0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC560P40L3CEFAR

SPC560P40L3CEFAR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP100

  • 描述:

    IC MCU 32BIT 256KB FLASH 100LQFP

  • 数据手册
  • 价格&库存
SPC560P40L3CEFAR 数据手册
SPC560P34L1, SPC560P34L3 SPC560P40L1, SPC560P40L3 32-bit Power Architecture® based MCU with 320 KB Flash memory and 20 KB RAM for automotive chassis and safety applications Datasheet − production data Features ■ ■ Up to 64 MHz, single issue, 32-bit CPU core complex (e200z0h) – Compliant with Power Architecture® embedded category – Variable Length Encoding (VLE) Memory organization – Up to 256 KB on-chip code flash memory with ECC and erase/program controller – Additional 64 (4 × 16) KB on-chip data flash memory with ECC for EEPROM emulation – Up to 20 KB on-chip SRAM with ECC ■ Fail-safe protection – Programmable watchdog timer – Non-maskable interrupt – Fault collection unit ■ Nexus Class 1 interface ■ Interrupts and events – 16-channel eDMA controller – 16 priority level controller – Up to 25 external interrupts – PIT implements four 32-bit timers – 120 interrupts are routed via INTC ■ General purpose I/Os – Individually programmable as input, output or special function – 37 on LQFP64 – 64 on LQFP100 ■ 1 general purpose eTimer unit – 6 timers each with up/down capabilities – 16-bit resolution, cascadable counters – Quadrature decode with rotation direction flag – Double buffer input capture and output compare September 2013 This is information on a product in full production. LQFP100 (14 x 14 x 1.4 mm) LQFP64 (10 x 10 x 1.4 mm) ■ Communications interfaces – 2 LINFlex channels (1× Master/Slave, 1× Master only) – Up to 3 DSPI channels with automatic chip select generation (up to 8/4/4 chip selects) – Up to 2 FlexCAN interface (2.0B Active) with 32 message buffers – 1 safety port based on FlexCAN with 32 message buffers and up to 8 Mbit/s at 64 MHz capability usable as second CAN when not used as safety port ■ One 10-bit analog-to-digital converter (ADC) – Up to 16 input channels (16 on LQFP100 / 12 on LQFP64) – Conversion time < 1 µs including sampling time at full precision – Programmable Cross Triggering Unit (CTU) – 4 analog watchdogs with interrupt capability ■ On-chip CAN/UART bootstrap loader with Boot Assist Module (BAM) ■ 1 FlexPWM unit: 8 complementary or independent outputs with ADC synchronization signals Table 1. Device summary Code flash memory Package 192 KB 256 KB LQFP100 SPC560P34L3 SPC560P40L3 LQFP64 SPC560P34L1 SPC560P40L1 Doc ID 16100 Rev 7 1/103 www.st.com 1 Contents SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Contents 1 2/103 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 High performance e200z0 core processor . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.4 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.5 Static random access memory (SRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.7 System status and configuration module (SSCM) . . . . . . . . . . . . . . . . . 16 1.5.8 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.9 Frequency-modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 17 1.5.10 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.11 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.12 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.13 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.14 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.15 Fault collection unit (FCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.16 System integration unit – Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.17 Boot and censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.18 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.19 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.20 Controller area network (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.21 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.22 Serial communication interface module (LINFlex) . . . . . . . . . . . . . . . . . 22 1.5.23 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 23 1.5.24 Pulse width modulator (FlexPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.25 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.26 Analog-to-digital converter (ADC) module . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.27 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.28 Nexus Development Interface (NDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 2 3 Contents 1.5.29 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.30 IEEE 1149.1 JTAG controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.31 On-chip voltage regulator (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Pin multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 General notes for specifications at maximum junction temperature . . . 52 3.6 Electromagnetic interference (EMI) characteristics . . . . . . . . . . . . . . . . . 54 3.7 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 54 3.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 54 3.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 54 3.8.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 57 3.9 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.10.1 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.10.2 DC electrical characteristics (5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.10.3 DC electrical characteristics (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.10.4 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . 63 3.10.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.11 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.13 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 68 3.14 Analog-to-digital converter (ADC) electrical characteristics . . . . . . . . . . . 68 Doc ID 16100 Rev 7 3/103 Contents SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.15 3.16 3.14.1 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.14.2 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.15.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.15.2 Flash memory power supply DC characteristics . . . . . . . . . . . . . . . . . . 75 3.15.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.16.1 3.17 4 5 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.17.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.17.4 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.17.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.1 LQFP100 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.2 LQFP64 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SPC560P34/SPC560P40 device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SPC560P40 device configuration differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SPC560P34/SPC560P40 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Approved NPN ballast components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . . . . . . . . . . . . . . . 60 Supply current (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . . . . . . . . . . . . . . . 62 Supply current (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O supply segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . 65 Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . 66 Input clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Flash memory power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 75 Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 DSPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 LQFP100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Doc ID 16100 Rev 7 5/103 List of figures SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. 6/103 Block diagram (SPC560P40 full-featured configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . 10 64-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . 29 64-pin LQFP pinout – Airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 100-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . 31 100-pin LQFP pinout – Airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Power supplies constraints (–0.3 V ≤ VDD_HV_IOx ≤ 6.0 V). . . . . . . . . . . . . . . . . . . . . . . . . 47 Independent ADC supply (–0.3 V ≤ VDD_HV_REG ≤ 6.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . 48 Power supplies constraints (3.0 V ≤ VDD_HV_IOx ≤ 5.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . 51 Independent ADC supply (3.0 V ≤ VDD_HV_REG ≤ 5.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Voltage regulator configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Power-up typical sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Power-down typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Brown-out typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Input equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Pad output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Nexus event trigger and test clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DSPI classic SPI timing – Master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 DSPI classic SPI timing – Master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DSPI classic SPI timing – Slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DSPI classic SPI timing – Slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 DSPI modified transfer format timing – Master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 88 DSPI modified transfer format timing – Master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 89 DSPI modified transfer format timing – Slave, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 89 DSPI modified transfer format timing – Slave, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 90 DSPI PCS Strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 LQFP64 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 1 Introduction 1.1 Document overview Introduction This document provides electrical specifications, pin assignments, and package diagrams for the SPC560P34/40 series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual. 1.2 Description This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications— specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)— as well as airbag applications. This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. 1.3 Device comparison Table 2 provides a summary of different members of the SPC560P34/SPC560P40 family and their features—relative to full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family. Table 2. SPC560P34/SPC560P40 device comparison Feature SPC560P34 Full-featured SPC560P40 Full-featured 192 KB 256 KB Code flash memory (with ECC) Data flash memory / EE option (with ECC) 64 KB SRAM (with ECC) 12 KB 20 KB Processor core 32-bit e200z0h Instruction set VLE (variable length encoding) CPU performance 0–64 MHz FMPLL (frequency-modulated phase-locked loop) module INTC (interrupt controller) channels 1 120 PIT (periodic interrupt timer) 1 (with four 32-bit timers) Doc ID 16100 Rev 7 7/103 Introduction Table 2. SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 SPC560P34/SPC560P40 device comparison (continued) SPC560P34 Full-featured Feature SPC560P40 Full-featured eDMA (enhanced direct memory access) channels 16 FlexCAN (controller area network) 1(1) 2(1),(2) Safety port No Yes (via second FlexCAN module) FCU (fault collection unit) Yes CTU (cross triggering unit) Yes eTimer Yes 1 (16-bit, 6 channels) 8 (capture capabity not supported) FlexPWM (pulse-width modulation) channels Analog-to-digital converter (ADC) 8 (capture capability not supported) 1 (10-bit, 16 channels) LINFlex 2 (1 × Master/Slave, 1 × Master only) 2 (1 × Master/Slave, 1 × Master only) 2 3 DSPI (deserial serial peripheral interface) CRC (cyclic redundancy check) unit Yes Junction temperature sensor No JTAG controller Yes Nexus port controller (NPC) Digital power Yes (Nexus Class 1) supply(3) 3.3 V or 5 V single supply with external transistor Analog power supply 3.3 V or 5 V Internal RC oscillator 16 MHz Supply External crystal oscillator 4–40 MHz LQFP64 LQFP100 Packages Temperature Standard ambient temperature –40 to 125 °C 1. Each FlexCAN module has 32 message buffers. 2. One FlexCAN module can act as a safety port with a bit rate as high as 8 Mbit/s at 64 MHz. 3. The different supply voltages vary according to the part number ordered. SPC560P34/SPC560P40 is available in two configurations having different features: Fullfeatured and airbag. Table 3 shows the main differences between the two versions of the SPC560P40 MCU. 8/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 3. Introduction SPC560P40 device configuration differences Configuration Feature Airbag Full-featured 16 KB 20 KB 1 2 Safety port No Yes (via second FlexCAN module) FlexPWM (pulse-width modulation) channels No 8 (capture capability not supported) CTU (cross triggering unit) No Yes SRAM (with ECC) FlexCAN (controller area network) 1.4 Block diagram Figure 1 shows a top-level block diagram of the SPC560P34/SPC560P40 MCU. Table 2 summarizes the functions of the blocks. Doc ID 16100 Rev 7 9/103 Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 1. Block diagram (SPC560P40 full-featured configuration) External ballast e200z0 Core 32-bit general purpose registers 1.2 V regulator control XOSC Integer execution unit 16 MHz RC oscillator FMPLL_0 (System) JTAG Nexus port controller Special purpose registers Exception handler Instruction unit Variable length encoded instructions Branch prediction unit Load/store unit Interrupt controller Nexus 1 eDMA 16 channels Data 32-bit Instruction 32-bit Master Master Master Crossbar switch (XBAR, AMBA 2.0 v6 AHB) ECSM SIUL BAM MC_ME MC_CGM MC_RGM SWT STM SRAM (with ECC) CRC Data Flash (with ECC) Slave WKPU Code Flash (with ECC) Slave PIT Slave FCU Safety port FlexCAN 2× LINFlex 3× DSPI eTimer (6 ch) SSCM ADC (10 bit, 16 ch) CTU FlexPWM Peripheral bridge Legend: ADC BAM CRC CTU DSPI ECSM eDMA eTimer FCU Flash FlexCAN FlexPWM FMPLL INTC JTAG 10/103 Analog-to-digital converter Boot assist module Cyclic redundancy check Cross triggering unit Deserial serial peripheral interface Error correction status module Enhanced direct memory access Enhanced timer Fault collection unit Flash memory Controller area network Flexible pulse width modulation Frequency-modulated phase-locked loop Interrupt controller JTAG controller LINFlex MC_CGM MC_ME MC_PCU MC_RGM PIT SIUL SRAM SSCM STM SWT WKPU XOSC XBAR Doc ID 16100 Rev 7 Serial communication interface (LIN support) Clock generation module Mode entry module Power control unit Reset generation module Periodic interrupt timer System Integration unit Lite Static random-access memory System status and configuration module System timer module Software watchdog timer Wakeup unit External oscillator Crossbar switch SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 4. Introduction SPC560P34/SPC560P40 series block summary Block Function Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter Boot assist module (BAM) Block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Controller area network (FlexCAN) Supports the standard CAN communications protocol Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave ports; supports a 32-bit address bus width and a 32-bit data bus width Cyclic redundancy check (CRC) CRC checksum generator Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Enhanced direct memory access (eDMA) Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels Enhanced timer (eTimer) Provides enhanced programmable up/down modulo counting Error correction status module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes External oscillator (XOSC) Provides an output clock used as input reference for FMPLL_0 or as reference clock for specific modules depending on system needs Fault collection unit (FCU) Provides functional safety to the device Flash memory Provides non-volatile storage for program code, constants and variables Frequency-modulated phaselocked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Periodic interrupt timer (PIT) Produces periodic interrupts and triggers Peripheral bridge (PBRIDGE) Is the interface between the system bus and on-chip peripherals Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Doc ID 16100 Rev 7 11/103 Introduction Table 4. SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 SPC560P34/SPC560P40 series block summary (continued) Block Function Pulse width modulator (FlexPWM) Contains four PWM submodules, each of which capable of controlling a single half-bridge power stage and two fault input channels Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Static random-access memory (SRAM) Provides storage for program code, constants, and variables Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR(1) and operating system tasks System watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events 1. