0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC560P50L5CEFBY

SPC560P50L5CEFBY

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP144_20X20MM

  • 描述:

    IC MCU 32BIT 512KB FLASH 144LQFP

  • 详情介绍
  • 数据手册
  • 价格&库存
SPC560P50L5CEFBY 数据手册
SPC560P44L3, SPC560P44L5 SPC560P50L3, SPC560P50L5 32-bit Power Architecture® based MCU with 576 KB Flash memory and 40 KB SRAM for automotive chassis and safety applications Datasheet − production data Features ■ 64 MHz, single issue, 32-bit CPU core complex (e200z0h) – Compliant with Power Architecture® embedded category – Variable Length Encoding (VLE) ■ Memory organization – Up to 512 KB on-chip code flash memory with ECC and erase/program controller – Additional 64 (4 × 16) KB on-chip data flash memory with ECC for EEPROM emulation – Up to 40 KB on-chip SRAM with ECC ■ Fail safe protection – Programmable watchdog timer – Non-maskable interrupt – Fault collection unit ■ Nexus L2+ interface ■ Interrupts – 16-channel eDMA controller – 16 priority level controller ■ General purpose I/Os individually programmable as input, output or special function ■ ■ 2 general purpose eTimer units – 6 timers each with up/down count capabilities – 16-bit resolution, cascadable counters – Quadrature decode with rotation direction flag – Double buffer input capture and output compare Communications interfaces – 2 LINFlex channels (LIN 2.1) – 4 DSPI channels with automatic chip select generation – 1 FlexCAN interface (2.0B Active) with 32 message objects September 2013 This is information on a product in full production. LQFP144 (20 x 20 x 1.4 mm) LQFP100 (14 x 14 x 1.4 mm) – 1 safety port based on FlexCAN with 32 message objects and up to 7.5 Mbit/s capability; usable as second CAN when not used as safety port – 1 FlexRay™ module (V2.1) with selectable dual or single channel support, 32 message objects and up to 10 Mbit/s (512 KB device only) ■ Two 10-bit analog-to-digital converters (ADC) – 2 × 11 input channels, + 4 shared channels – Conversion time < 1 µs including sampling time at full precision – Programmable ADC Cross Triggering Unit (CTU) – 4 analog watchdogs with interrupt capability ■ On-chip CAN/UART bootstrap loader with Boot Assist Module (BAM) ■ 1 FlexPWM unit: 8 complementary or independent outputs with ADC synchronization signals Table 1. Device summary Part number Package 448 KB Flash 576 KB Flash LQFP144 SPC560P44L5 SPC560P50L5 LQFP100 SPC560P44L3 SPC560P50L3 Doc ID 14723 Rev 9 1/112 www.st.com 1 Contents SPC560P44Lx, SPC560P50Lx Contents 1 2/112 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 High performance e200z0 core processor . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.4 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.5 Static random access memory (SRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.7 System status and configuration module (SSCM) . . . . . . . . . . . . . . . . . 16 1.5.8 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.9 Frequency-modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 17 1.5.10 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.11 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.12 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.13 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.14 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.15 Fault collection unit (FCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.16 System integration unit – Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.17 Boot and censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.18 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.19 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.20 Controller area network (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.21 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.22 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.23 Serial communication interface module (LINFlex) . . . . . . . . . . . . . . . . . 22 1.5.24 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 23 1.5.25 Pulse width modulator (FlexPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.26 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.27 Analog-to-digital converter (ADC) module . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.28 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 2 3 Contents 1.5.29 Nexus development interface (NDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.30 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.31 IEEE 1149.1 JTAG controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.32 On-chip voltage regulator (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.3 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5.2 General notes for specifications at maximum junction temperature . . . 57 3.6 Electromagnetic interference (EMI) characteristics . . . . . . . . . . . . . . . . . 59 3.7 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 59 3.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 59 3.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 59 3.8.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 63 3.9 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.10.1 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.10.2 DC electrical characteristics (5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.10.3 DC electrical characteristics (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.10.4 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . 69 3.10.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.11 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.13 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 78 Doc ID 14723 Rev 9 3/112 Contents SPC560P44Lx, SPC560P50Lx 3.14 Analog-to-digital converter (ADC) electrical characteristics . . . . . . . . . . . 78 3.14.1 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.14.2 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.15 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.16.1 3.17 4 5 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.17.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.17.4 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.17.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.1 LQFP144 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.2 LQFP100 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . 103 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6 4/112 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SPC560P44Lx, SPC560P50Lx device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SPC560P44Lx, SPC560P50Lx device configuration differences . . . . . . . . . . . . . . . . . . . . . 8 SPC560P44Lx, SPC560P50Lx series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Thermal characteristics for 144-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Thermal characteristics for 100-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Approved NPN ballast components (configuration with resistor on base) . . . . . . . . . . . . . 60 Voltage regulator electrical characteristics (configuration with resistor on base) . . . . . . . . 61 Voltage regulator electrical characteristics (configuration without resistor on base) . . . . . 62 Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . . . . . . . . . . . . . . . 66 Supply current (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . . . . . . . . . . . . . . . 67 Supply current (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 I/O supply segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . 75 Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . 76 Input clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DSPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Doc ID 14723 Rev 9 5/112 List of figures SPC560P44Lx, SPC560P50Lx List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. 6/112 SPC560P44Lx, SPC560P50Lx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 144-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . 29 100-pin LQFP pinout – Airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 100-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . 31 Power supplies constraints (–0.3 V ≤ VDD_HV_IOx ≤ 6.0 V). . . . . . . . . . . . . . . . . . . . . . . . . 52 Independent ADC supply (–0.3 V ≤ VDD_HV_REG ≤ 6.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . 52 Power supplies constraints (3.0 V ≤ VDD_HV_IOx ≤ 5.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . 55 Independent ADC supply (3.0 V ≤ VDD_HV_REG ≤ 5.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Configuration with resistor on base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Configuration without resistor on base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Power-up typical sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Power-down typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Brown-out typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Input equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Pad output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 DSPI classic SPI timing – Master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 DSPI classic SPI timing – Master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 DSPI classic SPI timing – Slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 DSPI classic SPI timing – Slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 DSPI modified transfer format timing – Master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 98 DSPI modified transfer format timing – Master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 99 DSPI modified transfer format timing – Slave, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 99 DSPI modified transfer format timing – Slave, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 100 DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 1 Introduction 1.1 Document overview Introduction This document provides electrical specifications, pin assignments, and package diagrams for the SPC560P44/50 series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual. 1.2 Description This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications— specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)— as well as airbag applications. This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. 1.3 Device comparison Table 2 provides a summary of different members of the SPC560P44Lx, SPC560P50Lx family and their features—relative to full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family. Table 2. SPC560P44Lx, SPC560P50Lx device comparison Feature Code flash memory (with ECC) SPC560P44 SPC560P50 384 KB 512 KB Data flash memory / EE option (with ECC) 64 KB SRAM (with ECC) 36 KB 40 KB Processor core 32-bit e200z0h Instruction set VLE (variable length encoding) CPU performance 0–64 MHz FMPLL (frequency-modulated phase-locked loop) module INTC (interrupt controller) channels 2 147 PIT (periodic interrupt timer) 1 (includes four 32-bit timers) Doc ID 14723 Rev 9 7/112 Introduction Table 2. SPC560P44Lx, SPC560P50Lx SPC560P44Lx, SPC560P50Lx device comparison (continued) Feature SPC560P44 SPC560P50 eDMA (enhanced direct memory access) channels 16 FlexRay Yes(1) FlexCAN (controller area network) 2(2),(3) Safety port Yes (via second FlexCAN module) FCU (fault collection unit) Yes CTU (cross triggering unit) Yes eTimer 2 (16-bit, 6 channels) FlexPWM (pulse-width modulation) channels 8 (capturing on X-channels) 2 (10-bit, 15-channel(4)) ADC (analog-to-digital converter) LINFlex 2 DSPI (deserial serial peripheral interface) 4 CRC (cyclic redundancy check) unit Yes JTAG controller Yes Nexus port controller (NPC) Yes (Level 2+) Digital power supply(5) 3.3 V or 5 V single supply with external transistor Analog power supply 3.3 V or 5 V Internal RC oscillator 16 MHz Supply External crystal oscillator 4–40 MHz LQFP100 LQFP144 Packages Temperature Standard ambient temperature –40 to 125 °C 1. 32 message buffers, selectable single or dual channel support 2. Each FlexCAN module has 32 message buffers. 