SPC564A74B4, SPC564A74L7,
SPC564A80B4, SPC564A80L7
32-bit MCU family built on the embedded Power Architecture®
Features
■
■
■
■
150 MHz e200z4 Power Architecture® core
– Variable length instruction encoding (VLE)
– Superscalar architecture with 2 execution
units
– Up to 2 integer or floating point instructions
per cycle
– Up to 4 multiply and accumulate operations
per cycle
LBGA208
PBGA324
LQFP176
– 3 FlexCAN with 64 messages each
– 1 FlexRay module (V2.1) up to 10 Mbit/s
with dual or single channel and 128
message objects and ECC
Memory organization
– 4 MB on-chip flash memory with ECC and
Read While Write (RWW)
– 192 KB on-chip RAM with standby
functionality (32 KB) and ECC
– 8 KB instruction cache (with line locking),
configurable as 2- or 4-way
– 14 + 3 KB eTPU code and data RAM
– 5 4 crossbar switch (XBAR)
– 24-entry MMU
– External Bus Interface (EBI) with slave and
master port
Fail Safe Protection
– 16-entry Memory Protection Unit (MPU)
– CRC unit with 3 sub-modules
– Junction temperature sensor
Interrupts
– Configurable interrupt controller (with NMI)
– 64-channel DMA
■
Serial channels
– 3 eSCI
– 3 DSPI (2 of which support downstream
Micro Second Channel [MSC])
Table 1.
Device summary
■
1 eMIOS
■
1 eTPU2 (second generation eTPU)
■
2 enhanced queued analog-to-digital
converters (eQADCs)
■
On-chip CAN/SCI/FlexRay Bootstrap loader
with Boot Assist Module (BAM)
■
Nexus: Class 3+ for core; Class 1 for the eTPU
■
JTAG (5-pin)
■
Development Trigger Semaphore (DTS)
■
Clock generation
– On-chip 4–40 MHz main oscillator
– On-chip FMPLL (frequency-modulated
phase-locked loop)
■
Up to 120 general purpose I/O lines
■
Power reduction mode: slow, stop and standby modes
■
Flexible supply scheme
– 5 V single supply with external ballast
– Multiple external supply: 5 V, 3.3 V and
1.2 V
■
Designed for LQFP176, LBGA208, PBGA324
and Known Good Die (KGD)
Part number
Memory Flash
size
Package LQFP176
Package: LBGA208
Package: PBGA324
KGD
4MB
SPC564A80L7
-
SPC564A80B4
-
3MB
SPC564A74L7
-
SPC564A74B4
-
September 2013
Doc ID 15399 Rev 9
1/157
www.st.com
1
Contents
SPC564A74L7, SPC564A80B4, SPC564A80L7
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1
Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3
Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4
SPC564A80 feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5
Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6
2/157
1.5.1
e200z4 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2
Crossbar Switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.3
eDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.4
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.5
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.6
FMPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.7
SIU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.8
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.9
BAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.10
eMIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.11
eTPU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.12
Reaction module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.13
eQADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.14
DSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.15
eSCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.16
FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.17
FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.18
System timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.19
Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.20
Cyclic redundancy check (CRC) module . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.21
Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.22
External bus interface (EBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.23
Calibration EBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.24
Power management controller (PMC) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.25
Nexus port controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.26
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.27
Development Trigger Semaphore (DTS) . . . . . . . . . . . . . . . . . . . . . . . . 29
SPC564A80 series architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
2
3
Contents
1.6.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6.2
Block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1
LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2
LBGA208 ballmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3
PBGA324 ballmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4
Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5
Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1
Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1
General notes for specifications at maximum junction temperature . . . 85
3.4
EMI (electromagnetic interference) characteristics . . . . . . . . . . . . . . . . . 88
3.5
Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 88
3.6
Power management control (PMC) and power on reset (POR) electrical
specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6.1
Regulator Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.6.2
Recommended power transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.7
Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.8
DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.9
I/O pad current specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.9.1
I/O pad VRC33 current specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.9.2
LVDS pad specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.10
Oscillator and PLLMRFM electrical characteristics . . . . . . . . . . . . . . . . 104
3.11
Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . 106
3.12
eQADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.13
Configuring SRAM wait states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.14
Platform flash controller electrical characteristics . . . . . . . . . . . . . . . . . 109
3.15
Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.16
AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.16.1
3.17
Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Doc ID 15399 Rev 9
3/157
Contents
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.17.1
Reset and configuration pin timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.17.2
IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.17.3
Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.17.4
External Bus Interface (EBI) and calibration bus interface timing . . . . 122
3.17.5
External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.17.6
eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.17.7
eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.17.8
DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.17.9
eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.17.10 FlexCAN system clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.1
ECOPACK‚
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2.1
LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2.2
BGA208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2.3
PBGA324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SPC564A80, SPC563M64 and SPC564A70 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SPC564A80 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPC564A80 signal properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Power/ground segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Thermal characteristics for 176-pin QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Thermal characteristics for 208-pin LBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Thermal characteristics for 324-pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
EMI Testing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
PMC Operating Conditions and External Regulators Supply Voltage . . . . . . . . . . . . . . . . 89
PMC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
SPC564A80 External network specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Recommended operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Power sequence pin states (fast pads). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Power sequence pin states (medium, slow, and multi-voltage pads) . . . . . . . . . . . . . . . . . 94
DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I/O pad average IDDE specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
I/O pad VRC33 average IDDE specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
VRC33 pad average DC current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DSPI LVDS pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
PLLMRFM electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
eQADC conversion specifications (operating) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
eQADC single ended conversion specifications (operating). . . . . . . . . . . . . . . . . . . . . . . 107
eQADC differential ended conversion specifications (operating) . . . . . . . . . . . . . . . . . . . 107
Cutoff frequency for additional SRAM wait state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
APC, RWSC, WWSC settings vs. frequency of operation, . . . . . . . . . . . . . . . . . . . . . . . . 109
Flash program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Flash module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Pad AC specifications (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Pad AC specifications (VDDE = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Reset and Configuration Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Nexus debug port operating frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
External Bus Interface maximum operating frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Calibration bus interface maximum operating frequency . . . . . . . . . . . . . . . . . . . . . . . . . 122
External bus interface (EBI) and calibration bus operation timing . . . . . . . . . . . . . . . . . 122
External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DSPI channel frequency support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DSPI timing, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Doc ID 15399 Rev 9
5/157
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
6/157
SPC564A74L7, SPC564A80B4, SPC564A80L7
eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V) . . . . . . . . . . . . . . . . . . . . . 135
FlexCAN engine system clock divider threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
FlexCAN engine system clock divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
LBGA208 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PBGA324 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
SPC564A80 series block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
176-pin LQFP pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
208-pin LBGA package ballmap (viewed from above) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
324-pin PBGA package ballmap (northwest, viewed from above) . . . . . . . . . . . . . . . . . . . 37
324-pin PBGA package ballmap (southwest, viewed from above) . . . . . . . . . . . . . . . . . . . 38
324-pin PBGA package ballmap (northeast, viewed from above) . . . . . . . . . . . . . . . . . . . 39
324-pin PBGA package ballmap (southeast, viewed from above) . . . . . . . . . . . . . . . . . . . 40
Core voltage regulator controller external components preferred configuration . . . . . . . . . 93
Pad output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Reset and Configuration Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
JTAG JCOMP timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
CLKOUT timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Synchronous output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Synchronous input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
ALE signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
External Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DSPI classic SPI timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DSPI classic SPI timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DSPI classic SPI timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DSPI classic SPI timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DSPI modified transfer format timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . 132
DSPI modified transfer format timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . 132
DSPI modified transfer format timing — slave, CPHA =0. . . . . . . . . . . . . . . . . . . . . . . . . 133
DSPI modified transfer format timing — slave, CPHA =1. . . . . . . . . . . . . . . . . . . . . . . . . 134
DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
PBGA324 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Doc ID 15399 Rev 9
7/157
Introduction
SPC564A74L7, SPC564A80B4, SPC564A80L7
1
Introduction
1.1
Document Overview
This document provides electrical specifications, pin assignments, and package diagrams
for the SPC564A80 series of microcontroller units (MCUs). For functional characteristics,
refer to the SPC564A80 Microcontroller Reference Manual.
1.2
Description
The microcontroller’s e200z4 host processor core is built on Power Architecture technology
and designed specifically for embedded applications. In addition to the Power Architecture
technology, this core supports instructions for digital signal processing (DSP).
The SPC564A80 has two levels of memory hierarchy consisting of 8 KB of instruction
cache, backed by 192 KB on-chip SRAM and 4 MB of internal flash memory. The
SPC564A80 includes an external bus interface, and also a calibration bus that is only
accessible when using the calibration tools.
This document describes the features of the SPC564A80 and highlights important electrical
and physical characteristics of the device.
8/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
1.3
Introduction
Device comparison
Table 2 summarizes the SPC564A80 and compares it to the SPC563M64.
Table 2.
SPC564A80, SPC563M64 and SPC564A70 comparison
Feature
SPC564A80
SPC563M64
Process
Core
90 nm
e200z4
e200z3
SIMD
Yes
VLE
Yes
Cache
SPC564A70
8 KB instruction
Non-Maskable Interrupt (NMI)
e200z4
No
8 KB instruction
NMI & Critical Interrupt
MMU
24 entry
16 entry
24 entry
MPU
16 entry
No
16 entry
54
34
44
0–150 MHz
0–80 MHz
0–150 MHz
Crossbar switch
Core performance
Windowing software watchdog
Core Nexus
Yes
Class 3+
Class 2+
Class 3+
SRAM
192 KB
94 KB
128 KB
Flash
4 MB
1.5 MB
2 MB
4 256-bit
4 128-bit
External bus
16-bit (incl 32-bit muxed)
None
Calibration bus
16-bit (incl 32-bit muxed)
16-bit
16-bit (incl 32-bit
muxed)
64 ch.
32 ch.
64 ch.
Flash fetch accelerator
DMA
DMA Nexus
Serial
None
3
eSCI_A
Yes (MSC Uplink)
eSCI_B
Yes (MSC Uplink)
eSCI_C
CAN
3
Yes
No
Yes
3
2
3
CAN_A
SPI
2
64 buf
CAN_B
64 buf
No
64 buf
CAN_C
64 buf
32 buf
64 buf
3
2
3
Doc ID 15399 Rev 9
9/157
Introduction
Table 2.
SPC564A74L7, SPC564A80B4, SPC564A80L7
SPC564A80, SPC563M64 and SPC564A70 comparison (continued)
Feature
SPC564A80
SPC563M64
Micro Second Channel (MSC)
bus downlink
Yes
DSPI_A
No
DSPI_B
Yes (with LVDS)
DSPI_C
Yes (with LVDS)
DSPI_D
FlexRay
Yes
No
Yes
Yes
No
Yes
5 PIT channels
4 STM channels
1 Software Watchdog
System timers
eMIOS
24 ch.
16 ch.
eTPU
14 KB
Data memory
3 KB
(1)
486 ch.
307 ch.
486 ch.(1)
40 ch.
34 ch.
40 ch.
ADC
ADC_A
Yes
ADC_B
Yes
Temp sensor
Yes
Variable gain amp.
Yes
Decimation filter
2
1
Sensor diagnostics
Yes
No
FMPLL
Yes
(2)
5 V, 3.3 V
5 V, 3.3 V(3)
5 V, 3.3 V(2)
Stop Mode
Slow Mode
Low-power modes
LQFP176(4)
LBGA208(4)
PBGA
Known Good Die (KGD)
496-pin CSP(5)
1. 199 interrupt vectors are reserved.
2. 5 V single supply only for LQFP176.
3. 5 V single supply only for LQFP144 and LQFP100.
4. Pinout compatible with STMicroelectronics’ SPC563M64 devices.
5. For ST calibration tool only.
10/157
Yes
Yes
VRC
Packages
2
Yes
CRC
Supplies
24 ch.
32 ch. eTPU2
Code memory
Interrupt controller
SPC564A70
Doc ID 15399 Rev 9
LQFP100
LQFP144
LQFP176
LBGA208
496-pin CSP(5)
LQFP176(4)
LBGA208(4)
PBGAKnown Good
Die (KGD)
496-pin CSP(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
1.4
Introduction
SPC564A80 feature list
●
●
●
●
●
150 MHz e200z4 Power Architecture core
–
Variable length instruction encoding (VLE)
–
Superscalar architecture with 2 execution units
–
Up to 2 integer or floating point instructions per cycle
–
Up to 4 multiply and accumulate operations per cycle
Memory organization
–
4 MB on-chip flash memory with ECC and Read While Write (RWW)
–
192 KB on-chip SRAM with standby functionality (32 KB) and ECC
–
8 KB instruction cache (with line locking), configurable as 2- or 4-way
–
14 + 3 KB eTPU code and data RAM
–
5 4 crossbar switch (XBAR)
–
24-entry MMU
–
External Bus Interface (EBI) with slave and master port
Fail Safe Protection
–
16-entry Memory Protection Unit (MPU)
–
CRC unit with 3 sub-modules
–
Junction temperature sensor
Interrupts
–
Configurable interrupt controller (with NMI)
–
64-channel DMA
Serial channels
–
3 eSCI
–
3 DSPI (2 of which support downstream Micro Second Channel [MSC])
–
3 FlexCAN with 64 messages each
–
1 FlexRay module (V2.1) up to 10 Mbit/s with dual or single channel and 128
message objects and ECC
●
1 eMIOS: 24 unified channels
●
1 eTPU2 (second generation eTPU)
●
–
32 standard channels
–
1 reaction module (6 channels with three outputs per channel)
2 enhanced queued analog-to-digital converters (eQADCs)
–
Forty 12-bit input channels (multiplexed on 2 ADCs); expandable to 56 channels
with external multiplexers
–
6 command queues
–
Trigger and DMA support
–
688 ns minimum conversion time
●
On-chip CAN/SCI/FlexRay Bootstrap loader with Boot Assist Module (BAM)
●
Nexus
●
–
Class 3+ for the e200z4 core
–
Class 1 for the eTPU
JTAG (5-pin)
Doc ID 15399 Rev 9
11/157
Introduction
●
●
●
Development Trigger Semaphore (DTS)
–
Register of semaphores (32-bits) and an identification register
–
Used as part of a triggered data acquisition protocol
–
EVTO pin is used to communicate to the external tool
Clock generation
–
On-chip 4–40 MHz main oscillator
–
On-chip FMPLL (frequency-modulated phase-locked loop)
Up to 120 general purpose I/O lines
–
Individually programmable as input, output or special function
–
Programmable threshold (hysteresis)
●
Power reduction mode: slow, stop and stand-by modes
●
Flexible supply scheme
●
12/157
SPC564A74L7, SPC564A80B4, SPC564A80L7
–
5 V single supply with external ballast
–
Multiple external supply: 5 V, 3.3 V and 1.2 V
Packages
–
LQFP176
–
LBGA208
–
PBGA324
–
Known Good Die (KGD)
–
496-pin CSP (calibration tool only)
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
1.5
Feature details
1.5.1
e200z4 core
Introduction
SPC564A80 devices have a high performance e200z448n3 core processor:
1.5.2
●
Dual issue, 32-bit Power Architecture embedded category CPU
●
Variable Length Encoding Enhancements
●
8 KB instruction cache: 2- or 4- way set associative instruction cache
●
Thirty-two 64-bit general purpose registers (GPRs)
●
Memory management unit (MMU) with 24-entry fully-associative translation look-aside
buffer (TLB)
●
Harvard Architecture: Separate instruction bus and load/store bus
●
Vectored interrupt support
●
Non-maskable interrupt input
●
Critical Interrupt input
●
New ‘Wait for Interrupt’ instruction, to be used with new low power modes
●
Reservation instructions for implementing read-modify-write accesses
●
Signal processing extension (SPE) APU
●
Single Precision Floating point (scalar and vector)
●
Nexus Class 3+ debug
●
Process ID manipulation for the MMU using an external tool
Crossbar Switch (XBAR)
The XBAR multiport crossbar switch supports simultaneous connections between five
master ports and four slave ports. The crossbar supports a 32-bit address bus width and a
64-bit data bus width.
The crossbar allows three concurrent transactions to occur from the master ports to any
slave port but each master must access a different slave. If a slave port is simultaneously
requested by more than one master port, arbitration logic selects the higher priority master
and grants it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions. Requesting masters are
treated with equal priority and are granted access to a slave port in round-robin fashion,
based upon the ID of the last master to be granted access. The crossbar provides the
following features:
●
5 master ports
–
CPU instruction bus
–
CPU data bus
–
eDMA
–
FlexRay
–
External Bus Interface
Doc ID 15399 Rev 9
13/157
Introduction
●
●
1.5.3
SPC564A74L7, SPC564A80B4, SPC564A80L7
4 slave ports
–
Flash
–
Calibration and EBI bus
–
SRAM
–
Peripheral bridge
32-bit internal address, 64-bit internal data paths
eDMA
The enhanced direct memory access (eDMA) controller is a second-generation module
capable of performing complex data movements via 64 programmable channels, with
minimal intervention from the host processor. The hardware micro-architecture includes a
DMA engine which performs source and destination address calculations, and the actual
data movement operations, along with an SRAM-based memory containing the transfer
control descriptors (TCD) for the channels. This implementation is utilized to minimize the
overall block size. The eDMA module provides the following features:
1.5.4
●
All data movement via dual-address transfers: read from source, write to destination
●
Programmable source and destination addresses, transfer size, plus support for
enhanced addressing modes
●
Transfer control descriptor organized to support two-deep, nested transfer operations
●
An inner data transfer loop defined by a “minor” byte transfer count
●
An outer data transfer loop defined by a “major” iteration count
●
Channel activation via one of three methods:
–
Explicit software initiation
–
Initiation via a channel-to-channel linking mechanism for continuous transfers
–
Peripheral-paced hardware requests (one per channel)
●
Support for fixed-priority and round-robin channel arbitration
●
Channel completion reported via optional interrupt requests
●
One interrupt per channel, optionally asserted at completion of major iteration count
●
Error termination interrupts optionally enabled
●
Support for scatter/gather DMA processing
●
Ability to suspend channel transfers by a higher priority channel
Interrupt controller
The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt
requests, suitable for statically scheduled hard real-time systems.
For high priority interrupt requests, the time from the assertion of the interrupt request from
the peripheral to when the processor is executing the interrupt service routine (ISR) has
been minimized. The INTC provides a unique vector for each interrupt request source for
quick determination of which ISR needs to be executed. It also provides an ample number of
priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To
allow the appropriate priorities for each source of interrupt request, the priority of each
interrupt request is software configurable.
When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol for coherent accesses. By
14/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Introduction
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks
which share the resource cannot preempt each other.
The INTC provides the following features:
●
9-bit vector addresses
●
Unique vector for each interrupt request source
●
Hardware connection to processor or read from register
●
Each interrupt source can assigned a specific priority by software
●
Preemptive prioritized interrupt requests to processor
●
ISR at a higher priority preempts executing ISRs or tasks at lower priorities
●
Automatic pushing or popping of preempted priority to or from a LIFO
●
Ability to modify the ISR or task priority to implement the priority ceiling protocol for
accessing shared resources
●
Low latency—three clocks from receipt of interrupt request from peripheral to interrupt
request to processor
This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and
multiplexing logic.
1.5.5
Memory protection unit (MPU)
The Memory Protection Unit (MPU) provides hardware access control for all memory
references generated in a device. Using preprogrammed region descriptors, which define
memory spaces and their associated access rights, the MPU concurrently monitors all
system bus transactions and evaluates the appropriateness of each transfer. Memory
references with sufficient access control rights are allowed to complete; references that are
not mapped to any region descriptor or have insufficient rights are terminated with a
protection error response.
The MPU has these major features:
●
●
Support for 16 memory region descriptors, each 128 bits in size
–
Specification of start and end addresses provide granularity for region sizes from
32 bytes to 4 GB
–
MPU is invalid at reset, thus no access restrictions are enforced
–
Two types of access control definitions: processor core bus master supports the
traditional {read, write, execute} permissions with independent definitions for
supervisor and user mode accesses; the remaining non-core bus masters (eDMA,
FlexRay, and EBI1) support {read, write} attributes
–
Automatic hardware maintenance of the region descriptor valid bit removes issues
associated with maintaining a coherent image of the descriptor
–
Alternate memory view of the access control word for each descriptor provides an
efficient mechanism to dynamically alter the access rights of a descriptor only(a)
–
For overlapping region descriptors, priority is given to permission granting over
access denying as this approach provides more flexibility to system software
Support for two XBAR slave port connections (SRAM and PBRIDGE)
–
For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware
monitors every port access using the pre-programmed memory region descriptors
Doc ID 15399 Rev 9
15/157
Introduction
1.5.6
SPC564A74L7, SPC564A80B4, SPC564A80L7
–
An access protection error is detected if a memory reference does not hit in any
memory region or the reference is flagged as illegal in all memory regions where it
does hit. In the event of an access error, the XBAR reference is terminated with an
error response and the MPU inhibits the bus cycle being sent to the targeted slave
device
–
64-bit error registers, one for each XBAR slave port, capture the last faulting
address, attributes, and detail information
FMPLL
The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz
crystal oscillator or external clock generator. Further, the FMPLL supports programmable
frequency modulation of the system clock. The PLL multiplication factor, output clock divider
ratio are all software configurable. The PLL has the following major features:
1.5.7
●
Input clock frequency from 4 MHz to 40 MHz
●
Reduced frequency divider (RFD) for reduced frequency operation without forcing the
PLL to relock
●
Three modes of operation
–
Bypass mode with PLL off
–
Bypass mode with PLL running (default mode out of reset)
–
PLL normal mode
●
Each of the three modes may be run with a crystal oscillator or an external clock
reference
●
Programmable frequency modulation
–
Modulation enabled/disabled through software
–
Triangle wave modulation up to 100 kHz modulation frequency
–
Programmable modulation depth (0% to 2% modulation depth)
–
Programmable modulation frequency dependent on reference frequency
●
Lock detect circuitry reports when the PLL has achieved frequency lock and
continuously monitors lock status to report loss of lock conditions
●
Clock Quality Module
–
Detects the quality of the crystal clock and causes interrupt request or system
reset if error is detected
–
Detects the quality of the PLL output clock; if error detected, causes system reset
or switches system clock to crystal clock and causes interrupt request
●
Programmable interrupt request or system reset on loss of lock
●
Self-clocked mode (SCM) operation
SIU
The SPC564A80 SIU controls MCU reset configuration, pad configuration, external
interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset
operation. The reset configuration block contains the external pin boot configuration logic.
The pad configuration block controls the static electrical characteristics of I/O pins. The
a. EBI not available on all packages and is not available, as a master, for customer.
16/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Introduction
GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.
The reset controller performs reset monitoring of internal and external reset sources, and
drives the RSTOUT pin. Communication between the SIU and the e200z4 CPU core is via
the crossbar switch. The SIU provides the following features:
●
●
●
●
●
1.5.8
System configuration
–
MCU reset configuration via external pins
–
Pad configuration control for each pad
–
Pad configuration control for virtual I/O via DSPI serialization
System reset monitoring and generation
–
Power-on reset support
–
Reset status register provides last reset source to software
–
Glitch detection on reset input
–
Software controlled reset assertion
External interrupt
–
Rising or falling edge event detection
–
Programmable digital filter for glitch rejection
–
Critical Interrupt request
–
Non-Maskable Interrupt request
GPIO
–
Centralized control of I/O and bus pins
–
Virtual GPIO via DSPI serialization (requires external deserialization device)
–
Dedicated input and output registers for setting each GPIO and Virtual GPIO pin
Internal multiplexing
–
Allows serial and parallel chaining of DSPIs
–
Allows flexible selection of eQADC trigger inputs
–
Allows selection of interrupt requests between external pins and DSPI
Flash memory
The SPC564A80 provides up to 4 MB of programmable, non-volatile, flash memory. The
non-volatile memory (NVM) can be used to store instructions or data, or both. The flash
module includes a Fetch Accelerator that optimizes the performance of the flash array to
match the CPU architecture. The flash module interfaces the system bus to a dedicated
flash memory array controller. For CPU ‘loads’, DMA transfers and CPU instruction fetch, it
supports a 64-bit data bus width at the system bus port, and 128- and 256-bit read data
interfaces to flash memory. The module contains a prefetch controller which prefetches
sequential lines of data from the flash array into the buffers. Prefetch buffer hits allow no-wait
responses.
The flash memory provides the following features:
●
Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte,
halfword, word and doubleword reads are supported. Only aligned word and
doubleword writes are supported.
●
Fetch Accelerator
–
Architected to optimize the performance of the flash
–
Configurable read buffering and line prefetch support
Doc ID 15399 Rev 9
17/157
Introduction
1.5.9
SPC564A74L7, SPC564A80B4, SPC564A80L7
–
Four-entry 256-bit wide line read buffer
–
Prefetch controller
●
Hardware and software configurable read and write access protections on a per-master
basis
●
Interface to the flash array controller pipelined with a depth of one, allowing overlapped
accesses to proceed in parallel for interleaved or pipelined flash array designs
●
Configurable access timing usable in a wide range of system frequencies
●
Multiple-mapping support and mapping-based block access timing (0-31 additional
cycles) usable for emulation of other memory types
●
Software programmable block program/erase restriction control
●
Erase of selected block(s)
●
Read page size of 128 bits (four words)
●
ECC with single-bit correction, double-bit detection
●
Program page size of 128 bits (four words) to accelerate programming
●
ECC single-bit error corrections are visible to software
●
Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte
address, due to ECC
●
Embedded hardware program and erase algorithm
●
Erase suspend, program suspend and erase-suspended program
●
Shadow information stored in non-volatile shadow block
●
Independent program/erase of the shadow block
BAM
The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by
ST and is identical for all SPC564A80 MCUs. The BAM program is executed every time the
MCU is powered-on or reset in normal mode. The BAM supports different modes of booting.
They are:
●
Booting from internal flash memory
●
Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and
then executed)
●
Booting from external memory on external bus
The BAM also reads the reset configuration half word (RCHW) from internal flash memory
and configures the SPC564A80 hardware accordingly. The BAM provides the following
features:
18/157
●
Sets up MMU to cover all resources and mapping of all physical addresses to logical
addresses with minimum address translation
●
Sets up MMU to allow user boot code to execute as either Power Architecture
embedded category (default) or as VLE code
●
Location and detection of user boot code
●
Automatic switch to serial boot mode if internal flash is blank or invalid
●
Supports user programmable 64-bit password protection for serial boot mode
●
Supports serial bootloading via FlexCAN bus and eSCI using standard protocol
●
Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing
●
Supports serial bootloading of either Power Architecture code (default) or VLE code
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
1.5.10
●
Supports booting from calibration bus interface
●
Supports censorship protection for internal flash memory
●
Provides an option to enable the core watchdog timer
●
Provides an option to disable the system watchdog timer
Introduction
eMIOS
The eMIOS timer module provides the capability to generate or measure events in
hardware.
The eMIOS module features include:
●
Twenty-four 24-bit wide channels
●
3 channels’ internal timebases can be shared between channels
●
1 Timebase from eTPU2 can be imported and used by the channels
●
Global enable feature for all eMIOS and eTPU timebases
●
Dedicated pin for each channel (not available on all package types)
Each channel (0–23) supports the following functions:
1.5.11
●
General-purpose input/output (GPIO)
●
Single-action input capture (SAIC)
●
Single-action output compare (SAOC)
●
Output pulse-width modulation buffered (OPWMB)
●
Input period measurement (IPM)
●
Input pulse-width measurement (IPWM)
●
Double-action output compare (DAOC)
●
Modulus counter buffered (MCB)
●
Output pulse width and frequency modulation buffered (OPWFMB)
eTPU2
The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel
with the host CPU, the eTPU2 processes instructions and real-time input events, performs
output waveform generation, and accesses shared data without host intervention.
Consequently, for each timer event, the host CPU setup and service times are minimized or
eliminated. A powerful timer subsystem is formed by combining the eTPU2 with its own
instruction and data RAM. High-level assembler/compiler and documentation allows
customers to develop their own functions on the eTPU2.
SPC564A80 devices feature the second generation of the eTPU, called eTPU2.
Enhancements of the eTPU2 over the standard eTPU include:
●
The Timer Counter (TCR1), channel logic and digital filters (both channel and the
external timer clock input [TCRCLK]) now have an option to run at full system clock
speed or system clock / 2.
●
Channels support unordered transitions: transition 2 can now be detected before
transition 1. Related to this enhancement, the transition detection latches (TDL1 and
TDL2) can now be independently negated by microcode.
●
A new User Programmable Channel Mode has been added: the blocking, enabling,
service request and capture characteristics of this channel mode can be programmed
via microcode.
Doc ID 15399 Rev 9
19/157
Introduction
SPC564A74L7, SPC564A80B4, SPC564A80L7
●
Microinstructions now provide an option to issue Interrupt and Data Transfer requests
selected by channel. They can also be requested simultaneously at the same
instruction.
●
Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the
entry point.
●
Channel digital filters can be bypassed.
The eTPU2 includes these distinctive features:
●
●
●
●
20/157
32 channels; each channel associated with one input and one output signal
–
Enhanced input digital filters on the input pins for improved noise immunity
–
Identical, orthogonal channels: each channel can perform any time function. Each
time function can be assigned to more than one channel at a given time, so each
signal can have any functionality.
–
Each channel has an event mechanism which supports single and double action
functionality in various combinations. It includes two 24-bit capture registers, two
24-bit match registers, 24-bit greater-equal and equal-only comparators.
–
Input and output signal states visible from the host
2 independent 24-bit time bases for channel synchronization:
–
First time base clocked by system clock with programmable prescale division from
2 to 512 (in steps of 2), or by output of second time base prescaler
–
Second time base counter can work as a continuous angle counter, enabling
angle based applications to match angle instead of time
–
Both time bases can be exported to the eMIOS timer module
–
Both time bases visible from the host
Event-triggered microengine:
–
Fixed-length instruction execution in two-system-clock microcycle
–
14 KB of code memory (SCM)
–
3 KB of parameter (data) RAM (SPRAM)
–
Parallel execution of data memory, ALU, channel control and flow control subinstructions in selected combinations
–
32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and
subtraction, absolute value, bitwise logical operations on 24-bit, 16-bit, or byte
operands, single-bit manipulation, shift operations, sign extension and conditional
execution
–
Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned
Multiply/MAC combinations, and unsigned 24-bit divide. The MAC/Divide unit
works in parallel with the regular microcode commands.
Resource sharing features support channel use of common channel registers, memory
and microengine time:
–
Hardware scheduler works as a “task management” unit, dispatching event
service routines by predefined, host-configured priority
–
Automatic channel context switch when a “task switch” occurs, that is, one function
thread ends and another begins to service a request from other channel: channelspecific registers, flags and parameter base address are automatically loaded for
the next serviced channel
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
●
1.5.12
Introduction
–
SPRAM shared between host CPU and eTPU2, supporting communication either
between channels and host or inter-channel
–
Hardware implementation of four semaphores support coherent parameter
sharing between both eTPU engines
–
Dual-parameter coherency hardware support allows atomic access to two
parameters by host
Test and development support features:
–
Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction
execution, hardware breakpoints and watchpoints on several conditions
–
Software breakpoints
–
SCM continuous signature-check built-in self test (MISC - multiple input signature
calculator), runs concurrently with eTPU2 normal operation
Reaction module
The reaction module provides the ability to modulate output signals to manage closed loop
control without CPU assistance. It works in conjunction with the eQADC and eTPU2 to
increase system performance by removing the CPU from the current control loop.
The reaction module has the following features:
●
Six reaction channels
●
Each channel output is a bus of three signals, providing ability to control 3 inputs.
●
Each channel can implement a peak and hold waveform, making it possible to
implement up to six independent peak and hold control channels
Target applications include solenoid control for direct injection systems and valve control in
automatic transmissions
1.5.13
eQADC
The enhanced queued analog to digital converter (eQADC) block provides accurate and fast
conversions for a wide range of applications. The eQADC provides a parallel interface to two
on-chip analog to digital converters (ADC), and a single master to single slave serial
interface to an off-chip external device. Both on-chip ADCs have access to all the analog
channels.
The eQADC prioritizes and transfers commands from six command conversion command
‘queues’ to the on-chip ADCs or to the external device. The block can also receive data from
the on-chip ADCs or from an off-chip external device into the six result queues, in parallel,
independently of the command queues. The six command queues are prioritized with
Queue_0 having the highest priority and Queue_5 the lowest. Queue_0 also has the added
ability to bypass all buffering and queuing and abort a currently running conversion on either
ADC and start a Queue_0 conversion. This means that Queue_0 will always have a
deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs
were performing when the trigger occurred. The eQADC supports software and external
hardware triggers from other blocks to initiate transfers of commands from the queues to the
on-chip ADCs or to the external device. It also monitors the fullness of command queues
and result queues, and accordingly generates DMA or interrupt requests to control data
movement between the queues and the system memory, which is external to the eQADC.