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org) 12/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 1.5 Feature details 1.5.1 High performance e200z0 core processor Introduction The e200z0 Power Architecture core provides the following features: 1.5.2 ● High performance e200z0 core processor for managing peripherals and interrupts ● Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU ● Harvard architecture ● Variable length encoding (VLE), allowing mixed 16- and 32-bit instructions – Results in smaller code size footprint – Minimizes impact on performance ● Branch processing acceleration using lookahead instruction buffer ● Load/store unit – 1-cycle load latency – Misaligned access support – No load-to-use pipeline bubbles ● Thirty-two 32-bit general purpose registers (GPRs) ● Separate instruction bus and load/store bus Harvard architecture ● Hardware vectored interrupt support ● Reservation instructions for implementing read-modify-write constructs ● Long cycle time instructions, except for guarded loads, do not increase interrupt latency ● Extensive system development support through Nexus debug port ● Non-maskable interrupt support Crossbar switch (XBAR) The XBAR multi-port crossbar switch supports simultaneous connections between three master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width. The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic will select the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port will be stalled until the higher priority master completes its transactions. Requesting masters will be treated with equal priority and will be granted access a slave port in round-robin fashion, based upon the ID of the last master to be granted access. Doc ID 16100 Rev 7 13/103 Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 The crossbar provides the following features: ● ● 1.5.3 3 master ports: – e200z0 core complex instruction port – e200z0 core complex Load/Store Data port – eDMA 3 slave ports: – Flash memory (Code and Data) – SRAM – Peripheral bridge ● 32-bit internal address, 32-bit internal data paths ● Fixed Priority Arbitration based on Port Master ● Temporary dynamic priority elevation of masters Enhanced direct memory access (eDMA) The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. The eDMA module provides the following features: 1.5.4 ● 16 channels support independent 8-, 16- or 32-bit single value or block transfers ● Supports variable-sized queues and circular queues ● Source and destination address registers are independently configured to either postincrement or to remain constant ● Each transfer is initiated by a peripheral, CPU, or eDMA channel request ● Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer ● DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer and CTU ● Programmable DMA channel multiplexer allows assignment of any DMA source to any available DMA channel with as many as 30 request sources ● eDMA abort operation through software Flash memory The SPC560P34/SPC560P40 provides 320 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash memory module is interfaced to the system bus by a dedicated flash memory controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains four 128-bit wide prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses are registered and are forwarded to the system bus on the following cycle, incurring two wait-states. 14/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction The flash memory module provides the following features: ● – 6 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 128 KB) code flash memory – 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash memory – Full Read-While-Write (RWW) capability between code flash memory and data flash memory ● Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to prefetch code or data or both) ● Typical flash memory access time: no wait-state for buffer hits, 2 wait-states for page buffer miss at 64 MHz ● Hardware managed flash memory writes handled by 32-bit RISC Krypton engine ● Hardware and software configurable read and write access protections on a per-master basis ● Configurable access timing allowing use in a wide range of system frequencies ● Multiple-mapping support and mapping-based block access timing (up to 31 additional cycles) allowing use for emulation of other memory types ● Software programmable block program/erase restriction control ● Erase of selected block(s) ● Read page sizes ● 1.5.5 As much as 320 KB flash memory – Code flash memory: 128 bits (4 words) – Data flash memory: 32 bits (1 word) ECC with single-bit correction, double-bit detection for data integrity – Code flash memory: 64-bit ECC – Data flash memory: 32-bit ECC ● Embedded hardware program and erase algorithm ● Erase suspend and program abort ● Censorship protection scheme to prevent flash memory content visibility ● Hardware support for EEPROM emulation Static random access memory (SRAM) The SPC560P34/SPC560P40 SRAM module provides up to 20 KB of general-purpose memory. The SRAM module provides the following features: ● Supports read/write accesses mapped to the SRAM from any master ● Up to 20 KB general purpose SRAM ● Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory ● Typical SRAM access time: no wait-state for reads and 32-bit writes; 1 wait-state for 8and 16-bit writes if back-to-back with a read to same memory block Doc ID 16100 Rev 7 15/103 Introduction 1.5.6 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Interrupt controller (INTC) The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. The INTC handles 128 selectable-priority interrupt sources. For high-priority interrupt requests, the time from the assertion of the interrupt request by the peripheral to the execution of the interrupt service routine (ISR) by the processor has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other. The INTC provides the following features: 1.5.7 ● Unique 9-bit vector for each separate interrupt source ● 8 software triggerable interrupt sources ● 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source ● Ability to modify the ISR or task priority: modifying the priority can be used to implement the priority ceiling protocol for accessing shared resources. ● 1 external high priority interrupt (NMI) directly accessing the main core and I/O processor (IOP) critical interrupt mechanism System status and configuration module (SSCM) The system status and configuration module (SSCM) provides central device functionality. The SSCM includes these features: ● 16/103 System configuration and status – Memory sizes/status – Device mode and security status – Determine boot vector – Search code flash for bootable sector – DMA status ● Debug status port enable and selection ● Bus and peripheral abort enable/disable Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 1.5.8 Introduction System clocks and clock generation The following list summarizes the system clock and clock generation on the SPC560P34/SPC560P40: 1.5.9 ● Lock detect circuitry continuously monitors lock status ● Loss of clock (LOC) detection for PLL outputs ● Programmable output clock divider (÷1, ÷2, ÷4, ÷8) ● FlexPWM module and eTimer module running at the same frequency as the e200z0h core ● Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application Frequency-modulated phase-locked loop (FMPLL) The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable. The FMPLL has the following major features: 1.5.10 ● Input clock frequency: 4–40 MHz ● Maximum output frequency: 64 MHz ● Voltage controlled oscillator (VCO)—frequency 256–512 MHz ● Reduced frequency divider (RFD) for reduced frequency operation without forcing the FMPLL to relock ● Frequency-modulated PLL – Modulation enabled/disabled through software – Triangle wave modulation ● Programmable modulation depth (±0.25% to ±4% deviation from center frequency): programmable modulation frequency dependent on reference frequency ● Self-clocked mode (SCM) operation Main oscillator The main oscillator provides these features: 1.5.11 ● Input frequency range: 4–40 MHz ● Crystal input mode or oscillator input mode ● PLL reference Internal RC oscillator This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap reference voltage. Doc ID 16100 Rev 7 17/103 Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 The RC oscillator provides these features: 1.5.12 ● Nominal frequency 16 MHz ● ±5% variation over voltage and temperature after process trim ● Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL ● RC oscillator is used as the default system clock during startup Periodic interrupt timer (PIT) The PIT module implements these features: 1.5.13 ● 4 general-purpose interrupt timers ● 32-bit counter resolution ● Clocked by system clock frequency ● Each channel usable as trigger for a DMA request System timer module (STM) The STM implements these features: 1.5.14 ● One 32-bit up counter with 8-bit prescaler ● Four 32-bit compare channels ● Independent interrupt source for each channel ● Counter can be stopped in debug mode Software watchdog timer (SWT) The SWT has the following features: 1.5.15 ● 32-bit time-out register to set the time-out period ● Programmable selection of window mode or regular servicing ● Programmable selection of reset or interrupt on an initial time-out ● Master access protection ● Hard and soft configuration lock bits ● Reset configuration inputs allow timer to be enabled out of reset Fault collection unit (FCU) The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning. The FCU module has the following features: 18/103 ● FCU status register reporting the device status ● Continuous monitoring of critical fault signals ● User selection of critical signals from different fault sources inside the device ● Critical fault events trigger 2 external pins (user selected signal protocol) that can be used externally to reset the device and/or other circuitry (for example, a safety relay) ● Faults are latched into a register Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 1.5.16 Introduction System integration unit – Lite (SIUL) The SPC560P34/SPC560P40 SIUL controls MCU pad configuration, external interrupt, general purpose I/O (GPIO), and internal peripheral multiplexing. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. The SIUL provides the following features: 1.5.17 ● Centralized general purpose input output (GPIO) control of up to 49 input/output pins and 16 analog input-only pads (package dependent) ● All GPIO pins can be independently configured to support pull-up, pull-down, or no pull ● Reading and writing to GPIO supported both as individual pins and 16-bit wide ports ● All peripheral pins, except ADC channels, can be alternatively configured as both general purpose input or output pins ● ADC channels support alternative configuration as general purpose inputs ● Direct readback of the pin value is supported on all pins through the SIUL ● Configurable digital input filter that can be applied to some general purpose input pins for noise elimination ● Up to 4 internal functions can be multiplexed onto 1 pin Boot and censorship Different booting modes are available in the SPC560P34/SPC560P40: booting from internal flash memory and booting via a serial link. The default booting scheme uses the internal flash memory (an internal pull-down resistor is used to select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the boot assist module software). A censorship scheme is provided to protect the content of the flash memory and offer increased security for the entire device. A password mechanism is designed to grant the legitimate user access to the non-volatile memory. Boot assist module (BAM) The BAM is a block of read-only memory that is programmed once and is identical for all SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user. The BAM provides the following features: 1.5.18 ● Serial bootloading via FlexCAN or LINFlex ● Ability to accept a password via the used serial communication channel to grant the legitimate user access to the non-volatile memory Error correction status module (ECSM) The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes, and information on Doc ID 16100 Rev 7 19/103 Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores. The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features: ● Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented ● For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the SPC560P34/SPC560P40. The sources of the ECC errors are: 1.5.19 ● Flash memory ● SRAM Peripheral bridge (PBRIDGE) The PBRIDGE implements the following features: 1.5.20 ● Duplicated periphery ● Master access privilege level per peripheral (per master: read access enable; write access enable) ● Write buffering for peripherals ● Checker applied on PBRIDGE output toward periphery ● Byte endianess swap capability Controller area network (FlexCAN) The SPC560P34/SPC560P40 MCU contains one controller area network (FlexCAN) module. This module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: realtime processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module contains 32 message buffers. 