0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC560D40L3C4E0Y

SPC560D40L3C4E0Y

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP100

  • 描述:

    ICMCU32BIT256KBFLASH100LQFP

  • 数据手册
  • 价格&库存
SPC560D40L3C4E0Y 数据手册
SPC560D30x SPC560D40x 32-bit MCU family built on the Power Architecture® for automotive body electronics applications Datasheet  production data – Cross triggering unit (CTU)  Dedicated diagnostic module for lighting – Advanced PWM generation – Time-triggered diagnostics – PWM-synchronized ADC measurements LQFP64 (10 x 10 x 1.4 mm) LQFP100 (14 x 14 x 1.4 mm) Features  AEC-Q100 qualified  High-performance up to 48 MHz e200z0h CPU – 32-bit Power Architecture® technology CPU – Variable length encoding (VLE)  Memory – Up to 256 KB Code Flash with ECC – Up to 64 (4x16) KB Data Flash with ECC – Up to 16 KB SRAM with ECC  Interrupts – 16 priority levels – Non-maskable interrupt (NMI) – Up to 38 external interrupts including 18 wakeup lines  GPIOs: 45 (LQFP64), 79 (LQFP100)  Timer units – 4-channel 32-bit periodic interrupt timers – 4-channel 32-bit system timer module – System watchdog timer – 32-bit real-time clock timer  16-bit counter time-triggered I/Os – Up to 28 channels with PWM/MC/IC/OC – 5 independent counters – 27-channels with ADC trigger capability  12-bit analog-to-digital converter (ADC) with up to 33 channels – Up to 61 channels via external multiplexing – Individual conversion registers This is information on a product in full production.  Clock generation – 4 to 16 MHz fast external crystal oscillator – 16 MHz fast internal RC oscillator – 128 kHz slow internal RC oscillator – Software-controlled FMPLL – Clock monitoring unit  Exhaustive debugging capability – Nexus1 on all packages – Nexus2+ available on emulation device (SPC560B64B2-ENG)  On-chip CAN/UART bootstrap loader  16-channel eDMA November 2018  Communications interfaces – 1 FlexCAN interface (2.0B active) with 32 message buffers – 3 LINFlex/UART, 1 with DMA capability – 2 DSPI  Low power capabilities – Several low power mode configurations – Ultra-low power standby with RTC, SRAM and CAN monitoring – Fast wakeup schemes  Single 5 V or 3.3 V supply  Operates in ambient temperature range of -40 to 125 °C Table 1. Device summary Part number Package 128 Kbyte code Flash 256 Kbyte code Flash LQFP100 SPC560D30L3 SPC560D40L3 LQFP64 SPC560D30L1 SPC560D40L1 DS6494 Rev 8 1/82 www.st.com 1 Contents SPC560D30x, SPC560D40x Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . 9 4 3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Pad configuration during reset phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 25 4.3.3 NVUSRO[WATCHDOG_EN] field description . . . . . . . . . . . . . . . . . . . . 25 4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.5 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.7 4.8 2/82 4.3.1 4.6.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.6.2 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.7.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.7.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.7.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.7.4 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.7.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DS6494 Rev 8 SPC560D30x, SPC560D40x 4.9 4.9.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 40 4.9.2 Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . 43 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.11 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.11.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.11.2 Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.11.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 48 4.12.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 48 4.12.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.12.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 49 4.13 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 50 4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 54 4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 54 4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.18 6 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 40 4.10 4.12 5 Contents 4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.17.2 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.17.3 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.18.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.18.3 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.1 LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.2 LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Appendix A Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 DS6494 Rev 8 3/82 3 Introduction SPC560D30x, SPC560D40x 1 Introduction 1.1 Document overview This document describes the device features and highlights the important electrical and physical characteristics. 1.2 Description These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices designed to be central to the development of the next wave of central vehicle body controller, smart junction box, front module, peripheral body, door control and seat control applications. This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology and designed specifically for embedded applications. The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (auxiliary processing unit) and provides improved code density. It operates at speed of up to 48 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current power architecture devices and is supported with software drivers, operating systems and configuration code to assist with the user’s implementations. The device platform has a single level of memory hierarchy and can support a wide range of on-chip static random access memory (SRAM) and internal flash memory. Table 2. SPC560D30x and SPC560D40x device comparison Device Feature SPC560D30L1 SPC560D30L3 CPU Static – up to 48 MHz Code flash memory 128 KB 256 KB Data flash memory 64 KB (4 × 16 KB) SRAM 12 KB 16 KB eDMA 16 ch ADC (12-bit) 16 ch 33 ch CTU 16 ch 33 ch 16 ch Total timer I/O (1) eMIOS Type X(2) (3) Type G(4) 4/82 SPC560D40L3 e200z0h Execution speed Type Y SPC560D40L1 14 ch, 16-bit 28 ch, 16-bit 14 ch, 16-bit 28 ch, 16-bit 2 ch 5 ch 2 ch 5 ch — 9 ch — 9 ch 7 ch 7 ch 7 ch 7 ch DS6494 Rev 8 SPC560D30x, SPC560D40x Introduction Table 2. SPC560D30x and SPC560D40x device comparison (continued) Device Feature Type H(5) SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3 4 ch 7 ch 4 ch 7 ch 45 79 LQFP64 LQFP100 SCI (LINFlex) 3 SPI (DSPI) 2 CAN (FlexCAN) 1 GPIO(6) 45 79 Debug Package JTAG LQFP64 LQFP100 1. Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions. 2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC 3. Type Y = OPWMT + OPWMB + SAIC + SAOC 4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC 5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC 6. I/O count based on multiplexing with peripherals. DS6494 Rev 8 5/82 77 Block diagram 2 SPC560D30x, SPC560D40x Block diagram Figure 1 shows a top-level block diagram of the SPC560D30x and SPC560D40x device series. Figure 1. SPC560D30x and SPC560D40x series block diagram SRAM 16 KB JTAG Code Flash 256 KB Data Flash 64 KB JTAG Port 64-bit 3 x 3 Crossbar Switch Instructions (Master) Nexus 1 e200z0h Data NMI (Master) SIUL Voltage Regulator Interrupt requests from peripheral blocks NMI Flash Controller (Slave) (Slave) (Slave) (Master) INTC Clocks SRAM Controller eDMA CMU FMPLL RTC STM SWT MC_RGM MC_CGM PIT ECSM MC_ME MC_PCU BAM SSCM Peripheral Bridge Interrupt Request SIUL Reset Control 33 ch. ADC 1x eMIOS CTU 3x LINFlex 2x DSPI 1x FlexCAN WKPU External Interrupt Request IMUX Interrupt Request GPIO & Pad Control I/O Legend: ADC BAM CMU CTU DSPI ECSM eDMA eMIOS Flash FlexCAN FMPLL IMUX INTC JTAG LINFlex 6/82 ... ... Analog-to-Digital Converter Boot Assist Module Clock Monitor Unit Cross Triggering Unit Deserial Serial Peripheral Interface Error Correction Status Module Enhanced Direct Memory Access Enhanced Modular Input Output System Flash memory Controller Area Network (FlexCAN) Frequency-Modulated Phase-Locked Loop Internal Multiplexer Interrupt Controller JTAG Controller Serial Communication Interface (LIN support) MC_CGM MC_ME MC_PCU MC_RGM NMI PIT RTC SIUL SRAM SSCM STM SWT WKPU XBAR DS6494 Rev 8 ... ... Clock Generation Module Mode Entry Module Power Control Unit Reset Generation Module Non-Maskable Interrupt Periodic