The ADCs also support features designed to allow the direct connection of high impedance
acoustic sensors that might be used in a system for detecting engine knock. These features
Doc ID 15399 Rev 9
21/157
Introduction
SPC564A74L7, SPC564A80B4, SPC564A80L7
include differential inputs; integrated variable gain amplifiers for increasing the dynamic
range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics.
The eQADC also integrates a programmable decimation filter capable of taking in ADC
conversion results at a high rate, passing them through a hardware low pass filter, then
down-sampling the output of the filter and feeding the lower sample rate results to the result
FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of
out-of-band noise; while providing a reduced sample rate output to minimize the amount
DSP processing bandwidth required to fully process the digitized waveform.
The eQADC provides the following features:
●
Dual on-chip ADCs
–
2 12-bit ADC resolution
–
Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit)
12-bit conversion time: 938 ns (1 M sample/sec)
10-bit conversion time: 813 ns (1.2 M sample/second)
8-bit conversion time: 688 ns (1.4 M sample/second)
Up to 10-bit accuracy at 500 KSample/s and 8-bit accuracy at 1 MSample/s
–
Differential conversions
–
Single-ended signal range from 0 to 5 V
–
Variable gain amplifiers on differential inputs (1, 2, 4)
–
Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
–
Provides time stamp information when requested
–
Allows time stamp information relative to eTPU clock sources, such as an angle
clock
–
Parallel interface to eQADC CFIFOs and RFIFOs
–
Supports both right-justified unsigned and signed formats for conversion results
●
40 single-ended input channels, expandable to 56 channels with external multiplexers
(supports four external 8-to-1 muxes)
●
8 channels can be used as 4 pairs of differential analog input channels
●
Differential channels include variable gain amplifier for improved dynamic range
●
Differential channels include programmable pull-up and pull-down resistors for biasing
and sensor diagnostics (200 k100 k5 k
●
Additional internal channels for monitoring voltages (such as core voltage, I/O voltage,
LVI voltages, etc.) inside the device
●
An internal bandgap reference to allow absolute voltage measurements
●
Silicon die temperature sensor
●
22/157
–
–
Provides temperature of silicon as an analog value
–
Read using an internal ADC analog channel
–
May be read with either ADC
2 Decimation Filters
–
Programmable decimation factor (1 to 16)
–
Selectable IIR or FIR filter
–
Up to 4th order IIR or 8th order FIR
–
Programmable coefficients
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
●
●
●
1.5.14
Introduction
–
Saturated or non-saturated modes
–
Programmable Rounding (Convergent; Two’s Complement; Truncated)
–
Prefill mode to precondition the filter before the sample window opens
–
Supports Multiple Cascading Decimation Filters to implement more complex filter
designs
–
Optional Absolute Integrators on the output of Decimation Filters
Full duplex synchronous serial interface to an external device
–
Free-running clock for use by an external device
–
Supports a 26-bit message length
Priority based queues
–
Supports six queues with fixed priority. When commands of distinct queues are
bound for the same ADC, the higher priority queue is always served first
–
Queue_0 can bypass all prioritization, buffering and abort current conversions to
start a Queue_0 conversion a deterministic time after the queue trigger
–
Supports software and hardware trigger modes to arm a particular queue
–
Generates interrupt when command coherency is not achieved
External hardware triggers
–
Supports rising edge, falling edge, high level and low level triggers
–
Supports configurable digital filter
DSPI
The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface
for communication between the SPC564A80 MCU and external devices. The DSPI supports
pin count reduction through serialization and deserialization of eTPU and eMIOS channels
and memory-mapped registers. The channels and register content are transmitted using a
SPI-like protocol. This SPI-like protocol is completely configurable for baud rate, polarity and
phase, frame length, chip select assertion, etc. Each bit in the frame may be configured to
serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI can be
configured to serialize data to an external device that implements the Microsecond Bus
protocol. There are three identical DSPI blocks on the SPC564A80 MCU. The DSPI pins
support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed
operation.
DSPI module features include:
●
Selectable LVDS pads working at 40 MHZ for SOUT and SCK pins for DSPI_B and
DSPI_C
●
3 sources of serialized data: eTPU_A, eMIOS output channels and memory-mapped
register in the DSPI
●
4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external
Interrupt input request, memory-mapped register in the DSPI
●
32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the
SIU to select either GPIO, eTPU or eMIOS bits for serialization
●
The DSPI Module can generate and check parity in a serial frame
Doc ID 15399 Rev 9
23/157
Introduction
1.5.15
SPC564A74L7, SPC564A80B4, SPC564A80L7
eSCI
Three enhanced serial communications interface (eSCI) modules provide asynchronous
serial communications with peripheral devices and other MCUs, and include support to
interface to Local Interconnect Network (LIN) slave devices. Each eSCI block provides the
following features:
●
Full-duplex operation
●
Standard mark/space non-return-to-zero (NRZ) format
●
13-bit baud rate selection
●
Programmable 8-bit or 9-bit, data format
●
Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to
support the Microsecond bus standard
●
Automatic parity generation
●
LIN support
–
Autonomous transmission of entire frames
–
Configurable to support all revisions of the LIN standard
–
Automatic parity bit generation
–
Double stop bit after bit error
–
10- or 13-bit break support
●
Separately enabled transmitter and receiver
●
Programmable transmitter output parity
●
2 receiver wake-up methods:
–
Idle line wake-up
–
Address mark wake-up
●
Interrupt-driven operation with flags
●
Receiver framing error detection
●
Hardware parity checking
●
1/16 bit-time noise detection
●
DMA support for both transmit and receive data
–
1.5.16
Global error bit stored with receive data in system RAM to allow post processing of
errors
FlexCAN
The SPC564A80 MCU includes three controller area network (FlexCAN) blocks. The
FlexCAN module is a communication controller implementing the CAN protocol according to
Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a
vehicle serial data bus, meeting the specific requirements of this field: real-time processing,
reliable operation in the EMI environment of a vehicle, cost-effectiveness and required
bandwidth. Each FlexCAN module contains 64 message buffers.
24/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Introduction
The FlexCAN modules provide the following features:
●
Full Implementation of the CAN protocol specification, Version 2.0B
–
Standard data and remote frames
–
Extended data and remote frames
–
Zero to eight bytes data length
–
Programmable bit rate up to 1 Mbit/s
●
Content-related addressing
●
64 message buffers of zero to eight bytes data length
●
Individual Rx Mask Register per message buffer
●
Each message buffer configurable as Rx or Tx, all supporting standard and extended
messages
●
Includes 1088 bytes of embedded memory for message buffer storage
●
Includes 256-byte memory for storing individual Rx mask registers
●
Full featured Rx FIFO with storage capacity for six frames and internal pointer handling
●
Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16
standard or 32 partial (8 bits) IDs, with individual masking capability
●
Selectable backwards compatibility with previous FlexCAN versions
●
Programmable clock source to the CAN Protocol Interface, either system clock or
oscillator clock
●
Listen only mode capability
●
Programmable loop-back mode supporting self-test operation
●
3 programmable Mask Registers
●
Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority
●
Time Stamp based on 16-bit free-running timer
●
Global network time, synchronized by a specific message
●
Maskable interrupts
●
Warning interrupts when the Rx and Tx Error Counters reach 96
●
Independent of the transmission medium (an external transceiver is assumed)
●
Multi-master concept
●
High immunity to EMI
●
Short latency time due to an arbitration scheme for high-priority messages
●
Low power mode, with programmable wake-up on bus activity
Doc ID 15399 Rev 9
25/157
Introduction
1.5.17
SPC564A74L7, SPC564A80B4, SPC564A80L7
FlexRay
The SPC564A80 includes one dual-channel FlexRay module that implements the FlexRay
Communications System Protocol Specification, Version 2.1 Rev A. Features include:
●
Single channel support
●
FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported
●
128 message buffers, each configurable as:
●
●
1.5.18
–
Receive message buffer
–
Single buffered transmit message buffer
–
Double buffered transmit message buffer (combines two single buffered message
buffer)
2 independent receive FIFOs
–
1 receive FIFO per channel
–
Up to 255 entries for each FIFO
ECC support
System timers
The system timers include two distinct types of system timer:
●
Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)
●
Operating system task monitors using the System Timer Module (STM)
Periodic interrupt timer (PIT)
The PIT provides five independent timer channels, capable of producing periodic interrupts
and periodic triggers. The PIT has no external input or output pins and is intended to provide
system ‘tick’ signals to the operating system, as well as periodic triggers for eQADC queues.
Of the five channels in the PIT, four are clocked by the system clock and one is clocked by
the crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is
used to wake up the device from low power stop mode.
The following features are implemented in the PIT:
●
5 independent timer channels
●
Each channel includes 32-bit wide down counter with automatic reload
●
4 channels clocked from system clock
●
1 channel clocked from crystal clock (wake-up timer)
●
Wake-up timer remains active when System STOP mode is entered; used to restart
system clock after predefined time-out period
●
Each channel optionally able to generate an interrupt request or a trigger event (to
trigger eQADC queues) when timer reaches zero
System timer module (STM)
The System Timer Module (STM) is designed to implement the software task monitor as
defined by AUTOSAR(b). It consists of a single 32-bit counter, clocked by the system clock,
b. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org)
26/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Introduction
and four independent timer comparators. These comparators produce a CPU interrupt when
the timer exceeds the programmed value.
The following features are implemented in the STM:
1.5.19
●
One 32-bit up counter with 8-bit prescaler
●
Four 32-bit compare channels
●
Independent interrupt source for each channel
●
Counter can be stopped in debug mode
Software watchdog timer (SWT)
The Software Watchdog Timer (SWT) is a second watchdog module to complement the
standard Power Architecture watchdog integrated in the CPU core. The SWT is a 32-bit
modulus counter, clocked by the system clock or the crystal clock, that can provide a system
reset or interrupt request when the correct software key is not written within the required
time window.
The following features are implemented:
1.5.20
●
32-bit modulus counter
●
Clocked by system clock or crystal clock
●
Optional programmable watchdog window mode
●
Can optionally cause system reset or interrupt request on timeout
●
Reset by writing a software key to memory mapped register
●
Enabled out of reset
●
Configuration is protected by a software key or a write-once register
Cyclic redundancy check (CRC) module
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The
CRC features:
●
Support for CRC-16-CCITT (x25 protocol):
–
●
Support for CRC-32 (Ethernet protocol):
–
●
1.5.21
X16 + X12 + X5 + 1
X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP
registers at the maximum frequency
Error correction status module (ECSM)
The ECSM provides a myriad of miscellaneous control functions regarding program-visible
information about the platform configuration and revision levels, a reset status register, a
software watchdog timer, wakeup control for exiting sleep modes, and information on
platform memory errors reported by error-correcting codes and/or generic access error
information for certain processor cores.
Doc ID 15399 Rev 9
27/157
Introduction
SPC564A74L7, SPC564A80B4, SPC564A80L7
The Error Correction Status Module supports a number of miscellaneous control functions
for the platform. The ECSM includes these features:
●
Registers for capturing information on platform memory errors if error-correcting codes
(ECC) are implemented
●
For test purposes, optional registers to specify the generation of double-bit memory
errors are enabled on the SPC564A80.
The sources of the ECC errors are:
1.5.22
●
Flash
●
SRAM
●
Peripheral RAM (FlexRay, CAN, eTPU2 Parameter RAM)
External bus interface (EBI)
The SPC564A80 device features an external bus interface that is available in PBGA324 and
calibration packages.
The EBI supports operation at frequencies of system clock /1, /2 and /4, with a maximum
frequency support of 80 MHz. Customers running the device at 120 MHz or 132 MHz will
use the /2 divider, giving an EBI frequency of 60 MHz or 66 MHz. Customers running the
device at 80 MHz will be able to use the /1 divider to have the EBI run at the full 80 MHz
frequency.
Features include:
1.5.23
●
1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)
●
Memory controller with support for various memory types
●
16-bit data bus, up to 22-bit address bus
●
Pin muxing included to support 32-bit muxed bus
●
Selectable drive strength
●
Configurable bus speed modes
●
Bus monitor
●
Configurable wait states
Calibration EBI
The Calibration EBI controls data transfer across the crossbar switch to/from memories or
peripherals attached to the calibration tool connector in the calibration address space. The
Calibration EBI is only available in the calibration tool.
Features include:
28/157
●
1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)
●
Memory controller supports various memory types
●
16-bit data bus, up to 22-bit address bus
●
Pin muxing supports 32-bit muxed bus
●
Selectable drive strength
●
Configurable bus speed modes
●
Bus monitor
●
Configurable wait states
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
1.5.24
Introduction
Power management controller (PMC)
The power management controller contains circuitry to generate the internal 3.3 V supply
and to control the regulation of 1.2 V supply with an external NPN ballast transistor. It also
contains low voltage inhibit (LVI) and power-on reset (POR) circuits for the 1.2 V supply, the
3.3 V supply, the 3.3 V/5 V supply of the closest I/O segment (VDDEH1) and the 5 V supply
of the regulators (VDDREG).
1.5.25
Nexus port controller
The NPC (Nexus Port Controller) block provides real-time Nexus Class3+ development
support capabilities for the SPC564A80 Power Architecture-based MCU in compliance with
the IEEE-ISTO 5001-2003 and 2010 standards. MDO port widths of 4 pins and 12 pins are
available in all packages.
1.5.26
JTAG
The JTAGC (JTAG Controller) block provides the means to test chip functionality and
connectivity while remaining transparent to system logic when not in test mode. Testing is
performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard. All
data input to and output from the JTAGC block is communicated in serial format. The JTAGC
block is compliant with the IEEE 1149.1-2001 standard and supports the following features:
●
IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)
●
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined
instructions:
–
●
●
1.5.27
BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP
A 5-bit instruction register that supports the additional following public instructions:
–
ACCESS_AUX_TAP_NPC
–
ACCESS_AUX_TAP_ONCE
–
ACCESS_AUX_TAP_eTPU
–
ACCESS_CENSOR
3 test data registers to support JTAG Boundary Scan mode
–
Bypass register
–
Boundary scan register
–
Device identification register
●
A TAP controller state machine that controls the operation of the data registers,
instruction register and associated circuitry
●
Censorship Inhibit Register
–
64-bit Censorship password register
–
If the external tool writes a 64-bit password that matches the Serial Boot password
stored in the internal flash shadow row, Censorship is disabled until the next
system reset.
Development Trigger Semaphore (DTS)
SPC564A80 devices include a system development feature, the Development Trigger
Semaphore (DTS) module, that enables software to signal an external tool by driving a
persistent (affected only by reset or an external tool) signal on an external device pin. There
Doc ID 15399 Rev 9
29/157
Introduction
SPC564A74L7, SPC564A80B4, SPC564A80L7
is a variety of ways this module can be used, including as a component of an external realtime data acquisition system
1.6
SPC564A80 series architecture
1.6.1
Block diagram
Figure 1 shows a top-level block diagram of the SPC564A80 series.
30/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Introduction
Power ArchitectureTM
e200z4
JTAG
Nexus Class 3+
SPE
Nexus
VLE
MMU
eDMA
64 Channel
8 KB I-cache
M4
FlexRay
M1
M0
M6
Crossbar Switch
MPU
S0
S2
4 MB
Flash
IEEE-ISTO
5001-2003/2010
M7
S1
S7
Analog PLL
192 KB
SRAM
Voltage Regulator
RCOSC
Standby
Regulator
with Switch
XOSC
ECSM
Cal Bus Interface Ext. Bus Interface
Interrupt
Controller
Temp Sens
ADC
ADC
eSCI3
DSPI3
FlexCAN3
PIT
SWT
SIU
STM
BAM
PMC
FMPLL
CRC
DTS
3 KB Data eTPU2
eMIOS
32
RAM
Channel
24
14
KB
Code
Nexus
Channel
RAM
Class 1
REACM
I/O Bridge
ADCi DEC
x2
AMux
VGA
LEGEND
ADC
– Analog to Digital Converter
ADCi
– ADC interface
AMux – Analog Multiplexer
BAM
– Boot Assist Module
CRC
– Cyclic Redundancy Check unit
DEC
– Decimation Filter
DTS
– Development Trigger Semaphore
DSPI
– Deserial/Serial Peripheral Interface
EBI
– External Bus Interface
ECSM – Error Correction Status Module
eDMA – Enhanced Direct Memory Access
eMIOS – Enhanced Modular Input Output System
eSCI
– Enhanced Serial Communications Interface
eTPU2 – Second gen. Enhanced Time Processing Unit
FlexCAN– Controller Area Network (FlexCAN)
FMPLL – Frequency-Modulated Phase Locked Loop
Figure 1.
JTAG
MMU
MPU
PMC
PIT
RCOSC
REACM
SIU
SPE
SRAM
STM
SWT
VGA
VLE
XOSC
– IEEE 1149.1 test controller
– Memory Management Unit
– Memory Protection Unit
– Power Management Controller
– Periodic Interrupt Timer
– low-speed RC oscillator
– Reaction module
– System Integration Unit
– Signal Processing Extension
– Static RAM
– System Timer Module
– Software Watchdog Timer
– Variable Gain Amplifier
– Variable Length (instruction) Encoding
– XTAL Oscillator
SPC564A80 series block diagram
Doc ID 15399 Rev 9
31/157
Introduction
1.6.2
SPC564A74L7, SPC564A80B4, SPC564A80L7
Block summary
Table 3 summarizes the functions of the blocks present on the SPC564A80 series
microcontrollers.
Table 3.
SPC564A80 series block summary
Block
Function
Boot assist module (BAM)
Block of read-only memory containing executable code that searches
for user-supplied boot code and, if none is found, executes the BAM
boot code resident in device ROM.
Calibration Bus interface
Transfers data across the crossbar switch to/from peripherals
attached to the calibration tool connector.
Controller area network (FlexCAN)
Supports the standard CAN communications protocol.
Crossbar switch (XBAR)
Internal busmaster.
Cyclic redundancy check (CRC)
CRC checksum generator.
Deserial serial peripheral interface (DSPI)
Provides a synchronous serial interface for communication with
external devices.
e200z4 core
Executes programs and interrupt handlers.
Enhanced direct memory access (eDMA)
Performs complex data movements with minimal intervention from
the core.
Enhanced modular input-output system
(eMIOS)
Provides the functionality to generate or measure events.
Enhanced queued analog-to-digital
converter (eQADC)
Provides accurate and fast conversions for a wide range of
applications.
Enhanced serial communication interface
(eSCI)
Provides asynchronous serial communication capability with
peripheral devices and other microcontroller units.
Enhanced time processor unit (eTPU2)
Second-generation co-processor processes real-time input events,
performs output waveform generation, and accesses shared data
without host intervention.
Error Correction Status Module (ECSM)
The Error Correction Status Module supports a number of
miscellaneous control functions for the platform, and includes
registers for capturing information on platform memory errors if errorcorrecting codes (ECC) are implemented
External bus interface (EBI)
Enables expansion of internal bus to enable connection of external
memory or peripherals.
Flash memory
Provides storage for program code, constants, and variables.
FlexRay
Provides high-speed distributed control for advanced automotive
applications.
Interrupt controller (INTC)
Provides priority-based preemptive scheduling of interrupt requests.
JTAG controller
Provides the means to test chip functionality and connectivity while
remaining transparent to system logic when not in test mode.
Memory protection unit (MPU)
Provides hardware access control for all memory references
generated.
Nexus port controller (NPC)
Provides real-time development support capabilities in compliance
with the IEEE-ISTO 5001-2003 standard.
32/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 3.
Introduction
SPC564A80 series block summary (continued)
Block
Function
Reaction Module (REACM)
Works in conjunction with the eQADC and eTPU2 to increase system
performance by removing the CPU from the current control loop.
System Integration Unit (SIU)
Controls MCU reset configuration, pad configuration, external
interrupt, general purpose I/O (GPIO), internal peripheral
multiplexing, and the system reset operation.
Static random-access memory (SRAM)
Provides storage for program code, constants, and variables.
System timers
Includes periodic interrupt timer with real-time interrupt; output
compare timer and system watchdog timer.
Temperature sensor
Provides the temperature of the device as an analog value.
Doc ID 15399 Rev 9
33/157
Pinout and signal description
2
SPC564A74L7, SPC564A80B4, SPC564A80L7
Pinout and signal description
This section contains the pinouts for all production packages for the SPC564A80 family of
devices.
Caution:
34/157
Any pins labeled “NC” are to be left unconnected. Any connection to an external circuit or
voltage may cause unpredictable device behavior or damage.
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
LQFP176 pinout
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
VDD
AN[37]
AN[36]
AN[21]
AN[0] (DAN0+)
AN[1] (DAN0-)
AN[2] (DAN1+)
AN[3] (DAN1-)
AN[4] (DAN2+)
AN[5] (DAN2-)
AN[6] (DAN3+)
AN[7] (DAN3-)
REFBYPC
VRH
VRL
AN[22]
AN[23]
AN[24]
AN[25]
AN[27]
AN[28]
AN[30]
AN[31]
AN[32]
AN[33]
AN[34]
AN[35]
VDD
AN[12] / MA[0] / ETPUA19_O /SDS
AN[13] / MA[1] / ETPUA21_O / SDO
AN[14] / MA[2] / ETPUA27_O / SDI
AN[15] / FCK / ETPUA29_O
GPIO[207] ETRIG1
GPIO[206] ETRIG0
DSPI_D_SIN / GPIO[99]
DSPI_D_SCK / GPIO[98]
VSS
MDO9 / ETPUA25_O / GPIO[80]
VDDEH7B
MDO8 / ETPUA21_O / GPIO[79]
MDO7 / ETPUA19_O / GPIO[78]
MDO6 / ETPUA13_O / GPIO[77]
MDO10 / ETPUA27_O / GPIO[81]
VSS
2.1
Pinout and signal description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176-Pin
LQFP
signal details:
pin 21: ETPUA31 / DSPI_C_PCS[4] / ETPUA13_O / GPIO[145]
pin 22: ETPUA30 / DSPI_C_PCS[3] / ETPUA11_O / GPIO[144]
pin 23: ETPUA29 / DSPI_C_PCS[2] / RCH5_C / GPIO[143]
pin 24: ETPUA28 / DSPI_C_PCS[1] / RCH5_B / GPIO[142]
pin 25: ETPUA27 / IRQ[15] / DSPI_C_SOUT_LVDS+ / SOUTB / GPIO[141]
pin 26: ETPUA26 / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140]
pin 27: ETPUA25 / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139]
pin 28: ETPUA24 / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138]
pin 30: ETPUA23 / IRQ[11] / ETPUA21_O / FR_A_TX_EN / GPIO[137]
pin 32: ETPUA22 / IRQ[10] / ETPUA17_O / GPIO[136]
pin 34: ETPUA21 / IRQ[9] / RCH0_C / FR_A_RX / GPIO[135]
pin 35: ETPUA20 / IRQ[8] / RCH0_B / FR_A_TX / GPIO[134]
pin 36: ETPUA19 / DSPI_D_PCS[4] / RCH5_A / GPIO[133]
pin 37: ETPUA18 / DSPI_D_PCS[3] / RCH4_A / GPIO[132]
pin 38: ETPUA17 / DSPI_D_PCS[2] / RCH3_A / GPIO[131]
pin 39: ETPUA16 / DSPI_D_PCS[1] / RCH2_A / GPIO[130]
pin 40: ETPUA15 / DSPI_B_PCS[5] / RCH1_A / GPIO[129]
pin 42: ETPUA14 / DSPI_B_PCS[4] / ETPUA9_O / RCH0_A / GPIO[128]
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
VDD
TMS
TDI
MDO5 / ETPUA4_O / GPIO[76]
TCK
VSS
MDO4 / ETPUA2_O / GPIO[75]
VDDEH7A
MDO11 / ETPUA29_O / GPIO[82]
TDO
GPIO[219]
JCOMP
EVTO
NC
MSEO[0]
MSEO[1]
EVTI
VSS
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]
DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]
DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]
DSPI_B_PCS[0] / DSPI_D_PCS[2] / GPIO[105]
VDDEH6B
DSPI_B_PCS[1] / DSPI_D_PCS[0] / GPIO[106]
VSS
DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]
DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]
DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]
DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]
VDD
RSTOUT
CAN_C_TX / DSPI_D_PCS3 / GPIO[87]
SCI_A_TX / EMIOS13 / GPIO[89]
SCI_A_RX / EMIOS15 / GPIO[90]
CAN_C_RX / DSPI_D_PCS4 / GPIO[88]
RESET
VSS
VDDEH6A
VSS
XTAL
EXTAL / EXTCLK
VDDPLL
VSS
CAN_B_RX / DSPI_C_PCS[4] / SCI_C_RX / GPIO[86]
VDD
ETPUA13 / DSPI_B_PCS[3] / GPIO[127]
ETPUA12 / DSPI_B_PCS[1] / RCH4_C / GPIO[126]
ETPUA11 / ETPUA23_O / RCH4_B / GPIO[125]
ETPUA10 / ETPUA22_O / RCH1_C /GPIO[124]
ETPUA9 / ETPUA21_O / RCH1_B / GPIO[123]
ETPUA8 / ETPUA20_O / DSPI_B_SOUT_LVDS+ / GPIO[122]
ETPUA7 / ETPUA19_O / DSPI_B_SOUT_LVDS- / ETPUA6_O / GPIO[121]
ETPUA6 / ETPUA18_O / DSPI_B_SCK_LVDS+ / FR_B_RX / GPIO[120]
ETPUA5 / ETPUA17_O / DSPI_B_SCK_LVDS- / FR_B_TX_EN/ GPIO[119]
VDDEH4A
ETPUA4 / ETPUA16_O / FR_B_TX / GPIO[118]
VSS
ETPUA3 / ETPUA15_O / GPIO[117]
ETPUA2 / ETPUA14_O / GPIO[116]
ETPUA1 / ETPUA13_O / GPIO[115]
ETPUA0 / ETPUA12_O / ETPUA19_O / GPIO[114]
VDD
EMIOS0 / ETPUA0 / ETPUA25_O / GPIO[179]
EMIOS1 / ETPUA1_O / GPIO[180]
EMIOS2 / ETPUA2_O / RCH2_B / GPIO[181]
EMIOS3 / ETPUA3_O /GPIO[182]
EMIOS4 / ETPUA4_O / RCH2_C / GPIO[183]
EMIOS6 / ETPUA6_O / GPIO[185]
EMIOS7 / ETPUA7_O / GPIO[186]
EMIOS8 / ETPUA8_O / SCI_B_TX / GPIO[187]
EMIOS9 / ETPUA9_O / SCI_B_RX / GPIO[188]
VSS
EMIOS10 / DSPI_D_PCS3 / RCH3_B / GPIO[189]
VDDEH4B
EMIOS11 / DSPI_D_PCS4 / RCH3_C / GPIO[190]
EMIOS12 / DSPI_C_SOUT / ETPUA27_O / GPIO[191]
EMIOS13 / DSPI_D_SOUT / GPIO[192]
EMIOS14 / IRQ[0] / ETPUA29_O / GPIO[193]
EMIOS15 / IRQ[1] / GPIO[194]
EMIOS23 / GPIO[202]
CAN_A_TX / SCI_A_TX / GPIO[83]
CAN_A_RX / SCI_A_RX / GPIO[84]
PLLREF / IRQ[4]/ETRIG[2] / GPIO[208]
SCI_B_RX / DSPI_D_PCS5 / GPIO[92]
BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212]
WKPCFG / NMI / DSPI_B_SOUT / GPIO[213]
SCI_B_TX / DSPI_D_PCS1 / GPIO[91]
CAN_B_TX / DSPI_C_PCS3 / SCI_C_TX / GPIO[85]
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
AN[18]
AN[17]
AN[16]
AN[11] / ANZ
AN[9] / ANX
VDDA
VSSA
AN[39]
AN[8] / ANW
VDDREG
VRCCTL
VSTBY
VRC33
MCKO
VSS
NC
MDO[0]
MDO[1]
MDO[2]
MDO[3]
(see signal details, pin 21)
(see signal details, pin 22)
(see signal details, pin 23)
(see signal details, pin 24)
(see signal details, pin 25)
(see signal details, pin 26)
(see signal details, pin 27)
(see signal details, pin 28)
VSS
(see signal details, pin 30)
VDDEH1A
(see signal details, pin 32)
VDD
(see signal details, pin 34)
(see signal details, pin 35)
(see signal details, pin 36)
(see signal details, pin 37)
(see signal details, pin 38)
(see signal details, pin 39)
(see signal details, pin 40)
VDDEH1B
(see signal details, pin 42)
VSS
NIC
Note: Pin 96 (VSS) should be tied low.
Figure 2.
176-pin LQFP pinout (top view)
Doc ID 15399 Rev 9
35/157
LBGA208 ballmap
Figure 3.
208-pin LBGA package ballmap (viewed from above)
Doc ID 15399 Rev 9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
VSS
AN9
AN11
VDDA1
VSSA1
AN1
AN5
VRH
VRL
AN27
VSSA0
AN12-SDS
MDO2
MDO0
VRC33
VSS
A
B
VDD
VSS
AN8
AN21
AN0
AN4
REFBYPC
AN22
AN25
AN28
VDDA0
AN13-SDO
MDO3
MDO1
VSS
VDD
B
C
VSTBY
VDD
VSS
AN17
AN34
AN16
AN3
AN7
AN23
AN32
AN33
AN14-SDI
AN15-FCK
VSS
MSEO0
TCK
C
D
VRC33
AN39
VDD
VSS
AN18
AN2
AN6
AN24
AN30
AN31
AN35
VDDEH7
VSS
TMS
EVTO
NC
D
E
ETPUA30
ETPUA31
AN37
VDD
NC
TDI
EVTI
MSEO1
E
F
ETPUA28
ETPUA29
ETPUA26
AN36
VDDEH6AB
TDO
MCKO
JCOMP
F
G
ETPUA24
ETPUA27
ETPUA25
ETPUA21
VSS
VSS
VSS
VSS
DSPI_B_
SOUT
DSPI_B_
PCS3
DSPI_B_
SIN
DSPI_B_
PCS0
G
H
ETPUA23
ETPUA22
ETPUA17
ETPUA18
VSS
VSS
VSS
VSS
GPIO99
DSPI_B_
PCS4
DSPI_B_
PCS2
DSPI_B_
PCS1
H
J
ETPUA20
ETPUA19
ETPUA14
ETPUA13
VSS
VSS
VSS
VSS
DSPI_B_
PCS5
SCI_A_TX
GPIO98
DSPI_B_
SCK
J
K
ETPUA16
ETPUA15
ETPUA7
VDDEH1AB
VSS
VSS
VSS
VSS
CAN_C_TX
SCI_A_R
X
RSTOUT
VDDREG
K
L
ETPUA12
ETPUA11
ETPUA6
TCRCLKA
SCI_B_TX
CAN_C_
RX
WKPCFG
RESET
L
M
ETPUA10
ETPUA9
ETPUA1
ETPUA5
SCI_B_RX
PLLREF
BOOTCFG1
VSS
M
ETPUA8
ETPUA4
ETPUA0
VSS
VDD
VRC33
EMIOS2
EMIOS10
VDDEH4AB
EMIOS12
P
ETPUA3
ETPUA2
VSS
VDD
GPIO207
NC
EMIOS6
EMIOS8
MDO11_
ETPUA29_
O
MDO4_
ETPUA2_O
MDO8_
ETPUA21_
O
CAN_A_TX
VDD
VSS
NC
XTAL
P
R
NC
VSS
VDD
GPIO206
EMIOS4
EMIOS3
EMIOS9
EMIOS11
EMIOS14
MDO10_
ETPUA27_
O
EMIOS23
CAN_A_RX
CAN_B_RX
VDD
VSS
VDDPLL
R
T
VSS
VDD
NC
EMIOS0
EMIOS1
GPIO219
MDO9_
ETPUA25_
O
EMIOS13
EMIOS15
MDO5_
ETPUA4_O
MDO6_
ETPUA13_
O
CAN_B_TX
VDDE5
ENGCLK
VDD
VSS
T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
36/157
1. This pin (N13) should be tied low.
VRC33
VSS(1)
VRCCTL
NC
EXTAL
N
Pinout and signal description
N
MDO7_
ETPUA19_
O
SPC564A74L7, SPC564A80B4, SPC564A80L7
2.2
PBGA324 ballmap
2
3
4
5
6
7
8
9
10
11
A
VSS
VDD
VSTBY
AN37
AN11
VDDA0
VSSA0
AN1
AN5
VRH
VRL
B
VRC33
VSS
VDD
AN36
AN39
AN19
AN16
AN0
AN4
REFBYPC
AN23
C
ETPUA30
ETPUA31
VSS
VDD
AN38
AN17
AN20
AN21
AN3
AN7
AN22
D
ETPUA28
ETPUA29
ETPUA26
VSS
VDD
AN8
ANW
AN9
AN10
ANY
AN18
AN2
AN6
E
ETPUA24
ETPUA27
ETPUA25
ETPUA21
F
ETPUA23
ETPUA22
ETPUA17
ETPUA18
G
ETPUA20
ETPUA19
ETPUA14
ETPUA13
H
ETPUA16
ETPUA15
ETPUA10
VDDEH1AB
J
ETPUA12
ETPUA11
ETPUA6
ETPUA9
VSS
VSS
VSS
K
ETPUA8
ETPUA7
ETPUA2
ETPUA5
VSS
VSS
VSS
L
ETPUA4
ETPUA3
ETPUA0
ETPUA1
VSS
VSS
VSS
Figure 4.
