SPC564Bxx
SPC56ECxx
32-bit MCU family built on the Power Architecture® for automotive
body electronics applications
Datasheet - production data
LBGA256
(17 x 17 x 1.7 mm)
LQFP176
LQFP208
(28 x 28 x 1.4 mm) (24 x 24 x 1.4 mm)
Features
e200z4d, 32-bit Power
– Up to 120 MHz and 200 MIPs operation
Architecture®
e200z0h, 32-bit Power Architecture
– Up to 80 MHz and 75 MIPs operation
Memory
– Up to 3 MByte on-chip Flash with ECC
– Up to 256 KByte on-chip SRAM with ECC
– 64KByte on-chip Data Flash with ECC
– 16-entry memory protection unit (MPU)
– User selectable Memory BIST
Interrupts
– 255 interrupt sources with 16 priority levels
– Up to 54 ext. IRQ including 30 wake-up
GPIOs: from 147 (LQFP176) to 199
(LBGA256)
System timer units
– 8-ch. 32-bit periodic interrupt timer (PIT)
– 4-channel 32-bit system timer (STM)
– Safety System Watchdog Timer (SWT)
– Real-time clock timer (RTC/API)
eMIOS, 16-bit counter timed I/O units
– Up to 64 channels with PWM/MC/IC/OC
–
–
–
–
–
–
Up to 6 FlexCAN with 64 buffers each
Up to 10 LINFlex/UART channels
Up to 8 buffered DSPI channels
I2C interface
One FleyRay (dual-ch.) with 128 buffers
Fast Ethernet Controller
Cryptographic Services Engine (CSE)
– AES-128 en/decryption, CMAC auth.
– Secured device boot mode
32-ch. eDMA with multiple request sources
Clock generation
– 4 to 40 MHz main oscillator
– 16 MHz internal RC oscillator
– Software-controlled FMPLL
– 128 kHz internal RC oscillator
– 32 kHz auxiliary oscillator
– Clock Monitoring Unit (CMU)
Low power capabilities
– Ultra low power STANDBY
– CAN Sampler to store CAN ID in STBY
– Fast wake-up and exectute from RAM
Exhaustive debugging capability
– Nexus 3+ interface on LBGA256 only
– Nexus 1 on all devices
Voltage supply
– Single 5 V or 3.3 V supply
– On-chip Vreg with external ballast transitor
Operating temperature range -40 to 125 °C
Two ADC (10-bit and 12-bit)
– Up to 62 channels extendable to 90 ch.
– Multiple Analog Watchdog
Dedicated diagnostic features for lighting
– Advanced shiffted PWM generation
– ADC conversion synchronized on PWM
Communication interfaces
March 2016
This is information on a product in full production.
DocID17478 Rev 9
1/123
www.st.com
SPC564Bxx-SPC56ECxx
Table 1. Device summary
Part number
Package
1.5 MByte
2 MByte
3 MByte
LQFP176
SPC564B64L7
SPC56EC64L7
SPC564B70L7
SPC56EC70L7
SPC564B74L7
SPC56EC74L7
LQFP208
SPC564B64L8
SPC56EC64L8
SPC564B70L8
SPC56EC70L8
SPC564B74L8
SPC56EC74L8
LBGA256
SPC56EC64B3
SPC56EC70B3
SPC56EC74B3
2/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Contents
Contents
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1
Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 15
2.1
Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2
System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3
Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1
Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2
NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1
NVUSRO [PAD3V5V(0)] field description . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2
NVUSRO [PAD3V5V(1)] field description . . . . . . . . . . . . . . . . . . . . . . . 52
3.3
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6
3.5.1
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2
Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.1
I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.2
I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.3
I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.4
Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.5
I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7
RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8
Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 67
3.8.1
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 67
3.8.2
VDD_BV options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8.3
Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 69
3.9
Low voltage domain power consumption . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.10
Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 72
DocID17478 Rev 9
3/123
5
Contents
SPC564Bxx-SPC56ECxx
3.11
3.10.1
Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10.2
Flash memory power supply DC characteristics . . . . . . . . . . . . . . . . . . 74
3.10.3
Flash memory start-up/switch-off timings . . . . . . . . . . . . . . . . . . . . . . . 75
Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 75
3.11.1
Designing hardened software to avoid noise problems . . . . . . . . . . . . . 75
3.11.2
Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.11.3
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 76
3.12
Fast external crystal oscillator (4–40 MHz) electrical characteristics . . . . 77
3.13
Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . 80
3.14
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.15
Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 83
3.16
Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 85
3.17
ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.17.1
3.18
3.19
4
5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Fast Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.18.1
MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) . 96
3.18.2
MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) . . . . 97
3.18.3
MII Async Inputs Signal Timing (CRS and COL) . . . . . . . . . . . . . . . . . . 97
3.18.4
MII Serial Management Channel Timing (MDIO and MDC) . . . . . . . . . . 98
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.19.1
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.19.2
DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.19.3
Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.19.4
JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1
ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
4.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
4.2.1
LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2
LQFP208 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.3
LBGA256 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 114
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Contents
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
DocID17478 Rev 9
5/123
5
List of tables
SPC564Bxx-SPC56ECxx
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/123
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
SPC564Bxx and SPC56ECxx family comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SPC564Bxx and SPC56ECxx series block summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
System pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PAD3V5V(0) field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
PAD3V5V(1) field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
LBGA256 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
SLOW configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 60
MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 61
FAST configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 62
Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
I/O supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Low voltage power domain electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Code flash memory—Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Data flash memory—Program and erase specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Flash memory power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 74
Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
EMI radiated emission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Fast external crystal oscillator (4 to 40 MHz) electrical characteristics. . . . . . . . . . . . . . . . 79
Crystal motional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 82
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 83
Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 85
ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
ADC conversion characteristics (10-bit ADC_0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Conversion characteristics (12-bit ADC_1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MII Receive Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
MII transmit signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
MII Async Inputs Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
MII serial management channel timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
List of tables
On-chip peripherals current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
LQFP208 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
LBGA256 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
DocID17478 Rev 9
7/123
7
List of figures
SPC564Bxx-SPC56ECxx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
8/123
SPC564Bxx and SPC56ECxx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
176-pin LQFP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
208-pin LQFP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
256-pin BGA configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low voltage monitor vs. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Fast external crystal oscillator (4 to 40 MHz) electrical characteristics. . . . . . . . . . . . . . . . 79
Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Equivalent circuit of a quartz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 82
ADC_0 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ADC_1 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
MII receive signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
MII transmit signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
MII async inputs timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
MII serial management channel timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
DSPI classic SPI timing–master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DSPI classic SPI timing–master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DSPI classic SPI timing–slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DSPI classic SPI timing–slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DSPI modified transfer format timing–master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 104
DSPI modified transfer format timing–master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 104
DSPI modified transfer format timing–slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DSPI modified transfer format timing–slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Timing diagram - JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
LQFP208 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
LBGA256 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
1
Introduction
1.1
Document Overview
Introduction
This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the SPC564Bxx
and SPC56ECxx device. To ensure a complete understanding of the device functionality,
refer also to the SPC564Bxx and SPC56ECxx Reference Manual.
1.2
Description
The SPC564Bxx and SPC56ECxx is a new family of next generation microcontrollers built
on the Power Architecture embedded category. This document describes the features of the
family and options available within the family members, and highlights important electrical
and physical characteristics of the device.
The SPC564Bxx and SPC56ECxx family expands the range of the SPC560B
microcontroller family. It provides the scalability needed to implement platform approaches
and delivers the performance required by increasingly sophisticated software architectures.
The advanced and cost-efficient host processor core of the SPC564Bxx and SPC56ECxx
automotive controller family complies with the Power Architecture embedded category,
which is 100 percent user-mode compatible with the original Power Architecture user
instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high
performance processing optimized for low power consumption. It also capitalizes on the
available development infrastructure of current Power Architecture devices and is supported
with software drivers, operating systems and configuration code to assist with users
implementations.
DocID17478 Rev 9
9/123
122
Feature
Package
CPU
Execution speed(2)
SPC564B64
LQFP
176
LQFP
208
SPC56EC64
LQFP
176
LQFP
208
SPC564B70
LBGA LQFP
256
176
SPC56EC70
LQFP
208
LQFP
208
LBGA
256
LQFP
176
LQFP
208
SPC56EC74
LQFP
176
LQFP
208
LBGA
256
e200z4d
e200z4d + e200z0h
e200z4d
e200z4d + e200z0h
e200z4d
e200z4d + e200z0h
Up to 120 MHz
(e200z4d)
Up to 120 MHz
(e200z4d)
Up to 80 MHz
(e200z0h)(3)
Up to 120 MHz
(e200z4d)
Up to 120 MHz
(e200z4d)
Up to 80 MHz
(e200z0h)(3)
Up to 120 MHz
(e200z4d)
Up to 120 MHz
(e200z4d)
Up to 80 MHz
(e200z0h)(3)
Code flash memory
1.5 MB
2 MB
Data flash memory
SRAM
LQFP
176
SPC564B74
Introduction
10/123
Table 2. SPC564Bxx and SPC56ECxx family comparison(1)
3 MB
4 x16 KB
128 KB
192 KB
160 KB
256 KB
DocID17478 Rev 9
MPU
192 KB
256 KB
16-entry
eDMA(4)
32 ch
10-bit ADC
dedicated(5),
(6)
27 ch
33 ch
27 ch
33 ch
27 ch
33 ch
shared with
12-bit ADC(7)
27 ch
33 ch
27 ch
33 ch
27 ch
33 ch
10 ch
5 ch
10 ch
5 ch
10 ch
19 ch
12-bit ADC
dedicated(8)
CTU
Total timer
10 ch
5 ch
10 ch
5 ch
10 ch
5 ch
19 ch
64 ch
I/O(9)
eMIOS
64 ch, 16-bit
SCI (LINFlexD)
10
SPI (DSPI)
8
CAN (FlexCAN)(10)
6
SPC564Bxx-SPC56ECxx
shared with
10-bit ADC(7)
5 ch
Feature
Package
SPC564B64
LQFP
176
LQFP
208
SPC56EC64
LQFP
176
LQFP
208
SPC564B70
LBGA LQFP
256
176
LQFP
208
SPC56EC70
LQFP
176
FlexRay
Yes
STCU(11)
Yes
Ethernet
I
No
Yes
No
LQFP
176
LQFP
208
SPC56EC74
LQFP
176
No
LQFP
208
LBGA
256
Yes
1
32 kHz oscillator (SXOSC)
Debug
LBGA
256
Yes
2C
GPIO(12)
LQFP
208
SPC564B74
SPC564Bxx-SPC56ECxx
Table 2. SPC564Bxx and SPC56ECxx family comparison(1) (continued)
Yes
147
177
147
JTAG
177
199
147
177
Nexus
3+
DocID17478 Rev 9
Cryptographic Services
Engine (CSE)
147
JTAG
177
199
Nexus
3+
147
177
147
177
JTAG
199
Nexus
3+
Optional
1. Feature set dependent on selected peripheral multiplexing; table shows example.
2. Based on 125 C ambient operating temperature and subject to full device characterization.
3. The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs to run at 1/2 system
frequency. There is a configurable e200z0 system clock divider for this purpose.
4. DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.
5. Not shared with 12-bit ADC, but possibly shared with other alternate functions.
6. There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4 dedicated ANX channels.
7. 16x precision channels (ANP) and 3x standard (ANS).
8. Not shared with 10-bit ADC, but possibly shared with other alternate functions.
9. As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference manual for information on
the channel configuration and functions.
10. CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.
11. STCU controls MBIST activation and reporting.
12. Estimated I/O count for proposed packages based on multiplexing with peripherals.
Introduction
11/123
Introduction
1.3
SPC564Bxx-SPC56ECxx
Block diagram
Figure 1 shows the detailed block diagram of the SPC564Bxx and
SPC56ECxx.
Figure 1. SPC564Bxx and SPC56ECxx block diagram
FEC
CSE
Nexus Port
FlexRay
Nexus 3+
Nexus
Voltage
regulator
NMI0
e200z0h
NMI1
e200z4d
Instructions
(Master)
Data
(Master)
Instructions
(Master)
Data
(Master)
MPU
JTAG Port
64-bit 8 x 5 crossbar switch
JTAGC
SRAM
2 128 KB
Code Flash Data Flash
2 1.5 MB
64 KB
2 SRAM
controller
Flash memory
controller
(Slave)
Nexus 3+
NMI0
(Slave)
(Slave)
Interrupt requests
from peripheral
blocks
NMI1
Clocks
DMAMUX
MPU
registers
INTC
eDMA
CMU
16 x
Semaphores
CAN
Sampler
( Master)
FMPLL
STCU
8
RTC/API 4 STM
SWT
ECSM
MC_RGM MC_CGM MC_ME MC_PCU
PIT RTI
BAM
SSCM
WKP
Peripheral Bridge
Interrupt
Request
10 ch(1)
1 12-bit
ADC
SIUL
Reset Control
External
Interrupt
Request
27 ch or 33 ch(2)
1 10-bit
ADC
CTU
2 32 ch
eMIOS
10
LINFlexD
8
DSPI
I2C
6
FlexCAN
IMUX
GPIO &
Pad Control
(3)
(3)
I/O
Legend: ADC
BAM
CSE
CAN
CMU
CTU
DMAMUX
DSPI
eDMA
FlexCAN
FEC
eMIOS
ECSM
FMPLL
FlexRay
I2C
IMUX
INTC
Notes:
12/123
Analog-to-Digital Converter
Boot Assist Module
Cryptographic Services Engine
Controller Area Network (FlexCAN)
Clock Monitor Unit
Cross Triggering Unit
DMA Channel Multiplexer
Deserial Serial Peripheral Interface
enhanced Direct Memory Access
Controller Area Network controller modules
Fast Ethernet Controller
Enhanced Modular Input Output System
Error Correction Status Module
Frequency-Modulated Phase-Locked Loop
FlexRay Communication Controller
Inter-integrated Circuit Bus
Internal Multiplexer
Interrupt Controller
JTAGC
LINFlexD
MC_ME
MC_CGM
MC_PCU
MC_RGM
MPU
Nexus
NMI
PIT_RTI
RTC/API
SIUL
SRAM
SSCM
STM
SWT
STCU
WKPU
JTAG controller
Local Interconnect Network Flexible with DMA sup
Mode Entry Module
Clock Generation Module
Power Control Unit
Reset Generation Module
Memory Protection Unit
Nexus Development Interface
Non-Maskable Interrupt
Periodic Interrupt Timer with Real-Time Interrupt
Real-Time Clock/ Autonomous Periodic Interrupt
System Integration Unit Lite
Static Random-Access Memory
System Status Configuration Module
System Timer Module
Software Watchdog Timer
Self Test Control Unit
Wakeup Unit
1) 10 dedicated channels plus up to 19 shared channels. See the device-comparison table.
2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared channels. See the device-comparison table.
3) 16 x precision channels (ANP) are mapped on input only I/O cells.
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Introduction
Table 3 summarizes the functions of the blocks present on the SPC564Bxx and
SPC56ECxx.
Table 3. SPC564Bxx and SPC56ECxx series block summary
Block
Function
Analog-to-digital converter (ADC) Converts analog voltages to digital values
Boot assist module (BAM)
A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock monitor unit (CMU)
Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)
Enables synchronization of ADC conversions with a timer event from the
eMIOS or from the PIT
Cryptographic Security Engine
(CSE)
Supports the encoding and decoding of any kind of data
Crossbar (XBAR) switch
Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width
DMA Channel Multiplexer
(DMAMUX)
Allows to route DMA sources (called slots) to DMA channels
Deserial serial peripheral
interface (DSPI)
Provides a synchronous serial interface for communication with external
devices
Error Correction Status Module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host
(eDMA)
processor via “n” programmable channels.
