]
—
—
—
ADC1_P[0]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
32
50
PCR[21]
AF0
AF1
AF2
AF3
—
GPIO[21]
—
—
—
ADC1_P[1]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
35
53
PCR[22]
AF0
AF1
AF2
AF3
—
GPIO[22]
—
—
—
ADC1_P[2]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
36
54
PCR[23]
AF0
AF1
AF2
AF3
—
GPIO[23]
—
—
—
ADC1_P[3]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
37
55
DS6494 Rev 8
15/82
77
Package pinouts and signal descriptions
SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin
PB[8]
PB[9]
PB[10]
PB[11]
PB[12]
PB[13]
PB[14]
16/82
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[24]
AF0
AF1
AF2
AF3
—
—
GPIO[24]
—
—
—
ADC1_S[4]
WKPU[25](3)
SIUL
—
—
—
ADC
WKPU
I
—
—
—
I
I
I
Tristate
30
39
PCR[25]
AF0
AF1
AF2
AF3
—
—
GPIO[25]
—
—
—
ADC1_S[5]
WKPU[26](3)
SIUL
—
—
—
ADC
WKPU
I
—
—
—
I
I
I
Tristate
29
38
PCR[26]
AF0
AF1
AF2
AF3
—
—
GPIO[26]
—
—
—
ADC1_S[6]
WKPU[8](3)
SIUL
—
—
—
ADC
WKPU
I/O
—
—
—
I
I
J
Tristate
31
40
PCR[27]
AF0
AF1
AF2
AF3
—
GPIO[27]
E0UC[3]
—
CS0_0
ADC1_S[12]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
I/O
I
J
Tristate
38
59
PCR[28]
AF0
AF1
AF2
AF3
—
GPIO[28]
E0UC[4]
—
CS1_0
ADC1_X[0]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
39
61
PCR[29]
AF0
AF1
AF2
AF3
—
GPIO[29]
E0UC[5]
—
CS2_0
ADC1_X[1]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
40
63
PCR[30]
AF0
AF1
AF2
AF3
—
GPIO[30]
E0UC[6]
—
CS3_0
ADC1_X[2]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
41
65
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin
PB[15]
PCR
PCR[31]
Alternate
function(1)
AF0
AF1
AF2
AF3
—
Function
GPIO[31]
E0UC[7]
—
CS4_0
ADC1_X[3]
Peripheral
RESET
configuration
Pin number
I/O
Pad
direction(2)
type
I/O
I/O
—
O
I
J
Tristate
42
67
SIUL
eMIOS_0
—
DSPI_0
ADC
LQFP64 LQFP100
Port C
PC[0](6)
PC[1](6)
PC[2]
PC[3]
PC[4]
PC[5]
PCR[32]
AF0
AF1
AF2
AF3
GPIO[32]
—
TDI
—
SIUL
—
JTAGC
—
I/O
—
I
—
M
Input,
weak
pull-up
59
87
PCR[33]
AF0
AF1
AF2
AF3
GPIO[33]
—
TDO
—
SIUL
—
JTAGC
—
I/O
—
O
—
F
Tristate
54
82
PCR[34]
AF0
AF1
AF2
AF3
—
GPIO[34]
SCK_1
—
—
EIRQ[5]
SIUL
DSPI_1
—
—
SIUL
I/O
I/O
—
—
I
M
Tristate
50
78
PCR[35]
AF0
AF1
AF2
AF3
—
GPIO[35]
CS0_1
MA[0]
—
EIRQ[6]
SIUL
DSPI_1
ADC
—
SIUL
I/O
I/O
O
—
I
S
Tristate
49
77
PCR[36]
AF0
AF1
AF2
AF3
—
—
GPIO[36]
—
—
—
SIN_1
EIRQ[18]
SIUL
—
—
—
DSPI_1
SIUL
I/O
—
—
—
I
I
M
Tristate
62
92
PCR[37]
AF0
AF1
AF2
AF3
—
GPIO[37]
SOUT_1
—
—
EIRQ[7]
SIUL
DSPI_1
—
—
SIUL
I/O
O
—
—
I
M
Tristate
61
91
DS6494 Rev 8
17/82
77
Package pinouts and signal descriptions
SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin
PC[6]
PC[7]
PC[8]
PC[9]
PC[10]
PC[11]
PC[12]
PC[13]
18/82
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[38]
AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
—
—
SIUL
LINFlex_1
—
—
I/O
O
—
—
S
Tristate
16
25
PCR[39]
AF0
AF1
AF2
AF3
—
—
GPIO[39]
—
—
—
LIN1RX
WKPU[12](3)
SIUL
—
—
—
LINFlex_1
WKPU
I/O
—
—
—
I
I
S
Tristate
17
26
PCR[40]
AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
E0UC[3]
—
SIUL
LINFlex_2
eMIOS_0
—
I/O
O
I/O
—
S
Tristate
63
99
PCR[41]
AF0
AF1
AF2
AF3
—
—
GPIO[41]
—
E0UC[7]
—
LIN2RX
WKPU[13](3)
SIUL
—
eMIOS_0
—
LINFlex_2
WKPU
I/O
—
I/O
—
I
I
S
Tristate
2
2
PCR[42]
AF0
AF1
AF2
AF3
GPIO[42]
—
—
MA[1]
SIUL
—
—
ADC
I/O
—
—
O
M
Tristate
13
22
PCR[43]
AF0
AF1
AF2
AF3
—
GPIO[43]
—
—
MA[2]
WKPU[5](3)
SIUL
—
—
ADC
WKPU
I/O
—
—
O
I
S
Tristate
—
21
PCR[44]
AF0
AF1
AF2
AF3
—
GPIO[44]
E0UC[12]
—
—
EIRQ[19]
SIUL
eMIOS_0
—
—
SIUL
I/O
I/O
—
—
I
M
Tristate
—
97
PCR[45]
AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
S
Tristate
—
98
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin
PC[14]
PC[15]
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[46]
AF0
AF1
AF2
AF3
—
GPIO[46]
E0UC[14]
—
—
EIRQ[8]
SIUL
eMIOS_0
—
—
SIUL
I/O
I/O
—
—
I
S
Tristate
—
3
PCR[47]
AF0
AF1
AF2
AF3
—
GPIO[47]
E0UC[15]
—
—
EIRQ[20]
SIUL
eMIOS_0
—
—
SIUL
I/O
I/O
—
—
I
M
Tristate
—
4
Port D
PD[0]
PD[1]
PD[2]
PD[3]
PCR[48]
AF0
AF1
AF2
AF3
—
—
GPIO[48]
—
—
—
WKPU[27](3)
ADC1_P[4]
SIUL
—
—
—
WKPU
ADC
I
—
—
—
I
I
I
Tristate
—
41
PCR[49]
AF0
AF1
AF2
AF3
—
—
GPIO[49]
—
—
—
WKPU[28](3)
ADC1_P[5]
SIUL
—
—
—
WKPU
ADC
I
—
—
—
I
I
I
Tristate
—
42
PCR[50]
AF0
AF1
AF2
AF3
—
GPIO[50]
—
—
—
ADC1_P[6]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
43
PCR[51]
AF0
AF1
AF2
AF3
—
GPIO[51]
—
—
—
ADC1_P[7]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
44
DS6494 Rev 8
19/82
77
Package pinouts and signal descriptions
SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PD[9]
PD[10]
20/82
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[52]
AF0
AF1
AF2
AF3
—
GPIO[52]
—
—
—
ADC1_P[8]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
45
PCR[53]
AF0
AF1
AF2
AF3
—
GPIO[53]
—
—
—
ADC1_P[9]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
46
PCR[54]
AF0
AF1
AF2
AF3
—
GPIO[54]
—
—
—
ADC1_P[10]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
47
PCR[55]
AF0
AF1
AF2
AF3
—
GPIO[55]
—
—
—
ADC1_P[11]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
48
PCR[56]
AF0
AF1
AF2
AF3
—
GPIO[56]
—
—
—
ADC1_P[12]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
49
PCR[57]
AF0
AF1
AF2
AF3
—
GPIO[57]
—
—
—
ADC1_P[13]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
56
PCR[58]
AF0
AF1
AF2
AF3
—
GPIO[58]
—
—
—
ADC1_P[14]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
57
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin
PD[11]
PD[12]
PD[13]
PD[14]
PD[15]
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[59]
AF0
AF1
AF2
AF3
—
GPIO[59]
—
—
—
ADC1_P[15]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
58
PCR[60]
AF0
AF1
AF2
AF3
—
GPIO[60]
CS5_0
E0UC[24]
—
ADC1_S[8]
SIUL
DSPI_0
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
Tristate
—
60
PCR[61]
AF0
AF1
AF2
AF3
—
GPIO[61]
CS0_1
E0UC[25]
—
ADC1_S[9]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