324-pin PBGA package ballmap (northwest, viewed from above)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
1
Pinout and signal description
37/157
2.3
BDIP
TCRCLKA
CS1
CS0
VDDE2
VDDE2
VSS
N
CS3
CS2
WE1
WE0
VSS
VSS
VDDE2
P
ADDR16
ADDR17
RD_WR
VRC33
VSS
VSS
VDDE2
R
ADDR18
ADDR19
VDDE-EH
TA
T
ADDR20
ADDR21
ADDR12
TS
U
ADDR22
ADDR23
ADDR13
ADDR14
V
ADDR24
ADDR25
ADDR15
ADDR31
W
ADDR26
VDDE-EH
ADDR30
VSS
VDD
VDDE2
VRC33
VDDE2
DATA11
DATA12
DATA14
Y
ADDR28
ADDR27
VSS
VDD
VDDE2
DATA8
DATA9
DATA10
GPIO207
DATA13
DATA15
AA
ADDR29
VSS
VDD
VDDE2
DATA1
VDDE2
GPIO206
DATA5
DATA7
VDDE2
EMIOS3
AB
VSS
VDD
VDDE2
DATA0
DATA2
DATA3
DATA4
DATA6
OE
EMIOS0
EMIOS1
1
2
3
4
5
6
7
8
9
10
11
Figure 5.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
M
324-pin PBGA package ballmap (southwest, viewed from above)
Pinout and signal description
38/157
14
15
16
17
18
19
20
21
22
AN27
AN28
AN35
VSSA1
AN12_
SDS
MDO11_
ETPUA29_O
MDO10_
ETPUA27_O
MDO8_
ETPUA21_O
VDD
VRC33
VSS
A
AN26
AN31
AN32
VSSA1
AN13_
SDO
MDO9_
ETPUA25_O
MDO7_
ETPUA19_O
MDO4_
ETPUA2_O
MDO0
VSS
NIC(1),(2)
B
AN25
AN30
AN33
VDDA1
AN14_
SDI
MDO5_
ETPUA4_O
MDO2
MDO1
VSS
NIC(1),(2)
VDD
C
AN24
AN29
AN34
VDDEH7
AN15_
FCK
MDO6_
ETPUA13_O
MDO3
VSS
NIC(1),(2)
TCK
TDI
D
NIC(1),(2)
TMS
TDO
NIC(1)
E
NIC(1),(2)
JCOMP
EVTI
EVTO
F
RDY
MCKO
MSEO0
MSEO1
G
VDDEH6AB
GPIO203
GPIO204
DSPI_B_
SIN
H
VSS
VSS
NIC(1),(2)
DSPI_B_
SOUT
DSPI_B_
PCS3
DSPI_B_
PCS0
DSPI_B_
PCS1
J
VSS
VSS
VSS
GPIO99
DSPI_B_
PCS4
DSPI_B_
SCK
DSPI_B_
PCS2
K
VSS
VSS
VSS
DSPI_B_
PCS5
DSPI_A_
SOUT
DSPI_A_
SIN
DSPI_A_
SCK
L
1. Pins marked “NIC” have no internal connection.
2. Balls B22, C21, D20, E19, F19 and J14 are shorted together inside the package.
Figure 6.
324-pin PBGA package ballmap (northeast, viewed from above)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
13
Pinout and signal description
39/157
12
VSS
VSS
DSPI_A_
PCS1
DSPI_A_
PCS0
GPIO98
VDDREG
M
VSS
VSS
VSS
DSPI_A_
PCS4
SCI_A_TX
DSPI_A_
PCS5
NIC(1)
N
VSS
VSS
VSS
CAN_C_TX
SCI_A_RX
RSTOUT
RSTCFG
P
WKPCFG
CAN_C_RX
SCI_B_TX
RESET
R
SCI_B_RX
BOOTCFG1
VSS(2)
VSS
T
VDDEH6AB
PLLCFG1
BOOTCFG0
EXTAL
U
VDD
VRCCTL
PLLREF
XTAL
V
Doc ID 15399 Rev 9
EMIOS2
EMIOS8
VDDEH4AB
EMIOS12
EMIOS21
VDDE5
SCI_C_TX
VSS
VDD
NIC(1)
VDDPLL
W
EMIOS6
EMIOS10
EMIOS15
EMIOS17
EMIOS22
CAN_A_TX
VDDE5
SCI_C_RX
VSS
VDD
VRC33
Y
EMIOS5
EMIOS9
EMIOS13
EMIOS16
EMIOS19
EMIOS23
CAN_A_RX
VDDE5
CLKOUT
VSS
VDD
AA
EMIOS4
EMIOS7
EMIOS11
EMIOS14
EMIOS18
EMIOS20
CAN_B_TX
CAN_B_RX
VDDE5
ENGCLK
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
SPC564A74L7, SPC564A80B4, SPC564A80L7
VSS
1. Pins marked “NIC” have no internal connection.
2. This pin (T21) should be tied low.
Figure 7.
324-pin PBGA package ballmap (southeast, viewed from above)
Pinout and signal description
40/157
Signal summary
Table 4.
SPC564A80 signal properties
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
I/O
Type
(3)
Package pin #
(5)
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
GPIO
(8)
eMIOS channel
P
01
GPIO[203]
GPIO
G
00
EMIOS15(8)
eMIOS channel
P
01
GPIO[204]
GPIO
G
00
GPIO[206] ETRIG0
GPIO / eQADC Trigger Input
G
00
GPIO[207] ETRIG1
GPIO / eQADC Trigger Input
G
00
GPIO[219]
GPIO
G
—
EMIOS14
203
O
VDDEH7
I/O
Slow
VDDEH7
Slow
206
I/O(9)
VDDEH7
207
I/O(9)
VDDEH7
I/O
MultiV(12)
219
(11)
Slow(10)
Slow
VDDEH7
— / Up
—
—
H20
— / Up
—/ Up
—
—
H21
— / Up
— / Up
143
R4
AA7
— / Up
— / Up
144
P5
Y9
— / Up
— / Up
122
T6
97
L16
R22
RSTOUT / Down
102
K15
P21
PLLREF / Up
83
M14
V21
—
Reset / Configuration
RESET
External Reset Input
P
—
—
I
RSTOUT
External Reset Output
P
01
230
O
PLLREF
FMPLL Mode Selection
P
001
IRQ[4]
External Interrupt Request
A1
010
ETRIG2
eQADC Trigger Input
A2
100
GPIO
G
000
I/O
—
GPIO[208]
(13)
—
—
—
IRQ[5]
External interrupt request
A1
010
DSPI_D_SOUT
DSPI D data output
A2
100
GPIO[209]
GPIO
G
000
RSTCFG
RSTCFG
P
01
GPIO[210]
GPIO
G
00
PLLCFG1
VDDEH6
Slow
VDDEH6
Slow
RESET / Up
RSTOUT / Down
RESET / Up
I
208
209
I
VDDEH6
I
Slow
I
VDDEH6
O
Medium
— / Up
— / Up
— / Up
—
—
U20
—
—
—
P22
I/O
210
I
VDDEH6
I/O
Slow
— / Down
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
O
I/O
204
— / Up
Pinout and signal description
41/157
2.4
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Doc ID 15399 Rev 9
BOOTCFG[0]
Boot Config. Input
P
01
IRQ[2]
External Interrupt Request
A1
10
GPIO[211]
GPIO
G
00
I/O
BOOTCFG[1]
Boot Config. Input
P
001
I
IRQ[3]
External Interrupt Request
A1
010
ETRIG3
eQADC Trigger Input
A2
100
GPIO[212]
GPIO
G
000
I/O
WKPCFG
Weak Pull Config. Input
P
001
I
NMI
Non-Maskable Interrupt
A1
010
DSPI_B_SOUT
DSPI D data output
A2
100
GPIO[213]
GPIO
G
000
I
211
212
213
I
Package pin #
(5)
Voltage /
Pad Type(6)
VDDEH6
Slow
I
VDDEH6
I
Slow
I
VDDEH6
O
Medium
During Reset
— / Down
After
Reset
BOOTCFG[0] /
Down
176
208
—
—
324
U21
BOOTCFG[1] /
Down
85
M15
T20
— / Up
WKPCFG / Up
86
L15
R19
— / Up
— / Up
—
—
M4
— / Up
— / Up
—
—
M3
— / Up
— / Up
—
—
N2
— / Up
— / Up
—
—
N1
I/O
External Bus Interface
CS[0]
External chip selects
P
01
ADDR[8]
External address bus
A1
10
GPIO[0]
GPIO
G
00
CS[1]
External chip selects
P
01
ADDR9
External address bus
A1
10
GPIO[1]
GPIO
G
00
O
0
I/O
I/O
O
1
I/O
I/O
CS[2]
External chip selects
P
0001
O
ADDR10
External address bus
A1
0010
I/O
WE[2]/BE[2]
Write/byte enable
A2
0100
CAL_WE[2]/BE[2]
Cal. bus write/byte enable
A3
1000
O
GPIO[2]
GPIO
G
0000
I/O
2
O
CS[3]
External chip selects
P
0001
O
ADDR11
External address bus
A1
0010
I/O
WE[3]/BE[3]
Write/byte enable
A2
0100
CAL_WE[3]/BE[3]
Cal bus write/byte enable
A3
1000
O
GPIO[3]
GPIO
G
0000
I/O
3
O
VDDE2
Fast
VDDE2
Fast
VDDE2
Fast
VDDE2
Fast
42/157
Pinout and signal description
— / Down
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
External address bus
P
01
GPIO[8]
GPIO
G
00
ADDR13
External address bus
P
001
WE[2]
Write/byte enable
A2
100
GPIO[9]
GPIO
G
000
ADDR14
External address bus
P
001
WE[3]
Write/byte enables
A2
100
GPIO[10]
GPIO
G
000
ADDR15
External address bus
P
01
GPIO[11]
GPIO
G
00
ADDR16
External address bus
P
001
FR_A_TX
Flexray TX data channel A
A1
010
DATA16
External data bus
A2
100
GPIO[12]
GPIO
G
000
I/O
ADDR17
External address bus
P
001
I/O
FR_A_TX_EN
FlexRay ch. A TX data enable
A1
010
DATA17
External data bus
A2
100
GPIO[13]
GPIO
G
000
I/O
ADDR18
External address bus
P
001
I/O
FR_A_RX
Flexray RX data ch. A
A1
010
DATA18
External data bus
A2
100
GPIO[14]
GPIO
G
000
I/O
ADDR19
External address bus
P
001
I/O
FR_B_TX
Flexray TX data ch. B
A1
010
DATA19
External data bus
A2
100
GPIO[15]
GPIO
G
000
I/O
ADDR20
External address bus
P
001
I/O
FR_B_TX_EN
Flexray TX data enable for ch. B
A1
010
DATA20
External data bus
A2
100
GPIO[16]
GPIO
G
000
8
I/O
VDDE3
I/O
Fast
I/O
9
O
I/O
I/O
10
O
I/O
11
Voltage /
Pad Type(6)
VDDE3
Fast
VDDE3
Fast
I/O
VDDE3
I/O
Fast
During Reset
After
Reset
176
208
324
— / Up
— / Up
—
—
T3
— / Up
— / Up
—
—
U3
— / Up
— / Up
—
—
U4
— / Up
— / Up
—
—
V3
— / Up
— / Up
—
—
P1
— / Up
— / Up
—
—
P2
— / Up
— / Up
—
—
R1
— / Up
— / Up
—
—
R2
— / Up
— / Up
—
—
T1
I/O
12
13
14
15
16
O
VDDE-EH
I/O
Medium
O
VDDE-EH
I/O
Medium
I
VDDE-EH
I/O
Medium
O
VDDE-EH
I/O
Medium
O
VDDE-EH
I/O
Medium
I/O
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
ADDR12
Package pin #
(5)
Pinout and signal description
43/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
Doc ID 15399 Rev 9
External address bus
P
001
FR_B_RX
Flexray RX data channel B
A1
010
DATA21
External data bus
A2
100
GPIO[17]
GPIO
G
000
ADDR22
External address bus
P
001
DATA22
External data bus
A2
100
GPIO[18]
GPIO
G
000
ADDR23
External address bus
P
001
DATA23
External data bus
A2
100
GPIO[19]
GPIO
G
000
ADDR24
External address bus
P
001
DATA24
External data bus
A2
100
GPIO[20]
GPIO
G
000
ADDR25
External address bus
P
001
DATA25
External data bus
A2
100
GPIO[21]
GPIO
G
000
ADDR26
External address bus
P
001
DATA26
External data bus
A2
100
GPIO[22]
GPIO
G
000
ADDR27
External address bus
P
001
DATA27
External data bus
A2
100
GPIO[23]
GPIO
G
000
ADDR28
External address bus
P
001
DATA28
External data bus
A2
100
GPIO[24]
GPIO
G
000
ADDR29
External address bus
P
001
DATA29
External data bus
A2
100
GPIO[25]
GPIO
G
000
Type
Voltage /
Pad Type(6)
Package pin #
During Reset
After
Reset
176
208
324
I/O
17
I
VDDE-EH
I/O
Medium
— / Up
— / Up
—
—
T2
— / Up
— / Up
—
—
U1
— / Up
— / Up
—
—
U2
— / Up
— / Up
—
—
V1
— / Up
— / Up
—
—
V2
— / Up
— / Up
—
—
W1
— / Up
— / Up
—
—
Y2
— / Up
— / Up
—
—
Y1
— / Up
— / Up
—
—
AA1
I/O
I/O
18
I/O
I/O
I/O
19
I/O
I/O
I/O
20
I/O
I/O
I/O
21
I/O
I/O
I/O
22
I/O
I/O
I/O
23
I/O
I/O
I/O
24
I/O
I/O
I/O
25
I/O
I/O
VDDE-EH
Medium
VDDE-EH
Medium
VDDE-EH
Medium
VDDE-EH
Medium
VDDE-EH
Medium
VDDE-EH
Medium
VDDE-EH
Medium
VDDE-EH
Medium
44/157
Pinout and signal description
ADDR21
I/O
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
External address bus
P
001
ADDR6(8)
External address bus
A1
010
DATA30
External data bus
A2
100
GPIO[26]
GPIO
G
000
I/O
ADDR31
External address bus
P
001
I/O
ADDR7(8)
External address bus
A1
010
DATA31
External data bus
A2
100
GPIO[27]
GPIO
G
000
DATA0
External data bus
P
001
ADDR16
External address bus
A1
010
GPIO[28]
GPIO
G
000
DATA1
External data bus
P
001
ADDR17
External address bus
A1
010
GPIO[29]
GPIO
G
000
DATA2
External data bus
P
001
ADDR18
External address bus
A1
010
GPIO[30]
GPIO
G
000
DATA3
External data bus
P
001
ADDR19
External address bus
A1
010
GPIO[31]
GPIO
G
000
DATA4
External data bus
P
001
ADDR20
External address bus
A1
010
GPIO[32]
GPIO
G
000
DATA5
External data bus
P
001
ADDR21
External address bus
A1
010
GPIO[33]
GPIO
G
000
DATA6
External data bus
P
001
ADDR22
External address bus
A1
010
GPIO[34]
GPIO
G
000
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
I/O
26
27
O
VDDE-EH
I/O
Medium
O
VDDE-EH
I/O
Medium
— / Up
— / Up
—
—
W3
— / Up
— / Up
—
—
V4
— / Up
— / Up
—
—
AB4
— / Up
— / Up
—
—
AA5
— / Up
— / Up
—
—
AB5
— / Up
— / Up
—
—
AB6
— / Up
— / Up
—
—
AB7
— / Up
— / Up
—
—
AA8
— / Up
— / Up
—
—
AB8
I/O
I/O
28
I/O
I/O
I/O
29
I/O
I/O
I/O
30
I/O
I/O
I/O
31
I/O
I/O
I/O
32
I/O
I/O
I/O
33
I/O
I/O
I/O
34
I/O
I/O
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
ADDR30
Package pin #
(5)
Pinout and signal description
45/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
Doc ID 15399 Rev 9
External data bus
P
001
ADDR23
External address bus
A1
010
GPIO[35]
GPIO
G
000
DATA8
External data bus
P
001
ADDR24
External address bus
A1
010
GPIO[36]
GPIO
G
000
DATA9
External data bus
P
001
ADDR25
External address bus
A1
010
GPIO[37]
GPIO
G
000
DATA10
External data bus
P
001
ADDR26
External address bus
A1
010
GPIO[38]
GPIO
G
000
DATA11
External data bus
P
001
ADDR27
External address bus
A1
010
GPIO[39]
GPIO
G
000
DATA12
External data bus
P
001
ADDR28
External address bus
A1
010
GPIO[40]
GPIO
G
000
DATA13
External data bus
P
001
ADDR29
External address bus
A1
010
GPIO[41]
GPIO
G
000
DATA14
External data bus
P
001
ADDR30
External address bus
A1
010
GPIO[42]
GPIO
G
000
DATA15
External data bus
P
001
ADDR31
External address bus
A1
010
GPIO[43]
GPIO
G
000
RD_WR
External read/write
P
01
GPIO[62]
GPIO
G
00
Type
I/O
35
I/O
I/O
I/O
36
I/O
I/O
I/O
37
I/O
I/O
I/O
38
I/O
I/O
I/O
39
I/O
I/O
I/O
40
I/O
I/O
I/O
41
I/O
I/O
I/O
42
I/O
I/O
I/O
43
I/O
I/O
62
Voltage /
Pad Type(6)
Package pin #
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
VDDE5
Fast
I/O
VDDE2
I/O
Fast
During Reset
After
Reset
176
208
324
— / Up
— / Up
—
—
AA9
— / Up
— / Up
—
—
Y6
— / Up
— / Up
—
—
Y7
— / Up
— / Up
—
—
Y8
— / Up
— / Up
—
—
W9
— / Up
— / Up
—
—
W10
— / Up
— / Up
—
—
Y10
— / Up
— / Up
—
—
W11
— / Up
— / Up
—
—
Y11
— / Up
— / Up
—
—
P3
Pinout and signal description
46/157
DATA7
I/O
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
BDIP
External burst data in progress
P
01
GPIO[63]
GPIO
G
00
WE[0]/BE[0]
External write/byte enable
P
01
GPIO[64]
GPIO
G
00
WE[1]/BE[1]
External write/byte enable
P
01
GPIO[65]
GPIO
G
00
OE
External output enable
P
01
GPIO[68]
GPIO
G
00
External transfer start
P
001
Address latch enable
A1
010
GPIO[69]
GPIO[69]
G
000
TA
External transfer acknowledge
P
001
TS(8)
External transfer start
A1
010
GPIO[70]
GPIO
G
000
64
65
68
Type
O
VDDE2
I/O
Fast
O
VDDE2
I/O
Fast
O
VDDE2
I/O
Fast
O
VDDE2
I/O
Fast
I/O
69
O
I/O
I/O
70
Voltage /
Pad Type(6)
O
I/O
Package pin #
VDDE2
Fast
VDDE2
Fast
During Reset
After
Reset
176
208
324
— / Up
— / Up
—
—
M1
— / Up
— / Up
—
—
N4
— / Up
— / Up
—
—
N3
— / Up
— / Up
—
—
AB9
— / Up
— / Up
—
—
T4
— / Up
— / Up
—
—
R4
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
Calibration Bus
CAL_CS0
Calibration chip select
P
01
CAL_CS2
Calibration chip select
P
001
CAL_ADDR[10]
Calibration address bus
A
010
CAL_WE[2]/BE[2]
Calibration write/byte enable
A2
100
CAL_CS3
Calibration chip select
P
001
CAL_ADDR[11]
Calibration address bus
A
010
CAL_WE[3]/BE[3]
Calibration write/byte enable
A2
100
CAL_ADDR[12]
Calibration address bus
P
01
CAL_WE[2]/BE[2]
Calibration write/byte enable
A
10
CAL_ADDR[13]
Calibration address bus
P
01
CAL_WE[3]/BE[3]
Calibration write/byte enable
A
10
336
O
338
I/O
O
O
O
339
I/O
O
340
340
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
I/O
VDDE12
O
Fast
I/O
VDDE12
O
Fast
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
TS
ALE
63
I/O
(5)
Pinout and signal description
47/157
Table 4.
SPC564A80 signal properties (continued)
Name
Function(1)
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
Doc ID 15399 Rev 9
Calibration address bus
P
01
CAL_DATA[31]
Calibration data bus
A
10
CAL_ADDR[15]
Calibration address bus
P
01
CAL_ALE
Calibration address latch enable
A1
10
CAL_ADDR[16]
Calibration address bus
P
01
CAL_DATA[16]
Calibration data bus
A
10
CAL_ADDR[17]
Calibration address bus
P
01
CAL_DATA[17]
Calibration data bus
A
10
CAL_ADDR[18]
Calibration address bus
P
01
CAL_DATA[18]
Calibration data bus
A
10
CAL_ADDR[19]
Calibration address bus
P
01
CAL_DATA[19]
Calibration data bus
A
10
CAL_ADDR[20]
Calibration address bus
P
01
CAL_DATA[20]
Calibration data bus
A
10
CAL_ADDR[21]
Calibration address bus
P
01
CAL_DATA[21]
Calibration data bus
A
10
CAL_ADDR[22]
Calibration address bus
P
01
CAL_DATA[22]
Calibration data bus
A
10
CAL_ADDR[23]
Calibration address bus
P
01
CAL_DATA[23]
Calibration data bus
A
10
CAL_ADDR[24]
Calibration address bus
P
01
CAL_DATA[24]
Calibration data bus
A
10
CAL_ADDR[25]
Calibration address bus
P
01
CAL_DATA[25]
Calibration data bus
A
10
CAL_ADDR[26]
Calibration address bus
P
01
CAL_DATA[26]
Calibration data bus
A
10
CAL_ADDR[27]
Calibration address bus
P
01
CAL_DATA[27]
Calibration data bus
A
10
340
340
345
345
345
345
345
345
345
345
345
345
345
345
Type
Voltage /
Pad Type(6)
Package pin #
I/O
VDDE12
I/O
Fast
I/O
VDDE12
O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
During Reset
After
176
208
324
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
Reset
Pinout and signal description
48/157
CAL_ADDR[14]
I/O
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Name
Function(1)
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Calibration address bus
P
01
CAL_DATA[28]
Calibration data bus
A
10
CAL_ADDR[29]
Calibration address bus
P
01
CAL_DATA[29]
Calibration data bus
A
10
CAL_ADDR[30]
Calibration address bus
P
01
CAL_DATA[30]
Calibration data bus
A
10
CAL_DATA[0]
Calibration data bus
P
01
341
I/O
CAL_DATA[1]
Calibration data bus
P
01
341
I/O
CAL_DATA[2]
Calibration data bus
P
01
341
I/O
CAL_DATA[3]
Calibration data bus
P
01
341
I/O
CAL_DATA[4]
Calibration data bus
P
01
341
I/O
CAL_DATA[5]
Calibration data bus
P
01
341
I/O
CAL_DATA[6]
Calibration data bus
P
01
341
I/O
CAL_DATA[7]
Calibration data bus
P
01
341
I/O
CAL_DATA[8]
Calibration data bus
P
01
341
I/O
CAL_DATA[9]
Calibration data bus
P
01
341
I/O
CAL_DATA[10]
Calibration data bus
P
01
341
I/O
345
345
345
Voltage /
Pad Type(6)
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
I/O
VDDE12
I/O
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
During Reset
After
176
208
324
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
Reset
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
CAL_ADDR[28]
Package pin #
(5)
Pinout and signal description
49/157
Table 4.
SPC564A80 signal properties (continued)
Name
Function(1)
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Doc ID 15399 Rev 9
Calibration data bus
P
01
341
I/O
CAL_DATA[12]
Calibration data bus
P
01
341
I/O
CAL_DATA[13]
Calibration data bus
P
01
341
I/O
CAL_DATA[14]
Calibration data bus
P
01
341
I/O
CAL_DATA[15]
Calibration data bus
P
01
341
I/O
CAL_RD_WR
Calibration read/write enable
P
01
342
O
CAL_WE[0]/BE[0]
Calibration write/byte enable
P
01
342
O
CAL_WE[1]/BE[1]
Calibration write/byte enable
P
01
342
O
CAL_OE
Calibration output enable
P
01
342
O
CAL_TS
Calibration transfer start
P
01
CAL_ALE
Address Latch Enable
A
10
CAL_MDO[4]
Calibration Nexus Message Data
Out
P
01
—
O
CAL_MDO[5]
Calibration Nexus Message Data
Out
P
01
—
O
CAL_MDO[6]
Calibration Nexus Message Data
Out
P
01
—
O
CAL_MDO[7]
Calibration Nexus Message Data
Out
P
01
—
O
343
Voltage /
Pad Type(6)
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
During Reset
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
— / Up
— / Up
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—/—
—
—
—
—
CAL_MDO[4] / —
—
—
—
—
CAL_MDO[5] / —
—
—
—
—
CAL_MDO[6] / —
—
—
—
—
CAL_MDO[7] / —
—
—
—
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
324
—
Fast
Fast
208
—
VDDE12
VDDE12
176
— / Up
Fast
O
Reset
— / Up
VDDE12
O
After
Pinout and signal description
50/157
CAL_DATA[11]
Package pin #
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
CAL_MDO[8]
Calibration Nexus Message Data
Out
P
01
—
O
CAL_MDO[9]
Calibration Nexus Message Data
Out
P
01
—
O
CAL_MDO[10]
Calibration Nexus Message Data
Out
P
01
—
O
CAL_MDO[11]
Calibration Nexus Message Data
Out
P
01
—
O
Package pin #
(5)
Voltage /
Pad Type(6)
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
VDDE12
Fast
During Reset
After
Reset
176
208
324
—
CAL_MDO[8] / —
—
—
—
—
CAL_MDO[9] / —
—
—
—
—
CAL_MDO[10] / —
—
—
—
—
CAL_MDO[11] / —
—
—
—
— / Up
EVTI / Up
116
E15
F21
—
EVTO / —
120
D15
F22
—
MCKO / —
14
F15
G20
—
MDO[0] / —
17
A14
B20
—
MDO[1] / —
18
B14
C19
—
MDO[2] / —
19
A13
C18
—
MDO[3] / —
20
B13
D18
—
—/—
126
P10
B19
Pinout and signal description
51/157
Table 4.