Enhanced modular input output
system (eMIOS)
Provides the functionality to generate or measure events
Flash memory
Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area
network)
Supports the standard CAN communications protocol
FMPLL (frequency-modulated
phase-locked loop)
Generates high-speed system clocks and supports programmable frequency
modulation
FlexRay (FlexRay communication
Provides high-speed distributed control for advanced automotive applications
controller)
Fast Ethernet Controller (FEC)
Ethernet Media Access Controller (MAC) designed to support both 10 and 100
Mbps Ethernet/IEEE 802.3 networks
Internal multiplexer (IMUX) SIUL
subblock
Allows flexible mapping of peripheral interface on the different pins of the
device
Inter-integrated circuit (I2C™) bus
A two wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Interrupt controller (INTC)
Provides priority-based preemptive scheduling of interrupt requests for both
e200z0h and e200z4d cores
JTAG controller
Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
DocID17478 Rev 9
13/123
122
Introduction
SPC564Bxx-SPC56ECxx
Table 3. SPC564Bxx and SPC56ECxx series block summary (continued)
Block
Function
LinFlexD (Local Interconnect
Network Flexible with DMA
support)
Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with a minimum of CPU load
Memory protection unit (MPU)
Provides hardware access control for all memory references generated in a
device
Clock generation module
(MC_CGM)
Provides logic and control required for the generation of system and peripheral
clocks
Power control unit (MC_PCU)
Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Reset generation module
(MC_RGM)
Centralizes reset sources and manages the device reset sequence of the
device
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control
unit, reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Non-Maskable Interrupt (NMI)
Handles external events that must produce an immediate response, such as
power down detection
Nexus Development Interface
(NDI)
Provides real-time development capabilities for e200z0h and e200z4d core
processor
Periodic interrupt timer/ Real
Time Interrupt Timer (PIT_RTI)
Produces periodic interrupts and triggers
Real-time counter (RTC/API)
A free running counter used for time keeping applications, the RTC can be
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode). Supports autonomous
periodic interrupt (API) function to generate a periodic wakeup request to exit a
low power mode or an interrupt request
Static random-access memory
(SRAM)
Provides storage for program code, constants, and variables
Provides control over all the electrical pad controls and up 32 ports with 16 bits
System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
System status and configuration
module (SSCM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)
Provides a set of output compare events to support AutoSAR and operating
system tasks
Semaphores
Provides the hardware support needed in multi-core systems for sharing
resources and provides a simple mechanism to achieve lock/unlock operations
via a single write access.
Wake Unit (WKPU)
Supports external sources that can generate interrupts or wakeup events, of
which can cause non-maskable interrupt requests or wakeup events.
14/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
The available LQFP pinouts and the LBGA ballmaps are provided in the following figures.
For functional port pin description, see Table 6.
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PB[2]
PC[8]
PC[13]
PC[12]
PI[0]
PI[1]
PI[2]
PI[3]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV_A
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PI[4]
PI[5]
PH[12]
PH[11]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
Figure 2. 176-pin LQFP configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176
Top view
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV_B
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
VDD_LV
VSS_LV
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PB[3]
PC[9]
PC[14]
PC[15]
PJ[4]
VDD_HV_A
VSS_HV
PH[15]
PH[13]
PH[14]
PI[6]
PI[7]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV_A
VSS_HV
RESET
VSS_LV
VDD_LV
VRC_CTRL
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
NOTE
1) VDD_HV_B supplies the IO voltage domain for the
pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7],
PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2],
PH[1], PH[0], PG[12], PG[13], and PA[3].
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV_A
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PJ[3]
PJ[2]
PJ[1]
PJ[0]
PI[15]
PI[14]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
VDD_HV_A
VSS_HV
PD[8]
PB[4]
2
Package pinouts and signal descriptions
2)Availability of port pin alternate functions depends
on product selection.
DocID17478 Rev 9
15/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
PB[2]
PC[8]
PC[13]
PC[12]
PL[0]
PK[15]
PK[14]
PK[13]
PK[12]
PK[11]
PK[10]
PK[9]
PI[0]
PI[1]
PI[2]
PI[3]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV_A
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PI[4]
PI[5]
PH[12]
PH[11]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
Figure 3. 208-pin LQFP configuration
LQFP208
Top view
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PJ[12]
PJ[11]
PA[4]
PK[0]
PJ[15]
PJ[14]
PJ[13]
PA[13]
PJ[10]
PJ[9]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV_A
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PJ[3]
PJ[2]
PJ[1]
PJ[0]
PI[15]
PI[14]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
VDD_HV_A
VSS_HV
PD[8]
PB[4]
PB[3]
PC[9]
PC[14]
PC[15]
PJ[4]
VDD_HV_A
VSS_HV
PH[15]
PH[13]
PH[14]
P[I6]
P[I7]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV_A
VSS_HV
RESET
VSS_LV
VDD_LV
VRC_CTRL
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PK[1]
PK[2]
PK[3]
PK[4]
PK[5]
PK[6]
PK[7]
PK[8]
PF[9]
PF[8]
PF[12]
PC[6]
NOTE
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9],
PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12],
PG[13], and PA[3].
2) Availability of port pin alternate functions depends on product selection.
16/123
DocID17478 Rev 9
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV_B
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
PI[10]
VDD_LV
VSS_LV
PI[9]
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_A
VSS_HV
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PJ[5]
PJ[6]
PJ[7]
PJ[8]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
SPC564Bxx-SPC56ECxx
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Package pinouts and signal descriptions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PC[15]
PB[2]
PC[13]
PI[1]
PE[7]
PH[8]
PE[2]
PE[4]
PC[4]
PE[3]
PH[9]
PI[4]
PH[11]
PE[14]
PA[10]
PG[11]
PH[13]
PC[14]
PC[8]
PC[12]
PI[3]
PE[6]
PH[5]
PE[5]
PC[5]
PC[0]
PC[2]
PH[12]
PG[10]
PA[11]
PA[9]
PA[8]
PH[14]
VDD_HV
_A
PC[9]
PL[0]
PI[0]
PH[7]
PH[6]
VSS_LV
VDD_HV
_A
PA[5]
PC[3]
PE[15]
PG[14]
PE[12]
PA[7]
PE[13]
PG[5]
PI[6]
PJ[4]
PB[3]
PK[15]
PI[2]
PH[4]
VDD_LV
PC[1]
PH[10]
PA[6]
PI[5]
PG[15]
PF[14]
PF[15]
PH[2]
PG[3]
PI[7]
PH[15]
PG[2]
VDD_LV
VSS_LV
PK[10]
PK[9]
PM[1]
PM[0]
PL[15]
PL[14]
PG[0]
PG[1]
PH[0]
VDD_HV
_A
PA[2]
PG[4]
PA[1]
PE[1]
PL[2]
PM[6]
PL[1]
PK[11]
PM[5]
PL[13]
PL[12]
PM[2]
PH[1]
PH[3]
PG[12]
PG[13]
PE[8]
PE[0]
PE[10]
PA[0]
PL[3]
VSS_HV
VSS_HV
VSS_HV
VSS_HV
VSS_HV
VSS_HV
PK[12]
VDD_HV
_B
PI[13]
PI[12]
PA[3]
PE[9]
VDD_HV
_A
PE[11]
PK[1]
PL[4]
VSS_LV
VSS_LV
VSS_HV
VSS_HV
VSS_HV
VSS_HV
PK[13]
VDD_HV
_A
VDD_LV
VSS_LV
PI[11]
VSS_HV
VRC_CT
RL
VDD_LV
PG[9]
PL[5]
VSS_LV
VSS_LV
VSS_LV
VSS_HV
VSS_HV
VSS_HV
PK[14]
PD[15]
PI[8]
PI[9]
PI[10]
RESET
VSS_LV
PG[8]
PC[11]
PL[6]
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VDD_LV
VDD_LV
PM[3]
PD[14]
PD[13]
PB[14]
PB[15]
PC[10]
PG[7]
PB[0]
PK[2]
PL[7]
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VDD_LV
VDD_LV
PM[4]
PD[12]
PB[12]
PB[13]
VDD_HV
_ADC1
L
PG[6]
PB[1]
PK[4]
PF[9]
PK[5]
PK[6]
PK[7]
PK[8]
PL[8]
PL[9]
PL[10]
PL[11]
PB[11]
PD[10]
PD[11]
VSS_HV
_ADC1
M
PK[3]
PF[8]
PC[6]
PC[7]
PJ[13]
VDD_HV
_A
PB[10]
PF[6]
VDD_HV
_A
PJ[1]
PD[2]
PJ[5]
PB[5]
PB[6]
PJ[6]
PD[9]
PF[12]
PF[10]
PF[13]
PA[14]
PJ[9]
PA[12]
PF[0]
PF[5]
PF[7]
PJ[3]
PI[15]
PD[4]
PD[7]
PD[8]
PJ[8]
PJ[7]
PF[11]
PA[15]
PJ[11]
PJ[15]
PA[13]
PF[2]
PF[3]
PF[4]
VDD_LV
PJ[2]
PJ[0]
PD[0]
PD[3]
PD[6]
VDD_HV
_ADC0
PB[7]
PJ[12]
PA[4]
PK[0]
PJ[14]
PJ[10]
PF[1]
XTAL
EXTAL
VSS_LV
PB[9]
PB[8]
PI[14]
PD[1]
PD[5]
VSS_HV
_ADC0
PB[4]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
B
C
D
E
F
G
H
J
K
N
P
R
T
Notes:
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1],
PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], PA[3], PM[3], and PM[4].
2)Availability of port pin alternate functions depends on product selection.
Figure 4. 256-pin BGA configuration
DocID17478 Rev 9
17/123
122
Package pinouts and signal descriptions
2.1
SPC564Bxx-SPC56ECxx
Pad types
In the device the following types of pads are available for system pins and functional port
pins:
S = Slow(a)
M = Medium(a),(b)
F = Fast(a),(b)
I = Input only with analog feature(a)
A = Analog
2.2
System pins
The system pins are listed in Table 4.
Table 4. System pin descriptions
Pad
type
RESET
config.
LQFP 208
LBGA 256
Port pin
LQFP 176
Pin number
I/O
M
Input, weak
pull-up only
after
PHASE2
29
29
K1
I/O
direction
Function
RESET
Bidirectional reset with Schmitt-Trigger
characteristics and noise filter.
EXTAL
Analog input of the oscillator amplifier
circuit. Needs to be grounded if oscillator
bypass mode is used.
I
A(1)
—
58
74
T8
XTAL
Analog output of the oscillator amplifier
circuit, when the oscillator is not in bypass
mode.
Analog input for the clock generator when
the oscillator is in bypass mode.
I/O
A(1)
—
56
72
T7
1. For analog pads, it is not recommended to enable IBE if APC is enabled to avoid extra current in middle range voltage.
a. See the I/O pad electrical characteristics in the device datasheet for details.
b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium.
For example, Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by
default. Only exception is PC[1] which is in medium configuration by default (refer to PCR.SRC in the reference
manual, Pad Configuration Registers (PCR0—PCR198)).
18/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
2.3
Package pinouts and signal descriptions
Functional ports
The functional port pins are listed in Table 5.
Table 5. Functional port pin descriptions
LQFP 208
LBGA256
PA[4]
LQFP 176
PA[3]
RESET
config.
PA[2]
Pad type
PA[1]
I/O
direction(2)
PA[0]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[0]
AF0
AF1
AF2
AF3
—
—
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKPU[19]
CAN1RX
SIUL
eMIOS_0
MC_CGM
eMIOS_0
WKPU
FlexCAN_1
I/O
I/O
O
I/O
I
I
M/S
Tristate
24
24
G4
PCR[1]
AF0
AF1
AF2
AF3
—
—
—
GPIO[1]
E0UC[1]
—
—
WKPU[2]
CAN3RX
NMI[0](3)
SIUL
eMIOS_0
—
—
WKPU
FlexCAN_3
WKPU
I/O
I/O
—
—
I
I
I
S
Tristate
19
19
F3
PCR[2]
AF0
AF1
AF2
AF3
—
—
GPIO[2]
E0UC[2]
—
MA[2]
WKPU[3]
NMI[1](3)
SIUL
eMIOS_0
—
ADC_0
WKPU
WKPU
I/O
I/O
—
O
I
I
S
Tristate
17
17
F1
PCR[3]
AF0
AF1
AF2
AF3
—
—
—
GPIO[3]
E0UC[3]
LIN5TX
CS4_1
RX_ER_CLK
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
LINFlexD_5
DSPI_1
FEC
SIUL
ADC_1
I/O
I/O
O
O
I
I
I
M/S
Tristate
114
138
G16
PCR[4]
AF0
AF1
AF2
AF3
—
—
GPIO[4]
E0UC[4]
—
CS0_1
LIN5RX
WKPU[9]
SIUL
eMIOS_0
—
DSPI_1
LINFlexD_5
WKPU
I/O
I/O
—
I/O
I
I
S
Tristate
51
61
T2
PCR
DocID17478 Rev 9
19/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
Alternate
function(1)
Function
Peripheral
I/O
direction(2)
Pad type
RESET
config.
LQFP 176
LQFP 208
LBGA256
Pin number
AF0
AF1
AF2
GPIO[5]
E0UC[5]
LIN4TX
SIUL
eMIOS_0
LINFlexD_4
I/O
I/O
O
M/S
Tristate
146
170
C10
PCR[6]
AF0
AF1
AF2
AF3
—
—
GPIO[6]
E0UC[6]
—
CS1_1
LIN4RX
EIRQ[1]
SIUL
eMIOS_0
—
DSPI_1
LINFlexD_4
SIUL
I/O
I/O
—
O
I
I
S
Tristate
147
171
D11
PCR[7]
AF0
AF1
AF2
AF3
—
—
—
GPIO[7]
E0UC[7]
LIN3TX
—
RXD[2]
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
LINFlexD_3
—
FEC
SIUL
ADC_1
I/O
I/O
O
—
I
I
I
M/S
Tristate
128
152
C15
PCR[8]
AF0
AF1
AF2
AF3
—
—
—
—
GPIO[8]
E0UC[8]
E0UC[14]
—
RXD[1]
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS_0
eMIOS_0
—
FEC
SIUL
MC_RGM
LINFlexD_3
I/O
I/O
I/O
—
I
I
I
I
M/S
Input,
weak
pull-up
129
153
B16
PCR[9]
AF0
AF1
AF2
AF3
—
—
GPIO[9]
E0UC[9]
—
CS2_1
RXD[0]
FAB
SIUL
eMIOS_0
—
DSPI1
FEC
MC_RGM
I/O
I/O
—
O
I
I
M/S
Pulldown
130
154
B15
Port
pin
PCR
PA[5]
PCR[5]
PA[6]
PA[7]
PA[8]
PA[9]
20/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LBGA256
PA[15]
LQFP 208
PA[14]
LQFP 176
PA[13]
RESET
config.