20/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction The FlexCAN module provides the following features: ● – Standard data and remote frames – Extended data and remote frames – Up to 8-bytes data length – Programmable bit rate up to 1 Mbit/s ● 32 message buffers of up to 8-bytes data length ● Each message buffer configurable as Rx or Tx, all supporting standard and extended messages ● Programmable loop-back mode supporting self-test operation ● 3 programmable mask registers ● Programmable transmit-first scheme: lowest ID or lowest buffer number ● Time stamp based on 16-bit free-running timer ● Global network time, synchronized by a specific message ● Maskable interrupts ● Independent of the transmission medium (an external transceiver is assumed) ● High immunity to EMI ● Short latency time due to an arbitration scheme for high-priority messages ● Transmit features ● ● 1.5.21 Full implementation of the CAN protocol specification, version 2.0B – Supports configuration of multiple mailboxes to form message queues of scalable depth – Arbitration scheme according to message ID or message buffer number – Internal arbitration to guarantee no inner or outer priority inversion – Transmit abort procedure and notification Receive features – Individual programmable filters for each mailbox – 8 mailboxes configurable as a 6-entry receive FIFO – 8 programmable acceptance filters for receive FIFO Programmable clock source – System clock – Direct oscillator clock to avoid PLL jitter Safety port (FlexCAN) The SPC560P34/SPC560P40 MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features: ● Identical to the FlexCAN module ● Bit rate up to 8 Mbit/s at 64 MHz CPU clock using direct connection between CAN modules (no physical transceiver required) ● 32 message buffers of up to 8-bytes data length ● Can be used as a second independent CAN module Doc ID 16100 Rev 7 21/103 Introduction 1.5.22 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Serial communication interface module (LINFlex) The LINFlex (local interconnect network flexible) on the SPC560P34/SPC560P40 features the following: ● Supports LIN Master mode (both instances), LIN Slave mode (only one instance) and UART mode ● LIN state machine compliant to LIN1.3, 2.0 and 2.1 specifications ● Handles LIN frame transmission and reception without CPU intervention ● LIN features ● ● 22/103 – Autonomous LIN frame handling – Message buffer to store Identifier and up to 8 data bytes – Supports message length of up to 64 bytes – Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing, checksum, and time-out) – Classic or extended checksum calculation – Configurable Break duration of up to 36-bit times – Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional) – Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection – Interrupt-driven operation with 16 interrupt sources LIN slave mode features: – Autonomous LIN header handling – Autonomous LIN response handling – Optional discarding of irrelevant LIN responses using ID filter UART mode: – Full-duplex operation – Standard non return-to-zero (NRZ) mark/space format – Data buffers with 4-byte receive, 4-byte transmit – Configurable word length (8-bit or 9-bit words) – Error detection and flagging – Parity, Noise and Framing errors – Interrupt-driven operation with four interrupt sources – Separate transmitter and receiver CPU interrupt sources – 16-bit programmable baud-rate modulus counter and 16-bit fractional – 2 receiver wake-up methods Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 1.5.23 Introduction Deserial serial peripheral interface (DSPI) The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC560P34/SPC560P40 MCU and external devices. The DSPI modules provide these features: 1.5.24 ● Full duplex, synchronous transfers ● Master or slave operation ● Programmable master bit rates ● Programmable clock polarity and phase ● End-of-transmission interrupt flag ● Programmable transfer baud rate ● Programmable data frames from 4 to 16 bits ● Up to 8 chip select lines available: – 8 on DSPI_0 – 4 each on DSPI_1 and DSPI_2 ● 8 clock and transfer attributes registers ● Chip select strobe available as alternate function on one of the chip select pins for deglitching ● FIFOs for buffering up to 4 transfers on the transmit and receive side ● Queueing operation possible through use of the I/O processor or eDMA ● General purpose I/O functionality on pins when not used for SPI Pulse width modulator (FlexPWM) The pulse width modulator module (PWM) contains four PWM submodules each of which is set up to control a single half-bridge power stage. There are also three fault channels. This PWM is capable of controlling most motor types: AC induction motors (ACIM), permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors. Doc ID 16100 Rev 7 23/103 Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 The FlexPWM block implements the following features: 24/103 ● 16-bit resolution for center, edge-aligned, and asymmetrical PWMs ● Clock frequency same as that used for e200z0h core ● PWM outputs can operate as complementary pairs or independent channels ● Can accept signed numbers for PWM generation ● Independent control of both edges of each PWM output ● Synchronization to external hardware or other PWM supported ● Double buffered PWM registers – Integral reload rates from 1 to 16 – Half cycle reload capability ● Multiple ADC trigger events can be generated per PWM cycle via hardware ● Write protection for critical registers ● Fault inputs can be assigned to control multiple PWM outputs ● Programmable filters for fault inputs ● Independently programmable PWM output polarity ● Independent top and bottom deadtime insertion ● Each complementary pair can operate with its own PWM frequency and deadtime values ● Individual software-control for each PWM output ● All outputs can be programmed to change simultaneously via a “Force Out” event ● PWMX pin can optionally output a third PWM signal from each submodule ● Channels not used for PWM generation can be used for buffered output compare functions ● Channels not used for PWM generation can be used for input capture functions ● Enhanced dual-edge capture functionality ● eDMA support with automatic reload ● 2 fault inputs ● Capture capability for PWMA, PWMB, and PWMX channels not supported Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 1.5.25 Introduction eTimer The SPC560P34/SPC560P40 includes one eTimer module which provides six 16-bit general purpose up/down timer/counter units with the following features: ● Clock frequency same as that used for the e200z0h core ● Individual channel capability ● ● 1.5.26 – Input capture trigger – Output compare – Double buffer (to capture rising edge and falling edge) – Separate prescaler for each counter – Selectable clock source – 0–100% pulse measurement – Rotation direction flag (quad decoder mode) Maximum count rate – External event counting: max. count rate = peripheral clock/2 – Internal clock counting: max. count rate = peripheral clock Counters are: – Cascadable – Preloadable ● Programmable count modulo ● Quadrature decode capabilities ● Counters can share available input pins ● Count once or repeatedly ● Pins available as GPIO when timer functionality not in use Analog-to-digital converter (ADC) module The ADC module provides the following features: Analog part: ● 1 on-chip analog-to-digital converter – 10-bit AD resolution – 1 sample and hold unit – Conversion time, including sampling time, less than 1 µs (at full precision) – Typical sampling time is 150 ns minimum (at full precision) – DNL/INL ±1 LSB – TUE < 1.5 LSB – Single-ended input signal up to 3.3 V/5.0 V – 3.3 V/5.0 V input reference voltage – ADC and its reference can be supplied with a voltage independent from VDDIO – ADC supply can be equal or higher than VDDIO – ADC supply and ADC reference are not independent from each other (both internally bonded to same pad) – Sample times of 2 (default), 8, 64 or 128 ADC clock cycles Doc ID 16100 Rev 7 25/103 Introduction SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Digital part: ● 16 input channels ● 4 analog watchdogs comparing ADC results against predefined levels (low, high, range) before results are stored in the appropriate ADC result location ● 2 modes of operation: Motor Control mode or Regular mode ● Regular mode features ● 1.5.27 – Register based interface with the CPU: control register, status register and 1 result register per channel – ADC state machine managing 3 request flows: regular command, hardware injected command and software injected command – Selectable priority between software and hardware injected commands – DMA compatible interface CTU-controlled mode features – Triggered mode only – 4 independent result queues (1×16 entries, 2×8 entries, 1×4 entries) – Result alignment circuitry (left justified and right justified) – 32-bit read mode allows to have channel ID on one of the 16-bit part – DMA compatible interfaces Cross triggering unit (CTU) The cross triggering unit allows automatic generation of ADC conversion requests on user selected conditions without CPU load during the PWM period and with minimized CPU load for dynamic configuration. It implements the following features: 1.5.28 ● Double buffered trigger generation unit with up to 8 independent triggers generated from external triggers ● Trigger generation unit configurable in sequential mode or in triggered mode ● Each trigger can be appropriately delayed to compensate the delay of external low pass filter ● Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation ● Double buffered ADC command list pointers to minimize ADC-trigger unit update ● Double buffered ADC conversion command list with up to 24 ADC commands ● Each trigger capable of generating consecutive commands ● ADC conversion command allows to control ADC channel, single or synchronous sampling, independent result queue selection Nexus Development Interface (NDI) The NDI (Nexus Development Interface) block is compliant with Nexus Class 1 of the IEEEISTO 5001-2003 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NDI block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Nexus Class 1 standard. 26/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Introduction The development support provided includes access to the MCU’s internal memory map and access to the processor’s internal registers. The NDI provides the following features: 1.5.29 ● Configured via the IEEE 1149.1 ● All Nexus port pins operate at VDDIO (no dedicated power supply) ● Nexus Class 1 supports Static debug Cyclic redundancy check (CRC) The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features: ● Support for CRC-16-CCITT (x25 protocol): – ● Support for CRC-32 (Ethernet protocol): – ● 1.5.30 x16 + x12 + x5 + 1 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency IEEE 1149.1 JTAG controller The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard. The JTAG controller provides the following features: ● IEEE test access port (TAP) interface 4 pins (TDI, TMS, TCK, TDO) ● Selectable modes of operation include JTAGC/debug or normal system operation. ● 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions: ● ● ● – BYPASS – IDCODE – EXTEST – SAMPLE – SAMPLE/PRELOAD 5-bit instruction register that supports the additional following public instructions: – ACCESS_AUX_TAP_NPC – ACCESS_AUX_TAP_ONCE 3 test data registers: – Bypass register – Boundary scan register (size parameterized to support a variety of boundary scan chain lengths) – Device identification register TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry Doc ID 16100 Rev 7 27/103 Introduction 1.5.31 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 On-chip voltage regulator (VREG) The on-chip voltage regulator module provides the following features: 28/103 ● Uses external NPN (negative-positive-negative) transistor ● Regulates external 3.3 V/5.0 V down to 1.2 V for the core logic ● Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip- 2 Package pinouts and signal descriptions 2.1 Package pinouts 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 A[15] A[14] B[6] A[13] A[9] VSS_LV_COR2 VDD_LV_COR2 C[8] VSS_HV_IO3 VDD_HV_IO3 A[12] A[11] A[10] B[2] B[1] B[0] The LQFP pinouts are shown in the following figures. For pin signal descriptions, please refer to Table 7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LQFP64 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 A[4] VPP_TEST D[14]] D[12] D[13 VSS_LV_COR1 VDD_LV_COR1 A[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI C[12] C[11] D[7] E[1] C[1] B[7] C[2] B[8] E[2] B[9] B[10] B[11] B[12] VDD_HV_ADC0 VSS_HV_ADC0 E[3]/B[13] BCTRL VDD_HV_REG 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 NMI A[6] A[7] A[8] A[5] VDD_HV_IO1 VSS_HV_IO1 D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET D[8] VSS_LV_COR0 VDD_LV_COR0 Figure 2. 64-pin LQFP pinout – Full featured configuration (top view) Doc ID 16100 Rev 7 29/103 SPC560P34L1, SPC560P34L3, SPC560P40L1, 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 A[15] A[14] B[6] A[13] A[9] VSS_LV_COR2 VDD_LV_COR2 C[8] VSS_HV_IO3 VDD_HV_IO3 A[12] A[11] A[10] B[2] B[1]] B[0] Package pinouts and signal descriptions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LQFP64 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 A[4] VPP_TEST D[14] D[12] D[13] VSS_LV_COR1 VDD_LV_COR1 A[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI C[12] C[11] D[7] E[1] C[1] B[7] C[2] B[8] E[2] B[9] B[10] B[11] B[12] VDD_HV_ADC0 VSS_HV_ADC0 E[3]/B[13] BCTRL VDD_HV_REG 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 NMI A[6] A[7] A[8] A[5] VDD_HV_IO1 VSS_HV_IO1 D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET D[8] VSS_LV_COR0 VDD_LV_COR0 Figure 3. 30/103 64-pin LQFP pinout – Airbag configuration (top view) Doc ID 16100 Rev 7 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 A[15] A[14] C[6] D[2] B[6] A[13] A[9] VSS_LV_COR2 VDD_LV_COR2 C[8] D[4] D[3] VSS_HV_IO3 VDD_HV_IO3 D[0] C[15] C[9] A[12] A[11] A[10] B[3] B[2] C[10] B[1] B[0] SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 A[4] VPP_TEST D[14] C[14] C[13] D[12] N.C. N.C. D[13] VSS_LV_COR1 VDD_LV_COR1 A[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI A[2] C[12] C[11] D[11] D[10] A[1] A[0] D[7] E[1] C[1] B[7] C[2] B[8] E[2] N.C. N.C. B[9] B[10] B[11] B[12] VDD_HV_ADC0 VSS_HV_ADC0 E[7]/D[15] E[3]/B[13] E[5]/B[15] E[4]/B[14] E[6]/C[0] N.C. BCTRL N.C. N.C. VDD_HV_REG 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NMI A[6] D[1] A[7] C[4] A[8] C[5] A[5] C[7] C[3] N.C. N.C. VDD_HV_IO1 VSS_HV_IO1 D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET D[8] D[5] D[6] VSS_LV_COR0 VDD_LV_COR0 Figure 4. 100-pin LQFP pinout – Full featured configuration (top view) Doc ID 16100 Rev 7 31/103 SPC560P34L1, SPC560P34L3, SPC560P40L1, 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 A[15] A[14] C[6] D[2] B[6] A[13] A[9] VSS_LV_COR2 VDD_LV_COR2 C[8] D[4] D[3] VSS_HV_IO3 VDD_HV_IO3 D[0] C[15] C[9] A[12] A[11] A[10] B[3] B[2] C[10] B[1] B[0] Package pinouts and signal descriptions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 A[4] VPP_TEST D[14] C[14] C[13] D[12] N.C. N.C. D[13] VSS_LV_COR1 VDD_LV_COR1 A[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI A[2] C[12] C[11] D[11] D[10] A[1] A[0] D[7] E[1] C[1] B[7] C[2] B[8] E[2] N.C. N.C. B[9] B[10] B[11] B[12] VDD_HV_ADC0 VSS_HV_ADC0 E[7]/D[15] E[3]/B[13] E[5]/B[15] E[4]/B[14] E[6]/C[0] N.C. BCTRL N.C. N.C. VDD_HV_REG 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NMI A[6] D[1] A[7] C[4] A[8] C[5] A[5] C[7] C[3] N.C. N.C. VDD_HV_IO1 VSS_HV_IO1 D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET D[8] D[5] D[6] VSS_LV_COR0 VDD_LV_COR0 Figure 5. 32/103 100-pin LQFP pinout – Airbag configuration (top view) Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip- 2.2 Pin description The following sections provide signal descriptions and related information about the functionality and configuration of the SPC560P34/SPC560P40 devices. 