NEXUS
Nexus event in
P
01
231
I
MultiV(12),(14)
EVTO
Nexus event out
P
01
227
O
MultiV(12),(14),
VDDEH7
(15)
MCKO
Nexus message clock out
P
—
MDO0(16)
Nexus message data out
P
MDO1(16)
Nexus message data out
MDO2(16)
219(11
)
O
01
220
O
P
01
221
O
Nexus message data out
P
01
222
O
MDO3(16)
Nexus message data out
P
01
223
O
MDO4(16)
Nexus message data out
P
01
ETPUA2_O(8)
eTPU A channel (output only)
A1
10
GPIO[75]
GPIO
G
00
O
75
O
I/O
VRC33
Fast
VRC33
Fast
VRC33
Fast
VRC33
Fast
VRC33
Fast
VDDEH7
MultiV(12),(14)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
VDDEH7
EVTI
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Voltage /
Pad Type(6)
Doc ID 15399 Rev 9
Nexus message data out
P
01
ETPUA4_O(8)
eTPU A channel (output only)
A1
10
GPIO[76]
GPIO
G
00
MDO6(16)
Nexus message data out
P
01
ETPUA13_O(8)
eTPU A channel (output only)
A1
10
GPIO[77]
GPIO
G
00
MDO7(16)
Nexus message data out
P
01
ETPUA19_O(8)
eTPU A channel (output only)
A1
10
GPIO[78]
GPIO
G
00
MDO8(16)
Nexus message data out
P
01
ETPUA21_O(8)
eTPU A channel (output only)
A1
10
GPIO[79]
GPIO
G
00
MDO9(16)
Nexus message data out
P
01
ETPUA25_O(8)
eTPU A channel (output only)
A1
10
GPIO[80]
GPIO
G
00
MDO10(16)
Nexus message data out
P
01
ETPUA27_O(8)
eTPU A channel (output only)
A1
10
GPIO[81]
GPIO
G
00
MDO11(16)
Nexus message data out
P
01
ETPUA29_O(8)
eTPU A channel (output only)
A1
10
GPIO[82]
GPIO[82]
G
00
MSEO[0](16)
Nexus message start/end out
P
01
224
O
MultiV(12),(14)
MSEO[1](16)
Nexus message start/end out
P
01
225
O
MultiV(12),(14)
RDY
Nexus ready output
P
01
226
O
MultiV(12),(14)
O
O
I/O
VDDEH7
MultiV(12),(14)
O
77
O
I/O
VDDEH7
MultiV(12),(14)
O
78
O
I/O
VDDEH7
MultiV(12),(14)
O
79
O
I/O
VDDEH7
MultiV(12),(14)
O
80
O
I/O
VDDEH7
MultiV(12),(14)
O
81
O
I/O
VDDEH7
MultiV(12),(14)
O
82
O
I/O
VDDEH7
MultiV(12),(14)
VDDEH7
VDDEH7
VDDEH7
52/157
JTAG
During Reset
After
Reset
176
208
324
—
—/—
129
T10
C17
—
—/—
135
T11
D17
—
—/—
136
N11
B18
—
—/—
137
P11
A19
—
—/—
139
T7
B17
—
—/—
134
R10
A18
—
—/—
124
P9
A17
—
MSEO[0] / —
118
C15
G21
—
MSEO[1] / —
117
E16
G22
—
—
—
—
G19
Pinout and signal description
MDO5(16)
76
Package pin #
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Package pin #
(5)
Voltage /
Pad Type(6)
VDDEH7
JTAG test clock input
P
01
—
I
MultiV(12)
TDI
JTAG test data input
P
01
232
I
MultiV(12)
TDO
JTAG test data output
P
01
228
O
MultiV(12)
TMS
JTAG test mode select input
P
01
—
I
JCOMP
JTAG TAP controller enable
P
01
—
I
MultiV(12)
TCK / Down
After
Reset
176
208
324
TCK / Down
128
C16
D21
TDI / Up
TDI / Up
130
E14
D22
TDO / Up
TDO / Up
123
F14
E21
MultiV(12)
TMS / Up
TMS / Up
131
D14
E20
VDDEH7
JCOMP / Down
JCOMP / Down
121
F16
F20
— / Up
— / Up
81
P12
Y17
— / Up
— / Up
82
R12
AA18
— / Up
— / Up
88
T12
AB18
— / Up
— / Up
89
R13
AB19
— / Up
— / Up
101
K13
P19
VDDEH7
VDDEH7
VDDEH7
FlexCAN
CAN_A_TX
FlexCAN A TX
P
01
SCI_A_TX
eSCI A TX
A1
10
GPIO[83]
GPIO
G
00
CAN_A_RX
FlexCAN A RX
P
01
SCI_A_RX
eSCI A RX
A1
10
GPIO[84]
GPIO
G
00
I/O
CAN_B_TX
FlexCAN B TX
P
001
O
DSPI_C_PCS[3]
DSPI C peripheral chip select
A1
010
SCI_C_TX
eSCI C TX
A2
100
GPIO[85]
GPIO
G
000
CAN_B_RX
FlexCAN B RX
P
001
I
DSPI_C_PCS[4]
DSPI C peripheral chip select
A1
010
O
VDDEH6
SCI_C_RX
eSCI C RX
A2
100
I
Slow
GPIO[86]
GPIO
G
000
CAN_C_TX
FlexCAN C TX
P
01
DSPI_D_PCS[3]
DSPI D peripheral chip select
A1
10
GPIO[87]
GPIO
G
00
O
83
O
I/O
I
84
85
I
VDDEH6
Slow
VDDEH6
Slow
O
VDDEH6
O
Slow
I/O
86
I/O
O
87
O
I/O
VDDEH6
Medium
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
TCK
During Reset
Pinout and signal description
53/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
CAN_C_RX
FlexCAN C RX
P
01
DSPI_D_PCS[4]
DSPI D peripheral chip select
A1
10
GPIO[88]
GPIO
G
00
I/O
Type
Voltage /
Pad Type(6)
I
88
Package pin #
(5)
VDDEH6
O
Slow
I/O
During Reset
After
Reset
176
208
324
— / Up
98
L14
R20
— / Up
— / Up
100
J14
N20
— / Up
— / Up
99
K14
P20
— / Up
— / Up
87
L13
R21
— / Up
— / Up
84
M13
T19
— / Up
— / Up
—
—
W18
— / Up
— / Up
—
—
Y19
— / Up
— / Up
—
—
L22
— / Up
— / Up
—
—
L21
eSCI
Doc ID 15399 Rev 9
SCI_A_TX
eSCI A TX
P
01
EMIOS13(8)
eMIOS channel
A1
10
GPIO[89]
GPIO
G
00
SCI_A_RX
eSCI A RX
P
01
EMIOS15(8)
eMIOS channel
A1
10
GPIO[90]
GPIO
G
00
SCI_B_TX
eSCI B TX
P
01
DSPI_D_PCS[1]
DSPI D peripheral chip select
A1
10
GPIO[91]
GPIO
G
00
SCI_B_RX
eSCI B RX
P
01
DSPI_D_PCS[5]
DSPI D peripheral chip select
A1
10
GPIO[92]
GPIO
G
00
SCI_C_TX
eSCI C TX
P
01
GPIO[244]
GPIO
G
00
SCI_C_RX
eSCI C RX
P
01
GPIO[245]
GPIO
G
00
O
89
VDDEH6
O
Medium
I/O
I
90
VDDEH6
O
Medium
I/O
O
91
VDDEH6
O
Medium
I/O
I
92
VDDEH6
O
Medium
I/O
244
245
O
VDDEH6
I/O
Medium
I
VDDEH6
I/O
Medium
DSPI
(17)
—
—
—
DSPI_C_PCS[1]
DSPI C peripheral chip select
A1
10
GPIO[93]
GPIO
G
00
DSPI_A_SIN(17)
—
—
—
DSPI_C_PCS[2]
DSPI C peripheral chip select
A1
10
GPIO[94]
GPIO
G
00
DSPI_A_SCK
—
93
O
I/O
—
94
O
54/157
I/O
VDDEH7
Medium
VDDEH7
Medium
Pinout and signal description
— / Up
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
—
—
—
DSPI_C_PCS[5]
DSPI C peripheral chip select
A1
10
GPIO[95]
GPIO
G
00
DSPI_A_PCS[0](17)
—
—
—
DSPI_D_PCS[2]
DSPI D peripheral chip select
A1
10
GPIO[96]
GPIO
G
00
DSPI_A_PCS[1](17)
—
—
—
DSPI_B_PCS[2]
DSPI B peripheral chip select
A1
10
GPIO[97]
GPIO
G
00
CS[2]
—
—
—
DSPI_D_SCK
SPI clock pin for DSPI module
A1
10
GPIO[98]
GPIO
G
00
CS[3]
—
—
—
DSPI_D_SIN
DSPI D data input
A1
10
GPIO[99]
GPIO
G
00
DSPI_A_PCS[4](17)
—
—
—
DSPI_D_SOUT
DSPI D data output
A1
10
GPIO[100]
GPIO
G
00
DSPI_A_PCS[5](17)
—
—
—
DSPI_B_PCS[3]
DSPI B peripheral chip select
A1
10
GPIO[101]
GPIO
G
00
DSPI_B_SCK
SPI clock pin for DSPI module
P
01
DSPI_C_PCS[1]
DSPI C peripheral chip select
A1
10
GPIO[102]
GPIO
G
00
DSPI_B_SIN
DSPI B data input
P
01
DSPI_C_PCS[2]
DSPI C peripheral chip select
A1
10
GPIO[103]
GPIO
G
00
Type
—
95
O
I/O
—
96
O
I/O
—
97
O
I/O
—
98
I/O
I/O
—
99
I
I/O
100
101
Medium
VDDEH7
Medium
VDDEH7
Medium
VDDEH7
Medium
VDDEH7
Medium
O
VDDEH7
Medium
O
VDDEH7
I/O
Medium
O
I/O
I
103
VDDEH7
I/O
I/O
102
Voltage /
Pad Type(6)
O
I/O
Package pin #
VDDEH6
Medium
VDDEH6
Medium
During Reset
After
Reset
176
208
324
— / Up
— / Up
—
—
L20
— / Up
— / Up
—
—
M20
— / Up
— / Up
—
—
M19
— / Up
— / Up
141
J15
M21
— / Up
— / Up
142
H13
K19
— / Up
— / Up
—
—
N19
— / Up
— / Up
—
—
N21
— / Up
— / Up
106
J16
K21
— / Up
— / Up
112
G15
H22
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
DSPI_A_SOUT(17)
I/O
(5)
Pinout and signal description
55/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
Doc ID 15399 Rev 9
DSPI B data output
P
01
DSPI_C_PCS[5]
DSPI C peripheral chip select
A1
10
GPIO[104]
GPIO
G
00
DSPI_B_PCS[0]
DSPI B peripheral chip select
P
01
DSPI_D_PCS[2]
DSPI D peripheral chip select
A1
10
GPIO[105]
GPIO
G
00
DSPI_B_PCS[1]
DSPI B peripheral chip select
P
01
DSPI_D_PCS[0]
DSPI D peripheral chip select
A1
10
GPIO[106]
GPIO
G
00
DSPI_B_PCS[2]
DSPI B peripheral chip select
P
01
DSPI_C_SOUT
DSPI C data output
A1
10
GPIO[107]
GPIO
G
00
DSPI_B_PCS[3]
DSPI B peripheral chip select
P
01
DSPI_C_SIN
DSPI C data input
A1
10
GPIO[108]
GPIO
G
00
DSPI_B_PCS[4]
DSPI B peripheral chip select
P
01
DSPI_C_SCK
SPI clock pin for DSPI module
A1
10
GPIO[109]
GPIO
G
00
DSPI_B_PCS[5]
DSPI B peripheral chip select
P
01
DSPI_C_PCS[0]
DSPI C peripheral chip select
A1
10
GPIO[110]
GPIO
G
00
Type
O
104
O
I/O
I/O
105
O
I/O
O
106
I/O
I/O
O
107
O
I/O
O
108
I
I/O
O
109
I/O
I/O
O
110
I/O
I/O
Voltage /
Pad Type(6)
Package pin #
VDDEH6
Medium
VDDEH6
Medium
VDDEH6
Medium
VDDEH6
Medium
VDDEH6
Medium
VDDEH6
Medium
VDDEH6
Medium
During Reset
After
Reset
176
208
324
— / Up
— / Up
113
G13
J19
— / Up
— / Up
111
G16
J21
— / Up
— / Up
109
H16
J22
— / Up
— / Up
107
H15
K22
— / Up
— / Up
114
G14
J20
— / Up
— / Up
105
H14
K20
— / Up
— / Up
104
J13
L19
I/—
AN[0] / —
172
B5
B8
I/—
AN[1] / —
171
A6
A8
I/—
AN[2] / —
170
D6
D10
eQADC
(18)
Single Ended Analog Input
DAN0+
Positive Terminal Diff. Input
AN1(18)
Single Ended Analog Input
DAN0-
Negative Terminal Diff. Input
AN2(18)
Single Ended Analog Input
DAN1+
Positive Terminal Diff. Input
AN0
56/157
P
—
—
P
—
—
P
—
—
I
VDDA
I
Analog
I
VDDA
I
Analog
I
VDDA
I
Analog
Pinout and signal description
DSPI_B_SOUT
I/O
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Name
Function(1)
Single Ended Analog Input
DAN1-
Negative Terminal Diff. Input
AN4(18)
Single Ended Analog Input
DAN2+
Positive Terminal Diff. Input
AN5(18)
Single Ended Analog Input
DAN2-
Negative Terminal Diff. Input
AN6(18)
Single Ended Analog Input
DAN3+
Positive Terminal Diff. Input
AN7(18)
Single Ended Analog Input
DAN3-
Negative Terminal Diff. Input
AN8
Single-ended Analog Input
ANW
Multiplexed Analog Input
AN9
Single-ended Analog Input
ANX
External Multiplexed Analog Input
AN10
Single-ended Analog Input
ANY
Multiplexed Analog Input
AN11
Single-ended Analog Input
ANZ
Multiplexed Analog Input
AN12 - SDS
MA0
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Voltage /
Pad Type(6)
I
VDDA
I
Analog
P
—
—
P
—
—
P
—
—
P
—
—
P
—
—
P
01
—
P
01
—
P
01
—
I
P
01
—
I
Single-ended Analog Input
P
001
I
MUX Address 0
A1
010
O
VDDEH7(19)
eTPU A channel (output only)
A2
100
O
Medium
SDS
eQADC Serial Data Select
G
000
AN13 - SDO
Single-ended Analog Input
P
001
I
MA1
MUX Address 1
A1
010
O
VDDEH7(19)
eTPU A channel (output only)
A2
100
O
Medium
eQADC Serial Data Out
G
000
ETPUA19_O
ETPUA21_O
SDO
(8)
(8)
215
I
VDDA
I
Analog
I
VDDA
I
Analog
I
VDDA
I
Analog
I
VDDA
I
Analog
I
Package pin #
(5)
VDDA
Analog
I
VDDA
I
Analog
VDDA
Analog
VDDA
Analog
During Reset
After
Reset
176
208
324
I/—
AN[3] / —
169
C7
C9
I/—
AN[4] / —
168
B6
B9
I/—
AN[5] / —
167
A7
A9
I/—
AN[6] / —
166
D7
D11
I/—
AN[7] / —
165
C8
C10
I/—
AN[8] / —
9
B3
D6
I/—
AN[9] / —
5
A2
D7
I/—
AN[10] / —
I/—
AN[11] / —
4
A3
A5
I/—
AN[12] / —
148
A12
A16
I/—
AN[13] / —
147
B12
B16
—
—
D8
I/O
216
O
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
AN3(18)
P
A
G(2)
Pinout and signal description
57/157
Table 4.
SPC564A80 signal properties (continued)
Name
Function(1)
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Voltage /
Pad Type(6)
Single-ended Analog Input
P
001
I
MA2
MUX Address 2
A1
010
O
VDDEH7(19)
eTPU A channel (output only)
A2
100
O
Medium
SDI
eQADC Serial Data In
G
000
AN15 - FCK
Single-ended Analog Input
P
001
FCK
eQADC Free Running Clock
A1
010
ETPUA29_O(8)
eTPU A channel (output only)
A2
100
AN16
Single-ended Analog Input
P
—
—
I
AN17
Single-ended Analog Input
P
—
—
I
AN18
Single-ended Analog Input
P
—
—
I
AN19
Single-ended Analog Input
P
—
—
I
AN20
Single-ended Analog Input
P
—
—
I
AN21
Single-ended Analog Input
P
—
—
I
AN22
Single-ended Analog Input
P
—
—
I
AN23
Single-ended Analog Input
P
—
—
I
AN24
Single-ended Analog Input
P
—
—
I
AN25
Single-ended Analog Input
P
—
—
I
ETPUA27_O
217
During Reset
After
Reset
176
208
324
Doc ID 15399 Rev 9
I/—
AN[14] / —
146
C12
C16
I/—
AN[15] / —
145
C13
D16
I/—
AN[16] / —
3
C6
B7
I/—
AN[17] / —
2
C4
C6
I/—
AN[18] / —
1
D5
D9
I/—
AN[19] / —
—
—
B6
I/—
AN[20] / —
—
—
C7
I/—
AN[21] / —
173
B4
C8
I/—
AN[22] / —
161
B8
C11
I/—
AN[23] / —
160
C9
B11
I/—
AN[24] / —
159
D8
D12
I/—
AN[25] / —
158
B9
C12
I
I
218
O
O
VDDEH7(19)
Medium
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
58/157
Pinout and signal description
AN14 - SDI
(8)
Package pin #
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
Name
SPC564A80 signal properties (continued)
Function(1)
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Single-ended Analog Input
P
—
—
I
AN27
Single-ended Analog Input
P
—
—
I
AN28
Single-ended Analog Input
P
—
—
I
AN29
Single-ended Analog Input
P
—
—
I
AN30
Single-ended Analog Input
P
—
—
I
AN31
Single-ended Analog Input
P
—
—
I
AN32
Single-ended Analog Input
P
—
—
I
AN33
Single-ended Analog Input
P
—
—
I
AN34
Single-ended Analog Input
P
—
—
I
AN35
Single-ended Analog Input
P
—
—
I
AN36
Single-ended Analog Input
P
—
—
I
AN37
Single-ended Analog Input
P
—
—
I
AN38
Single-ended Analog Input
P
—
—
I
AN39
Single-ended Analog Input
P
—
—
I
Voltage /
Pad Type(6)
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
VDDA
Analog
During Reset
After
Reset
176
208
—
324
I/—
AN[26] / —
—
I/—
AN[27] / —
157
A10
A12
I/—
AN[28] / —
156
B10
A13
I/—
AN[29] / —
—
I/—
AN[30] / —
155
D9
C13
I/—
AN[31] / —
154
D10
B13
I/—
AN[32] / —
153
C10
B14
I/—
AN[33] / —
152
C11
C14
I/—
AN[34] / —
151
C5
D14
I/—
AN[35] / —
150
D11
A14
I/—
AN[36] / —
174
F4
B4
I/—
AN[37] / —
175
E3
A4
I/—
AN[38] / —
—
—
C5
I/—
AN[39] / —
8
D2
B5
—
B12
D13
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
AN26
Package pin #
(5)
Pinout and signal description
59/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
VRH
Voltage Reference High
P
—
—
I
VRL
Voltage Reference Low
P
—
—
I
P
—
—
I
REFBYBC
Reference Bypass Capacitor
Input
Package pin #
(5)
Voltage /
Pad Type(6)
VDDA
—
VDDA
—
VDDA
Analog
During Reset
After
Reset
176
208
324
I/—
VRH
163
A8
A10
I/—
VRL
162
A9
A11
I/—
REFBYPC
164
B7
B10
— / Up
— / Up
—
L4
M2
61
N3
L3
60
M3
L4
59
P2
K3
58
P1
L2
56
N2
L1
eTPU2
Doc ID 15399 Rev 9
TCRCLKA
eTPU A TCR clock
P
01
IRQ[7]
External interrupt request
A1
10
GPIO[113]
GPIO
G
00
I/O
ETPUA0
eTPU A channel
P
001
I/O
ETPUA12_O(8)
eTPU A channel (output only)
A1
010
ETPUA19_O(8)
eTPU A channel (output only)
A2
100
GPIO[114]
GPIO
G
000
ETPUA1
eTPU A channel
P
01
ETPUA13_O(8)
eTPU A channel (output only)
A1
10
GPIO[115]
GPIO
G
00
ETPUA2
eTPU A channel
P
01
ETPUA14_O(8)
eTPU A channel (output only)
A1
10
GPIO[116]
GPIO
G
00
ETPUA3
eTPU A channel
P
01
ETPUA15_O(8)
eTPU A channel (output only)
A1
10
GPIO[117]
GPIO
G
00
I/O
ETPUA4
eTPU A channel
P
0001
I/O
ETPUA16_O(8)
eTPU A channel (output only)
A1
0010
FR_B_TX
Flexray TX data channel B
A3
1000
GPIO[118]
GPIO
G
0000
I
113
114
I
VDDEH4
Slow
O
VDDEH4
—/
—/
O
Slow
WKPCFG
WKPCFG
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
I/O
I/O
115
O
I/O
I/O
O
I/O
I/O
117
118
O
—/
—/
Slow
WKPCFG
WKPCFG
VDDEH4
—/
—/
Slow
WKPCFG
WKPCFG
— / WKPCFG
GPIO / WKPCFG
VDDEH4
Slow
O
VDDEH4
—/
—/
O
Slow
WKPCFG
WKPCFG
I/O
60/157
Pinout and signal description
116
VDDEH4
SPC564A80 signal properties (continued)
Function(1)
Name
ETPUA5
ETPUA17_O(8)
DSPI_B_SCK_LVD
SFR_B_TX_EN
GPIO[119]
ETPUA6
ETPUA18_O(8)
DSPI_B_SCK_LVD
S+
GPIO[120]
ETPUA7
ETPUA19_O(8)
DSPI_B_SOUT_LV
DSETPUA6_O(8)
GPIO[121]
ETPUA8
ETPUA20_O(8)
DSPI_B_SOUT_LV
DS+
GPIO[122]
PCR
PA
Field
Status(7)
PCR
(4)
(3)
eTPU A channel
P
0001
eTPU A channel (output only)
A1
0010
LVDS negative DSPI clock
A2
0100
Flexray TX data enable for ch. B
A3
GPIO
I/O
Type
Package pin #
(5)
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
I/O
O
VDDEH4
O
Slow +
1000
O
LVDS
G
0000
I/O
eTPU A channel
P
0001
I/O
eTPU A channel (output only)
A1
0010
LVDS positive DSPI clock
A2
0100
Flexray RX data channel B
A3
GPIO
119
O
VDDEH4
O
Medium +
1000
I
LVDS
G
0000
I/O
eTPU A channel
P
0001
I/O
eTPU A channel (output only)
A1
0010
LVDS negative DSPI data out
A2
0100
eTPU A channel (output only)
A3
GPIO
120
O
VDDEH4
O
Slow +
1000
O
LVDS
G
0000
I/O
eTPU A channel
P
001
I/O
eTPU A channel (output only)
A1
010
LVDS positive DSPI data out
A2
100
GPIO
G
000
I/O
I/O
121
122
O
O
ETPUA9
eTPU A channel
P
001
ETPUA21_O(8)
eTPU A channel (output only)
A1
010
RCH1_B
Reaction channel 1B
A2
100
GPIO[123]
GPIO
G
000
I/O
ETPUA10
eTPU A channel
P
001
I/O
ETPUA22_O(8)
eTPU A channel (output only)
A1
010
RCH1_C
Reaction channel 1C
A2
100
GPIO[124]
GPIO
G
000
123
124
VDDEH4
Slow +
LVDS
—/
—/
WKPCFG
WKPCFG
—/
—/
WKPCFG
WKPCFG
—/
—/
WKPCFG
WKPCFG
—/
—/
WKPCFG
WKPCFG
O
VDDEH4
—/
—/
O
Slow
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Slow
WKPCFG
WKPCFG
I/O
54
M4
K4
53
L3
J3
52
K3
K2
51
N1
K1
50
M2
J4
49
M1
H3
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
FR_B_RX
P
A
G(2)
Pinout and signal description
61/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Doc ID 15399 Rev 9
eTPU A channel
P
001
ETPUA23_O(8)
eTPU A channel (output only)
A1
010
RCH4_B
Reaction channel 4B
A2
100
GPIO[125]
GPIO
G
000
I/O
ETPUA12
eTPU A channel
P
001
I/O
DSPI_B_PCS[1]
DSPI B peripheral chip select
A1
010
RCH4_C
Reaction channel 4C
A2
100
GPIO[126]
GPIO
G
000
ETPUA13
eTPU A channel
P
01
DSPI_B_PCS[3]
DSPI B peripheral chip select
A1
10
GPIO[127]
GPIO
G
00
I/O
ETPUA14
eTPU A channel
P
0001
I/O
DSPI_B_PCS[4]
DSPI B peripheral chip select
A1
0010
ETPUA9_O(8)
eTPU A channel (output only)
A2
0100
RCH0_A
Reaction channel 0A
A3
1000
O
GPIO[128]
GPIO
G
0000
I/O
ETPUA15
eTPU A channel
P
001
I/O
DSPI_B_PCS[5]
DSPI B peripheral chip select
A1
010
RCH1_A
Reaction channel 1A
A2
100
GPIO[129]
GPIO
G
000
I/O
ETPUA16
eTPU A channel
P
001
I/O
DSPI_D_PCS[1]
DSPI D peripheral chip select
A1
010
RCH2_A
Reaction channel 2A
A2
100
GPIO[130]
GPIO
G
000
I/O
ETPUA17
eTPU A channel
P
001
I/O
DSPI_D_PCS[2]
DSPI D peripheral chip select
A1
010
RCH3_A
Reaction channel 3A
A2
100
GPIO[131]
GPIO
G
000
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
I/O
125
126
O
VDDEH1
—/
—/
O
Slow
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Medium
WKPCFG
WKPCFG
48
L2
J2
47
L1
J1
46
J4
G4
42
J3
G3
40
K2
H2
39
K1
H1
38
H3
F3
I/O
I/O
127
O
O
128
129
130
131
O
VDDEH1
—/
—/
Medium
WKPCFG
WKPCFG
VDDEH1
—/
—/
Medium
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Medium
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Slow
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Slow
WKPCFG
WKPCFG
I/O
62/157
Pinout and signal description
ETPUA11
Package pin #
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
eTPU A channel
P
001
DSPI_D_PCS[3]
DSPI D peripheral chip select
A1
010
RCH4_A
Reaction channel 4A
A2
100
GPIO[132]
GPIO
G
000
I/O
ETPUA19
eTPU A channel
P
001
I/O
DSPI_D_PCS[4]
DSPI D peripheral chip select
A1
010
RCH5_A
Reaction channel 5A
A2
100
GPIO[133]
GPIO
G
000
I/O
ETPUA20
eTPU A channel
P
0001
I/O
IRQ[8]
External interrupt request
A1
0010
RCH0_B
Reaction channel 0B
A2
0100
FR_A_TX
Flexray TX data channel A
A3
1000
O
GPIO[134]
GPIO
G
0000
I/O
ETPUA21
eTPU A channel
P
0001
I/O
IRQ[9]
External interrupt request
A1
0010
RCH0_C
Reaction channel 0C
A2
0100
FR_A_RX
Flexray RX channel A
A3
1000
I
GPIO[135]
GPIO
G
0000
I/O
ETPUA22
eTPU A channel
P
001
I/O
IRQ[10]
External interrupt request
A1
010
ETPUA17_O(8)
eTPU A channel (output only)
A2
100
GPIO[136]
GPIO
G
000
I/O
ETPUA23
eTPU A channel
P
0001
I/O
IRQ[11]
External interrupt request
A1
0010
ETPUA21_O(8)
eTPU A channel (output only)
A2
0100
FR_A_TX_EN
Flexray ch. A TX enable
A3
1000
O
GPIO[137]
GPIO
G
0000
I/O
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
I/O
132
133
O
VDDEH1
—/
—/
O
Slow
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Slow
WKPCFG
WKPCFG
I
134
O
I
135
136
O
—/
—/
Slow
WKPCFG
WKPCFG
VDDEH1
—/
—/
Slow
WKPCFG
WKPCFG
I
VDDEH1
—/
—/
O
Slow
WKPCFG
WKPCFG
I
137
VDDEH1
O
VDDEH1
—/
—/
Slow
WKPCFG
WKPCFG
37
H4
F4
36
J2
G2
35
J1
G1
34
G4
E4
32
H2
F2
30
H1
F1
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
ETPUA18
Package pin #
(5)
Pinout and signal description
63/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
ETPUA24
IRQ[12]
DSPI_C_SCK_LVD
SGPIO[138]
ETPUA25
IRQ[13]
DSPI_C_SCK_LVD
S+
GPIO[139]
Doc ID 15399 Rev 9
ETPUA26
IRQ[14]
DSPI_C_SOUT_LV
DSGPIO[140]
ETPUA27
IRQ[15]
DSPI_C_SOUT_LV
DS+
DSPI_B_SOUT
GPIO[141]
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
eTPU A channel
P
001
External interrupt request
A1
010
LVDS negative DSPI clock
A2
100
GPIO
G
000
I/O
eTPU A channel
P
001
I/O
External interrupt request
A1
010
LVDS positive DSPI clock
A2
100
GPIO
G
000
I/O
eTPU A channel
P
001
I/O
External interrupt request
A1
010
LVDS negative DSPI data out
A2
100
GPIO
G
000
I/O
eTPU A channel
P
0001
I/O
External interrupt request
A1
0010
LVDS positive DSPI data out
A2
0100
DSPI data out
A3
GPIO
I/O
138
139
140
I
O
I
O
I
O
Voltage /
Pad Type(6)
VDDEH1
Slow +
LVDS
VDDEH1
Medium +
LVDS
VDDEH1
Slow +
LVDS
VDDEH1
Slow +
1000
O
LVDS
G
0000
I/O
I/O
ETPUA28
eTPU A channel
P
001
DSPI_C_PCS[1]
DSPI C peripheral chip select
A1
010
RCH5_B
Reaction channel 5B
A2
100
GPIO[142]
GPIO
G
000
I/O
ETPUA29
eTPU A channel
P
001
I/O
DSPI_C_PCS[2]
DSPI C peripheral chip select
A1
010
RCH5_C
Reaction channel 5C
A2
100
GPIO[143]
GPIO
G
000
142
143
During Reset
After
Reset
—/
—/
WKPCFG
WKPCFG
—/
—/
WKPCFG
WKPCFG
—/
—/
WKPCFG
WKPCFG
—/
—/
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Medium
WKPCFG
WKPCFG
O
VDDEH1
—/
—/
O
Medium
WKPCFG
WKPCFG
I/O
176
208
324
28
G1
E1
27
G3
E3
26
F3
D3
25
G2
E2
24
F1
D1
23
F2
D2
64/157
Pinout and signal description
I
O
141
Package pin #
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
ETPUA30
eTPU A channel
P
001
DSPI_C_PCS[3]
DSPI C peripheral chip select
A1
010
ETPUA11_O(8)
eTPU A channel (output only)
A2
100
GPIO[144]
GPIO
G
000
I/O
ETPUA31
eTPU A channel
P
001
I/O
DSPI_C_PCS[4]
DSPI C peripheral chip select
A1
010
ETPUA13_O(8)
eTPU A channel (output only)
A2
100
GPIO[145]
GPIO
G
000
Package pin #
(5)
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
I/O
144
145
O
VDDEH1
—/
—/
O
Medium
WKPCFG
WKPCFG
22
E1
C1
21
E2
C2
O
VDDEH1
—/
—/
O
Medium
WKPCFG
WKPCFG
— / Up
— / Up
63
T4
AB10
— / Up
— / Up
64
T5
AB11
— / Up
— / Up
65
N7
W12
66
R6
AA11
67
R5
AB12
Pinout and signal description
65/157
Table 4.
I/O
eMIOS
eMIOS channel
P
001
ETPUA0_O(8)
eTPU A channel (output only)
A1
010
ETPUA25_O(8)
eTPU A channel (output only)
A2
100
GPIO[179]
GPIO
G
000
EMIOS1
eMIOS channel
P
01
ETPUA1_O(8)
eTPU A channel (output only)
A1
10
GPIO[180]
GPIO
G
00
I/O
EMIOS2
eMIOS channel
P
001
I/O
ETPUA2_O(8)
eTPU A channel (output only)
A1
010
RCH2_B
Reaction channel 2B
A2
100
GPIO[181]
GPIO
G
000
EMIOS3
eMIOS channel
P
01
ETPUA3_O(8)
eTPU A channel (output only)
A1
10
GPIO[182]
GPIO
G
00
I/O
EMIOS4
eMIOS channel
P
001
I/O
ETPUA4_O(8)
eTPU A channel (output only)
A1
010
RCH2_C
Reaction channel 2C
A2
100
GPIO[183]
GPIO
G
000
I/O
179
O
VDDEH4
O
Slow
I/O
I/O
180
181
O
VDDEH4
Slow
O
VDDEH4
O
Slow
I/O
I/O
182
183
O
VDDEH4
—/
—/
Slow
WKPCFG
WKPCFG
O
VDDEH4
—/
—/
O
Slow
WKPCFG
WKPCFG
I/O
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
EMIOS0
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Doc ID 15399 Rev 9
eMIOS channel
P
01
ETPUA5_O(8)
eTPU A channel (output only)
A1
10
GPIO[184]
GPIO
G
00
EMIOS6
eMIOS channel
P
01
ETPUA6_O(8)
eTPU A channel (output only)
A1
10
GPIO[185]
GPIO
G
00
EMIOS7
eMIOS channel
P
01
ETPUA7_O(8)
eTPU A channel (output only)
A1
10
GPIO[186]
GPIO
G
00
I/O
EMIOS8
eMIOS channel
P
001
I/O
ETPUA8_O(8)
eTPU A channel (output only)
A1
010
SCI_B_TX
eSCI B TX
A2
100
GPIO[187]
GPIO
G
000
I/O
EMIOS9
eMIOS channel
P
001
I/O
ETPUA9_O(8)
eTPU A channel (output only)
A1
010
SCI_B_RX
eSCI B RX
A2
100
GPIO[188]
GPIO
G
000
I/O
EMIOS10
eMIOS channel
P
001
I/O
DSPI_D_PCS[3]
DSPI D peripheral chip select
A1
010
RCH3_B
Reaction channel 3B
A2
100
GPIO[189]
GPIO
G
000
I/O
EMIOS11
eMIOS channel
P
001
I/O
DSPI_D_PCS[4]
DSPI D peripheral chip select
A1
010
RCH3_C
Reaction channel 3C
A2
100
GPIO[190]
GPIO
G
000
I/O
EMIOS12
eMIOS channel
P
001
I/O
DSPI_C_SOUT
DSPI C data output
A1
010
ETPUA27_O(8)
eTPU A channel (output only)
A2
100
GPIO[191]
GPIO
G
000
I/O
184
O
I/O
I/O
185
O
I/O
I/O
186
187
188
189
190
191
O
Voltage /
Pad Type(6)
During Reset
After
Reset
208
—
—
324
VDDEH4
—/
—/
Slow
WKPCFG
WKPCFG
— / Down
— / Down
68
— / Down
— / Down
69
— / Up
— / Up
70
P8
W13
— / Up
— / Up
71
R7
AA13
73
N8
Y13
75
R8
AB14
76
N10
W15
VDDEH4
Slow
VDDEH4
Slow
O
VDDEH4
O
Slow
O
VDDEH4
I
Slow
O
VDDEH4
—/
—/
O
Medium
WKPCFG
WKPCFG
O
VDDEH4
—/
—/
O
Medium
WKPCFG
WKPCFG
O
VDDEH4
—/
—/
O
Medium
WKPCFG
WKPCFG
I/O
176
P7
AA12
Y12
—
AB13
Pinout and signal description
66/157
EMIOS5
Package pin #
(5)
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
eMIOS channel
P
01
DSPI_D_SOUT
DSPI D data output
A1
10
GPIO[192]
GPIO
G
00
I/O
EMIOS14
eMIOS channel
P
001
I/O
IRQ[0]
External interrupt request
A1
010
ETPUA29_O(8)
eTPU A channel (output only)
A2
100
GPIO[193]
GPIO
G
000
EMIOS15
eMIOS channel
P
01
IRQ[1]
External interrupt request
A1
10
GPIO[194]
GPIO
G
00
EMIOS16
eMIOS channel
P
01
GPIO[195]
GPIO
G
00
EMIOS17
eMIOS channel
P
01
GPIO[196]
GPIO
G
00
EMIOS18
eMIOS channel
P
01
GPIO[197]
GPIO
G
00
EMIOS19
eMIOS channel
P
01
GPIO[198]
GPIO
G
00
EMIOS20
eMIOS channel
P
01
GPIO[199]
GPIO
G
00
EMIOS21
eMIOS channel
P
01
GPIO[200]
GPIO
G
00
EMIOS22
eMIOS channel
P
01
GPIO[201]
GPIO
G
00
EMIOS23
eMIOS channel
P
01
GPIO[202]
GPIO
G
00
I/O
192
193
O
Voltage /
Pad Type(6)
During Reset
After
Reset
VDDEH4
—/
—/
Medium
WKPCFG
WKPCFG
— / Down
I
VDDEH4
O
Slow
176
208
324
77
T8
AA14
— / Down
78
R9
AB15
— / Down
— / Down
79
T9
Y14
— / Up
— / Up
—
—
AA15
— / Up
— / Up
—
—
Y15
— / Up
— / Up
—
—
AB16
—
—
AA16
—
—
AB17
—
—
W16
—
—
Y16
I/O
I/O
194
I
I/O
195
196
197
198
199
200
201
202
VDDEH4
Slow
I/O
VDDEH4
I/O
Slow
I/O
VDDEH4
I/O
Slow
I/O
VDDEH4
I/O
Slow
I/O
VDDEH4
—/
—/
I/O
Slow
WKPCFG
WKPCFG
I/O
VDDEH4
—/
—/
I/O
Slow
WKPCFG
WKPCFG
I/O
VDDEH4
—/
—/
I/O
Slow
WKPCFG
WKPCFG
I/O
VDDEH4
I/O
Slow
— / Down
— / Down
I/O
VDDEH4
I/O
Slow
— / Down
— / Down
Clock Synthesizer
80
R11
AA17
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
EMIOS13
Package pin #
(5)
Pinout and signal description
67/157
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
XTAL
Crystal oscillator output
P
01
EXTAL
Crystal oscillator input
P
01
EXTCLK
External clock input
A
10
CLKOUT
System clock output
P
ENGCLK
Engineering clock output
P
I/O
Type
—
O
—
I
01
229
O
01
214
O
Package pin #
(5)
Voltage /
Pad Type(6)
VDDEH6
Analog
VDDEH6
Analog
VDDE5
Fast
VDDE5
Fast
During Reset
After
Reset
176
208
324
—
—
93
P16
V22
—
—
92
N16
U22
—
CLKOUT
—
—
ENGCLK
—
—
AA20
T14
AB21
Power / Ground
Doc ID 15399 Rev 9
Voltage Regulator Supply
—
—
I
5V
I/—
VDDREG
10
K16
M22
VRCCTL
Voltage Regulator Control Output
—
—
O
—
O/—
VRCCTL
11
N14
V20
Internal regulator output
—
—
O
3.3 V
I/O / —
VRC33
13
Input for external 3.3 V supply
—
—
A15, D1, A21, B1,
N6, N12 P4, W7, Y22
eQADC high reference voltage
—
—
I
5V
I/—
VDDA
6
—
—
—
—
I
—
I/—
VSSA
7
—
—
—
—
I
5V
I/—
VDDA0
—
B11
A6
—
—
I
—
I/—
VSSA0
—
A11
A7
—
—
I
5V
I/—
VDDA1
—
A4
C15
—
—
I
—
I/—
VSSA1
—
A5
A15, B15
VRC33(20)
VDDA
VSSA
eQADC ground/low reference
voltage
3.3 V
VDDA0(21)
eQADC high reference voltage
VSSA0(22)
eQADC ground/low reference
VDDA1(21)
eQADC high reference voltage
VSSA1(22)
eQADC ground/low reference
VDDPLL
FMPLL Supply Voltage
—
—
I
1.2
I/—
VDDPLL
91
R16
W22
VSTBY
Power Supply for Standby RAM
—
—
I
0.9 V - 6 V
I/—
VSTBY
12
C1
A3
voltage
voltage
68/157
Pinout and signal description
VDDREG
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
SPC564A80 signal properties (continued)
Function(1)
Name
VDD
VDDE12
decoupling
External supply input for
calibration bus interfaces
External supply input for EBI
interfaces
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Package pin #
(5)
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
B1, B16,
C2, D3,
E4, N5,
P4, P13,
R3, R14,
T2, T15
A2, A20, B3,
C4, C22, D5,
V19, W5,
W20, Y4, Y21,
AA3, AA22,
AB2
—
—
—
M9, M10, N11,
P11, W6, W8,
Y5, AA4, AA6,
AA10, AB3
—
—
I
1.2 V
I/—
VDD
33,
45,
62,
103,
132,
149,
176
—
—
I
1.8 V - 3.3 V
I/—
VDDE12
—
—
—
I
1.8 V - 3.3 V
I/—
(24)
VDDE2
—
External supply input for
—
T13
W17, Y18,
AA19, AB20
VDDE5
ENGCLK, CLKOUT and EBI
signals DATA[0:15]
—
—
I
1.8 V - 3.3 V
I/—
VDDE5
VDDE-EH
External supply for EBI interfaces
—
—
I
3.0 V - 5 V
I/—
VDDE-EH
—
—
VDDEH1A(25)
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH1A(25)
31
—
—
VDDEH1B(25)
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH1B(25)
41
—
—
VDDEH1AB(25)
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH1AB(25)
—
VDDEH4(26)
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH4(26)
—
—
—
VDDEH4A(26)
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH4A(26)
55
—
—
VDDEH4B(26)
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH4B(26)
74
—
—
K4
R3, W2
H4
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
VDDE2(23)
Core supply for input or
P
A
G(2)
Pinout and signal description
69/157
Table 4.