I/O
I/O
—
I
J
Tristate
—
62
PCR[62]
AF0
AF1
AF2
AF3
—
GPIO[62]
CS1_1
E0UC[26]
—
ADC1_S[10]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
Tristate
—
64
PCR[63]
AF0
AF1
AF2
AF3
—
GPIO[63]
CS2_1
E0UC[27]
—
ADC1_S[11]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
Tristate
—
66
Port E
PE[0]
PE[1]
PCR[64]
AF0
AF1
AF2
AF3
—
GPIO[64]
E0UC[16]
—
—
WKPU[6](3)
SIUL
eMIOS_0
—
—
WKPU
I/O
I/O
—
—
I
S
Tristate
—
6
PCR[65]
AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
M
Tristate
—
8
DS6494 Rev 8
21/82
77
Package pinouts and signal descriptions
SPC560D30x, SPC560D40x
Table 6. Functional port pin descriptions (continued)
Port pin
PE[2]
PE[3]
PE[4]
PE[5]
PE[6]
PE[7]
PE[8]
PE[9]
22/82
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[66]
AF0
AF1
AF2
AF3
—
—
GPIO[66]
E0UC[18]
—
—
EIRQ[21]
SIN_1
SIUL
eMIOS_0
—
—
SIUL
DSPI_1
I/O
I/O
—
—
I
I
M
Tristate
—
89
PCR[67]
AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
—
SIUL
eMIOS_0
DSPI_1
—
I/O
I/O
O
—
M
Tristate
—
90
PCR[68]
AF0
AF1
AF2
AF3
—
GPIO[68]
E0UC[20]
SCK_1
—
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
—
SIUL
I/O
I/O
I/O
—
I
M
Tristate
—
93
PCR[69]
AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
I/O
O
M
Tristate
—
94
PCR[70]
AF0
AF1
AF2
AF3
—
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
I/O
I/O
O
O
I
M
Tristate
—
95
PCR[71]
AF0
AF1
AF2
AF3
—
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC
SIUL
I/O
I/O
O
O
I
M
Tristate
—
96
PCR[72]
AF0
AF1
AF2
AF3
GPIO[72]
—
E0UC[22]
—
SIUL
—
eMIOS_0
—
I/O
—
I/O
—
M
Tristate
—
9
PCR[73]
AF0
AF1
AF2
AF3
—
GPIO[73]
—
E0UC[23]
—
WKPU[7](3)
SIUL
—
eMIOS_0
—
WKPU
I/O
—
I/O
—
I
S
Tristate
—
10
DS6494 Rev 8
SPC560D30x, SPC560D40x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Port pin
PE[10]
PE[11]
PE[12]
PCR
Alternate
function(1)
Function
Peripheral
I/O
Pad
direction(2)
type
RESET
configuration
Pin number
LQFP64 LQFP100
PCR[74]
AF0
AF1
AF2
AF3
—
GPIO[74]
—
CS3_1
—
EIRQ[10]
SIUL
—
DSPI_1
—
SIUL
I/O
—
O
—
I
S
Tristate
—
11
PCR[75]
AF0
AF1
AF2
AF3
—
GPIO[75]
E0UC[24]
CS4_1
—
WKPU[14](3)
SIUL
eMIOS_0
DSPI_1
—
WKPU
I/O
I/O
O
—
I
S
Tristate
—
13
PCR[76]
AF0
AF1
AF2
AF3
—
—
GPIO[76]
—
—
—
ADC1_S[7]
EIRQ[11]
SIUL
—
—
—
ADC
SIUL
I/O
—
—
—
I
I
S
Tristate
—
76
Port H
PCR[121]
AF0
AF1
AF2
AF3
GPIO[121]
—
TCK
—
SIUL
—
JTAGC
—
I/O
—
I
—
S
Input,
weak
pull-up
60
88
PH[10](6) PCR[122]
AF0
AF1
AF2
AF3
GPIO[122]
—
TMS
—
SIUL
—
JTAGC
—
I/O
—
I
—
S
Input,
weak
pull-up
53
81
PH[9](6)
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 ® AF0;
PCR.PA = 01 ® AF1; PCR.PA = 10 ® AF2; PCR.PA = 11 ® AF3. This is intended to select the output functions; to use one
of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For
this reason, the value corresponding to an input only function is reported as “—”.
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMIO.PADSELx bitfields inside the SIUL module.
3. All WKPU pins also support external interrupt capability. See “wakeup unit” chapter of the device reference manual for
further details.
4. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
5. “Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the
device reference manual for details.
6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001.
DS6494 Rev 8
23/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
4
Electrical characteristics
4.1
Introduction
This section contains electrical characteristics of the device as well as temperature and
power considerations.
This product contains devices to protect the inputs against damage due to high static
voltages. However, it is advisable to take precautions to avoid application of any voltage
higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD
or VSS). This can be done by the internal pull-up or pull-down, which is provided by the
product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and
its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” is for System Requirement is included in the
Symbol column.
4.2
Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Table 7 are used and
the parameters are tagged accordingly in the tables where appropriate.
Table 7. Parameter classifications
Classification tag
Note:
24/82
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from
typical devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
D
Those parameters are derived mainly from simulations.
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
DS6494 Rev 8
SPC560D30x, SPC560D40x
4.3
Electrical characteristics
NVUSRO register
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the
device configuration, namely electrical parameters such as high voltage supply and
oscillator margin, as well as digital functionality (watchdog enable/disable after reset).
For a detailed description of the NVUSRO register, refer to the device reference manual.
4.3.1
NVUSRO[PAD3V5V] field description
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows
how NVUSRO[PAD3V5V] controls the device configuration.
Table 8. PAD3V5V field description
Value (1)
Description
0
High voltage supply is 5.0 V
1
High voltage supply is 3.3 V
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
4.3.2
NVUSRO[OSCILLATOR_MARGIN] field description
The fast external crystal oscillator consumption is dependent on the
OSCILLATOR_MARGIN bit value. Table 9 shows how NVUSRO[OSCILLATOR_MARGIN]
controls the device configuration.
Table 9. OSCILLATOR_MARGIN field description
Value (1)
Description
0
Low consumption configuration (4 MHz/8 MHz)
1
High margin configuration (4 MHz/16 MHz)
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
4.3.3
NVUSRO[WATCHDOG_EN] field description
The watchdog enable/disable configuration after reset is dependent on the
WATCHDOG_EN bit value. Table 10 shows how NVUSRO[WATCHDOG_EN] controls the
device configuration.