3. One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s. 4. Four channels shared between the two ADCs 5. The different supply voltages vary according to the part number ordered. SPC560P44Lx, SPC560P50Lx is available in two configurations having different features: full-featured and airbag. Table 3 shows the main differences between the two versions. Table 3. SPC560P44Lx, SPC560P50Lx device configuration differences Feature Full-featured Airbag CTU (cross triggering unit) Yes No FlexPWM Yes No 8/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 3. Introduction SPC560P44Lx, SPC560P50Lx device configuration differences (continued) Feature Full-featured Airbag Yes No 2 (one FMPLL, one for FlexRay) 1 (only FMPLL) FlexRay FMPLL (frequency-modulated phase-locked loop) module 1.4 Block diagram Figure 1 shows a top-level block diagram of the SPC560P44Lx, SPC560P50Lx MCU. Doc ID 14723 Rev 9 9/112 Introduction SPC560P44Lx, SPC560P50Lx External ballast e200z0 Core 1.2 V regulator control 32-bit general purpose registers XOSC Integer execution unit 16 MHz RC oscillator FMPLL_0 (System) Special purpose registers Exception handler Instruction unit Variable length encoded instructions Branch prediction unit Load/store unit FMPLL_1 (FlexRay, MotCtrl) JTAG Nexus port controller Interrupt controller Nexus 2+ eDMA 16 channels Master FlexRay Data 32-bit Instruction 32-bit Master Master Crossbar switch (XBAR, AMBA 2.0 v6 AHB) ECSM SIUL BAM MC_ME MC_CGM MC_RGM SWT SRAM (with ECC) STM Data Flash (with ECC) CRC Code Flash (with ECC) Slave WKPU Slave PIT Slave FCU Safety port FlexCAN 2× LINFlex 4× DSPI 2× eTimer (6 ch) SSCM Channels 0–10 10-bit ADC_1 Shared channels 11–14 10-bit ADC_0 Channels 0–10 1.2 V Rail VREG CTU FlexPWM Peripheral bridge Legend: ADC BAM CRC CTU DSPI ECSM eDMA eTimer FCU Flash FlexCAN FlexPWM FMPLL INTC JTAG Analog-to-digital converter Boot assist module Cyclic redundancy check Cross triggering unit Deserial serial peripheral interface Error correction status module Enhanced direct memory access Enhanced timer Fault collection unit Flash memory Controller area network Flexible pulse width modulation Frequency-modulated phase-locked loop Interrupt controller JTAG controller Figure 1. 10/112 LINFlex MC_CGM MC_ME MC_PCU MC_RGM PIT SIUL SRAM SSCM STM SWT WKPU XOSC XBAR Serial communication interface (LIN support) Clock generation module Mode entry module Power control unit Reset generation module Periodic interrupt timer System integration unit Lite Static random-access memory System status and configuration module System timer module Software watchdog timer Wakeup unit External oscillator Crossbar switch SPC560P44Lx, SPC560P50Lx block diagram Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 4. Introduction SPC560P44Lx, SPC560P50Lx series block summary Block Function Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter Boot assist module (BAM) Block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Controller area network (FlexCAN) Supports the standard CAN communications protocol Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave ports; supports a 32-bit address bus width and a 32-bit data bus width Cyclic redundancy check (CRC) CRC checksum generator Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Enhanced direct memory access (eDMA) Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels Enhanced timer (eTimer) Provides enhanced programmable up/down modulo counting Error correction status module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes External oscillator (XOSC) Provides an output clock used as input reference for FMPLL_0 or as reference clock for specific modules depending on system needs Fault collection unit (FCU) Provides functional safety to the device Flash memory Provides non-volatile storage for program code, constants and variables Frequency-modulated phaselocked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with minimum load on CPU Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Periodic interrupt timer (PIT) Produces periodic interrupts and triggers Peripheral bridge (PBRIDGE) Interface between the system bus and on-chip peripherals Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Doc ID 14723 Rev 9 11/112 Introduction Table 4. SPC560P44Lx, SPC560P50Lx SPC560P44Lx, SPC560P50Lx series block summary (continued) Block Function Pulse width modulator (FlexPWM) Contains four PWM submodules, each of which is capable of controlling a single half-bridge power stage and two fault input channels Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Static random-access memory (SRAM) Provides storage for program code, constants, and variables Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR(1) and operating system tasks System watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup events, 1 of which can cause non-maskable interrupt requests or wakeup events 1. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org) 12/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Introduction 1.5 Feature details 1.5.1 High performance e200z0 core processor The e200z0 Power Architecture core provides the following features: 1.5.2 ● High performance e200z0 core processor for managing peripherals and interrupts ● Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU ● Harvard architecture ● Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions – Results in smaller code size footprint – Minimizes impact on performance ● Branch processing acceleration using lookahead instruction buffer ● Load/store unit – 1 cycle load latency – Misaligned access support – No load-to-use pipeline bubbles ● Thirty-two 32-bit general purpose registers (GPRs) ● Separate instruction bus and load/store bus Harvard architecture ● Hardware vectored interrupt support ● Reservation instructions for implementing read-modify-write constructs ● Long cycle time instructions, except for guarded loads, do not increase interrupt latency ● Extensive system development support through Nexus debug port ● Non-maskable interrupt support Crossbar switch (XBAR) The XBAR multi-port crossbar switch supports simultaneous connections between four master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width. The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic will select the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port will be stalled until the higher priority master completes its transactions. Requesting masters will be treated with equal priority and will be granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access. Doc ID 14723 Rev 9 13/112 Introduction SPC560P44Lx, SPC560P50Lx The crossbar provides the following features: ● ● 1.5.3 4 master ports: – e200z0 core complex Instruction port – e200z0 core complex Load/Store Data port – eDMA – FlexRay 3 slave ports: – Flash memory (code flash and data flash) – SRAM – Peripheral bridge ● 32-bit internal address, 32-bit internal data paths ● Fixed Priority Arbitration based on Port Master ● Temporary dynamic priority elevation of masters Enhanced direct memory access (eDMA) The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size. The eDMA module provides the following features: 1.5.4 ● 16 channels support independent 8, 16 or 32-bit single value or block transfers ● Supports variable sized queues and circular queues ● Source and destination address registers are independently configured to either postincrement or to remain constant ● Each transfer is initiated by a peripheral, CPU, or eDMA channel request ● Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer ● DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer and CTU ● Programmable DMA channel multiplexer for assignment of any DMA source to any available DMA channel with as many as 30 request sources ● eDMA abort operation through software Flash memory The SPC560P44Lx, SPC560P50Lx provides as much as 576 KB of programmable, nonvolatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash memory module interfaces the system bus to a dedicated flash memory array controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains four 128-bit wide prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses are registered and are forwarded to the system bus on the following cycle, incurring two wait-states. 14/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Introduction The flash memory module provides the following features: ● – 8 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 3×128 KB) code flash – 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash – Full Read While Write (RWW) capability between code and data flash ● Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to prefetch code or data or both) ● Typical flash memory access time: 0 wait states for buffer hits, 2 wait states for page buffer miss at 64 MHz ● Hardware managed flash memory writes handled by 32-bit RISC Krypton engine ● Hardware and software configurable read and write access protections on a per-master basis ● Configurable access timing allowing use in a wide range of system frequencies ● Multiple-mapping support and mapping-based block access timing (up to 31 additional cycles) allowing use for emulation of other memory types. ● Software programmable block program/erase restriction control ● Erase of selected block(s) ● Read page sizes ● 1.5.5 As much as 576 KB flash memory – Code flash memory: 128 bits (4 words) – Data flash memory: 32 bits (1 word) ECC with single-bit correction, double-bit detection for data integrity – Code flash memory: 64-bit ECC – Data flash memory: 64-bit ECC ● Embedded hardware program and erase algorithm ● Erase suspend, program suspend and erase-suspended program ● Censorship protection scheme to prevent flash memory content visibility ● Hardware support for EEPROM emulation Static random access memory (SRAM) The SPC560P44Lx, SPC560P50Lx SRAM module provides up to 40 KB of general-purpose memory. The SRAM module provides the following features: 1.5.6 ● Supports read/write accesses mapped to the SRAM from any master ● Up to 40 KB general purpose SRAM ● Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory ● Typical SRAM access time: 0 wait-state for reads and 32-bit writes; 1 wait state for 8and 16-bit writes if back to back with a read to same memory block Interrupt controller (INTC) The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. The INTC handles 147 selectable-priority interrupt sources. Doc ID 14723 Rev 9 15/112 Introduction SPC560P44Lx, SPC560P50Lx For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other. The INTC provides the following features: 1.5.7 ● Unique 9-bit vector for each separate interrupt source ● 8 software triggerable interrupt sources ● 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source ● Ability to modify the ISR or task priority: modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources. ● 2 external high priority interrupts directly accessing the main core and I/O processor (IOP) critical interrupt mechanism System status and configuration module (SSCM) The system status and configuration module (SSCM) provides central device functionality. The SSCM includes these features: ● 1.5.8 System configuration and status – Memory sizes/status – Device mode and security status – Determine boot vector – Search code flash for bootable sector – DMA status ● Debug status port enable and selection ● Bus and peripheral abort enable/disable System clocks and clock generation The following list summarizes the system clock and clock generation on the SPC560P44Lx, SPC560P50Lx: 16/112 ● Lock detect circuitry continuously monitors lock status ● Loss of clock (LOC) detection for PLL outputs ● Programmable output clock divider (÷1, ÷2, ÷4, ÷8) ● FlexPWM module and eTimer module can run on an independent clock source ● On-chip oscillator with automatic level control ● Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 1.5.9 Introduction Frequency-modulated phase-locked loop (FMPLL) The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable. The PLL has the following major features: 1.5.10 ● Input clock frequency: 4–40 MHz ● Maximum output frequency: 64 MHz ● Voltage controlled oscillator (VCO)—frequency 256–512 MHz ● Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock ● Frequency-modulated PLL – Modulation enabled/disabled through software – Triangle wave modulation ● Programmable modulation depth (±0.25% to ±4% deviation from center frequency): programmable modulation frequency dependent on reference frequency ● Self-clocked mode (SCM) operation Main oscillator The main oscillator provides these features: 1.5.11 ● Input frequency range: 4–40 MHz ● Crystal input mode or oscillator input mode ● PLL reference Internal RC oscillator This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap reference voltage. The RC oscillator provides these features: 1.5.12 ● Nominal frequency 16 MHz ● ±5% variation over voltage and temperature after process trim ● Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL ● RC oscillator is used as the default system clock during startup Periodic interrupt timer (PIT) The PIT module implements these features: ● 4 general purpose interrupt timers ● 32-bit counter resolution ● Clocked by system clock frequency ● Each channel can be used as trigger for a DMA request Doc ID 14723 Rev 9 17/112 Introduction 1.5.13 SPC560P44Lx, SPC560P50Lx System timer module (STM) The STM module implements these features: 1.5.14 ● One 32-bit up counter with 8-bit prescaler ● Four 32-bit compare channels ● Independent interrupt source for each channel ● Counter can be stopped in debug mode Software watchdog timer (SWT) The SWT has the following features: 1.5.15 ● 32-bit time-out register to set the time-out period ● Programmable selection of system or oscillator clock for timer operation ● Programmable selection of window mode or regular servicing ● Programmable selection of reset or interrupt on an initial time-out ● Master access protection ● Hard and soft configuration lock bits ● Reset configuration inputs allow timer to be enabled out of reset Fault collection unit (FCU) The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning. The FCU module has the following features: 1.5.16 ● FCU status register reporting the device status ● Continuous monitoring of critical fault signals ● User selection of critical signals from different fault sources inside the device ● Critical fault events trigger 2 external pins (user selected signal protocol) that can be used externally to reset the device and/or other circuitry (for example, safety relay or FlexRay transceiver) ● Faults are latched into a register System integration unit – Lite (SIUL) The SPC560P44Lx, SPC560P50Lx SIUL controls MCU pad configuration, external interrupt, general purpose I/O (GPIO), and internal peripheral multiplexing. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. 18/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Introduction The SIU provides the following features: 1.5.17 ● Centralized general purpose input output (GPIO) control of as many as 80 input/output pins and 26 analog input-only pads (package dependent) ● All GPIO pins can be independently configured to support pull-up, pull down, or no pull ● Reading and writing to GPIO supported both as individual pins and 16-bit wide ports ● All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins ● ADC channels support alternative configuration as general purpose inputs ● Direct readback of the pin value is supported on all pins through the SIUL ● Configurable digital input filter that can be applied to some general purpose input pins for noise elimination: as many as 4 internal functions can be multiplexed onto 1 pin Boot and censorship Different booting modes are available in the SPC560P44Lx, SPC560P50Lx: booting from internal flash memory and booting via a serial link. The default booting scheme uses the internal flash memory (an internal pull-down is used to select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the boot assist module software). A censorship scheme is provided to protect the content of the flash memory and offer increased security for the entire device. A password mechanism is designed to grant the legitimate user access to the non-volatile memory. Boot assist module (BAM) The BAM is a block of read-only one-time programmed memory and is identical for all SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user. The BAM provides the following features: 1.5.18 ● Serial bootloading via FlexCAN or LINFlex ● Ability to accept a password via the used serial communication channel to grant the legitimate user access to the non-volatile memory Error correction status module (ECSM) The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes, and information on platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores. The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features: ● Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented ● For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the SPC560P44Lx, SPC560P50Lx. Doc ID 14723 Rev 9 19/112 Introduction SPC560P44Lx, SPC560P50Lx The sources of the ECC errors are: 1.5.19 ● Flash memory ● SRAM Peripheral bridge (PBRIDGE) The PBRIDGE implements the following features: 1.5.20 ● Duplicated periphery ● Master access privilege level per peripheral (per master: read access enable; write access enable) ● Write buffering for peripherals ● Checker applied on PBRIDGE output toward periphery ● Byte endianess swap capability Controller area network (FlexCAN) The SPC560P44Lx, SPC560P50Lx MCU contains one controller area network (FlexCAN) module. This module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: realtime processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module contains 32 message buffers. 20/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Introduction The FlexCAN module provides the following features: ● – Standard data and remote frames – Extended data and remote frames – Up to 8-bytes data length – Programmable bit rate up to 1 Mbit/s ● 32 message buffers of up to 8-bytes data length ● Each message buffer configurable as Rx or Tx, all supporting standard and extended messages ● Programmable loop-back mode supporting self-test operation ● 3 programmable mask registers ● Programmable transmit-first scheme: lowest ID or lowest buffer number ● Time stamp based on 16-bit free-running timer ● Global network time, synchronized by a specific message ● Maskable interrupts ● Independent of the transmission medium (an external transceiver is assumed) ● High immunity to EMI ● Short latency time due to an arbitration scheme for high-priority messages ● Transmit features ● ● 1.5.21 Full implementation of the CAN protocol specification, version 2.0B – Supports configuration of multiple mailboxes to form message queues of scalable depth – Arbitration scheme according to message ID or message buffer number – Internal arbitration to guarantee no inner or outer priority inversion – Transmit abort procedure and notification Receive features – Individual programmable filters for each mailbox – 8 mailboxes configurable as a six-entry receive FIFO – 8 programmable acceptance filters for receive FIFO Programmable clock source – System clock – Direct oscillator clock to avoid PLL jitter Safety port (FlexCAN) The SPC560P44Lx, SPC560P50Lx MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features: ● Identical to the FlexCAN module ● Bit rate as fast as 7.5 Mbit/s at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required) ● 32 message buffers of up to 8 bytes data length ● Can be used as a second independent CAN module Doc ID 14723 Rev 9 21/112 Introduction 1.5.22 SPC560P44Lx, SPC560P50Lx FlexRay The FlexRay module provides the following features: 1.5.23 ● Full implementation of FlexRay Protocol Specification 2.1 ● 32 configurable message buffers can be handled ● Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate ● Message buffers configurable as Tx, Rx or RxFIFO ● Message buffer size configurable ● Message filtering for all message buffers based on FrameID, cycle count and message ID ● Programmable acceptance filters for RxFIFO message buffers Serial communication interface module (LINFlex) The LINFlex (local interconnect network flexible) on the SPC560P44Lx, SPC560P50Lx features the following: ● Supports LIN Master mode, LIN Slave mode and UART mode ● LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications ● Handles LIN frame transmission and reception without CPU intervention ● LIN features ● ● 22/112 – Autonomous LIN frame handling – Message buffer to store Identifier and as much as 8 data bytes – Supports message length as long as 64 bytes – Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing, checksum, and time-out) – Classic or extended checksum calculation – Configurable Break duration as long as 36-bit times – Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional) – Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection – Interrupt-driven operation with 16 interrupt sources LIN slave mode features – Autonomous LIN header handling – Autonomous LIN response handling UART mode – Full-duplex operation – Standard non return-to-zero (NRZ) mark/space format – Data buffers with 4-byte receive, 4-byte transmit – Configurable word length (8-bit or 9-bit words) – Error detection and flagging – Parity, Noise and Framing errors – Interrupt-driven operation with four interrupt sources – Separate transmitter and receiver CPU interrupt sources – 16-bit programmable baud-rate modulus counter and 16-bit fractional – 2 receiver wake-up methods Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 1.5.24 Introduction Deserial serial peripheral interface (DSPI) The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC560P44Lx, SPC560P50Lx MCU and external devices. The DSPI modules provide these features: 1.5.25 ● Full duplex, synchronous transfers ● Master or slave operation ● Programmable master bit rates ● Programmable clock polarity and phase ● End-of-transmission interrupt flag ● Programmable transfer baud rate ● Programmable data frames from 4 to 16 bits ● Up to 20 chip select lines available – 8 on DSPI_0 – 4 each on DSPI_1, DSPI_2 and DSPI_3 ● 8 clock and transfer attributes registers ● Chip select strobe available as alternate function on one of the chip select pins for deglitching ● FIFOs for buffering as many as 5 transfers on the transmit and receive side ● Queueing operation possible through use of the eDMA ● General purpose I/O functionality on pins when not used for SPI Pulse width modulator (FlexPWM) The pulse width modulator module (PWM) contains four PWM submodules, each capable of controlling a single half-bridge power stage. There are also four fault channels. This PWM is capable of controlling most motor types: AC induction motors (ACIM), permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors. Doc ID 14723 Rev 9 23/112 Introduction SPC560P44Lx, SPC560P50Lx The FlexPWM block implements the following features: 24/112 ● 16-bit resolution for center, edge-aligned, and asymmetrical PWMs ● Maximum operating clock frequency of 120 MHz ● PWM outputs can operate as complementary pairs or independent channels ● Can accept signed numbers for PWM generation ● Independent control of both edges of each PWM output ● Synchronization to external hardware or other PWM supported ● Double buffered PWM registers – Integral reload rates from 1 to 16 – Half cycle reload capability ● Multiple ADC trigger events can be generated per PWM cycle via hardware ● Write protection for critical registers ● Fault inputs can be assigned to control multiple PWM outputs ● Programmable filters for fault inputs ● Independently programmable PWM output polarity ● Independent top and bottom deadtime insertion ● Each complementary pair can operate with its own PWM frequency and deadtime values ● Individual software-control for each PWM output ● All outputs can be programmed to change simultaneously via a “Force Out” event ● PWMX pin can optionally output a third PWM signal from each submodule ● Channels not used for PWM generation can be used for buffered output compare functions ● Channels not used for PWM generation can be used for input capture functions ● Enhanced dual-edge capture functionality ● eDMA support with automatic reload ● 2 fault inputs ● Capture capability for PWMA, PWMB, and PWMX channels not supported Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 1.5.26 Introduction eTimer The SPC560P44Lx, SPC560P50Lx includes two eTimer modules. Each module provides six 16-bit general purpose up/down timer/counter units with the following features: ● Maximum operating clock frequency of 120 MHz ● Individual channel capability ● ● 1.5.27 – Input capture trigger – Output compare – Double buffer (to capture rising edge and falling edge) – Separate prescaler for each counter – Selectable clock source – 0–100% pulse measurement – Rotation direction flag (Quad decoder mode) Maximum count rate – External event counting: max. count rate = peripheral clock/2 – Internal clock counting: max. count rate = peripheral clock Counters are: – Cascadable – Preloadable ● Programmable count modulo ● Quadrature decode capabilities ● Counters can share available input pins ● Count once or repeatedly ● Pins available as GPIO when timer functionality not in use Analog-to-digital converter (ADC) module The ADC module provides the following features: Analog part: ● 2 on-chip AD converters – 10-bit AD resolution – 1 sample and hold unit per ADC – Conversion time, including sampling time, less than 1 µs (at full precision) – Typical sampling time is 150 ns min. (at full precision) – Differential non-linearity error (DNL) ±1 LSB – Integral non-linearity error (INL) ±1.5 LSB – TUE ground (VSS) 2.7 V VDD_HV_ADC1( 4) VIN 50/112 — VDD_HV_REG < 3.3 V / 5.0 V ADC_0 supply and high 2.7 V SR reference voltage with respect to VDD_HV_REG > ground (VSS) 2.7 V VSS_HV_ADC1 SR TVDD ADC_0 ground and low reference voltage with respect to ground (VSS) ADC_1 ground and low reference voltage with respect to ground (VSS) Slope characteristics on all VDD SR during power up(5) with respect to ground (VSS) Voltage on any pin with respect to SR ground (VSS_HV_IOx) with respect to ground (VSS) V VDD_HV_IOx + 0.3 — 3.3 V / 5.0 V crystal oscillator VDD_HV_OSC SR amplifier supply voltage with respect Relative to to ground (VSS) VDD_HV_IOx VSS_HV_ADC0 SR Unit Min 0.1 V 6.0 V VDD_HV_IOx + 0.3 0.1 V 6.0 –0.3 V VDD_HV_IOx + 0.3 VDD_HV_REG + 0.3 –0.3 V 6.0 –0.1 0.1 V VDD_HV_REG + 0.3 –0.3 V 6.0 — –0.1 0.1 V — 3.0 500 x 103 (0.5 [V/µs]) V/s — Relative to VDD_HV_IOx Doc ID 14723 Rev 9 6.0 –0.3 V VDD_HV_IOx + 0.3 SPC560P44Lx, SPC560P50Lx Table 9. Electrical characteristics Absolute maximum ratings(1) (continued) Value Symbol Parameter Conditions Min VINAN0 VINAN1 ADC0 and shared ADC0/1 analog SR input voltage(6) SR ADC1 analog input voltage(7) VDD_HV_REG > VSS_HV_ADV0 − 2.7 V 0.3 VDD_HV_REG < 2.7 V VSS_HV_ADV0 VDD_HV_REG > VSS_HV_ADV1 − 2.7 V 0.3 Max(2) Unit VDD_HV_ADV0 + 0.3 V VDD_HV_ADV0 V VDD_HV_ADV1 + 0.3 V VDD_HV_REG < 2.7 V VSS_HV_ADV1 VDD_HV_ADV1 V IINJPAD SR Injected input current on any pin during overload condition — –10 10 mA IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 mA IVDD_LV SR Low voltage static current sink through VDD_LV — — 155 mA SR Storage temperature — –55 150 °C SR Junction temperature under bias — –40 150 °C TSTG TJ 1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined. 3. The difference between each couple of voltage supplies must be less than 300 mV, |VDD_HV_IOy – VDD_HV_IOx | < 300 mV. 4. The difference between ADC voltage supplies must be less than 100 mV, |VDD_HV_ADC1 – VDD_HV_ADC0| < 100 mV. 5. Guaranteed by device validation 6. Not allowed to refer this voltage to VDD_HV_ADV1, VSS_HV_ADV1 7. Not allowed to refer this voltage to VDD_HV_ADV0, VSS_HV_ADV0 Figure 5 shows the constraints of the different power supplies. Doc ID 14723 Rev 9 51/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx VDD_HV_xxx 6.0 V VDD_HV_IOx –0.3 V –0.3 V Figure 5. 