Interrupt Timer Real-Time Clock System Integration Unit Lite Static Random-Access Memory System Status Configuration Module System Timer Module Software Watchdog Timer Wakeup Unit Crossbar switch SPC560D30x, SPC560D40x Block diagram Table 3 summarizes the functions of all the blocks present in the SPC560D30x and SPC560D40x series of microcontrollers. Note that the presence and number of blocks varies by device and package. Table 3. SPC560D30x and SPC560D40x series block summary Block Function Analog-to-digital converter (ADC) Multi-channel, 12-bit analog-to-digital converter Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Clock monitor unit (CMU) Monitors clock source (internal and external) integrity Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or PIT Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Enhanced direct memory access (eDMA) Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels. Enhanced modular input output system (eMIOS) Provides the functionality to generate or measure events Error correction status module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes Flash memory Provides non-volatile storage for program code, constants and variables FlexCAN (controller area network) Supports the standard CAN communications protocol Frequency-modulated phaselocked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Internal multiplexer (IMUX) SIU subblock Allows flexible mapping of peripheral interface on the different pins of the device Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller (JTAGC) Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states. It also manages the power control unit, reset generation module, clock generation module, and holds the configuration, control and status registers accessible for applications Non-maskable interrupt (NMI) Handles external events which produces an immediate response, such as power down detection DS6494 Rev 8 7/82 77 Block diagram SPC560D30x, SPC560D40x Table 3. SPC560D30x and SPC560D40x series block summary (continued) Block Function Periodic interrupt timer (PIT) Produces periodic interrupts and triggers Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Real-time counter (RTC) Provides a free-running counter and interrupt generation capability that can be used for timekeeping applications Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Static random-access memory (SRAM) Provides storage for program code, constants, and variables Provides control over all the electrical pad controls and up 32 ports with 16-bits System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks Software watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup events, of which one can cause non-maskable interrupt requests or wakeup events. 8/82 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions 3 Package pinouts and signal descriptions 3.1 Package pinouts The available LQFP pinouts are provided in the following figures. For pin signal descriptions, refer to Table 6. Figure 2 shows the SPC560D30x and SPC560D40x in the LQFP100 package. 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PB[2] PC[8] PC[13] PC[12] PE[7] PE[6] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PE[12] Figure 2. LQFP100 LQFP pin configuration (top view) LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PA[11] PA[10] PA[9] PA[8] PA[7] VDD_HV VSS_HV PA[3] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] PD[12] PB[11] PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PB[4] PB[3] PC[9] PC[14] PC[15] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[11] PC[10] PB[0] PB[1] PC[6] DS6494 Rev 8 9/82 77 Package pinouts and signal descriptions SPC560D30x, SPC560D40x Figure 3 shows the SPC560D30x and SPC560D40x in the LQFP64 package. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PB[2] PC[8] PC[4] PC[5] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] Figure 3. LQFP64 LQFP pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LQFP64 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PA[11] PA[10] PA[9] PA[8] PA[7] PA[3] PB[15] PB[14] PB[13] PB[12] PB[11] PB[7] PB[6] PB[5] VDD_HV_ADC VSS_HV_ADC PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PB[4] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PB[3] PC[9] PA[2] PA[1] PA[0] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[10] PB[0] PB[1] PC[6] 3.2 Pad configuration during reset phases All pads have a fixed configuration under reset. During the power-up phase, all pads are forced to tristate. After power-up phase, all pads are forced to tristate with the following exceptions: 3.3  PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.  PA[8] (ABS[0]) is pull-up.  RESET pad is driven low. This is pull-up only after PHASE2 reset completion.  JTAG pads (TCK, TMS and TDI) are pull-up while TDO remains tristate.  Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).  Main oscillator pads (EXTAL, XTAL) are tristate. Voltage supply pins Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization. 10/82 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions Table 4. Voltage supply pin descriptions Pin number Port pin Function LQFP64 LQFP100 7, 28, 34, 56 15, 37, 52, 70, 84 6, 8, 26, 33, 55 14, 16, 35, 51, 69, 83 VDD_HV Digital supply voltage VSS_HV Digital ground VDD_LV 1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest VSS_LV pin(1) 11, 23, 57 19, 32, 85 VSS_LV 1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest VDD_LV pin(1) 10, 24, 58 18, 33, 86 VDD_BV Internal regulator supply voltage 12 20 1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (refer the Section 4.5: Recommended operating conditions in the device datasheet for details). 3.4 Pad types In the device the following types of pads are available for system pins and functional port pins: S = Slow (1) M = Medium (1) (2) F = Fast (1) (2) I = Input only with analog feature (1) J = Input/Output (‘S’ pad) with analog feature X = Oscillator 3.5 System pins The system pins are listed in Table 5. 1. Refer, Section 4.7: I/O pad electrical characteristics in the device datasheet for details. 2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see the PCR[SRC] description in the device reference manual). DS6494 Rev 8 11/82 77 Package pinouts and signal descriptions SPC560D30x, SPC560D40x Table 5. System pin descriptions Port pin RESET I/O Function Bidirectional reset with Schmitt-Trigger characteristics and noise filter Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass EXTAL mode. Analog input for the clock generator when the oscillator is in bypass mode(1) XTAL Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode(1) direction Pad type I/O RESET Pin number configuration LQFP64 LQFP100 M Input, weak pull-up only after PHASE2 9 17 I/O X Tristate 27 36 I X Tristate 25 34 1. Refer to the relevant section of the device datasheet. 3.6 Functional ports The functional port pins are listed in Table 6. Table 6. Functional port pin descriptions Port pin PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 Port A PA[0] PA[1] PA[2] 12/82 PCR[0] AF0 AF1 AF2 AF3 — GPIO[0] E0UC[0] CLKOUT E0UC[13] WKPU[19](3) SIUL eMIOS_0 CGL eMIOS_0 WKPU I/O I/O O I/O I M Tristate 5 12 PCR[1] AF0 AF1 AF2 AF3 — — GPIO[1] E0UC[1] — — NMI(4) WKPU[2](3) SIUL eMIOS_0 — — WKPU WKPU I/O I/O — — I I S Tristate 4 7 PCR[2] AF0 AF1 AF2 AF3 — GPIO[2] E0UC[2] — MA[2] WKPU[3](3) SIUL eMIOS_0 — ADC WKPU I/O I/O — O I S Tristate 3 5 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PA[3] PA[4] PA[5] PA[6] PA[7] PA[8] PA[9] PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[3] AF0 AF1 AF2 AF3 — — GPIO[3] E0UC[3] — CS4_0 EIRQ[0] ADC1_S[0] SIUL eMIOS_0 — DSPI_0 SIUL ADC I/O I/O — I/O I I S Tristate 43 68 PCR[4] AF0 AF1 AF2 AF3 — GPIO[4] E0UC[4] — CS0_1 WKPU[9](3) SIUL eMIOS_0 — DSPI_1 WKPU I/O I/O — I/O I S Tristate 20 29 PCR[5] AF0 AF1 AF2 AF3 GPIO[5] E0UC[5] — — SIUL eMIOS_0 — — I/O I/O — — M Tristate 51 79 PCR[6] AF0 AF1 AF2 AF3 — GPIO[6] E0UC[6] — CS1_1 EIRQ[1] SIUL eMIOS_0 — DSPI_1 SIUL I/O I/O — I/O I S Tristate 52 80 PCR[7] AF0 AF1 AF2 AF3 — — GPIO[7] E0UC[7] — — EIRQ[2] ADC1_S[1] SIUL eMIOS_0 — — SIUL ADC I/O I/O — — I I S Tristate 44 71 PCR[8] AF0 AF1 AF2 AF3 — N/A(5) GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0] SIUL eMIOS_0 eMIOS_0 — SIUL BAM I/O I/O — — I I S Input, weak pull-up 45 72 PCR[9] AF0 AF1 AF2 AF3 N/A(5) GPIO[9] E0UC[9] — CS2_1 FAB SIUL eMIOS_0 — DSPI_1 BAM I/O I/O — I/O