SPC564A80 signal properties (continued)
Name
Function(1)
Doc ID 15399 Rev 9
VDDEH4AB(26)
I/O Supply Input
VDDEH6(27)
I/O Supply Input
VDDEH6A(27)
I/O Supply Input
VDDEH6B(27)
I/O Supply Input
VDDEH6AB(27)
I/O Supply Input
VDDEH7
VDDEH7A
I/O Supply Input
I/O Supply Input
P
A
G(2)
PCR
PA
Field
Status(7)
PCR
(4)
(3)
I/O
Type
Package pin #
(5)
Voltage /
Pad Type(6)
During Reset
After
Reset
176
208
324
—
—
I
3.3 V - 5.0 V
I/—
VDDEH4AB(26)
—
—
I
3.3 V - 5.0 V
I/—
VDDEH6(27)
—
—
I
3.3 V - 5.0 V
I/—
VDDEH6A(27)
—
—
I
3.3 V - 5.0 V
I/—
VDDEH6B(27)
—
—
I
3.3 V - 5.0 V
I/—
VDDEH6AB(27)
—
F13
H19, U19
—
—
I
3.3 V - 5.0 V
I/—
VDDEH7
—
D12
D15
—
—
I
3.3 V - 5.0 V
I/—
VDDEH7A
—
—
N9
W14
—
—
95
—
—
110
—
—
125
—
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 4.
—
Pinout and signal description
70/157
SPC564A80 signal properties (continued)
Function(1)
Name
VDDEH7B
Ground
—
—
PCR
PA
Field
Status(7)
PCR
(4)
(3)
—
—
I/O
Type
I
Package pin #
(5)
Voltage /
Pad Type(6)
3.3 V - 5.0 V
I
—
During Reset
I/—
I/—
After
Reset
VDDEH7B
VSS
176
138
15,
29,
43,
57,
72,
90,
94,
96,
108,
115,
127,
133,
140
208
324
—
—
A1, A16, A1, A22, B2,
B2, B15, B21, C3, C20,
C3, C14, D4, D19, J9,
D4, D13, J10, J11, J12,
G7, G8, J13, K9, K10,
K11, K12,
G9,
K13, K14, L9,
G10,
L10, L11, L12,
H7, H8,
H9, H10, L13, L14,
M11, M12,
J7, J8,
M13, M14, N9,
J9, J10,
N10, N12,
K7,
N13, N14, P9,
K8, K9, P10, P12,
K10,
P13, P14,
M16,
T21, T22,
N4, N13, W4,W19, Y3,
P3, P14, Y20, AA2,
R2, R15, AA21, AB1,
T1, T16 AB22
1. For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or secondary function or
GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal.
2. The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO. Signals are selected by
setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001, A1 - 0b0010, A2 - 0b0100, A3 - 0b1000, or G 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer than four bits, remove the appropriate number of leading zeroes from
these values.
3. The Pad Configuration Register (PCR) PA field is used by software to select pin function.
4. Values in the PCR No. column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number. For example,
PCR[190] refers to the SIU register named SIU_PCR190.
5. The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3 V to 5.0 V range (10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/- 10%).
6. See Table 5 for details on pad types.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Doc ID 15399 Rev 9
VSS
I/O Supply Input
P
A
G(2)
Pinout and signal description
71/157
Table 4.
8. Output only.
9. When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output.
10. Maximum frequency is 50 kHz.
11. The SIU_PCR219 register is unusual in that it controls pads for two separate device pins: GPIO[219] and MCKO. See the SPC564A80 Microcontroller Reference Manual
(SIU chapter) for details.
12. Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing.
13. On LQFP176 and LBGA208 packages, this pin is tied low internally.
14. Nexus multivoltage pads default to 5 V operation until the Nexus module is enabled.
15. EVTO should be clamped to 3.3 V to prevent possible damage to external tools that only support 3.3 V.
16. Do not connect pin directly to a power supply or ground.
17. This signal name is used to support legacy naming.
Doc ID 15399 Rev 9
18. During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when the system
clock propagates through the device.
19. For pins AN12-AN15, if the analog features are used the VDDEH7 input pins should be tied to VDDA because that segment must meet the VDDA specification to support
analog input function.
SPC564A74L7, SPC564A80B4, SPC564A80L7
7. The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is O - output, I - input, Up weak pull up enabled, Down - weak pull down enabled, Low - output driven low, High - output driven high. A dash for the function in this column denotes that both the input
and output buffer are turned off. The signal name to the left or right of the slash indicates the pin is enabled.
20. Do not use VRC33 to drive external circuits.
21. VDDA0 and VDDA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called VDDA.
22. VSSA0 and VSSA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called VSSA.
23. VDDE2 and VDDE3 are shorted together in all production packages.
24. VDDE2 and VDDE3 are shorted together in all production packages.
25. VDDEH1A, VDDEH1B, and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support legacy naming, however
they should be considered as the same signal in this document.
27. VDDEH6, VDDEH6A, VDDEH6B, and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present to support legacy
naming, however they should be considered as the same signal in this document.
72/157
Pinout and signal description
26. VDDEH4, VDDEH4A, VDDEH4B, and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present to support legacy
naming, however they should be considered as the same signal in this document.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 5.
Pinout and signal description
Pad types
Pad Type
Name
I/O Voltage Range
Slow
pad_ssr_hv
3.0V - 5.5 V
Medium
pad_msr_hv
3.0 V - 5.5 V
Fast
pad_fc
3.0 V - 3.6 V
MultiV(1),(2)
pad_multv_hv
3.0 V - 5.5 V (high swing mode)
3.0 V - 3.6 V (low swing mode)
Analog
pad_ae_hv
0.0 - 5.5 V
LVDS
pad_lo_lv
—
1. Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is
selected, otherwise they are high swing.
2. VDDEH7 supply cannot be below 4.5 V when in low-swing mode.
2.5
Signal details
Table 6.
Signal details
Signal
Module or Function
Description
CLKOUT
Clock Generation
SPC564A80 clock output for the external/calibration bus
interface
ENGCLK
Clock Generation
Clock for external ASIC devices
EXTAL
Clock Generation
Input pin for an external crystal oscillator or an external clock
source based on the value driven on the PLLREF pin at reset.
PLLREF is used to select whether the oscillator operates in xtal
mode or external reference mode from reset. PLLREF=0
selects external reference mode. On the 324BGA package,
PLLREF is bonded to the ball used for PLLCFG[0] for
compatibility with previous devices .
PLLREF
Clock Generation
Reset/Configuration
For the 176-pin QFP and 208-ball BGA packages:
0: External reference clock is selected.
1: XTAL oscillator mode is selected
For the 324 ball BGA package:
If RSTCFG is 0:
0: External reference clock is selected.
1: XTAL oscillator mode is selected.
If RSTCFG is 1, XTAL oscillator mode is selected.
XTAL
Clock Generation
Crystal oscillator input
DSPI_B_SCK_LVDSDSPI_B_SCK_LVDS+
DSPI
LVDS pair used for DSPI_B TSB mode transmission
DSPI_B_SOUT_LVDSDSPI_B_SOUT_LVDS+
DSPI
LVDS pair used for DSPI_B TSB mode transmission
Doc ID 15399 Rev 9
73/157
Pinout and signal description
Table 6.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Signal details (continued)
Signal
Module or Function
Description
DSPI_C_SCK_LVDSDSPI_C_SCK_LVDS+
DSPI
LVDS pair used for DSPI_C TSB mode transmission
DSPI_C_SOUT_LVDSDSPI_C_SOUT_LVDS+
DSPI
LVDS pair used for DSPI_C TSB mode transmission
PCS_B[0]
PCS_C[0]
PCS_D[0]
DSPI_B - DSPI_D
Peripheral chip select when device is in master mode—slave
select when used in slave mode
PCS_B[1:5]
PCS_C[1:5]
PCS_D[1:5]
DSPI_B - DSPI_D
Peripheral chip select when device is in master mode—not
used in slave mode
SCK_B
SCK_C
SCK_D
DSPI_B - DSPI_D
DSPI clock—output when device is in master mode; input when
in slave mode
SIN_B
SIN_C
SIN_D
DSPI_B - DSPI_D
DSPI data in
SOUT_B
SOUT_C
SOUT_D
DSPI_B - DSPI_D
DSPI data out
The ADDR[10:31] signals specify the physical address of the
bus transaction.
ADDR[10:31]
EBI
The 26 address lines correspond to bits 3-31 of the EBI’s 32-bit
internal address bus.
ADDR[15:31] can be used as Address and Data signals when
configured appropriately for a multiplexed external bus. This
allows 32-bit data operations, or 16-bit data operations without
using DATA[0:15] signals.
ALE
EBI
The Address Latch Enable (ALE) signal is used to demultiplex
the address from the data bus. It is asserted while the least
significant 16 bits of the address are present in the multiplexed
address/data bus.
BDIP
EBI
BDIP is asserted to indicate that the master is requesting
another data beat following the current one.
CS[0:3]
EBI
CSx is asserted by the master to indicate that this transaction is
targeted for a particular memory bank on the Primary external
bus.
DATA[0:31]
EBI
The DATA[0:31] signals contain the data to be transferred for
the current transaction.
EBI
OE is used to indicate when an external memory is permitted to
drive back read data. External memories must have their data
output buffers off when OE is negated. OE is only asserted for
chip-select accesses.
OE
74/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 6.
Pinout and signal description
Signal details (continued)
Signal
Module or Function
Description
EBI
RD_WR indicates whether the current transaction is a read
access or a write access.
TA
EBI
TA is asserted to indicate that the slave has received the data
(and completed the access) for a write cycle, or returned data
for a read cycle. If the transaction is a burst read, TA is asserted
for each one of the transaction beats. For write transactions, TA
is only asserted once at access completion, even if more than
one write data beat is transferred.
TS
EBI
The Transfer Start signal (TS) is asserted by the SPC564A80 to
indicate the start of a transfer.
WE[2:3]
EBI
Write enables are used to enable program operations to a
particular memory. WE[2:3] are only asserted for write
accesses
WE[0:3]/BE[0:3]
EBI
Write enables are used to enable program operations to a
particular memory. These signals can also be used as byte
enables for read and write operation by setting the WEBS bit in
the appropriate EBI Base Register (EBI_BRn). WE[0:3] are
only asserted for write accesses. BE[0:3] are asserted for both
read and write accesses
eMIOS[0:23]
eMIOS
eMIOS I/O channels
AN[0:39]
eQADC
Single-ended analog inputs for analog-to-digital converter
FCK
eQADC
eQADC free running clock for eQADC SSI.
MA[0:2]
eQADC
These three control bits are output to enable the selection for
an external Analog Mux for expansion channels.
REFBYPC
eQADC
Bypass capacitor input
SDI
eQADC
Serial data in
SDO
eQADC
Serial data out
SDS
eQADC
Serial data select
VRH
eQADC
Voltage reference high input
VRL
eQADC
Voltage reference low input
SCI_A_RX
SCI_B_RX
SCI_C_RX
eSCI_A - eSCI_C
eSCI receive
SCI_A_TX
SCI_B_TX
SCI_C_TX
eSCI_A - eSCI_C
eSCI transmit
ETPU_A[0:31]
eTPU
eTPU I/O channel
RD_WR
Doc ID 15399 Rev 9
75/157
Pinout and signal description
Table 6.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Signal details (continued)
Signal
Module or Function
Description
RCH0_[A:C]
RCH1_[A:C]
RCH2_[A:C]
RCH3_[A:C]
RCH4_[A:C]
RCH5_[A:C]
eTPU2
Reaction Module
eTPU2 reaction channels. Used to control external actuators,
e.g., solenoid control for direct injection systems and valve
control in automatic transmissions
TCRCLKA
eTPU2
Input clock for TCR time base
CAN_A_TX
CAN_B_TX
CAN_C_TX
FlexCan_A FlexCAN_C
FlexCAN transmit
CAN_A_RX
CAN_B_RX
CAN_C_RX
FlexCAN_A FlexCAN_C
FlexCAN receive
FR_A_RX
FR_B_RX
FlexRay
FlexRay receive (Channels A, B)
FR_A_TX_EN
FR_B_TX_EN
FlexRay
FlexRay transmit enable (Channels A, B)
FR_A_TX
FR_B_TX
FlexRay
Flexray transmit (Channels A, B)
JCOMP
JTAG
Enables the JTAG TAP controller.
TCK
JTAG
Clock input for the on-chip test logic.
TDI
JTAG
Serial test instruction and data input for the on-chip test logic.
TDO
JTAG
Serial test data output for the on-chip test logic.
TMS
JTAG
Controls test mode operations for the on-chip test logic.
EVTI is an input that is read on the negation of RESET to
enable or disable the Nexus Debug port. After reset, the EVTI
pin is used to initiate program synchronization messages or
generate a breakpoint.
EVTI
Nexus
EVTO
Nexus
Output that provides timing to a development tool for a single
watchpoint or breakpoint occurrence.
MCKO
Nexus
MCKO is a free running clock output to the development tools
which is used for timing of the MDO and MSEO signals.
(1)
Nexus
Trace message output to development tools. This pin also
indicates the status of the crystal oscillator clock following a
power-on reset, when MDO[0] is driven high until the crystal
oscillator clock achieves stability and is then negated.
MSEO[0:1](1)
Nexus
Output pin—Indicates the start or end of the variable length
message on the MDO pins
RDY
Nexus
Nexus Ready Output (RDY) is an output that indicates to the
development tools the data is ready to be read from or written
to the Nexus read/write access registers.
MDO[0:11]
76/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 6.
Pinout and signal description
Signal details (continued)
Signal
Module or Function
Description
Two BOOTCFG signals are implemented in SPC564A80
MCUs.
The BAM program uses the BOOTCFG0 bit to determine
where to read the reset configuration word, and whether to
initiate a FlexCAN or eSCI boot.
The BOOTCFG1 pin is sampled during the assertion of the
RSTOUT signal, and the value is used to update the RSR and
the BAM boot mode
BOOTCFG[0:1]
See the SPC564A80 Microcontroller Reference Manual for
more information.
SIU - Configuration
The following values are for BOOTCFG[0:1}:
00:Boot from internal flash memory
01:FlexCAN/eSCI boot
10:Boot from external memory using EBI
11:Reserved
Note: For the 176-pin QFP and 208-ball BGA packages
BOOTCFG[0] is always 0 since the EBI interface is not
available.
The WKPCFG pin is applied at the assertion of the internal
reset signal (assertion of RSTOUT), and is sampled 4 clock
cycles before the negation of the RSTOUT pin.
WKPCFG
The value is used to configure whether the eTPU and eMIOS
pins are connected to internal weak pull up or weak pull down
devices after reset. The value latched on the WKPCFG pin at
reset is stored in the Reset Status Register (RSR), and is
updated for all reset sources except the Debug Port Reset and
Software External Reset.
SIU - Configuration
0:Weak pulldown applied to eTPU and eMIOS pins at reset
1:Weak pullup applied to eTPU and eMIOS pins at reset.
ETRIG[2:3]
SIU - eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
GPIO[206] ETRIG0
(Input)
SIU - eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
GPIO[207] ETRIG1
(Input)
SIU - eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
Doc ID 15399 Rev 9
77/157
Pinout and signal description
Table 6.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Signal details (continued)
Signal
Module or Function
Description
The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select
Register 1 is used to select the IRQ[0:15] pins as inputs to the
IRQs.
IRQ[0:5]
IRQ[7:15]
SIU - External
Interrupts
NMI
SIU - External
Interrupts
GPIO[0:3]
GPIO[8:43]
GPIO[62:65]
GPIO[68:70]
GPIO[75:145]
GPIO[179:204]
GPIO[208:213]
GPIO[219]
GPIO[244:245]
See the SPC564A80 Microcontroller Reference Manual for
more information.
Non-Maskable Interrupt
Configurable general purpose I/O pins. Each GPIO input and
output is separately controlled by an 8-bit input (GPDI) or
output (GPDO) register. Additionally, each GPIO pins is
configured using a dedicated SIU_PCR register.
SIU - GPIO
The GPIO pins are generally multiplexed with other I/O pin
functions.
See The SPC564A80 Microcontroller Reference Manual for
more information.
–
The RESET pin is an active low input. The RESET pin is
asserted by an external device during a power-on or external
reset. The internal reset signal asserts only if the RESET pin
asserts for 10 clock cycles. Assertion of the RESET pin while
the device is in reset causes the reset cycle to start over.
RESET
SIU - Reset
The RESET pin has a glitch detector which detects spikes
greater than two clock cycles in duration that fall below the
switch point of the input buffer logic of the VDDEH input pins.
The switch point lies between the maximum VIL and minimum
VIH specifications for the VDDEH input pins.
Used to enable or disable the PLLREF and the BOOTCFG[0:1]
configuration signals.
RSTCFG
SIU - Reset
0:Get configuration information from BOOTCFG[0:1] and
PLLREF
1:Use default configuration of booting from internal flash with
crystal clock source
For the 176-pin QFP and 208-ball BGA packages RSTCFG is
always 0, so PLLREF and BOOTCFG signals are used.
RSTOUT
SIU - Reset
The RSTOUT pin is an active low output that uses a push/pull
configuration. The RSTOUT pin is driven to the low state by the
MCU for all internal and external reset sources. There is a
delay between initiation of the reset and the assertion of the
RSTOUT pin.
1. Do not connect pin directly to a power supply or ground.
78/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 7.
Pinout and signal description
Power/ground segmentation
Power Segment
Voltage
VDDE2
1.8 V - 3.3 V
CS0, CS1, CS2, CS3,RD_WR, BDIP, WE0, WE1, OE, TS, TA
VDDE3
1.8 V - 3.3 V
ADDR12, ADDR13, ADDR14, ADDR15
VDDE5
1.8 V - 3.3 V
DATA0, DATA1, DATA2, DATA3, DATA4, DATA5, DATA6, DATA7,
DATA8, DATA9, DATA10, DATA11, DATA12, DATA13, DATA14,
DATA15, CLKOUT, ENGCLK
VDDE12
1.8 V - 3.3 V
CAL_CS0, CAL_CS2, CAL_CS3 CAL_ADDR12, CAL_ADDR13,
CAL_ADDR14, CAL_ADDR15, CAL_ADDR16, CAL_ADDR17,
CAL_ADDR18, CAL_ADDR19, CAL_ADDR20, CAL_ADDR21,
CAL_ADDR22, CAL_ADDR23, CAL_ADDR24, CAL_ADDR25,
CAL_ADDR26, CAL_ADDR27, CAL_ADDR28, CAL_ADDR29,
CAL_ADDR30, CAL_DATA0, CAL_DATA1, CAL_DATA2,
CAL_DATA3, CAL_DATA4, CAL_DATA5, CAL_DATA6, CAL_DATA7,
CAL_DATA8, CAL_DATA9, CAL_DATA10, CAL_DATA11,
CAL_DATA12, CAL_DATA13, CAL_DATA14, CAL_DATA15,
CAL_RD_WR, CAL_WE0, CAL_WE1, CAL_OE, CAL_TS
VDDE-EH
3.0 V - 5 V
ADDR16, ADDR17, ADDR18, ADDR19, ADDR20, ADDR21,
ADDR22, ADDR23, ADDR24, ADDR25, ADDR26, ADDR27,
ADDR28, ADDR29, ADDR30, ADDR31
3.3 V - 5.0 V
ETPUA10, ETPUA11, ETPUA12, ETPUA13, ETPUA14, ETPUA15,
ETPUA16, ETPUA17, ETPUA18, ETPUA19, ETPUA20, ETPUA21,
ETPUA22, ETPUA23, ETPUA24, ETPUA25, ETPUA26, ETPUA27,
ETPUA28, ETPUA29, ETPUA30, ETPUA31
3.3 V - 5.0 V
EMIOS0, EMIOS1, EMIOS2, EMIOS3, EMIOS4, EMIOS5, EMIOS6,
EMIOS7, EMIOS8, EMIOS9, EMIOS10, EMIOS11, EMIOS12,
EMIOS13, EMIOS14, EMIOS15, EMIOS16, EMIOS17, EMIOS18,
EMIOS19, EMIOS20, EMIOS21, EMIOS22, EMIOS23, TCRCLKA,
ETPUA0, ETPUA1, ETPUA2, ETPUA3, ETPUA4, ETPUA5,
ETPUA6, ETPUA7, ETPUA8, ETPUA9, ETPUA0
3.3 V - 5.0 V
RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG, BOOTCFG0,
BOOTCFG1, WKPCFG, CAN_A_TX, CAN_A_RX, CAN_B_TX,
CAN_B_RX, CAN_C_TX, CAN_C_RX, SCI_A_TX, SCI_A_RX,
SCI_B_TX, SCI_C_RX, DSPI_B_SCK, DSPI_B_SIN,
DSPI_B_SOUT, DSPI_B_PCS[0], DSPI_B_PCS[1],
DSPI_B_PCS[2], DSPI_B_PCS[3], DSPI_B_PCS[4],
DSPI_B_PCS[5], SCI_B_RX, SCI_C_TX, EXTAL, XTAL
3.3 V - 5.0 V
EMIOS14, EMIOS 15, GPIO98, GPIO99, GPIO203, GPIO204,
GPIO206, GPIO207, GPIO219, EVTI, EVTO, MDO4, MDO5,
MDO6, MDO7, MDO8, MDO9, MDO10, MDO11, MSEO0, MSEO1,
RDY, TCK, TDI, TDO, TMS, JCOMP, DSPI_A_SCK, DSPI_A_SIN,
DSPI_A_SOUT, DSPI_A_PCS[0], DSPI_A_PCS[1],
DSPI_A_PCS[4], DSPI_A_PCS[5], AN12-SDS, AN13-SDO, AN14SDI, AN15-FCK
VDDEH1
VDDEH4
VDDEH6
VDDEH7
VDDA
5V
VRC33(1)
3.3 V
I/O Pins Powered by Segment
AN0, AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, AN9, AN10,
AN11, AN16, AN17, AN18, AN19, AN20, AN21, AN22, AN23,
AN24, AN25, AN26, AN27, AN28, AN29, AN30, AN31, AN32,
AN33, AN34, AN35, AN36, AN37, AN38, AN39, VRH, VRL,
REFBYBC
MCKO, MDO0, MDO1, MDO2, MDO3
Doc ID 15399 Rev 9
79/157
Pinout and signal description
Table 7.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Power/ground segmentation (continued)
Power Segment
Voltage
I/O Pins Powered by Segment
Other Power Segments
VDDREG
5V
—
VRCCTL
—
—
VDDPLL
1.2 V
—
0.95–1.2 V
(unregulated mode)
—
2.0–5.5 V (regulated
mode)
—
—
—
VSTBY
VSS
1. Do not use VRC33 to drive external circuits.
80/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
3
Electrical characteristics
Electrical characteristics
This section contains detailed information on power considerations, DC/AC electrical
characteristics, and AC timing specifications for the SPC564A80 series of MCUs.
The electrical specifications are preliminary and are from previous designs, design
simulations, or initial evaluation. These specifications may not be fully tested or guaranteed
at this early stage of the product life cycle, however for production silicon these
specifications will be met. Finalized specifications will be published after complete
characterization and device qualifications have been completed.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
3.1
Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Table 8 are used and
the parameters are tagged accordingly in the tables where appropriate.
Table 8.
Parameter classifications
Classification tag
Note:
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
D
Those parameters are derived mainly from simulations.
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
Doc ID 15399 Rev 9
81/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.2
Maximum ratings
Table 9.
Absolute maximum ratings(1)
Value
Symbol
Parameter
Conditions
Unit
min
max
VDD
SR
1.2 V core supply voltage(2)
–0.3
1.32
V
VFLASH
SR
Flash core voltage(3),(4)
–0.3
3.6
V
(5)
VSTBY
SR
SRAM standby voltage
–0.3
6
V
VDDPLL
SR
Clock synthesizer voltage
–0.3
1.32
V
VRC33
SR
Voltage regulator control input
voltage(4)
–0.3
3.6
V
VDDA
SR
Analog supply voltage(5)
–0.3
5.5
V
VDDE
SR
I/O supply voltage(4),(6)
–0.3
3.6
V
VDDEH
SR
I/O supply voltage(5)
–0.3
5.5
V
VDDEH powered I/O pads
–1.0(8)
VDDEH +
0.3 V(9)
VDDE powered I/O pads
–1.0(10)
VDDE +
0.3 V(10)
VDDA powered I/O pads
–1.0
5.5
VIN
SR
DC input voltage(7)
Reference to VSSA
V
VDDREG
SR
Voltage regulator supply
voltage
–0.3
5.5
V
VRH
SR
Analog reference high voltage Reference to VRL
–0.3
5.5
V
VSS – VSSA
SR
VSS differential voltage
–0.1
0.1
V
VRH – VRL
SR
VREF differential voltage
–0.3
5.5
V
VRL – VSSA
SR
VRL to VSSA differential
voltage
–0.3
0.3
V
VSSPLL – VSS
SR
VSSPLL to VSS differential
voltage
–0.1
0.1
V
IMAXD
SR
Maximum DC digital input
current(11)
Per pin, applies to all digital
pins
–3
3
mA
IMAXA
SR
Maximum DC analog input
current(12)
Per pin, applies to all
analog pins
—
5
mA
82/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 9.
Electrical characteristics
Absolute maximum ratings(1) (continued)
Value
Symbol
Parameter
Conditions
Unit
min
max
TJ
SR
Maximum operating
temperature range - die
junction temperature
–40.0
150.0
o
C
TSTG
SR
Storage temperature range
–55.0
150.0
o
C
TSDR
SR
Maximum solder
temperature(13)
—
260.0
oC
MSL
SR
Moisture sensitivity level(14)
—
3
1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings
only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device
reliability or cause permanent damage to the device.
2. Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V +10%.
3. The VFLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration package
devices only.
4. Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V +10%.
5. Allowed 5.9 V for 10 hours cumulative time, remaining time at 5 V +10%.
6. All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH.
7. AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of 60
hours over the complete lifetime of the device (injection current not limited for this duration).
8. Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met.
9. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if the
maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage specifications.
10. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the
maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage specifications.
11. Total injection current for all pins (including both digital and analog) must not exceed 25 mA.
12. Total injection current for all analog input pins must not exceed 15 mA.
13. Solder profile per IPC/JEDEC J-STD-020D.
14. Moisture sensitivity per JEDEC test method A112.
3.3
Thermal characteristics
Table 10.
Thermal characteristics for 176-pin QFP(1)
Symbol
C
Parameter
Conditions
Value
Unit
Single layer board - 1s
38
°C/W
CC
D Junction-to-Ambient, Natural Convection(2)
RJA
CC
(2)
D Junction-to-Ambient, Natural Convection
Four layer board - 2s2p
31
°C/W
RJMA
CC
D Junction-to-Moving-Air, Ambient(2)
200 ft./min., single layer
board - 1s
30
°C/W
RJMA
CC
D Junction-to-Moving-Air, Ambient(2)
at 200 ft./min., four layer
board - 2s2p
25
°C/W
RJB
CC
D Junction-to-Board(3)
20
°C/W
RJA
Doc ID 15399 Rev 9
83/157
Electrical characteristics
Table 10.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Thermal characteristics for 176-pin QFP(1) (continued)
Symbol
C
Parameter
RJCtop
CC
D Junction-to-Case(4)
JT
CC
D
Conditions
Junction-to-Package Top, Natural
Convection(5)
Value
Unit
5
°C/W
2
°C/W
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5. Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
Table 11.
Thermal characteristics for 208-pin LBGA(1)
Symbol
C
Parameter
Conditions
Value
Unit
RJA
CC
D
Junction-to-Ambient, Natural
Convection(2),(3)
One layer board - 1s
39
°C/W
RJA
CC
D
Junction-to-Ambient, Natural
Convection(2),(4)
Four layer board - 2s2p
24
°C/W
RJMA
CC
D Junction-to-Moving-Air, Ambient(2),(4)
at 200 ft./min., one layer
board
31
°C/W
RJMA
CC
D Junction-to-Moving-Air, Ambient(2),(4)
at 200 ft./min., four layer
board 2s2p
20
°C/W
RJB
CC
D Junction-to-board(5)
Four layer board - 2s2p
RJC
CC
D
Junction-to-case(6)
JT
CC
D
Junction-to-package top natural
convection(7)
13
°C/W
6
°C/W
2
°C/W
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
3. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
4. Per JEDEC JESD51-6 with the board horizontal.
5. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
6. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.
7. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
84/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 12.
Electrical characteristics
Thermal characteristics for 324-pin PBGA(1)
Symbol
C
Parameter
Conditions
Value
Unit
Single layer board - 1s
31
°C/W
CC
D Junction-to-Ambient, Natural Convection(2)
RJA
CC
(2)
D Junction-to-Ambient, Natural Convection
Four layer board - 2s2p
23
°C/W
RJMA
CC
D Junction-to-Moving-Air, Ambient(2)
at 200 ft./min., single
layer board
23
°C/W
RJMA
CC
D Junction-to-Moving-Air, Ambient(2)
at 200 ft./min., four layer
board 2s2p
17
°C/W
RJB
CC
D Junction-to-Board(3)
11
°C/W
7
°C/W
2
°C/W
RJA
(4)
RJCtop
CC
D Junction-to-Case
JT
CC
D
Junction-to-Package Top, Natural
Convection(5)
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5. Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
3.3.1
General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, TJ, can be obtained from the equation:
Equation 1 TJ = TA + (RJA * PD)
where:
TA = ambient temperature for the package (oC)
RJA = junction-to-ambient thermal resistance (oC/W)
PD = power dissipation in the package (W)
The thermal resistance values used are based on the JEDEC JESD51 series of standards
to provide consistent values for estimations and comparisons. The difference between the
values determined for the single-layer (1s) board compared to a four-layer board that has
two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal
resistance is not a constant. The thermal resistance depends on the:
●
Construction of the application board (number of planes)
●
Effective size of the board which cools the component
●
Quality of the thermal and electrical connections to the planes
●
Power dissipated by adjacent components
Connect all the ground and power balls to the respective planes with one via per ball. Using
fewer vias to connect the package to the planes reduces the thermal performance. Thinner
planes also reduce the thermal performance. When the clearance between the vias leave
the planes virtually disconnected, the thermal performance is also greatly reduced.