2.2.1 Power supply and reference voltage pins Table 5 lists the power supply and reference voltage for the SPC560P34/SPC560P40 devices. Table 5. Supply pins Supply Symbol Pin Description 64-pin 100-pin VREG control and power supply pins. Pins available on 64-pin and 100-pin packages BCTRL VDD_HV_REG (3.3 V or 5.0 V) Voltage regulator external NPN ballast base control pin 31 47 Voltage regulator supply voltage 32 50 ADC_0 reference and supply voltage. Pins available on 64-pin and 100-pin packages VDD_HV_ADC0(1) ADC_0 supply and high reference voltage 28 39 VSS_HV_ADC0 ADC_0 ground and low reference voltage 29 40 Power supply pins (3.3 V or 5.0 V). Pins available on 64-pin and 100-pin packages VDD_HV_IO1 Input/output supply voltage 6 13 VSS_HV_IO1 Input/output ground 7 14 VDD_HV_IO2 Input/output supply voltage and data Flash memory supply voltage 40 63 VSS_HV_IO2 Input/output ground and Flash memory HV ground 39 62 VDD_HV_IO3 Input/output supply voltage and code Flash memory supply voltage 55 87 VSS_HV_IO3 Input/output ground and code Flash memory HV ground 56 88 VDD_HV_OSC Crystal oscillator amplifier supply voltage 9 16 VSS_HV_OSC Crystal oscillator amplifier ground 10 17 Power supply pins (1.2 V). Pins available on 64-pin and 100-pin packages VDD_LV_COR0 1.2 V supply pins for core logic and PLL. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 16 25 VSS_LV_COR0 1.2 V supply pins for core logic and PLL. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 15 24 VDD_LV_COR1 1.2 V supply pins for core logic and data Flash. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 42 65 VSS_LV_COR1 1.2 V supply pins for core logic and data Flash. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 43 66 Doc ID 16100 Rev 7 33/103 Package pinouts and signal descriptions Table 5. SPC560P34L1, SPC560P34L3, SPC560P40L1, Supply pins (continued) Supply Symbol Pin Description 64-pin 100-pin VDD_LV_COR2 1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 58 92 VSS_LV_COR2 1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected betwee.n these pins and the nearest VDD_LV_COR pin. 59 93 1. Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding connection on VDD_HV_ADCx/VSS_HV_ADCx pins. 2.2.2 System pins Table 6 and Table 7 contain information on pin functions for the SPC560P34/SPC560P40 devices. The pins listed in Table 6 are single-function pins. The pins shown in Table 7 are multi-function pins, programmable via their respective pad configuration register (PCR) values. Table 6. System pins Pad speed(1) Symbol Description Pin Direction SRC = 0 SRC = 1 64-pin 100-pin Dedicated pins NMI XTAL EXTAL Non-maskable Interrupt Input only Slow — 1 1 Analog output of the oscillator amplifier circuit—needs to be grounded if oscillator is used in bypass mode — — — 11 18 Analog input of the oscillator amplifier circuit, when the oscillator is not in bypass mode Analog input for the clock generator when the oscillator is in bypass mode — — — 12 19 TDI JTAG test data input Input only Slow — 35 58 TMS JTAG state machine control Input only Slow — 36 59 TCK JTAG clock Input only Slow — 37 60 TDO JTAG test data output Output only Slow Fast 38 61 — 13 20 — 47 74 Reset pin RESET Bidirectional reset with Schmitt trigger characteristics and noise filter Bidirectional Medium Test pin VPP_TEST Pin for testing purpose only. To be tied to ground in normal operating mode. — — 1. SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register. 34/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descrip- 2.2.3 Pin multiplexing Table 7 defines the pin list and muxing for the SPC560P34/SPC560P40 devices. Each row of Table 7 shows all the possible ways of configuring each pin, via alternate functions. The default function assigned to each pin after reset is the ALT0 function. SPC560P34/SPC560P40 devices provide three main I/O pad types, depending on the associated functions: ● Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission. ● Medium pads provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission. ● Fast pads provide maximum speed. They are used for improved NEXUS debugging capability. Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. For more information, see “Pad AC Specifications” in the device datasheet. Table 7. Port pin Pin muxing PCR register Alternate function(1),(2) Functions Peripheral(3) I/O direction(4) Pad speed(5) Pin SRC = 0 SRC = 1 64-pin 100-pin Port A (16-bit) A[0] A[1] A[2] A[3] PCR[0] ALT0 ALT1 ALT2 ALT3 — GPIO[0] ETC[0] SCK F[0] EIRQ[0] SIUL eTimer_0 DSPI_2 FCU_0 SIUL I/O I/O I/O O I Slow Medium — 51 PCR[1] ALT0 ALT1 ALT2 ALT3 — GPIO[1] ETC[1] SOUT F[1] EIRQ[1] SIUL eTimer_0 DSPI_2 FCU_0 SIUL I/O I/O O O I Slow Medium — 52 PCR[2] ALT0 ALT1 ALT2 ALT3 — — — GPIO[2] ETC[2] — A[3] SIN ABS[0] EIRQ[2] SIUL eTimer_0 — FlexPWM_0 DSPI_2 MC_RGM SIUL I/O I/O — O I I I Slow Medium — 57 PCR[3] ALT0 ALT1 ALT2 ALT3 — — GPIO[3] ETC[3] CS0 B[3] ABS[1] EIRQ[3] SIUL eTimer_0 DSPI_2 FlexPWM_0 MC_RGM SIUL I/O I/O I/O O I I Slow Medium 41 64 Doc ID 16100 Rev 7 35/103 Package pinouts and signal descriptions Table 7. Port pin A[4] A[5] A[6] A[7] A[8] A[9] A[10] 36/103 SPC560P34L1, SPC560P34L3, SPC560P40L1, Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[4] ALT0 ALT1 ALT2 ALT3 — — GPIO[4] — CS1 ETC[4] FAB EIRQ[4] SIUL — DSPI_2 eTimer_0 MC_RGM SIUL I/O — O I/O I I Slow Medium 48 75 PCR[5] ALT0 ALT1 ALT2 ALT3 — GPIO[5] CS0 — CS7 EIRQ[5] SIUL DSPI_1 — DSPI_0 SIUL I/O I/O — O I Slow Medium 5 8 PCR[6] ALT0 ALT1 ALT2 ALT3 — GPIO[6] SCK — — EIRQ[6] SIUL DSPI_1 — — SIUL I/O I/O — — I Slow Medium 2 2 PCR[7] ALT0 ALT1 ALT2 ALT3 — GPIO[7] SOUT — — EIRQ[7] SIUL DSPI_1 — — SIUL I/O O — — I Slow Medium 3 4 PCR[8] ALT0 ALT1 ALT2 ALT3 — — GPIO[8] — — — SIN EIRQ[8] SIUL — — — DSPI_1 SIUL I/O — — — I I Slow Medium 4 6 PCR[9] ALT0 ALT1 ALT2 ALT3 — GPIO[9] CS1 — B[3] FAULT[0] SIUL DSPI_2 — FlexPWM_0 FlexPWM_0 I/O O — O I Slow Medium 60 94 PCR[10] ALT0 ALT1 ALT2 ALT3 — GPIO[10] CS0 B[0] X[2] EIRQ[9] SIUL DSPI_2 FlexPWM_0 FlexPWM_0 SIUL I/O I/O O O I Slow Medium 52 81 Peripheral(3) Doc ID 16100 Rev 7 SRC = 0 SRC = 1 64-pin 100-pin SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descripTable 7. Port pin A[11] A[12] A[13] A[14] A[15] Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[11] ALT0 ALT1 ALT2 ALT3 — GPIO[11] SCK A[0] A[2] EIRQ[10] SIUL DSPI_2 FlexPWM_0 FlexPWM_0 SIUL I/O I/O O O I Slow Medium 53 82 PCR[12] ALT0 ALT1 ALT2 ALT3 — GPIO[12] SOUT A[2] B[2] EIRQ[11] SIUL DSPI_2 FlexPWM_0 FlexPWM_0 SIUL I/O O O O I Slow Medium 54 83 PCR[13] ALT0 ALT1 ALT2 ALT3 — — — GPIO[13] — B[2] — SIN FAULT[0] EIRQ[12] SIUL — FlexPWM_0 — DSPI_2 FlexPWM_0 SIUL I/O — O — I I I Slow Medium 61 95 PCR[14] ALT0 ALT1 ALT2 ALT3 — GPIO[14] TXD — — EIRQ[13] SIUL Safety Port_0 — — SIUL I/O O — — I Slow Medium 63 99 PCR[15] ALT0 ALT1 ALT2 ALT3 — — GPIO[15] — — — RXD EIRQ[14] SIUL — — — Safety Port_0 SIUL I/O — — — I I Slow Medium 64 100 Peripheral(3) SRC = 0 SRC = 1 64-pin 100-pin Port B (16-bit) B[0] B[1] PCR[16] ALT0 ALT1 ALT2 ALT3 — GPIO[16] TXD — DEBUG[0] EIRQ[15] SIUL FlexCAN_0 — SSCM SIUL I/O O — — I Slow Medium 49 76 PCR[17] ALT0 ALT1 ALT2 ALT3 — — GPIO[17] — — DEBUG[1] RXD EIRQ[16] SIUL — — SSCM FlexCAN_0 SIUL I/O — — — I I Slow Medium 50 77 Doc ID 16100 Rev 7 37/103 Package pinouts and signal descriptions Table 7. Port pin B[2] B[3] B[6] B[7] B[8] B[9] B[10] 38/103 SPC560P34L1, SPC560P34L3, SPC560P40L1, Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[18] ALT0 ALT1 ALT2 ALT3 — GPIO[18] TXD — DEBUG[2] EIRQ[17] SIUL LIN_0 — SSCM SIUL I/O O — — I Slow Medium 51 79 PCR[19] ALT0 ALT1 ALT2 ALT3 — GPIO[19] — — DEBUG[3] RXD SIUL — — SSCM LIN_0 I/O — — — I Slow Medium — 80 PCR[22] ALT0 ALT1 ALT2 ALT3 — GPIO[22] CLKOUT CS2 — EIRQ[18] SIUL Control DSPI_2 — SIUL I/O O O — I Slow Medium 62 96 PCR[23] ALT0 ALT1 ALT2 ALT3 — — GPIO[23] — — — AN[0] RXD SIUL — — — ADC_0 LIN_0 Input only — — 20 29 PCR[24] ALT0 ALT1 ALT2 ALT3 — — GPIO[24] — — — AN[1] ETC[5] SIUL — — — ADC_0 eTimer_0 Input only — — 22 31 PCR[25] ALT0 ALT1 ALT2 ALT3 — GPIO[25] — — — AN[11] SIUL — — — ADC_0 Input only — — 24 35 PCR[26] ALT0 ALT1 ALT2 ALT3 — GPIO[26] — — — AN[12] SIUL — — — ADC_0 Input only — — 25 36 Peripheral(3) Doc ID 16100 Rev 7 SRC = 0 SRC = 1 64-pin 100-pin SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descripTable 7. Port pin B[11] B[12] B[13] B[14] B[15] Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[27] ALT0 ALT1 ALT2 ALT3 — GPIO[27] — — — AN[13] SIUL — — — ADC_0 Input only — — 26 37 PCR[28] ALT0 ALT1 ALT2 ALT3 — GPIO[28] — — — AN[14] SIUL — — — ADC_0 Input only — — 27 38 PCR[29] ALT0 ALT1 ALT2 ALT3 — — — SIUL GPIO[29] — — — — — — Input only ADC_0 AN[6] emu. AN[0] emu. ADC_1(6) RXD LIN_1 — — 30 42 PCR[30] ALT0 ALT1 ALT2 ALT3 — — — — SIUL GPIO[30] — — — — — — Input only ADC_0 AN[7] emu. AN[1] emu. ADC_1(6) ETC[4] eTimer_0 EIRQ[19] SIUL — — — 44 PCR[31] ALT0 ALT1 ALT2 ALT3 — — — SIUL GPIO[31] — — — — — — Input only ADC_0 AN[8] emu. AN[2] emu. ADC_1(6) EIRQ[20] SIUL — — — 43 — — — 45 Peripheral(3) SRC = 0 SRC = 1 64-pin 100-pin Port C (16-bit) C[0] PCR[32] ALT0 ALT1 ALT2 ALT3 — — SIUL GPIO[32] — — — — Input only — — ADC_0 AN[9] emu. AN[3] emu. ADC_1(6) Doc ID 16100 Rev 7 39/103 Package pinouts and signal descriptions Table 7. Port pin C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] 40/103 SPC560P34L1, SPC560P34L3, SPC560P40L1, Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[33] ALT0 ALT1 ALT2 ALT3 — GPIO[33] — — — AN[2] SIUL — — — ADC_0 Input only — — 19 28 PCR[34] ALT0 ALT1 ALT2 ALT3 — GPIO[34] — — — AN[3] SIUL — — — ADC_0 Input only — — 21 30 PCR[35] ALT0 ALT1 ALT2 ALT3 — GPIO[35] CS1 — TXD EIRQ[21] SIUL DSPI_0 — LIN_1 SIUL I/O O — O I Slow Medium — 10 PCR[36] ALT0 ALT1 ALT2 ALT3 — GPIO[36] CS0 X[1] DEBUG[4] EIRQ[22] SIUL DSPI_0 FlexPWM_0 SSCM SIUL I/O I/O O — I Slow Medium — 5 PCR[37] ALT0 ALT1 ALT2 ALT3 — GPIO[37] SCK — DEBUG[5] EIRQ[23] SIUL DSPI_0 — SSCM SIUL I/O I/O — — I Slow Medium — 7 PCR[38] ALT0 ALT1 ALT2 ALT3 — GPIO[38] SOUT B[1] DEBUG[6] EIRQ[24] SIUL DSPI_0 FlexPWM_0 SSCM SIUL I/O O O — I Slow Medium — 98 PCR[39] ALT0 ALT1 ALT2 ALT3 — GPIO[39] — A[1] DEBUG[7] SIN SIUL — FlexPWM_0 SSCM DSPI_0 I/O — O — I Slow Medium — 9 PCR[40] ALT0 ALT1 ALT2 ALT3 GPIO[40] CS1 — CS6 SIUL DSPI_1 — DSPI_0 I/O O — O Slow Medium 57 91 Peripheral(3) Doc ID 16100 Rev 7 SRC = 0 SRC = 1 64-pin 100-pin SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descripTable 7. Port pin Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[41] ALT0 ALT1 ALT2 ALT3 GPIO[41] CS3 — X[3] SIUL DSPI_2 — FlexPWM_0 I/O O — O Slow Medium — 84 C[10] PCR[42] ALT0 ALT1 ALT2 ALT3 — GPIO[42] CS2 — A[3] FAULT[1] SIUL DSPI_2 — FlexPWM_0 FlexPWM_0 I/O O — O I Slow Medium — 78 C[11] PCR[43] ALT0 ALT1 ALT2 ALT3 GPIO[43] ETC[4] CS2 — SIUL eTimer_0 DSPI_2 — I/O I/O O — Slow Medium 33 55 C[12] PCR[44] ALT0 ALT1 ALT2 ALT3 GPIO[44] ETC[5] CS3 — SIUL eTimer_0 DSPI_2 — I/O I/O O — Slow Medium 34 56 C[13] PCR[45] ALT0 ALT1 ALT2 ALT3 — — GPIO[45] — — — EXT_IN EXT_SYNC SIUL — — — CTU_0 FlexPWM_0 I/O — — — I I Slow Medium — 71 C[14] PCR[46] ALT0 ALT1 ALT2 ALT3 GPIO[46] — EXT_TGR — SIUL — CTU_0 — I/O — O — Slow Medium — 72 C[15] PCR[47] ALT0 ALT1 ALT2 ALT3 — — GPIO[47] — — A[1] EXT_IN EXT_SYNC SIUL — — FlexPWM_0 CTU_0 FlexPWM_0 I/O — — O I I Slow Medium — 85 I/O — — O Slow Medium — 86 C[9] Peripheral(3) SRC = 0 SRC = 1 64-pin 100-pin Port D (16-bit) D[0] PCR[48] ALT0 ALT1 ALT2 ALT3 GPIO[48] — — B[1] SIUL — — FlexPWM_0 Doc ID 16100 Rev 7 41/103 Package pinouts and signal descriptions Table 7. Port pin SPC560P34L1, SPC560P34L3, SPC560P40L1, Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[49] ALT0 ALT1 ALT2 ALT3 GPIO[49] — — EXT_TRG SIUL — — CTU_0 I/O — — O Slow Medium — 3 PCR[50] ALT0 ALT1 ALT2 ALT3 GPIO[50] — — X[3] SIUL — — FlexPWM_0 I/O — — O Slow Medium — 97 PCR[51] ALT0 ALT1 ALT2 ALT3 GPIO[51] — — A[3] SIUL — — FlexPWM_0 I/O — — O Slow Medium — 89 PCR[52] ALT0 ALT1 ALT2 ALT3 GPIO[52] — — B[3] SIUL — — FlexPWM_0 I/O — — O Slow Medium — 90 PCR[53] ALT0 ALT1 ALT2 ALT3 GPIO[53] CS3 F[0] — SIUL DSPI_0 FCU_0 — I/O O O — Slow Medium — 22 PCR[54] ALT0 ALT1 ALT2 ALT3 — GPIO[54] CS2 — — FAULT[1] SIUL DSPI_0 — — FlexPWM_0 I/O O — — I Slow Medium — 23 PCR[55] ALT0 ALT1 ALT2 ALT3 GPIO[55] CS3 F[1] CS4 SIUL DSPI_1 FCU_0 DSPI_0 I/O O O O Slow Medium 17 26 PCR[56] ALT0 ALT1 ALT2 ALT3 GPIO[56] CS2 — CS5 SIUL DSPI_1 — DSPI_0 I/O O — O Slow Medium 14 21 PCR[57] ALT0 ALT1 ALT2 ALT3 GPIO[57] X[0] TXD — SIUL FlexPWM_0 LIN_1 — I/O O O — Slow Medium 8 15 D[10] PCR[58] ALT0 ALT1 ALT2 ALT3 GPIO[58] A[0] — — SIUL FlexPWM_0 — — I/O O — — Slow Medium — 53 D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8] D[9] 42/103 Peripheral(3) Doc ID 16100 Rev 7 SRC = 0 SRC = 1 64-pin 100-pin SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Package pinouts and signal descripTable 7. Port pin Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[59] ALT0 ALT1 ALT2 ALT3 GPIO[59] B[0] — — SIUL FlexPWM_0 — — I/O O — — Slow Medium — 54 D[12] PCR[60] ALT0 ALT1 ALT2 ALT3 — GPIO[60] X[1] — — RXD SIUL FlexPWM_0 — — LIN_1 I/O O — — I Slow Medium 45 70 D[13] PCR[61] ALT0 ALT1 ALT2 ALT3 GPIO[61] A[1] — — SIUL FlexPWM_0 — — I/O O — — Slow Medium 44 67 D[14] PCR[62] ALT0 ALT1 ALT2 ALT3 GPIO[62] B[1] — — SIUL FlexPWM_0 — — I/O O — — Slow Medium 46 73 D[15] PCR[63] ALT0 ALT1 ALT2 ALT3 — — — — — 41 D[11] Peripheral(3) SIUL GPIO[63] — — — — Input only — — ADC_0 AN[10] emu. AN[4] emu. ADC_1(6) SRC = 0 SRC = 1 64-pin 100-pin Port E (16-bit) E[1] E[2] E[3] PCR[65] ALT0 ALT1 ALT2 ALT3 — GPIO[65] — — — AN[4] SIUL — — — ADC_0 Input only — — 18 27 PCR[66] ALT0 ALT1 ALT2 ALT3 — GPIO[66] — — — AN[5] SIUL — — — ADC_0 Input only — — 23 32 PCR[67] ALT0 ALT1 ALT2 ALT3 — GPIO[67] — — — AN[6] SIUL — — — ADC_0 Input only — — 30 42 Doc ID 16100 Rev 7 43/103 Package pinouts and signal descriptions Table 7. Port pin E[4] E[5] E[6] E[7] SPC560P34L1, SPC560P34L3, SPC560P40L1, Pin muxing (continued) I/O direction(4) Pad speed(5) Pin PCR register Alternate function(1),(2) Functions PCR[68] ALT0 ALT1 ALT2 ALT3 — GPIO[68] — — — AN[7] SIUL — — — ADC_0 Input only — — — 44 PCR[69] ALT0 ALT1 ALT2 ALT3 — GPIO[69] — — — AN[8] SIUL — — — ADC_0 Input only — — — 43 PCR[70] ALT0 ALT1 ALT2 ALT3 — GPIO[70] — — — AN[9] SIUL — — — ADC_0 Input only — — — 45 PCR[71] ALT0 ALT1 ALT2 ALT3 — GPIO[71] — — — AN[10] SIUL — — — ADC_0 Input only — — — 41 Peripheral(3) SRC = 0 SRC = 1 64-pin 100-pin 1. ALT0 is the primary (default) function for each port after reset. 2. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 → ALT0; PCR.PA = 01 → ALT1; PCR.PA = 10 → ALT2; PCR.PA = 11 → ALT3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 3. Module included on the MCU. 4. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module. 5. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register. 6. ADC0.AN emulates ADC1.AN. This feature is used to provide software compatibility between SPC560P34/SPC560P40 and SPC560P50. Refer to ADC chapter of reference manual for more details. 44/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3 Electrical characteristics 3.1 Introduction Electrical characteristics This section contains device electrical characteristics as well as temperature and power considerations. This microcontroller contains input protection against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This can be done by the internal pull-up or pull-down resistors, which are provided by the device for most general purpose pins. The following tables provide the device characteristics and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. Caution: All of the following parameter values can vary depending on the application and must be confirmed during silicon characterization or silicon reliability trial. 