I S Pulldown 46 73 DS6494 Rev 8 13/82 77 Package pinouts and signal descriptions SPC560D30x, SPC560D40x Table 6. Functional port pin descriptions (continued) Port pin PA[10] PA[11] PA[12] PA[13] PA[14] PA[15] PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[10] AF0 AF1 AF2 AF3 — GPIO[10] E0UC[10] — LIN2TX ADC1_S[2] SIUL eMIOS_0 — LINFlex_2 ADC I/O I/O — O I S Tristate 47 74 PCR[11] AF0 AF1 AF2 AF3 — — — GPIO[11] E0UC[11] — — EIRQ[16] ADC1_S[3] LIN2RX SIUL eMIOS_0 — — SIUL ADC LINFlex_2 I/O I/O — — I I I S Tristate 48 75 PCR[12] AF0 AF1 AF2 AF3 — — GPIO[12] — — — EIRQ[17] SIN_0 SIUL — — — SIUL DSPI_0 I/O — — — I I S Tristate 22 31 PCR[13] AF0 AF1 AF2 AF3 GPIO[13] SOUT_0 — CS3_1 SIUL DSPI_0 — DSPI_1 I/O O — I/O M Tristate 21 30 PCR[14] AF0 AF1 AF2 AF3 — GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4] SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL I/O I/O I/O I/O I M Tristate 19 28 PCR[15] AF0 AF1 AF2 AF3 — GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10](3) SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU I/O I/O I/O I/O I M Tristate 18 27 I/O O — O M Tristate 14 23 Port B PB[0] 14/82 PCR[16] AF0 AF1 AF2 AF3 GPIO[16] CAN0TX — LIN2TX SIUL FlexCAN_0 — LINFlex_2 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PB[1] PB[2] PB[3] PB[4] PB[5] PB[6] PB[7] PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[17] AF0 AF1 AF2 AF3 — — GPIO[17] — — LIN0RX WKPU[4](3) CAN0RX SIUL — — LINFlex_0 WKPU FlexCAN_0 I/O — — I I I S Tristate 15 24 PCR[18] AF0 AF1 AF2 AF3 GPIO[18] LIN0TX — — SIUL LINFlex_0 — — I/O O — — M Tristate 64 100 PCR[19] AF0 AF1 AF2 AF3 — — GPIO[19] — — — WKPU[11](3) LIN0RX SIUL — — — WKPU LINFlex_0 I/O — — — I I S Tristate 1 1 PCR[20] AF0 AF1 AF2 AF3 — GPIO[20] — — — ADC1_P[0] SIUL — — — ADC I — — — I I Tristate 32 50 PCR[21] AF0 AF1 AF2 AF3 — GPIO[21] — — — ADC1_P[1] SIUL — — — ADC I — — — I I Tristate 35 53 PCR[22] AF0 AF1 AF2 AF3 — GPIO[22] — — — ADC1_P[2] SIUL — — — ADC I — — — I I Tristate 36 54 PCR[23] AF0 AF1 AF2 AF3 — GPIO[23] — — — ADC1_P[3] SIUL — — — ADC I — — — I I Tristate 37 55 DS6494 Rev 8 15/82 77 Package pinouts and signal descriptions SPC560D30x, SPC560D40x Table 6. Functional port pin descriptions (continued) Port pin PB[8] PB[9] PB[10] PB[11] PB[12] PB[13] PB[14] 16/82 PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[24] AF0 AF1 AF2 AF3 — — GPIO[24] — — — ADC1_S[4] WKPU[25](3) SIUL — — — ADC WKPU I — — — I I I Tristate 30 39 PCR[25] AF0 AF1 AF2 AF3 — — GPIO[25] — — — ADC1_S[5] WKPU[26](3) SIUL — — — ADC WKPU I — — — I I I Tristate 29 38 PCR[26] AF0 AF1 AF2 AF3 — — GPIO[26] — — — ADC1_S[6] WKPU[8](3) SIUL — — — ADC WKPU I/O — — — I I J Tristate 31 40 PCR[27] AF0 AF1 AF2 AF3 — GPIO[27] E0UC[3] — CS0_0 ADC1_S[12] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — I/O I J Tristate 38 59 PCR[28] AF0 AF1 AF2 AF3 — GPIO[28] E0UC[4] — CS1_0 ADC1_X[0] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 39 61 PCR[29] AF0 AF1 AF2 AF3 — GPIO[29] E0UC[5] — CS2_0 ADC1_X[1] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 40 63 PCR[30] AF0 AF1 AF2 AF3 — GPIO[30] E0UC[6] — CS3_0 ADC1_X[2] SIUL eMIOS_0 — DSPI_0 ADC I/O I/O — O I J Tristate 41 65 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PB[15] PCR PCR[31] Alternate function(1) AF0 AF1 AF2 AF3 — Function GPIO[31] E0UC[7] — CS4_0 ADC1_X[3] Peripheral RESET configuration Pin number I/O Pad direction(2) type I/O I/O — O I J Tristate 42 67 SIUL eMIOS_0 — DSPI_0 ADC LQFP64 LQFP100 Port C PC[0](6) PC[1](6) PC[2] PC[3] PC[4] PC[5] PCR[32] AF0 AF1 AF2 AF3 GPIO[32] — TDI — SIUL — JTAGC — I/O — I — M Input, weak pull-up 59 87 PCR[33] AF0 AF1 AF2 AF3 GPIO[33] — TDO — SIUL — JTAGC — I/O — O — F Tristate 54 82 PCR[34] AF0 AF1 AF2 AF3 — GPIO[34] SCK_1 — — EIRQ[5] SIUL DSPI_1 — — SIUL I/O I/O — — I M Tristate 50 78 PCR[35] AF0 AF1 AF2 AF3 — GPIO[35] CS0_1 MA[0] — EIRQ[6] SIUL DSPI_1 ADC — SIUL I/O I/O O — I S Tristate 49 77 PCR[36] AF0 AF1 AF2 AF3 — — GPIO[36] — — — SIN_1 EIRQ[18] SIUL — — — DSPI_1 SIUL I/O — — — I I M Tristate 62 92 PCR[37] AF0 AF1 AF2 AF3 — GPIO[37] SOUT_1 — — EIRQ[7] SIUL DSPI_1 — — SIUL I/O O — — I M Tristate 61 91 DS6494 Rev 8 17/82 77 Package pinouts and signal descriptions SPC560D30x, SPC560D40x Table 6. Functional port pin descriptions (continued) Port pin PC[6] PC[7] PC[8] PC[9] PC[10] PC[11] PC[12] PC[13] 18/82 PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[38] AF0 AF1 AF2 AF3 GPIO[38] LIN1TX — — SIUL LINFlex_1 — — I/O O — — S Tristate 16 25 PCR[39] AF0 AF1 AF2 AF3 — — GPIO[39] — — — LIN1RX WKPU[12](3) SIUL — — — LINFlex_1 WKPU I/O — — — I I S Tristate 17 26 PCR[40] AF0 AF1 AF2 AF3 GPIO[40] LIN2TX E0UC[3] — SIUL LINFlex_2 eMIOS_0 — I/O O I/O — S Tristate 63 99 PCR[41] AF0 AF1 AF2 AF3 — — GPIO[41] — E0UC[7] — LIN2RX WKPU[13](3) SIUL — eMIOS_0 — LINFlex_2 WKPU I/O — I/O — I I S Tristate 2 2 PCR[42] AF0 AF1 AF2 AF3 GPIO[42] — — MA[1] SIUL — — ADC I/O — — O M Tristate 13 22 PCR[43] AF0 AF1 AF2 AF3 — GPIO[43] — — MA[2] WKPU[5](3) SIUL — — ADC WKPU I/O — — O I S Tristate — 21 PCR[44] AF0 AF1 AF2 AF3 — GPIO[44] E0UC[12] — — EIRQ[19] SIUL eMIOS_0 — — SIUL I/O I/O — — I M Tristate — 97 PCR[45] AF0 AF1 AF2 AF3 GPIO[45] E0UC[13] — — SIUL eMIOS_0 — — I/O I/O — — S Tristate — 98 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PC[14] PC[15] PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[46] AF0 AF1 AF2 AF3 — GPIO[46] E0UC[14] — — EIRQ[8] SIUL eMIOS_0 — — SIUL I/O I/O — — I S Tristate — 3 PCR[47] AF0 AF1 AF2 AF3 — GPIO[47] E0UC[15] — — EIRQ[20] SIUL eMIOS_0 — — SIUL I/O I/O — — I M Tristate — 4 Port D PD[0] PD[1] PD[2] PD[3] PCR[48] AF0 AF1 AF2 AF3 — — GPIO[48] — — — WKPU[27](3) ADC1_P[4] SIUL — — — WKPU ADC I — — — I I I Tristate — 41 PCR[49] AF0 AF1 AF2 AF3 — — GPIO[49] — — — WKPU[28](3) ADC1_P[5] SIUL — — — WKPU ADC I — — — I I I Tristate — 42 PCR[50] AF0 AF1 AF2 AF3 — GPIO[50] — — — ADC1_P[6] SIUL — — — ADC I — — — I I Tristate — 43 PCR[51] AF0 AF1 AF2 AF3 — GPIO[51] — — — ADC1_P[7] SIUL — — — ADC I — — — I I Tristate — 44 DS6494 Rev 8 19/82 77 Package pinouts and signal descriptions SPC560D30x, SPC560D40x Table 6. Functional port pin descriptions (continued) Port pin PD[4] PD[5] PD[6] PD[7] PD[8] PD[9] PD[10] 20/82 PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[52] AF0 AF1 AF2 AF3 — GPIO[52] — — — ADC1_P[8] SIUL — — — ADC I — — — I I Tristate — 45 PCR[53] AF0 AF1 AF2 AF3 — GPIO[53] — — — ADC1_P[9] SIUL — — — ADC I — — — I I Tristate — 46 PCR[54] AF0 AF1 AF2 AF3 — GPIO[54] — — — ADC1_P[10] SIUL — — — ADC I — — — I I Tristate — 47 PCR[55] AF0 AF1 AF2 AF3 — GPIO[55] — — — ADC1_P[11] SIUL — — — ADC I — — — I I Tristate — 48 PCR[56] AF0 AF1 AF2 AF3 — GPIO[56] — — — ADC1_P[12] SIUL — — — ADC I — — — I I Tristate — 49 PCR[57] AF0 AF1 AF2 AF3 — GPIO[57] — — — ADC1_P[13] SIUL — — — ADC I — — — I I Tristate — 56 PCR[58] AF0 AF1 AF2 AF3 — GPIO[58] — — — ADC1_P[14] SIUL — — — ADC I — — — I I Tristate — 57 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PD[11] PD[12] PD[13] PD[14] PD[15] PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[59] AF0 AF1 AF2 AF3 — GPIO[59] — — — ADC1_P[15] SIUL — — — ADC I — — — I I Tristate — 58 PCR[60] AF0 AF1 AF2 AF3 — GPIO[60] CS5_0 E0UC[24] — ADC1_S[8] SIUL DSPI_0 eMIOS_0 — ADC I/O O I/O — I J Tristate — 60 PCR[61] AF0 AF1 AF2 AF3 — GPIO[61] CS0_1 E0UC[25] — ADC1_S[9] SIUL DSPI_1 eMIOS_0 — ADC I/O I/O I/O — I J Tristate — 62 PCR[62] AF0 AF1 AF2 AF3 — GPIO[62] CS1_1 E0UC[26] — ADC1_S[10] SIUL DSPI_1 eMIOS_0 — ADC I/O O I/O — I J Tristate — 64 PCR[63] AF0 AF1 AF2 AF3 — GPIO[63] CS2_1 E0UC[27] — ADC1_S[11] SIUL DSPI_1 eMIOS_0 — ADC I/O O I/O — I J Tristate — 66 Port E PE[0] PE[1] PCR[64] AF0 AF1 AF2 AF3 — GPIO[64] E0UC[16] — — WKPU[6](3) SIUL eMIOS_0 — — WKPU I/O I/O — — I S Tristate — 6 PCR[65] AF0 AF1 AF2 AF3 GPIO[65] E0UC[17] — — SIUL eMIOS_0 — — I/O I/O — — M Tristate — 8 DS6494 Rev 8 21/82 77 Package pinouts and signal descriptions SPC560D30x, SPC560D40x Table 6. Functional port pin descriptions (continued) Port pin PE[2] PE[3] PE[4] PE[5] PE[6] PE[7] PE[8] PE[9] 22/82 PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[66] AF0 AF1 AF2 AF3 — — GPIO[66] E0UC[18] — — EIRQ[21] SIN_1 SIUL eMIOS_0 — — SIUL DSPI_1 I/O I/O — — I I M Tristate — 89 PCR[67] AF0 AF1 AF2 AF3 GPIO[67] E0UC[19] SOUT_1 — SIUL eMIOS_0 DSPI_1 — I/O I/O O — M Tristate — 90 PCR[68] AF0 AF1 AF2 AF3 — GPIO[68] E0UC[20] SCK_1 — EIRQ[9] SIUL eMIOS_0 DSPI_1 — SIUL I/O I/O I/O — I M Tristate — 93 PCR[69] AF0 AF1 