Table 10. WATCHDOG_EN field description
Value
(1)
Description
0
Disable after reset
1
Enable after reset
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
DS6494 Rev 8
25/82
77
Electrical characteristics
4.4
SPC560D30x, SPC560D40x
Absolute maximum ratings
Table 11. Absolute maximum ratings
Value
Symbol
Parameter
VSS
SR Digital ground on VSS_HV pins
VDD
SR
Conditions
Voltage on VDD_HV pins with respect
to ground (VSS)
VSS_LV
Voltage on VSS_LV (low voltage digital
SR supply) pins with respect to ground
(VSS)
VDD_BV
SR
VSS_ADC
Voltage on VSS_HV_ADC (ADC
SR reference) pin with respect to ground
(VSS)
VDD_ADC
Voltage on VDD_HV_ADC (ADC
SR reference) pin with respect to ground
(VSS)
Voltage on VDD_BV (regulator supply)
pin with respect to ground (VSS)
Unit
Min
Max
—
0
0
V
—
0.3
6.0
V
—
—
VSS 0.1 VSS + 0.1
0.3
6.0
Relative to VDD
VDD 0.3 VDD + 0.3
—
VSS 0.1 VSS + 0.1
—
Relative to VDD
—
0.3
V
V
6.0
VDD 0.3 VDD + 0.3
0.3
V
6.0
V
VIN
SR
Voltage on any GPIO pin with respect to
ground (VSS)
IINJPAD
SR
Injected input current on any pin during
overload condition
—
10
10
mA
IINJSUM
SR
Absolute sum of all injected input
currents during overload condition
—
50
50
mA
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
70
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
64
—
—
150
mA
—
55
150
°C
IAVGSEG
ICORELV
Sum of all the static I/O current within a
SR
supply segment (1)
SR
Relative to VDD
Low voltage static current sink through
VDD_BV
TSTORAGE SR Storage temperature
VDD 0.3 VDD + 0.3
V
mA
1. Supply segments are described in Section 4.7.5: I/O pad current specification.
Note:
26/82
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS),
the voltage on pins with respect to ground (VSS) must not exceed the recommended values.
DS6494 Rev 8
SPC560D30x, SPC560D40x
4.5
Electrical characteristics
Recommended operating conditions
Table 12. Recommended operating conditions (3.3 V)
Value
Symbol
VSS
VDD(1)
C
Parameter
Conditions
SR — Digital ground on VSS_HV pins
SR —
Voltage on VDD_HV pins with respect
to ground (VSS)
VSS_LV(2)
Voltage on VSS_LV (low voltage digital
SR — supply) pins with respect to ground
(VSS)
VDD_BV(3)
SR —
VSS_ADC
Voltage on VSS_HV_ADC (ADC
SR — reference) pin with respect to ground
(VSS)
Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)
Unit
Min
Max
—
0
0
V
—
3.0
3.6
V
—
VSS 0.1 VSS + 0.1
—
3.0
V
3.6
V
Relative to VDD VDD 0.1 VDD + 0.1
—
—
VSS 0.1 VSS + 0.1
3.0(5)
V
3.6
VDD_ADC(4)
SR —
Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
VIN
SR —
—
—
VSS 0.1
Voltage on any GPIO pin with respect to
ground (VSS)
—
VDD + 0.1
Relative to VDD
IINJPAD
SR —
Injected input current on any pin during
overload condition
—
5
5
mA
IINJSUM
SR —
Absolute sum of all injected input
currents during overload condition
—
50
50
mA
—
3.0(7)
250 x 103
(0.25
[V/µs])
V/s
TVDD
SR — VDD slope to ensure correct power
up(6)
V
Relative to VDD VDD 0.1 VDD + 0.1
V
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
3. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is
reset.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
DS6494 Rev 8
27/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Table 13. Recommended operating conditions (5.0 V)
Value
Symbol
VSS
C
Parameter
Conditions
SR — Digital ground on VSS_HV pins
VDD(1)
SR —
Voltage on VDD_HV pins with respect to
ground (VSS)
VSS_LV(3)
SR —
Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground (VSS)
Unit
Min
Max
—
0
0
—
4.5
5.5
Voltage drop(2)
3.0
5.5
—
VDD_BV
Voltage on VDD_BV pin (regulator
SR —
supply) with respect to ground (VSS)
Voltage on VSS_HV_ADC (ADC
SR — reference) pin with respect to ground
(VSS
VSS_ADC
VDD_ADC(5)
Voltage on VDD_HV_ADC pin (ADC
SR —
reference) with respect to ground (VSS)
drop(2)
4.5
5.5
3.0
5.5
V
V
Relative to VDD VDD 0.1 VDD + 0.1
—
VSS 0.1 VSS + 0.1
—
4.5
5.5
Voltage drop(2)
3.0
5.5
V
V
Relative to VDD VDD 0.1 VDD + 0.1
—
VSS 0.1
—
Relative to VDD
—
VDD + 0.1
Injected input current on any pin during
overload condition
—
5
5
mA
Absolute sum of all injected input
currents during overload condition
—
50
50
mA
—
3.0(7)
VIN
SR —
Voltage on any GPIO pin with respect to
ground (VSS)
IINJPAD
SR —
IINJSUM
SR —
TVDD
Voltage
V
VSS 0.1 VSS + 0.1
—
(4)
V
SR — VDD slope to ensure correct power
up(6)
V
250 x 103
V/ s
(0.25
[V/ µs])
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.6 V. However, certain analog
electrical characteristics will not be guaranteed to stay within the stated limits.
3. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
5. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
Note:
28/82
SRAM data retention is guaranteed with VDD_LV not below 1.08 V.
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
4.6
Thermal characteristics
4.6.1
Package thermal characteristics
Table 14. LQFP thermal characteristics
Symbol
C
Conditions(1)
Parameter
Single-layer board —1s
RJA
CC D
Thermal resistance, junction-toambient natural convection(2)
Four-layer board — 2s2p
RJB
CC D
Thermal resistance, junction-toboard(3)
Four-layer board — 2s2p
Single-layer board — 1s
RJC
CC D Thermal resistance, junction-to-case(4)
Four-layer board — 2s2p
JB
JC
Junction-to-board thermal
CC D characterization parameter, natural
convection
Junction-to-case thermal
CC D characterization parameter, natural
convection
Single-layer board — 1s
Four-layer board — 2s2p
Single-layer board — 1s
Four-layer board — 2s2p
Value
LQFP64
72.1
LQFP100
65.2
LQFP64
57.3
LQFP100
51.8
LQFP64
44.1
LQFP100
41.3
LQFP64
26.5
LQFP100
23.9
LQFP64
26.2
LQFP100
23.7
LQFP64
41
LQFP100
41.6
LQFP64
43
LQFP100
43.4
LQFP64
11.5
LQFP100
10.4
LQFP64
11.1
LQFP100
10.2
Unit
°C/W
°C/W
°C/W
°C/W
°C/W
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C
2. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA.
3. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package. When Greek letters are not available, the symbols are typed as RthJB.
4. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters
are not available, the symbols are typed as RthJC.
Note:
Thermal characteristics are targets based on simulation that are subject to change per
device characterization.
4.6.2
Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using
Equation 1:
DS6494 Rev 8
29/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Equation 1 TJ = TA + (PD x RJA)
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal
power.
PI/O represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand,
PI/O may be significant, if the device is configured to continuously drive external modules
and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
Equation 2 PD = K / (TJ + 273 °C)
Therefore, solving equations 1 and 2:
Equation 3 K = PD x (TA + 273 °C) + RJA x PD2
Where:
K is a constant for the particular part, which may be determined from Equation 3
by measuring PD (at equilibrium) for a known TA. Using this value of K, the values
of PD and TJ may be obtained by solving equations 1 and 2 iteratively for any
value of TA.