PA[12]
Pad type
PA[11]
I/O
direction(2)
PA[10]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[10]
AF0
AF1
AF2
AF3
—
—
—
GPIO[10]
E0UC[10]
SDA
LIN2TX
COL
ADC1_S[2]
SIN_1
SIUL
eMIOS_0
I2C
LINFlexD_2
FEC
ADC_1
DSPI_1
I/O
I/O
I/O
O
I
I
I
M/S
Tristate
131
155
A15
PCR[11]
AF0
AF1
AF2
AF3
—
—
—
—
GPIO[11]
E0UC[11]
SCL
—
RX_ER
EIRQ[16]
LIN2RX
ADC1_S[3]
SIUL
eMIOS_0
I2C
—
FEC
SIUL
LINFlexD_2
ADC_1
I/O
I/O
I/O
—
I
I
I
I
M/S
Tristate
132
156
B14
PCR[12]
AF0
AF1
AF2
AF3
—
—
GPIO[12]
—
E0UC[28]
CS3_1
EIRQ[17]
SIN_0
SIUL
—
eMIOS_0
DSPI1
SIUL
DSPI_0
I/O
—
I/O
O
I
I
S
Tristate
53
69
P6
PCR[13]
AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
E0UC[29]
—
SIUL
DSPI_0
eMIOS_0
—
I/O
O
I/O
—
M/S
Tristate
52
66
R5
PCR[14]
AF0
AF1
AF2
AF3
—
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
I/O
I/O
I/O
I/O
I
M/S
Tristate
50
58
P4
PCR[15]
AF0
AF1
AF2
AF3
—
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKPU[10]
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKPU
I/O
I/O
I/O
I/O
I
M/S
Tristate
48
56
R2
PCR
DocID17478 Rev 9
21/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
22/123
LBGA256
PB[5]
LQFP 208
PB[4]
LQFP 176
PB[3]
RESET
config.
PB[2]
Pad type
PB[1]
I/O
direction(2)
PB[0]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
E0UC[30]
LIN0TX
SIUL
FlexCAN_0
eMIOS_0
LINFlexD_0
I/O
O
I/O
I
M/S
Tristate
39
39
L3
PCR[17]
AF0
AF1
AF2
—
—
—
GPIO[17]
—
E0UC[31]
LIN0RX
WKPU[4]
CAN0RX
SIUL
—
eMIOS_0
LINFlexD_0
WKPU
FlexCAN_0
I/O
—
I/O
I
I
I
S
Tristate
40
40
M2
PCR[18]
AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
E0UC[30]
SIUL
LINFlexD_0
I2C
eMIOS_0
I/O
O
I/O
I/O
M/S
Tristate
176
208
A2
PCR[19]
AF0
AF1
AF2
AF3
—
—
GPIO[19]
E0UC[31]
SCL
—
WKPU[11]
LIN0RX
SIUL
eMIOS_0
I2C
—
WKPU
LINFlexD_0
I/O
I/O
I/O
—
I
I
S
Tristate
1
1
D4
PCR[20]
AF0
AF1
AF2
AF3
—
—
GPI[20]
—
—
—
ADC0_P[0]
ADC1_P[0]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
88
104
T16
PCR[21]
AF0
AF1
AF2
AF3
—
—
GPI[21]
—
—
—
ADC0_P[1]
ADC1_P[1]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
91
107
N13
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LQFP 208
LBGA256
PB[10]
LQFP 176
PB[9](5)
RESET
config.
PB[8]
Pad type
PB[7]
I/O
direction(2)
PB[6]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[22]
AF0
AF1
AF2
AF3
—
—
GPI[22]
—
—
—
ADC0_P[2]
ADC1_P[2]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
92
108
N14
PCR[23]
AF0
AF1
AF2
AF3
—
—
GPI[23]
—
—
—
ADC0_P[3]
ADC1_P[3]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
93
109
R16
PCR[24]
AF0
AF1
AF2
AF3
—
—
—
—
GPI[24]
—
—
—
ADC0_S[0]
ADC1_S[4]
WKPU[25]
OSC32k_XTAL(4)
SIUL
—
—
—
ADC_0
ADC_1
WKPU
SXOSC
I
—
—
—
I
I
I
I
I
—
61
77
T11
PCR[25]
AF0
AF1
AF2
AF3
—
—
—
—
I
—
—
—
I
I
I
I
I
—
60
76
T10
4)
SIUL
—
—
—
ADC_0
ADC_1
WKPU
SXOSC
GPIO[26]
SOUT_1
CAN3TX
—
ADC0_S[2]
ADC1_S[6]
WKPU[8]
SIUL
DSPI_1
FlexCAN_3
—
ADC_0
ADC_1
WKPU
I/O
O
—
—
I
I
I
S
Tristate
62
78
N7
PCR
PCR[26]
AF0
AF1
AF2
AF3
—
—
—
GPI[25]
—
—
—
ADC0_S[1]
ADC1_S[5]
WKPU[26]
OSC32k_EXTAL(
DocID17478 Rev 9
23/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
PC[1](6)
24/123
LBGA256
PC[0](6)
LQFP 208
PB[15]
LQFP 176
PB[14]
RESET
config.
PB[13]
Pad type
PB[12]
I/O
direction(2)
PB[11]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[27]
AF0
AF1
AF2
AF3
—
GPIO[27]
E0UC[3]
—
CS0_0
ADC0_S[3]
SIUL
eMIOS_0
—
DSPI_0
ADC_0
I/O
I/O
—
I/O
I
S
Tristate
97
117
M13
PCR[28]
AF0
AF1
AF2
AF3
—
GPIO[28]
E0UC[4]
—
CS1_0
ADC0_X[0]
SIUL
eMIOS_0
—
DSPI_0
ADC_0
I/O
I/O
—
O
I
S
Tristate
101
123
L14
PCR[29]
AF0
AF1
AF2
AF3
—
GPIO[29]
E0UC[5]
—
CS2_0
ADC0_X[1]
SIUL
eMIOS_0
—
DSPI_0
ADC_0
I/O
I/O
—
O
I
S
Tristate
103
125
L15
PCR[30]
AF0
AF1
AF2
AF3
—
GPIO[30]
E0UC[6]
—
CS3_0
ADC0_X[2]
SIUL
eMIOS_0
—
DSPI_0
ADC_0
I/O
I/O
—
O
I
S
Tristate
105
127
K15
PCR[31]
AF0
AF1
AF2
AF3
—
GPIO[31]
E0UC[7]
—
CS4_0
ADC0_X[3]
SIUL
eMIOS_0
—
DSPI_0
ADC_0
I/O
I/O
—
O
I
S
Tristate
107
129
K16
PCR[32]
AF0
AF1
AF2
AF3
GPIO[32]
—
TDI
—
SIUL
—
JTAGC
—
I/O
—
I
—
M/S
Input,
weak
pull-up
154
178
B10
PCR[33]
AF0
AF1
AF2
AF3
GPIO[33]
—
TDO
—
SIUL
—
JTAGC
—
I/O
—
O
—
F/M
Tristate
149
173
D9
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LBGA256
PC[7]
LQFP 208
PC[6]
LQFP 176
PC[5]
RESET
config.
PC[4]
Pad type
PC[3]
M/S
Tristate
145
169
B11
S
Tristate
144
168
C11
M/S
Tristate
159
183
A9
I/O
O
O
—
O
I
M/S
Tristate
158
182
B9
SIUL
LINFlexD_1
eMIOS_1
—
I/O
O
I/O
—
S
Tristate
44
52
N3
SIUL
—
eMIOS_1
—
LINFlexD_1
WKPU
I/O
—
I/O
—
I
I
S
Tristate
45
53
N4
Function
Peripheral
PC[2]
I/O
I/O
O
—
I
Alternate
function(1)
Port
pin
I/O
direction(2)
Pin number
PCR[34]
AF0
AF1
AF2
AF3
—
GPIO[34]
SCK_1
CAN4TX
—
EIRQ[5]
SIUL
DSPI_1
FlexCAN_4
—
SIUL
GPIO[35]
CS0_1
MA[0]
—
CAN1RX
CAN4RX
EIRQ[6]
SIUL
DSPI_1
ADC_0
—
FlexCAN_1
FlexCAN_4
SIUL
I/O
I/O
O
PCR[35]
AF0
AF1
AF2
AF3
—
—
—
GPIO[36]
E1UC[31]
—
SIUL
eMIOS_1
—
I/O
I/O
—
PCR[36]
AF0
AF1
AF2
AF3
ALT4
—
—
—
FR_B_TX_EN
SIN_1
CAN3RX
EIRQ[18]
Flexray
DSPI_1
FlexCAN_3
SIUL
O
I
I
I
PCR[37]
AF0
AF1
AF2
AF3
ALT4
—
GPIO[37]
SOUT_1
CAN3TX
—
FR_A_TX
EIRQ[7]
SIUL
DSPI_1
FlexCAN_3
—
Flexray
SIUL
PCR[38]
AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
E1UC[28]
—
PCR[39]
AF0
AF1
AF2
AF3
—
—
GPIO[39]
—
E1UC[29]
—
LIN1RX
WKPU[12]
PCR
DocID17478 Rev 9
I
I
I
25/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
26/123
LBGA256
PC[13]
LQFP 208
PC[12]
LQFP 176
PC[11]
RESET
config.
PC[10]
Pad type
PC[9]
I/O
direction(2)
PC[8]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[40]
AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
E0UC[3]
—
SIUL
LINFlexD_2
eMIOS_0
—
I/O
O
I/O
—
S
Tristate
175
207
B3
PCR[41]
AF0
AF1
AF2
AF3
—
—
GPIO[41]
—
E0UC[7]
—
LIN2RX
WKPU[13]
SIUL
—
eMIOS_0
—
LINFlexD_2
WKPU
I/O
—
I/O
—
I
I
S
Tristate
2
2
C3
PCR[42]
AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC_0
I/O
O
O
O
M/S
Tristate
36
36
L1
PCR[43]
AF0
AF1
AF2
AF3
—
—
—
GPIO[43]
—
—
MA[2]
CAN1RX
CAN4RX
WKPU[5]
SIUL
—
—
ADC_0
FlexCAN_1
FlexCAN_4
WKPU
I/O
—
—
O
I
I
I
S
Tristate
35
35
K4
PCR[44]
AF0
AF1
AF2
AF3
ALT4
—
—
GPIO[44]
E0UC[12]
—
—
FR_DBG[0]
SIN_2
EIRQ[19]
SIUL
eMIOS_0
—
—
Flexray
DSPI_2
SIUL
I/O
I/O
—
—
O
I
I
M/S
Tristate
173
205
B4
PCR[45]
AF0
AF1
AF2
AF3
ALT4
GPIO[45]
E0UC[13]
SOUT_2
—
FR_DBG[1]
SIUL
eMIOS_0
DSPI_2
—
Flexray
I/O
I/O
O
—
O
M/S
Tristate
174
206
A3
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LQFP 208
LBGA256
PD[2]
LQFP 176
PD[1]
RESET
config.
PD[0]
Pad type
PC[15]
I/O
direction(2)
PC[14]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[46]
AF0
AF1
AF2
AF3
ALT4
—
GPIO[46]
E0UC[14]
SCK_2
—
FR_DBG[2]
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
—
Flexray
SIUL
I/O
I/O
I/O
—
O
I
M/S
Tristate
3
3
B2
PCR[47]
AF0
AF1
AF2
AF3
ALT4
GPIO[47]
E0UC[15]
CS0_2
—
FR_DBG[3]
EIRQ[20]
SIUL
eMIOS_0
DSPI_2
—
Flexray
SIUL
I/O
I/O
I/O
—
O
I
M/S
Tristate
4
4
A1
PCR[48]
AF0
AF1
AF2
AF3
—
—
—
GPI[48]
—
—
—
ADC0_P[4]
ADC1_P[4]
WKPU[27]
SIUL
—
—
—
ADC_0
ADC_1
WKPU
I
—
—
—
I
I
I
I
Tristate
77
93
R12
PCR[49]
AF0
AF1
AF2
AF3
—
—
—
GPI[49]
—
—
—
ADC0_P[5]
ADC1_P[5]
WKPU[28]
SIUL
—
—
—
ADC_0
ADC_1
WKPU
I
—
—
—
I
I
I
I
Tristate
78
94
T13
PCR[50]
AF0
AF1
AF2
AF3
—
—
GPI[50]
—
—
—
ADC0_P[6]
ADC1_P[6]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
79
95
N11
PCR
DocID17478 Rev 9
27/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
28/123
LBGA256
PD[8]
LQFP 208
PD[7]
LQFP 176
PD[6]
RESET
config.
PD[5]
Pad type
PD[4]
I/O
direction(2)
PD[3]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[51]
AF0
AF1
AF2
AF3
—
—
GPI[51]
—
—
—
ADC0_P[7]
ADC1_P[7]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
80
96
R13
PCR[52]
AF0
AF1
AF2
AF3
—
—
GPI[52]
—
—
—
ADC0_P[8]
ADC1_P[8]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
81
97
P12
PCR[53]
AF0
AF1
AF2
AF3
—
—
GPI[53]
—
—
—
ADC0_P[9]
ADC1_P[9]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
82
98
T14
PCR[54]
AF0
AF1
AF2
AF3
—
—
GPI[54]
—
—
—
ADC0_P[10]
ADC1_P[10]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
83
99
R14
PCR[55]
AF0
AF1
AF2
AF3
—
—
GPI[55]
—
—
—
ADC0_P[11]
ADC1_P[11]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
84
100
P13
PCR[56]
AF0
AF1
AF2
AF3
—
—
GPI[56]
—
—
—
ADC0_P[12]
ADC1_P[12]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
87
103
P14
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LBGA256
PD[14]
LQFP 208
PD[13]
LQFP 176
PD[12]
RESET
config.
PD[11]
Pad type
PD[10]
I/O
direction(2)
PD[9]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[57]
AF0
AF1
AF2
AF3
—
—
GPI[57]
—
—
—
ADC0_P[13]
ADC1_P[13]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
94
114
N16
PCR[58]
AF0
AF1
AF2
AF3
—
—
GPI[58]
—
—
—
ADC0_P[14]
ADC1_P[14]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
95
115
M14
PCR[59]
AF0
AF1
AF2
AF3
—
—
GPI[59]
—
—
—
ADC0_P[15]
ADC1_P[15]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
I
I
I
Tristate
96
116
M15
PCR[60]
AF0
AF1
AF2
AF3
—
GPIO[60]
CS5_0
E0UC[24]
—
ADC0_S[4]
SIUL
DSPI_0
eMIOS_0
—
ADC_0
I/O
O
I/O
—
I
S
Tristate
100
120
L13
PCR[61]
AF0
AF1
AF2
AF3
—
GPIO[61]
CS0_1
E0UC[25]
—
ADC0_S[5]
SIUL
DSPI_1
eMIOS_0
—
ADC_0
I/O
I/O
I/O
—
I
S
Tristate
102
124
K14
PCR[62]
AF0
AF1
AF2
AF3
ALT4
—
GPIO[62]
CS1_1
E0UC[26]
—
FR_DBG[0]
ADC0_S[6]
SIUL
DSPI_1
eMIOS_0
—
Flexray
ADC_0
I/O
O
I/O
—
O
I
S
Tristate
104
126
K13
PCR
DocID17478 Rev 9
29/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
30/123
LBGA256
PE[4]
LQFP 208
PE[3]
LQFP 176
PE[2]
RESET
config.