AF2 AF3 GPIO[69] E0UC[21] CS0_1 MA[2] SIUL eMIOS_0 DSPI_1 ADC I/O I/O I/O O M Tristate — 94 PCR[70] AF0 AF1 AF2 AF3 — GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22] SIUL eMIOS_0 DSPI_0 ADC SIUL I/O I/O O O I M Tristate — 95 PCR[71] AF0 AF1 AF2 AF3 — GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23] SIUL eMIOS_0 DSPI_0 ADC SIUL I/O I/O O O I M Tristate — 96 PCR[72] AF0 AF1 AF2 AF3 GPIO[72] — E0UC[22] — SIUL — eMIOS_0 — I/O — I/O — M Tristate — 9 PCR[73] AF0 AF1 AF2 AF3 — GPIO[73] — E0UC[23] — WKPU[7](3) SIUL — eMIOS_0 — WKPU I/O — I/O — I S Tristate — 10 DS6494 Rev 8 SPC560D30x, SPC560D40x Package pinouts and signal descriptions Table 6. Functional port pin descriptions (continued) Port pin PE[10] PE[11] PE[12] PCR Alternate function(1) Function Peripheral I/O Pad direction(2) type RESET configuration Pin number LQFP64 LQFP100 PCR[74] AF0 AF1 AF2 AF3 — GPIO[74] — CS3_1 — EIRQ[10] SIUL — DSPI_1 — SIUL I/O — O — I S Tristate — 11 PCR[75] AF0 AF1 AF2 AF3 — GPIO[75] E0UC[24] CS4_1 — WKPU[14](3) SIUL eMIOS_0 DSPI_1 — WKPU I/O I/O O — I S Tristate — 13 PCR[76] AF0 AF1 AF2 AF3 — — GPIO[76] — — — ADC1_S[7] EIRQ[11] SIUL — — — ADC SIUL I/O — — — I I S Tristate — 76 Port H PCR[121] AF0 AF1 AF2 AF3 GPIO[121] — TCK — SIUL — JTAGC — I/O — I — S Input, weak pull-up 60 88 PH[10](6) PCR[122] AF0 AF1 AF2 AF3 GPIO[122] — TMS — SIUL — JTAGC — I/O — I — S Input, weak pull-up 53 81 PH[9](6) 1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 ® AF0; PCR.PA = 01 ® AF1; PCR.PA = 10 ® AF2; PCR.PA = 11 ® AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module. 3. All WKPU pins also support external interrupt capability. See “wakeup unit” chapter of the device reference manual for further details. 4. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored. 5. “Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the device reference manual for details. 6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001. DS6494 Rev 8 23/82 77 Electrical characteristics SPC560D30x, SPC560D40x 4 Electrical characteristics 4.1 Introduction This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” is for System Requirement is included in the Symbol column. 4.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where appropriate. Table 7. Parameter classifications Classification tag Note: 24/82 Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. The classification is shown in the column labeled “C” in the parameter tables where appropriate. DS6494 Rev 8 SPC560D30x, SPC560D40x 4.3 Electrical characteristics NVUSRO register Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset). For a detailed description of the NVUSRO register, refer to the device reference manual. 4.3.1 NVUSRO[PAD3V5V] field description The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 8. PAD3V5V field description Value (1) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. 4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration. Table 9. OSCILLATOR_MARGIN field description Value (1) Description 0 Low consumption configuration (4 MHz/8 MHz) 1 High margin configuration (4 MHz/16 MHz) 1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. 4.3.3 NVUSRO[WATCHDOG_EN] field description The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 10 shows how NVUSRO[WATCHDOG_EN] controls the device configuration. Table 10. WATCHDOG_EN field description Value (1) Description 0 Disable after reset 1 Enable after reset 1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash. DS6494 Rev 8 25/82 77 Electrical characteristics 4.4 SPC560D30x, SPC560D40x Absolute maximum ratings Table 11. Absolute maximum ratings Value Symbol Parameter VSS SR Digital ground on VSS_HV pins VDD SR Conditions Voltage on VDD_HV pins with respect to ground (VSS) VSS_LV Voltage on VSS_LV (low voltage digital SR supply) pins with respect to ground (VSS) VDD_BV SR VSS_ADC Voltage on VSS_HV_ADC (ADC SR reference) pin with respect to ground (VSS) VDD_ADC Voltage on VDD_HV_ADC (ADC SR reference) pin with respect to ground (VSS) Voltage on VDD_BV (regulator supply) pin with respect to ground (VSS) Unit Min Max — 0 0 V — 0.3 6.0 V — — VSS  0.1 VSS + 0.1 0.3 6.0 Relative to VDD VDD  0.3 VDD + 0.3 — VSS  0.1 VSS + 0.1 — Relative to VDD — 0.3 V V 6.0 VDD  0.3 VDD + 0.3 0.3 V 6.0 V VIN SR Voltage on any GPIO pin with respect to ground (VSS) IINJPAD SR Injected input current on any pin during overload condition — 10 10 mA IINJSUM SR Absolute sum of all injected input currents during overload condition — 50 50 mA VDD = 5.0 V ± 10%, PAD3V5V = 0 — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — 64 — — 150 mA — 55 150 °C IAVGSEG ICORELV Sum of all the static I/O current within a SR supply segment (1) SR Relative to VDD Low voltage static current sink through VDD_BV TSTORAGE SR Storage temperature VDD  0.3 VDD + 0.3 V mA 1. Supply segments are described in Section 4.7.5: I/O pad current specification. Note: 26/82 Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the recommended values. DS6494 Rev 8 SPC560D30x, SPC560D40x 4.5 Electrical characteristics Recommended operating conditions Table 12. Recommended operating conditions (3.3 V) Value Symbol VSS VDD(1) C Parameter Conditions SR — Digital ground on VSS_HV pins SR — Voltage on VDD_HV pins with respect to ground (VSS) VSS_LV(2) Voltage on VSS_LV (low voltage digital SR — supply) pins with respect to ground (VSS) VDD_BV(3) SR — VSS_ADC Voltage on VSS_HV_ADC (ADC SR — reference) pin with respect to ground (VSS) Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) Unit Min Max — 0 0 V — 3.0 3.6 V — VSS  0.1 VSS + 0.1 — 3.0 V 3.6 V Relative to VDD VDD  0.1 VDD + 0.1 — — VSS  0.1 VSS + 0.1 3.0(5) V 3.6 VDD_ADC(4) SR — Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (VSS) VIN SR — — — VSS  0.1 Voltage on any GPIO pin with respect to ground (VSS) — VDD + 0.1 Relative to VDD IINJPAD SR — Injected input current on any pin during overload condition — 5 5 mA IINJSUM SR — Absolute sum of all injected input currents during overload condition — 50 50 mA — 3.0(7) 250 x 103 (0.25 [V/µs]) V/s TVDD SR — VDD slope to ensure correct power up(6) V Relative to VDD VDD  0.1 VDD + 0.1 V 1. 100 nF capacitance needs to be provided between each VDD/VSS pair. 2. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 3. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). 4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. 5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is reset. 6. Guaranteed by device validation. 7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH). DS6494 Rev 8 27/82 77 Electrical characteristics SPC560D30x, SPC560D40x Table 13. Recommended operating conditions (5.0 V) Value Symbol VSS C Parameter Conditions SR — Digital ground on VSS_HV pins VDD(1) SR — Voltage on VDD_HV pins with respect to ground (VSS) VSS_LV(3) SR — Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) Unit Min Max — 0 0 — 4.5 5.5 Voltage drop(2) 3.0 5.5 — VDD_BV Voltage on VDD_BV pin (regulator SR — supply) with respect to ground (VSS) Voltage on VSS_HV_ADC (ADC SR — reference) pin with respect to ground (VSS VSS_ADC VDD_ADC(5) Voltage on VDD_HV_ADC pin (ADC SR — reference) with respect to ground (VSS) drop(2) 4.5 5.5 3.0 5.5 V V Relative to VDD VDD  0.1 VDD + 0.1 — VSS  0.1 VSS + 0.1 — 4.5 5.5 Voltage drop(2) 3.0 5.5 V V Relative to VDD VDD  0.1 VDD + 0.1 — VSS  0.1 — Relative to VDD — VDD + 0.1 Injected input current on any pin during overload condition — 5 5 mA Absolute sum of all injected input currents during overload condition — 50 50 mA — 3.0(7) VIN SR — Voltage on any GPIO pin with respect to ground (VSS) IINJPAD SR — IINJSUM SR — TVDD Voltage V VSS  0.1 VSS + 0.1 — (4) V SR — VDD slope to ensure correct power up(6) V 250 x 103 V/ s (0.25 [V/ µs]) 1. 100 nF capacitance needs to be provided between each VDD/VSS pair. 2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.6 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits. 3. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 4. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). 5. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. 6. Guaranteed by device validation. 