6.0 V Power supplies constraints (–0.3 V ≤ VDD_HV_IOx ≤ 6.0 V) The SPC560P44Lx, SPC560P50Lx supply architecture allows of having ADC supply managed independently from standard VDD_HV supply. Figure 6 shows the constraints of the ADC power supply. VDD_HV_ADCx 6.0 V VDD_HV_REG –0.3 V –0.3 V Figure 6. 52/112 2.7 V 6.0 V Independent ADC supply (–0.3 V ≤ VDD_HV_REG ≤ 6.0 V) Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics 3.4 Recommended operating conditions Table 10. Recommended operating conditions (5.0 V) Value Symbol VSS Parameter Conditions SR Device ground VDD_HV_IOx(2) SR 5.0 V input/output supply voltage VSS_HV_IOx SR Input/output ground voltage VDD_HV_FL 5.0 V code and data flash SR supply voltage VSS_HV_FL SR Code and data flash ground Max(1) — 0 0 V — 4.5 5.5 V — 0 0 V — 4.5 5.5 Relative to VDD_HV_IOx — — 5.0 V crystal oscillator amplifier Relative to supply voltage VDD_HV_IOx VDD_HV_OSC SR VSS_HV_OSC SR 5.0 V crystal oscillator amplifier reference voltage VDD_HV_REG SR — 5.0 V voltage regulator supply Relative to voltage VDD_HV_IOx VDD_HV_ADC0(3) VSS_HV_ADC0 VDD_HV_ADC1(3) VSS_HV_ADC1 VDD_LV_REGCOR(4), (5) VDD_LV_CORx VSS_LV_CORx TA (4) — — 5.0 V ADC_0 supply and high SR Relative to reference voltage VDD_HV_REG V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 4.5 5.5 V V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 4.5 5.5 V V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 4.5 5.5 VDD_HV_REG – 0.1 — 0 0 4.5 5.5 VDD_HV_REG – 0.1 — — 0 0 V — — — V — 0 0 V CC Internal supply voltage — — — V SR Internal reference voltage — 0 0 V fCPU = 64 MHz –40 105 fCPU = 60 MHz –40 125 SR ADC_0 ground and low reference voltage — — 5.0 V ADC_1 supply and high SR Relative to reference voltage VDD_HV_REG SR ADC_1 ground and low reference voltage CC Internal supply voltage VSS_LV_REGCOR(4) SR Internal reference voltage (4),(5) Unit Min SR Ambient temperature under bias V V V °C 1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. Doc ID 14723 Rev 9 53/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx 3. The difference between ADC voltage supplies must be less than 100 mV, |VDD_HV_ADC1 − VDD_HV_ADC0| < 100 mV. 4. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an onchip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 5. The low voltage supplies (VDD_LV_xxx) are not all independent. VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Table 11. Recommended operating conditions (3.3 V) Value Symbol VSS Parameter Conditions SR Device ground VDD_HV_IOx(2) SR 3.3 V input/output supply voltage VSS_HV_IOx SR Input/output ground voltage VDD_HV_FL 3.3 V code and data flash SR supply voltage VSS_HV_FL SR Code and data flash ground Max(1) — 0 0 V — 3.0 3.6 V — 0 0 V — 3.0 3.6 Relative to VDD_HV_IOx — — 3.3 V crystal oscillator amplifier Relative to supply voltage VDD_HV_IOx VDD_HV_OSC SR VSS_HV_OSC SR 3.3 V crystal oscillator amplifier reference voltage VDD_HV_REG SR — 3.3 V voltage regulator supply Relative to voltage VDD_HV_IOx — — VDD_HV_ADC0(3) VSS_HV_ADC0 VDD_HV_ADC1(3) VSS_HV_ADC1 VDD_LV_REGCOR(4), (5) 3.3 V ADC_0 supply and high SR reference voltage SR ADC_0 ground and low reference voltage 3.3 V ADC_1 supply and high SR reference voltage SR ADC_1 ground and low reference voltage CC Internal supply voltage VSS_LV_REGCOR(4) SR Internal reference voltage VDD_LV_CORx 54/112 (4),(5) CC Internal supply voltage Unit Min V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 3.0 3.6 V V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 3.0 3.6 V V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 3.0 5.5 VDD_HV_REG – 0.1 5.5 — 0 0 — 3.0 5.5 VDD_HV_REG – 0.1 5.5 — 0 0 V — — — V — 0 0 V — — — V Relative to VDD_HV_REG Relative to VDD_HV_REG Doc ID 14723 Rev 9 V V V SPC560P44Lx, SPC560P50Lx Table 11. Electrical characteristics Recommended operating conditions (3.3 V) (continued) Value Symbol VSS_LV_CORx(4) TA Parameter Conditions Min Max(1) — 0 0 fCPU = 64 MHz –40 105 fCPU = 60 MHz –40 125 SR Internal reference voltage SR Ambient temperature under bias Unit V °C 1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. 3. The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_ADC1 – VDD_HV_ADC0| < 100 mV. As long as that condition is met, ADC_0 and ADC_1 can be operated at 5 V with the rest of the device operating at 3.3 V. 4. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an onchip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 5. The low voltage supplies (VDD_LV_xxx) are not all independent. VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Figure 7 shows the constraints of the different power supplies. VDD_HV_xxx 5.5 V 3.3 V 3.0 V VDD_HV_IOx 3.0 V 3.3 V 5.5 V Note: IO AC and DC characteristics are guaranteed only in the range of 3.0–3.6 V when PAD3V5V is low, and in the range of 4.5–5.5 V when PAD3V5V is high. Figure 7. Power supplies constraints (3.0 V ≤ VDD_HV_IOx ≤ 5.5 V) Doc ID 14723 Rev 9 55/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx The SPC560P44Lx, SPC560P50Lx supply architecture allows the ADC supply to be managed independently from the standard VDD_HV supply. Figure 8 shows the constraints of the ADC power supply. VDD_HV_ADCx 5.5 V 3.0 V VDD_HV_REG 3.0 V Figure 8. Independent ADC supply (3.0 V ≤ VDD_HV_REG ≤ 5.5 V) 3.5 Thermal characteristics 3.5.1 Package thermal characteristics Table 12. 5.5 V Thermal characteristics for 144-pin LQFP Conditions Typical value Unit Single layer board—1s 54.2 °C/ W Four layer board— 2s2p 44.4 °C/ W Thermal resistance junction-to-board(2) Four layer board— 2s2p 29.9 °C/ W Thermal resistance junction-to-case (top)(3) Single layer board—1s 9.3 °C/ W ΨJB Junction-to-board, natural convection(4) Operating conditions 30.2 °C/ W ΨJC Junction-to-case, natural convection(5) Operating conditions 0.8 °C/ W Symbol RθJA RθJB RθJCtop Parameter Thermal resistance junction-to-ambient, natural convection(1) 1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package. 56/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics 2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC. Table 13. Thermal characteristics for 100-pin LQFP Symbol Parameter Conditions Typical value Unit Single layer board—1s 47.3 °C/ W Four layer board—2s2p 35.3 °C/ W Thermal resistance junction-to-board(2) Four layer board—2s2p 19.1 °C/ W Thermal resistance junction-to-case (top)(3) Single layer board—1s 9.7 °C/ W ΨJB Junction-to-board, natural convection(4) Operating conditions 19.1 °C/ W ΨJC Junction-to-case, natural convection(5) Operating conditions 0.8 °C/ W RθJA RθJB RθJCtop Thermal resistance junction-to-ambient, natural convection(1) 1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package. 2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC. 3.5.2 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: Equation 1 TJ = TA + (RθJA * PD) where: TA = ambient temperature for the package (°C) RθJA = junction to ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in Doc ID 14723 Rev 9 57/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: Equation 2 RθJA = RθJC + RθCA where: RθJA = junction to ambient thermal resistance (°C/W) RθJC = junction to case thermal resistance (°C/W) RθCA = case to ambient thermal resistance (°C/W) RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RθCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: Equation 3 TJ = TT + (ΨJT x PD) where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 U.S.A. (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 58/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics 1. C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47–54. 2. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic Packaging and Production, pp. 53–58, March 1998. 3. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212–220. 3.6 Electromagnetic interference (EMI) characteristics Table 14. EMI testing specifications Symbol Parameter Conditions Clocks fOSC 8 MHz Device configuration, test fCPU 64 MHz conditions and EM testing per No PLL frequency standard IEC61967-2 modulation VEME Level Frequency Unit (Max) 150 kHz–150 MHz 16 150–1000 MHz 15 IEC Level M dBµV — Radiated emissions 150 kHz–150 MHz fOSC 8 MHz Supply voltage = 5 V DC f 64 MHz 150–1000 MHz Ambient temperature = 25 °C CPU 1% PLL frequency Worst-case orientation IEC Level modulation 3.7 Electrostatic discharge (ESD) characteristics Table 15. ESD ratings(1),(2) Symbol Parameter 15 dBµV 14 M — Conditions Value Unit 2000 V VESD(HBM) S Electrostatic discharge (Human Body Model) R — VESD(CDM) S Electrostatic discharge (Charged Device Model) R — 750 (corners) V 500 (other) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3.8 Power management electrical characteristics 3.8.1 Voltage regulator electrical characteristics The internal voltage regulator requires an external NPN ballast to be connected as shown in Figure 9. Table 16 contains all approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the VDD_HV_REG, BCTRL and VDD_LV_CORx pins to less than Doc ID 14723 Rev 9 59/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx LReg, see Table 17. Note: The voltage regulator output cannot be used to drive external circuits. Output pins are used only for decoupling capacitances. VDD_LV_COR must be generated using internal regulator and external NPN transistor. It is not possible to provide VDD_LV_COR through external regulator. For the SPC560P44Lx, SPC560P50Lx microcontroller, capacitors, with total values not below CDEC1, should be placed between VDD_LV_CORx/VSS_LV_CORx close to external ballast transistor emitter. 4 capacitors, with total values not below CDEC2, should be placed close to microcontroller pins between each VDD_LV_CORx/VSS_LV_CORx supply pairs and the VDD_LV_REGCOR/VSS_LV_REGCOR pair . Additionally, capacitors with total values not below CDEC3, should be placed between the VDD_HV_REG/VSS_HV_REG pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature. All reported information are valid for voltage and temperature ranges described in recommended operating condition, Table 10 and Table 11. VDD_HV_REG CDEC3 SPC560P44Lx, BJT(1) BCTRL RB VDD_LV_COR CDEC2 CDEC1 1. Refer to Table 16. Figure 9. Configuration with resistor on base Table 16. Approved NPN ballast components (configuration with resistor on base) Manufacturer Approved derivatives(1) ON Semi BCP68 NXP BCP68-25 Infineon BCP68-25 BCX68 Infineon BCX68-10;BCX68-16;BCX68-25 BC868 NXP BC868 Part BCP68 60/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 16. Electrical characteristics Approved NPN ballast components (configuration with resistor on base) Part Manufacturer Approved derivatives(1) Infineon BC817-16;BC817-25;BC817SU; NXP BC817-16;BC817-25 ST BCP56-16 Infineon BCP56-10;BCP56-16 ON Semi BCP56-10 NXP BCP56-10;BCP56-16 BC817 BCP56 1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification Table 17. Voltage regulator electrical characteristics (configuration with resistor on base) Value Symbol C Parameter Conditions Unit Min Output voltage under VDD_LV_REGCOR CC P maximum load run supply current configuration RB CDEC1 RREG SR — SR — 1.15 — 1.32 V 18 — 22 kΩ BJT from Table 16. 