Doc ID 15399 Rev 9
85/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
As a general rule, the value obtained on a single-layer board is within the normal range for
the tightly packed printed circuit board. The value obtained on a board with the internal
planes is usually within the normal range if the application board has:
●
One oz. (35 micron nominal thickness) internal planes
●
Components are well separated
●
Overall power dissipation on the board is less than 0.02 W/cm2
The thermal performance of any component depends on the power dissipation of the
surrounding components. In addition, the ambient temperature varies widely within the
application. For many natural convection and especially closed box applications, the board
temperature at the perimeter (edge) of the package is approximately the same as the local
air temperature near the device. Specifying the local ambient conditions explicitly as the
board temperature provides a more precise description of the local ambient conditions that
determine the temperature of the device.
At a known board temperature, the junction temperature is estimated using the following
equation:
Equation 2 TJ = TB + (RJB * PD)
where:
TB = board temperature for the package perimeter (oC)
RJB = junction-to-board thermal resistance (oC/W) per JESD51-8S
PD = power dissipation in the package (W)
When the heat loss from the package case to the air does not factor into the calculation, an
acceptable value for the junction temperature is predictable. Ensure the application board is
similar to the thermal test condition, with the component soldered to a board with internal
planes.
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance
plus a case-to-ambient thermal resistance:
Equation 3 RJA = RJC + RCA
where:
RJA = junction-to-ambient thermal resistance (oC/W)
RJC = junction-to-case thermal resistance (oC/W)
RCA = case to ambient thermal resistance (oC/W)
RJC is device related and is not affected by other factors. The thermal environment can be
controlled to change the case-to-ambient thermal resistance, RCA. For example, change
the air flow around the device, add a heat sink, change the mounting arrangement on the
printed circuit board, or change the thermal dissipation on the printed circuit board
surrounding the device. This description is most useful for packages with heat sinks where
90% of the heat flow is through the case to heat sink to ambient. For most packages, a
better model is required.
A more accurate two-resistor thermal model can be constructed from the junction-to-board
thermal resistance and the junction-to-case thermal resistance. The junction-to-case
thermal resistance describes when using a heat sink or where a substantial amount of heat
is dissipated from the top of the package. The junction-to-board thermal resistance
describes the thermal performance when most of the heat is conducted to the printed circuit
86/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
board. This model can be used to generate simple estimations and for computational fluid
dynamics (CFD) thermal models.
To determine the junction temperature of the device in the application on a prototype board,
use the thermal characterization parameter (JT) to determine the junction temperature by
measuring the temperature at the top center of the package case using the following
equation:
Equation 4 TJ = TT + (JT x PD)
where:
TT = thermocouple temperature on top of the package (oC)
JT = thermal characterization parameter (oC/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured in compliance with the JESD51-2
specification using a 40-gauge type T thermocouple epoxied to the top center of the
package case. Position the thermocouple so that the thermocouple junction rests on the
package. Place a small amount of epoxy on the thermocouple junction and approximately 1
mm of wire extending from the junction. Place the thermocouple wire flat against the
package case to avoid measurement errors caused by the cooling effects of the
thermocouple wire.
References:
Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134
USA
(408) 943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering
Documents at 800-854-7179 or 303-397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
●
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998,
pp. 47-54.
●
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled
Applications”, Electronic Packaging and Production, pp. 53-58, March 1998.
●
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal
Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San
Diego, 1999, pp. 212-220.
Doc ID 15399 Rev 9
87/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.4
EMI (electromagnetic interference) characteristics
Table 13.
EMI Testing Specifications(1)
Symbol
Parameter
Conditions
VDDREG = 5.25 V;
TA = 25 °C
Radiated
emissions,
electric field
VRE_TEM
Frequency
Range
Level
(Max)
150 kHz – 50
MHz
20
50 – 150 MHz
20
150 – 500 MHz
26
500 – 1000 MHz
26
IEC Level
K
—
SAE Level
3
—
150 kHz– 50
MHz
13
50 – 150 MHz
13
150 – 500 MHz
11
500 – 1000 MHz
13
IEC Level
L
—
SAE Level
2
—
Conditions
Value
Unit
—
2000
V
—
1500
—
100
pF
Clocks
16 MHz crystal
40 MHz bus
No PLL frequency
modulation
150 kHz – 30 MHz
RBW 9 kHz, Step
Size 5 kHz
30 MHz – 1 GHz RBW 120 kHz,
Step Size 80 kHz
16 MHz crystal
40 MHz bus
± 2% PLL
frequency
modulation
Unit
dBV
dBV
1. EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03 and IEC 61967-2.
3.5
Electrostatic discharge (ESD) characteristics
Table 14.
ESD ratings(1),(2)
Symbol
Parameter
—
SR
R1
SR
ESD for Human Body Model (HBM)
HBM circuit description
C
SR
—
SR
—
—
SR
SR
ESD for field induced charge Model
(FDCM)
All pins
500
Corner pins
750
V
Positive pulses (HBM)
1
—
Negative pulses (HBM)
1
—
1
—
Number of pulses per pin
Number of pulses
—
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification
requirements, which includes the complete DC parametric and functional testing at room temperature and hot
temperature.”
88/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
3.6
Power management control (PMC) and power on reset (POR)
electrical specifications
Table 15.
PMC Operating Conditions and External Regulators Supply Voltage
ID
Name
Parameter
Min
Typ
Max
Unit
°C
1
Jtemp
SR
— Junction temperature
–40
27
150
2
Vddreg
SR
— PMC 5 V supply voltage VDDREG
4.75
5
5.25
V
SR
Core supply voltage 1.2 V VDD when external
regulator is used without disabling the internal
—
regulator (PMC unit turned on, LVI monitor
active)(1)
1.26(2)
1.3
1.32
V
1.14
1.2
1.32
V
445
—
—
mA
3
Vdd
3a
—
SR
Core supply voltage 1.2 V VDD when external
regulator is used with a disabled internal
—
regulator (PMC unit turned-off, LVI monitor
disabled)
4
Ivdd
SR
—
SR
Regulated 3.3 V supply voltage when external
regulator is used without disabling the internal
— regulator (PMC unit turned-on, internal 3.3V
regulator enabled, LVI
monitor active)(3)
3.3
3.45
3.6
V
3
3.3
3.6
V
80
—
—
mA
5
Vdd33
Voltage regulator core supply maximum
required DC output current
5a
—
SR
Regulated 3.3 V supply voltage when external
regulator is used with a disabled internal
—
regulator (PMC unit turned-off, LVI monitor
disabled)
6
—
SR
—
Voltage regulator 3.3 V supply maximum
required DC output current
1. An internal regulator controller can be used to regulate core supply.
2. The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V.
3. An internal regulator can be used to regulate 3.3 V supply.
Table 16.
ID
PMC Electrical Characteristics
Name
Parameter
Min
Typ
Max
Unit
—
1.219
—
V
VBG - 7%
VBG
Vbg + 6%
V
1
VBG
CC C
Nominal bandgap voltage
reference
1a
—
CC P
Untrimmed bandgap
reference voltage
1b
—
CC P
Trimmed bandgap reference
VBG -10mV
voltage (5 V, 27 °C)
VBG
VBG +
10mV
V
1c
—
CC C
Bandgap reference
temperature variation
—
100
—
ppm/°C
1d
—
CC C
Bandgap reference supply
voltage variation
—
3000
—
ppm/V
Doc ID 15399 Rev 9
Notes
89/157
Electrical characteristics
Table 16.
ID
SPC564A74L7, SPC564A80B4, SPC564A80L7
PMC Electrical Characteristics (continued)
Name
Parameter
Min
Typ
Max
Unit
Notes
Vdd
Nominal VDD core supply
CC C internal regulator target DC
output voltage(1)
—
1.28
—
V
—
Nominal VDD core supply
internal regulator target DC
CC P
output voltage variation at
power-on reset
Vdd - 6%
Vdd
Vdd + 10%
V
2b
—
Nominal VDD core supply
internal regulator target DC
CC P
output voltage variation
after power-on reset
Vdd 10%(2)
Vdd
Vdd + 3%
V
2c
—
CC C Trimming step Vdd
—
20
—
mV
2d
Ivrcctl
Voltage regulator controller
CC C for core supply maximum
DC output current
20
—
—
mA
3
Lvi1p2
CC C
Nominal LVI for rising core
supply(3)
—
1.160
—
V
3a
—
Variation of LVI for rising
CC C core supply at power-on
reset
1.120
1.200
1.280
V
See note (4)
3b
—
Variation of LVI for rising
CC C core supply after power-on Lvi1p2 - 3%
reset
Lvi1p2
Lvi1p2 +
3%
V
See note (4)
3c
—
CC C
—
20
—
mV
3d
Lvi1p2_h
—
40
—
mV
4
Por1.2V_r CC C POR 1.2 V rising
—
0.709
—
V
2
2a
4a
4b
—
Trimming step LVI core
supply
CC C LVI core supply hysteresis
CC C POR 1.2 V rising variation
Por1.2V_f CC C POR 1.2 V falling
Por1.2V_r Por1.2V_r +
Por1.2V_r
35%
35%
—
0.638
—
CC C POR 1.2 V falling variation
5
Vdd33
Nominal 3.3 V supply
CC C internal regulator DC output
voltage
—
3.39
—
Nominal 3.3 V supply
internal regulator DC output
CC P
voltage variation at poweron reset
Vdd33 8.5%
Vdd33
—
Nominal 3.3 V supply
internal regulator DC output
CC P
voltage variation power-on
reset
Vdd33 7.5%
Vdd33
5b
90/157
—
V
Por1.2V_f Por1.2V_f +
Por1.2V_f
35%
35%
4c
5a
V
Doc ID 15399 Rev 9
—
V
V
See note (5)
Vdd3 + 7% V
Vdd33 +
7%
V
With internal
load up
to Idd3p3
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 16.
ID
5c
5d
5e
Electrical characteristics
PMC Electrical Characteristics (continued)
Name
—
Idd3p3
Parameter
Voltage regulator 3.3 V
CC D output impedance at
maximum DC load
Voltage regulator 3.3 V
maximum DC output current
CC P
(internal regulator
enabled)(6)
Vdd33 ILim CC C
Voltage regulator 3.3 V DC
current limit
Min
Typ
Max
Unit
—
—
2
80(7)
—
—
mA
—
130
—
mA
Notes
—
3.090
—
V
The Lvi3p3
specs are
also valid for
the Vddeh
LVI
Lvi3p3 - 6%
Lvi3p3
Lvi3p3 +
6%
V
See note (8)
—
Variation of LVI for rising
CC C 3.3 V supply after power-on Lvi3p3 - 3%
reset
Lvi3p3
Lvi3p3 +
3%
V
See note (8)
6c
—
CC C Trimming step LVI 3.3 V
—
20
—
mV
6d
Lvi3p3_h
CC C LVI 3.3 V hysteresis
—
60
—
mV
Lvi3p3
6a
—
Variation of LVI for rising
CC C 3.3 V supply at power-on
reset
6b
7
7a
7b
CC C
Nominal LVI for rising 3.3 V
supply
6
Por3.3V_r CC C
—
CC C
Por3.3V_f CC C
Nominal POR for rising
3.3 V supply
Variation of POR for rising
3.3 V supply
Nominal POR for falling
3.3 V supply
7c
—
CC C
Variation of POR for falling
3.3 V supply
8
Lvi5p0
CC C
Nominal LVI for rising 5 V
VDDREG supply
8a
—
8b
—
2.07
—
Por3.3V_rPor3.3V_r +
Por3.3V_r
35%
35%
—
1.95
—
Por3.3V_f Por3.3V_f +
Por3.3V_f
35%
35%
—
V
V
V
V
4.290
—
V
Variation of LVI for rising 5 V
CC C VDDREG supply at power-on Lvi5p0 - 6%
reset
Lvi5p0
Lvi5p0 +
6%
V
—
Variation of LVI for rising 5 V
CC C VDDREG supply power-on Lvi5p0 - 3%
reset
Lvi5p0
Lvi5p0 +
3%
V
8c
—
CC C Trimming step LVI 5 V
—
20
—
mV
8d
Lvi5p0_h
CC C LVI 5 V hysteresis
—
60
—
mV
Doc ID 15399 Rev 9
The 3.3V
POR specs
are also valid
for the VDDEH
POR
91/157
Electrical characteristics
Table 16.
ID
SPC564A74L7, SPC564A80B4, SPC564A80L7
PMC Electrical Characteristics (continued)
Name
Parameter
Min
Typ
Max
Unit
9
Por5V_r
CC C
Nominal POR for rising 5 V
VDDREG supply
—
2.67
—
V
9a
—
CC C
Variation of POR for rising
5 V VDDREG supply
Por5V_r
- 35%
Por5V_r
Por5V_r
+ 50%
V
9b
Por5V_f
CC C
Nominal POR for falling 5 V
VDDREG supply
—
2.47
—
V
9c
—
CC C
Variation of POR for falling
5 V VDDREG supply
Por5V_f
- 35%
Por5V_f
Por5V_f
+ 50%
V
Notes
1. Using external ballast transistor.
2. Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset.
3. LVI for falling supply is calculated as LVI rising – LVI hysteresis.
4. Lvi1p2 tracks DC target variation of internal Vdd regulator. Minimum and maximum Lvi1p2 correspond to minimum and
maximum Vdd DC target respectively.
5. Minimum loading (1.0
(1.5 preferred)
W
1.0
A
DC current gain (Beta)
Absolute minimum power dissipation
ICMaxDC
Value
Minimum peak collector current
Collector-to-emitter saturation voltage
600(1)
200 –
Base-to-emitter voltage
0.4 – 1.0
mV
V
1. Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT.
3.7
Power up/down sequencing
There is no power sequencing required among power sources during power up and power
down, in order to operate within specification.
Although there are no power up/down sequencing requirements to prevent issues such as
latch-up or excessive current spikes the state of the I/O pins during power up/down varies
according to Table 19 for all pins with fast pads, and Table 20 for all pins with medium, slow,
and multi-voltage pads.
Table 19.
VDDE
VRC33
VDD
Pad State
LOW
X
X
LOW
VDDE
LOW
X
HIGH
VDDE
VRC33
LOW
HIGH IMPEDANCE
VDDE
VRC33
VDD
FUNCTIONAL
Table 20.
94/157
Power sequence pin states (fast pads)
Power sequence pin states (medium, slow, and multi-voltage pads)
VDDEH
VDD
Pad State
LOW
X
LOW
VDDEH
LOW
HIGH IMPEDANCE
VDDEH
VDD
FUNCTIONAL
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
3.8
DC electrical specifications
Table 21.
DC electrical specifications
Value
Symbol
C
Parameter
Conditions
Unit
min
typ
max
VDD
SR — Core supply voltage
—
1.14
1.32
V
VDDE
SR — I/O supply voltage
—
1.62
3.6
V
VDDEH
SR — I/O supply voltage
—
3.0
5.25
V
VDDE-EH
SR — I/O supply voltage
—
3.0
5.25
V
—
3.0
—
3.6
V
3.3 V regulated
voltage(1)
VRC33
SR —
VDDA
SR — Analog supply voltage
—
4.75(2)
—
5.25
V
VINDC
SR — Analog input voltage
—
VSSA-0.3
—
VDDA+0.3
V
SR — VSS differential voltage
—
–100
—
100
mV
—
VSSA
—
VSSA+0.1
V
—
–100
—
100
mV
—
VDDA-0.1
—
VDDA
V
SR — VREF differential voltage
—
4.75
—
5.25
V
Flash operating
voltage(3)
—
1.14
—
1.32
V
—
3.0
—
3.6
V
0.95
—
1.2
VSS – VSSA
VRL
VRL – VSSA
VRH
VRH – VRL
VDDF
VFLASH(4)
SR —
Analog reference low
voltage
SR — VRL differential voltage
SR —
SR —
Analog reference high
voltage
SR — Flash read voltage
SRAM standby voltage Unregulated
mode
VSTBY
SR
—
V
Keep-out Range: 1.2V– Regulated
2V
mode
2.0
—
5.5
VDDREG
SR —
Voltage regulator supply
voltage
—
4.75
—
5.25
V
VDDPLL
SR —
Clock synthesizer
operating voltage
—
1.14
—
1.32
V
VSSPLL – VSS
SR —
VSSPLL to VSS
differential voltage
—
–100
—
100
mV
VSS-0.3
—
0.35*VDDEH
C
VIL_S
Slow/medium I/O pad
input low voltage
CC
P
Hysteresis
enabled
V
Hysteresis
disabled
Doc ID 15399 Rev 9
VSS-0.3
—
0.40*VDDEH
95/157
Electrical characteristics
Table 21.
SPC564A74L7, SPC564A80B4, SPC564A80L7
DC electrical specifications (continued)
Value
Symbol
C
Parameter
Conditions
C
VIL_F
Fast pad I/O input low
voltage
CC
P
C
VIL_LS
CC
P
C
VIL_HS
CC
Multi-voltage I/O pad
input low voltage in
Low-swingmode(5),(6),(7),(8)
Multi-voltage pad I/O
input low voltage in
high-swing-mode
—
0.35*VDDE
V
Hysteresis
disabled
VSS-0.3
—
0.40*VDDE
Hysteresis
enabled
VSS-0.3
—
0.8
Hysteresis
disabled
VSS-0.3
—
1.1
Hysteresis
enabled
VSS-0.3
—
0.35 VDDEH
VSS-0.3
—
0.4 VDDEH
Hysteresis
enabled
0.65 VDDEH
—
VDDEH+0.3
P
Hysteresis
disabled
0.55 VDDEH
—
VDDEH+0.3
C
Hysteresis
enabled
0.65 VDDE
—
VDDE+0.3
Slow/medium pad I/O
input high voltage(9)
CC
Fast I/O input high
voltage
CC
C
CC
P
C
VIH_HS
VSS-0.3
V
CC
P
V
V
P
VIH_LS
max
V
C
VIH_F
Hysteresis
enabled
typ
Hysteresis
disabled
P
VIH_S
Unit
min
Multi-voltage pad I/O
input high voltage in
low-swingmode(5),(6),(7),(8)
Hysteresis
disabled
0.58 VDDE
—
VDDE+0.3
Hysteresis
enabled
2.5
—
VDDEH+0.3
V
Multi-voltage I/O input
high voltage in highswing-mode
Hysteresis
disabled
2.2
—
VDDEH+0.3
Hysteresis
enabled
0.65 VDDEH
—
VDDEH+0.3
V
Hysteresis
disabled
0.55 VDDEH
—
VDDEH+0.3
VOL_S
CC P
Slow/medium pad I/O
output low voltage(9)
—
—
0.2*VDDEH
V
VOL_F
CC P
Fast I/O output low
voltage(9)
—
—
0.2*VDDE
V
CC P
Multi-voltage pad I/O
output low voltage in
low-swing
mode(5),(6),(7),(8),(9)
—
—
0.6
V
VOL_LS
96/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 21.
Electrical characteristics
DC electrical specifications (continued)
Value
Symbol
C
Parameter
Conditions
Unit
min
typ
max
VOL_HS
CC P
Multi-voltage pad I/O
output low voltage in
high-swing mode(9)
—
—
0.2*VDDEH
V
VOH_S
CC P
Slow/medium pad I/O
output high voltage(9)
0.8 VDDEH
—
—
V
VOH_F
CC P
Fast pad I/O output high
voltage(9)
0.8 VDDE
—
—
V
VOH_LS
CC P
Multi-voltage pad I/O
output high voltage in
low-swing
mode(5),(6),(7),(8)
2.1
3.1
3.7
V
VOH_HS
CC P
Multi-voltage pad I/O
output high voltage in
high-swing mode(9)
0.8 VDDEH
—
—
V
VHYS_S
CC C
Slow/medium/multivoltage I/O input
hysteresis
—
0.1 * VDDEH
—
—
V
VHYS_F
CC C
Fast I/O input hysteresis
—
0.1 * VDDE
—
—
V
VHYS_LS
CC C
Low-Swing-Mode Multihysteresis
Voltage I/O Input
enabled
Hysteresis
0.25
—
—
v
—
380
mA
VDD at 1.32 V at
80 MHz
P
IDD+IDDPLL
IDDSTBY
IDDSTBY27
IOH_LS =
0.5 mA
CC P
Operating current 1.2 V VDD at 1.32V
at 120 MHz
supplies
—
400
mA
P
VDD at 1.32V
at 150 MHz
—
445
mA
T
Operating current 0.95VSTBY at 55 oC
1.2 V
—
35
100
A
T
Operating current 2–
5.5 V
—
45
110
A
CC
VSTBY at 55 oC
P
Operating current 0.95VSTBY 27 oC
1.2 V
25
90
A
P
Operating current 25.5 V
35
100
A
CC
VSTBY 27 oC
Doc ID 15399 Rev 9
97/157
Electrical characteristics
Table 21.
SPC564A74L7, SPC564A80B4, SPC564A80L7
DC electrical specifications (continued)
Value
Symbol
IDDSTBY150
IDDSLOW
IDDSTOP
IDD33
C
Parameter
790
2000
A
P
Operating current 2–
5.5 V
VSTBY at
150 oC
—
760
2000
A
VDD low-power mode
operating current at
1.32 V
Slow mode(10)
—
191
Stop mode(11)
—
190
—
60
CC
P
CC
P
CC C
Operating current 3.3 V
VRC33(1),(12)
supplies
CC P
VDDA
Analog
Operating current 5.0 V
reference
supplies
supply current
(transient)
98/157
—
30.0
—
—
1.0
70(13)
—
—
D
VDDEH1
—
—
D
VDDEH4
—
—
VDDEH6
—
—
VDDEH7
—
—
D
VDDE7
—
—
D
VDDEH9
—
—
D
VDDE12
—
—
15
—
95
35
—
200
1.62 V – 1.98 V
36
—
120
2.25 V – 2.75 V
34
—
139
3.0 V – 3.6 V
42
—
158
VDDE=
3.0–3.6 V(5),
C Multi-voltage pad weak MultiV pad,
high swing
pullup current
mode only
10
—
75
P
25
—
200
D
CC D
CC
P
CC D
CC
—
VDDREG
D
IACT_MV_PU
mA
C
Operating current
VDDE(14) supplies
Slow/medium I/O weak 3.0 V – 3.6 V
pull up/down current(15) 4.75 V – 5.5 V
D
IACT_F
max
—
C
IACT_S
typ
Operating current 0.95VSTBY 150 oC
1.2 V
IDDREG
IDDH1
IDDH4
IDDH6
IDDH7
IDD7
IDDH9
IDD12
Unit
min
P
P
IDDA
IREF
Conditions
Fast I/O weak pull
up/down current(15)
4.75 V – 5.25 V
Doc ID 15399 Rev 9
See note (14)
mA
mA
mA
A
A
A
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 21.
Electrical characteristics
DC electrical specifications (continued)
Value
Symbol
IACT_MV_PD
C
CC
Parameter
Conditions
C Multivoltage pad weak
pulldown current
P
Unit
min
typ
max
VDDE=
3.0–3.6 V(5),
MultiV pad,
high swing
mode only
10
—
60
4.75 V – 5.25 V
25
—
200
A
IINACT_D
CC P
I/O input leakage
current(16)
—
–2.5
—
2.5
A
IIC
SR T
DC injection current
(per pin)
—
–1.0
—
1.0
mA
Analog input current,
channel off, AN[0:7](17)
—
–250
—
250
P
IINACT_A
SR
nA
Analog input current,
P channel off, all other
analog pins(17)
D
D
CL
CC
D
—
–150
DSC(PCR[8:9])
= 0b00
—
10
—
20
—
30
DSC(PCR[8:9])
= 0b11
—
50
DSC(PCR[8:9])
Load capacitance (fast = 0b01
I/O)(18)
DSC(PCR[8:9])
= 0b10
D
—
150
pF
CIN
CC D
Input capacitance
(digital pins)
—
—
7
pF
CIN_A
CC D
Input capacitance
(analog pins)
—
—
10
pF
CIN_M
CC D
Input capacitance
(digital and analog
pins(19))
—
—
12
pF
RPUPD200K
SR P
Weak Pull-Up/Down
Resistance(20), 200 k
Option
—
130
—
280
k
RPUPD100K
SR P
Weak Pull-Up/Down
Resistance(20), 100 k
Option
—
65
—
140
k
Doc ID 15399 Rev 9
99/157
Electrical characteristics
Table 21.
SPC564A74L7, SPC564A80B4, SPC564A80L7
DC electrical specifications (continued)
Value
Symbol
RPUPD5K
RPUPDMTCH
TA (TL to TH)
—
C
SR C
CC
Parameter
Conditions
Weak Pull-Up/Down
Resistance(20),
5 k Option
Pull-up/Down
C Resistance matching
ratios (100K/200K)
typ
max
5 V ± 5%
supply
1.4
—
7.5
k
Pull-up and
pull-down
resistances
both enabled
and settings are
equal.
–2.5
—
2.5
%
—
–40.0
125.0
C
—
—
25
V/ms
Operating temperature
SR — range - ambient
(packaged)
SR —
Unit
min
Slew rate on power
supply pins
1. These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0).
2. ADC is functional with 4 V VDDA 4.75 V but with derated accuracy. This means the ADC will continue to function at full
speed with no undesirable behavior, but the accuracy will be degraded.
3. The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package devices
only.
4. VFLASH is only available in the calibration package.
5. Power supply for multi-voltage pads cannot be below 4.5 V when in low-swing mode.
6. The slew rate (SRC) setting must be 0b11 when in low-swing mode.
7. While in low-swing mode there are no restrictions in transitioning to high-swing mode.
8. Pin in low-swing mode can accept a 5 V input.
9. All VOL/VOH values 100% tested with ± 2 mA load except where noted.
10. Bypass mode, system clock at 1 MHz (using system clock divider), PLL shut down, CPU running simple executive code,
4 x ADC conversion every 10 ms, 2 x PWM channels 1 kHz, all other modules stopped.
11. Bypass mode, system clock at 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules stopped.
12. This current will be consumed for external regulation and internal regulation, when 3.3V regulator is switched off by shadow
flash
13. If 1.2V and 3.3V internal regulators are on,then iddreg=70mA
If supply is external that is 3.3V internal regulator is off, then iddreg=15mA
14. Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a
particular I/O segment, and the voltage of the I/O segment. See Table 22 for values to calculate power dissipation for
specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for
each pin on the segment.
15. Absolute value of current, measured at VIL and VIH.
16. Weak pull up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to fast, slow, and medium pads.
17. Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for
each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to analog pads.
18. Applies to CLKOUT, external bus pins, and Nexus pins.
19. Applies to the FCK, SDI, SDO, and SDS pins.
20. This programmable option applies only to eQADC differential input channels and is used for biasing and sensor
diagnostics.
100/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.9
Electrical characteristics
I/O pad current specifications
The power consumption of an I/O segment depends on the usage of the pins on a particular
segment. The power consumption is the sum of all output pin currents for a particular
segment. The output pin current can be calculated from Table 22 based on the voltage,
frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage,
frequency, and load parameters that fall outside the values given in Table 22.
Table 22.
Pad Type
Slow
Medium
Fast
MultiV
(High
Swing
Mode)
MultiV
(Low
Swing
Mode)
I/O pad average IDDE specifications(1)
C
Period
(ns)
Load(2)
(pF)
VDDE
(V)
Drive/Slew
Rate Select
IDDE Avg
(mA)(3)
IDDE RMS
(mA)
CC
D
37
50
5.5
11
9
—
CC
D
130
50
5.5
01
2.5
—
CC
D
650
50
5.5
00
0.5
—
CC
D
840
200
5.5
00
1.5
—
CC
D
24
50
5.5
11
14
—
CC
D
62
50
5.5
01
5.3
—
CC
D
317
50
5.5
00
1.1
—
CC
D
425
200
5.5
00
3
—
CC
D
10
50
3.6
11
22.7
68.3
CC
D
10
30
3.6
10
12.1
41.1
CC
D
10
20
3.6
01
8.3
27.7
CC
D
10
10
3.6
00
4.44
14.3
CC
D
10
50
1.98
11
12.5
31
CC
D
10
30
1.98
10
7.3
18.6
CC
D
10
20
1.98
01
5.42
12.6
CC
D
10
10
1.98
00
2.84
6.4
CC
D
20
50
5.5
11
9
—
CC
D
30
50
5.5
01
6.1
—
CC
D
117
50
5.5
00
2.3
—
CC
D
212
200
5.5
00
5.8
—
CC
D
30
30
5.5
11
3.4
—
Symbol
IDRV_SSR_HV
IDRV_MSR_HV
IDRV_FC
IDRV_MULTV_HV
IDRV_MULTV_HV
1. Numbers from simulations at best case process, 150 °C.
2. All loads are lumped.
3. Average current is for pad configured as output only.
Doc ID 15399 Rev 9
101/157
Electrical characteristics
3.9.1
SPC564A74L7, SPC564A80B4, SPC564A80L7
I/O pad VRC33 current specifications
The power consumption of the VRC33 supply is dependent on the usage of the pins on all I/O
segments. The power consumption is the sum of all input and output pin VRC33 currents for
all I/O segments. The output pin VRC33 current can be calculated from Table 23 based on
the voltage, frequency, and load on all fast pad pins. The input pin VRC33 current can be
calculated from Table 23 based on the voltage, frequency, and load on all medium-speed
pads. Use linear scaling to calculate pin currents for voltage, frequency, and load
parameters that fall outside the values given in Table 23.
Table 23.
I/O pad VRC33 average IDDE specifications(1)
Pad Type
Symbol
Slow
IDRV_SSR_HV
Medium
MultiV(3) (High
Swing Mode)
MultiV(4) (Low
Swing Mode)
IDRV_MSR_HV
IDRV_MULTV_HV
IDRV_MULTV_HV
C
Period
(ns)
Load
(2)
Drive Select
IDD33 Avg
(µA)
IDD33 RMS
(µA)
(pF)
CC
D
100
50
11
0.8
235.7
CC
D
200
50
01
0.04
87.4
CC
D
800
50
00
0.06
47.4
CC
D
800
200
00
0.009
47
CC
D
40
50
11
2.75
258
CC
D
100
50
01
0.11
76.5
CC
D
500
50
00
0.02
56.2
CC
D
500
200
00
0.01
56.2
CC
D
20
50
11
33.4
35.4
CC
D
30
50
01
33.4
34.8
CC
D
117
50
00
33.4
33.8
CC
D
212
200
00
33.4
33.7
CC
D
30
30
11
33.4
34.9
1. These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.
2. All loads are lumped.
3. Average current is for pad configured as output only.
4. In low swing mode, multi-voltage pads must operate in highest slew rate setting.
102/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 24.
Pad
Type
Fast
Electrical characteristics
VRC33 pad average DC current(1)
Symbol
IDRV_FC
C
Load
Period
(ns)
(2)
(pF)
VRC33
(V)
VDDE
(V)
Drive
Select
IDD33 Avg
(µA)
IDD33 RMS
(µA)
CC
D
10
50
3.6
3.6
11
2.35
6.12
CC
D
10
30
3.6
3.6
10
1.75
4.3
CC
D
10
20
3.6
3.6
01
1.41
3.43
CC
D
10
10
3.6
3.6
00
1.06
2.9
CC
D
10
50
3.6
1.98
11
1.75
4.56
CC
D
10
30
3.6
1.98
10
1.32
3.44
CC
D
10
20
3.6
1.98
01
1.14
2.95
CC
D
10
10
3.6
1.98
00
0.95
2.62
1. These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.
2. All loads are lumped.
3.9.2
LVDS pad specifications
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is
an enhanced feature of the DSPI module. The LVDS pads are compliant with LVDS
specifications and support data rates up to 50 MHz.
Table 25.
#
DSPI LVDS pad specification
Characteristic
Symbol
C
Condition
Min.
Value
Typ.
Value
Max.
Value
Unit
Data Rate
4
Data Frequency
fLVDSCLK
CC
D
—
50
MHz
Driver Specs
5
Differential output voltage
VOD
CC
P
SRC=0b00
or 0b11
150
400
CC
P
SRC=0b01
90
320
CC
P
SRC=0b10
160
480
6
Common mode voltage
(LVDS), VOS
VOD
CC
P
7
Rise/Fall time
TR/TF
CC
D
8
Propagation delay (Low to
High)
TPLH
CC
D
9
Propagation delay (High to
Low)
TPHL
CC
D
1.06
—
—
Doc ID 15399 Rev 9
1.2
1.39
mV
V
2
ns
4
ns
4
ns
103/157
Electrical characteristics
Table 25.
#
SPC564A74L7, SPC564A80B4, SPC564A80L7
DSPI LVDS pad specification (continued)
Characteristic
Symbol
C
Condition
10
Delay (H/L), sync Mode
tPDSYNC
CC
D
11
Delay, Z to Normal
(High/Low)
TDZ
CC
D
—
12
Diff Skew Itphla-tplhbI or
Itplhb-tphlaI
TSKEW
CC
D
—
Min.
Value
Typ.
Value
Max.
Value
Unit
4
ns
500
ns
0.5
ns
105
150
C
Termination
13
Trans. Line (differential Zo)
CC
D
14
Temperature
CC
D
—
95
100
–40
3.10
Oscillator and PLLMRFM electrical characteristics
Table 26.