7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH). Note: 28/82 SRAM data retention is guaranteed with VDD_LV not below 1.08 V. DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics 4.6 Thermal characteristics 4.6.1 Package thermal characteristics Table 14. LQFP thermal characteristics Symbol C Conditions(1) Parameter Single-layer board —1s RJA CC D Thermal resistance, junction-toambient natural convection(2) Four-layer board — 2s2p RJB CC D Thermal resistance, junction-toboard(3) Four-layer board — 2s2p Single-layer board — 1s RJC CC D Thermal resistance, junction-to-case(4) Four-layer board — 2s2p JB JC Junction-to-board thermal CC D characterization parameter, natural convection Junction-to-case thermal CC D characterization parameter, natural convection Single-layer board — 1s Four-layer board — 2s2p Single-layer board — 1s Four-layer board — 2s2p Value LQFP64 72.1 LQFP100 65.2 LQFP64 57.3 LQFP100 51.8 LQFP64 44.1 LQFP100 41.3 LQFP64 26.5 LQFP100 23.9 LQFP64 26.2 LQFP100 23.7 LQFP64 41 LQFP100 41.6 LQFP64 43 LQFP100 43.4 LQFP64 11.5 LQFP100 10.4 LQFP64 11.1 LQFP100 10.2 Unit °C/W °C/W °C/W °C/W °C/W 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C 2. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA. 3. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB. 4. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as RthJC. Note: Thermal characteristics are targets based on simulation that are subject to change per device characterization. 4.6.2 Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1: DS6494 Rev 8 29/82 77 Electrical characteristics SPC560D30x, SPC560D40x Equation 1 TJ = TA + (PD x RJA) Where: TA is the ambient temperature in °C. RJA is the package junction-to-ambient thermal resistance, in °C/W. PD is the sum of PINT and PI/O (PD = PINT + PI/O). PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power. PI/O represents the power dissipation on input and output pins; user determined. Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand, PI/O may be significant, if the device is configured to continuously drive external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: Equation 2 PD = K / (TJ + 273 °C) Therefore, solving equations 1 and 2: Equation 3 K = PD x (TA + 273 °C) + RJA x PD2 Where: K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations 1 and 2 iteratively for any value of TA. 4.7 I/O pad electrical characteristics 4.7.1 I/O pad types The device provides four main I/O pad types depending on the associated alternate functions:  Slow pads — These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.  Medium pads — These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.  Input only pads — These pads are associated to ADC channels (ADC_P[X]) providing low input leakage. Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance. 4.7.2 I/O input DC characteristics Table 15 provides input DC electrical characteristics as described in Figure 4. 30/82 DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics Figure 4. Input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Table 15. I/O input DC electrical characteristics Symbol C VIH SR P Input high level CMOS (Schmitt Trigger) VIL SR P Input low level CMOS (Schmitt — Trigger) VHYS CC C Input hysteresis CMOS (Schmitt Trigger) ILKG CC D Digital input leakage D Typ Max 0.65VDD — VDD+0.4 V 0.4 — 0.35VDD V 0.1VDD — — V TA = 40 °C — 2 200 TA = 25 °C — 2 200 TA = 85 °C — 5 300 TA = 105 °C — 12 500 TA = 125 °C — 70 1000 — No injection on adjacent pin P Unit Min — D D Value Conditions(1) Parameter nA WFI(2) SR P Digital input filtered pulse — — — 40 ns WNFI(2) SR P Digital input not filtered pulse — 1000 — — ns 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to the operating temperature and voltage. DS6494 Rev 8 31/82 77 Electrical characteristics 4.7.3 SPC560D30x, SPC560D40x I/O output DC characteristics The following tables provide DC characteristics for bidirectional pads:  Table 16 provides weak pull figures. Both pull-up and pull-down resistances are supported.  Table 17 provides output driver characteristics for I/O pads when in SLOW configuration.  Table 18 provides output driver characteristics for I/O pads when in MEDIUM configuration. Table 16. I/O pull-up/pull-down DC electrical characteristics Symbol C Parameter Value Conditions(1) Unit Min Typ Max P Weak pull-up current CC C absolute value P |IWPU| P Weak pull-down current CC C absolute value P |IWPD| 10 — 150 10 — 250 VIN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 — 150 PAD3V5V = 0 10 — 150 PAD3V5V = 1 10 — 250 VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 — 150 VIN = VIL, VDD = 5.0 V ± 10% VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0 PAD3V5V = 1(2) (2) µA µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. Table 17. SLOW configuration output buffer electrical characteristics Symbol C Parameter P VOH VOL Output high level CC C SLOW configuration IOH = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) I = 2 mA, Push Pull OH VDD = 5.0 V ± 10%, PAD3V5V = 1(2) Unit Min Typ Max 0.8VDD — — 0.8VDD — — C IOH = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD  0.8 — — P IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD — — 0.1VDD — — 0.5 Output low level CC C SLOW configuration C I = 2 mA, Push Pull OL VDD = 5.0 V ± 10%, PAD3V5V = 1(2) IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 32/82 Value Conditions(1) DS6494 Rev 8 V V SPC560D30x, SPC560D40x Electrical characteristics 2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. Table 18. MEDIUM configuration output buffer electrical characteristics Symbol VOH VOL C Value Conditions(1) Parameter Unit Min Typ Max C IOH = 3.8 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — P IOH = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) 0.8VDD — — IOH = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(2) 0.8VDD — — Output high level CC C MEDIUM configuration Push Pull C IOH = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD  0.8 — — C IOH = 100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — C IOL = 3.8 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.2VDD P IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(2) — — 0.1VDD C IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 C IOL = 100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.1VDD Output low level CC C MEDIUM configuration Push Pull V V 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. DS6494 Rev 8 33/82 77 Electrical characteristics 4.7.4 SPC560D30x, SPC560D40x Output pin transition times Table 19. Output pin transition times Symbol C D CL = 50 pF Output transition D time output pin(2) CL = 100 pF CC D SLOW CL = 25 pF configuration T CL = 50 pF D CL = 100 pF D CL = 25 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 T ttr Unit CL = 25 pF T ttr Value Conditions(1) Parameter CL = 50 pF Output transition D time output pin(2) CL = 100 pF CC D MEDIUM CL = 25 pF configuration T CL = 50 pF D VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 CL = 100 pF Min Typ Max — — 50 — — 100 — — 125 — — 50 — — 100 — — 125 — — 10 — — 20 — — 40 — — 12 — — 25 — — 40 ns ns 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. CL includes device and package capacitances (CPKG < 5 pF). 4.7.5 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 20. Table 21 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. Table 20. I/O supply segment Supply segment Package 34/82 1 2 3 4 LQFP100 pin 16 – pin 35 pin 37 – pin 69 pin 70 – pin 83 pin 84 – pin 15 LQFP64 pin 8 – pin 26 pin 28 – pin 55 pin 56 – pin 7 — DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics Table 21. I/O consumption Symbol C Unit Min Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 — — 6.6 — — 13.4 CL = 100 pF, 13 MHz — — 18.3 CL = 25 pF, 13 MHz — — 5 — — 8.5 CL = 100 pF, 13 MHz — — 11 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 Dynamic I/O current CL = 25 pF ISWTSLW(2) CC D for SLOW configuration Dynamic I/O current CL = 25 pF ISWTMED(2) CC D for MEDIUM configuration CL = 25 pF, 2 MHz mA mA VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 25 pF, 4 MHz IRMSSLW Value Conditions(1) Parameter Root mean square CL = 100 pF, 2 MHz CC D I/O current for SLOW configuration CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 25 pF, 4 MHz CL = 100 pF, 2 MHz CL = 25 pF, 13 MHz IRMSMED IAVGSEG Root mean square I/O current for CC D MEDIUM configuration Sum of all the static SR D I/O current within a supply segment VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 25 pF, 40 MHz mA mA mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. Table 22 provides the weight of concurrent switching