PE[1]
Pad type
PE[0]
I/O
direction(2)
PD[15]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[63]
AF0
AF1
AF2
AF3
ALT4
—
GPIO[63]
CS2_1
E0UC[27]
—
FR_DBG[1]
ADC0_S[7]
SIUL
DSPI_1
eMIOS_0
—
Flexray
ADC_0
I/O
O
I/O
—
O
I
S
Tristate
106
128
J13
PCR[64]
AF0
AF1
AF2
AF3
—
—
GPIO[64]
E0UC[16]
—
—
CAN5RX
WKPU[6]
SIUL
eMIOS_0
—
—
FlexCAN_5
WKPU
I/O
I/O
—
—
I
I
S
Tristate
18
18
G2
PCR[65]
AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX
—
SIUL
eMIOS_0
FlexCAN_5
—
I/O
I/O
O
—
M/S
Tristate
20
20
F4
PCR[66]
AF0
AF1
AF2
AF3
ALT4
—
—
GPIO[66]
E0UC[18]
—
—
FR_A_TX_EN
SIN_1
EIRQ[21]
SIUL
eMIOS_0
—
—
Flexray
DSPI_1
SIUL
I/O
I/O
—
—
O
I
I
M/S
Tristate
156
180
A7
PCR[67]
AF0
AF1
AF2
AF3
—
—
GPIO[67]
E0UC[19]
SOUT_1
—
FR_A_RX
WKPU[29]
SIUL
eMIOS_0
DSPI_1
—
Flexray
WKPU
I/O
I/O
O
—
I
I
M/S
Tristate
157
181
A10
PCR[68]
AF0
AF1
AF2
AF3
ALT4
—
GPIO[68]
E0UC[20]
SCK_1
—
FR_B_TX
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
—
Flexray
SIUL
I/O
I/O
I/O
—
O
I
M/S
Tristate
160
184
A8
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LBGA256
PE[10]
LQFP 208
PE[9]
LQFP 176
PE[8]
RESET
config.
PE[7]
Pad type
PE[6]
I/O
direction(2)
PE[5]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[69]
AF0
AF1
AF2
AF3
—
—
GPIO[69]
E0UC[21]
CS0_1
MA[2]
FR_B_RX
WKPU[30]
SIUL
eMIOS_0
DSPI_1
ADC_0
Flexray
WKPU
I/O
I/O
I/O
O
I
I
M/S
Tristate
161
185
B8
PCR[70]
AF0
AF1
AF2
AF3
—
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M/S
Tristate
167
191
B6
PCR[71]
AF0
AF1
AF2
AF3
—
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M/S
Tristate
168
192
A5
PCR[72]
AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX
E0UC[22]
CAN3TX
SIUL
FlexCAN_2
eMIOS_0
FlexCAN_3
I/O
O
I/O
O
M/S
Tristate
21
21
G1
PCR[73]
AF0
AF1
AF2
AF3
—
—
—
GPIO[73]
—
E0UC[23]
—
WKPU[7]
CAN2RX
CAN3RX
SIUL
—
eMIOS_0
—
WKPU
FlexCAN_2
FlexCAN_3
I/O
—
I/O
—
I
I
I
S
Tristate
22
22
H1
PCR[74]
AF0
AF1
AF2
AF3
—
GPIO[74]
LIN3TX
CS3_1
E1UC[30]
EIRQ[10]
SIUL
LINFlexD_3
DSPI_1
eMIOS_1
SIUL
I/O
O
O
I/O
I
S
Tristate
23
23
G3
PCR
DocID17478 Rev 9
31/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
32/123
LBGA256
PF[0]
LQFP 208
PE[15]
LQFP 176
PE[14]
RESET
config.
PE[13]
Pad type
PE[12]
I/O
direction(2)
PE[11]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[75]
AF0
AF1
AF2
AF3
—
—
GPIO[75]
E0UC[24]
CS4_1
—
LIN3RX
WKPU[14]
SIUL
eMIOS_0
DSPI_1
—
LINFlexD_3
WKPU
I/O
I/O
O
—
I
I
S
Tristate
25
25
H3
PCR[76]
AF0
AF1
AF2
AF3
—
—
—
—
GPIO[76]
—
E1UC[19]
—
CRS
SIN_2
EIRQ[11]
ADC1_S[7]
SIUL
—
eMIOS_1
—
FEC
DSPI_2
SIUL
ADC_1
I/O
—
I/O
—
I
I
I
I
M/S
Tristate
133
157
C14
PCR[77]
AF0
AF1
AF2
AF3
—
GPIO[77]
SOUT_2
E1UC[20]
—
RXD[3]
SIUL
DSPI_2
eMIOS_1
—
FEC
I/O
O
I/O
—
I
M/S
Tristate
127
151
C16
PCR[78]
AF0
AF1
AF2
AF3
—
GPIO[78]
SCK_2
E1UC[21]
—
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
—
SIUL
I/O
I/O
I/O
—
I
M/S
Tristate
136
160
A14
PCR[79]
AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
SCK_6
SIUL
DSPI_2
eMIOS_1
DSPI_6
I/O
I/O
I/O
I/O
M/S
Tristate
137
161
C12
PCR[80]
AF0
AF1
AF2
AF3
—
GPIO[80]
E0UC[10]
CS3_1
—
ADC0_S[8]
SIUL
eMIOS_0
DSPI_1
—
ADC_0
I/O
I/O
O
—
I
S
Tristate
63
79
P7
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
PF[7]
LBGA256
PF[6]
LQFP 208
PF[5]
LQFP 176
PF[4]
RESET
config.
PF[3]
Pad type
PF[2]
I/O
direction(2)
PF[1]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[81]
AF0
AF1
AF2
AF3
—
GPIO[81]
E0UC[11]
CS4_1
—
ADC0_S[9]
SIUL
eMIOS_0
DSPI_1
—
ADC_0
I/O
I/O
O
—
I
S
Tristate
64
80
T6
PCR[82]
AF0
AF1
AF2
AF3
—
GPIO[82]
E0UC[12]
CS0_2
—
ADC0_S[10]
SIUL
eMIOS_0
DSPI_2
—
ADC_0
I/O
I/O
I/O
—
I
S
Tristate
65
81
R6
PCR[83]
AF0
AF1
AF2
AF3
—
GPIO[83]
E0UC[13]
CS1_2
—
ADC0_S[11]
SIUL
eMIOS_0
DSPI_2
—
ADC_0
I/O
I/O
O
—
I
S
Tristate
66
82
R7
PCR[84]
AF0
AF1
AF2
AF3
—
GPIO[84]
E0UC[14]
CS2_2
—
ADC0_S[12]
SIUL
eMIOS_0
DSPI_2
—
ADC_0
I/O
I/O
O
—
I
S
Tristate
67
83
R8
PCR[85]
AF0
AF1
AF2
AF3
—
GPIO[85]
E0UC[22]
CS3_2
—
ADC0_S[13]
SIUL
eMIOS_0
DSPI_2
—
ADC_0
I/O
I/O
O
—
I
S
Tristate
68
84
P8
PCR[86]
AF0
AF1
AF2
AF3
—
GPIO[86]
E0UC[23]
CS1_1
—
ADC0_S[14]
SIUL
eMIOS_0
DSPI_1
—
ADC_0
I/O
I/O
O
—
I
S
Tristate
69
85
N8
PCR[87]
AF0
AF1
AF2
AF3
—
GPIO[87]
—
CS2_1
—
ADC0_S[15]
SIUL
—
DSPI_1
—
ADC_0
I/O
—
O
—
I
S
Tristate
70
86
P9
PCR
DocID17478 Rev 9
33/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
34/123
LBGA256
PF[13]
LQFP 208
PF[12]
LQFP 176
PF[11]
RESET
config.
PF[10]
Pad type
PF[9]
I/O
direction(2)
PF[8]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[88]
AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX
CS4_0
CAN2TX
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
M/S
Tristate
42
50
N2
PCR[89]
AF0
AF1
AF2
AF3
—
—
—
GPIO[89]
E1UC[1]
CS5_0
—
CAN2RX
CAN3RX
WKPU[22]
SIUL
eMIOS_1
DSPI_0
—
FlexCAN_2
FlexCAN_3
WKPU
I/O
I/O
O
—
I
I
I
S
Tristate
41
49
M4
PCR[90]
AF0
AF1
AF2
AF3
GPIO[90]
CS1_0
LIN4TX
E1UC[2]
SIUL
DSPI_0
LINFlexD_4
eMIOS_1
I/O
O
O
I/O
M/S
Tristate
46
54
P2
PCR[91]
AF0
AF1
AF2
AF3
—
—
GPIO[91]
CS2_0
E1UC[3]
—
LIN4RX
WKPU[15]
SIUL
DSPI_0
eMIOS_1
—
LINFlexD_4
WKPU
I/O
O
I/O
—
I
I
S
Tristate
47
55
R1
PCR[92]
AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
LIN5TX
—
SIUL
eMIOS_1
LINFlexD_5
—
I/O
I/O
O
—
M/S
Tristate
43
51
P1
PCR[93]
AF0
AF1
AF2
AF3
—
—
GPIO[93]
E1UC[26]
—
—
LIN5RX
WKPU[16]
SIUL
eMIOS_1
—
—
LINFlexD_5
WKPU
I/O
I/O
—
—
I
I
S
Tristate
49
57
P3
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LBGA256
PG[3]
LQFP 208
PG[2]
LQFP 176
PG[1]
RESET
config.
PG[0]
Pad type
PF[15]
I/O
direction(2)
PF[14]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[94]
AF0
AF1
AF2
AF3
ALT4
GPIO[94]
CAN4TX
E1UC[27]
CAN1TX
MDIO
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_1
FEC
I/O
O
I/O
O
I/O
M/S
Tristate
126
150
D14
PCR[95]
AF0
AF1
AF2
AF3
—
—
—
—
GPIO[95]
E1UC[4]
—
—
RX_DV
CAN1RX
CAN4RX
EIRQ[13]
SIUL
eMIOS_1
—
—
FEC
FlexCAN_1
FlexCAN_4
SIUL
I/O
I/O
—
—
I
I
I
I
M/S
Tristate
125
149
D15
PCR[96]
AF0
AF1
AF2
AF3
ALT4
GPIO[96]
CAN5TX
E1UC[23]
—
MDC
SIUL
FlexCAN_5
eMIOS_1
—
FEC
I/O
O
I/O
—
O
F
Tristate
122
146
E13
PCR[97]
AF0
AF1
AF2
AF3
—
—
—
GPIO[97]
—
E1UC[24]
—
TX_CLK
CAN5RX
EIRQ[14]
SIUL
—
eMIOS_1
—
FEC
FlexCAN_5
SIUL
I/O
—
I/O
—
I
I
I
M
Tristate
121
145
E14
PCR[98]
AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
SOUT_3
—
SIUL
eMIOS_1
DSPI_3
—
I/O
I/O
O
—
M/S
Tristate
16
16
E4
PCR[99]
AF0
AF1
AF2
AF3
—
GPIO[99]
E1UC[12]
CS0_3
—
WKPU[17]
SIUL
eMIOS_1
DSPI_3
—
WKPU
I/O
I/O
I/O
—
I
S
Tristate
15
15
E1
PCR
DocID17478 Rev 9
35/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
36/123
LBGA256
PG[9]
LQFP 208
PG[8]
LQFP 176
PG[7]
RESET
config.
PG[6]
Pad type
PG[5]
I/O
direction(2)
PG[4]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[100]
AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
SCK_3
—
SIUL
eMIOS_1
DSPI_3
—
I/O
I/O
I/O
—
M/S
Tristate
14
14
F2
PCR[101]
AF0
AF1
AF2
AF3
—
—
GPIO[101]
E1UC[14]
—
—
WKPU[18]
SIN_3
SIUL
eMIOS_1
—
—
WKPU
DSPI_3
I/O
I/O
—
—
I
I
S
Tristate
13
13
D1
PCR[102]
AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
LIN6TX
—
SIUL
eMIOS_1
LINFlexD_6
—
I/O
I/O
O
—
M/S
Tristate
38
38
M1
PCR[103]
AF0
AF1
AF2
AF3
—
—
GPIO[103]
E1UC[16]
E1UC[30]
—
LIN6RX
WKPU[20]
SIUL
eMIOS_1
eMIOS_1
—
LINFlexD_6
WKPU
I/O
I/O
I/O
—
I
I
S
Tristate
37
37
L2
PCR[104]
AF0
AF1
AF2
AF3
—
GPIO[104]
E1UC[17]
LIN7TX
CS0_2
EIRQ[15]
SIUL
eMIOS_1
LINFlexD_7
DSPI_2
SIUL
I/O
I/O
O
I/O
I
S
Tristate
34
34
K3
PCR[105]
AF0
AF1
AF2
AF3
—
—
GPIO[105]
E1UC[18]
—
SCK_2
LIN7RX
WKPU[21]
SIUL
eMIOS_1
—
DSPI_2
LINFlexD_7
WKPU
I/O
I/O
—
I/O
I
I
S
Tristate
33
33
J4
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
PH[0]
LBGA256
PG[15]
LQFP 208
PG[14]
LQFP 176
PG[13]
RESET
config.
PG[12]
Pad type
PG[11]
I/O
direction(2)
PG[10]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[106]
AF0
AF1
AF2
AF3
—
GPIO[106]
E0UC[24]
E1UC[31]
—
SIN_4
SIUL
eMIOS_0
eMIOS_1
—
DSPI_4
I/O
I/O
I/O
—
I
S
Tristate
138
162
B13
PCR[107]
AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
CS0_4
CS0_6
SIUL
eMIOS_0
DSPI_4
DSPI_6
I/O
I/O
I/O
I/O
M/S
Tristate
139
163
A16
PCR[108]
AF0
AF1
AF2
AF3
ALT4
GPIO[108]
E0UC[26]
SOUT_4
—
TXD[2]
SIUL
eMIOS_0
DSPI_4
—
FEC
I/O
I/O
O
—
O
M/S
Tristate
116
140
F15
PCR[109]
AF0
AF1
AF2
AF3
ALT4
GPIO[109]
E0UC[27]
SCK_4
—
TXD[3]
SIUL
eMIOS_0
DSPI_4
—
FEC
I/O
I/O
I/O
—
O
M/S
Tristate
115
139
F16
PCR[110]
AF0
AF1
AF2
AF3
—
GPIO[110]
E1UC[0]
LIN8TX
—
SIN_6
SIUL
eMIOS_1
LINFlexD_8
—
DSPI_6
I/O
I/O
O
—
I
S
Tristate
134
158
C13
PCR[111]
AF0
AF1
AF2
AF3
—
GPIO[111]
E1UC[1]
SOUT_6
—
LIN8RX
SIUL
eMIOS_1
DSPI_6
—
LINFlexD_8
I/O
I/O
O
—
I
M/S
Tristate
135
159
D13
PCR[112]
AF0
AF1
AF2
AF3
ALT4
—
GPIO[112]
E1UC[2]
—
—
TXD[1]
SIN_1
SIUL
eMIOS_1
—
—
FEC
DSPI_1
I/O
I/O
—
—
O
I
M/S
Tristate
117
141
E15
PCR
DocID17478 Rev 9
37/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
PH[7]
38/123
LBGA256
PH[6]
LQFP 208
PH[5]
LQFP 176
PH[4]
RESET
config.
PH[3]
Pad type
PH[2]
I/O
direction(2)
PH[1]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[113]
AF0
AF1
AF2
AF3
ALT4
GPIO[113]
E1UC[3]
SOUT_1
—
TXD[0]
SIUL
eMIOS_1
DSPI_1
—
FEC
I/O
I/O
O
—
O
M/S
Tristate
118
142
F13
PCR[114]
AF0
AF1
AF2
AF3
ALT4
GPIO[114]
E1UC[4]
SCK_1
—
TX_EN
SIUL
eMIOS_1
DSPI_1
—
FEC
I/O
I/O
I/O
—
O
M/S
Tristate
119
143
D16
PCR[115]
AF0
AF1
AF2
AF3
ALT4
GPIO[115]
E1UC[5]
CS0_1
—
TX_ER
SIUL
eMIOS_1
DSPI_1
—
FEC
I/O
I/O
I/O
—
O
M/S
Tristate
120
144
F14
PCR[116]
AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
SOUT_7
—
SIUL
eMIOS_1
DSPI_7
—
I/O
I/O
O
—
M/S
Tristate
162
186
D7
PCR[117]
AF0
AF1
AF2
AF3
—
GPIO[117]
E1UC[7]
—
—
SIN_7
SIUL
eMIOS_1
—
—
DSPI_7
I/O
I/O
—
—
I
S
Tristate
163
187
B7
PCR[118]
AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
SCK_7
MA[2]
SIUL
eMIOS_1
DSPI_7
ADC_0
I/O
I/O
I/O
O
M/S
Tristate
164
188
C7
PCR[119]
AF0
AF1
AF2
AF3
ALT4
GPIO[119]
E1UC[9]
CS3_2
MA[1]
CS0_7
SIUL
eMIOS_1
DSPI_2
ADC_0
DSPI_7
I/O
I/O
O
O
I/O
M/S
Tristate
165
189
C6
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
Alternate
function(1)
Function
Peripheral
I/O
direction(2)
Pad type
RESET
config.