3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 µF 19.5 30 — µF BJT BC817, one capacitance of 22 µF 14.3 22 Resulting ESR of all three capacitors of CDEC1 BJT from Table 16. 3x10 µF. Absolute maximum value between 100 kHz and 10 MHz — — 50 mΩ Resulting ESR of the unique capacitor CDEC1 BJT BC817, 1x 22 µF. Absolute maximum value between 100 kHz and 10 MHz 10 — 40 mΩ External decoupling/stability ceramic capacitor 4 capacitances (i.e. X7R or X8R capacitors) with nominal 1200 1760 value of 440 nF — nF 3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 µF; CDEC3 has to be equal or greater than CDEC1 External resistance on bipolar junction transistor (BJT) base External decoupling/stability ceramic capacitor — µF SR — CDEC2 SR — CDEC3 External decoupling/stability SR — ceramic capacitor on VDD_HV_REG LReg Post-trimming Typ Max SR — Resulting ESL of VDD_HV_REG, — BCTRL and VDD_LV_CORx pins Doc ID 14723 Rev 9 19.5 30 — µF — — 15 nH 61/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx VDD_HV_REG CDEC3 SPC560P44Lx, BCP56, BCP68, BCX68, BC817 BCTRL VDD_LV_COR CDEC2 CDEC1 Figure 10. Configuration without resistor on base Table 18. Voltage regulator electrical characteristics (configuration without resistor on base) Value Symbol C Parameter Conditions Unit Min Output voltage under VDD_LV_REGCOR CC P maximum load run supply current configuration Typ Max Post-trimming 1.15 — 1.32 V CDEC1 SR — External decoupling/stability ceramic capacitor 4 capacitances 40 56 — µF RREG SR — Resulting ESR of all four CDEC1 Absolute maximum value between 100 kHz and 10 MHz — — 45 mΩ CDEC2 SR — External decoupling/stability ceramic capacitor 4 capacitances of 100 nF each 400 — — nF CDEC3 External decoupling/stability SR — ceramic capacitor on VDD_HV_REG 40 — — µF — — 15 nH LReg 62/112 SR — Resulting ESL of VDD_HV_REG, — BCTRL and VDD_LV_CORx pins Doc ID 14723 Rev 9 — SPC560P44Lx, SPC560P50Lx 3.8.2 Electrical characteristics Voltage monitor electrical characteristics The device implements a Power-on Reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the VDD and the VDD_LV voltage while device is supplied: Table 19. ● POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state ● LVDHV3 monitors VDD to ensure device reset below minimum functional supply ● LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10 % range ● LVDLVCOR monitors low voltage digital power domain Low voltage monitor electrical characteristics Symbol C Parameter Value Conditions Unit (1) Min Max — 1.5 2.7 V TA = 25 °C 1.0 — V VPORH T Power-on reset threshold VPORUP P Supply for functional POR module VREGLVDMOK_H P Regulator low voltage detector high threshold — — 2.95 V VREGLVDMOK_L P Regulator low voltage detector low threshold — 2.6 — V VFLLVDMOK_H P Flash low voltage detector high threshold — — 2.95 V VFLLVDMOK_L P Flash low voltage detector low threshold — 2.6 — V VIOLVDMOK_H P I/O low voltage detector high threshold — — 2.95 V VIOLVDMOK_L P I/O low voltage detector low threshold — 2.6 — V VIOLVDM5OK_H P I/O 5V low voltage detector high threshold — — 4.4 V VIOLVDM5OK_L P I/O 5V low voltage detector low threshold — 3.8 — V VMLVDDOK_H P Digital supply low voltage detector high — — 1.145 V VMLVDDOK_L P Digital supply low voltage detector low — 1.08 — V 1. VDD = 3.3V ± 10% / 5.0V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified 3.9 Power up/down sequencing To prevent an overstress event or a malfunction within and outside the device, the SPC560P44Lx, SPC560P50Lx implements the following sequence to ensure each module is started only when all conditions for switching it ON are available: ● A POWER_ON module working on voltage regulator supply controls the correct startup of the regulator. This is a key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5V. Associated POWER_ON (or POR) signal is active low. ● Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active. ● A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, flash Doc ID 14723 Rev 9 63/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx memory and RC16 oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated module are set into a safe state. VDD_HV_REG VPORH VLVDHV3H 3.3V VPOR_UP 0V 3.3V POWER_ON 0V 3.3V LVDM (HV) 0V VDD_LV_REGCOR VMLVDOK_H 1.2V 0V 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM Figure 11. P0 P1 1.2V 0V Power-up typical sequence VDD_HV_REG VLVDHV3L VPORH 3.3V 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V Internal Reset Generation Module FSM IDLE P0 Figure 12. Power-down typical sequence 64/112 Doc ID 14723 Rev 9 1.2V 0V SPC560P44Lx, SPC560P50Lx Electrical characteristics VLVDHV3L VLVDHV3H 3.3V VDD_HV_REG 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM IDLE P0 P1 1.2V 0V Figure 13. Brown-out typical sequence 3.10 DC electrical characteristics 3.10.1 NVUSRO register Portions of the device configuration, such as high voltage supply, and watchdog enable/disable after reset are controlled via bit values in the non-volatile user options (NVUSRO) register. For a detailed description of the NVUSRO register, please refer to the device reference manual. NVUSRO[PAD3V5V] field description The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 20 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 20. PAD3V5V field description Value(1) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. Default manufacturing value before flash initialization is ‘1’ (3.3 V). Doc ID 14723 Rev 9 65/112 Electrical characteristics 3.10.2 SPC560P44Lx, SPC560P50Lx DC electrical characteristics (5 V) Table 21 gives the DC electrical characteristics at 5 V (4.5 V < VDD_HV_IOx < 5.5 V, NVUSRO[PAD3V5V] = 0); see Figure 14. Table 21. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) Value Symbol C Parameter Conditions Unit Min Max — –0.1(1) — V — — 0.35 VDD_HV_IOx V — 0.65 VDD_HV_IOx — V D — — VDD_HV_IOx + 0.1(1) V VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_S P Slow, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VOL_M P Medium, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_M P Medium, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VOL_F P Fast, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_F P Fast, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VOL_SYM P Symmetric, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_SYM P Symmetric, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VIN = VIL –130 — VIN = VIH — –10 VIN = VIL 10 — VIN = VIH — 130 TA = –40 to 125 °C –1 1 µA –0.5 0.5 µA — 10 pF VIN = VIL –130 — VIN = VIH — –10 D VIL Low level input voltage P P VIH High level input voltage IPU P Equivalent pull-up current IPD P Equivalent pull-down current IIL P Input leakage current (all bidirectional ports) IIL P Input leakage current (all ADC inputTA = –40 to 125 °C only ports) CIN D Input capacitance IPU D RESET, equivalent pull-up current — µA µA µA 1. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. 66/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 22. Electrical characteristics Supply current (5.0 V, NVUSRO[PAD3V5V] = 0) Value Symbol C Parameter Conditions RUN—Maximum mode(1) VDD_LV_CORx externally forced at 1.3 V T RUN—Typical mode(2) P IDD_FLASH T Supply current IDD_LV_CORx Max 40 MHz 62 77 64 MHz 71 88 40 MHz 45 56 64 MHz 52 65 RUN—Maximum mode(3) VDD_LV_CORx externally forced at 1.3 V 64 MHz 60 75 HALT mode(4) VDD_LV_CORx externally forced at 1.3 V — 1.5 10 STOP mode(5) VDD_LV_CORx externally forced at 1.3 V — 1 10 Flash during read VDD_HV_FL at 5.0 V — 10 12 Flash during erase operation on 1 VDD_HV_FL at 5.0 V flash module — 15 19 ADC_1 3.5 5 ADC_0 3 4 ADC_1 0.8 1 ADC—Maximum mode(1) IDD_ADC Unit Typ T ADC—Typical mode(2) VDD_HV_ADC0 at 5.0 V VDD_HV_ADC1 at 5.0 V fADC = 16 MHz ADC_0 IDD_OSC T Oscillator VDD_OSC at 5.0 V 8 MHz mA 0.005 0.006 2.6 3.2 1. Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O supply current excluded. 2. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded. 3. Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at PHI_div2 = 120 MHz and PHI_div3 = 80 MHz, auxiliary clock sources set that all peripherals receive maximum frequency, all peripherals enabled. 4. Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled. 5. STOP “P” mode Device Under Test (DUT) configuration: code fetched from RAM, code and data flash memories OFF, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled. 3.10.3 DC electrical characteristics (3.3 V) Table 23 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IOx < 3.6 V, NVUSRO[PAD3V5V] = 1); see Figure 14. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)(1) Table 23. Value Symbol C Parameter D VIL Conditions Unit Min Max — –0.1(2) — V — — 0.35 VDD_HV_IOx V Low level input voltage P Doc ID 14723 Rev 9 67/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)(1) (continued) Table 23. Value Symbol C Parameter Conditions P VIH — High level input voltage Unit Min Max 0.65 VDD_HV_IOx — V (2) D — — VDD_HV_IOx + 0.1 VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 1.5 mA — 0.5 V VOH_S P Slow, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V VOL_M P Medium, low level output voltage IOL = 2 mA — 0.5 V VOH_M P Medium, high level output voltage IOH = –2 mA VDD_HV_IOx – 0.8 — V VOL_F P Fast, low level output voltage IOL = 1.5 mA — 0.5 V VOH_F P Fast, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V VOL_SYM P Symmetric, low level output voltage IOL = 1.5 mA — 0.5 V VOH_SYM P Symmetric, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V VIN = VIL –130 — VIN = VIH — –10 VIN = VIL 10 — VIN = VIH — 130 V IPU P Equivalent pull-up current IPD P Equivalent pull-down current IIL P Input leakage current (all bidirectional ports) TA = –40 to 125 °C — 1 µA IIL P Input leakage current (all ADC inputTA = –40 to 125 °C only ports) — 0.5 µA CIN D Input capacitance — 10 pF — D RESET, equivalent pull-up current VIN = VIL –130 IPU VIN = VIH — –10 — µA µA µA 1. These specifications are design targets and subject to change per device characterization. 2. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. 68/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 24. Electrical characteristics Supply current (3.3 V, NVUSRO[PAD3V5V] = 1) Value Symbol C Parameter Conditions RUN—Maximum mode(1) VDD_LV_CORx externally forced at 1.3 V T RUN—Typical mode(2) P IDD_FLASH T Supply current IDD_LV_CORx Max 40 MHz 62 77 64 MHz 71 89 40 MHz 45 56 64 MHz 53 66 RUN—Maximum mode(3) VDD_LV_CORx externally forced at 1.3 V 64 MHz 60 75 HALT mode(4) VDD_LV_CORx externally forced at 1.3 V — 1.5 10 STOP mode(5) VDD_LV_CORx externally forced at 1.3 V — 1 10 Flash during read on single mode VDD_HV_FL at 3.3 V — 8 10 Flash during erase operation on single mode VDD_HV_FL at 3.3 V — 10 12 ADC_1 2.5 4 ADC_0 2 4 ADC_1 0.8 1 ADC—Maximum mode(1) IDD_ADC Unit Typ T ADC—Typical mode(2) VDD_HV_ADC0 at 3.3 V VDD_HV_ADC1 at 3.3 V fADC = 16 MHz mA ADC_0 0.005 0.006 IDD_OSC T Oscillator VDD_OSC at 3.3 V 8 MHz 2.4 3 1. Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O supply current excluded. 2. Typical mode: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded. 3. Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at PHI_div2 = 120 MHz and PHI_div3 = 80 MHz, auxiliary clock sources set that all peripherals receive maximum frequency, all peripherals enabled. 4. Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled. 5. STOP “P” mode Device Under Test (DUT) configuration: code fetched from RAM, code and data flash memories OFF, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled. 3.10.4 Input DC electrical characteristics definition Figure 14 shows the DC electrical characteristics behavior as function of time. Doc ID 14723 Rev 9 69/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Figure 14. Input DC electrical characteristics definition 3.10.5 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 25. Table 25. I/O supply segment Supply segment Package 1 2 3 4 5 6 7 LQFP144 pin8 – pin20 pin23 – pin38 pin39 – pin55 pin58 – pin68 pin73 – pin89 pin92 – pin125 pin128 – pin5 LQFP100 pin15 – pin26 pin27 – pin38 pin41 – pin46 pin51 – pin61 pin64 – pin86 pin89 – pin10 — Table 26 provides the weight of concurrent switching I/Os. In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%. Table 26. I/O weight LQFP144 LQFP100 Pad 70/112 Weight 5V Weight 3.3V Weight 5V Weight 3.3V NMI 1% 1% 1% 1% PAD[6] 6% 5% 14% 13% PAD[49] 5% 4% 14% 12% PAD[84] 14% 10% — — PAD[85] 9% 7% — — Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 26. Electrical characteristics I/O weight (continued) LQFP144 LQFP100 Pad Weight 5V Weight 3.3V Weight 5V Weight 3.3V PAD[86] 9% 6% — — MODO[0] 12% 8% — — PAD[7] 4% 4% 11% 10% PAD[36] 5% 4% 11% 9% PAD[8] 5% 4% 10% 9% PAD[37] 5% 4% 10% 9% PAD[5] 5% 4% 9% 8% PAD[39] 5% 4% 9% 8% PAD[35] 5% 4% 8% 7% PAD[87] 12% 9% — — PAD[88] 9% 6% — — PAD[89] 10% 7% — — PAD[90] 15% 11% — — PAD[91] 6% 5% — — PAD[57] 8% 7% 8% 7% PAD[56] 13% 11% 13% 11% PAD[53] 14% 12% 14% 12% PAD[54] 15% 13% 15% 13% PAD[55] 25% 22% 25% 22% PAD[96] 27% 24% — — PAD[65] 1% 1% 1% 1% PAD[67] 1% 1% — — PAD[33] 1% 1% 1% 1% PAD[68] 1% 1% — — PAD[23] 1% 1% 1% 1% PAD[69] 1% 1% — — PAD[34] 1% 1% 1% 1% PAD[70] 1% 1% — — PAD[24] 1% 1% 1% 1% PAD[71] 1% 1% — — PAD[66] 1% 1% 1% 1% PAD[25] 1% 1% 1% 1% PAD[26] 1% 1% 1% 1% Doc ID 14723 Rev 9 71/112 Electrical characteristics Table 26. SPC560P44Lx, SPC560P50Lx I/O weight (continued) LQFP144 LQFP100 Pad 72/112 Weight 5V Weight 3.3V Weight 5V Weight 3.3V PAD[27] 1% 1% 1% 1% PAD[28] 1% 1% 1% 1% PAD[63] 1% 1% 1% 1% PAD[72] 1% 1% — — PAD[29] 1% 1% 1% 1% PAD[73] 1% 1% — — PAD[31] 1% 1% 1% 1% PAD[74] 1% 1% — — PAD[30] 1% 1% 1% 1% PAD[75] 1% 1% — — PAD[32] 1% 1% 1% 1% PAD[76] 1% 1% — — PAD[64] 1% 1% 1% 1% PAD[0] 23% 20% 23% 20% PAD[1] 21% 18% 21% 18% PAD[107] 20% 17% — — PAD[58] 19% 16% 19% 16% PAD[106] 18% 16% — — PAD[59] 17% 15% 17% 15% PAD[105] 16% 14% — — PAD[43] 15% 13% 15% 13% PAD[104] 14% 13% — — PAD[44] 13% 12% 13% 12% PAD[103] 12% 11% — — PAD[2] 11% 10% 11% 10% PAD[101] 11% 9% — — PAD[21] 10% 8% 10% 8% TMS 1% 1% 1% 1% TCK 1% 1% 1% 1% PAD[20] 16% 11% 16% 11% PAD[3] 4% 3% 4% 3% PAD[61] 9% 8% 9% 8% PAD[102] 11% 10% — — Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 26. Electrical characteristics I/O weight (continued) LQFP144 LQFP100 Pad Weight 5V Weight 3.3V Weight 5V Weight 3.3V PAD[60] 11% 10% 11% 10% PAD[100] 12% 10% — — PAD[45] 12% 10% 12% 10% PAD[98] 12% 11% — — PAD[46] 12% 11% 12% 11% PAD[99] 13% 11% — — PAD[62] 13% 11% 13% 11% PAD[92] 13% 12% — — VPP_TEST 1% 1% 1% 1% PAD[4] 14% 12% 14% 12% PAD[16] 13% 12% 13% 12% PAD[17] 13% 11% 13% 11% PAD[42] 13% 11% 13% 11% PAD[93] 12% 11% — — PAD[95] 12% 11% — — PAD[18] 12% 10% 12% 10% PAD[94] 11% 10% — — PAD[19] 11% 10% 11% 10% PAD[77] 10% 9% — — PAD[10] 10% 9% 10% 9% PAD[78] 9% 8% — — PAD[11] 9% 8% 9% 8% PAD[79] 8% 7% — — PAD[12] 7% 7% 7% 7% PAD[41] 7% 6% 7% 6% PAD[47] 5% 4% 5% 4% PAD[48] 4% 4% 4% 4% PAD[51] 4% 4% 4% 4% PAD[52] 5% 4% 5% 4% PAD[40] 5% 5% 6% 5% PAD[80] 9% 8% — — PAD[9] 10% 9% 11% 10% PAD[81] 10% 9% — — Doc ID 14723 Rev 9 73/112 Electrical characteristics Table 26. SPC560P44Lx, SPC560P50Lx I/O weight (continued) LQFP144 LQFP100 Pad Table 27. Symbol ISWTSLW (2) ISWTMED(2) ISWTFST(2) Weight 5V Weight 3.3V Weight 5V Weight 3.3V PAD[13] 10% 9% 12% 11% PAD[82] 10% 9% — — PAD[22] 10% 9% 13% 12% PAD[83] 10% 9% — — PAD[50] 10% 9% 14% 12% PAD[97] 10% 9% — — PAD[38] 10% 9% 14% 13% PAD[14] 9% 8% 14% 13% PAD[15] 9% 8% 15% 13% I/O consumption C Dynamic I/O current CC D for SLOW configuration Dynamic I/O current CC D for MEDIUM configuration Dynamic I/O current CC D for FAST configuration CL = 25 pF CL = 25 pF CL = 25 pF CL = 25 pF, 4 MHz Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 mA mA VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 110 mA VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 Root medium square C = 100 pF, 2 MHz L CC D I/O current for SLOW C L = 25 pF, 2 MHz configuration CL = 25 pF, 4 MHz — — 50 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 mA VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz 74/112 Unit Min CL = 25 pF, 2 MHz IRMSSLW Value Conditions(1) Parameter Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 27. Symbol Electrical characteristics I/O consumption (continued) C Value Conditions(1) Parameter Unit Min Typ Max — — 6.6 — — 13.4 — — 18.3 — — 5 — — 8.5 — — 11 — — 22 — — 33 — — 56 — — 14 — — 20 CL = 100 pF, 40 MHz — — 35 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 IRMSMED CL = 25 pF, 40 MHz Root medium square CL = 100 pF, 13 MHz I/O current for CC D MEDIUM CL = 25 pF, 13 MHz configuration VDD = 3.3 V ± 10%, CL = 25 pF, 40 MHz PAD3V5V = 1 CL = 100 pF, 13 MHz CL = 25 pF, 40 MHz CL = 25 pF, 64 MHz IRMSFST Root medium square C = 100 pF, 40 MHz L CC D I/O current for FAST CL = 25 pF, 40 MHz configuration CL = 25 pF, 64 MHz IAVGSEG VDD = 5.0 V ± 10%, PAD3V5V = 0 Sum of all the static SR D I/O current within a supply segment mA mA VDD = 3.3 V ± 10%, PAD3V5V = 1 mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified 2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. 3.11 Main oscillator electrical characteristics The SPC560P44Lx, SPC560P50Lx provides an oscillator/resonator driver. Table 28. Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) Value Symbol C Parameter Unit Min Max 4 40 MHz fOSC SR — Oscillator frequency gm — P Transconduc tance 6.5 25 mA/V VOSC — T Oscillation amplitude on XTAL pin 1 — V tOSCSU — T Start-up time(1),(2) 8 — ms 1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of XTAL Doc ID 14723 Rev 9 75/112 Electrical characteristics Table 29. SPC560P44Lx, SPC560P50Lx Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) Value Symbol C Parameter Unit Min Max fOSC SR — Oscillator frequency 4 40 MHz gm — P Transconductance 4 20 mA/V VOSC — T 1 — V 8 — ms tOSCSU — T Oscillation amplitude on XTAL pin Start-up time (1),(2) 1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of XTAL Table 30. Input clock characteristics Value Symbol Parameter Unit Typ Max fOSC SR Oscillator frequency 4 — 40 MHz fCLK SR Frequency in bypass — — 64 MHz trCLK SR Rise/fall time in bypass — — 1 ns 47.5 50 52.5 % tDC SR Duty cycle 3.12 FMPLL electrical characteristics Table 31. FMPLL electrical characteristics Symbol Min C Value Conditions(1) Parameter Unit Min Max 4 40 MHz fref_crystal fref_ext D PLL reference frequency range(2) fPLLIN D Phase detector input frequency range (after pre-divider) — 4 16 MHz fFMPLLOUT D Clock frequency range in normal mode — 16 120 MHz fFREE P Free-running frequency Measured using clock division — typically /16 20 150 MHz tCYC D System clock period — — 1 / fSYS ns fLORL fLORH Loss of reference frequency window(3) Lower limit 1.6 3.7 D Upper limit 24 56 fSCM D 20 150 76/112 Crystal reference MHz Self-clocked mode frequency(4),(5) Doc ID 14723 Rev 9 — MHz SPC560P44Lx, SPC560P50Lx Table 31. Symbol Electrical characteristics FMPLL electrical characteristics (continued) C Short-term jitter(10) CLKOUT period jitter(6),(7),(8),(9) Value Conditions(1) Parameter fSYS maximum = 16 MHz f Long-term jitter (avg. PLLIN (resonator), fPLLCLK at over 2 ms interval) 64 MHz, 4000 cycles Unit Min Max −4 4 % fCLKOUT — 10 ns CJITTER T tlpll D PLL lock time (11), (12) — — 200 µs tdc D Duty cycle of reference — 40 60 % fLCK D Frequency LOCK range — −6 6 % fSYS fUL D Frequency un-LOCK range — -18 18 % fSYS fCS fDS Center spread ±0.25 ±4.0(13) D Modulation depth Down spread −0.5 −8.0 fMOD D — 70 Modulation frequency(14) — % fSYS kHz 1. VDD_LV_CORx = 1.2 V ±10%; VSS = 0 V; TA = –40 to 125 °C, unless otherwise specified 2. Considering operation with PLL not bypassed 3. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self-clocked mode. 4. Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. 5. fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 6. This value is determined by the crystal manufacturer and board design. 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 8. Proper PC board layout procedures must be followed to achieve specifications. 9. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 10. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4. 11. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 12. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 13. This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz). 14. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz. Doc ID 14723 Rev 9 77/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx 3.13 16 MHz RC oscillator electrical characteristics Table 32. 16 MHz RC oscillator electrical characteristics Value Symbol fRC C Parameter P RC oscillator frequency ΔRCMVAR Fast internal RC oscillator variation over temperature and P supply with respect to fRC at TA = 25 °C in highfrequency configuration ΔRCMTRIM T ΔRCMSTEP T Fast internal RC oscillator trimming step Post Trim Accuracy: The variation of the PTF(1) from the 16 MHz Conditions Unit Min Typ Max TA = 25 °C — 16 — MHz — –5 — 5 % TA = 25 °C –1 — 1 % TA = 25 °C — 1.6 — % 1. PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and temperature 3.14 Analog-to-digital converter (ADC) electrical characteristics The device provides a 10-bit successive approximation register (SAR) analog-to-digital converter. 78/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 5 (1) Example of an actual transfer curve (5) (2) The ideal transfer curve 4 (3) Differential non-linearity error (DNL) (4) (4) Integral non-linearity error (INL) 3 (5) Center of a step of the actual transfer curve (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Figure 15. ADC characteristics and error definitions 3.14.1 Input impedance and ADC accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured. Doc ID 14723 Rev 9 79/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS and CP2 being substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS+CP2 equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 / (fc × (CS+CP2)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS+CP2) and the sum of RS + RF, the external circuit must be designed to respect the Equation 4: Equation 4 RS + R F 1 V A • --------------------- < --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF CP1 RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1 and CP2) CS: Sampling capacitance Figure 16. Input equivalent circuit 80/112 Doc ID 14723 Rev 9 Channel Selection Sampling RSW1 RAD CP2 CS SPC560P44Lx, SPC560P50Lx Electrical characteristics A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch closed). Voltage Transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS 2048 • C S 3.14.2 ADC conversion characteristics Table 33. ADC conversion characteristics Symbol C Parameter Typ Max — VSS_HV_ADV0 − 0.3 — VDD_HV_ADV0 + 0.3 V — VSS_HV_ADV1 − 0.3 — VDD_HV_ADV1 + 0.3 V ADC clock frequency (depends on ADC SR — configuration) (The duty cycle depends on AD_clk(5) frequency) — 3(6) — 60 MHz SR — Sampling frequency — — — 1.53 MHz fADC = 20 MHz, INPSAMP = 3 125 — — ns fADC = 9 MHz, INPSAMP = 255 — — 28.2 µs fADC = 20 MHz(9), INPCMP = 1 0.650 — — µs ADC0 and shared ADC0/1 analog input voltage(2), (3) VINAN1 SR (4) fs tADC_S tADC_C Unit Min VINAN0 SR fCK Value Conditions(1) ADC1 analog input voltage(2), — D Sample time(7) — P Conversion time(8) Doc ID 14723 Rev 9 83/112 Electrical characteristics Table 33. SPC560P44Lx, SPC560P50Lx ADC conversion characteristics (continued) Symbol C Parameter ADC power-up delay (time needed for ADC to settle tADC_PU SR — exiting from software power down; PWDN bit = 0) ADC input sampling capacitance Value Conditions(1) Unit Min Typ Max — — — 1.5 µs — — — 2.5 pF CS(10) — D CP1(10) — D ADC input pin capacitance 1 — — — 3 pF CP2(10) — D ADC input pin capacitance 2 — — — 1 pF — — 0.6 kΩ — — 3 kΩ — — — 2 kΩ –5 — 5 mA VDD_HV_ADC = 5 V ± 10% Internal resistance of analog RSW1(10) — D source VDD_HV_ADC = 3.3 V ± 10% RAD(10) — D Internal resistance of analog source IINJ — T Input current injection Current injection on one ADC input, different from the converted one. Remains within TUE spec. INL CC P Integral non-linearity No overload –1.5 — 1.5 LSB DNL CC P Differential non-linearity No overload –1.0 — 1.0 LSB OSE GE CC T Offset error — — ±1 — LSB CC T Gain error — — ±1 — LSB TUE CC P Total unadjusted error without current injection — –2.5 — 2.5 LSB TUE CC T Total unadjusted error with current injection — –3 — 3 LSB 1. VDD = 3.3 V to 3.6 V / 4.5 V to 5.5 V, TA = –40 °C to TA MAX, unless otherwise specified and analog input voltage from VSS_HV_ADCx to VDD_HV_ADCx. 2. VAINx may exceed VSS_HV_AD and VDD_HV_AD limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. 3. Not allowed to refer this voltage to VDD_HV_ADV1, VSS_HV_ADV1 4. Not allowed to refer this voltage to VDD_HV_ADV0, VSS_HV_ADV0 5. AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. 6. When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which precision is lost. 7. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC_S depend on programming. 8. This parameter includes the sample time tADC_S. 9. 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC. 10. See Figure 16. 84/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics 3.15 Flash memory electrical characteristics Table 34. Program and erase specifications Value Symbol C Tdwprogram TBKPRG Parameter Min Typical(1) Initial max(2) Max(3) Unit P Double Word (64 bits) Program Time(4) — 22 50 500 µs P Bank Program (512 KB)(4)(5) — 1.45 1.65 33 s — 0.18 0.21 4.10 s KB)(4)(5) P Bank Program (64 T16kpperase P 16 KB Block Pre-program and Erase Time — 300 500 5000 ms T32kpperase P 32 KB Block Pre-program and Erase Time — 400 600 5000 ms T128kpperase P 128 KB Block Pre-program and Erase Time — 800 1300 7500 ms 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. 5. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column). Table 35. Flash memory module life Value Symbol C Parameter Conditions Unit Min Typ P/E Number of program/erase cycles per block C for 16 KB blocks over the operating temperature range (TJ) — 100000 — cycles P/E Number of program/erase cycles per block C for 32 KB blocks over the operating temperature range (TJ) — 10000 100000 cycles P/E Number of program/erase cycles per block C for 128 KB blocks over the operating temperature range (TJ) — 1000 100000 cycles Blocks with 0–1000 P/E cycles 20 — years Blocks with 10000 P/E cycles 10 — years Blocks with 100000 P/E cycles 5 — years Retention C Minimum data retention at 85 °C average ambient temperature(1) 1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. Doc ID 14723 Rev 9 85/112 Electrical characteristics Table 36. SPC560P44Lx, SPC560P50Lx Flash memory read access timing Symbol C fmax C Parameter Maximum working frequency at given number of wait states in worst conditions Conditions(1) Max value 2 wait states 66 0 wait states 18 Unit MHz 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified 3.16 AC specifications 3.16.1 Pad AC specifications Table 37. Output pin transition times Symbol C Value Conditions(1) Parameter Unit Min Typ Max CL = 25 pF D ttr ttr CC CC — 50 — — 100 CL = 50 pF D Output transition time output pin(2) D SLOW configuration CL = 100 pF — — 125 CL = 25 pF — — 40 T CL = 50 pF — — 50 D CL = 100 pF — — 75 D CL = 25 pF — — 10 T CL = 50 pF — — 20 D Output transition time output pin(2) D MEDIUM configuration CL = 100 pF — — 40 — — 12 T CL = 50 pF — — 25 D CL = 100 pF — — 40 — — 4 — — 6 — — 12 — — 4 — — 7 — — 12 — — 4 — — 5 CL = 25 pF CL = 50 pF CC D Output transition time output pin(2) FAST configuration CL = 100 pF CL = 25 pF CL = 50 pF CL = 100 pF tSYM(3) CC T ns VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 ns VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 ns VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 Symmetric transition time, same drive VDD = 5.0 V ± 10%, PAD3V5V = 0 strength between N and P transistor V = 3.3 V ± 10%, PAD3V5V = 1 DD 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified 2. CL includes device and package capacitances (CPKG < 5 pF). 3. Transition timing of both positive and negative slopes will differ maximum 50% 86/112 — T CL = 25 pF ttr VDD = 5.0 V ± 10%, PAD3V5V = 0 Doc ID 14723 Rev 9 ns SPC560P44Lx, SPC560P50Lx Electrical characteristics VDD_HV_IOx/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH VOL Pad Output Figure 19. Pad output delay 3.17 AC timing characteristics 3.17.1 RESET pin characteristics The SPC560P44Lx, SPC560P50Lx implements a dedicated bidirectional RESET pin. VDD VDDMIN VRESET VIH VIL device reset forced by VRESET device start-up phase TPOR Figure 20. Start-up reset requirements Doc ID 14723 Rev 9 87/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Figure 21. Noise filtering on reset signal Table 38. Symbol RESET electrical characteristics C Parameter Value Conditions(1) Unit Min Typ Max VIH SR P Input High Level CMOS (Schmitt Trigger) — 0.65VDD — VDD+0.4 V VIL SR P Input low Level CMOS (Schmitt Trigger) — –0.4 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V Push Pull, IOL = 2mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD Push Pull, IOL = 1mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(2) — — 0.1VDD Push Pull, IOL = 1mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 VOL 88/112 CC P Output low level Doc ID 14723 Rev 9 V SPC560P44Lx, SPC560P50Lx Table 38. Symbol Electrical characteristics RESET electrical characteristics (continued) C Value Conditions(1) Parameter Unit Min Typ Max CL = 25pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 — — 40 CL = 100pF, Output transition time V = 5.0 V ± 10%, PAD3V5V = 0 DD CC D output pin(3) MEDIUM configuration CL = 25pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 ttr ns — — 12 CL = 50pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 WFRST SR P RESET input filtered pulse — — — 40 ns WNFRST SR P RESET input not filtered pulse — 500 — — ns — — 1 ms VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 10 — 250 Maximum delay before internal reset is Monotonic VDD_HV supply ramp CC D released after all VDD_HV reach nominal supply tPOR Weak pull-up current |IWPU| CC P absolute value VDD = 5.0 V ± 10%, PAD3V5V = 1(4) µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified 2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device reference manual). 3. CL includes device and package capacitance (CPKG < 5 pF). 4. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 3.17.2 IEEE 1149.1 interface timing Table 39. JTAG pin AC electrical characteristics Value No. Symbol C Parameter Conditions Unit Min Max 1 tJCYC CC D TCK cycle time — 100 — ns 2 tJDC CC D TCK clock pulse width (measured at VDD_HV_IOx/2) — 40 60 ns 3 tTCKRISE CC D TCK rise and fall times (40% – 70%) — — 3 ns 4 tTMSS, tTDIS CC D TMS, TDI data setup time — 5 — ns Doc ID 14723 Rev 9 89/112 Electrical characteristics Table 39. SPC560P44Lx, SPC560P50Lx JTAG pin AC electrical characteristics (continued) Value No. Symbol C Parameter Conditions Unit Min Max 5 tTMSH, tTDIH CC D TMS, TDI data hold time — 25 — ns 6 tTDOV CC D TCK low to TDO data valid — — 40 ns 7 tTDOI CC D TCK low to TDO data invalid — 0 — ns 8 tTDOHZ CC D TCK low to TDO high impedance — 40 — ns 11 tBSDV CC D TCK falling edge to output valid — — 50 ns 12 tBSDVZ CC D TCK falling edge to output valid out of high impedance — — 50 ns 13 tBSDHZ CC D TCK falling edge to output high impedance — — 50 ns 14 tBSDST CC D Boundary scan input valid to TCK rising edge — 50 — ns 15 tBSDHT CC D TCK rising edge to boundary scan input invalid — 50 — ns TCK 2 3 2 1 Figure 22. 90/112 3 JTAG test clock input timing Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics TCK 4 5 TMS, TDI 6 8 7 TDO Figure 23. JTAG test access port timing Doc ID 14723 Rev 9 91/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 24. JTAG boundary scan timing 3.17.3 Nexus timing Table 40. Nexus debug port timing(1) Value No. Symbol C Parameter Unit 1 tMCYC CC D MCKO cycle time 2 tMDOV CC D MCKO low to MDO data valid(2) 3 tMSEOV CC D Typ Max 32 — — ns — — 6 ns MCKO low to MSEO data valid(2) — — 6 ns valid(2) — — 6 ns 64(3) — — ns 4 tEVTOV CC D MCKO low to EVTO data 5 tTCYC CC D TCK cycle time 92/112 Min Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 40. Electrical characteristics Nexus debug port timing(1) (continued) Value No. Symbol C Parameter Unit Min Typ Max tNTDIS CC D TDI data setup time 6 — — ns tNTMSS CC D TMS data setup time 6 — — ns tNTDIH CC D TDI data hold time 10 — — ns tNTMSH CC D TMS data hold time 10 — — ns 8 tTDOV CC D TCK low to TDO data valid — — 35 ns 9 tTDOI CC D TCK low to TDO data invalid 6 — — ns 6 7 1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. 2. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 3. Lower frequency is required to be fully compliant to standard. 1 MCKO 2 3 4 MDO MSEO EVTO Output Data Valid Figure 25. Nexus output timing TCK EVTI EVTO 5 Figure 26. Nexus event trigger and test clock timings Doc ID 14723 Rev 9 93/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx TCK 6 7 TMS, TDI 9 8 TDO Figure 27. Nexus TDI, TMS, TDO timing 3.17.4 External interrupt timing (IRQ pin) Table 41. External interrupt timing(1) Value No. Symbol C Parameter Conditions Unit Min Max — tCYC — tCYC — tCYC 1 tIPWL CC D IRQ pulse width low — 4 2 tIPWH CC D IRQ pulse width high — 4 3 tICYC CC D IRQ edge to edge time(2) — 4+N (3) 1. IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V to 5.5 V, TA = TL to TH, and CL = 200 pF with SRC = 0b00. 2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. 3. N = ISR time to clear the flag 94/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics IRQ 1 2 3 Figure 28. External interrupt timing 3.17.5 DSPI timing Table 42. DSPI timing(1) Value No. 1 Symbol C Parameter Conditions Unit Min Max Master (MTFE = 0) 60 — Slave (MTFE = 0) 60 — tSCK CC D DSPI cycle time ns 2 tCSC CC D CS to SCK delay — 16 — ns 3 tASC CC D After SCK delay — 26 — ns 4 tSDC CC D SCK duty cycle — 5 tA 6 tDIS 0.4 * tSCK 0.6 * tSCK ns CC D Slave access time SS active to SOUT valid — 30 ns CC D Slave SOUT disable time SS inactive to SOUT high impedance or invalid — 16 ns 7 tPCSC CC D PCSx to PCSS time — 13 — ns 8 tPASC CC D PCSS to PCSx time — 13 — ns Master (MTFE = 0) 35 — Slave 4 — Master (MTFE = 1, CPHA = 0) 35 — Master (MTFE = 1, CPHA = 1) 35 — Master (MTFE = 0) –5 — Slave 4 — Master (MTFE = 1, CPHA = 0) 11 — Master (MTFE = 1, CPHA = 1) –5 — 9 10 tSUI tHI CC D Data setup time for inputs ns CC D Data hold time for inputs ns Doc ID 14723 Rev 9 95/112 Electrical characteristics Table 42. SPC560P44Lx, SPC560P50Lx DSPI timing(1) (continued) Value No. 11 12 Symbol tSUO tHO C Parameter Conditions Unit Min Max Master (MTFE = 0) — 12 Slave — 36 Master (MTFE = 1, CPHA = 0) — 12 Master (MTFE = 1, CPHA = 1) — 12 Master (MTFE = 0) –2 — Slave 6 — Master (MTFE = 1, CPHA = 0) 6 — Master (MTFE = 1, CPHA = 1) –2 — CC D Data valid (after SCK edge) ns CC D Data hold time for outputs ns 1. All timing is provided with 50 pF capacitance on output, 1 ns transition time on input signal. 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT First Data Last Data 11 Data Last Data Note: Numbers shown reference Table 42. Figure 29. DSPI classic SPI timing – Master, CPHA = 0 96/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 Data First Data SIN Last Data 12 SOUT First Data 11 Data Last Data Note: Numbers shown reference Table 42. Figure 30. DSPI classic SPI timing – Master, CPHA = 1 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 42. Figure 31. DSPI classic SPI timing – Slave, CPHA = 0 Doc ID 14723 Rev 9 97/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Note: Numbers shown reference Table 42. Figure 32. DSPI classic SPI timing – Slave, CPHA = 1 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN First Data 10 12 SOUT First Data Last Data Data 11 Data Last Data Note: Numbers shown reference Table 42. Figure 33. DSPI modified transfer format timing – Master, CPHA = 0 98/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Electrical characteristics PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Note: Numbers shown reference Table 42. Figure 34. DSPI modified transfer format timing – Master, CPHA = 1 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) SOUT First Data Data First Data 6 Last Data 10 9 SIN 12 11 5 Data Last Data Note: Numbers shown reference Table 42. Figure 35. DSPI modified transfer format timing – Slave, CPHA = 0 Doc ID 14723 Rev 9 99/112 Electrical characteristics SPC560P44Lx, SPC560P50Lx SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Note: Numbers shown reference Table 42. Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1 8 7 PCSS PCSx Note: Numbers shown reference Table 42. Figure 37. DSPI PCS strobe (PCSS) timing 100/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Package characteristics 4 Package characteristics 4.1 ECOPACK® IIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 4.2 Package mechanical data 4.2.1 LQFP144 mechanical outline drawing L Seating plane C A A2 A1 c b 0.25 mm gage plane ccc C k D D1 A1 D3 L1 108 73 72 109 E3 E1 144 Pin 1 identification L E 37 1 36 e ME_1A Figure 38. LQFP144 package mechanical drawing Doc ID 14723 Rev 9 101/112 Package characteristics Table 43. SPC560P44Lx, SPC560P50Lx LQFP144 mechanical data Dimensions Symbol inches(1) mm Min Typ Max Min Typ Max A — — 1.600 — — 0.0630 A1 0.050 — 0.150 0.0020 — 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 — 0.200 0.0035 — 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.8740 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 — 17.500 — — 0.6890 — E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 — 17.500 — — 0.6890 — e — 0.500 — — 0.0197 — L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 — 1.000 — — 0.0394 — k 0.0° 3.5° 7.0° 3.5° 0.0° 7.0° ccc(2) 0.080 0.0031 1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits. 2. Tolerance 102/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 4.2.2 Package characteristics LQFP100 mechanical outline drawing 0.25 mm 0.10 inch GAGE PLANE k D L D1 L1 D3 51 75 C 76 50 b E3 E1 E 100 Pin 1 identification 26 1 25 ccc C e A1 A2 A SEATING PLANE C 1L_ME Figure 39. LQFP100 package mechanical drawing Doc ID 14723 Rev 9 103/112 Package characteristics Table 44. SPC560P44Lx, SPC560P50Lx LQFP100 package mechanical data Dimensions Symbol inches(1) mm Min Typ Max Min Typ Max A — — 1.600 — — 0.0630 A1 0.050 — 0.150 0.0020 — 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 — 0.200 0.0035 — 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 — 12.000 — — 0.4724 — E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 — 12.000 — — 0.4724 — e — 0.500 — — 0.0197 — L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 — 1.000 — — 0.0394 — k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc(2) 0.08 0.0031 1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits. 2. Tolerance 104/112 Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 5 Ordering information Ordering information Example code: Product identifier Core Family Memory SPC56 0 P 50 Package Temperature Custom vers. Conditioning L5 C EFA Y Y = Tray R = Tape and Reel X = Tape and Reel 90° A = 64 MHz, 5 V B = 64 MHz, 3.3 V C = 40 MHz, 5 V D = 40 MHz, 3.3 V F = Full featured A = Airbag E = Data flash memory B = –40 to 105 °C C = –40 to 125 °C L3 = LQFP100 L5 = LQFP144 50 = 512 KB 44 = 384 KB P = SPC560Px family 0 = e200z0 SPC56 = Power Architecture in 90 nm Figure 40. Commercial product code structure(a) a. Not all configurations are available on the market. Please contact your ST sales representative to get the list of orderable commercial part number. Doc ID 14723 Rev 9 105/112 Abbreviations SPC560P44Lx, SPC560P50Lx Appendix A Abbreviations Table 45 lists abbreviations used in this document. Table 45. Abbreviations Abbreviation CMOS Complementary metal–oxide–semiconductor CPHA Clock phase CPOL Clock polarity CS Peripheral chip select DUT Device under test ECC Error code correction EVTO Event out GPIO General purpose input/output MC Modulus counter MCKO Message clock out MCU Microcontroller unit MDO Message data out MSEO Message start/end out MTFE Modified timing format enable NPN NVUSRO 106/112 Meaning Negative-positive-negative Non-volatile user options register PTF Post trimming frequency PWM Pulse width modulation RBW Resolution bandwidth SCK Serial communications clock SOUT Serial data out TCK Test clock input TDI Test data input TDO Test data output TMS Test mode select Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx 6 Revision history Revision history Table 46 summarizes revisions to this document. Table 46. Revision history Date Revision 28-Aug-2008 1 Changes Initial release Table 7: TDO and TDI pins (Port pins B[4:5] are single function pins. Table 12, Table 13: Thermal characteristics added. Table 11, Table 12: EMI testing specifications split into separate tables for Normal mode and Airbag mode; data to be added in a later revision. 25-Nov-2008 2 Table 16, Table 17, Table 19, Table 20: Supply current specifications split into separate tables for Normal mode and Airbag mode; data to be added in a later revision. Table 23: ● Values for IOL and IOH (in Conditions column) changed. ● Max values for VOH_S, VOH_M, VOH_F and VOH_SYM deleted. ● VILR max value changed. ● IPUR min and max values changed. Table 27: Sensitivity value changed. Table 30: Most values in table changed. 05-Mar-2009 3 ● Description of system requirements, controller characteristics and how controller characteristics are guaranteed updated. ● Electrical parameters updated. ● EMI characteristics are now in one table; values have been updated. ● ESD characteristics are now in one table. ● Electrical parameters are identified as either system requirements or controller characteristics. Method used to guarantee each controller characteristic is noted in table. ● AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and DSPI Timing sections deleted Doc ID 14723 Rev 9 107/112 Revision history Table 46. Date 07-Jul-2009 108/112 SPC560P44Lx, SPC560P50Lx Revision history (continued) Revision Changes 4 Through all document: – Replaced all “RESET_B” occurrences with “RESET” through all document. – AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and DSPI Timing sections inserted again. – Electrical parameters updated. Section , Features: – Specified LIN 2.1 in communications interfaces feature. Table 2 – Added row for Data Flash. Table 4 – Added a footnote regarding the decoupling capacitors. Table 6 – Removed the “other function“ column. – Rearranged the contents. Table 14 – Updated definition of Condition column. Table 19 – merged in an unique Table the power consumption data related to "Maximum mode" and "Airbag mode". Table 21 – merged in an unique Table the power consumption data related to "Maximum mode" and "Airbag mode". Table 29 – Updated the parameter definition of ΔRCMVAR. – Removed the condition definition of ΔRCMVAR. Table 29 – Added tADC_C and TUE rows. Table 30 – Added tADC_C and TUE rows. – Removed Rsw2. Table 33 – Added. Table 29 – Updated and added footnotes. Section 3.16.1 RESET Pin Characteristics – Replaces whole section. Table 38 – Renamed the “Flash (KB)“ heading column in “Code Flash / Data Flash (EE) (KB)“ – Replaced the value of RAM from 32 to 36KB in the last four rows. Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 46. Date 27-Oct-2009 06-Apr-2010 07-Apr-2011 Revision history Revision history (continued) Revision Changes 5 - Added “Full Feature“ and “Airbag“ customization. - Removed B[4] and B[5] rows from “Pin muxing” table and inserted them on “System pins” table. - Updated package pinout. - Rewrote entirely section “Power Up/dpwn Sequencing“ section. - Renamend “VDD_LV_PLL“ and “VSS_LV_PLL“ supply pins with respectively “VDD_LV_COR3“ and “VSS_LV_COR3”. - Added explicative figures on “Electrical characteristics” section. - Updated “Thermal characteristics“ for 100-pin. - Proposed two different configuration of “voltage regulator. - Inserted Power Up/Down sequence. - Added explicative figures on “DC Electrical characteristics”. - Added “I/O pad current specification” section. - Renamed the “Airbag mode” with “Typical mode“and updated the values on “supply current” tables. - Added more order code. 6 Inserted label of Y-axis in the “Independent ADC supply“ figure. “Recommended Operating Conditions” tables: Moved the TJ row to “Absolute Maximum Ratings“ table. Rewrite note 1 and 3 Inverted Min a Typ value of CDEC2 on ”Voltage Regulator Electrical Characteristics” table. Removed an useless duplicate of “Voltage Regulator Electrical Characteristics“ table. Inserted the name of CS into “Input Equivalent Circuit“ figure. Removed leakage Ivpp from datasheet. Updated “Supply Current” tables. Added note on “Output pin transition times“ table. Updated ”Temperature Sensor Electrical Characteristics” table. Updated “16 MHz RC Oscillator Electrical Characteristics” table. Removed the note about the condition from “Flash read access timing“ table. Removed the notes that assert the values need to be confirmed before validation. 7 Formatting and editorial changes throughout Removed all content referencing Junction Temperature Sensor Cover page Features: – CPU core—specified 64 MHz frequency – updated memory features – eTimer units: changed “up/down capabilities” to “up/down count capabilities” – ADC—changed “2 × 13 input channels” to “2 × 11 input channels, + 4 shared channels” – replaced “On-chip CAN/UART/FlexRay bootstrap loader” with “On-chip CAN/UART bootstrap loader” Section 1: Introduction: changed title (was: Overview); reorganized contents SPC560P44Lx, SPC560P50Lx device comparison: – ADC feature: changed “16 channels” to “15-channel”; added footnote to to indicate that four channels are shared between the two ADCs – removed SPC560P40 column – changed “dual channel” to “selectable single or dual channel support” in FlexRay footnote – updated “eTimer” feature – updated footnote relative to “Digital power supply” feature Doc ID 14723 Rev 9 109/112 Revision history Table 46. Date 07-Apr-2011 110/112 SPC560P44Lx, SPC560P50Lx Revision history (continued) Revision Changes 7 (cont’d) SPC560P44Lx, SPC560P50Lx device configuration differences: Removed “temperature” row (temperature information is provided in Order codes) Updated SPC560P44Lx, SPC560P50Lx block diagram Added SPC560P44Lx, SPC560P50Lx series block summary Added Section 1.5 Feature details Section 2.1, Package pinouts: removed alternate functions from pinout diagrams Supply pins: updated descriptions of power supply pins (1.2 V) System pins: updated table Pin muxing: added rows “B[4]” and “B[5] Section 3.3, Absolute maximum ratings: added voltage specifications to titles of Figure 5 and Figure 6; in Table 9, changed row “VSS_HV / Digital Ground” to “VSS / Device Ground”; updated symbols Section 3.4, Recommended operating conditions: added voltage specifications to titles of Figure 7 and Figure 8 Recommended operating conditions (5.0 V), and Recommended operating conditions (3.3 V): changed row “VSS_HV / Digital Ground” to “VSS / Device Ground”; updated symbols Updated Section 3.5.1, Package thermal characteristics Updated Section 3.6, Electromagnetic interference (EMI) characteristics Section 3.8.1, Voltage regulator electrical characteristics: amended titles of Table 16 and Table 19 Voltage regulator electrical characteristics (configuration without resistor on base) and Voltage regulator electrical characteristics (configuration with resistor on base): updated symbol and values for VDD_LV_REGCOR Low voltage monitor electrical characteristics: Updated VMLVDDOK_H max value—was 1.15 V; is 1.145 V Section 3.10, DC electrical characteristics: reorganized contents Updated Section 3.10.1, NVUSRO register (includes adding Section NVUSRO[OSCILLATOR_MARGIN] field description) Supply current (5.0 V, NVUSRO[PAD3V5V] = 0): updated symbols Corrected parameter descriptions in DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1): – VOL_F—was “Fast, high level output voltage”; is “Fast, low level output voltage” – VOL_SYM—was “Symmetric, high level output voltage”; is “Symmetric, low level output voltage” Supply current (3.3 V, NVUSRO[PAD3V5V] = 1): updated symbols Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0): replaced instances of EXTAL with XTAL Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1): replaced instances of EXTAL with XTAL FMPLL electrical characteristics: replaced “PLLMRFM” with “FMPLL” in table title; updated conditions; removed fsys row; updated fFMPLLOUT min value ADC conversion characteristics: updated symbols; added row tADC_PU Flash memory read access timing: added footnote to “Conditions” column Section 3.16.1, Pad AC specifications: added Pad output delay diagram In the range of figures “DSPI Classic SPI Timing — Master, CPHA = 0” to “DSPI PCS Strobe (PCSS) Timing”: added note Updated Order codes Updated “Commercial product code structure” figure Table 45: Added abbreviations “DUT”, “NPN”, and “RBW” Doc ID 14723 Rev 9 SPC560P44Lx, SPC560P50Lx Table 46. Date Revision history Revision history (continued) Revision 18-Jul-2012 8 18-Sep-2013 9 Changes Updated Table 1 (Device summary) Section 1.5.4, Flash memory: Changed “Data flash memory: 32-bit ECC” to “Data flash memory: 64-bit ECC” Figure 40 (Commercial product code structure), replaced "C = 60 MHz, 5 V" and "D = 60 MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V" Table 9 (Absolute maximum ratings), updated TVDD parameter, the minimum value to 3.0 V/s and the maximum value to 0.5 V/µs Table 7 (Pin muxing), changed the description in the column "I/O direction" from "I/O" to "O" for the following port pins: A[10] with function B[0] A[11] with function A[0] A[11] with function A[2] A[12] with function A[2] A[12] with function B[2] A[13] with function B[2] C[7] with function A[1] C[10] with function A[3] C[15] with function A[1] D[0] with function B[1] D[10] with function A[0] D[11] with function B[0] D[13] with function A[1] D[14] with function B[1] Updated Section 3.8.1, Voltage regulator electrical characteristics Added Table 27 (I/O consumption) Section 3.10, DC electrical characteristics: deleted references to “oscillator margin” deleted subsection “NVUSRO[OSCILLATOR_MARGIN] field description” Table 21 (DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)), added IPU row for RESET pin Table 23 (DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)), added IPU row for RESET pin Table 33 (ADC conversion characteristics), added VINAN entry Removed “Order codes” table Figure 40 (Commercial product code structure): added a footnote updated “E = Data flash memory” Updated Disclaimer Doc ID 14723 Rev 9 111/112 SPC560P44Lx, SPC560P50Lx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 112/112 Doc ID 14723 Rev 9
SPC560P50L5CEFBY
1. 物料型号:文档中提到的型号为SPC560P44Lx和SPC560P50Lx。

2. 器件简介:文档并未提供具体的器件简介,但从型号可以推断这些是汽车级微控制器,由意法半导体(ST)生产。

3. 引脚分配:文档中包含了详细的引脚分配信息,但需要具体查看每个型号的引脚分配图来获取详细信息。

4. 参数特性:文档提供了详尽的电气特性,包括绝对最大额定值、推荐操作条件、电源电流、振荡器特性、ADC特性等。

5. 功能详解:文档中详细描述了微控制器的各种功能,如电源管理、电压调节、ADC、DSPI、LINFlex、FlexCAN等。

6. 应用信息:文档中没有直接提供应用信息,但根据电气特性和功能描述,这些微控制器适用于汽车和工业控制应用。

7. 封装信息:文档提供了LQFP144和LQFP100封装的机械数据和引脚分配
SPC560P50L5CEFBY 价格&库存

很抱歉,暂时无法提供与“SPC560P50L5CEFBY”相匹配的价格&库存,您可以联系我们找货

免费人工找货