PLLMRFM electrical specifications
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH)
Value
Symbol
C
Parameter
Conditions
Crystal
reference
D
fref_crystal
fref_ext
CC
fpll_in
CC
P
fvco
CC
fsys
CC
PLL reference frequency
range(1)
80
Phase detector input frequency range
(after pre-divider)
—
4
16
MHz
P
VCO frequency range
—
256
512
MHz
C
On-chip PLL frequency(2)
—
16
150
MHz
Crystal
reference
4
40
(2)
CC
fSCM
CC
104/157
MHz
System frequency in bypass mode
P
fLORL
fLORH
40
4
CC
CC
4
MHz
C
tCYC
max
External
reference
T
fsys
Unit
min
External
reference
0
80
—
—
1 / fsys
D
System clock period
D
Lower limit
1.6
3.7
D
Loss of reference frequency
window(3)
Upper limit
24
56
P
Self-clocked mode frequency (4),(5)
—
1.2
72.25
ns
MHz
Doc ID 15399 Rev 9
MHz
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 26.
Electrical characteristics
PLLMRFM electrical specifications
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued)
Value
Symbol
C
Parameter
T
CJITTER
tcst
T
CC
T
Crystal start-up time (10), (11)
Long-term jitter
(avg. over 2 ms
interval)
T
VIHEXT
CC
EXTAL input high voltage
T
max
–5
5
% fCLKOUT
–6
6
ns
—
10
ms
Crystal
Mode(12)
Vxtal
+ 0.4
—
External
Reference(12),
VRC33
/2 +
0.4
VRC33
—
Vxtal 0.4
0
VRC33
/2 0.4
4 MHz
5
30
8 MHz
5
26
12 MHz
5
23
16 MHz
5
19
20 MHz
5
16
40 MHz
5
8
fSYS maximum
—
(13)
Crystal
Mode(12)
T
VILEXT
CC
EXTAL input low voltage
T
Unit
min
Peak-to-peak (clock
edge to clock edge)
CLKOUT
period
jitter(6),(7),(8),(9)
CC
Conditions
External
Reference(12),
(13)
—
CC
T
XTAL load capacitance(10)
V
V
pF
tlpll
CC
P
PLL lock time (10), (14)
—
—
200
s
tdc
CC
T
Duty cycle of reference
—
40
60
%
fLCK
CC
T
Frequency LOCK range
—
–6
6
% fsys
fUL
CC
T
Frequency un-LOCK range
—
–18
18
% fsys
fCS
fDS
Center spread
±0.25
±4.0
CC
Down Spread
–0.5
–8.0
fMOD
CC
—
100
D
Modulation Depth
D
D
Modulation frequency(15)
—
% fsys
kHz
1. Considering operation with PLL not bypassed.
2. All internal registers retain data at 0 Hz.
3. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode.
4. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR
window.
Doc ID 15399 Rev 9
105/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
5. fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced
mode.
6. This value is determined by the crystal manufacturer and board design.
7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER
percentage for a given interval.
8. Proper PC board layout procedures must be followed to achieve specifications.
9. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either
fCS or fDS (depending on whether center spread or down spread modulation is enabled).
10. This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for this
PLL, load capacitors should not exceed these limits.
11. Proper PC board layout procedures must be followed to achieve specifications.
12. This parameter is guaranteed by design rather than 100% tested.
13. VIHEXT cannot exceed VRC33 in external reference mode.
14. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the
synthesizer control register (SYNCR).
15. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.
3.11
Temperature sensor electrical characteristics
Table 27.
Temperature sensor electrical characteristics
Value
Symbol
C
Parameter
Conditions
Unit
Temperature
monitoring range
—
CC
C
—
CC
C Sensitivity
—
CC
P Accuracy
TJ = –40 to 150 °C
3.12
eQADC electrical characteristics
Table 28.
eQADC conversion specifications (operating)
min
typical
max
–40
—
150
°C
—
6.3
—
mV/°C
–10
—
10
°C
Value
Symbol
C
Unit
Parameter
fADCLK
SR
—
ADC clock (ADCLK) frequency
CC
CC
D
Conversion cycles
time(1)
TSR
CC
C
Stop mode recovery
fADCLK
SR
—
ADC clock (ADCLK) frequency
min
max
2
16
MHz
2+13
128+14
ADCLK cycles
—
10
s
2
16
mV
1. Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that
the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.
106/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 29.
Electrical characteristics
eQADC single ended conversion specifications (operating)
Value
Symbol
C
Parameter
Unit
min
max
OFFNC
CC
C
Offset error without calibration
0
160
Counts
OFFWC
CC
C
Offset error with calibration
–4
4
Counts
GAINNC
CC
C
Full scale gain error without calibration
–160
0
Counts
GAINWC
CC
C
Full scale gain error with calibration
–4
4
Counts
–3
3
mA
–4
4
Counts
(6)
Counts
8
Counts
IINJ
EINJ
CC
CC
T
T
Disruptive input injection current
(1), (2), (3), (4)
(5),(6)
Incremental error due to injection current
TUE8
CC
C
Total unadjusted error (TUE) at 8 MHz
–4
TUE16
CC
C
Total unadjusted error at 16 MHz
–8
4
1. Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs greater
then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive conditions.
2. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit
do not affect device reliability or cause permanent damage.
3. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,
calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use the larger of the
calculated values.
4. Condition applies to two adjacent pins at injection limits.
5. Performance expected with production silicon.
6. All channels have same 10 k < Rs < 100 k; Channel under test has Rs=10 k; IINJ=IINJMAX,IINJMIN
Table 30.
eQADC differential ended conversion specifications (operating)
Value
Symbol
C
Parameter
Unit
min
CC
–
CC
C
CC
max
Variable gain amplifier accuracy (gain=1)(2)
8 MHz
ADC
–4
4
Counts(3)
C
16 MHz
ADC
–8
8
Counts
CC
C
8 MHz
ADC
–3(4)
3(4)
Counts
CC
C
16 MHz
ADC
–3(4)
3(4)
Counts
INL
GAINVGA1
(1)
DNL
Doc ID 15399 Rev 9
107/157
Electrical characteristics
Table 30.
SPC564A74L7, SPC564A80B4, SPC564A80L7
eQADC differential ended conversion specifications (operating) (continued)
Value
Symbol
C
Parameter
Unit
min
CC
–
CC
D
max
Variable gain amplifier accuracy (gain=2)(2)
8 MHz
ADC
–5
5
Counts
INL
GAINVGA2
CC
D
16 MHz
ADC
–8
8
Counts
CC
D
8 MHz
ADC
–3
3
Counts
16 MHz
ADC
–3
3
Counts
(1)
DNL
CC
D
CC
–
CC
D
CC
Variable gain amplifier accuracy (gain=4)(2)
8 MHz
ADC
–7
7
Counts
D
16 MHz
ADC
–8
8
Counts
CC
D
8 MHz
ADC
–4
4
Counts
CC
D
16 MHz
ADC
–4
4
Counts
CC
C
PREGAIN
set to 1X
setting
—
(VRH - VRL)/2
V
—
(VRH - VRL)/4
V
—
(VRH - VRL)/8
V
(VRH + VRL)/2 5%
(VRH + VRL)/2 +
5%
V
INL
GAINVGA4
(1)
DNL
DIFFmax
DIFFmax2
CC
C
DIFFmax4
CC
C
DIFFcmv
CC
C
Maximum
differential voltage PREGAIN
(DANx+ - DANx-) set to 2X
or (DANx- setting
DANx+)(5)
PREGAIN
set to 4X
setting
Differential input
Common mode
voltage (DANx- +
DANx+)/2(5)
—
1. Applies only to differential channels.
2. Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or
4. Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated.
3. At VRH – VRL = 5.12 V, one LSB = 1.25 mV.
4. Guaranteed 10-bit mono tonicity.
5. Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the
differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common
mode voltage of the differential signal violates the Differential Input common mode voltage specification.
108/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.13
Electrical characteristics
Configuring SRAM wait states
Use the SWSC field in the ECSM_MUDCR register to specify an additional wait state for the
device SRAM. By default, no wait state is added.
Table 31.
Cutoff frequency for additional SRAM wait state
(1)
SWSC Value
98
0
153
1
1. Max frequencies including 2% PLL FM.
Please see the device reference manual for details.
3.14
Platform flash controller electrical characteristics
Table 32.
APC, RWSC, WWSC settings vs. frequency of operation(1),(2)
Max. Flash Operating
Frequency (MHz)(3)
APC(4)
RWSC(4)
WWSC
20 MHz
0b000
0b000
0b11
61 MHz
0b001
0b001
0b11
90 MHz
0b010
0b010
0b11
123 MHz
0b011
0b011
0b11
153 MHz
0b100
0b100
0b11
1. APC, RWSC and WWSC are fields in the flash memory BIUCR register used to specify wait states for
address pipelining and read/write accesses. Illegal combinations exist—all entries must be taken from the
same row.
2. TBD: To Be Defined.
3. Max frequencies including 2% PLL FM.
4. APC must be equal to RWSC.
3.15
Flash memory electrical characteristics
Table 33.
Flash program and erase specifications(1)
#
Symbol
C
Parameter
Min. Typical Initial
Max(3)
Value Value Max(2)
Unit
1
Tdwprogram
C
C
P
Double Word (64 bits) Program Time
—
45
—
500
s
2
Tpprogram
C
C
P
Page Program Time
—
55
160(4)
500
s
3
T16kpperase
C
C
P
16 KB Block Pre-program and Erase
Time
—
300
1000
5000
ms
Doc ID 15399 Rev 9
109/157
Electrical characteristics
Flash program and erase specifications(1) (continued)
Table 33.
#
SPC564A74L7, SPC564A80B4, SPC564A80L7
Symbol
C
Parameter
Min. Typical Initial
Max(3)
Value Value Max(2)
Unit
5
T64kpperase
C
C
P
64 KB Block Pre-program and Erase
Time
—
800
1800
5000
ms
6
T128kpperase
C
C
P
128 KB Block Pre-program and Erase
Time
—
1500
3000
7500
ms
7
T256kpperase
C
C
P
256 KB Block Pre-program and Erase
Time
—
3000
5300
15000
ms
8
Tpsrt
Program suspend request rate(5)
100
—
—
—
s
9
Tesrt
SR —
SR —
Erase suspend request rate
(6)
10
ms
1. Typical program and erase times assume nominal supply values and operation at 25 oC. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 oC, typical supply voltage, 80 MHz minimum system frequency.
3. The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized
but not guaranteed.
4. Page size is 128 bits (4 words).
5. Time between program suspend resume and the next program suspend request.
6. Time between erase suspend resume and the next erase suspend request.
Table 34.
Flash module life
Value
Symbol
P/E
P/E
Data
Retention
C
CC
CC
CC
Parameter
Conditions
Unit
min
typ
C
Number of program/erase
cycles per block for 16 KB,
48 KB, and 64 Kbyte blocks
over the operating
temperature range (TJ)
—
100,000
—
P/E
cycles
C
Number of program/erase
cycles per block for
128 Kbyte and 256 Kbyte
blocks over the operating
temperature range (TJ)
—
1,000
100,000
P/E
cycles
Blocks with 0 – 1,000
P/E cycles
20
—
years
Blocks with 1,001 –
10,000 P/E cycles
10
—
years
Blocks with 10,001 –
100,000 P/E cycles
5
—
years
C
Minimum data retention at
85 C average ambient
temperature(1)
1. Ambient temperature averaged over duration of application, not to exceed product operating temperature range.
110/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.16
AC specifications
3.16.1
Pad AC specifications
Table 35.
Pad AC specifications (5.0 V)(1)
Output Delay
(ns)(2),(3)
Name
C
CC
D
Low-to-High / Highto-Low
Drive Load
SRC/DSC
(pF)
Max
Min
Max
4.6/3.7
12/12
2.2/2.2
7/7
MSB,LSB
50
11(8)
10(9)
N/A
CC
D
12/13
28/34
5.6/6
15/15
50
01
CC
D
69/71
152/165
34/35
74/74
50
00
CC
D
7.3/5.7
19/18
4.4/4.3
14/14
50
11(8)
10(9)
N/A
Slow(7),(10)
MultiV
(Low Swing Mode)
Rise/Fall Edge (ns)(3),(4)
Min
Medium(5),(6),(7)
MultiV(11)
(High Swing Mode)
Electrical characteristics
CC
D
26/27
61/69
13/13
34/34
50
01
CC
D
137/142
320/330
72/74
164/164
50
00
CC
D
4.1/3.6
10.3/8.9
3.28/2.98
8/8
50
11(8)
10(9)
N/A
CC
D
8.38/6.11
16/12.9
5.48/4.81
11/11
50
01
CC
D
61.7/10.4
92.2/24.3
42.0/12.2
63/63
50
00
CC
D
2.31/2.34
7.62/6.33
1.26/1.67
6.5/4.4
30
11(8)
±1.5/1.5
0.5
N/A
5000/5000
50
N/A
Fast(12)
N/A
pad_i_hv(13)
CC
D
0.5/0.5
1.9/1.9
pull_hv
CC
D
NA
6000
0.3/0.3
1. These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at
VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH
2. This parameter is supplied for reference and is not guaranteed by design and not tested.
3. Delay and rise/fall are measured to 20% or 80% of the respective signal.
4. This parameter is guaranteed by characterization before qualification rather than 100% tested.
5. In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output pads
6. Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
7. Output delay is shown in Figure 9: Pad output delay. Add a maximum of one system clock to the output delay for delay with
respect to system clock.
8. Can be used on the tester.
9. This drive select value is not supported. If selected, it will be approximately equal to 11.
10. Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
11. Selectable high/low swing IO pad with selectable slew in high swing mode only.
12. Fast pads are 3.3 V pads.
13. Stand alone input buffer. Also has weak pull-up/pull-down.
Doc ID 15399 Rev 9
111/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
Pad AC specifications (VDDE = 3.3 V)(1)
Table 36.
Output Delay
(ns)(2),(3)
Pad Type
C
Low-to-High / Highto-Low
Rise/Fall Edge (ns)(3),(4) Drive Load
(pF)
Min
Max
Min
Max
MSB,LSB
CC
D
5.8/4.4
18/17
2.7/2.1
10/10
50
CC
D
16/13
46/49
11.2/8.6
34/34
200
11(8)
10(9)
N/A
Medium(5),(6),(7)
SRC/DSC
CC
D
14/16
37/45
6.5/6.7
19/19
50
CC
D
27/27
69/82
15/13
43/43
200
CC
D
83/86
200/210
38/38
86/86
50
CC
D
113/109
270/285
53/46
120/120
200
CC
D
9.2/6.9
27/28
5.5/4.1
20/20
50
CC
D
30/23
81/87
21/16
63/63
200
01
00
11
10(9)
N/A
Slow(7),(10)
CC
D
31/31
80/90
15.4/15.4
42/42
50
CC
D
58/52
144/155
32/26
82/85
200
CC
D
162/168
415/415
80/82
190/190
50
CC
D
216/205
533/540
106/95
250/250
200
CC
D
3.7/3.1
10/10
30
CC
D
46/49
37/37
200
01
00
MultiV(7),(11)
(High Swing Mode)
11(8)
10(9)
N/A
CC
D
32
15/15
50
CC
D
72
46/46
200
CC
D
210
100/100
50
CC
D
295
134/134
200
01
00
MultiV
(Low Swing Mode)
Not a valid operational mode
CC
D
2.5/2.5
1.2/1.2
10
00
CC
D
2.5/2.5
1.2/1.2
20
01
CC
D
2.5/2.5
1.2/1.2
30
10
CC
D
2.5/2.5
1.2/1.2
50
11(8)
pad_i_hv(12)
CC
D
0.5/0.5
3/3
±1.5/1.5
0.5
N/A
pull_hv
CC
D
NA
6000
5000/5000
50
N/A
Fast
0.4/0.4
1. These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at
VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH.
2. This parameter is supplied for reference and is not guaranteed by design and not tested.
3. Delay and rise/fall are measured to 20% or 80% of the respective signal.
112/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
4. This parameter is guaranteed by characterization before qualification rather than 100% tested.
5. In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output pads
6. Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
7. Output delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system
clock.
8. Can be used on the tester.
9. This drive select value is not supported. If selected, it will be approximately equal to 11.
10. Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
11. Selectable high/low swing IO pad with selectable slew in high swing mode only.
12. Stand alone input buffer. Also has weak pull-up/pull-down.
VDDE/2
Pad
Data Input
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
VOH
Pad
Output
Figure 9.
VOL
Pad output delay
Doc ID 15399 Rev 9
113/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.17
AC timing
3.17.1
Reset and configuration pin timing
Table 37.
Reset and Configuration Pin Timing(1)
#
Characteristic
Symbol
Min
Max
Unit
1
RESET Pulse Width(2)
tRPW
10
—
tcyc
2
RESET Glitch Detect Pulse Width
tGPW
2
—
tcyc
3
PLLREF, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid
tRCSU
10
—
tcyc
4
PLLREF, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid
tRCH
0
—
tcyc
1. Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.14 V to 1.32 V, TA = TL to TH.
2. RESET pulse width is measured from 50% of the falling edge to 50% of the rising edge.
2
RESET
1
RSTOUT
3
BOOTCFG
WKPCFG
4
Figure 10. Reset and Configuration Pin Timing
114/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.17.2
IEEE 1149.1 interface timing
Table 38.
JTAG pin AC electrical characteristics(1)
#
Symbol
C
Characteristic
Electrical characteristics
Min.
Max.
Value
Value
Unit
1
tJCYC
CC
D
TCK Cycle Time
100
—
ns
2
tJDC
CC
D
TCK Clock Pulse Width
40
60
ns
3
tTCKRISE
CC
D
TCK Rise and Fall Times (40% 70%)
—
3
ns
4
tTMSS, tTDIS
CC
D
TMS, TDI Data Setup Time
5
—
ns
5
tTMSH, tTDIH
CC
D
TMS, TDI Data Hold Time
25
—
ns
6
tTDOV
CC
D
TCK Low to TDO Data Valid
—
22(2)
ns
7
tTDOI
CC
D
TCK Low to TDO Data Invalid
0
—
ns
8
tTDOHZ
CC
D
TCK Low to TDO High Impedance
—
22
ns
9
tJCMPPW
CC
D
JCOMP Assertion Time
100
—
ns
10
tJCMPS
CC
D
JCOMP Setup Time to TCK Low
40
—
ns
11
tBSDV
CC
D
TCK Falling Edge to Output Valid
—
50
ns
12
tBSDVZ
CC
D
TCK Falling Edge to Output Valid out
of High Impedance
—
50
ns
13
tBSDHZ
CC
D
TCK Falling Edge to Output High
Impedance
—
50
ns
14
tBSDST
CC
D
Boundary Scan Input Valid to TCK
Rising Edge
25(3)
—
ns
15
tBSDHT
CC
D
TCK Rising Edge to Boundary Scan
Input Invalid
25(3)
—
ns
1. JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to LowSwing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11. These specifications apply to JTAG boundary
scan only. See Table 39 for functional specifications.
2. Pad delay is 8–10 ns. Remainder includes TCK pad delay, clock tree delay logic delay and TDO output pad delay.
3. For 20 MHz TCK.
Note:
The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a read
access) or the write to the Read/Write Access Data Register (RWD) (to begin a write
access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG
Update-DR state. This prevents the access from being performed and therefore will not
signal its completion via the READY (RDY) output unless the JTAG controller receives an
additional TCK. In addition, EVTI is not latched into the device unless there are clock
transitions on TCK.
The tool/debugger must provide at least one TCK clock for the EVTI signal to be recognized
by the MCU. When using the RDY signal to indicate the end of a Nexus read/write access,
ensure that TCK continues to run for at least 1 TCK after leaving the Update-DR state. This
can be just a TCK with TMS low while in the Run-Test/Idle state or by continuing with the
Doc ID 15399 Rev 9
115/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
next Nexus/JTAG command. Expect the affect of EVTI and RDY to be delayed by edges of
TCK. Note: RDY is not available in all packages of all devices.
TCK
2
3
2
1
3
Figure 11. JTAG test clock input timing
TCK
4
5
TMS, TDI
6
8
7
TDO
Figure 12. JTAG test access port timing
116/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
TCK
10
JCOMP
9
Figure 13. JTAG JCOMP timing
Doc ID 15399 Rev 9
117/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
TCK
11
13
Output
Signals
12
Output
Signals
14
15
Input
Signals
Figure 14. JTAG boundary scan timing
3.17.3
Nexus timing
Table 39.
Nexus debug port timing(1)
#
1
Symbol
tMCYC
CC
C
D
Characteristic
Min. Value Max. Value
MCKO Cycle Time
1a
tMCYC
CC
D
Absolute Minimum MCKO Cycle Time
2
tMDC
CC
D
MCKO Duty Cycle
3
tMDOV
CC
D
MCKO Low to MDO Data Valid(5)
4
tMSEOV
CC
D
Unit
2(2),(3)
8
tCYC
25(4)
—
ns
40
60
%
- 0.1
0.35
tMCYC
MCKO Low to MSEO Data
Valid(5)
- 0.1
0.35
tMCYC
Valid(5)
- 0.1
0.35
tMCYC
6
tEVTOV
CC
D
MCKO Low to EVTO Data
7
tEVTIPW
CC
D
EVTI Pulse Width
4.0
—
tTCYC
8
tEVTOPW
CC
D
EVTO Pulse Width
1
—
tMCYC
118/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Nexus debug port timing(1) (continued)
Table 39.
#
9
Electrical characteristics
Symbol
tTCYC
CC
C
D
Characteristic
Min. Value Max. Value
Unit
TCK Cycle Time
4(6),(7)
—
tCYC
100(8)
—
ns
9a
tTCYC
CC
D
Absolute Minimum TCK Cycle Time
10
tTDC
CC
D
TCK Duty Cycle
40
60
%
11
tNTDIS
CC
D
TDI Data Setup Time
5
—
ns
12
tNTDIH
CC
D
TDI Data Hold Time
25
—
ns
13
tNTMSS
CC
D
TMS Data Setup Time
5
—
ns
14
tNTMSH
CC
D
TMS Data Hold Time
25
—
ns
15
—
CC
D
TDO propagation delay from falling
edge of TCK
—
19.5
ns
16
—
CC
D
TDO hold time with respect to TCK
falling edge (minimum TDO
propagation delay)
5.25
—
ns
1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing
specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing mode,
TA = TL to TH, and CL = 30 pF with DSC = 0b10.
2. Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum setting
(NPC_PCR[MCKO_DIV] depending on the actual system frequency being used.
3. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute
minimum MCKO period specification.
4. This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on the
actual system frequency being used.
5. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
6. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less
than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency
being used.
7. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute
minimum TCK period specification.
8. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the
design (system frequency / 4) depending on the actual system frequency being used.
1
2
MCKO
3
4
6
MDO
MSEO
EVTO
Output Data Valid
Figure 15. Nexus output timing
Doc ID 15399 Rev 9
119/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
TCK
EVTI
EVTO
9
7
7
8
8
Figure 16. Nexus event trigger and test clock timings
TCK
11
13
12
14
TMS, TDI
15
16
TDO
Figure 17. Nexus TDI, TMS, TDO timing
120/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 40.
Electrical characteristics
N
Nexus debug port operating frequency
Nexus Pin Usage
Package Nexus Width Nexus Routing
MDO[0:3]
LQFP176
BGA208
BGA324
MDO[4:11]
CAL_MDO[4:11]
GPIO
GPIO
40 MHz(3)
GPIO
40 MHz(5),(6)
GPIO
40 MHz(3)
GPIO
40 MHz(5),(6)
Cal Nexus Data
Out [4:11]
40 MHz(3)
Reduced port
Nexus Data Out
Route to MDO(2)
mode(1)
[0:3]
Full port
mode(4)
Route to MDO(2)
Nexus Data Out Nexus Data Out
[0:3]
[4:11]
Reduced port
Nexus Data Out
Route to MDO(2)
mode(1)
[0:3]
CSP496
Route to MDO(2)
Full port
mode(4)
Route to
CAL_MDO(7)
Max. Operating
Frequency
GPIO
Nexus Data Out Nexus Data Out
[0:3]
[4:11]
Cal Nexus Data
Out [0:3]
GPIO
1. NPC_PCR[FPM] = 0
2. NPC_PCR[NEXCFG] = 0
3. The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is greater
than 40 MHz.
4. NPC_PCR[FPM] = 1
5. Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive. Set the
NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz.
6. Pad restrictions limit the Maximum Operation Frequency in these configurations
7. NPC_PCR[NEXCFG] = 1
Doc ID 15399 Rev 9
121/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.17.4
External Bus Interface (EBI) and calibration bus interface timing
Table 41.
External Bus Interface maximum operating frequency
Port
Width
Multiplexed
Mode
ADDR[12:15]
Pin Usage
ADDR[16:31]
Pin Usage
DATA[0:15]
Pin Usage
Max. Operating
Frequency
16-bit
Yes
ADDR[12:15]
GPIO
ADDR[16:31]
DATA[0:15]
66 MHz(1)
16-bit
No
ADDR[12:15]
ADDR[16:31]
DATA[0:15]
33 MHz(2),(3)
32-bit
Yes
ADDR[12:15]
ADDR[16:31]
DATA[16:31]
DATA[0:15]
33 MHz(2),(3)
1. Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz.
2. System Frequency must be 132 MHz and SIU_ECCR[EBDF] set to divide by four.
3. Pad restrictions limit the maximum operating frequency.
Table 42.
Calibration bus interface maximum operating frequency
Port
Width
Multiplexed
Mode
CAL_ADDR[12:15]
Pin Usage
CAL_ADDR[16:30]
Pin Usage
CAL_DATA[0:15]
Pin Usage
Max. Operating
Frequency
16-bit
Yes
GPIO
GPIO
CAL_ADDR[12:30]
CAL_DATA[0:15]
66 MHz(1)
16-bit
No
CAL_ADDR[12:15]
CAL_ADDR[16:30]
CAL_DATA[0:15]
66 MHz(1)
32-bit
Yes
CAL_WE[2:3]
CAL_DATA[31]
CAL_ADDR[16:30]
CAL_DATA[16:30]
CAL_ADDR[0:15]
CAL_DATA[0:15]
66 MHz(1)
1. Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz
Table 43.
External bus interface (EBI) and calibration bus operation timing (1)
66 MHz (ext. bus)(2)
#
Symbol
C
Characteristic
Unit
Min
Max
1
TC
CC
P
CLKOUT Period
15.2
—
ns
2
tCDC
CC
D CLKOUT duty cycle
45%
55%
TC
ns
3
tCRT
CC
D CLKOUT rise time
—
(3)
4
tCFT
CC
D CLKOUT fall time
—
(3)
ns
1.3
—
ns
CLKOUT Posedge to Output Signal
Invalid or High Z(Hold Time)
5
tCOH
122/157
CC
–
–
D
–
–
–
–
–
ADDR[8:31]
CS[0:3]
DATA[0:31]
OE
RD_WR
TS
WE[0:3]/BE[0:3]
Doc ID 15399 Rev 9
Notes
Signals are
measured at 50%
VDDE.
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
External bus interface (EBI) and calibration bus operation timing (1) (continued)
Table 43.
66 MHz (ext. bus)(2)
#
Symbol
C
Characteristic
Unit
Min
Max
—
9
ns
6.0
—
ns
1.0
—
ns
6.5
—
ns
1.5(5)
—
ns
Notes
CLKOUT Posedge to Output Signal Valid
(Output Delay)
6
tCOV
7
tCIS
CC
CC
ADDR[8:31]
CS[0:3]
D
DATA[0:31]
OE
RD_WR
TS
WE[0:3]/BE[0:3]
D
Input Signal Valid to CLKOUT Posedge
(Setup Time)
DATA[0:31]
CLKOUT Posedge to Input Signal Invalid
(Hold Time)
8
tCIH
CC
D
9
tAPW
CC
D ALE Pulse Width(4)
DATA[0:31]
10
tAAI
CC
D ALE Negated to Address
Invalid4
1. External Bus and Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V,
VDDE = 3 V to 3.6 V (unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10.
2. The external bus is limited to half the speed of the internal bus. The maximum external bus frequency is 66 MHz for 16-bit
muxed mode and 33 MHz for non-muxed mode. For The EBI division factor should be set accordingly based on the internal
frequency being used.
3. Refer to Fast Pad timing in Table 35 and Table 36 (different values for 1.8 V vs. 3.3 V).
4. Measured at 50% of ALE.
5. When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns.
Voh_f
VDDE/2
CLKOUT
Vol_f
2
3
2
4
1
Figure 18. CLKOUT timing
Doc ID 15399 Rev 9
123/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
VDDE/2
CLKOUT
6
5
VDDE/2
5
OUTPUT
BUS
VDDE/2
6
5
5
OUTPUT
SIGNAL
VDDE/2
6
OUTPUT
SIGNAL
VDDE/2
Figure 19. Synchronous output timing
124/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
CLKOUT
Electrical characteristics
VDDE/2
7
8
INPUT
BUS
VDDE/2
7
8
INPUT
SIGNAL
VDDE/2
Figure 20. Synchronous input timing
System Clock
CLKOUT
ALE
TS
A/D
DATA
ADDR
9
10
Figure 21. ALE signal timing
Doc ID 15399 Rev 9
125/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.17.5
External interrupt timing (IRQ pin)
Table 44.
External interrupt timing(1)
#
Characteristic
1
IRQ Pulse Width Low
2
IRQ Pulse Width High
3
IRQ Edge to Edge Time
(2)
Symbol
Min
Max
Unit
tIPWL
3
—
tcyc
tIPWH
3
—
tcyc
tICYC
6
—
tcyc
1. IRQ timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.
2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
IRQ
2
1
3
Figure 22. External Interrupt Timing
3.17.6
eTPU timing
Table 45.
eTPU timing(1)
#
Characteristic
Symbol
Min
Max
Unit
1
eTPU Input Channel Pulse Width
tICPW
4
—
tcyc
2
eTPU Output Channel Pulse Width
tOCPW
2(2)
—
tcyc
1. eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to
TH, and CL = 200 pF with SRC = 0b00.
2. This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).
126/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.17.7
eMIOS timing
Table 46.
eMIOS timing(1)
#
Symbol
C
Electrical characteristics
Characteristic
Min.
Value
Max.
Value
Unit
1
tMIPW
CC
D
eMIOS Input Pulse Width
4
—
tCYC
2
tMOPW
CC
D
eMIOS Output Pulse Width
1
—
tCYC
1. eMIOS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL = 50 pF
with SRC = 0b00.
3.17.8
DSPI timing
DSPI channel frequency support for the SPC564A80 MCU is shown in Table 47. Timing
specifications are in Table 48.
Table 47.
DSPI channel frequency support
System
Clock (MHz)
DSPI Use
Mode
Max. Usable
Frequency
(MHz)
LVDS
37.5
Use sysclock /4 divide ratio.
Non-LVDS
18.75
Use sysclock /8 divide ratio.
LVDS
40
Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI
configuration DBR=0b1 (double baud rate), BR=0b0000
(scaler value 2) and PBR=0b01 (prescaler value 3).
Non-LVDS
20
Use sysclock /6 divide ratio.
LVDS
40
Use sysclock /2 divide ratio.
Non-LVDS
20
Use sysclock /4 divide ratio.
Notes
150
120
80
Table 48.
#
1
DSPI timing(1),(2)
Symbol
tSCK
CC
C
Characteristic
D
SCK Cycle Time(3),(4),(5)
Condition
Delay(6)
Min.
Max.
Unit
24.4 ns
2.9 ms
—
22(7)
—
ns
21(9)
—
ns
(½tSC)–2
(½tSC)+2
ns
2
tCSC
CC
D
PCS to SCK
3
tASC
CC
D
After SCK Delay(8)
4
tSDC
CC
D
SCK Duty Cycle
5
tA
CC
D
Slave Access Time
(SS active to SOUT driven)
—
25
ns
6
tDIS
CC
D
Slave SOUT Disable Time
(SS inactive to SOUT High-Z or
invalid)
—
25
ns
7
tPCSC
CC
D
PCSx to PCSS time
4(10)
—
ns
8
tPASC
CC
D
PCSS to PCSx time
5(11)
—
ns
Doc ID 15399 Rev 9
127/157
Electrical characteristics
Table 48.
#
SPC564A74L7, SPC564A80B4, SPC564A80L7
DSPI timing(1),(2) (continued)
Symbol
C
Characteristic
Condition
Min.
Max.