4.7
I/O pad electrical characteristics
4.7.1
I/O pad types
The device provides four main I/O pad types depending on the associated alternate
functions:
Slow pads — These pads are the most common pads, providing a good compromise
between transition time and low electromagnetic emission.
Medium pads — These pads provide transition fast enough for the serial
communication channels with controlled current to reduce electromagnetic emission.
Input only pads — These pads are associated to ADC channels (ADC_P[X]) providing
low input leakage.
Medium pads can use slow configuration to reduce electromagnetic emission except for
PC[1], that is medium only, at the cost of reducing AC performance.
4.7.2
I/O input DC characteristics
Table 15 provides input DC electrical characteristics as described in Figure 4.
30/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
Figure 4. Input DC electrical characteristics definition
VIN
VDD
VIH
VHYS
VIL
PDIx = ‘1’
(GPDI register of SIUL)
PDIx = ‘0’
Table 15. I/O input DC electrical characteristics
Symbol
C
VIH
SR
P
Input high level CMOS
(Schmitt Trigger)
VIL
SR
P
Input low level CMOS (Schmitt
—
Trigger)
VHYS
CC C
Input hysteresis CMOS
(Schmitt Trigger)
ILKG
CC D Digital input leakage
D
Typ
Max
0.65VDD
—
VDD+0.4
V
0.4
—
0.35VDD
V
0.1VDD
—
—
V
TA = 40 °C
—
2
200
TA = 25 °C
—
2
200
TA = 85 °C
—
5
300
TA = 105 °C
—
12
500
TA = 125 °C
—
70
1000
—
No injection
on adjacent
pin
P
Unit
Min
—
D
D
Value
Conditions(1)
Parameter
nA
WFI(2)
SR
P Digital input filtered pulse
—
—
—
40
ns
WNFI(2)
SR
P Digital input not filtered pulse
—
1000
—
—
ns
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to the operating temperature and voltage.
DS6494 Rev 8
31/82
77
Electrical characteristics
4.7.3
SPC560D30x, SPC560D40x
I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 16 provides weak pull figures. Both pull-up and pull-down resistances are
supported.
Table 17 provides output driver characteristics for I/O pads when in SLOW
configuration.
Table 18 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Table 16. I/O pull-up/pull-down DC electrical characteristics
Symbol
C
Parameter
Value
Conditions(1)
Unit
Min Typ Max
P
Weak pull-up current
CC C
absolute value
P
|IWPU|
P
Weak pull-down current
CC C
absolute value
P
|IWPD|
10
—
150
10
—
250
VIN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1
10
—
150
PAD3V5V = 0
10
—
150
PAD3V5V = 1
10
—
250
VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1
10
—
150
VIN = VIL, VDD = 5.0 V ± 10%
VIN = VIH, VDD = 5.0 V ± 10%
PAD3V5V = 0
PAD3V5V =
1(2)
(2)
µA
µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
Table 17. SLOW configuration output buffer electrical characteristics
Symbol
C
Parameter
P
VOH
VOL
Output high
level
CC C
SLOW
configuration
IOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
I = 2 mA,
Push Pull OH
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
Unit
Min
Typ
Max
0.8VDD
—
—
0.8VDD
—
—
C
IOH = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD 0.8
—
—
P
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
—
—
0.1VDD
—
—
0.5
Output low
level
CC C
SLOW
configuration
C
I = 2 mA,
Push Pull OL
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
32/82
Value
Conditions(1)
DS6494 Rev 8
V
V
SPC560D30x, SPC560D40x
Electrical characteristics
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
Table 18. MEDIUM configuration output buffer electrical characteristics
Symbol
VOH
VOL
C
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
C
IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD
—
—
P
IOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD
—
—
IOH = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
0.8VDD
—
—
Output high
level
CC C
MEDIUM
configuration
Push
Pull
C
IOH = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD 0.8
—
—
C
IOH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD
—
—
C
IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
0.2VDD
P
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
IOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
—
—
0.1VDD
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
C
IOL = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
0.1VDD
Output low
level
CC C
MEDIUM
configuration
Push
Pull
V
V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
DS6494 Rev 8
33/82
77
Electrical characteristics
4.7.4
SPC560D30x, SPC560D40x
Output pin transition times
Table 19. Output pin transition times
Symbol
C
D
CL = 50 pF
Output transition
D time output pin(2) CL = 100 pF
CC
D SLOW
CL = 25 pF
configuration
T
CL = 50 pF
D
CL = 100 pF
D
CL = 25 pF
VDD = 5.0 V ± 10%, PAD3V5V = 0
VDD = 3.3 V ± 10%, PAD3V5V = 1
VDD = 5.0 V ± 10%, PAD3V5V = 0
SIUL.PCRx.SRC = 1
T
ttr
Unit
CL = 25 pF
T
ttr
Value
Conditions(1)
Parameter
CL = 50 pF
Output transition
D time output pin(2) CL = 100 pF
CC
D MEDIUM
CL = 25 pF
configuration
T
CL = 50 pF
D
VDD = 3.3 V ± 10%, PAD3V5V = 1
SIUL.PCRx.SRC = 1
CL = 100 pF
Min
Typ
Max
—
—
50
—
—
100
—
—
125
—
—
50
—
—
100
—
—
125
—
—
10
—
—
20
—
—
40
—
—
12
—
—
25
—
—
40
ns
ns
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. CL includes device and package capacitances (CPKG < 5 pF).
4.7.5
I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is
associated to a VDD/VSS supply pair as described in Table 20.
Table 21 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the IAVGSEG maximum value.
Table 20. I/O supply segment
Supply segment
Package
34/82
1
2
3
4
LQFP100
pin 16 – pin 35
pin 37 – pin 69
pin 70 – pin 83
pin 84 – pin 15
LQFP64
pin 8 – pin 26
pin 28 – pin 55
pin 56 – pin 7
—
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
Table 21. I/O consumption
Symbol
C
Unit
Min
Typ
Max
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
20
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
16
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
29
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
17
—
—
2.3
—
—
3.2
—
—
6.6
—
—
1.6
—
—
2.3
—
—
4.7
—
—
6.6
—
—
13.4
CL = 100 pF, 13 MHz
—
—
18.3
CL = 25 pF, 13 MHz
—
—
5
—
—
8.5
CL = 100 pF, 13 MHz
—
—
11
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
70
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
65
Dynamic I/O current
CL = 25 pF
ISWTSLW(2) CC D for SLOW
configuration
Dynamic I/O current
CL = 25 pF
ISWTMED(2) CC D for MEDIUM
configuration
CL = 25 pF, 2 MHz
mA
mA
VDD = 5.0 V ± 10%,
PAD3V5V = 0
CL = 25 pF, 4 MHz
IRMSSLW
Value
Conditions(1)
Parameter
Root mean square
CL = 100 pF, 2 MHz
CC D I/O current for
SLOW configuration CL = 25 pF, 2 MHz
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 25 pF, 4 MHz
CL = 100 pF, 2 MHz
CL = 25 pF, 13 MHz
IRMSMED
IAVGSEG
Root mean square
I/O current for
CC D
MEDIUM
configuration
Sum of all the static
SR D I/O current within a
supply segment
VDD = 5.0 V ± 10%,
PAD3V5V = 0
CL = 25 pF, 40 MHz
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 25 pF, 40 MHz
mA
mA
mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 22 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on
a single segment should remain below 100%.