3.2 Parameter classification The electrical parameters are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate. Table 8. Parameter classifications Classification tag Note: Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. The classification is shown in the column labeled “C” in the parameter tables where appropriate. Doc ID 16100 Rev 7 45/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.3 Absolute maximum ratings Table 9. Absolute maximum ratings(1) Value Symbol Parameter Conditions Min Max(2) Unit S R Device ground — 0 0 V S R 3.3 V/5.0 V input/output supply voltage (supply). Code flash memory supply with VDD_HV_IO3 and data flash memory with VDD_HV_IO2 — –0.3 6.0 V VSS_HV_IOx S R 3.3 V/5.0 V input/output supply voltage (ground). Code flash memory ground with VSS_HV_IO3 and data flash memory with VSS_HV_IO2 — –0.1 0.1 V 6.0 VDD_HV_OSC — 3.3 V/5.0 V crystal oscillator amplifier Relative to supply voltage (supply) VDD_HV_IOx –0.3 S R –0.3 VDD_HV_IOx + 0.3 VSS_HV_OSC S R 3.3 V/5.0 V crystal oscillator amplifier supply voltage (ground) –0.1 0.1 –0.3 VDD_HV_REG + 0.3 VSS VDD_HV_IOx(3) VDD_HV_ADC0 S R 3.3 V/5.0 V ADC_0 supply and highreference voltage — VDD_HV_REG < 2.7 V V V V VDD_HV_REG > 2.7 V –0.3 6.0 — –0.1 0.1 — –0.3 6.0 –0.3 VDD_HV_IOx + 0.3 VSS_HV_ADC0 S R 3.3 V/5.0 V ADC_0 ground and lowreference voltage VDD_HV_REG S R 3.3 V/5.0 V voltage-regulator supply voltage TVDD S R Slope characteristics on all VDD during power up(4) with respect to ground (VSS) — 3.0(5) 500 x 103 (0.5 [V/µs]) V/s VDD_LV_CORx C C 1.2 V supply pins for core logic (supply) — –0.1 1.5 V VSS_LV_CORx S R 1.2 V supply pins for core logic (ground) — –0.1 0.1 V — –0.3 6.0 VIN S R Voltage on any pin with respect to ground (VSS_HV_IOx) VDD_HV_IOx + 0.3 V –0.3 S R Input current on any pin during overload condition –10 10 mA IINJPAD 46/103 Relative to VDD_HV_IOx Relative to VDD_HV_IOx — Doc ID 16100 Rev 7 V V (6) SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 9. Electrical characteristics Absolute maximum ratings(1) (continued) Value Symbol Parameter Conditions Min Max(2) Unit IINJSUM S R Absolute sum of all input currents during overload condition — –50 50 mA TSTG S R Storage temperature — –55 150 °C TJ S R Junction temperature under bias — −40 150 °C 1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Absolute maximum voltages are currently maximum burn-in voltages. 3. The difference between each couple of voltage supplies must be less than 300 mV, ⏐VDD_HV_IOy – VDD_HV_IOx⏐ < 300 mV. 4. Guaranteed by device validation. 5. Minimum value of TVDD must be guaranteed until VDD_HV_REG reaches 2.6 V (maximum value of VPORH) 6. Only when VDD_HV_IOx < 5.2 V Figure 6 shows the constraints of the different power supplies. VDD_HV_xxx 6.0 V VDD_HV_IOx –0.3 V –0.3 V Figure 6. 6.0 V Power supplies constraints (–0.3 V ≤ VDD_HV_IOx ≤ 6.0 V) The SPC560P34/SPC560P40 supply architecture allows the ADC supply to be managed independently from the standard VDD_HV supply. Figure 7 shows the constraints of the ADC power supply. Doc ID 16100 Rev 7 47/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 VDD_HV_ADCx 6.0 V VDD_HV_REG –0.3 V Figure 7. 6.0 V 2.7 V –0.3 V Independent ADC supply (–0.3 V ≤ VDD_HV_REG ≤ 6.0 V) 3.4 Recommended operating conditions Table 10. Recommended operating conditions (5.0 V) Value Symbol VSS Parameter Conditions SR Device ground Unit Min Max(1) — 0 0 V VDD_HV_IOx(2) SR 5.0 V input/output supply voltage — 4.5 5.5 V VSS_HV_IOx SR Input/output ground voltage — 0 0 V — 4.5 5.5 VDD_HV_OSC 5.0 V crystal oscillator SR amplifier supply voltage VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 VSS_HV_OSC 5.0 V crystal oscillator SR amplifier reference voltage — 0 0 — 4.5 5.5 VDD_HV_REG 5.0 V voltage regulator SR supply voltage VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 48/103 Relative to VDD_HV_IOx Relative to VDD_HV_IOx Doc ID 16100 Rev 7 V V V SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 10. Electrical characteristics Recommended operating conditions (5.0 V) (continued) Value Symbol Parameter Max(1) 4.5 5.5 VDD_HV_REG – 0.1 — — 0 0 V CC Internal supply voltage — — — V Internal reference voltage — 0 0 V — — — V — 0 0 V fCPU = 60 MHz −40 125 °C fCPU = 64 MHz −40 105 °C SR VSS_HV_ADC0 SR ,(4) Unit Min VDD_HV_ADC0 VDD_LV_REGCOR(3) Conditions VSS_LV_REGCOR(3) SR — 5.0 V ADC_0 supply and Relative to high reference voltage VDD_HV_REG ADC_0 ground and low reference voltage VDD_LV_CORx(3),(4) CC Internal supply voltage VSS_LV_CORx(3) SR Internal reference voltage TA SR Ambient temperature under bias V 1. Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, ⏐VDD_HV_IOy – VDD_HV_IOx⏐ < 100 mV. 3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an onchip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 4. The low voltage supplies (VDD_LV_xxx) are not all independent. – VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. – VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Table 11. Recommended operating conditions (3.3 V) Value Symbol VSS Parameter Conditions SR Device ground Unit Min Max(1) — 0 0 V VDD_HV_IOx(2) SR 3.3 V input/output supply voltage — 3.0 3.6 V VSS_HV_IOx SR Input/output ground voltage — 0 0 V — 3.0 3.6 VDD_HV_OSC 3.3 V crystal oscillator SR amplifier supply voltage VSS_HV_OSC 3.3 V crystal oscillator SR amplifier reference voltage Relative to VDD_HV_IOx — Doc ID 16100 Rev 7 V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 V 49/103 Electrical characteristics Table 11. SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Recommended operating conditions (3.3 V) (continued) Value Symbol Parameter Conditions — VDD_HV_REG SR VDD_HV_ADC0 SR VSS_HV_ADC0 SR VDD_LV_REGCOR(3) ,(4) 3.3 V voltage regulator supply voltage Relative to VDD_HV_IOx Max(1) 3.0 3.6 Unit V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 3.0 5.5 VDD_HV_REG − 0.1 5.5 — 0 0 V CC Internal supply voltage — — — V Internal reference voltage — 0 0 V — — — V — 0 0 V fCPU = 60 MHz −40 125 °C fCPU = 64 MHz −40 105 °C VSS_LV_REGCOR(3) SR — 3.3 V ADC_0 supply and Relative to high reference voltage VDD_HV_REG Min ADC_0 ground and low reference voltage VDD_LV_CORx(3),(4) CC Internal supply voltage VSS_LV_CORx(3) SR Internal reference voltage TA SR Ambient temperature under bias V 1. Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, ⏐VDD_HV_IOy – VDD_HV_IOx⏐ < 100 mV. 3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an onchip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 4. The low voltage supplies (VDD_LV_xxx) are not all independent. – VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. – VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Figure 8 shows the constraints of the different power supplies. 50/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 8. Electrical characteristics Power supplies constraints (3.0 V ≤ VDD_HV_IOx ≤ 5.5 V) VDD_HV_xxx 5.5 V 3.3 V 3.0 V VDD_HV_IOx 3.0 V 5.5 V 3.3 V Note: IO AC and DC characteristics are guaranteed only in the range of 3.0–3.6 V when PAD3V5V is low, and in the range of 4.5–5.5 V when PAD3V5V is high. The SPC560P34/SPC560P40 supply architecture allows the ADC supply to be managed independently from the standard VDD_HV supply. Figure 9 shows the constraints of the ADC power supply. Figure 9. Independent ADC supply (3.0 V ≤ VDD_HV_REG ≤ 5.5 V) VDD_HV_ADCx 5.5 V 3.0 V VDD_HV_REG 3.0 V Doc ID 16100 Rev 7 5.5 V 51/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.5 Thermal characteristics 3.5.1 Package thermal characteristics Table 12. LQFP thermal characteristics Typical value Symbol RθJA RθJB Parameter Thermal resistance junction-to-ambient, natural Single layer board—1s convection(1) Four layer board—2s2p ΨJC 64-pin 63 57 °C/W 51 41 °C/W Four layer board—2s2p 33 22 °C/W (top)(3) Single layer board—1s 15 13 °C/W Operating conditions 33 22 °C/W Operating conditions 1 1 °C/W Junction-to-board, natural convection(4) Junction-to-case, natural Unit 100-pin (2) Thermal resistance junction-to-board RθJCtop Thermal resistance junction-to-case ΨJB Conditions convection(5) 1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package. 2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB or Theta-JB. 3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC. 3.5.2 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: Equation 1: TJ = TA + (RθJA * PD) where: TA = ambient temperature for the package (°C) RθJA = junction-to-ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance: 52/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics Equation 2: RθJA = RθJC + RθCA where: RθJA = junction-to-ambient thermal resistance (°C/W) RθJC = junction-to-case thermal resistance (°C/W) RθCA = case-to-ambient thermal resistance (°C/W) RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, RθCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: Equation 3: TJ = TT + (ΨJT x PD) where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References: ● Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134U.S.A. (408) 943-6900 ● MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at (800) 854-7179 or (303) 397-7956. ● JEDEC specifications are available on the WEB at http://www.jedec.org. ● C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47–54. ● G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic Packaging and Production, pp. 53–58, March 1998. ● B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212–220. Doc ID 16100 Rev 7 53/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.6 Electromagnetic interference (EMI) characteristics Table 13. EMI testing specifications Symbol Parameter Conditions VDD = 5.0 V; TA = 25 °C VEME Radiated emissions Frequency Level (Typ) 150 kHz–150 MHz 11 150–1000 MHz 13 dBµ V M — 8 12 dBµ V N — 150 kHz–150 MHz 9 150–1000 MHz 12 dBµ V M — 7 12 dBµ V N — Clocks fOSC = 8 MHz fCPU = 64 MHz No PLL frequency modulation IEC level Other device configuration, f = 8 MHz 150 kHz–150 MHz test conditions and EM testing OSC f = 64 MHz CPU per standard IEC61967-2 150–1000 MHz ±4% PLL frequency IEC level modulation VDD = 3.3 V; TA = 25 °C fOSC = 8 MHz fCPU = 64 MHz No PLL frequency modulation IEC level Other device configuration, f = 8 MHz 150 kHz–150 MHz test conditions and EM testing OSC f = 64 MHz CPU per standard IEC61967-2 150–1000 MHz ±4% PLL frequency IEC level modulation 3.7 Electrostatic discharge (ESD) characteristics Table 14. ESD ratings(1),(2) Symbol Parameter Unit Conditions Value Unit 2000 V VESD(HBM) S Electrostatic discharge (Human Body Model) R — VESD(CDM) S Electrostatic discharge (Charged Device Model) R — 750 (corners) V 500 (other) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3.8 Power management electrical characteristics 3.8.1 Voltage regulator electrical characteristics The internal voltage regulator requires an external NPN ballast, approved ballast list availbale in Table 15, to be connected as shown in Figure 10. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the VDD_HV_REG, BCTRL and VDD_LV_CORx pins to less than LReg. (refer to Table 16). 54/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Note: Electrical characteristics The voltage regulator output cannot be used to drive external circuits. Output pins are to be used only for decoupling capacitance. VDD_LV_COR must be generated using internal regulator and external NPN transistor. It is not possible to provide VDD_LV_COR through external regulator. For the SPC560P34/SPC560P40 microcontroller, capacitor(s), with total values not below CDEC1, should be placed between VDD_LV_CORx/VSS_LV_CORx close to external ballast transistor emitter. 4 capacitors, with total values not below CDEC2, should be placed close to microcontroller pins between each VDD_LV_CORx/VSS_LV_CORx supply pairs and the VDD_LV_REGCOR/VSS_LV_REGCOR pair . Additionally, capacitor(s) with total values not below CDEC3, should be placed between the VDD_HV_REG/VSS_HV_REG pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature. All reported information are valid for voltage and temperature ranges described in recommended operating condition, Table 10 and Table 11. Figure 10. Voltage regulator configuration VDD_HV_REG SPC560P34/SPC560P CDEC3 BJT(1) BCTRL VDD_LV_COR CDEC2 CDEC1 1. Refer to Table 15. Table 15. Approved NPN ballast components Part Manufacturer Approved derivatives(1) ON Semi BCP68 NXP BCP68-25 Infineon BCP68-25 BCX68 Infineon BCX68-10; BCX68-16; BCX-25 BC868 NXP BC868 BCP68 Doc ID 16100 Rev 7 55/103 Electrical characteristics Table 15. SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Approved NPN ballast components Part Approved derivatives(1) Manufacturer Infineon BC817-16; BC817-25; BC817SU NXP BC817-16; BC817-25 ST BCP56-16 Infineon BCP56-10; BCP56-16 ON Semi BCP56-10 NXP BCP56-10; BCP56-16 BC817 BCP56 1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification Table 16. Voltage regulator electrical characteristics Value Symbol C Parameter Conditions Unit Min VDD_LV_REGCOR CDEC1 C C S R Output voltage under P maximum load run supply current configuration — External decoupling/stability ceramic capacitor Post-trimming 1.15 — 1.32 V BJT from Table 15. Three capacitors (i.e. X7R or X8R capacitors) with nominal value of 10 µF 19.5 30 — µF BJT BC817, one capacitance of 22 µF 14.3 22 — µF — — 45 mΩ Four capacitances (i.e. X7R or X8R capacitors) with nominal value of 440 nF 120 0 176 0 — nF Three capacitors (i.e. X7R or X8R capacitors) with nominal value of 10 µF; CDEC3 has to be equal or greater than CDEC1 19.5 30 — µF — — — 5 nH RREG S R — Absolute maximum value Resulting ESR of either one or between 100 kHz and all three CDEC1 10 MHz CDEC2 S R — External decoupling/stability ceramic capacitor CDEC3 S R External decoupling/stability — ceramic capacitor on VDD_HV_REG LReg S R — 56/103 Typ Max Resulting ESL of VDD_HV_REG, BCTRL and VDD_LV_CORx pins Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.8.2 Electrical characteristics Voltage monitor electrical characteristics The device implements a power on reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the VDD and the VDD_LV voltage while device is supplied: Table 17. ● POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state ● LVDHV3 monitors VDD to ensure device reset below minimum functional supply ● LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range ● LVDLVCOR monitors low voltage digital power domain Low voltage monitor electrical characteristics Symbol C Parameter Value Conditions(1) Unit Min Max — 1.5 2.7 V TA = 25 °C 1.0 — V VPORH T Power-on reset threshold VPORUP P Supply for functional POR module VREGLVDMOK_H P Regulator low voltage detector high threshold — — 2.95 V VREGLVDMOK_L P Regulator low voltage detector low threshold — 2.6 — V VFLLVDMOK_H P Flash low voltage detector high threshold — — 2.95 V VFLLVDMOK_L P Flash low voltage detector low threshold — 2.6 — V VIOLVDMOK_H P I/O low voltage detector high threshold — — 2.95 V VIOLVDMOK_L P I/O low voltage detector low threshold — 2.6 — V VIOLVDM5OK_H P I/O 5 V low voltage detector high threshold — — 4.4 V VIOLVDM5OK_L P I/O 5 V low voltage detector low threshold — 3.8 — V VMLVDDOK_H P Digital supply low voltage detector high — — 1.145 V VMLVDDOK_L P Digital supply low