LQFP 176
LQFP 208
LBGA256
Pin number
PCR[120]
AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M/S
Tristate
166
190
A6
PCR[121]
AF0
AF1
AF2
AF3
—
GPIO[121]
—
—
—
TCK
SIUL
—
—
—
JTAGC
I/O
—
—
—
I
S
Input,
weak
pull-up
155
179
A11
PH[10](6) PCR[122]
AF0
AF1
AF2
AF3
—
GPIO[122]
—
—
—
TMS
SIUL
—
—
—
JTAGC
I/O
—
—
—
I
M/S
Input,
weak
pull-up
148
172
D10
PCR[123]
AF0
AF1
AF2
AF3
GPIO[123]
SOUT_3
CS0_4
E1UC[5]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
O
I/O
I/O
M/S
Tristate
140
164
A13
PCR[124]
AF0
AF1
AF2
AF3
GPIO[124]
SCK_3
CS1_4
E1UC[25]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
I/O
O
I/O
M/S
Tristate
141
165
B12
PCR[125]
AF0
AF1
AF2
AF3
GPIO[125]
SOUT_4
CS0_3
E1UC[26]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
O
I/O
I/O
M/S
Tristate
9
9
B1
PCR[126]
AF0
AF1
AF2
AF3
GPIO[126]
SCK_4
CS1_3
E1UC[27]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
I/O
O
I/O
M/S
Tristate
10
10
C1
PCR[127]
AF0
AF1
AF2
AF3
GPIO[127]
SOUT_5
—
E1UC[17]
SIUL
DSPI_5
—
eMIOS_1
I/O
O
—
I/O
M/S
Tristate
8
8
E3
Port
pin
PH[8]
PH[9](6)
PH[11]
PH[12]
PH[13]
PH[14]
PH[15]
PCR
DocID17478 Rev 9
39/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
PI[6]
40/123
LBGA256
PI[5]
LQFP 208
PI[4]
LQFP 176
PI[3]
RESET
config.
PI[2]
Pad type
PI[1]
I/O
direction(2)
PI[0]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[128]
AF0
AF1
AF2
AF3
GPIO[128]
E0UC[28]
LIN8TX
—
SIUL
eMIOS_0
LINFlexD_8
—
I/O
I/O
O
—
S
Tristate
172
196
C5
PCR[129]
AF0
AF1
AF2
AF3
—
—
GPIO[129]
E0UC[29]
—
—
WKPU[24]
LIN8RX
SIUL
eMIOS_0
—
—
WKPU
LINFlexD_8
I/O
I/O
—
—
I
I
S
Tristate
171
195
A4
PCR[130]
AF0
AF1
AF2
AF3
GPIO[130]
E0UC[30]
LIN9TX
—
SIUL
eMIOS_0
LINFlexD_9
—
I/O
I/O
O
—
S
Tristate
170
194
D6
PCR[131]
AF0
AF1
AF2
AF3
—
—
GPIO[131]
E0UC[31]
—
—
WKPU[23]
LIN9RX
SIUL
eMIOS_0
—
—
WKPU
LINFlexD_9
I/O
I/O
—
—
I
I
S
Tristate
169
193
B5
PCR[132]
AF0
AF1
AF2
AF3
GPIO[132]
E1UC[28]
SOUT_4
—
SIUL
eMIOS_1
DSPI_4
—
I/O
I/O
O
—
M/S
Tristate
143
167
A12
PCR[133]
AF0
AF1
AF2
AF3
ALT4
GPIO[133]
E1UC[29]
SCK_4
CS2_5
CS2_6
SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6
I/O
I/O
I/O
O
O
M/S
Tristate
142
166
D12
PCR[134]
AF0
AF1
AF2
AF3
ALT4
GPIO[134]
E1UC[30]
CS0_4
CS0_5
CS0_6
SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6
I/O
I/O
I/O
I/O
I/O
S
Tristate
11
11
D2
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
LBGA256
PI[12]
LQFP 208
PI[11]
LQFP 176
PI[10]
RESET
config.
PI[9]
Pad type
PI[8]
I/O
direction(2)
PI[7]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[135]
AF0
AF1
AF2
AF3
ALT4
GPIO[135]
E1UC[31]
CS1_4
CS1_5
CS1_6
SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6
I/O
I/O
O
O
O
S
Tristate
12
12
E2
PCR[136]
AF0
AF1
AF2
AF3
—
GPIO[136]
—
—
—
ADC0_S[16]
SIUL
—
—
—
ADC_0
I/O
—
—
—
I
S
Tristate
108
130
J14
PCR[137]
AF0
AF1
AF2
AF3
—
GPIO[137]
—
—
—
ADC0_S[17]
SIUL
—
—
—
ADC_0
I/O
—
—
—
I
S
Tristate
—
131
J15
PCR[138]
AF0
AF1
AF2
AF3
—
GPIO[138]
—
—
—
ADC0_S[18]
SIUL
—
—
—
ADC_0
I/O
—
—
—
I
S
Tristate
—
134
J16
PCR[139]
AF0
AF1
AF2
AF3
—
—
GPIO[139]
—
—
—
ADC0_S[19]
SIN_3
SIUL
—
—
—
ADC_0
DSPI_3
I/O
—
—
—
I
I
S
Tristate
111
135
H16
PCR[140]
AF0
AF1
AF2
AF3
—
GPIO[140]
CS0_3
CS0_2
—
ADC0_S[20]
SIUL
DSPI_3
DSPI_2
—
ADC_0
I/O
I/O
I/O
—
I
S
Tristate
112
136
G15
PCR
DocID17478 Rev 9
41/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
42/123
LBGA256
PJ[2]
LQFP 208
PJ[1]
LQFP 176
PJ[0]
RESET
config.
PI[15]
Pad type
PI[14]
I/O
direction(2)
PI[13]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[141]
AF0
AF1
AF2
AF3
—
GPIO[141]
CS1_3
CS1_2
—
ADC0_S[21]
SIUL
DSPI_3
DSPI_2
—
ADC_0
I/O
O
O
—
I
S
Tristate
113
137
G14
PCR[142]
AF0
AF1
AF2
AF3
—
—
GPIO[142]
—
—
—
ADC0_S[22]
SIN_4
SIUL
—
—
—
ADC_0
DSPI_4
I/O
—
—
—
I
I
S
Tristate
76
92
T12
PCR[143]
AF0
AF1
AF2
AF3
—
GPIO[143]
CS0_4
CS2_2
—
ADC0_S[23]
SIUL
DSPI_4
DSPI_2
—
ADC_0
I/O
I/O
O
—
I
S
Tristate
75
91
P11
PCR[144]
AF0
AF1
AF2
AF3
—
GPIO[144]
CS1_4
CS3_2
—
ADC0_S[24]
SIUL
DSPI_4
DSPI_2
—
ADC_0
I/O
O
O
—
I
S
Tristate
74
90
R11
PCR[145]
AF0
AF1
AF2
AF3
—
—
GPIO[145]
—
—
—
ADC0_S[25]
SIN_5
SIUL
—
—
——
ADC_0
DSPI_5
I/O
—
—
—
I
I
S
Tristate
73
89
N10
PCR[146]
AF0
AF1
AF2
AF3
—
GPIO[146]
CS0_5
CS0_6
CS0_7
ADC0_S[26]
SIUL
DSPI_5
DSPI_6
DSPI_7
ADC_0
I/O
I/O
I/O
I/O
I
S
Tristate
72
88
R10
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
PJ[9]
LBGA256
PJ[8]
LQFP 208
PJ[7]
LQFP 176
PJ[6]
RESET
config.
PJ[5]
Pad type
PJ[4]
I/O
direction(2)
PJ[3]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[147]
AF0
AF1
AF2
AF3
—
GPIO[147]
CS1_5
CS1_6
CS1_7
ADC0_S[27]
SIUL
DSPI_5
DSPI_6
DSPI_7
ADC_0
I/O
O
O
O
I
S
Tristate
71
87
P10
PCR[148]
AF0
AF1
AF2
AF3
GPIO[148]
SCK_5
E1UC[18]
—
SIUL
DSPI_5
eMIOS_1
—
I/O
I/O
I/O
—
M/S
Tristate
5
5
D3
PCR[149]
AF0
AF1
AF2
AF3
—
GPIO[149]
—
—
—
ADC0_S[28]
SIUL
—
—
—
ADC_0
I/O
—
—
—
I
S
Tristate
—
113
N12
PCR[150]
AF0
AF1
AF2
AF3
—
GPIO[150]
—
—
—
ADC0_S[29]
SIUL
—
—
—
ADC_0
I/O
—
—
—
I
S
Tristate
—
112
N15
PCR[151]
AF0
AF1
AF2
AF3
—
GPIO[151]
—
—
—
ADC0_S[30]
SIUL
—
—
—
ADC_0
I/O
—
—
—
I
S
Tristate
—
111
P16
PCR[152]
AF0
AF1
AF2
AF3
—
GPIO[152]
—
—
—
ADC0_S[31]
SIUL
—
—
—
ADC_0
I/O
—
—
—
I
S
Tristate
—
110
P15
PCR[153]
AF0
AF1
AF2
AF3
—
GPIO[153]
—
—
—
ADC1_S[8]
SIUL
—
—
—
ADC_1
I/O
—
—
—
I
S
Tristate
—
68
P5
PCR
DocID17478 Rev 9
43/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
44/123
LBGA256
PJ[15]
LQFP 208
PJ[14]
LQFP 176
PJ[13]
RESET
config.
PJ[12]
Pad type
PJ[11]
I/O
direction(2)
PJ[10]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[154]
AF0
AF1
AF2
AF3
—
GPIO[154]
—
—
—
ADC1_S[9]
SIUL
—
—
—
ADC_1
I/O
—
—
—
I
S
Tristate
—
67
T5
PCR[155]
AF0
AF1
AF2
AF3
—
GPIO[155]
—
—
—
ADC1_S[10]
SIUL
—
—
—
ADC_1
I/O
—
—
—
I
S
Tristate
—
60
R3
PCR[156]
AF0
AF1
AF2
AF3
—
GPIO[156]
—
—
—
ADC1_S[11]
SIUL
—
—
—
ADC_1
I/O
—
—
—
I
S
Tristate
—
59
T1
PCR[157]
AF0
AF1
AF2
AF3
—
—
—
—
GPIO[157]
—
CS1_7
—
CAN4RX
ADC1_S[12]
CAN1RX
WKPU[31]
SIUL
—
DSPI_7
—
FlexCAN_4
ADC_1
FlexCAN_1
WKPU
I/O
—
O
—
I
I
I
I
S
Tristate
—
65
N5
PCR[158]
AF0
AF1
AF2
AF3
GPIO[158]
CAN1TX
CAN4TX
CS2_7
SIUL
FlexCAN_1
FlexCAN_4
DSPI_7
I/O
O
O
O
M/S
Tristate
—
64
T4
PCR[159]
AF0
AF1
AF2
AF3
—
GPIO[159]
—
CS1_6
—
CAN1RX
SIUL
—
DSPI_6
—
FlexCAN_1
I/O
—
O
—
I
M/S
Tristate
—
63
R4
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
PK[6]
LBGA256
PK[5]
LQFP 208
PK[4]
LQFP 176
PK[3]
RESET
config.
PK[2]
Pad type
PK[1]
I/O
direction(2)
PK[0]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[160]
AF0
AF1
AF2
AF3
GPIO[160]
CAN1TX
CS2_6
—
SIUL
FlexCAN_1
DSPI_6
—
I/O
O
O
—
M/S
Tristate
—
62
T3
PCR[161]
AF0
AF1
AF2
AF3
—
GPIO[161]
CS3_6
—
—
CAN4RX
SIUL
DSPI_6
—
—
FlexCAN_4
I/O
O
—
—
I
M/S
Tristate
—
41
H4
PCR[162]
AF0
AF1
AF2
AF3
GPIO[162]
CAN4TX
—
—
SIUL
FlexCAN_4
—
—
I/O
O
—
—
M/S
Tristate
—
42
L4
PCR[163]
AF0
AF1
AF2
AF3
—
—
GPIO[163]
E1UC[0]
—
—
CAN5RX
LIN8RX
SIUL
eMIOS_1
—
—
FlexCAN_5
LINFlexD_8
I/O
I/O
—
—
I
I
M/S
Tristate
—
43
N1
PCR[164]
AF0
AF1
AF2
AF3
GPIO[164]
LIN8TX
CAN5TX
E1UC[1]
SIUL
LINFlexD_8
FlexCAN_5
eMIOS_1
I/O
O
O
I/O
M/S
Tristate
—
44
M3
PCR[165]
AF0
AF1
AF2
AF3
—
—
GPIO[165]
—
—
—
CAN2RX
LIN2RX
SIUL
—
—
—
FlexCAN_2
LINFlexD_2
I/O
—
—
—
I
I
M/S
Tristate
—
45
M5
PCR[166]
AF0
AF1
AF2
AF3
GPIO[166]
CAN2TX
LIN2TX
—
SIUL
FlexCAN_2
LINFlexD_2
—
I/O
O
O
—
M/S
Tristate
—
46
M6
PCR
DocID17478 Rev 9
45/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
PK[13]
46/123
LBGA256
PK[12]
LQFP 208
PK[11]
LQFP 176
PK[10]
RESET
config.
PK[9]
Pad type
PK[8]
I/O
direction(2)
PK[7]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[167]
AF0
AF1
AF2
AF3
—
—
GPIO[167]
—
—
—
CAN3RX
LIN3RX
SIUL
—
—
—
FlexCAN_3
LINFlexD_3
I/O
—
—
—
I
I
M/S
Tristate
—
47
M7
PCR[168]
AF0
AF1
AF2
AF3
GPIO[168]
CAN3TX
LIN3TX
—
SIUL
FlexCAN_3
LINFlexD_3
—
I/O
O
O
—
M/S
Tristate
—
48
M8
PCR[169]
AF0
AF1
AF2
AF3
—
GPIO[169]
—
—
—
SIN_4
SIUL
—
—
—
DSPI_4
I/O
—
—
—
I
M/S
Tristate
—
197
E8
PCR[170]
AF0
AF1
AF2
AF3
GPIO[170]
SOUT_4
—
—
SIUL
DSPI_4
—
—
I/O
O
—
—
M/S
Tristate
—
198
E7
PCR[171]
AF0
AF1
AF2
AF3
GPIO[171]
SCK_4
—
—
SIUL
DSPI_4
—
—
I/O
I/O
—
—
M/S
Tristate
—
199
F8
PCR[172]
AF0
AF1
AF2
AF3
GPIO[172]
CS0_4
—
—
SIUL
DSPI_4
—
—
I/O
I/O
—
—
M/S
Tristate
—
200
G12
PCR[173]
AF0
AF1
AF2
AF3
—
GPIO[173]
CS3_6
CS2_7
SCK_1
CAN3RX
SIUL
DSPI_6
DSPI_7
DSPI_1
FlexCAN_3
I/O
O
O
I/O
I
M/S
Tristate
—
201
H12
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
PL[4]
PL[5]
LBGA256
PL[3]
LQFP 208
PL[2]
LQFP 176
PL[1]
RESET
config.