Table 22. I/O weight
LQFP100/LQFP64
Pad
Weight 5 V
Weight 3.3 V
SRC(1)= 0
SRC = 1
SRC = 0
SRC = 1
PB[3]
9%
9%
10%
10%
PC[9]
8%
8%
10%
10%
DS6494 Rev 8
35/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Table 22. I/O weight (continued)
LQFP100/LQFP64
Pad
36/82
Weight 5 V
Weight 3.3 V
SRC(1)= 0
SRC = 1
SRC = 0
SRC = 1
PC[14]
8%
8%
10%
10%
PC[15]
8%
11%
9%
10%
PA[2]
8%
8%
9%
9%
PE[0]
7%
7%
9%
9%
PA[1]
7%
7%
8%
8%
PE[1]
7%
10%
8%
8%
PE[8]
6%
9%
8%
8%
PE[9]
6%
6%
7%
7%
PE[10]
6%
6%
7%
7%
PA[0]
5%
7%
6%
7%
PE[11]
5%
5%
6%
6%
PC[11]
7%
7%
9%
9%
PC[10]
8%
11%
9%
10%
PB[0]
8%
11%
9%
10%
PB[1]
8%
8%
10%
10%
PC[6]
8%
8%
10%
10%
PC[7]
8%
8%
10%
10%
PA[15]
8%
11%
9%
10%
PA[14]
7%
11%
9%
9%
PA[4]
7%
7%
8%
8%
PA[13]
7%
10%
8%
9%
PA[12]
7%
7%
8%
8%
PB[9]
1%
1%
1%
1%
PB[8]
1%
1%
1%
1%
PB[10]
5%
5%
6%
6%
PD[0]
1%
1%
1%
1%
PD[1]
1%
1%
1%
1%
PD[2]
1%
1%
1%
1%
PD[3]
1%
1%
1%
1%
PD[4]
1%
1%
1%
1%
PD[5]
1%
1%
1%
1%
PD[6]
1%
1%
1%
1%
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
Table 22. I/O weight (continued)
LQFP100/LQFP64
Pad
Weight 5 V
Weight 3.3 V
SRC(1)= 0
SRC = 1
SRC = 0
SRC = 1
PD[7]
1%
1%
1%
1%
PD[8]
1%
1%
1%
1%
PB[4]
1%
1%
1%
1%
PB[5]
1%
1%
1%
1%
PB[6]
1%
1%
1%
1%
PB[7]
1%
1%
1%
1%
PD[9]
1%
1%
1%
1%
PD[10]
1%
1%
1%
1%
PD[11]
1%
1%
1%
1%
PB[11]
9%
9%
11%
11%
PD[12]
8%
8%
10%
10%
PB[12]
8%
8%
10%
10%
PD[13]
8%
8%
9%
9%
PB[13]
8%
8%
9%
9%
PD[14]
7%
7%
9%
9%
PB[14]
7%
7%
8%
8%
PD[15]
7%
7%
8%
8%
PB[15]
6%
6%
7%
7%
PA[3]
6%
6%
7%
7%
PA[7]
4%
4%
5%
5%
PA[8]
4%
4%
5%
5%
PA[9]
4%
4%
5%
5%
PA[10]
5%
5%
6%
6%
PA[11]
5%
5%
6%
6%
PE[12]
5%
5%
6%
6%
PC[3]
5%
5%
6%
6%
PC[2]
5%
7%
6%
6%
PA[5]
5%
6%
5%
6%
PA[6]
4%
4%
5%
5%
PC[1]
5%
17%
4%
12%
PC[0]
6%
9%
7%
8%
PE[2]
7%
10%
8%
9%
DS6494 Rev 8
37/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Table 22. I/O weight (continued)
LQFP100/LQFP64
Pad
Weight 5 V
Weight 3.3 V
SRC(1)= 0
SRC = 1
SRC = 0
SRC = 1
PE[3]
7%
10%
9%
9%
PC[5]
8%
11%
9%
10%
PC[4]
8%
11%
9%
10%
PE[4]
8%
12%
10%
10%
PE[5]
8%
12%
10%
11%
PE[6]
9%
12%
10%
11%
PE[7]
9%
12%
10%
11%
PC[12]
9%
13%
11%
11%
PC[13]
9%
9%
11%
11%
PC[8]
9%
9%
11%
11%
PB[2]
9%
13%
11%
12%
1. SRC: “Slew Rate Control” bit in SIU_PCR
Note:
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C, unless otherwise specified.
4.8
RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
Figure 5. Start-up reset requirements
VDD
VDDMIN
RESET
VIH
VIL
device reset forced by RESET
38/82
device start-up phase
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
Figure 6. Noise filtering on reset signal
VRESET
hw_rst
VDD
‘1’
VIH
VIL
‘0’
filtered by
hysteresis
filtered by
lowpass filter
WFRST
filtered by
lowpass filter
unknown reset
state
device under hardware reset
WFRST
WNFRST
Table 23. Reset electrical characteristics
Symbol
C
Parameter
Value
Conditions(1)
Unit
Min
Typ
Max
VIH
Input High Level
SR P CMOS (Schmitt
Trigger)
—
0.65VDD
—
VDD + 0.4
V
VIL
Input low Level
SR P CMOS (Schmitt
Trigger)
—
0.4
—
0.35VDD
V
VHYS
Input hysteresis
CC C CMOS (Schmitt
Trigger)
—
0.1VDD
—
—
V
Push Pull, IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
Push Pull, IOL = 1 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(2)
—
—
0.1VDD
Push Pull, IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
VOL
CC P Output low level
DS6494 Rev 8
V
39/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Table 23. Reset electrical characteristics (continued)
Symbol
ttr
WFRST
C
SR P
CC P
Value
Conditions(1)
Unit
Min
Typ
Max
CL = 25 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
10
CL = 50 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
20
CL = 100 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
40
CL = 25 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
12
CL = 50 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
25
CL = 100 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
40
RESET input filtered
pulse
—
—
—
40
ns
RESET input not
filtered pulse
—
1000
—
—
ns
VDD = 3.3 V ± 10%, PAD3V5V = 1
10
—
150
Weak pull-up current VDD = 5.0 V ± 10%, PAD3V5V = 0
absolute value
VDD = 5.0 V ± 10%,
PAD3V5V = 1(4)
10
—
150
10
—
250
Output transition
time output pin(3)
CC D
MEDIUM
configuration
WNFRST SR P
|IWPU|
Parameter
ns
µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the
device reference manual).
3. CL includes device and package capacitance (CPKG < 5 pF).
4. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET are
configured in input or in high impedance state.
4.9
Power management electrical characteristics
4.9.1
Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply
VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the
common I/O supply VDD. The following supplies are involved:
40/82
HV: High voltage external power supply for voltage regulator module. This must be
provided externally through VDD power pin.
BV: High voltage external power supply for internal ballast module. This must be
provided externally through VDD_BV power pin. Voltage values should be aligned with
VDD.
LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is
generated by the internal voltage regulator but provided outside to connect stability
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
capacitor. It is further split into four main domains to ensure noise isolation between
critical LV modules within the device:
–
LV_COR: Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
–
LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
–
LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
–
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
Figure 7. Voltage regulator capacitance connection
CREG2 (LV_COR/LV_CFLA)
VDD
VSS_LV
VDD_BV
Voltage Regulator
I
VSS_LVn
VDD_BV
CREG1 (LV_COR/LV_DFLA)
VDD_LVn
CDEC1 (Ballast decoupling)
VREF
VDD_LV
VDD_LV
VSS_LV
VSS_LV
DEVICE
DEVICE
VDD_LV
CREG3
(LV_COR/LV_PLL)
VSS
VDD
CDEC2
(supply/IO decoupling)
The internal voltage regulator requires external capacitance (CREGn) to be connected to the
device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins. Care should also
be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply
pairs to ensure stable voltage (see Section 4.5: Recommended operating conditions).