I/Os. In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%. Table 22. I/O weight LQFP100/LQFP64 Pad Weight 5 V Weight 3.3 V SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1 PB[3] 9% 9% 10% 10% PC[9] 8% 8% 10% 10% DS6494 Rev 8 35/82 77 Electrical characteristics SPC560D30x, SPC560D40x Table 22. I/O weight (continued) LQFP100/LQFP64 Pad 36/82 Weight 5 V Weight 3.3 V SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1 PC[14] 8% 8% 10% 10% PC[15] 8% 11% 9% 10% PA[2] 8% 8% 9% 9% PE[0] 7% 7% 9% 9% PA[1] 7% 7% 8% 8% PE[1] 7% 10% 8% 8% PE[8] 6% 9% 8% 8% PE[9] 6% 6% 7% 7% PE[10] 6% 6% 7% 7% PA[0] 5% 7% 6% 7% PE[11] 5% 5% 6% 6% PC[11] 7% 7% 9% 9% PC[10] 8% 11% 9% 10% PB[0] 8% 11% 9% 10% PB[1] 8% 8% 10% 10% PC[6] 8% 8% 10% 10% PC[7] 8% 8% 10% 10% PA[15] 8% 11% 9% 10% PA[14] 7% 11% 9% 9% PA[4] 7% 7% 8% 8% PA[13] 7% 10% 8% 9% PA[12] 7% 7% 8% 8% PB[9] 1% 1% 1% 1% PB[8] 1% 1% 1% 1% PB[10] 5% 5% 6% 6% PD[0] 1% 1% 1% 1% PD[1] 1% 1% 1% 1% PD[2] 1% 1% 1% 1% PD[3] 1% 1% 1% 1% PD[4] 1% 1% 1% 1% PD[5] 1% 1% 1% 1% PD[6] 1% 1% 1% 1% DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics Table 22. I/O weight (continued) LQFP100/LQFP64 Pad Weight 5 V Weight 3.3 V SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1 PD[7] 1% 1% 1% 1% PD[8] 1% 1% 1% 1% PB[4] 1% 1% 1% 1% PB[5] 1% 1% 1% 1% PB[6] 1% 1% 1% 1% PB[7] 1% 1% 1% 1% PD[9] 1% 1% 1% 1% PD[10] 1% 1% 1% 1% PD[11] 1% 1% 1% 1% PB[11] 9% 9% 11% 11% PD[12] 8% 8% 10% 10% PB[12] 8% 8% 10% 10% PD[13] 8% 8% 9% 9% PB[13] 8% 8% 9% 9% PD[14] 7% 7% 9% 9% PB[14] 7% 7% 8% 8% PD[15] 7% 7% 8% 8% PB[15] 6% 6% 7% 7% PA[3] 6% 6% 7% 7% PA[7] 4% 4% 5% 5% PA[8] 4% 4% 5% 5% PA[9] 4% 4% 5% 5% PA[10] 5% 5% 6% 6% PA[11] 5% 5% 6% 6% PE[12] 5% 5% 6% 6% PC[3] 5% 5% 6% 6% PC[2] 5% 7% 6% 6% PA[5] 5% 6% 5% 6% PA[6] 4% 4% 5% 5% PC[1] 5% 17% 4% 12% PC[0] 6% 9% 7% 8% PE[2] 7% 10% 8% 9% DS6494 Rev 8 37/82 77 Electrical characteristics SPC560D30x, SPC560D40x Table 22. I/O weight (continued) LQFP100/LQFP64 Pad Weight 5 V Weight 3.3 V SRC(1)= 0 SRC = 1 SRC = 0 SRC = 1 PE[3] 7% 10% 9% 9% PC[5] 8% 11% 9% 10% PC[4] 8% 11% 9% 10% PE[4] 8% 12% 10% 10% PE[5] 8% 12% 10% 11% PE[6] 9% 12% 10% 11% PE[7] 9% 12% 10% 11% PC[12] 9% 13% 11% 11% PC[13] 9% 9% 11% 11% PC[8] 9% 9% 11% 11% PB[2] 9% 13% 11% 12% 1. SRC: “Slew Rate Control” bit in SIU_PCR Note: VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C, unless otherwise specified. 4.8 RESET electrical characteristics The device implements a dedicated bidirectional RESET pin. Figure 5. Start-up reset requirements VDD VDDMIN RESET VIH VIL device reset forced by RESET 38/82 device start-up phase DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics Figure 6. Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Table 23. Reset electrical characteristics Symbol C Parameter Value Conditions(1) Unit Min Typ Max VIH Input High Level SR P CMOS (Schmitt Trigger) — 0.65VDD — VDD + 0.4 V VIL Input low Level SR P CMOS (Schmitt Trigger) — 0.4 — 0.35VDD V VHYS Input hysteresis CC C CMOS (Schmitt Trigger) — 0.1VDD — — V Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(2) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 VOL CC P Output low level DS6494 Rev 8 V 39/82 77 Electrical characteristics SPC560D30x, SPC560D40x Table 23. Reset electrical characteristics (continued) Symbol ttr WFRST C SR P CC P Value Conditions(1) Unit Min Typ Max CL = 25 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 RESET input filtered pulse — — — 40 ns RESET input not filtered pulse — 1000 — — ns VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 Weak pull-up current VDD = 5.0 V ± 10%, PAD3V5V = 0 absolute value VDD = 5.0 V ± 10%, PAD3V5V = 1(4) 10 — 150 10 — 250 Output transition time output pin(3) CC D MEDIUM configuration WNFRST SR P |IWPU| Parameter ns µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the device reference manual). 3. CL includes device and package capacitance (CPKG < 5 pF). 4. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. 4.9 Power management electrical characteristics 4.9.1 Voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the common I/O supply VDD. The following supplies are involved: 40/82  HV: High voltage external power supply for voltage regulator module. This must be provided externally through VDD power pin.  BV: High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV power pin. Voltage values should be aligned with VDD.  LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device: – LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding. – LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. – LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. – LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding. Figure 7. Voltage regulator capacitance connection CREG2 (LV_COR/LV_CFLA) VDD VSS_LV VDD_BV Voltage Regulator I VSS_LVn VDD_BV CREG1 (LV_COR/LV_DFLA) VDD_LVn CDEC1 (Ballast decoupling) VREF VDD_LV VDD_LV VSS_LV VSS_LV DEVICE DEVICE VDD_LV CREG3 (LV_COR/LV_PLL) VSS VDD CDEC2 (supply/IO decoupling) The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH. Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see Section 4.5: Recommended operating conditions). DS6494 Rev 8 41/82 77 Electrical characteristics SPC560D30x, SPC560D40x Table 24. Voltage regulator electrical characteristics Symbol C CREGn SR — Internal voltage regulator external capacitance RREG SR — Stability capacitor equivalent serial resistance CDEC1 Decoupling capacitance SR — ballast CDEC2 SR — VMREG CC T — nF — — 0.2 W — 470 (4) nF 100 — Main regulator output voltage Before exiting from reset — 1.32 — 1.16 1.28 — — — 150 IMREG = 200 mA — — 2 IMREG = 0 mA — — 1 After trimming 1.16 1.28 — V — — 15 mA ILPREG = 15 mA; TA = 55°C — — 600 ILPREG = 0 mA; TA = 55°C — 5 — After trimming 1.16 1.28 — V — — 5 mA — — 100 After trimming Main regulator module current consumption VLPREG CC P Low-power regulator output voltage ILPREG SR — Low power regulator current provided to VDD_LV domain Low-power regulator module current consumption VULPREG CC P Ultra low power regulator output voltage IULPREG SR — Ultra low power regulator current provided to VDD_LV domain — — — IULPREG = 5 mA; Ultra low power regulator module TA = 55°C CC D current consumption I = 0 mA; ULPREG TA = 55 °C CC D 500 10 CC D IDD_BV — VDD/VSS pair IMREGINT IULPREGINT 200 Decoupling capacitance regulator supply Main regulator current provided to VDD_LV domain — Max 400 SR — CC Typ VDD_BV/VSS_LV pair: VDD_BV = 3 V to 3.6 V IMREG ILPREGINT Range: 10 kHz to 20 MHz Unit Min VDD_BV/VSS_LV pair: 100(3) VDD_BV = 4.5 V to 5.5 V (2) P D Value Conditions(1) Parameter In-rush average current on VDD_BV during power-up(5) — — nF V mA mA µA µA — 2 — — — 300(6) mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical value is in the range of 470 nF. 3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V. 42/82 DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics 4. External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in operating range. 5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded). 6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc. 4.9.2 Low voltage detector electrical characteristics The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the VDD and the VDD_LV voltage while device is supplied:  POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)  LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)  LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)  LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)  LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)  LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual) Figure 8. Low voltage detector vs reset VDD VLVDHVxH VLVDHVxL RESET DS6494 Rev 8 43/82 77 Electrical characteristics SPC560D30x, SPC560D40x Table 25. Low voltage detector electrical characteristics Symbol C Value Conditions(1) Parameter Unit Min Typ Max VPORUP SR P Supply for functional POR module 1.0 — 5.5 V VPORH CC P Power-on reset threshold 1.5 — 2.6 V VLVDHV3H CC T LVDHV3 low voltage detector high threshold — — 2.95 V VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.6 — 2.9 V LVDHV3B low voltage detector high threshold — — 2.95 V VLVDHV3BH CC P VLVDHV3BL TA = 25 °C, CC P LVDHV3B low voltage detector low threshold after trimming 2.6 — 2.9 V VLVDHV5H CC T LVDHV5 low voltage detector high threshold — — 4.5 V VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 — 4.4 V VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold 1.08 — 1.16 V CC P LVDLVBKP low voltage detector low threshold 1.08 — 1.16 V VLVDLVBKPL 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 4.10 Power consumption Table 26 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. Table 26. Power consumption on VDD_BV and VDD_HV Symbol IDDMAX(2) IDDRUN(4) C CC D CC IDDSTOP CC RUN mode maximum average current — Unit Min Typ Max — 90 130(3) fCPU = 8 MHz — 7 — T RUN mode typical (5) T average current fCPU = 16 MHz — 18 — fCPU = 32 MHz — 29 — P fCPU = 48 MHz — 40 100 TA = 25 °C — 8 15 TA = 125 °C — 14 25 P TA = 25 °C — 180 700(8) D TA = 55 °C — 500 — TA = 85 °C — 1 6(8) TA = 105 °C — 2 9(8) 4.5 12(8) P HALT mode current(6) CC D STOP mode current(7) D Slow internal RC oscillator (128 kHz) running Slow internal RC oscillator (128 kHz) running P 44/82 Value Conditions(1) T C IDDHALT Parameter TA = 125 °C DS6494 Rev 8 — mA mA mA µA mA SPC560D30x, SPC560D40x Electrical characteristics Table 26. Power consumption on VDD_BV and VDD_HV (continued) Symbol C P D IDDSTDBY STANDBY mode CC D current(9) D Value Conditions(1) Parameter Slow internal RC oscillator (128 kHz) running P Unit Min Typ Max TA = 25 °C — 30 100 TA = 55 °C — 75 — TA = 85 °C — 180 700 TA = 105 °C — 315 1000 TA = 125 °C — 560 1700 µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible. 3. Higher current may be sinked by device during power-up and standby exit. Refer to in-rush average current on Table 24. 4. RUN current measured with typical application with accesses on both flash memory and SRAM. 5. Only for the “P” classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG timer reset enabled. 6. Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs. 7. Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode. 8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125°C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA. 9. Only for the “P” classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption, all possible modules switched off. 4.11 Flash memory electrical characteristics The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled. 4.11.1 Program/Erase characteristics Table 27 shows the program and erase characteristics. Table 27. Program and erase specifications (code flash) Value Symbol C Parameter Min Typ(1) Initial max(2) Max(3) Unit tdwprogram CC C Double word (64-bits) program time(4) — 22 50 500 µs t16Kpperase CC C 16 KB block preprogram and erase time — 300 500 5000 ms DS6494 Rev 8 45/82 77 Electrical characteristics SPC560D30x, SPC560D40x Table 27. Program and erase specifications (code flash) (continued) Value Symbol C Parameter Min Typ(1) Initial max(2) Max(3) Unit t32Kpperase CC C 32 KB block preprogram and erase time — 400 600 5000 ms t128Kpperase CC C 128 KB block preprogram and erase time — 800 1300 7500 ms CC C Erase suspend latency — — 30 30 µs tesus 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. Table 28. Program and erase specifications (data flash) Value Symbol C Parameter Min Typ(1) Initial max(2) Max(3) Unit tswprogram CC C Single word (32-bits) program time(4) — 30 70 300 µs t16Kpperase CC C 16 KB block preprogram and erase time — 700 800 1500 ms tBank_D CC C 64 KB block preprogram and erase time — 1900 2300 4800 ms 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. Table 29. Flash module life Value Symbol P/E C Parameter Number of program/erase cycles per block over the CC C operating temperature range (TJ) Minimum data retention at Retention CC C 85 °C average ambient temperature(1) 46/82 Conditions Unit Min Typ Max 16 KB blocks 100000 — — cycles 32 KB blocks 10000 100000 — cycles 128 KB blocks 1000 100000 — cycles Blocks with 0–1000 P/E cycles 20 — — Blocks with 1001–10000 P/E cycles 10 — — Blocks with 10001–100000 P/E cycles 5 — — DS6494 Rev 8 years SPC560D30x, SPC560D40x Electrical characteristics 1. Ambient temperature averaged over application duration. It is recommended not to exceed the product operating temperature range. ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability. Table 30. Flash memory read access timing Symbol fCFREAD CC C Conditions(1) Max Unit Parameter P Maximum working frequency for reading code flash memory at C given number of wait states in worst conditions fDFREAD CC P 2 wait states 48 0 wait states 20 Maximum working frequency for reading data flash memory at given 6 wait states number of wait states in worst conditions 48 MHz MHz 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 4.11.2 Flash power supply DC characteristics Table 31 shows the power supply DC characteristics on external supply. Note: Power supply for data flash is actually provided by code flash; this means that data flash cannot work if code flash is not powered. Table 31. Flash power supply DC electrical characteristics Symbol C Value Conditions(1) Parameter Unit Min Typ Max Code flash — — 33 mA Data flash — — 4 mA Program/Erase on-going Code flash while reading flash registers, fCPU = 48 MHz Data flash — — 33 mA — — 6 mA Code flash — — 910 µA Code flash — — 125 µA Data flash — — 25 µA ICFREAD CC D Sum of the current consumption on VDDHV and VDDBV on read IDFREAD CC D access Flash module read fCPU = 48 MHz ICFMOD CC D Sum of the current consumption on VDDHV and VDDBV on matrix IDFMOD CC D modification (program/erase) Sum of the current consumption CC D on VDDHV and VDDBV during flash low-power mode — ICFPWD CC D Sum of the current consumption on VDDHV and VDDBV during IDFPWD CC D flash power-down mode — IFLPW 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. DS6494 Rev 8 47/82 77 Electrical characteristics 4.11.3 SPC560D30x, SPC560D40x Start-up/Switch-off timings Table 32. Start-up time/Switch-off time Symbol C CC T Delay for flash module to exit reset mode tFLARSTEXIT Value Conditions(1) Parameter Unit Min Typ Max Code flash — — 125 µs Data flash — — 150 µs tFLALPEXIT CC T Delay for flash module to exit low-power Code flash mode(2) — — 0.5 µs tFLAPDEXIT CC T Delay for flash module to exit powerdown mode Code flash — — 30 µs tFLALPENTRY CC T (3) — — Delay for flash module to enter lowpower mode Code flash — — 0.5 µs Delay for flash module to enter Code flash — — 1.5 µs — 4(3) µs tFLAPDENTRY CC T power-down mode Data flash — 30 µs Data flash 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. Data flash does not support low-power mode. 3. If code flash is already switched-on. 4.12 Electromagnetic compatibility (EMC) characteristics Susceptibility tests are performed on a sample basis during product characterization. 4.12.1 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.   Software recommendations The software flowchart must include the management of runaway conditions such as: – Corrupted program counter – Unexpected reset – Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see the application note Software Techniques For Improving Microcontroller EMC Performance (AN1015)). 48/82 DS6494 Rev 8 SPC560D30x, SPC560D40x 4.12.2 Electrical characteristics Electromagnetic interference (EMI) The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements. Table 33. EMI radiated emission measurement Value Symbol — fCPU C Conditions Unit Min Typ Max SR — Scan range — 0.150 — 1000 MHz SR — Operating frequency — — 48 — MHz LV operating voltages — — 1.28 — V — — 18 dBµV — — 14 dBµV VDD_LV SR — SEMI Parameter CC T Peak level No PLL frequency modulation VDD = 5 V, TA = 25 °C, LQFP100 package Test conforming to IEC 61967- ± 2% PLL 2, fOSC = 8 MHz/fCPU = 48 MHz frequency modulation Note: EMI testing and I/O port waveforms per IEC 61967-1, -2, -4 For information on conducted emission and susceptibility measurement (norm IEC 619674), please contact your local marketing representative. 4.12.3 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to the each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the application note Electrostatic Discharge Sensitivity Measurement (AN1181). Table 34. ESD absolute maximum ratings Symbol Ratings Conditions Class Max value VESD(HBM) CC T Electrostatic discharge voltage (Human Body Model) TA = 25 °C conforming to AEC-Q100-002 H1C 2000 V CC T Electrostatic discharge voltage (Machine Model) TA = 25 °C conforming to AEC-Q100-003 M2 200 V VESD(CDM) CC T Electrostatic discharge voltage (Charged Device Model) TA = 25 °C conforming to AEC-Q100-011 C3A 500 V 750 (corners) V VESD(MM) C DS6494 Rev 8 Unit 49/82 77 Electrical characteristics Note: SPC560D30x, SPC560D40x All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance:  A supply overvoltage is applied to each power supply pin.  