PL[0]
Pad type
PK[15]
I/O
direction(2)
PK[14]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[174]
AF0
AF1
AF2
AF3
GPIO[174]
CAN3TX
CS3_7
CS0_1
SIUL
FlexCAN_3
DSPI_7
DSPI_1
I/O
O
O
I/O
M/S
Tristate
—
202
J12
PCR[175]
AF0
AF1
AF2
AF3
—
—
GPIO[175]
—
—
—
SIN_1
SIN_7
SIUL
—
—
—
DSPI_1
DSPI_7
I/O
—
—
—
I
I
M/S
Tristate
—
203
D5
PCR[176]
AF0
AF1
AF2
AF3
GPIO[176]
SOUT_1
SOUT_7
—
SIUL
DSPI_1
DSPI_7
—
I/O
O
O
—
M/S
Tristate
—
204
C4
PCR[177]
AF0
AF1
AF2
AF3
GPIO[177]
—
—
—
SIUL
—
—
—
I/O
—
—
—
M/S
Tristate
—
—
F7
(7)
AF0
AF1
AF2
AF3
GPIO[178]
—
MDO0(8)
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
F5
PCR[179]
AF0
AF1
AF2
AF3
GPIO[179]
—
MDO1
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
G5
PCR[180]
AF0
AF1
AF2
AF3
GPIO[180]
—
MDO2
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
H5
PCR[181]
AF0
AF1
AF2
AF3
GPIO[181]
—
MDO3
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
J5
PCR
PCR[178]
DocID17478 Rev 9
47/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
PL[12]
PL[13]
48/123
LBGA256
PL[11]
LQFP 208
PL[10]
LQFP 176
PL[9]
RESET
config.
PL[8]
Pad type
PL[7]
I/O
direction(2)
PL[6]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[182]
AF0
AF1
AF2
AF3
GPIO[182]
—
MDO4
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
K5
PCR[183]
AF0
AF1
AF2
AF3
GPIO[183]
—
MDO5
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
L5
PCR[184]
AF0
AF1
AF2
AF3
—
GPIO[184]
—
—
—
EVTI
SIUL
—
—
—
Nexus
I/O
—
—
—
I
S
Pull-up
—
—
M9
PCR[185]
AF0
AF1
AF2
AF3
GPIO[185]
—
MSEO
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
M10
PCR[186]
AF0
AF1
AF2
AF3
GPIO[186]
—
MCKO
—
SIUL
—
Nexus
—
I/O
—
O
—
F/S
Tristate
—
—
M11
PCR[187]
AF0
AF1
AF2
AF3
GPIO[187]
—
—
—
SIUL
—
—
—
I/O
—
—
—
M/S
Tristate
—
—
M12
PCR[188]
AF0
AF1
AF2
AF3
GPIO[188]
—
EVTO
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
F11
PCR[189]
AF0
AF1
AF2
AF3
GPIO[189]
—
MDO6
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
F10
PCR
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Package pinouts and signal descriptions
Table 5. Functional port pin descriptions (continued)
PM[4]
LBGA256
PM[3]
LQFP 208
PM[2]
LQFP 176
PM[1]
RESET
config.
PM[0]
Pad type
PL[15]
I/O
direction(2)
PL[14]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[190]
AF0
AF1
AF2
AF3
GPIO[190]
—
MDO7
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
E12
PCR[191]
AF0
AF1
AF2
AF3
GPIO[191]
—
MDO8
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
E11
PCR[192]
AF0
AF1
AF2
AF3
GPIO[192]
—
MDO9
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
E10
PCR[193]
AF0
AF1
AF2
AF3
GPIO[193]
—
MDO10
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
E9
PCR[194]
AF0
AF1
AF2
AF3
GPIO[194]
—
MDO11
—
SIUL
—
Nexus
—
I/O
—
O
—
M/S
Tristate
—
—
F12
PCR[195]
AF0
AF1
AF2
AF3
GPIO[195]
—
—
—
SIUL
—
—
—
I/O
—
—
—
M/S
Tristate
—
—
K12
PCR[196]
AF0
AF1
AF2
AF3
GPIO[196]
—
—
—
SIUL
—
—
—
I/O
—
—
—
M/S
Tristate
—
—
L12
PCR
DocID17478 Rev 9
49/123
122
Package pinouts and signal descriptions
SPC564Bxx-SPC56ECxx
Table 5. Functional port pin descriptions (continued)
Pad type
RESET
config.
LQFP 176
LQFP 208
LBGA256
PM[6]
I/O
direction(2)
PM[5]
Function
Peripheral
Port
pin
Alternate
function(1)
Pin number
PCR[197]
AF0
AF1
AF2
AF3
GPIO[197]
—
—
—
SIUL
—
—
—
I/O
—
—
—
M/S
Tristate
—
—
F9
PCR[198]
AF0
AF1
AF2
AF3
GPIO[198]
—
—
—
SIUL
—
—
—
I/O
—
—
—
M/S
Tristate
—
—
F6
PCR
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA =
000 AF0; PCR.PA = 001 AF1; PCR.PA = 010 AF2; PCR.PA = 011 AF3; PCR.PA = 100 ALT4. This is
intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless
of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported
as “—”.
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMIO.PADSELx bitfields inside the SIUL module.
3. NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored.
4. SXOSC’s OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other
functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the
corresponding PCR to "1".
5. If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10]
can induce coupling on PB[9] and disturb oscillator frequency.
6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.
7. When MBIST is enabled to run (STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before
the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When
MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad.
8. These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface
"Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO, and MCKO ports
by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI
((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).
50/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
3
Electrical Characteristics
Electrical Characteristics
This section contains electrical characteristics of the device as well as temperature and
power considerations.
This product contains devices to protect the inputs against damage due to high static
voltages. However, it is advisable to take precautions to avoid application of any voltage
higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD
or VSS_HV). This could be done by the internal pull-up and pull-down, which is provided by
the product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and
its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
3.1
Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Table 6 are used and
the parameters are tagged accordingly in the tables where appropriate.
Table 6. Parameter classifications
Classification tag
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from
typical devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
D
Those parameters are derived mainly from simulations.
Note:
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
3.2
NVUSRO register
Portions of the device configuration, such as high voltage supply is controlled via bit values
in the Non-Volatile User Options Register (NVUSRO). For a detailed description of the
NVUSRO register, see SPC564Bxx and SPC56ECxx Reference Manual.
DocID17478 Rev 9
51/123
122
Electrical Characteristics
3.2.1
SPC564Bxx-SPC56ECxx
NVUSRO [PAD3V5V(0)] field description
Table 7 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for VDD_HV_A
domain.
Table 7. PAD3V5V(0) field description
(1)
Value
Description
0
High voltage supply is 5.0 V
1
High voltage supply is 3.3 V
1. '1' is delivery value. It is part of shadow flash memory, thus programmable by customer.
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.
3.2.2
NVUSRO [PAD3V5V(1)] field description
Table 8 shows how NVUSRO [PAD3V5V(1)] controls the device configuration the device
configuration for VDD_HV_B domain.
Table 8. PAD3V5V(1) field description
Value(1)
Description
0
High voltage supply is 5.0 V
1
High voltage supply is 3.3 V
1. '1' is delivery value. It is part of shadow flash memory, thus programmable by customer.
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.
3.3
Absolute maximum ratings
Table 9. Absolute maximum ratings
Value
Symbol
Parameter
Conditions
Unit
Min
Max
S Digital ground on VSS_HV
R pins
—
0
0
V
VDD_HV_A
Voltage on VDD_HV_A pins
S
with respect to ground
R
(VSS_HV)
—
–0.3
6.0
V
VDD_HV_B(1)
Voltage on VDD_HV_B pins
S
with respect to common
R
ground (VSS_HV)
—
–0.3
6.0
V
Voltage on VSS_LV (low
S voltage digital supply) pins
R with respect to ground
(VSS_HV)
—
VSS_HV 0.1
VSS_HV 0.1
V
VSS_HV
VSS_LV
52/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Table 9. Absolute maximum ratings (continued)
Value
Symbol
Parameter
Conditions
Base control voltage for
external BCP68 NPN device
VRC_CTRL(2)
VSS_ADC
Voltage on VSS_HV_ADC0,
S VSS_HV_ADC1 (ADC
R reference) pin with respect to
ground (VSS_HV)
VDD_HV_ADC0
Voltage on VDD_HV_ADC0
S
with respect to ground
R
(VSS_HV)
(4)
Voltage on VDD_HV_ADC1
S
with respect to ground
R
(VSS_HV)
VIN
Voltage on any GPIO pin
S
with respect to ground
R
(VSS_HV)
VDD_HV_ADC1
Unit
Min
Max
Relative to VDD_LV
0
VDD_LV + 1
V
—
VSS_HV 0.1
VSS_HV + 0.1
V
—
–0.3
6.0
VDD_HV_A 0.3
VDD_HV_A+0.3
–0.3
6.0
Relative to
VDD_HV_A(3)
—
V
V
Relative to
VDD_HV_A2
VDD_HV_A0.3
Relative to
VDD_HV_A/HV_B
VDD_HV_A/HV_B VDD_HV_A/HV_B+
0.3
0.3
VDD_HV_A+0.3
IINJPAD
S Injected input current on any
R pin during overload condition
—
–10
10
IINJSUM
Absolute sum of all injected
S
input currents during
R
overload condition
—
–50
50
IAVGSEG
(5)
TSTORAGE
Sum of all the static I/O
S current within a supply
R segment
(VDD_HV_A or VDD_HV_B)
V
mA
VDD = 5.0 V ± 10%,
PAD3V5V = 0
70
VDD = 3.3 V ± 10%,
PAD3V5V = 1
64
mA
S
Storage temperature
R
—
–55(6)
150
°C
1. VDD_HV_B can be independently controlled from VDD_HV_A. These can ramp up or ramp down in any order. Design is robust
against any supply order.
2. This voltage is internally generated by the device and no external voltage should be supplied.
3. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is
6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.
4. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be
within ±300 mV of VDD_HV_B when these channels are used for ADC_1.
5. Any temperature beyond 125 °C should limit the current to 50 mA (max).
6. This is the storage temperature for the flash memory.
Note:
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (VIN > VDD_HV_A/HV_B or
VIN < VSS_HV), the voltage on pins with respect to ground (VSS_HV) must not exceed the
recommended values.
DocID17478 Rev 9
53/123
122
Electrical Characteristics
3.4
SPC564Bxx-SPC56ECxx
Recommended operating conditions
Table 10. Recommended operating conditions (3.3 V)
Value
Symbol
VSS_HV
Parameter
SR
Digital ground on
VSS_HV pins
Conditions
Unit
Min
Max
—
0
0
V
VDD_HV_A(1)
Voltage on VDD_HV_A pins
SR with respect to ground
(VSS_HV)
—
3.0
3.6
V
VDD_HV_B(1)
Voltage on VDD_HV_B pins
SR with respect to ground
(VSS_HV)
—
3.0
3.6
V
VSS_LV(2)
Voltage on VSS_LV (low
voltage digital supply)
SR
pins with respect to
ground (VSS_HV)
—
VSS_HV 0.1
VSS_HV + 0.1
V
Relative to
VDD_LV
0
VDD_LV + 1
V
—
VSS_HV 0.1
VSS_HV + 0.1
V
—
3.0(5)
3.6
Base control voltage for
external BCP68 NPN
device
VRC_CTRL(3)
VSS_ADC
Voltage on
VSS_HV_ADC0,
VSS_HV_ADC1 (ADC
SR
reference) pin with
respect to ground
(VSS_HV)
Voltage on
VDD_HV_ADC0
VDD_HV_ADC0 with
SR
(4)
respect to ground
(VSS_HV)
VDD_HV_ADC1
(7)
Voltage on
VDD_HV_ADC1 with
SR
respect to ground
(VSS_HV)
VIN
Voltage on any GPIO pin
SR with respect to ground
(VSS_HV)
IINJPAD
Injected input current on
SR any pin during overload
condition
IINJSUM
Absolute sum of all
SR injected input currents
during overload condition
Relative to
VDD_HV_A(6)
—
Relative to
VDD_HV_A(6)
VDD_HV_A 0.1 VDD_HV_A + 0.1
3.0
V
3.6
VDD_HV_A 0.1 VDD_HV_A + 0.1
—
VSS_HV 0.1
—
Relative to
VDD_HV_A/HV_B
—
VDD_HV_A/HV_B + 0.1
—
5
5
V
V
mA
TVDD
54/123
SR
VDD_HV_A slope to ensure
correct power up(8)
—
50
50
—
—
0.5
V/µs
—
0.5
—
V/min
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Table 10. Recommended operating conditions (3.3 V) (continued)
Value
Symbol
Parameter
Ambient temperature
under bias
TA
SR
TJ
Junction temperature
SR
under bias
Conditions
fCPU up to
120 MHz 2%
Unit
Min
Max
–40
125
°C
40
—
150
1. 100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.
2. 100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance needs
to be provided as CREG on each VDD_LV pin. For details refer to the Power Management chapter of the MPC5646C
Reference Manual.
3. This voltage is internally generated by the device and no external voltage should be supplied.
4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is
reset.
6. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is
6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.
7. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be
within ±100 mV of VDD_HV_B when these channels are used for ADC_1.
8. Guaranteed by the device validation.
Table 11. Recommended operating conditions (5.0 V)
Value
Symbol
Parameter
Conditions
Max
—
0
0
—
4.5
5.5
Voltage drop(2)
3.0
5.5
—
3.0
5.5
V
Ethernet/3.3 V functionality
S (See the notes in all figures in
R Section 2: Package pinouts and
signal descriptions for the list of
channels operating in VDD_HV_B
domain)
—
3.0
3.6
V
Voltage on VSS_LV (Low voltage
S
digital supply) pins with respect to
R
ground (VSS_HV)
—
VSS_HV – 0.1
VSS_HV + 0.1
V
Relative to
VDD_LV
0
VDD_LV + 1
V
—
VSS_HV – 0.1
VSS_HV + 0.1
V
VSS_HV
S
Digital ground on VSS_HV pins
R
VDD_HV_A(1)
S Voltage on VDD_HV_A pins with
R respect to ground (VSS_HV)
Generic GPIO functionality
VDD_HV_B
VSS_LV(3)
VRC_CTRL(4)
VSS_ADC
Unit
Min
Base control voltage for external
BCP68 NPN device
Voltage on VSS_HV_ADC0,
S VSS_HV_ADC1 (ADC reference)
R pin with respect to ground
(VSS_HV)
DocID17478 Rev 9
V
V
55/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Table 11. Recommended operating conditions (5.0 V) (continued)
Value
Symbol
Parameter
Conditions
Unit
Min
Max
4.5
5.5
3.0
5.5
Relative to
VDD_HV_A(6)
VDD_HV_A – 0.1
VDD_HV_A + 0.1
—
4.5
5.5
3.0
5.5
VDD_HV_A 0.1
VDD_HV_A + 0.1
—
VSS_HV –0.1
—
Relative to
VDD_HV_A/HV_B
—
VDD_HV_A/HV_B
+ 0.1
—
–5
5
—
VDD_HV_ADC0
(5)
VDD_HV_ADC1
(7)
VIN
S Voltage on VDD_HV_ADC0 with
R respect to ground (VSS_HV)
S Voltage on VDD_HV_ADC1 with
R respect to ground (VSS_HV)
S Voltage on any GPIO pin with
R respect to ground (VSS_HV)
IINJPAD
S Injected input current on any pin
R during overload condition
IINJSUM
Absolute sum of all injected input
S
currents during overload
R
condition
TVDD
S VDD_HV_A slope to ensure correct
R power up(8)
TA C-Grade Part
(2)
Voltage drop
Voltage
drop(2)
Relative to
VDD_HV_A(6)
V
V
V
mA
—
–50
50
—
—
0.5
V/µs
—
0.5
—
V/min
S
Ambient temperature under bias
R
—
40
85
TJ C-Grade Part
S
Junction temperature under bias
R
—
40
110
TA V-Grade Part
S
Ambient temperature under bias
R
—
40
105
TJ V-Grade Part
S
Junction temperature under bias
R
—
40
130
TA M-Grade Part
S
Ambient temperature under bias
R
—
40
125
TJ M-Grade Part
S
Junction temperature under bias
R
—
40
150
°C
1. 100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.