DS6494 Rev 8
41/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Table 24. Voltage regulator electrical characteristics
Symbol
C
CREGn
SR —
Internal voltage regulator
external capacitance
RREG
SR —
Stability capacitor equivalent
serial resistance
CDEC1
Decoupling capacitance
SR —
ballast
CDEC2
SR —
VMREG
CC
T
—
nF
—
—
0.2
W
—
470
(4)
nF
100
—
Main regulator output voltage
Before exiting from
reset
—
1.32
—
1.16
1.28
—
—
—
150
IMREG = 200 mA
—
—
2
IMREG = 0 mA
—
—
1
After trimming
1.16
1.28
—
V
—
—
15
mA
ILPREG = 15 mA;
TA = 55°C
—
—
600
ILPREG = 0 mA;
TA = 55°C
—
5
—
After trimming
1.16
1.28
—
V
—
—
5
mA
—
—
100
After trimming
Main regulator module current
consumption
VLPREG
CC P
Low-power regulator output
voltage
ILPREG
SR —
Low power regulator current
provided to VDD_LV domain
Low-power regulator module
current consumption
VULPREG
CC P
Ultra low power regulator output
voltage
IULPREG
SR —
Ultra low power regulator current
provided to VDD_LV domain
—
—
—
IULPREG = 5 mA;
Ultra low power regulator module TA = 55°C
CC D
current consumption
I
= 0 mA;
ULPREG
TA = 55 °C
CC D
500
10
CC D
IDD_BV
—
VDD/VSS pair
IMREGINT
IULPREGINT
200
Decoupling capacitance
regulator supply
Main regulator current provided
to VDD_LV domain
—
Max
400
SR —
CC
Typ
VDD_BV/VSS_LV pair:
VDD_BV = 3 V to 3.6 V
IMREG
ILPREGINT
Range:
10 kHz to 20 MHz
Unit
Min
VDD_BV/VSS_LV pair:
100(3)
VDD_BV = 4.5 V to 5.5 V
(2)
P
D
Value
Conditions(1)
Parameter
In-rush average current on
VDD_BV during power-up(5)
—
—
nF
V
mA
mA
µA
µA
—
2
—
—
—
300(6)
mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical
value is in the range of 470 nF.
3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.
42/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
4. External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in
operating range.
5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on
external capacitances to be loaded).
6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
4.9.2
Low voltage detector electrical characteristics
The device implements a power-on reset (POR) module to ensure correct power-up
initialization, as well as five low voltage detectors (LVDs) to monitor the VDD and the VDD_LV
voltage while device is supplied:
POR monitors VDD during the power-up phase to ensure device is maintained in a safe
reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR
in device reference manual)
LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer
to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device
reference manual)
LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in
device reference manual)
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range (refer to
RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference
manual)
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
Figure 8. Low voltage detector vs reset
VDD
VLVDHVxH
VLVDHVxL
RESET
DS6494 Rev 8
43/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Table 25. Low voltage detector electrical characteristics
Symbol
C
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
VPORUP
SR P Supply for functional POR module
1.0
—
5.5
V
VPORH
CC P Power-on reset threshold
1.5
—
2.6
V
VLVDHV3H
CC T LVDHV3 low voltage detector high threshold
—
—
2.95
V
VLVDHV3L
CC P LVDHV3 low voltage detector low threshold
2.6
—
2.9
V
LVDHV3B low voltage detector high
threshold
—
—
2.95
V
VLVDHV3BH
CC P
VLVDHV3BL
TA = 25 °C,
CC P LVDHV3B low voltage detector low threshold after trimming
2.6
—
2.9
V
VLVDHV5H
CC T LVDHV5 low voltage detector high threshold
—
—
4.5
V
VLVDHV5L
CC P LVDHV5 low voltage detector low threshold
3.8
—
4.4
V
VLVDLVCORL CC P
LVDLVCOR low voltage detector low
threshold
1.08
—
1.16
V
CC P
LVDLVBKP low voltage detector low
threshold
1.08
—
1.16
V
VLVDLVBKPL
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
4.10
Power consumption
Table 26 provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on the application.
Table 26. Power consumption on VDD_BV and VDD_HV
Symbol
IDDMAX(2)
IDDRUN(4)
C
CC D
CC
IDDSTOP
CC
RUN mode maximum
average current
—
Unit
Min
Typ
Max
—
90
130(3)
fCPU = 8 MHz
—
7
—
T RUN mode typical
(5)
T average current
fCPU = 16 MHz
—
18
—
fCPU = 32 MHz
—
29
—
P
fCPU = 48 MHz
—
40
100
TA = 25 °C
—
8
15
TA = 125 °C
—
14
25
P
TA = 25 °C
—
180
700(8)
D
TA = 55 °C
—
500
—
TA = 85 °C
—
1
6(8)
TA = 105 °C
—
2
9(8)
4.5
12(8)
P
HALT mode current(6)
CC D STOP mode current(7)
D
Slow internal RC
oscillator (128 kHz)
running
Slow internal RC
oscillator (128 kHz)
running
P
44/82
Value
Conditions(1)
T
C
IDDHALT
Parameter
TA = 125 °C
DS6494 Rev 8
—
mA
mA
mA
µA
mA
SPC560D30x, SPC560D40x
Electrical characteristics
Table 26. Power consumption on VDD_BV and VDD_HV (continued)
Symbol
C
P
D
IDDSTDBY
STANDBY mode
CC D
current(9)
D
Value
Conditions(1)
Parameter
Slow internal RC
oscillator (128 kHz)
running
P
Unit
Min
Typ
Max
TA = 25 °C
—
30
100
TA = 55 °C
—
75
—
TA = 85 °C
—
180
700
TA = 105 °C
—
315
1000
TA = 125 °C
—
560
1700
µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is
thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation
ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals
(default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power
mode when possible.
3. Higher current may be sinked by device during power-up and standby exit. Refer to in-rush average current on Table 24.
4. RUN current measured with typical application with accesses on both flash memory and SRAM.
5. Only for the “P” classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL
as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG
timer reset enabled.
6. Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0
ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission),
instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz,
instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but
no conversion except 2 analog watchdogs.
7. Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on.
All possible peripherals off and clock gated. Flash in power down mode.
8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator
module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures
exceeding 125°C and under these circumstances, it is possible for the current to initially exceed the maximum STOP
specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and
the main regulator will be automatically switched off when the load current is below 6 mA.
9. Only for the “P” classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption,
all possible modules switched off.
4.11
Flash memory electrical characteristics
The data flash operation depends strongly on the code flash operation. If code flash is
switched-off, the data flash is disabled.
4.11.1
Program/Erase characteristics
Table 27 shows the program and erase characteristics.
Table 27. Program and erase specifications (code flash)
Value
Symbol
C
Parameter
Min
Typ(1)
Initial
max(2)
Max(3)
Unit
tdwprogram
CC C Double word (64-bits) program time(4)
—
22
50
500
µs
t16Kpperase
CC C 16 KB block preprogram and erase time
—
300
500
5000
ms
DS6494 Rev 8
45/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Table 27. Program and erase specifications (code flash) (continued)
Value
Symbol
C
Parameter
Min
Typ(1)
Initial
max(2)
Max(3)
Unit
t32Kpperase
CC C 32 KB block preprogram and erase time
—
400
600
5000
ms
t128Kpperase
CC C 128 KB block preprogram and erase time
—
800
1300
7500
ms
CC C Erase suspend latency
—
—
30
30
µs
tesus
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Table 28. Program and erase specifications (data flash)
Value
Symbol
C
Parameter
Min
Typ(1)
Initial
max(2)
Max(3)
Unit
tswprogram
CC C Single word (32-bits) program time(4)
—
30
70
300
µs
t16Kpperase
CC C 16 KB block preprogram and erase time
—
700
800
1500
ms
tBank_D
CC C 64 KB block preprogram and erase time
—
1900
2300
4800
ms
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Table 29. Flash module life
Value
Symbol
P/E
C
Parameter
Number of program/erase
cycles per block over the
CC C
operating temperature range
(TJ)
Minimum data retention at
Retention CC C 85 °C average ambient
temperature(1)
46/82
Conditions
Unit
Min
Typ
Max
16 KB blocks
100000
—
—
cycles
32 KB blocks
10000
100000
—
cycles
128 KB blocks
1000
100000
—
cycles
Blocks with
0–1000 P/E cycles
20
—
—
Blocks with
1001–10000 P/E cycles
10
—
—
Blocks with
10001–100000 P/E
cycles
5
—
—
DS6494 Rev 8
years
SPC560D30x, SPC560D40x
Electrical characteristics
1. Ambient temperature averaged over application duration. It is recommended not to exceed the product operating
temperature range.