voltage detector low — 1.08 — V 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 °C to TA MAX, unless otherwise specified 3.9 Power up/down sequencing To prevent an overstress event or a malfunction within and outside the device, the SPC560P34/SPC560P40 implements the following sequence to ensure each module is started only when all conditions for switching it ON are available: ● A POWER_ON module working on voltage regulator supply controls the correct startup of the regulator. This is a key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5 V. Associated POWER_ON (or POR) signal is active low. ● Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active. ● A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, flash Doc ID 16100 Rev 7 57/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 memory and 16 MHz RC oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated modules are set into a safe state. Figure 11. Power-up typical sequence VDD_HV_REG VPORH VLVDHV3H 3.3V VPOR_UP 0V 3.3V POWER_ON 0V 3.3V LVDM (HV) 0V VDD_LV_REGCOR VMLVDOK_H 1.2V 0V 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM P0 P1 1.2V 0V Figure 12. Power-down typical sequence VDD_HV_REG VLVDHV3L VPORH 3.3V 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V Internal Reset Generation Module FSM IDLE 58/103 P0 Doc ID 16100 Rev 7 1.2V 0V SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics Figure 13. Brown-out typical sequence VLVDHV3L VDD_HV_REG VLVDHV3H 3.3V 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM IDLE P0 3.10 DC electrical characteristics 3.10.1 NVUSRO register P1 1.2V 0V Portions of the device configuration, such as high voltage supply and watchdog enable/disable after reset are controlled via bit values in the non-volatile user options (NVUSRO) register. For a detailed description of the NVUSRO register, please refer to the device reference manual. NVUSRO[PAD3V5V] field description The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 18 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 18. PAD3V5V field description Value(1) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. Default manufacturing value before flash initialization is ‘1’ (3.3 V). Doc ID 16100 Rev 7 59/103 Electrical characteristics 3.10.2 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 DC electrical characteristics (5 V) Table 19 gives the DC electrical characteristics at 5 V (4.5 V < VDD_HV_IOx < 5.5 V, NVUSRO[PAD3V5V] = 0). Table 19. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) Value Symbol C Parameter Conditions Max — −0.4(1) — V P — — 0.35 VDD_HV_IOx V P — 0.65 VDD_HV_IOx — V — — VDD_HV_IOx + 0.4 (1) V — 0.1 VDD_HV_IOx — V D VIL VIH Unit Min Low level input voltage High level input voltage D VHYS T Schmitt trigger hysteresis VOL_S P Slow, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_S P Slow, high level output voltage IOH = −3 mA 0.8 VDD_HV_IOx — V VOL_M P Medium, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_M P Medium, high level output voltage IOH = −3 mA 0.8 VDD_HV_IOx — V VOL_F P Fast, low level output voltage IOL = 14 mA — 0.1 VDD_HV_IOx V VOH_F P Fast, high level output voltage IOH = −14 mA 0.8 VDD_HV_IOx — V P Equivalent pull-up current VIN = VIL −130 — IPU VIN = VIH — −10 — P VIN = VIL 10 IPD VIN = VIH — 130 IIL P Input leakage current (all bidirectional ports) TA = −40 to 125 °C −1 1 µA IIL P Input leakage current (all ADC input-only ports) TA = −40 to 125 °C −0.5 0.5 µA CIN D Input capacitance — — 10 pF Equivalent pull-down current µA 1. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. 60/103 Doc ID 16100 Rev 7 µA SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 20. Electrical characteristics Supply current (5.0 V, NVUSRO[PAD3V5V] = 0) Value(1) Symbol C Parameter T Conditions Max 40 MHz 44 55 64 MHz 52 65 40 MHz 38 46 64 MHz 45 54 HALT mode(4) — 1.5 10 mode(5) — 1 10 VDD_HV_FL at 5.0 V — 8 10 Flash during erase at 5.0 V V operation on 1 flash module DD_HV_FL — 15 19 RUN—Maximum mode(2) P P VDD_LV_CORx externally forced at 1.3 V RUN—Typical mode(3) T Supply current IDD_LV_CORx Unit Typ STOP Flash during read IDD_FLASH T IDD_ADC T ADC VDD_HV_ADC0 at 5.0 V fADC = 16 MHz ADC_0 3 4 IDD_OSC T Oscillator VDD_HV_OSC at 5.0 V 8 MHz 2.6 3.2 IDD_HV_REG D Internal regulator module current consumption VDD_HV_REG at 5.5 V — 10 mA 1. All values to be confirmed after characterization/data collection. 2. Maximum mode: FlexPWM, ADC, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0 enabled, 125 °C ambient. I/O supply current excluded. 3. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0, 105 °C ambient. I/O supply current excluded. 4. Halt mode configurations: Code fetched from SRAM, code flash memory and data flash memory in low power mode, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled. 5. STOP “P” mode Device Under Test (DUT) configuration: Code fetched from SRAM, code flash memory and data flash memory off, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled. Doc ID 16100 Rev 7 61/103 Electrical characteristics 3.10.3 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 DC electrical characteristics (3.3 V) Table 21 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IOx < 3.6 V, NVUSRO[PAD3V5V] = 1); see Figure 14. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)(1) Table 21. Value Symbol C Parameter Conditions Unit Min Max — −0.4(2) — V — — 0.35 VDD_HV_IOx V — 0.65 VDD_HV_IOx — V D — — VDD_HV_IOx + 0.4(2) V VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 1.5 mA — 0.5 V VOH_S P Slow, high level output voltage IOH = −1.5 mA VDD_HV_IOx − 0.8 — V VOL_M P Medium, low level output voltage IOL = 2 mA — 0.5 V VOH_M P Medium, high level output voltage IOH = −2 mA VDD_HV_IOx − 0.8 — V VOL_F P Fast, low level output voltage IOL = 11 mA — 0.5 V VOH_F P Fast, high level output voltage IOH = −11 mA VDD_HV_IOx − 0.8 — V VIN = VIL −130 — VIN = VIH — −10 VIN = VIL 10 — VIN = VIH — 130 D VIL Low level input voltage P P VIH High level input voltage IPU P Equivalent pull-up current IPD P Equivalent pull-down current IIL P Input leakage current (all bidirectional ports) TA = −40 to 125 °C — 1 µA IIL P Input leakage current (all ADC input-only ports) TA = −40 to 125 °C — 0.5 µA CIN D Input capacitance — — 10 pF µA 1. These specifications are design targets and subject to change per device characterization. 2. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. 62/103 Doc ID 16100 Rev 7 µA SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 22. Electrical characteristics Supply current (3.3 V, NVUSRO[PAD3V5V] = 1) Value(1) Symbol C Parameter Conditions RUN—Maximum mode(2) Unit Typ Max 40 MHz 44 55 64 MHz 52 65 40 MHz 38 46 T VDD_LV_CORx externally forced at 1.3 V RUN—Typical mode(3) P Supply current IDD_LV_CORx 64 MHz 45 54 HALT mode(4) — 1.5 10 STOP mode(5) — 1 10 ADC VDD_HV_ADC0 at 3.3 V fADC = 16 MHz ADC_0 3 4 T Oscillator VDD_HV_OSC at 3.3 V 8 MHz 2.6 3.2 D Internal regulator module current consumption VDD_HV_REG at 5.5 V — 10 IDD_ADC T IDD_OSC IDD_HV_REG mA 1. All values to be confirmed after characterization/data collection. 2. Maximum mode: FlexPWM, ADC, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0 enabled, 125 °C ambient. I/O supply current excluded. 3. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0, 105 °C ambient. I/O supply current excluded. 4. Halt mode configurations: Code fetched from SRAM, code flash memory and data flash memory in low power mode, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled. 5. STOP “P” mode Device Under Test (DUT) configuration: Code fetched from SRAM, code flash memory and data flash memory off, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled. 3.10.4 Input DC electrical characteristics definition Figure 14 shows the DC electrical characteristics behavior as function of time. Figure 14. Input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Doc ID 16100 Rev 7 63/103 Electrical characteristics 3.10.5 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 23. Table 23. I/O supply segment Supply segment Package 1 2 3 4 5 LQFP100 pin15–pin26 pin27–pin46 pin51–pin61 pin64–pin86 pin89–pin10 LQFP64 pin8–pin17 pin18–pin30 pin33–pin38 pin41–pin54 pin57–pin5 Table 24. Symbol I/O consumption C Value Conditions(1) Parameter Unit Min Typ Max ISWTSLW(2) ISWTMED(2) ISWTFST(2) Dynamic I/O current C D for SLOW C configuration Dynamic I/O current C D for MEDIUM C configuration Dynamic I/O current C D for FAST C configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 25 pF CL = 25 pF CL = 25 pF IRMSSLW — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 110 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 50 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 — — 6.6 — — 13.4 — — 18.3 — — 5 — — 8.5 — — 11 mA mA VDD = 5.0 V ± 10%, PAD3V5V = 0 mA VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 IRMSMED 64/103 CL = 25 pF, 40 MHz Root medium square CL = 100 pF, 13 MHz C I/O current for D C MEDIUM CL = 25 pF, 13 MHz configuration VDD = 3.3 V ± 10%, CL = 25 pF, 40 MHz PAD3V5V = 1 CL = 100 pF, 13 MHz Doc ID 16100 Rev 7 20 mA Root medium square C = 100 pF, 2 MHz L C D I/O current for SLOW C CL = 25 pF, 2 MHz configuration CL = 25 pF, 4 MHz — VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz — mA SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 24. Symbol Electrical characteristics I/O consumption (continued) C Value Conditions(1) Parameter Unit Min Typ Max CL = 25 pF, 40 MHz — — 22 — — 33 — — 56 — — 14 — — 20 CL = 100 pF, 40 MHz — — 35 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 CL = 25 pF, 64 MHz IRMSFST Root medium square C = 100 pF, 40 MHz L C D I/O current for FAST C C L = 25 pF, 40 MHz configuration CL = 25 pF, 64 MHz IAVGSEG VDD = 5.0 V ± 10%, PAD3V5V = 0 Sum of all the static S D I/O current within a R supply segment mA VDD = 3.3 V ± 10%, PAD3V5V = 1 mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified 2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. 3.11 Main oscillator electrical characteristics The SPC560P34/SPC560P40 provides an oscillator/resonator driver. Table 25. Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) Value Symbol fOSC C Parameter Conditions SR — Oscillator frequency Unit Min Max 4 40 MHz 6.5 25 mA/V gm — P Transconductance VOSC — T Oscillation amplitude on XTAL pin 1 — V tOSCSU — T Start-up time(1),(2) 8 — ms T 4 MHz 5 30 T 8 MHz 5 26 12 MHz 5 23 T 16 MHz 5 19 T 20 MHz 5 16 T 40 MHz 5 8 T CL CC XTAL load capacitance(3) pf 1. The start-up time is dependent upon crystal characteristics, board leakage, etc. High ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of XTAL 3. This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for this oscillator, load capacitors should not exceed these limits. Doc ID 16100 Rev 7 65/103 Electrical characteristics Table 26. SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) Value Symbol C Parameter Conditions Unit Min Max SR — Oscillator frequency 4 40 MHz gm — P Transconductance 4 20 mA/V VOSC — T Oscillation amplitude on XTAL pin 1 — V — (1),(2) 8 — ms fOSC tOSCSU T Start-up time T 4 MHz 5 30 T 8 MHz 5 26 12 MHz 5 23 T 16 MHz 5 19 T 20 MHz 5 16 T 40 MHz 5 8 T CL CC XTAL load capacitance(3) pf 1. The start-up time is dependent upon crystal characteristics, board leakage, etc. High ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of XTAL 3. This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for this oscillator, load capacitors should not exceed these limits. Table 27. Input clock characteristics Value Symbol Parameter Unit Typ Max fOSC SR Oscillator frequency 4 — 40 MHz fCLK SR Frequency in bypass — — 64 MHz trCLK SR Rise/fall time in bypass — — 1 ns tDC SR Duty cycle 47.5 50 52.5 % 3.12 FMPLL electrical characteristics Table 28. FMPLL electrical characteristics Symbol Min C Value Conditions(1) Parameter Unit Min Max 4 40 MHz fref_crystal fref_ext D PLL reference frequency range(2) fPLLIN D Phase detector input frequency range (after pre-divider) — 4 16 MHz fFMPLLOUT D Clock frequency range in normal mode — 16 64 MHz 66/103 Crystal reference Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 28. Symbol Electrical characteristics FMPLL electrical characteristics (continued) C fFREE P Free-running frequency tCYC D System clock period fLORL D fLORH D fSCM D Max 20 150 MHz — 1/ fSYS ns Lower limit 1.6 3.7 Upper limit 24 56 20 150 MHz fSYS maximum −4 4 % fCLKOUT fPLLIN = 16 MHz (resonator), fPLLCLK at 64 MHz, 4000 cycles — 10 ns — MHz Self-clocked mode frequency(4),(5) Short-term jitter(10) Long-term jitter (average over 2 ms interval) Unit Min Measured using clock division—typically /16 Loss of reference frequency window(3) CLKOUT period jitter(6),(7),(8),(9) Value Conditions(1) Parameter — CJITTER T tlpll D PLL lock time(11), (12) — — 200 µs tdc D Duty cycle of reference — 40 60 % fLCK D Frequency LOCK range — −6 6 % fSYS fUL D Frequency un-LOCK range — −18 18 % fSYS fCS D fDS D fMOD D ±4.0 Center spread ±0.25 Down spread −0.5 −8.0 — 70 Modulation depth Modulation frequency(14) — (13) % fSYS kHz 1. VDD_LV_CORx = 1.2 V ±10%; VSS = 0 V; TA = –40 to 125 °C, unless otherwise specified 2. Considering operation with PLL not bypassed. 3. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode. 4. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. 5. fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 6. This value is determined by the crystal manufacturer and board design. 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDD_LV_COR0 and VSS_LV_COR0 and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 8. Proper PC board layout procedures must be followed to achieve specifications. 9. Values are obtained with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 10. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4. 11. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 12. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 13. This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz). 14. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz. Doc ID 16100 Rev 7 67/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.13 16 MHz RC oscillator electrical characteristics Table 29. 