A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 35. Latch-up results Symbol LU 4.13 CC C Parameter T Static latch-up class Conditions TA = 125 °C conforming to JESD 78 Class II level A Fast external crystal oscillator (4 to 16 MHz) electrical characteristics The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations. 50/82 DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics Figure 9. Crystal oscillator and resonator connection scheme EXTAL C1 Crystal EXTAL XTAL C2 DEVICE VDD I R EXTAL XTAL Resonator DEVICE XTAL DEVICE Notes: 1. XTAL/EXTAL must not be directly used to drive external circuits 2. A series resistor may be required, according to the crystal oscillator supplier recommendations. Table 36. Crystal description Crystal equivalent series resistance Shunt capacitance between xtalout and xtalin Crystal motional capacitance Crystal motional inductance (ESR)  (Cm) fF (Lm) mH 300 2.68 591.0 21 2.93 8 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 120 3.11 56.5 15 2.93 120 3.90 25.3 10 3.00 Nominal frequency NDK crystal (MHz) reference 4 12 16 NX8045GB NX5032GA Load on xtalin/xtalout C1 = C2 (pF)(1) C0(2) (pF) 1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them. 2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.). DS6494 Rev 8 51/82 77 Electrical characteristics SPC560D30x, SPC560D40x Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram S_MTRANS bit (ME_GS register) ‘1’ ‘0’ VXTAL 1/fFXOSC VFXOSC 90% VFXOSCOP 10% TFXOSCSU valid internal clock Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Symbol fFXOSC C Parameter Unit Min Typ Max — 4.0 — 16.0 CC C VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 0 2.2 — 8.2 CC P VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 0 2.0 — 7.4 VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 1 2.7 — 9.7 VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 1 2.5 — 9.2 fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 1.3 — — fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 1.3 — SR — gmFXOSC CC C Fast external crystal oscillator frequency Fast external crystal oscillator transconductance CC C VFXOSC Value Conditions(1) CC T Oscillation amplitude at EXTAL mA/V V VFXOSCOP CC P Oscillation operating point — — 0.95 IFXOSC(2) CC T Fast external crystal oscillator consumption — — 2 52/82 DS6494 Rev 8 MHz — V 3 mA SPC560D30x, SPC560D40x Electrical characteristics Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued) Symbol tFXOSCSU C Fast external crystal CC T oscillator start-up time Value Conditions(1) Parameter Unit Min Typ Max fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 — — 6 fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 — — 1.8 ms VIH SR P Input high level CMOS (Schmitt Trigger) Oscillator bypass mode 0.65VDD — VDD+0.4 V VIL SR P Input low level CMOS (Schmitt Trigger) Oscillator bypass mode 0.4 — 0.35VDD V 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals). 4.14 FMPLL electrical characteristics The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver. Table 38. FMPLL electrical characteristics Symbol C Parameter Typ Max — 4 — 48 MHz — 40 — 60 % — 16 — 48 MHz VCO frequency without frequency modulation — 256 — 512 VCO frequency with frequency modulation — 245 — 533 — — — 48 MHz 20 — 150 MHz SR — FMPLL reference clock(2) PLLIN SR — FMPLL reference clock duty cycle(2) fPLLOUT CC D FMPLL output clock frequency fVCO CC P Unit Min fPLLIN (3) Value Conditions(1) MHz fCPU SR — System clock frequency fFREE CC P Free-running frequency tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) — 40 100 µs tLTJIT CC — FMPLL long term jitter fPLLIN = 16 MHz (resonator), fPLLCLK at 48 MHz, 4000 cycles — — 10 ns CC C FMPLL consumption TA = 25 °C — — 4 mA IPLL 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN. 3. Frequency modulation is considered ±4%. DS6494 Rev 8 53/82 77 Electrical characteristics 4.15 SPC560D30x, SPC560D40x Fast internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device. Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics Symbol fFIRC C CC P Fast internal RC oscillator high TA = 25 °C, trimmed SR — frequency — Fast internal RC oscillator high IFIRCRUN(2) CC T frequency current in running TA = 25 °C, trimmed mode IFIRCPWD IFIRCSTOP tFIRCSU Typ Max — 16 — 12 20 MHz — 200 µA — — 10 µA sysclk = off — 500 — sysclk = 2 MHz — 600 — sysclk = 4 MHz — 700 — sysclk = 8 MHz — 900 — sysclk = 16 MHz — 1250 — VDD = 5.0 V ± 10% — 1.1 2.0 µs 1 % Fast internal RC oscillator high CC T frequency and system clock TA = 25 °C current in stop mode Fast internal RC oscillator start-up time Unit Min — Fast internal RC oscillator high CC D frequency current in power TA = 25 °C down mode CC C Value Conditions(1) Parameter FIRCPRE Fast internal RC oscillator CC C precision after software trimming of fFIRC TA = 25 °C 1 — FIRCTRIM CC C Fast internal RC oscillator trimming step TA = 25 °C — 1.6 FIRCVAR Fast internal RC oscillator variation in temperature and CC C supply with respect to fFIRC at TA = 55°C in high-frequency configuration 5 — — µA % 5 % 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 4.16 Slow internal RC oscillator (128 kHz) electrical characteristics The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module. 54/82 DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics Symbol fSIRC C Value Conditions(1) Parameter CC P Slow internal RC oscillator low SR — frequency TA = 25 °C, trimmed — ISIRC(2) CC C Slow internal RC oscillator low frequency current tSIRCSU CC P Slow internal RC oscillator startTA = 25 °C, VDD = 5.0 V±10% up time TA = 25 °C, trimmed SIRCPRE Slow internal RC oscillator CC C precision after software trimming TA = 25 °C of fSIRC SIRCTRIM Slow internal RC oscillator CC C trimming step SIRCVAR Slow internal RC oscillator variation in temperature and CC P supply with respect to fSIRC at TA = 55°C in high frequency configuration Unit Min Typ Max — 128 — 100 — 150 — — 5 µA — 8 12 µs 2 — 2 kHz % — — 2.7 — High frequency configuration 10 — 10 % 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 4.17 ADC electrical characteristics 4.17.1 Introduction The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital converter. DS6494 Rev 8 55/82 77 Electrical characteristics SPC560D30x, SPC560D40x Figure 11. ADC characteristics and error definitions Offset Error (EO) Gain Error (EG) 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 5 (1) Example of an actual transfer curve (5) (2) The ideal transfer curve 4 (3) Differential non-linearity error (DNL) (4) (4) Integral non-linearity error (INL) 3 (5) Center of a step of the actual transfer curve (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error (EO) 4.17.2 Input impedance and ADC accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source 56/82 DS6494 Rev 8 SPC560D30x, SPC560D40x Electrical characteristics impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being CS and Cp2 substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS+Cp2 equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fc × (CS+Cp2)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF, the external circuit must be designed to respect the Equation 4: Equation 4 R +R VA S F  ---------------------  1--- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on a resistive path. Figure 12. Input equivalent circuit (precise channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter Current Limiter RF RL CF CP1 Channel Selection Sampling RSW1 RAD CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1 and CP2) CS: Sampling capacitance DS6494 Rev 8 57/82 77 Electrical characteristics SPC560D30x, SPC560D40x Figure 13. Input equivalent circuit (extended channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS RF Current Limiter RL CF VA CP1 Channel Selection Extended Switch Sampling RSW1 RSW2 RAD CP3 CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2) RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1, CP2 and CP3) CS: Sampling capacitance A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit in Figure 13): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Figure 14. Transient behavior during sampling phase Voltage transient on CS VCS VA VA2 V
SPC560D40L3C4E0Y 价格&库存

很抱歉,暂时无法提供与“SPC560D40L3C4E0Y”相匹配的价格&库存,您可以联系我们找货

免费人工找货