ECC circuitry provides correction of single bit faults and is used to improve further
automotive reliability results. Some units will experience single bit corrections throughout
the life of the product with no impact to product reliability.
Table 30. Flash memory read access timing
Symbol
fCFREAD CC
C
Conditions(1) Max Unit
Parameter
P Maximum working frequency for reading code flash memory at
C given number of wait states in worst conditions
fDFREAD CC P
2 wait states
48
0 wait states
20
Maximum working frequency for reading data flash memory at given
6 wait states
number of wait states in worst conditions
48
MHz
MHz
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
4.11.2
Flash power supply DC characteristics
Table 31 shows the power supply DC characteristics on external supply.
Note:
Power supply for data flash is actually provided by code flash; this means that data flash
cannot work if code flash is not powered.
Table 31. Flash power supply DC electrical characteristics
Symbol
C
Value
Conditions(1)
Parameter
Unit
Min Typ Max
Code flash
—
—
33
mA
Data flash
—
—
4
mA
Program/Erase on-going Code flash
while reading flash
registers, fCPU = 48 MHz Data flash
—
—
33
mA
—
—
6
mA
Code flash
—
—
910
µA
Code flash
—
—
125
µA
Data flash
—
—
25
µA
ICFREAD CC D Sum of the current consumption
on VDDHV and VDDBV on read
IDFREAD CC D access
Flash module read
fCPU = 48 MHz
ICFMOD CC D Sum of the current consumption
on VDDHV and VDDBV on matrix
IDFMOD CC D modification (program/erase)
Sum of the current consumption
CC D on VDDHV and VDDBV during
flash low-power mode
—
ICFPWD CC D Sum of the current consumption
on VDDHV and VDDBV during
IDFPWD CC D flash power-down mode
—
IFLPW
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
DS6494 Rev 8
47/82
77
Electrical characteristics
4.11.3
SPC560D30x, SPC560D40x
Start-up/Switch-off timings
Table 32. Start-up time/Switch-off time
Symbol
C
CC T Delay for flash module to exit reset mode
tFLARSTEXIT
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
Code flash
—
—
125
µs
Data flash
—
—
150
µs
tFLALPEXIT
CC T
Delay for flash module to exit low-power
Code flash
mode(2)
—
—
0.5
µs
tFLAPDEXIT
CC T
Delay for flash module to exit powerdown mode
Code flash
—
—
30
µs
tFLALPENTRY CC T
(3)
—
—
Delay for flash module to enter lowpower mode
Code flash
—
—
0.5
µs
Delay for flash module to enter
Code flash
—
—
1.5
µs
—
4(3)
µs
tFLAPDENTRY CC T power-down mode
Data flash
—
30
µs
Data flash
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Data flash does not support low-power mode.
3. If code flash is already switched-on.
4.12
Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.12.1
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user apply EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations The software flowchart must include the management of
runaway conditions such as:
–
Corrupted program counter
–
Unexpected reset
–
Critical data corruption (control registers...)
Prequalification trials Most of the common failures (unexpected reset and program
counter corruption) can be reproduced by manually forcing a low state on the reset pin
or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When
unexpected behavior is detected, the software can be hardened to prevent
unrecoverable errors occurring (see the application note Software Techniques For
Improving Microcontroller EMC Performance (AN1015)).
48/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
4.12.2
Electrical characteristics
Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission
test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI
measurements.
Table 33. EMI radiated emission measurement
Value
Symbol
—
fCPU
C
Conditions
Unit
Min
Typ
Max
SR — Scan range
—
0.150
—
1000
MHz
SR — Operating frequency
—
—
48
—
MHz
LV operating
voltages
—
—
1.28
—
V
—
—
18
dBµV
—
—
14
dBµV
VDD_LV SR —
SEMI
Parameter
CC T Peak level
No PLL
frequency
modulation
VDD = 5 V, TA = 25 °C,
LQFP100 package
Test conforming to IEC 61967- ± 2% PLL
2, fOSC = 8 MHz/fCPU = 48 MHz frequency
modulation
Note:
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
For information on conducted emission and susceptibility measurement (norm IEC 619674), please contact your local marketing representative.
4.12.3
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to the each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note Electrostatic Discharge Sensitivity Measurement (AN1181).
Table 34. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Max value
VESD(HBM) CC T
Electrostatic discharge voltage
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002
H1C
2000
V
CC T
Electrostatic discharge voltage
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003
M2
200
V
VESD(CDM) CC T
Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-011
C3A
500
V
750 (corners)
V
VESD(MM)
C
DS6494 Rev 8
Unit
49/82
77
Electrical characteristics
Note:
SPC560D30x, SPC560D40x
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for
Automotive Grade Integrated Circuits.
A device will be defined as a failure if after exposure to ESD pulses the device no longer
meets the device specification requirements. Complete DC parametric and functional
testing shall be performed per applicable device specification at room temperature followed
by hot temperature, unless specified otherwise in the device specification.
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 35. Latch-up results
Symbol
LU
4.13
CC
C
Parameter
T Static latch-up class
Conditions
TA = 125 °C
conforming to JESD 78
Class
II level A
Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the
internal oscillator driver and provides an example of a connection for an oscillator or a
resonator.
Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the
design simulations.
50/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
Figure 9. Crystal oscillator and resonator connection scheme
EXTAL
C1
Crystal
EXTAL
XTAL
C2
DEVICE
VDD
I
R
EXTAL
XTAL
Resonator
DEVICE
XTAL
DEVICE
Notes:
1. XTAL/EXTAL must not be directly used to drive external circuits
2. A series resistor may be required, according to the crystal oscillator supplier recommendations.
Table 36. Crystal description
Crystal
equivalent
series
resistance
Shunt
capacitance
between
xtalout and
xtalin
Crystal
motional
capacitance
Crystal
motional
inductance
(ESR)
(Cm) fF
(Lm) mH
300
2.68
591.0
21
2.93
8
300
2.46
160.7
17
3.01
10
150
2.93
86.6
15
2.91
120
3.11
56.5
15
2.93
120
3.90
25.3
10
3.00
Nominal
frequency
NDK
crystal
(MHz)
reference
4
12
16
NX8045GB
NX5032GA
Load on
xtalin/xtalout
C1 = C2 (pF)(1)
C0(2) (pF)
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,
etc.).