16 MHz RC oscillator electrical characteristics Value Symbol fRC ΔRCMVAR 3.14 C Parameter Conditions P RC oscillator frequency Unit Min Typ Max TA = 25 °C — 16 — MHz — −5 — 5 % Fast internal RC oscillator variation over P temperature and supply with respect to fRC at TA = 25 °C in high-frequency configuration Analog-to-digital converter (ADC) electrical characteristics The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter. Figure 15. ADC characteristics and error definitions Offset Error (EO) Gain Error (EG) 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 5 (1) Example of an actual transfer curve (5) (2) The ideal transfer curve 4 (3) Differential non-linearity error (DNL) (4) (4) Integral non-linearity error (INL) 3 (5) Center of a step of the actual transfer curve (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error (EO) 68/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.14.1 Electrical characteristics Input impedance and ADC accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS and CP2 being substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS+CP2 equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 / (fc × (CS+CP2)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS+CP2) and the sum of RS + RF, the external circuit must be designed to respect the Equation 4: Equation 4 VA RS + R F • --------------------- < 1--- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Doc ID 16100 Rev 7 69/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 16. Input equivalent circuit EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS VA RF Current Limiter Channel Selection Sampling RSW RAD RL CF CP1 CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW: Channel selection switch impedance RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1 and CP2) CS: Sampling capacitance A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch closed). Figure 17. Transient behavior during sampling phase Voltage Transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS 2048 • C S 72/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.14.2 ADC conversion characteristics Table 30. ADC conversion characteristics Symbol C Electrical characteristics Value Conditions(1) Parameter Unit Min Typ Max ADC clock frequency (depends on S ADC configuration) — R (The duty cycle depends on ADC clock(2) frequency) — 3(3) — 60 MHz fs S — Sampling frequency R — — — 1.53 MHz — D Sampling time(4) fADC = 20 MHz, INPSAMP = 3 125 — — ns ts fADC = 9 MHz, INPSAMP = 255 — — 28.2 µs tc — P Conversion time(5) fADC = 20 MHz(6), INPCMP = 1 0.65 0 — — µs ADC power-up delay (time needed S — for ADC to settle exiting from R software power down; PWDN bit = 0) — — — 1.5 µs fCK tADC_P U CS(7) — D ADC input sampling capacitance — — — 2.5 pF CP1 (7) — D ADC input pin capacitance 1 — — — 3 pF CP2 (7) — D ADC input pin capacitance 2 — — — 1 pF VDD_HV_ADC0 = 5 V ± 10% — — 0.6 kΩ VDD_HV_ADC0 = 3.3 V ± 10% — — 3 kΩ — — 2 kΩ −5 — 5 mA RSW(7) — D Internal resistance of analog source (7) — D Internal resistance of analog source RAD — IINJ — T Input current injection Current injection on one ADC input, different from the converted one. Remains within TUE specification INL C C P Integral non-linearity No overload −1.5 — 1.5 LSB DNL C C P Differential non-linearity No overload −1.0 — 1.0 LSB EO C C T Offset error — — ±1 — LSB EG C C T Gain error — — ±1 — LSB TUE C C P Total unadjusted error without current injection — −2.5 — 2.5 LSB TUE C C T Total unadjusted error with current injection — −3 — 3 LSB 1. VDD = 3.3 V to 3.6 V / 4.5 V to 5.5 V, TA = −40 °C to TA MAX, unless otherwise specified and analog input voltage from VSS_HV_ADC0 to VDD_HV_ADC0. 2. AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. 3. When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which the precision is lost. Doc ID 16100 Rev 7 73/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 4. During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within ts. After the end of the sampling time ts, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock ts depend on programming. 5. This parameter includes the sampling time ts. 6. 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC. 7. See Figure 16. 3.15 Flash memory electrical characteristics 3.15.1 Program/Erase characteristics Table 31. Program and erase specifications Value Symbol C Parameter Unit Min Typ(1) Initial Max(2) Max(3) — 30 70 500 µs — 22 50 500 µs — 0.73 0.83 17.5 s — 0.49 1.2 4.1 s 16 KB Block Pre-program and Erase Time for code flash memory — 300 500 5000 16 KB Block Pre-program and Erase Time for data flash memory — 700 800 5000 T32kpperase P 32 KB Block Pre-program and Erase Time — 400 600 5000 ms T128kpperase P 128 KB Block Pre-program and Erase Time — 800 1300 7500 ms 10 — — — ms Twprogram Tdwprogram P Word Program Time for data flash memory(4) P Double Word Program Time for code flash memory(4) P Bank Program (256 KB)(4)(5) TBKPRG P Bank Program (64 T16kpperase P tESRT KB)(4)(5) ms P Program and erase specifications(6) 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. 5. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see “Initial Max” column). 6. Time between erase suspend resume and next erase suspend request. 74/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 32. Electrical characteristics Flash memory module life Value Symbol C Parameter Conditions Unit Min Typ — P/E Number of program/erase cycles per C block for 16 KB blocks over the operating temperature range (TJ) — 100000 P/E Number of program/erase cycles per C block for 32 KB blocks over the operating temperature range (TJ) — 10000 100000 cycles P/E Number of program/erase cycles per C block for 128 KB blocks over the operating temperature range (TJ) — 1000 100000 cycles Blocks with 0–1000 P/E cycles 20 — years Blocks with 10000 P/E cycles 10 — years Blocks with 100000 P/E cycles 5 — years Minimum data retention at 85 °C Retention C average ambient temperature(1) cycles 1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. Table 33. Flash memory read access timing Symbol C Parameter Conditions(1) Max value 66 C Maximum working frequency for code flash memory at given number of wait states in worst conditions 2 wait states fmax 0 wait states 18 fmax C 8 wait states 66 Maximum working frequency for data flash memory at given number of wait states in worst conditions Unit MHz MHz 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified 3.15.2 Flash memory power supply DC characteristics Table 34 shows the power supply DC characteristics on external supply. Table 34. Symbol Flash memory power supply DC electrical characteristics C Value Conditions(1) Parameter IFLPW C Sum of the current consumption on VDD_HV_IOx D C and VDD_LV_CORx during low-power mode IFPWD C Sum of the current consumption on VDD_HV_IOx D C and VDD_LV_CORx during power-down mode Unit Min Typ Max Code flash memory — — 900 Code flash memory — — 150 Data flash memory — — 150 µA µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. Doc ID 16100 Rev 7 75/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 3.15.3 Start-up/Switch-off timings Table 35. Start-up time/Switch-off time Symbol C Value Conditions(1) Parameter Unit Min C T Delay for Flash module to exit reset mode C T TFLARSTEXIT Code flash memory — — 125 Data flash memory — — 125 — — 0.5 C Code flash D Delay for Flash module to exit low-power mode C memory TFLALPEXIT Typ Max µs C T Delay for Flash module to exit power-down C mode T TFLAPDEXIT C Delay for Flash module to enter low-power D C mode TFLALPENTRY Code flash memory — — 30 Data flash memory — — 30 Code flash memory — — 0.5 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 3.16 AC specifications 3.16.1 Pad AC specifications Table 36. Output pin transition times Symbol C Value Conditions(1) Parameter Unit Min Typ Max CL = 25 pF D ttr ttr 76/103 CC CC VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 50 — — 100 T CL = 50 pF D Output transition time output pin(2) D SLOW configuration CL = 100 pF — — 125 CL = 25 pF — — 40 T CL = 50 pF — — 50 D CL = 100 pF — — 75 D CL = 25 pF — — 10 T CL = 50 pF — — 20 D Output transition time output pin(2) D MEDIUM configuration CL = 100 pF — — 40 — — 12 T CL = 50 pF — — 25 D CL = 100 pF — — 40 CL = 25 pF Doc ID 16100 Rev 7 ns VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 ns VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 36. Symbol Electrical characteristics Output pin transition times (continued) C Value Conditions(1) Parameter Unit Min Typ Max CL = 25 pF CL = 50 pF ttr CC D Output transition time output pin(2) FAST configuration CL = 100 pF CL = 25 pF CL = 50 pF CL = 100 pF tSYM (3) CC T VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 — — 4 — — 6 — — 12 — — 4 — — 7 — — 12 — — 4 — — 5 ns VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 Symmetric transition time, same drive VDD = 5.0 V ± 10%, PAD3V5V = 0 strength between N and P transistor V = 3.3 V ± 10%, PAD3V5V = 1 DD ns 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 °C to TA MAX, unless otherwise specified. 2. CL includes device and package capacitances (CPKG < 5 pF). 3. Transition timing of both positive and negative slopes will differ maximum 50%. Figure 19. Pad output delay VDD_HV_IOx/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH VOL Pad Output 3.17 AC timing characteristics 3.17.1 RESET pin characteristics The SPC560P34/SPC560P40 implements a dedicated bidirectional RESET pin. Doc ID 16100 Rev 7 77/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 20. Start-up reset requirements VDD VDDMIN VRESET VIH VIL device reset forced by VRESET device start-up phase tPOR Figure 21. Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state WFRST WNFRST 78/103 Doc ID 16100 Rev 7 device under hardware reset SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 37. Symbol Electrical characteristics RESET electrical characteristics C Value(2) (1) Parameter Conditions Unit Min Typ Max VIH S Input high level CMOS P R (Schmitt Trigger) — 0.65VDD — VDD + 0.4 V VIL S Input low level CMOS P R (Schmitt Trigger) — −0.4 — 0.35VDD V C Input hysteresis CMOS C C (Schmitt Trigger) — 0.1VDD — — V Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(3) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CL = 25 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 VHYS VOL ttr C P Output low level C Output transition time C D output pin(4) MEDIUM C configuration V ns WFRST S RESET input filtered P R pulse — — — 40 ns WNFRST S RESET input not P R filtered pulse — 500 — — ns Monotonic VDD_HV supply ramp — — 1 ms VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 10 — 250 tPOR |IWPU| Maximum delay before internal reset is C D released after all C VDD_HV reach nominal supply C Weak pull-up current P C absolute value VDD = 5.0 V ± 10%, PAD3V5V = 1(5) µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified 2. All values need to be confirmed during device validation. 3. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device reference manual). Doc ID 16100 Rev 7 79/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 4. CL includes device and package capacitance (CPKG < 5 pF). 5. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 3.17.2 IEEE 1149.1 interface timing Table 38. JTAG pin AC electrical characteristics Value No . Symbol C Parameter Conditions Unit Min Max 1 tJCYC CC D TCK cycle time — 100 — ns 2 tJDC CC D TCK clock pulse width (measured at VDD_HV_IOx/2) — 40 60 ns 3 tTCKRISE CC D TCK rise and fall times (40%–70%) — — 3 ns 4 tTMSS, tTDIS CC D TMS, TDI data setup time — 5 — ns 5 tTMSH, tTDIH CC D TMS, TDI data hold time — 25 — ns 6 tTDOV CC D TCK low to TDO data valid — — 40 ns 7 tTDOI CC D TCK low to TDO data invalid — 0 — ns 8 tTDOHZ CC D TCK low to TDO high impedance — 40 — ns 9 tBSDV CC D TCK falling edge to output valid — — 50 ns 10 tBSDVZ CC D TCK falling edge to output valid out of high impedance — — 50 ns 11 tBSDHZ CC D TCK falling edge to output high impedance — — 50 ns 12 tBSDST CC D Boundary scan input valid to TCK rising edge — 50 — ns 13 tBSDHT CC D TCK rising edge to boundary scan input invalid — 50 — ns Figure 22. JTAG test clock input timing TCK 2 3 2 1 80/103 3 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics Figure 23. JTAG test access port timing TCK 4 5 TMS, TDI 6 8 7 TDO Doc ID 16100 Rev 7 81/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 24. JTAG boundary scan timing TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals 3.17.3 Nexus timing Table 39. Nexus debug port timing(1) Value No. 1 2 3 Symbol C Parameter Unit Min Typ Max 4(2) — — tCYC tTCYC CC D TCK cycle time tNTDIS CC D TDI data setup time 5 — — ns tNTMSS CC D TMS data setup time 5 — — ns tNTDIH CC D TDI data hold time 25 — — ns tNTMSH CC D TMS data hold time 25 — — ns 4 tTDOV CC D TCK low to TDO data valid 10 — 20 ns 5 tTDOI CC D TCK low to TDO data invalid — — — ns 1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. 2. Lower frequency is required to be fully compliant to standard. 82/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics Figure 25. Nexus output timing 1 MCKO 2 3 4 MDO MSEO EVTO Output Data Valid Figure 26. Nexus event trigger and test clock timing TCK EVTI EVTO 5 Doc ID 16100 Rev 7 83/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 27. Nexus TDI, TMS, TDO timing TCK 6 7 TMS, TDI 9 8 TDO 3.17.4 External interrupt timing (IRQ pin) Table 40. External interrupt timing(1) Value No. Symbol C Parameter Conditions Unit Min Max 1 tIPWL CC D IRQ pulse width low — 4 — tCYC 2 tIPWH CC D IRQ pulse width high — 4 — tCYC 3 tICYC CC D IRQ edge to edge time(2) — — tCYC 4+N (3) 1. IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V to 5.5 V, TA = TL to TH, and CL = 200 pF with SRC = 0b00 2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. 3. N = ISR time to clear the flag 84/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics Figure 28. External interrupt timing IRQ 1 2 3 3.17.5 DSPI timing Table 41. DSPI timing(1) Value No. 1 Symbol C Conditions Unit Min Max Master (MTFE = 0) 60 — Slave (MTFE = 0) 60 — ns tSCK CC 2 tCSC CC D CS to SCK delay — 16 — ns 3 tASC CC D After SCK delay — 26 — ns 4 tSDC CC D SCK duty cycle — 0.4 * tSCK 0.6 * tSCK ns 5 tA CC D Slave access time SS active to SOUT valid — 30 ns 6 tDIS CC D Slave SOUT disable time SS inactive to SOUT high impedance or invalid — 16 ns 7 tPCSC CC D PCSx to PCSS time — 13 — ns 8 tPASC CC D PCSS to PCSx time — 13 — ns Master (MTFE = 0) 35 — Slave 4 — Master (MTFE = 1, CPHA = 0) 35 — Master (MTFE = 1, CPHA = 1) 35 — Master (MTFE = 0) −5 — Slave 4 — Master (MTFE = 1, CPHA = 0) 11 — Master (MTFE = 1, CPHA = 1) −5 — 9 10 tSUI tHI CC CC D Parameter D D DSPI cycle time Data setup time for inputs ns Data hold time for inputs ns Doc ID 16100 Rev 7 85/103 Electrical characteristics Table 41. SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 DSPI timing(1) (continued) Value No. 11 12 Symbol tSUO tHO CC CC C D D Parameter Conditions Unit Min Max Master (MTFE = 0) — 12 Slave — 36 Data valid (after SCK edge) Master (MTFE = 1, CPHA = 0) — 12 Master (MTFE = 1, CPHA = 1) — 12 Master (MTFE = 0) −2 — Slave 6 — Master (MTFE = 1, CPHA = 0) 6 — Master (MTFE = 1, CPHA = 1) −2 — ns Data hold time for outputs 1. All timing are provided with 50 pF capacitance on output, 1 ns transition time on input signal Figure 29. DSPI classic SPI timing – Master, CPHA = 0 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT First Data Last Data 11 Data Note: Numbers shown reference Table 41. 86/103 ns Doc ID 16100 Rev 7 Last Data SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics Figure 30. DSPI classic SPI timing – Master, CPHA = 1 PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 Data First Data SIN Last Data 12 SOUT First Data 11 Data Last Data Note: Numbers shown reference Table 41. Figure 31. DSPI classic SPI timing – Slave, CPHA = 0 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 41. Doc ID 16100 Rev 7 87/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 32. DSPI classic SPI timing – Slave, CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Note: Numbers shown reference Table 41. Figure 33. DSPI modified transfer format timing – Master, CPHA = 0 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN First Data 10 12 SOUT First Data 11 Data Note: Numbers shown reference Table 41. 