VDDEH=4.5–5.5 V
20
—
VDDEH=3–3.6 V
23.5
—
Unit
Data Setup Time for Inputs
D
Master (MTFE = 0)
D
9
tSUI
CC
D
Slave
2
—
D
Master (MTFE = 1, CPHA =
0)(12)
8
—
VDDEH=4.5–5.5 V
20
—
VDDEH=3–3.6 V
23.5
—
ns
D
Master (MTFE = 1, CPHA = 1)
D
Data Hold Time for Inputs
10
tHI
CC
D
Master (MTFE = 0)
-4
—
D
Slave
7
—
D
Master (MTFE = 1,
CPHA = 0)(12)
21
—
D
Master (MTFE = 1, CPHA = 1)
-4
—
VDDEH=4.5–5.5 V
—
5
VDDEH=3–3.6 V
—
6.3
VDDEH=4.5–5.5 V
—
25
VDDEH=3–3.6 V
—
27
—
21
VDDEH=4.5–5.5 V
—
5
VDDEH=3–3.6 V
—
6.3
VDDEH=4.5–5.5 V
–5
—
VDDEH=3 –3.6 V
–7.5
—
5.5
—
3
—
VDDEH=4.5–5.5 V
–5
—
VDDEH=3–3.6 V
–7.5
—
ns
Data Valid (after SCK edge)
D
Master (MTFE = 0)
D
D
11
tSUO
Slave
CC
D
D
Master (MTFE = 1, CPHA = 0)
D
Master (MTFE = 1, CPHA = 1)
D
ns
Data Hold Time for Outputs
D
Master (MTFE = 0)
D
12
tHO
CC
D
Slave
D
Master (MTFE = 1, CPHA = 0)
ns
D
Master (MTFE = 1, CPHA = 1)
D
1. All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on medium-speed pads. DSPI signals using slow
pads have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3 to 3.6 V and VDDEH =
4.5 to 5.5 V, TA = TL to TH, and CL = 50 pF with SRC = 0b11.
2. Data is verified at fSYS = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation).
128/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
3. The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated
based on two SPC564A80 devices communicating over a DSPI link.
4. The actual minimum SCK cycle time is limited by pad performance.
5. For DSPI channels using LVDS output operation, up to 40 MHz SCK cycle time is supported. For non-LVDS output,
maximum SCK frequency is 20 MHz. Appropriate clock division must be applied.
6. The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].
7. Timing met when pcssck = 3(01), and cssck =2 (0000).
8. The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].
9. Timing met when ASC = 2 (0000), and PASC = 3 (01).
10. Timing met when pcssck = 3.
11. Timing met when ASC = 3.
12. This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.
2
3
PCSx
1
4
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
10
9
SIN
First Data
Data
Last Data
12
SOUT
First Data
11
Data
Last Data
Note: Refer to Table 48 for the numbers.
Figure 23. DSPI classic SPI timing — master, CPHA = 0
Doc ID 15399 Rev 9
129/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
PCSx
SCK Output
(CPOL=0)
10
SCK Output
(CPOL=1)
9
Data
First Data
SIN
Last Data
12
SOUT
11
Data
First Data
Last Data
Note: Refer to Table 48 for the numbers.
Figure 24. DSPI classic SPI timing — master, CPHA = 1
3
2
SS
1
4
SCK Input
(CPOL=0)
4
SCK Input
(CPOL=1)
5
SOUT
First Data
9
SIN
12
Data
Last Data
Data
Last Data
10
First Data
Note: Refer to Table 48 for the numbers.
130/157
11
Doc ID 15399 Rev 9
6
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
Figure 25. DSPI classic SPI timing — slave, CPHA = 0
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
6
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
10
First Data
Note: Refer to Table 48 for the numbers.
Figure 26. DSPI classic SPI timing — slave, CPHA = 1
3
PCSx
4
1
2
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
9
SIN
First Data
10
12
SOUT
First Data
Last Data
Data
11
Data
Last Data
Note: Refer to Table 48 for the numbers.
Doc ID 15399 Rev 9
131/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
Figure 27. DSPI modified transfer format timing — master, CPHA = 0
PCSx
SCK Output
(CPOL=0)
SCK Output
(CPOL=1)
10
9
SIN
First Data
Data
12
SOUT
First Data
Data
Last Data
11
Last Data
Note: Refer to Table 48 for the numbers.
Figure 28. DSPI modified transfer format timing — master, CPHA = 1
132/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
3
2
SS
1
SCK Input
(CPOL=0)
4
4
SCK Input
(CPOL=1)
SOUT
First Data
Data
First Data
6
Last Data
10
9
SIN
12
11
5
Data
Last Data
Note: Refer to Table 48 for the numbers.
Figure 29. DSPI modified transfer format timing — slave, CPHA =0
Doc ID 15399 Rev 9
133/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
12
First Data
SOUT
9
Last Data
Data
Last Data
10
First Data
SIN
Data
6
Note: Refer to Table 48 for the numbers.
Figure 30. DSPI modified transfer format timing — slave, CPHA =1
8
7
PCSS
PCSx
Note: Refer to Table 48 for the numbers.
Figure 31. DSPI PCS strobe (PCSS) timing
134/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Electrical characteristics
3.17.9
eQADC SSI timing
Table 49.
eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)(1)
CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.
#
Symbol
C
Rating
Min
1
fFCK
CC
D FCK Frequency (2), (3)
1
tFCK
CC
D FCK Period (tFCK = 1/ fFCK)
Typ
Max
Unit
1/17
12
fSYS_CLK
2
17
tSYS_CLK
2
tFCKHT CC
D Clock (FCK) High Time
tSYS_CLK 6.5
9* tSYS_CLK
6.5
ns
3
tFCKLT CC
D Clock (FCK) Low Time
tSYS_CLK 6.5
8* tSYS_CLK
6.5
ns
4
tSDS_LL CC
D SDS Lead/Lag Time
-7.5
7.5
ns
5
tSDO_LL CC
D SDO Lead/Lag Time
-7.5
7.5
ns
6
tDVFE
CC
D
Data Valid from FCK Falling
Edge (tFCKLT+tSDO_LL)
1
ns
7
tEQ_SU CC
D
eQADC Data Setup Time
(Inputs)
22
ns
8
tEQ_HO CC
D eQADC Data Hold Time (Inputs)
1
ns
1. SS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL = 50 pF with
SRC = 0b00.
2. Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.
3. FCK duty is not 50% when it is generated through the division of the system clock by an odd number.
1
2
3
FCK
4
4
SDS
5
SDO
25th
6
1st (MSB)
5
2nd
26th
External Device Data Sample at
FCK Falling Edge
8
7
SDI
1st (MSB)
2nd
25th
26th
eQADC Data Sample at
FCK Rising Edge
Figure 32. eQADC SSI timing
Doc ID 15399 Rev 9
135/157
Electrical characteristics
SPC564A74L7, SPC564A80B4, SPC564A80L7
3.17.10
FlexCAN system clock source
Table 50.
FlexCAN engine system clock divider threshold
#
Symbol
Characteristic
1
FCAN_TH
FlexCAN engine system clock threshold
Table 51.
Unit
100
MHz
FlexCAN engine system clock divider
System Frequency
Required SIU_SYSDIV[CAN_SRC] Value
FCAN_TH
1(2),(3)
1. Divides system clock source for FlexCAN engine by 1.
2. System clock is only selected for FlexCAN when CAN_CR[CLK_SRC] = 1.
3. Divides system clock source for FlexCAN engine by 2.
136/157
Value
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
4
Packages
4.1
ECOPACK
Packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 15399 Rev 9
137/157
Packages
SPC564A74L7, SPC564A80B4, SPC564A80L7
4.2
Package mechanical data
4.2.1
LQFP176
138/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Packages
Figure 33. LQFP176 package mechanical drawing
Doc ID 15399 Rev 9
139/157
Packages
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 52.
LQFP176 package mechanical data
MILLIMETERS(1)
DATABOOK
INCHES
REF.
TYP
MIN
MAX
TYP
MIN
A
MAX
MIN
1.600
MAX
0.063
A1
0.050
0.150
0.002
A2
1.350
1.450
0.053
0.057
b
0.170
0.270
0.007
0.011
C
0.090
0.200
0.004
0.008
D
23.900
24.100
0.941
0.949
E
23.900
24.100
0.941
0.949
e
0.500
0.020
HD
25.900
26.100
1.020
1.028
HE
25.900
26.100
1.020
1.028
0.450
0.750
0.018
0.030
L
(2)
L1
1.000
0.039
ZD
1.250
0.049
ZE
1.250
0.049
ccc
0.080
0o
ANGLE
7o
1. Controlling Dimension: MILLIMETER
2. L dimension is measured at gauge plane at 0.25 above the seating plane.
140/157
TYP
Doc ID 15399 Rev 9
0.003
0
7o
SPC564A74L7, SPC564A80B4, SPC564A80L7
BGA208
ddd C
Seating
plane
A
A
A1
A4
A3
D
B
A2
D
D1
e
A
F
E
E1
F
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
e
4.2.2
Packages
1
3
2
5
4
7
6
9
8
A1 corner index area
(See note 1)
11 13 15
10 12 14 16
b (208 balls)
eee M C A B
fff M C
Bottom view
1. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized
markings, or other feature of package body or integral heatslug.
A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
Table 53.
LBGA208 mechanical data
inches(1)
mm
Symbol
Min
Typ
A(2)
A1
Max
Min
Typ
1.70
0.30
0.0669
0.0118
A2
1.085
0.0427
A3
0.30
0.0118
A4
b(3)
0.80
0.50
Max
0.60
0.70
Doc ID 15399 Rev 9
0.0315
0.0197
0.0236
0.0276
141/157
Packages
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 53.
LBGA208 mechanical data (continued)
inches(1)
mm
Symbol
D
Min
Typ
Max
Min
Typ
Max
16.80
17.00
17.20
0.6614
0.6693
0.6772
D1
E
15.00
16.80
17.00
0.5906
17.20
0.6614
0.6693
E1
15.00
0.5906
e
1.00
0.0394
F
1.00
0.0394
ddd
eee
(4)
fff(5)
0.6772
0.20
0.0079
0.25
0.0098
0.10
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. LBGA stands for Low profile Ball Grid Array.
—Low profile: The total profile height (Dim A) is measured from the seating plane to the top of the
component
—The maximum total package height is calculated by the following methodology:
A2 Typ+A1 Typ + (A12+A32+A42 tolerance values)
— Low profile: 1.20mm < A < 1.70mm
3. The typical ball diameter before mounting is 0.60mm.
4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone.
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
Each tolerance zone fff in the array is contained entirely in the respective zone eee above.
The axis of each ball must lie simultaneously in both tolerance zones.
4.2.3
142/157
PBGA324
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Packages
Figure 34. PBGA324 package mechanical drawing
Doc ID 15399 Rev 9
143/157
Packages
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 54.
PBGA324 package mechanical data
mm
inches
Symbol
MIN.
A(1),(2),(3)
A1
TYP.
MAX.
1.720
0.270
A2
MIN.
TYP.
MAX.
1.620
1.720
1.820
0.350
0.400
0.450
1.320
1.320
b
0.550
0.6000
0.650
0.550
0.600
0.650
D
22.80
23.00
23.200
22.900
23.000
23.100
D1
E
21.00
22.800
E1
23.000
21.000
23.200
22.900
21.000
23.000
23.100
21.000
e
0.950
1.000
1.050
0.950
1.000
1.050
f
0.875
1.000
1.125
0.875
1.000
1.125
ddd
0.200
0.200
1. Max mounted height is 1.77mm.Based on 0.35mm ball pad diameter. Solder paste is 0.15mm thickness
and 0.35mm diameter.
2. PBGA stands for Plastic Ball Grid Array.
3. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized
markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the
bottom surface of the package to identify the terminal A1corner. Exact shape of each corner is optional.
144/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
5
Ordering information
Ordering information
Table 55 shows the orderable part numbers for the SPC564A80 series.
Table 55.
Order codes
Flash/SRAM
Package
Speed
(MHz)
SPC564A74L7CFA
3 MB/160 KB
176LQFP
150
SPC564A74B2CFA
3 MB/160 KB
208LBGA
150
SPC564A74B4CFA
3 MB/160 KB
324PBGA
150
SPC564A80L7CFC
4 MB/192 KB
LQFP176
80
SPC564A80B2CFC
4 MB/192 KB
LBGA208
80
SPC564A80B4CFC
4 MB/192 KB
PBGA324
80
SPC564A80L7CFB
4 MB/192 KB
LQFP176
120
SPC564A80B2CFB
4 MB/192 KB
LBGA208
120
SPC564A80B4CFB
4 MB/192 KB
PBGA324
120
SPC564A80L7CFA
4 MB/192 KB
LQFP176
150
SPC564A80B2CFA
4 MB/192 KB
LBGA208
150
SPC564A80B4CFA
4 MB/192 KB
PBGA324
150
SPC564A80H1EFA
4 MB/192 KB
KGD
150
Order code
Doc ID 15399 Rev 9
145/157
Ordering information
SPC564A74L7, SPC564A80B4, SPC564A80L7
Figure 35. Product code structure
Example code:
SPC56
4
A
80
L5
C
F
Product identifier Core Family Memory Package Temperature Custom vers.
A
Y
Max Freq. Conditioning
Y = Tray
R = Tape and Reel
A = 150 MHz
B = 120 MHz
C = 80 MHz
F = Optional Flexray controller
B = –40 to 105 °C
C = –40 to 125 °C
B2 = LBGA208
B4 = PBGA324
L7 = LQFP176
H1 = Known Good Die
80 = 4 MB
74 = 3 MB
A = SPC564A80 family
4 = e200z4
SPC56 = Power Architecture in 90
nm
146/157
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
6
Document revision history
Table 56.
Revision history
Document revision history
Date
Revision
23-Feb-2009
1
Initial release
2
Maximum device speed is 145 MHz (was 150 MHz)
16-entry Memory Protection Unit (MPU). Was incorrectly listed as 8-entry.
288-ball BGA package deleted
Feature details section added
Changes to signal summary table:
– Added ANY function to AN[10]
– Added ANW function to AN[8]
Changes to 208 ball BGA ballmap:
– A12 is AN12-SDS (was AN12)
– A15 is VRC33 (was VDD33)
– B12 is AN13-SDO (was AN13)
– C12 is AN14SDI (was AN14)
– C13 is AN15-FCK (was AN15)
– D1 is VRC33 (was VDD33)
– F13 is VDDEH6AB (was VDDEH6)
– H13 is GPIO99 (was PCSA3)
– J15 is GPIO98 (was PCSA2)
– K4 is now VDDEH1AB (was VDDEH1)
– N6 is now VRC33 (was VDD33)
– N9 is VDDEH4AB (was VDDEH4)
– N12 is now VRC33 (was VDD33)
– P6 is now NC
– T13 is VDDE5 (was NC)
Changes to 324 ball BGA ballmap:
– A6 is VDDA (was VDDA1)
– A7 is VSSA (was VSSA1)
– A15 is VSSA (was VSSA0)
– A16 is AN12_SDS (was AN12)
– A17 is MDO11_ETPUA29O (was MDO11)
– A18 is MDO10_ETPUA27O (was MDO10)
– A19 is MDO8_ETPUA21O (was MDO8)
– A21 is VRC33 (was VDD33)
– B1 is VRC33 (was VDD33)
– B15 is VSSA (was VSSA0)
– B16 is AN13_SDO (was AN13)
– B17 is MDO9_ETPUA25O (was MDO9)
– B18 is MDO7_ETPUA19O (was MDO7)
– B19 is MDO4_ETPUA2O (was MDO4)
– B22 is NIC (was VDDE7)
09-Dec-2009
Changes
Doc ID 15399 Rev 9
147/157
Document revision history
Table 56.
Revision history (continued)
Date
09-Dec-2009
148/157
SPC564A74L7, SPC564A80B4, SPC564A80L7
Revision
2
Changes
– C4 is VDD (was VDDEH1A)
– C15 is VDDA (was VDDA0)
– C16 is AN14_SDI (was AN14)
– C17 is MDO5_ETPUA4O (was MDO5)
– C21 is NIC1 (was VDDE7)
– D15 is VDDEH7 (was VDDEH9)
– D16 is AN15_FCK (was AN15)
– D17 is MDO6_ETPUA13O (was MDO6)
– D20 is NIC (was VDDE7)
– E19 is NIC (was VDDE7)
– E22 is NIC (was NC)
– F19 is NIC (was VDDE7)
– H4 is VDDEH1AB (was VDDEH1A)
– H19 is VDDEH6AB (was VDDEH10)
– J14 is NIC (was VDDE7)
– K19 is GPIO99 (was PCSA3)
– M9 is VDDE2 (was VDD2)
– M21 is GPIO98 (was PCSA2)
– M22 is VDDREG (was NC)
– N22 is NIC (was NC)
– P2 is ADDR17 (was ADD17)
– P4 is VRC33 (was VDD33)
– R3 is VDDE-EH (was VDDE2)
– T21 is VSS (was VRCVSS)
– T22 is VSS (was VSSPLL)
– U19 is VDDEH6AB (was VDDEH6A)
– W2 is VDDE-EH (was VDDE2)
– W7 is VRC33 (was VDD33)
– W14 is VDDEH4AB (was VDDEH4B)
– W21 is NIC (was VRC33)
– Y22 is VRC33 (was VDD33)
– AB22 is VSS (was VSSPLL)
Recommended operating characteristics for power transistor updated
Pad current specifications updated
LVDS pad specifications updated. SRC does not apply to common mode voltage.
Temperature sensor electrical characteristics added
eQADC electrical characteristics updated with VGA gain specs
Pad AC specifications updated
Definition for RDY signal added to signal details
VSTBY maximum is 5.5 V (was listed incorrectly as 6.0 V)
IMAXA maximum is 5 mA (was TBD)
Analog differential input functions added to AN0–AN7 in signal summary
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 56.
Document revision history
Revision history (continued)
Date
02-Apr-2010
Revision
Changes
3
Internal release.
Changes to Signal Properties table (changes apply to Revision 2 and later devices:
EBI changes:
– WE_BE[2] (A2) and CAL_WE_BE[2] (A3) signals added to CS[2] (PCR 2)
– WE_BE[3] (A2) and CAL_WE_BE[3] (A3) signals added to CS[3] (PCR 3)
Calibration bus changes:
– CAL_WE[2]/BE[2] (A2) signal added to CAL_CS[2] (PCR 338)
– CAL_WE[3]/BE[3] (A2) signal added to CAL_CS[3] (PCR 339)
– CAL_ALE (A1) added to CAL_ADDR[15] (PCR 340)
eQADC changes:
– AN[8] and AN[38] pins swapped. AN[8] Is now on pins 9 (176-pin), B3 (208-ball) and
D6 (324-ball). AN[8] was on C5 (324-ball) on previous devices. AN[38] Is now on C5
(324-ball). AN[38] was on pins 9 (176-pin), B3 (208-ball) and D6 (324-ball) on
previous devices.
– ANZ function added to AN11 pin
Reaction channels added to eTPU2:
– RCH0_A (A3) added to ETPU_A[14] (PCR 128)
– RCH0_B (A2) added to ETPU_A[20] (PCR 134)
– RCH0_C (A2) added to ETPU_A[21] (PCR 135)
– RCH1_A (A2) added to ETPU_A[15] (PCR 129)
– RCH1_B (A2) added to ETPU_A[9] (PCR 123)
– RCH1_C (A2) added to ETPU_A[10] (PCR 124)
– RCH2_A (A2) added to ETPU_A[16] (PCR 130)
– RCH3_A (A2) added to ETPU_A[17] (PCR 131
– RCH4_A (A2) added to ETPU_A[18] (PCR 132))
– RCH4_B (A2) added to ETPU_A[11] (PCR 125)
– RCH4_C (A2) added to ETPU_A[12] (PCR 126)
– RCH5_A (A2) added to ETPU_A[19] (PCR 133)
– RCH5_B (A2) added to ETPU_A[28] (PCR 142)
– RCH5_C (A2) added to ETPU_A[29] (PCR 143)
Reaction channels added to eMIOS:
– RCH2_B (A2) added to EMIOS[2] (PCR 181)
– RCH2_C (A2) added to EMIOS[4] (PCR 183)
– RCH3_B (A2) added to EMIOS[10] (PCR 189)
– RCH3_C (A2) added to EMIOS[11] (PCR 190)
Pad changes:
– ETPUA16 (PCR 130) has Medium (was Slow) pad
– ETPUA17 (PCR 131) has Medium (was Slow) pad
– ETPUA18 (PCR 132) has Medium (was Slow) pad
– ETPUA19 (PCR 133) has Medium (was Slow) pad
– ETPUA25 (PCR 139) has Slow+LVDS (was Medium+LVDS) pads
Doc ID 15399 Rev 9
149/157
Document revision history
Table 56.
Revision history (continued)
Date
02-Apr-2010
(cont)
150/157
SPC564A74L7, SPC564A80B4, SPC564A80L7
Revision
Changes
3
(cont)
Signal Details table updated:
– Added eTPU2 reaction channels
– Changed IRQ[0:15] to two ranges, excluding IRQ6, which does not exist on this
device
– Changed TCR_A to TCRCLKA (TCR_A is the pin name, not the signal name)
– Changed WE_BE[0:1] to WE_BE[0:3] (2 new signals added to Rev. 2). Also
changed notation from “WE_BE[n]” to “WE[n]/BE[n]” to be consistent.
Changes to Power/ground segmentation table:
– ADDR[20:21] removed from VDDE2 segment; they are in VDDE-EH
– CAL_CS1 removed from VDDE12 segment (there is no CAL_CS1 on this device)
– CAL_EVTO and CAL_MCKO removed from VDDE12 segment. Those pins do not
exist
– VDDE-VDDEH renamed to VDDE-EH
– EMIOS24 removed from VDDEH segment. That pin does not exist.
– ETPUA[0:9] added to VDDEH4 segment
– Renamed TCR_A in VDDEH4 segment to TCRCLKA.
– EXTAL and XTAL added to VDDEH6 segment
– AN15-FCK added to VDDEH7 segment
– GPIO98, GPIO99, GPIO206, GPIO207 and GPIO219 added to VDDEH7 segment.
– MSEO1 added to VDDEH7 segment
– Power segment VDDEH1A renamed to VDDEH1
Changes to 176-pin package pinout:
– Changed pin 9 from AN38 to AN8.
– Added note that pin 96 (VSS) should be tied low.
Changes to 208-ball package ballmap:
– Changed ball B3 from AN38 to AN8.
– Added note that ball N13 (VSS) should be tied low.
324-ball package ballmap updated for Rev. 2 silicon
– Renamed VDDA (A6) to VDDA0
– Renamed VSSA (A7) to VSSA0
– AN8 was on ball C5; it is now on D6
– AN38 was on ball D6; it is now on C5
– Renamed VSSA (A15) to VSSA1
– Renamed VDDA (C15) to VDDA1
– Rename VSSA (B15) to VSSA1
BGA288 package is no longer offered
Changes to features list:
– Correction: there are 6 reaction channels (was noted as 5)
– Development Trigger Semaphore (DTS) added to features list and feature details
– FlexRay module now has 128 message buffers (was 64) and ECC support
Added note after JTAG pin AC electrical characteristics table detailing JTAG EVTI and
RDY signal clocking with TCK. This affects debuggers.
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 56.
Document revision history
Revision history (continued)
Date
02-Apr-2010
(cont)
01-Oct-2010
Revision
Changes
3
(cont)
Added information to AC timings section:
– New section added: Reset and configuration pin timing
– New section added: External interrupt timing (IRQ pin)
– New section added: eTPU timing
– Added Nexus debug port operating frequency table to Nexus timings section
– Added external bus interface maximum operating frequency table and calibration
bus interface maximum operation frequency table
– Added FlexCAN system clock source section
Changes to Power management control (PMC) and power on reset (POR) electrical
specifications:
– Max value for parameter 2 (vddreg) is 5.25 V (was 5.5 V)
Updated “Core voltage regulator controller external components preferred
configuration” diagram.
Changes to DC electrical specifications table:
– Slew rate on power supply pins (system requirement) changed to 25 V/ms (was
50 V/ms)
Throughout the document the maximum frequency is now 150 MHz (was 145 MHz)
Changes to DC electrical specifications:
– Parameter classifications added
– VDDREG max value changed to 5.25 V (was 5.5 V)
– VOH_LS min value changed to 2.0 V (was 2.7 V) with a load current of 0.5 mA
– VOL_LS max value changed to 0.6 V (was 0.2*VDDEH) with load current of 2 mA
– VINDC min value changed to VSSA-0.3 (was VSSA-1.0)
– VINDC max value changed to VDDA+0.3 (was VDDA+1.0)
Added new section: Configuring SRAM wait states
– VRCCTL external circuit updated.
4
Updates to Nexus timings:
– tMDOV max value changed to 0.35 (was 0.2)
– tMSEOV max value changed to 0.35 (was 0.2)
– tEVTOV max value changed to 0.35 (was 0.2)
Updates to DC electrical specifications:
– VSTBY min value changed to 0.95 V (was 0.9 V)
– VSTBY has two ranges—for regulated mode and unregulated mode
Correction to PLLMRFM electrical specifications:
– VDDPLL range is from 1.08 V to 3.6 V (was 3.0 V to 3.6 V.
Updates to pad AC specifications:
– Specs with drive load = 200 pF deleted. DSC (drive strength control) values range
from 10 – 50 pF.
– I/O pad average IDDE specifications updated (fast pad specs only)
– I/O pad VRC33 average IDDE specifications (fast pad specs only)
Updates to Reset and configuration pin timings:
– Footnote added: RESET pulse width is measured from 50% of the falling edge to
50% of the rising edge.
– Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V).
Doc ID 15399 Rev 9
151/157
Document revision history
Table 56.
Revision history (continued)
Date
01-Oct-2010
(cont)
10-Feb-2011
152/157
SPC564A74L7, SPC564A80B4, SPC564A80L7
Revision
Changes
4
(cont)
Updates to EBI timings:
– Note added to tAAI: When CAL_TS is used as CAL_ALE the hold time is 1 ns
instead of 1.5 ns.
– Correction: maximum calibration bus interface operating frequency is 66 MHz for all
port configurations.
– VDDE range in footnote 1 corrected to read, “External Bus and Calibration bus
timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V,
VDDE = 3 V to 3.6 V (unless stated otherwise)” (VDDE range was 1.62 V to 3.6 V)
Correction to IEEE 1149.1 timings:
– SRC value in footnote 1 corrected to read, “JTAG timing specified at VDD = 1.14 V
to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to LowSwing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11.” (SRC
value was 0b00)
Correction to External interrupt timing (IRQ pin) timings:
– Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V).
Update to DSPI timings:
– Some of the timing parameters can vary depending on the value of VDDE. For these
parameters, ranges are now defined for two ranges of VDDE.
Change in signal name notation for DSPI, CAN and SCI signals:
– DSPI:
PCS_x[n] is now DSPI_x_PCS[n]
SOUT_x is now DSPI_x_SOUT
SIN_x is now DSPI_x_SIN
SCK_x is now DSPI_x_SCK
– CAN:
CNTXx is now CAN_x_TX
CNRXx is now CAN_x_RX
– SCI:
RXDx is now SCI_x_RX
TXDx is now SCI_x_TX
Updates to DC electrical specifications:
– Slew rate on power supply pins specification changed to 25 V/ms (was 50 V/ms)
VOH_LS min spec changed to 2.0 V at 0.5 mA (was 2.7 V at 0.5 mA)
Updated I/O pad current specifications
Updated I/O pad VRC33 current specifications
Corrections to Nexus timing:
– Maximum Nexus debug port operating frequency is 40 MHz in all configurations
– To route Nexus to MDO, clear NPC_PCR[NEXCFG] (formerly this was documented
as NPC_PCR[CAL]
– To route Nexus to CAL_MDO, set NPC_PCR[NEXCFG]=1 (formerly this was
documented as NPC_PCR[CAL]
5
–
–
–
–
Minor editorial updates.
Re-organized the first few subsections of the “Overview” section.
Added ECSM to the block diagram.
Added information on the REACM, SIU, and ECS modules to the “Block summary”
section.
Doc ID 15399 Rev 9
SPC564A74L7, SPC564A80B4, SPC564A80L7
Table 56.
Document revision history
Revision history (continued)
Date
Revision
Changes
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
10-Feb-2011
(cont)
5
(cont)
–
–
–
–
–
–
–
–
–
–
–
–
–
Added DATA[0:15] to VDDE5 in the “signal properties” table.
Updated VSTBY parameters in the “Power/ground segmentation” table.
Updated the parameter symbols and classifications throughout the document.
Updated footnote instances in the “Absolute maximum ratings“ table.
Removed IMAXA footnote in the “Absolute Maximum Ratings” table.
Updated the format of the “EMI (electromagnetic interference) characteristics” table.
Removed the footnote on VDDREG in the “Power management control (PMC) and
power on reset (POR) electrical specifications“ table.
Updated values for Vbg, Idd3p3, Por3.3V_r, Por3.3V_f, Por5V_r, and Por5V_f in the
“PMC electrical characteristics” table.
Updated “Bandgap reference supply voltage variation” in the “PMC Electrical
Characteristics” table.
Removed the “VRC electrical specifications” table as it contained redundant
information.
Updated VCESAT and VBEin the “Recommended power transistors” operating
characteristics” table.
Updated VIH_LS in the “DC electrical specifications” table.
Updated the VOH_LS min value in the “DC electrical specifications” table.
Updated IDDSTBY and IDDSTBY150 in the “DC electrical specifications” table.
Updated the IDDA/IREF/IDDREG max value in the “DC electrical specifications” table.
Updated IACT_F, IACT_MV_PU, IACT_MV_PD, RPUPD5K, RPUPDMTCH, and footnotes in
the “DC electrical specifications” table.
Updated Medium pad type IDD33 values in the “I/O pad VRC33 average IDDE
specifications” table.
Updated values for VOD in the “DSPI LVDS pad specification“ table.
Removed the footnotes from the “DSPI LVDS pad specifications“ table.
Removed the redundant “XTAL Load Capacitance” parameter instance from the
“PLLMRFM electrical specifications” table.
Updated footnotes in the “PLLMRFM electrical specifications” table.
Updated values for OFFNC and GAINNC in the “eQADC conversion specifications
(operating)“ table.
Added DIFFmax, DIFFmax2, DIFFmax4, and DIFFcmv parameters to the “eQADC
conversion specifications (operating)” table.
Added the maximum operating frequency values in the “Cutoff frequency for
additional SRAM wait state” table.
Updated multiple entries in the “APC, RWSC, WWSC settings vs. frequency of
operation” table.
Removed footnote in the “APC, RWSC, WWSC settings vs. frequency of operation”
table.
Updated the Typical values for Tdwprogram,, Tpprogram, and T16kpperase, and updated
the Initial Max values for T128kpperase and T256kpperase in the “Flash program and
erase specifications” table.
Changed the voltage in the “Pad AC specifications” table title from 4.5 V to 5.0 V.
Added the maximum LH/HL output delay values for pad type MultiV in the “Pad AC
specifications (VDDE = 3.3 V)“ table.
Doc ID 15399 Rev 9
153/157
Document revision history
Table 56.
Revision history (continued)
Date
03-Feb-2012
154/157
SPC564A74L7, SPC564A80B4, SPC564A80L7
Revision
Changes
6
– Minor editorial changes.
– In Section 1.4: SPC564A80 feature list, moved “24 unified channels” after “1 x
eMIOS”.
– In Table 4 updated the following rows:
DSPI_D_SCK /GPIO [98] -Changed “-” to CS[2]
DSPI_D_SIN /GPIO[99] -Changed “-” to CS[3].
– In Table 12 Column “Value” added conditional text.
– In Table 21 made the following changes:
-For the value “VOL_S” parameter changed from “Slow/ medium/multi-voltage pad
I/O output low voltage” to “Slow/medium pad I/O output low voltage”.
-Added a new row for “IDDSTBY27”.
-For row “IDDSTBY(operating current 0.95 -1.2V)” added max value “100” and
changed typ value from “125” to “35”.
-For row “IDDSTBY (operating current 2 - 5.5V)” added max value “110” and changed
typ value from “135” to “45”.
-For symbol “IDDSTBY 150(operating current 0.95 -1.2V)” added max value “2000”,
changed typ value from “1050” to “790”,C cell changed from “T” to “P” and for
symbol “IDDSTBY (operating current 2 - 5.5V)” added max value “2000”, changed typ
value from “1050” to “760”, C cell changed from “T” to “P”.
-Removed note 9 and note 10 (Characterization based capability) from symbol
“VOL_HS”.
– Splitted Table 28: eQADC conversion specifications (operating) into Table 29:
eQADC single ended conversion specifications (operating) and Table 30: eQADC
differential ended conversion specifications (operating)
– In Table 30: eQADC differential ended conversion specifications (operating) made
the following changes:
-Added the note of DIFFcmv on all of the DIFF specs.
-Min value changed from (VRH-VRL)/2-5% to (VRH+VRL)/2-5 % and max value
changed from (VRH-VRL)/2+5% to (VRH+VRL)/2+5%for DIFFcmv.
– In Table 31: Cutoff frequency for additional SRAM wait state made the following
changes:
-Added note “Max frequencies including 2% PLL FM”.
-Max operating frequency changed from “96” to “98” and “150” to “153”.
– In Section 3.13: Configuring SRAM wait states, changed text from “SPC564A80 4M
Microcontroller Reference Manual “ to “device reference manual”.
– In Table 32: APC, RWSC, WWSC settings vs. frequency of operation,
- Added note for “Max Flash Operating Frequency(MHz).
- Changed values from 30, 60,120, 150 to 20,61,123, 153 respectively in Max Flash
Operating Frequency (MHz).
– In Table 33: Flash program and erase specifications, added two parameter “Tpsrt”
and “Tesrt”.
– In Table 41: External Bus Interface maximum operating frequency, replacedthe