DS6494 Rev 8
51/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram
S_MTRANS bit (ME_GS register)
‘1’
‘0’
VXTAL
1/fFXOSC
VFXOSC
90%
VFXOSCOP
10%
TFXOSCSU
valid internal clock
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol
fFXOSC
C
Parameter
Unit
Min
Typ
Max
—
4.0
—
16.0
CC C
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2
—
8.2
CC P
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0
—
7.4
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
2.7
—
9.7
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5
—
9.2
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
1.3
—
—
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
1.3
—
SR —
gmFXOSC
CC C
Fast external crystal
oscillator frequency
Fast external crystal
oscillator
transconductance
CC C
VFXOSC
Value
Conditions(1)
CC T
Oscillation amplitude at
EXTAL
mA/V
V
VFXOSCOP
CC P
Oscillation operating
point
—
—
0.95
IFXOSC(2)
CC T
Fast external crystal
oscillator consumption
—
—
2
52/82
DS6494 Rev 8
MHz
—
V
3
mA
SPC560D30x, SPC560D40x
Electrical characteristics
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)
Symbol
tFXOSCSU
C
Fast external crystal
CC T
oscillator start-up time
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
—
—
6
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
—
—
1.8
ms
VIH
SR P
Input high level CMOS
(Schmitt Trigger)
Oscillator bypass mode
0.65VDD
—
VDD+0.4
V
VIL
SR P
Input low level CMOS
(Schmitt Trigger)
Oscillator bypass mode
0.4
—
0.35VDD
V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled
peripherals).
4.14
FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to
generate a fast system clock from the main oscillator driver.
Table 38. FMPLL electrical characteristics
Symbol
C
Parameter
Typ
Max
—
4
—
48
MHz
—
40
—
60
%
—
16
—
48
MHz
VCO frequency without
frequency modulation
—
256
—
512
VCO frequency with
frequency modulation
—
245
—
533
—
—
—
48
MHz
20
—
150
MHz
SR — FMPLL reference clock(2)
PLLIN
SR —
FMPLL reference clock duty
cycle(2)
fPLLOUT CC D FMPLL output clock frequency
fVCO
CC P
Unit
Min
fPLLIN
(3)
Value
Conditions(1)
MHz
fCPU
SR — System clock frequency
fFREE
CC P Free-running frequency
tLOCK
CC P FMPLL lock time
Stable oscillator (fPLLIN = 16 MHz)
—
40
100
µs
tLTJIT
CC — FMPLL long term jitter
fPLLIN = 16 MHz (resonator),
fPLLCLK at 48 MHz, 4000 cycles
—
—
10
ns
CC C FMPLL consumption
TA = 25 °C
—
—
4
mA
IPLL
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional
mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
3. Frequency modulation is considered ±4%.
DS6494 Rev 8
53/82
77
Electrical characteristics
4.15
SPC560D30x, SPC560D40x
Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default
clock at the power-up of the device.
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol
fFIRC
C
CC P Fast internal RC oscillator high TA = 25 °C, trimmed
SR — frequency
—
Fast internal RC oscillator high
IFIRCRUN(2) CC T frequency current in running
TA = 25 °C, trimmed
mode
IFIRCPWD
IFIRCSTOP
tFIRCSU
Typ
Max
—
16
—
12
20
MHz
—
200
µA
—
—
10
µA
sysclk = off
—
500
—
sysclk = 2 MHz
—
600
—
sysclk = 4 MHz
—
700
—
sysclk = 8 MHz
—
900
—
sysclk = 16 MHz
—
1250
—
VDD = 5.0 V ± 10%
—
1.1
2.0
µs
1
%
Fast internal RC oscillator high
CC T frequency and system clock
TA = 25 °C
current in stop mode
Fast internal RC oscillator
start-up time
Unit
Min
—
Fast internal RC oscillator high
CC D frequency current in power
TA = 25 °C
down mode
CC C
Value
Conditions(1)
Parameter
FIRCPRE
Fast internal RC oscillator
CC C precision after software
trimming of fFIRC
TA = 25 °C
1
—
FIRCTRIM
CC C
Fast internal RC oscillator
trimming step
TA = 25 °C
—
1.6
FIRCVAR
Fast internal RC oscillator
variation in temperature and
CC C supply with respect to fFIRC at
TA = 55°C in high-frequency
configuration
5
—
—
µA
%
5
%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
4.16
Slow internal RC oscillator (128 kHz) electrical
characteristics
The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the
reference clock for the RTC module.
54/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol
fSIRC
C
Value
Conditions(1)
Parameter
CC P Slow internal RC oscillator low
SR — frequency
TA = 25 °C, trimmed
—
ISIRC(2)
CC C
Slow internal RC oscillator low
frequency current
tSIRCSU
CC P
Slow internal RC oscillator startTA = 25 °C, VDD = 5.0 V±10%
up time
TA = 25 °C, trimmed
SIRCPRE
Slow internal RC oscillator
CC C precision after software trimming TA = 25 °C
of fSIRC
SIRCTRIM
Slow internal RC oscillator
CC C
trimming step
SIRCVAR
Slow internal RC oscillator
variation in temperature and
CC P supply with respect to fSIRC at
TA = 55°C in high frequency
configuration
Unit
Min
Typ
Max
—
128
—
100
—
150
—
—
5
µA
—
8
12
µs
2
—
2
kHz
%
—
—
2.7
—
High frequency configuration
10
—
10
%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
4.17
ADC electrical characteristics
4.17.1
Introduction
The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital
converter.
DS6494 Rev 8
55/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Figure 11. ADC characteristics and error definitions
Offset Error (EO)
Gain Error (EG)
1023
1022
1021
1020
1019
1 LSB ideal = VDD_ADC / 1024
1018
(2)
code out
7
(1)
6
5
(1) Example of an actual transfer curve
(5)
(2) The ideal transfer curve
4
(3) Differential non-linearity error (DNL)
(4)
(4) Integral non-linearity error (INL)
3
(5) Center of a step of the actual transfer curve
(3)
2
1
1 LSB (ideal)
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023
Vin(A) (LSBideal)
Offset Error (EO)
4.17.2
Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is
considered.
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedance. Placing a capacitor with good high frequency characteristics at the input
pin of the device can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin;
furthermore, it sources charge during the sampling phase, when the analog signal source is
a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC filter). The RC filtering may be limited according to the value of source
56/82
DS6494 Rev 8
SPC560D30x, SPC560D40x
Electrical characteristics
impedance of the transducer or circuit supplying the analog signal to be measured. The filter
at the input pins must be designed taking into account the dynamic characteristics of the
input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the
sampling capacitance: being CS and Cp2 substantially two switched capacitances, with a
frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to
ground. For instance, assuming a conversion rate of 1 MHz, with CS+Cp2 equal to 3 pF, a
resistance of 330 k is obtained (REQ = 1 / (fc × (CS+Cp2)), where fc represents the
conversion rate at the considered channel). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF,
the external circuit must be designed to respect the Equation 4:
Equation 4
R +R
VA
S
F
--------------------- 1--- LSB
R EQ
2
Equation 4 generates a constraint for external network design, in particular on a resistive
path.
Figure 12. Input equivalent circuit (precise channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
RS
VA
Filter
Current Limiter
RF
RL
CF
CP1
Channel
Selection
Sampling
RSW1
RAD
CP2
CS
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1 and CP2)
CS: Sampling capacitance
DS6494 Rev 8
57/82
77
Electrical characteristics
SPC560D30x, SPC560D40x
Figure 13. Input equivalent circuit (extended channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
Filter
RS
RF
Current Limiter
RL
CF
VA
CP1
Channel
Selection
Extended
Switch
Sampling
RSW1
RSW2
RAD
CP3
CP2
CS
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2)
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1, CP2 and CP3)
CS: Sampling capacitance
A second aspect involving the capacitance network shall be considered. Assuming the three
capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the
equivalent circuit in Figure 13): A charge sharing phenomenon is installed when the
sampling phase is started (A/D switch close).
Figure 14. Transient behavior during sampling phase
Voltage transient on CS
VCS
VA
VA2
V