88/103 Last Data Data Doc ID 16100 Rev 7 Last Data SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Electrical characteristics Figure 34. DSPI modified transfer format timing – Master, CPHA = 1 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Note: Numbers shown reference Table 41. Figure 35. DSPI modified transfer format timing – Slave, CPHA = 0 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) SOUT First Data Data First Data 6 Last Data 10 9 SIN 12 11 5 Data Last Data Note: Numbers shown reference Table 41. Doc ID 16100 Rev 7 89/103 Electrical characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Note: Numbers shown reference Table 41. Figure 37. DSPI PCS Strobe (PCSS) timing 8 7 PCSS PCSx Note: Numbers shown reference Table 41. 90/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 4 Package characteristics 4.1 ECOPACK® Package characteristics In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Doc ID 16100 Rev 7 91/103 Package characteristics SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 4.2 Package mechanical data 4.2.1 LQFP100 mechanical outline drawing Figure 38. LQFP100 package mechanical drawing 0.25 mm 0.10 inch GAGE PLANE k D L D1 L1 D3 51 75 C 76 50 b E3 E1 E 100 26 Pin 1 1 identification 25 ccc C e A1 A2 A SEATING PLANE C 1L_ME 92/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 42. Package characteristics LQFP100 package mechanical data Dimensions Symbol inches(1) mm Min Typ Max Min Typ Max A — — 1.600 — — 0.0630 A1 0.050 — 0.150 0.0020 — 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 — 0.200 0.0035 — 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 — 12.000 — — 0.4724 — E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 — 12.000 — — 0.4724 — e — 0.500 — — 0.0197 — L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 — 1.000 — — 0.0394 — k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc(2) 0.08 0.0031 1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits. 2. Tolerance Doc ID 16100 Rev 7 93/103 Package characteristics 4.2.2 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 LQFP64 mechanical outline drawing Figure 39. LQFP64 package mechanical drawing D ccc C D1 A A2 D3 33 48 32 49 b L1 E3 E1 E L A1 K 64 17 Pin 1 identification Table 43. 16 1 c 5W_ME LQFP64 package mechanical data Dimensions Symbol inches(1) mm Min Typ Max Min Typ Max A — — 1.6 — — 0.063 A1 0.05 — 0.15 0.002 — 0.0059 A2 1.35 1.4 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 — 0.2 0.0035 — 0.0079 D 11.8 12 12.2 0.4646 0.4724 0.4803 D1 9.8 10 10.2 0.3858 0.3937 0.4016 D3 — 7.5 — — 0.2953 — E 11.8 12 12.2 0.4646 0.4724 0.4803 E1 9.8 10 10.2 0.3858 0.3937 0.4016 E3 — 7.5 — — 0.2953 — e — 0.5 — — 0.0197 — L 0.45 0.6 0.75 0.0177 0.0236 0.0295 L1 — 1 — — 0.0394 — 94/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 43. Package characteristics LQFP64 package mechanical data (continued) Dimensions Symbol k ccc(2) inches(1) mm Min Typ Max Min Typ Max 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° 0.08 0.0031 1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits. 2. Tolerance Doc ID 16100 Rev 7 95/103 Ordering information 5 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Ordering information Figure 40. Commercial product code structure Example code: Product identifier Core Family Memory Package Temperature Custom vers. Packing SPC56 0 P 40 L3 C EFA Y Y = Tray R = Tape and Reel X = Tape and Reel 90° A = 64 MHz, 5 V B = 64 MHz, 3.3 V C = 40 MHz, 5 V D = 40 MHz, 3.3 V F = Full-featured A = Airbag E = Data Flash 0 = No Data Flash B = –40 to 105 °C C = –40 to 125 °C L1 = LQFP64 L3 = LQFP100 34 = 192 KB 40 = 256 KB P = SPC560Px family 0 = e200z0 SPC56 = Power Architecture in 90 nm 96/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Appendix A Ordering information Abbreviations Table 44 lists abbreviations used in this document. Table 44. Abbreviations Abbreviation Meaning CMOS Complementary metal–oxide–semiconductor CPHA Clock phase CPOL Clock polarity CS Peripheral chip select DUT Device under test ECC Error code correction EVTO Event out GPIO General purpose input / output MC Modulus counter MCKO Message clock out MCU Microcontroller unit MDO Message data out MSEO Message start/end out MTFE Modified timing format enable NPN NVUSRO Negative-positive-negative Non-volatile user options register PTF Post trimming frequency PWM Pulse width modulation RISC Reduced instruction set computer SCK Serial communications clock SOUT Serial data out TBC To be confirmed TBD To be defined TCK Test clock input TDI Test data input TDO Test data output TMS Test mode select Doc ID 16100 Rev 7 97/103 Revision history SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Revision history Table 45. Document revision history Date Revision 01-Sep-2009 1 Initial release. 2 Editorial updates Updated the following items in the “SPC560P34/SPC560P40 device comparison” table: – The heading – The “SRAM” row – The “FlexCAN” row – The “CTU” row – The “FlexPWM” row – The “LINFlex” row – The “DSPI” row – The “Nexus” row Updated the “SPC560P34/SPC560P40 device configuration difference” table: – Editorial updates – Added the “CTU” row – Deleted the “temperature” row – Swapped the content of Airbag and Full Featured cells Added the “Wakeup unit” block in the SPC560P34/SPC560P40 block diagram Updated the “Absolute Maximum Ratings“ table Updated the “Recommended operating conditions (5.0 V)“ table Updated the “Recommended operating conditions (3.3 V)“ table Updated the “Thermal characteristics for 100-pin LQFP“ table: – ΨJT: changed the typical value Updated the “EMI testing specifications“ table: replaced all values in “Level (Max)“ column with TBD Updated the “Electrical characteristics“ section: – Added the “Introduction” section – Added the “Parameter classification“ section – Added the “NVUSRO register“ section – Added the “Power supplies constraints (–0.3 V ≤ VDD_HV_IOx ≤ 6.0 V)” figure – Added the “Independent ADC supply (–0.3 V ≤ VDD_HV_REG ≤ 6.0 V)“ figure – Added the “Power supplies constraints (3.0 V ≤ VDD_HV_IOx ≤ 5.5 V)“ figure – Added the “Independent ADC supply (3.0 V ≤ VDD_HV_REG ≤ 5.5 V)“ figure Updated the “Power management electrical characteristics” section Updated the “Power Up/Down sequencing” section Updated the “DC electrical characteristics“ section – Deleted the “NVUSRO register” section – Updated the “DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)“ section: – Deleted all rows concerning RESET – Deleted “IVPP“ row – Added the max value for CIN 21-May-2010 98/103 Changes Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 45. Date Revision history Document revision history (continued) Revision Changes – Updated the “DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 0)“ section: – Deleted all rows concerning RESET – Deleted “IVPP“ row 2 – Added the max value for CIN 21-May-2010 (continued) Added the “I/O pad current specification“ section Updated the Order codes table. Added “Appendix A” 23-Dec-2010 3 “Introduction” section: – Changed title (was “Overview“) – Updated contents “SPC560P34/SPC560P40 device comparison” table: – Added sentence above table – Removed “FlexRay” row – “FlexCAN” row: removed link to footnote 2 for SPC560P34 – Updated “Safety port” row for SPC560P34 – Updated “DSPI” row for SPC560P34 “SPC560P34/SPC560P40 block diagram”: added the following blocks: MC_CGM, MC_ME, MC_PCU, MC_RGM, CRC, and SSCM Added “SPC560P34/SPC560P40 series block summary” table “Pin muxing” section: removed information on “Symmetric pads” “Electrical characteristics” section: – Updated “Caution” note – Demoted “NVUSRO register” section to subsection of “DC electrical characteristics” section – “NVUSRO register” section: deleted “NVUSRO[WATCHDOG_EN] field description“ section Updated “EMI testing specifications” table “Low voltage monitor electrical characteristics” table: updated VMLVDDOK_H max value “DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)” table: removed VOL_SYM, and VOH_SYM rows “Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)” table: – IDD_LV_CORE, RUN—Maximum mode, 40/64 MHz: updated typ/max values – IDD_LV_CORE, RUN—Airbag mode, 40/64 MHz: updated typ/max values – IDD_LV_CORE, RUN—Maximum mode, “P” parameter classification: removed – IDD_FLASH: removed rows – IDD_ADC, Maximum mode: updated typ/max values – IDD_OSC: updated max value Updated “DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)” table “Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)” table: – IDD_LV_CORE, RUN—Maximum mode, 40/64 MHz: updated typ/max values – IDD_LV_CORE, RUN—Airbag mode, 40/64 MHz: updated typ/max values – IDD_FLASH: removed rows – IDD_ADC, Maximum mode: updated typ/max values – IDD_OSC: updated max value Added “I/O consumption” table Removed “I/O weight” table Doc ID 16100 Rev 7 99/103 Revision history Table 45. Date SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Document revision history (continued) Revision Changes Updated “Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)” table Updated “Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)” table “Input clock characteristics” table: updated fCLK max value “PLLMRFM electrical specifications (VDDPLL = 1.08 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH)” table: – Updated supply voltage range for VDDPLL in the table title – Updated fSCM max value – Updated CJITTER row – Updated fMOD max value Updated “16 MHz RC oscillator electrical characteristics” table Updated “ADC conversion characteristics” table “Program and erase specifications” table: – Twprogram: updated initial max and max values – TBKPRG, 64 KB: updated initial max and max values 3 23-Dec-2010 (continued) – added information about “erase time” for Data Flash “Flash module life” table: – P/E, 32 KB: added typ value – P/E, 128 KB: added typ value Replaced “Pad AC specifications (5.0 V, NVUSRO[PAD3V5V] = 0)” and “Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)” tables with “Output pin transition times” table “JTAG pin AC electrical characteristics” table: – tTDOV: updated max value – tTDOHZ: added min value and removed max value “Nexus debug port timing” table: removed the rows “tMCYC”, “tMDOV”, “tMSEOV”, and “tEVTOV” Updated “External interrupt timing (IRQ pin)” table Updated “FlexCAN timing” table Updated “DSPI timing” table Updated “Ordering information” section 100/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Table 45. Date 13-May-2011 Revision history Document revision history (continued) Revision 4 Changes Editorial and formatting changes throughout Cover page features list: • changed core feature “64 MHz” to “Up to 64 MHz” • changed Data flash memory “64 (4 × 16) KB” to “Additional 64 (4 × 16) KB” • changed “1 FlexCAN interface” to “Up to 2 FlexCAN interface” Updated Device summary Section “Introduction“: Reorganized contents SPC560P40 device configuration differences: Editorial changes to indicate that the table concerns only the SPC560P40 devices); removed “DSPI” row Block diagram (SPC560P40 full-featured configuration): reorganized blocks above and below peripheral bridge; made arrow going from peripheral bridge to crossbar switch bidirectional; removed SPC560P34 part number from title Added section “Features details” 64-pin and 100-pin LQFP pinout diagrams: replaced instances of HV_AD0 with HV_ADC0 System pins: updated “XTAL” and “EXTAL” rows Updated LQFP thermal characteristics Updated EMI testing specifications section “Voltage regulator electrical characteristics“: removed BCP56 from named BJTs; replaced two configuration diagrams and two electrical characteristics tables with single diagram and single table Voltage regulator electrical characteristics: updated VDD_LV_REGCOR row Low voltage monitor electrical characteristics: updated VMLVDDOK_H max value—was 1.15 V; is 1.145 V Supply current (5.0 V, NVUSRO[PAD3V5V] = 0): changed symbol IDD_LV_CORE to IDD_LV_CORx; changed parameter classification from T to P for IDD_LV_CORx RUN— Maximum mode at 64 MHz; added IDD_FLASH characteristics; replaced instances of “Airbag” mode with “Typical mode” Supply current (3.3 V, NVUSRO[PAD3V5V] = 1): changed symbol IDD_LV_CORE to IDD_LV_CORx; replaced instances of “Airbag” mode with “Typical mode” DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1): corrected parameter description for VOL_F—was “Fast, high level output voltage”; is “Fast, low level output voltage” Added Section 3.10.4, Input DC electrical characteristics definition Main oscillator output electrical characteristics tables: replaced instances of EXTAL with XTAL; added load capacitance parameter FMPLL electrical characteristics: updated conditions and table title; removed fsys row; updated fFMPLLOUT values; replaced instances of VDDPLL with VDD_LV_COR0; replaced instances of VSSPLL with VSS_LV_COR0 16 MHz RC oscillator electrical characteristics: removed rows ΔRCMTRIM and ΔRCMSTEP ADC characteristics and error definitions: updated symbols ADC conversion characteristics: updated symbols; added row tADC_PU Added Section 3.15.2, Flash memory power supply DC characteristics Added Section 3.15.3, Start-up/Switch-off timings Removed section “Generic timing diagrams” Updated Start-up reset requirements diagram Removed FlexCAN timing characteristics RESET electrical characteristics: added row for tPOR In the range of figures “DSPI Classic SPI Timing — Master, CPHA = 0” to “DSPI PCS Strobe (PCSS) Timing”: added note Updated Order codes Doc ID 16100 Rev 7 101/103 Revision history Table 45. Date 13-May-2011 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Document revision history (continued) Revision Changes 4 Commercial product code structure: Replaced “Conditioning” with “Packing” (continued) Table 44: added “DUT”, “NPN”, and “RISC” 5 Updated Table 1: Device summary Updated Section 1.5.28: Nexus Development Interface (NDI) Section Table 2.: SPC560P34/SPC560P40 device comparison: changed Nexus L1+ with Nexus Class 1 Table 7: Pin muxing: removed E[0] row Table 9: Absolute maximum ratings: updated minumum and maximum values for TVDD parameter Section 3.10: DC electrical characteristics: Removed oscillator margin. Removed Section NVUSRO[OSCILLATOR_MARGIN] field description and Table NVUSRO[OSCILLATOR_MARGIN] field description Updated Section 3.8.1: Voltage regulator electrical characteristics Updated Section Figure 10.: Voltage regulator configuration Table 16: Voltage regulator electrical characteristics: added LReg row, updated condition for CDEC1, CDEC2 and CDEC3 Removed “Order codes” tables 20-Dec-2012 6 Table 9 (Absolute maximum ratings): updated TVDD parameter, the minimum value to 3.0 V/s, added note on minimum value, and the maximum value to 0.5 V/µs Table 20 (Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)): added IDD_HV_REG row Table 22 (Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)): added IDD_HV_REG row Updated Section 3.14.1, Input impedance and ADC accuracy Table 30 (ADC conversion characteristics): renamed “RSW1” in “RSW” Table 31 (Program and erase specifications): added tESRT row 18-Sep-2013 7 Updated Disclaimer. 22-Dec-2011 102/103 Doc ID 16100 Rev 7 SPC560P34L1, SPC560P34L3, SPC560P40L1, SPC560P40L3 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 16100 Rev 7 103/103
SPC560P40L3CEFAR 价格&库存

很抱歉,暂时无法提供与“SPC560P40L3CEFAR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SPC560P40L3CEFAR
  •  国内价格 香港价格
  • 1000+38.008911000+4.71499
  • 2000+37.243812000+4.62008

库存:4

SPC560P40L3CEFAR
  •  国内价格 香港价格
  • 1+93.834681+11.64015
  • 10+86.2739610+10.70225
  • 25+82.7015525+10.25909
  • 100+72.86761100+9.03920
  • 250+69.29150250+8.59558
  • 500+64.82091500+8.04101

库存:4