2. Full device operation is guaranteed by design from 3.0 V–5.5 V. OSC functionality is guaranteed from the entire range
3.0V–5.5 V, the parametrics measured are at 3.0V and 5.5V (extreme voltage ranges to cover the range of operation). The
parametrics might have some variation in the intermediate voltage range, but there is no impact to functionality.
3. 100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance needs
to be provided as CREG on each VDD_LV pin.
4. This voltage is internally generated by the device and no external voltage should be supplied.
5. 100 nF capacitance needs to be provided between VDD_HV_(ADC0/ADC1)/VSS_HV_(ADC0/ADC1) pair.
6. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is
6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.
7. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be
within ±100 mV of VDD_HV_B when these channels are used for ADC_1.
56/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
8. Guaranteed by device validation.
Note:
SRAM retention guaranteed to LVD levels.
3.5
Thermal characteristics
3.5.1
Package thermal characteristics
Table 12. LQFP thermal characteristics(1)
Symbol
C
RJA
CC
RJA
CC
D
D
Parameter
Pin
count
(2)
Conditions
Thermal resistance,
junction-to-ambient
natural convection
Single-layer
board—1s
Thermal resistance,
junction-to-ambient
natural convection
Four-layer
board—2s2p(5)
Value(3)
Unit
Min
Typ
Max
176
—
—
44.4(4)
°C/W
208
—
—
43
°C/W
176
—
—
36.1
°C/W
208
—
—
33.9
°C/W
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C.
3. All values need to be confirmed during device validation.
4. 1s board as per standard JEDEC (JESD51-7) in natural convection.
5. 2s2p board as per standard JEDEC (JESD51-7) in natural convection.
Table 13. LBGA256 thermal characteristics(1)
Symbol
RJA
CC
C
—
Parameter
Conditions
Thermal resistance, junction-to-ambient
natural convection
Value
Single-layer board—1s
44.3
Four-layer board—2s2p
31
Unit
°C/W
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.
DocID17478 Rev 9
57/123
122
Electrical Characteristics
3.5.2
SPC564Bxx-SPC56ECxx
Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using
Equation 1:
Equation 1 TJ = TA + (PD RJA)
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal
power.
PI/O represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand,
PI/O may be significant, if the device is configured to continuously drive external modules
and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
Equation 2 PD = K / (TJ + 273 °C)
Therefore, solving equations Equation 1 and Equation 2:
Equation 3 K = PD (TA + 273 °C) + RJA PD2
Where:
K is a constant for the particular part, which may be determined from Equation 3
by measuring PD (at equilibrium) for a known TA. Using this value of K, the values
of PD and TJ may be obtained by solving equations Equation 1 and Equation 2
iteratively for any value of TA.
3.6
I/O pad electrical characteristics
3.6.1
I/O pad types
The device provides four main I/O pad types depending on the associated alternate
functions:
Slow pads—These pads are the most common pads, providing a good compromise
between transition time and low electromagnetic emission.
Medium pads—These pads provide transition fast enough for the serial communication
channels with controlled current to reduce electromagnetic emission.
Fast pads—These pads provide maximum speed. These are used for improved Nexus
debugging capability.
Input only pads—These pads are associated to ADC channels and 32 kHz low power
external crystal oscillator providing low input leakage.
Low power pads—These pads are active in standby mode for wakeup source.
Also, medium/slow and fast/medium pads are available in design which can be configured
to behave like a slow/medium and medium/fast pads depending upon the slew-rate control.
58/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Medium and fast pads can use slow configuration to reduce electromagnetic emission, at
the cost of reducing AC performance.
3.6.2
I/O input DC characteristics
Table 14 provides input DC electrical characteristics as described in Figure 5.
Figure 5. I/O input DC electrical characteristics definition
VIN
VDD
VIH
VHYS
VIL
PDIx = ‘1
(GPDI register of SIUL)
PDIx = ‘0’
Table 14. I/O input DC electrical characteristics
Symbol
C
Value(2)
Conditions(1)
Parameter
Unit
Min
Typ
Max
VIH
SR P
Input high level CMOS (Schmitt
Trigger)
—
0.65 VDD
—
VDD + 0.4
VIL
SR P
Input low level CMOS (Schmitt
Trigger)
—
0.3
—
0.35VDD
Input hysteresis CMOS (Schmitt
Trigger)
—
0.1VDD
—
—
VHYS CC C
ILKG
WFI
P
TA = 40 °C
—
2
—
P
—
2
—
D
No injection T = 25 °C
A
on adjacent
T
A = 105 °C
pin
—
12
500
P
TA = 125 °C
—
70
1000
CC
Digital input leakage
SR P
WNFI SR P
V
nA
Width of input pulse rejected by
analog filter(3)
—
—
—
40(4)
ns
Width of input pulse accepted by
analog filter(3)
—
1000(4)
—
—
ns
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation.
3. Analog filters are available on all wakeup lines.
DocID17478 Rev 9
59/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
4. The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending on
silicon sample to sample variation.
3.6.3
I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 15 provides weak pull figures. Both pull-up and pull-down resistances are
supported.
Table 16 provides output driver characteristics for I/O pads when in SLOW
configuration.
Table 17 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Table 18 provides output driver characteristics for I/O pads when in FAST
configuration.
Table 15. I/O pull-up/pull-down DC electrical characteristics
Symbol
C
Parameter
P
|IWPU|
CC
C
P
P
|IWPD|
CC
C
P
Weak pull-up
current
absolute value
Value
Conditions(1),(2)
Unit
Min
Typ
Max
10
—
150
10
—
250
10
—
150
10
—
150
10
—
250
10
—
150
VIN = VIL, VDD = PAD3V5V = 0
5.0 V ± 10%
PAD3V5V = 1(3)
VIN = VIL, VDD =
PAD3V5V = 1
3.3 V ± 10%
VIN = VIH, VDD = PAD3V5V = 0
Weak pull-down 5.0 V ± 10%
PAD3V5V = 1
current
absolute value VIN = VIH, VDD =
PAD3V5V = 1
3.3 V ± 10%
µA
µA
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 16. SLOW configuration output buffer electrical characteristics
Symbol
VOH CC
C
Value
Conditions(1),(2)
Unit
Min
Typ
Max
P
IOH = 3 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD
—
—
Output high level
Push
C SLOW
Pull
configuration
IOH = 3 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(3)
0.8VDD
—
—
VDD 0.8
—
—
P
60/123
Parameter
IOH = 1.5 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
DocID17478 Rev 9
V
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Table 16. SLOW configuration output buffer electrical characteristics (continued)
Symbol
C
P
VOL CC
Output low level
C SLOW
configuration
Value
Conditions(1),(2)
Parameter
Push
Pull
P
Unit
Min
Typ
Max
IOL = 3 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
0.1VDD
IOL = 3 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(3)
—
—
0.1VDD
IOL = 1.5 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
0.5
V
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 17. MEDIUM configuration output buffer electrical characteristics
Symbol
C
Parameter
VOL
CC
CC
C
Output high level
MEDIUM
configuration
Unit
Min
Typ
Max
IOH = 3 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
0.8VDD
—
—
IOH = 1.5 mA,
Push Pull VDD = 5.0 V ± 10%,
PAD3V5V = 1(3)
0.8VDD
—
—
C
VOH
Value
Conditions(1),(2)
C
IOH = 2 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
VDD 0.8
—
—
C
IOL = 3 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
0.2VDD
IOL = 1.5 mA,
Push Pull VDD = 5.0 V ± 10%,
PAD3V5V = 1(3)
—
—
0.1VDD
IOL = 2 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
0.5
C
Output low level
MEDIUM
configuration
C
V
V
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
DocID17478 Rev 9
61/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Table 18. FAST configuration output buffer electrical characteristics
Symbol
C
Parameter
CC
VOH
CC
VOL
C
Unit
Min
Typ
Max
IOH = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
0.8VDD
—
—
IOH = 7 mA,
Push Pull VDD = 5.0 V ± 10%,
PAD3V5V = 1(3)
0.8VDD
—
—
P
Output high
level
FAST
configuration
Value
Conditions(1),(2)
C
IOH = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
VDD 0.8
—
—
P
IOL = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
0.1VDD
C
Output low level
IOL = 7 mA,
FAST
Push Pull VDD = 5.0 V ± 10%,
configuration
PAD3V5V = 1(3)
—
—
0.1VDD
C
IOL = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
0.5
V
V
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
3.6.4
Output pin transition times
Table 19. Output pin transition times
Symbol
C
Parameter
T
CC
D
D
CC
—
—
50
—
—
100
CL = 100 pF
—
—
125
CL = 25 pF
—
—
40
—
—
50
—
—
75
—
—
10
—
—
20
—
—
40
—
—
12
—
—
25
—
—
40
CL = 50 pF
D
CL = 100 pF
D
CL = 25 pF
D
D
T
D
62/123
Max
T
T
Ttr
Typ
CL = 50 pF
Output transition
time output pin(4)
SLOW configuration
Output transition
time output pin(4)
MEDIUM
configuration
Unit
Min
CL = 25 pF
D
Ttr
Conditions
Value(3)
(1),(2)
CL = 50 pF
CL = 100 pF
CL = 25 pF
CL = 50 pF
CL = 100 pF
VDD = 5.0 V ± 10 %,
PAD3V5V = 0
VDD = 3.3 V ± 10 %,
PAD3V5V = 1
VDD = 5.0 V ± 10 %,
PAD3V5V = 0
SIUL.PCRx.SRC = 1
VDD = 3.3 V ± 10 %,
PAD3V5V = 1
SIUL.PCRx.SRC = 1
DocID17478 Rev 9
ns
ns
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Table 19. Output pin transition times (continued)
Symbol
C
Parameter
Conditions
Value(3)
(1),(2)
Unit
Min
Typ
Max
—
—
4
—
—
6
CL = 100 pF
—
—
12
CL = 25 pF
—
—
4
—
—
7
—
—
12
CL = 25 pF
CL = 50 pF
Ttr
CC
D
Output transition
time output pin(4)
FAST configuration
CL = 50 pF
VDD = 5.0 V ± 10%,
PAD3V5V = 0
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF
ns
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3. All values need to be confirmed during device validation.
4. CL includes device and package capacitances (CPKG < 5 pF).
3.6.5
I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply is associated
to a VDD/VSS_HV supply pair as described in Table 20.
Table 21 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the IAVGSEG maximum value.
In order to ensure device functionality, the sum of the dynamic and static current of the I/O
on a single segment should remain below the IDYNSEG maximum value.
Table 20. I/O supplies
Package
I/O Supplies
LBGA256(1)
Equivalent to 208-pin LQFP segment pad distribution + G6, G11, H11, J11
LQFP208
pin6
pin27
(VDD_HV_A)
(VDD_HV_A)pi
pin7
n28 (VSS_HV)
(VSS_HV)
pin73
(VSS_HV)
pin75
(VDD_HV_A)
pin101
(VDD_HV_A)
pin102
(VSS_HV)
pin132
(VSS_HV)
pin133
(VDD_HV_A)
pin147
(VSS_HV)
pin148
(VDD_HV_B)
LQFP176
pin6
(VDD_HV_A)
pin7
(VSS_HV)
pin57
(VSS_HV)
pin59
(VDD_HV_A)
pin85
(VDD_HV_A)
pin86
(VSS_HV)
pin123
(VSS_HV)
pin124
(VDD_HV_B)
pin150
(VSS_HV)
pin151
(VDD_HV_A)
pin27
(VDD_HV_A)pi
n28
(VSS_HV)
pin174
(VSS_HV)
—
pin175
(VDD_HV_A)
—
—
1. VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15],
PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].
DocID17478 Rev 9
63/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Table 21. I/O consumption
Symbol
ISWTSLW(4)
ISWTMED
(4)
ISWTFST(4)
C
Parameter
Conditions
C
Peak I/O current for
D
C
FAST configuration
Typ
Max
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
19.9
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
15.5
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
28.8
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
16.3
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
113.5
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
52.1
—
—
2.22
—
—
3.13
—
—
6.54
—
—
1.51
—
—
2.14
—
—
4.33
—
—
6.5
—
—
13.32
CL = 100 pF, 13 MHz
—
—
18.26
CL = 25 pF, 13 MHz
—
—
4.91
—
—
8.47
—
—
10.94
—
—
21.05
—
—
33
—
—
55.77
—
—
14
—
—
20
CL = 100 pF, 40 MHz
—
—
34.89
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
70
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
65(4)
CL = 25 pF
CL = 25 pF
mA
mA
mA
CL = 25 pF, 2 MHz
CL = 25 pF, 4 MHz
IRMSSLW
VDD = 5.0 V ± 10%,
PAD3V5V = 0
Root mean square
CL = 100 pF, 2 MHz
C
D I/O current for
C
SLOW configuration CL = 25 pF, 2 MHz
CL = 25 pF, 4 MHz
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF, 2 MHz
CL = 25 pF, 13 MHz
IRMSMED
Root mean square
C
I/O current for
D
C
MEDIUM
configuration
CL = 25 pF, 40 MHz
CL = 25 pF, 40 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF, 13 MHz
CL = 25 pF, 40 MHz
CL = 25 pF, 64 MHz
IRMSFST
VDD = 5.0 V ± 10%,
PAD3V5V = 0
Root mean square
CL = 100 pF, 40 MHz
C
D I/O current for FAST
C
CL = 25 pF, 40 MHz
configuration
CL = 25 pF, 64 MHz
IAVGSEG
Sum of all the static
S
D I/O current within a
R
supply segment
Unit
Min
C
Peak I/O current for
D
CL = 25 pF
C
SLOW configuration
Peak I/O current for
C
D MEDIUM
C
configuration
Value(3)
(1),(2)
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3. All values need to be confirmed during device validation.
4. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
64/123
DocID17478 Rev 9
mA
SPC564Bxx-SPC56ECxx
3.7
Electrical Characteristics
RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
Figure 6. Start-up reset requirements
VDD_HV_A
VDDMIN
RESET
VIH
VIL
device reset forced by RESET
device start-up phase
Figure 7. Noise filtering on reset signal
VRESET
hw_rst
VDD
‘1’
VIH
VIL
‘0’
filtered by
hysteresis
filtered by
lowpass filter
WFRST
filtered by
lowpass filter
unknown reset
state
device under hardware reset
WFRST
WNFRST
DocID17478 Rev 9
65/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Table 22. Reset electrical characteristics
Symbol
C
Parameter
Conditions
Value(2)
(1)
Unit
Min
Typ
Max
VIH
S
Input High Level CMOS
P
R
(Schmitt Trigger)
—
0.65VDD
—
VDD + 0.4
V
VIL
S
Input low Level CMOS
P
R
(Schmitt Trigger)
—
0.3
—
0.35VDD
V
VHYS
C
Input hysteresis CMOS
C
C
(Schmitt Trigger)
—
0.1VDD
—
—
V
Push Pull, IOL = 2 mA,
VDD = 5.0 V ± 10 %, PAD3V5V = 0
(recommended)
—
—
0.1VDD
Push Pull, IOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(3)
—
—
0.1VDD
Push Pull, IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
CL = 25 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
10
CL = 50 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
20
CL = 100 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
40
CL = 25 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
12
CL = 50 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
25
CL = 100 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
40
VOL
Ttr
WFRST
WNFRS
T
|IWPU|
C
P Output low level
C
Output transition time
C
D output pin(4)
C
MEDIUM configuration
ns
S
Reset input filtered
P
R
pulse
—
—
—
40
ns
S
Reset input not filtered
P
R
pulse
—
1000
—
—
ns
VDD = 3.3 V ± 10%, PAD3V5V = 1
10
—
150
VDD = 5.0 V ± 10%, PAD3V5V = 0
10
—
150
10
—
250
C
Weak pull-up current
P
C
absolute value
VDD = 5.0 V ± 10%, PAD3V5V =
1(5)
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation.
3. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section of the
device Reference Manual).
4. CL includes device and package capacitance (CPKG < 5 pF).
5. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
66/123
V
DocID17478 Rev 9
µA
SPC564Bxx-SPC56ECxx
Electrical Characteristics
3.8
Power management electrical characteristics
3.8.1
Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply
VDD_LV from the high voltage supply VDD_HV_A. The following supplies are involved:
HV: High voltage external power supply for voltage regulator module. This must be
provided externally through VDD_HV_A power pin.
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is
generated by the on-chip VREG with an external ballast (BCP68 NPN device). It is
further split into four main domains to ensure noise isolation between critical LV
modules within the device:
–
LV_COR: Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
–
LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is
shorted with LV_COR through double bonding.
–
LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR
through double bonding.
–
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
Figure 8. Voltage regulator capacitance connection
100 nf
VDD_LV
100 nf
VSS_LV VDD_LV
100 nf
VSS_LV VDD_LV
VSS_LV
40 f
(4 10 f)
PD0 (always on domain)
PD0 Logic
PD1 Switchable Domain
(FMPLL, Flash)
(CREGn)
32 KB
Split
56 KB
Split
8 KB
Split
CTRL
CTRL
CTRL
VDD_LV
HPVDD
VSS_LV
Off chip
BCP68
NPN driver
VRC_CTRL
sw1 ( 2.6 V for correct functionality. The device is not monitoring this supply hence
the external component must meet the 2.6 V criteria through external monitoring if
required.
Table 23. Voltage regulator electrical characteristics
Symbol
C
Value(2)
Conditions(1)
Parameter
Unit
Min
Typ
Max
CREGn
S
External ballast stability
—
R
capacitance
—
40
—
60
F
RREG
S
Stability capacitor equivalent
—
R
serial resistance
—
—
—
0.2
W
VDD_HV_A/HV_B/VSS_HV
S
Decoupling capacitance (Close to pair
—
R
the pin)
VDD_LV/VSS_LV pair
100
—
nF
CREGP
100
—
nF
10
—
40
F
1.20
1.28
1.32
V
CDEC2
Stability capacitance regulator
S
— supply (Close to the ballast
R
collector)
VDD_BV/VSS_HV
VMREG
C
P Main regulator output voltage
C
After trimming
TA = 25 °C
68/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Table 23. Voltage regulator electrical characteristics (continued)
Symbol
C
S
Main regulator current provided to
—
R
VDD_LV domain
IMREG
Value(2)
Conditions(1)
Parameter
—
Unit
Min
Typ
Max
—
—
350
mA
C
Main regulator module current
D
C
consumption
IMREG = 200 mA
—
—
2
IMREGINT
IMREG = 0 mA
—
—
1
VLPREG
C
Low power regulator output
P
C
voltage
After trimming
TA = 25 °C
1.17
1.27
1.32
V
ILPREG
S
Low power regulator current
—
R
provided to VDD_LV domain
—
—
50
mA
ILPREG = 15 mA;
TA = 55 °C
—
—
600
ILPREG = 0 mA;
TA = 55 °C
—
20
—
Main LVDs and reference current
C
D consumption (low power and main TA = 55 °C
C
regulator switched off)
—
2
—
A
C
Main LVD current consumption
D
C
(switch-off during standby)
—
1
—
A
—
—
D
C
C
ILPREGINT
Low power regulator module
current consumption
—
IVREGREF
IVREDLVD12
—
TA = 55 °C
C
In-rush current on VDD_BV during
D
C
power-up
IDD_HV_A
—
mA
A
600
mA
(3)
1. VDD_HV_A = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in ~25 steps
to reach ~1.2 V VDD_LV. Each step peak current is within 600 mA
3.8.3
Voltage monitor electrical characteristics
The device implements a Power-on Reset module to ensure correct power-up initialization,
as well as four low voltage detectors to monitor the VDD_HV_A and the VDD_LV voltage while
device is supplied:
Note:
POR monitors VDD_HV_A during the power-up phase to ensure device is maintained in
a safe reset state
LVDHV3 monitors VDD_HV_A to ensure device is reset below minimum functional
supply
LVDHV5 monitors VDD_HV_A when application uses device in the 5.0 V±10 % range
LVDLVCOR monitors power domain No. 1 (PD1)
LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply.
When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP.
DocID17478 Rev 9
69/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Figure 9. Low voltage monitor vs. Reset
VDDHV/LV
VLVDHVxH/LVxH
VLVDHVxL/LVxL
RESET
Table 24. Low voltage monitor electrical characteristics
Symbol
C
Parameter
Value(2)
Conditions(1)
Unit
Min
Typ
Max
VPORUP
S
P Supply for functional POR module
R
—
1.0
—
5.5
VPORH
C
P Power-on reset threshold
C
—
1.5
—
2.6
VLVDHV3H
C
T LVDHV3 low voltage detector high threshold
C
—
2.7
—
2.85
VLVDHV3L
C
T LVDHV3 low voltage detector low threshold
C
—
2.6
—
2.74
VLVDHV5H
C
T LVDHV5 low voltage detector high threshold
C
—
4.3
—
4.5
VLVDHV5L
C
T LVDHV5 low voltage detector low threshold
C
—
4.2
—
4.4
1.08
—
1.17
1.08
—
1.17
V
VLVDLVCORL
C
P LVDLVCOR low voltage detector low threshold
C
VLVDLVBKPL
C
P LVDLVBKP low voltage detector low threshold
C
TA = 25 °C,
after trimming
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3.9
Low voltage domain power consumption
Table 25 provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on the application.
70/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Table 25. Low voltage power domain electrical characteristics(1)
Symbol
IDDMAX(5)
C
C
RUN mode maximum
D
C
average current
—
at 120 MHz
P
IDDRUN
C
RUN mode typical
D
C
average current(8)
C
IDDHALT
C P
HALT mode current(11)
C C
IDDSTOP
C P
STOP mode current(12)
C C
TA = 25 °C
Min
Typ(3)
—
210
—
150
(8)
Unit
Max(4)
300(6),
(7)
mA
208(9)
mA
(10)
mA
at 80 MHz
TA = 25 °C
—
at 120 MHz
TA = 125 °C
—
180
280
mA
at 120 MHz
TA = 25 °C
—
20
27
mA
at 120 MHz
TA = 125 °C
—
35
100
mA
TA = 25 °C
—
0.4
5
mA
TA = 125 °C
—
16
72
mA
TA = 25 °C
—
50
96
µA
TA = 125 °C
—
630
2400
µA
TA = 25 °C
—
40
92
µA
TA = 125 °C
—
500
2000
µA
TA = 25 °C
—
25
85
µA
TA = 125 °C
—
230
1100
µA
—
TA = 25 °C
—
—
5
µA
—
TA = 25 °C
—
—
3
mA
—
TA = 25 °C
—
—
500
µA
—
TA = 25 °C
—
—
5
µA
No clocks active
IDDSTDBY3
(96 KB
RAM
retained)
P
C
STANDBY3 mode
C C current(13)
IDDSTDBY2
(64 KB
RAM
retained)
C
C
STANDBY2 mode
C C current(14)
No clocks active
IDDSTDBY1
(8 KB RAM
retained)
C
C
STANDBY1 mode
C C current(15)
No clocks active
110
150
No clocks active
32 KHz OSC
Adders in
LP mode
Value
Conditions(2)
Parameter
4–40 MHz OSC
C
T
C
16 MHz IRC
128 KHz IRC
1. Except for IDDMAX, all the current values are total current drawn from VDD_HV_A.
2. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified All temperatures are based on an
ambient temperature.
3. Target typical current consumption for the following typical operating conditions and configuration. Process = typical,
Voltage = 1.2 V.
4. Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, Voltage =
1.32 V.
5. Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os
toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with all
cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be
noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce
peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.
6. Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 23.
7. Maximum “allowed” current is package dependent.
8. Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as
system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer
reset enabled. RUN current measured with typical application with accesses on both code flash and RAM.
DocID17478 Rev 9
71/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
9. Subject to change, Configuration: 1 e200z4d + 4 kbit/s Cache, 1 e200z0h (1/2 system frequency), CSE, 1 eDMA
(10 ch.), 6 FlexCAN (4 500 kbit/s, 2 125 kbit/s), 4 LINFlexD (20 kbit/s), 6 DSPI (2 2 Mbit/s, 3 4 Mbit/s,
1 10 Mbit/s), 16 Timed I/O, 16 ADC Input, 1 FlexRay (2 ch., 10 Mbit/s), 1 FEC (100 Mbit/s), 1 RTC, 4PIT
channels, 1 SWT, 1 STM. For lower pin count packages reduce the amount of timed I/O’s and ADC channels. RUN
current measured with typical application with accesses on both code flash and RAM.
10. This value is obtained from limited sample set.
11. Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz ON. 16 MHz XTAL clock. FlexCAN:
instances: 0, 1, 2 ON (clocked but no reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2
ON (clocked but no reception or transmission), instance: 3-9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]PA[11] and PC[12]-PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication,
instance: 1-7 clocks gated). RTC/API ON. PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.
12. Only for the “P” classification: No clock, FIRC 16 MHz OFF, SIRC128 kHz ON, PLL OFF, HPvreg OFF, LPVreg ON. All
possible peripherals off and clock gated. Flash in power down mode.
13. Only for the “P” classification: LPreg ON, HPVreg OFF, 96 KB RAM ON, device configured for minimum consumption, all
possible modules switched-off. Measurement condition assumes Tj = Ta.
14. LPreg ON, HPVreg OFF, 64 KB RAM ON, device configured for minimum consumption, all possible modules switched-off.
Measurement condition assumes Tj = Ta.
15. LPreg ON, HPVreg OFF, 8 KB RAM ON, device configured for minimum consumption, all possible modules switched OFF.
Measurement condition assumes Tj = Ta.
3.10
Flash memory electrical characteristics
3.10.1
Program/Erase characteristics
Table 26 shows the code flash memory program and erase characteristics.
Table 26. Code flash memory—Program and erase specifications
Value
Symbol
C
Parameter
Unit
Min
Typ(1)
Initial
max(2)
Max(3)
Double word (64 bits) program time(4)
—
18
50
500
µs
16 KB block pre-program and erase time
—
200
500
5000
ms
32 KB block pre-program and erase time
—
300
600
5000
ms
—
600
1300
5000
ms
—
—
30
30
µs
C Erase Suspend Request Rate
20
—
—
—
ms
tPABT
D Program Abort Latency
—
—
10
10
µs
tEAPT
D Erase Abort Latency
—
—
30
30
µs
Tdwprogram
T16Kpperase
T32Kpperase
C
T128Kpperase C
128 KB block pre-program and erase time
C
D Erase Suspend Latency
Teslat
tESRT(5)
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
5. It is Time between erase suspend resume and the next erase suspend request.
Table 27 shows the data flash memory program and erase characteristics.
72/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Table 27. Data flash memory—Program and erase specifications
Value
Symbol
C
Word (32 bits) program time(4)
Twprogram
C 16 KB block pre-program and erase time
T16Kpperase
Teslat
tESRT(5)
Parameter
C D Erase Suspend Latency
C C Erase Suspend Request Rate
Unit
Min
Typ(1)
Initial
max(2)
Max(3)
—
30
70
500
µs
—
700
800
5000
ms
—
—
30
30
µs
10
—
—
—
ms
tPABT
D Program Abort Latency
—
—
12
12
µs
tEAPT
D Erase Abort Latency
—
—
30
30
µs
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
5. It is time between erase suspend resume and next erase suspend.
Table 28. Flash memory module life
Value
Symbol
P/E
C
CC
Parameter
Conditions
Typ
Number of program/erase cycles
per block for 16 Kbyte blocks over
the operating temperature range
(TJ)
—
100000
100000
cycles
Number of program/erase cycles
per block for 32 Kbyte blocks over
C
the operating temperature range
(TJ)
—
10000
100000
cycles
—
1000
100000
cycles
Blocks with 0–1000 P/E
cycles
20
—
years
Blocks with 10000 P/E
cycles
10
—
years
Blocks with 100000 P/E
cycles
5
—
years
Number of program/erase cycles
per block for 128 Kbyte blocks over
the operating temperature range
(TJ)
Retention CC
Unit
Min
C
Minimum data retention at 85 °C
average ambient temperature(1)
1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature
range.
DocID17478 Rev 9
73/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
ECC circuitry provides correction of single bit faults and is used to improve further
automotive reliability results. Some units will experience single bit corrections throughout
the life of the product with no impact to product reliability.
Table 29. Flash memory read access timing(1)
Conditions(2)
Symbol
fREAD
C
CC
Frequency
Parameter
Code flash
memory
Data flash
memory
range
P
5 wait states
13 wait states
120 —100
C
4 wait states
11 wait states
100—80
D Maximum frequency for Flash
C reading
3 wait states
9 wait states
80—64
2 wait states
7 wait states
64—40
C
1 wait states
4 wait states
40—20
C
0 wait states
2 wait states
20—0
Unit
MHz
1. Max speed is the maximum speed allowed including PLL frequency modulation (FM).
2. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
3.10.2
Flash memory power supply DC characteristics
Table 30 shows the flash memory power supply DC characteristics on external supply.
Table 30. Flash memory power supply DC electrical characteristics
Symbol
Value(2)
Conditions(1)
Parameter
Unit
Min
Typ
Max
ICFREAD(3)
Code flash
memory
IDFREAD
Data flash
memory
13
Code flash
memory
52
Flash memory module
C Sum of the current consumption
read
C on VDD_HV_A on read access
(3)
fCPU = 120 MHz 2%(4)
ICFMOD(3)
IDFMOD(3)
ICFLPW(3)
ICFPWD(3)
IDFPWD(3)
Program/Erase on-going
C Sum of the current consumption while reading flash
C on VDD_HV_A (program/erase)
memory registers
fCPU = 120 MHz 2% (4)
Sum of the current consumption
C
on VDD_HV_A during flash
C
memory low power mode
Sum of the current consumption
C
on VDD_HV_A during flash
C
memory power down mode
mA
mA
Data flash
memory
13
Code flash
memory
1.1
Code flash
memory
150
Data flash
memory
150
mA
µA
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = –40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. Data based on characterization results, not tested in production.
4. fCPU 120 MHz 2 % can be achieved over full temperature 125 °C ambient, 150 °C junction temperature.
74/123
33
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
3.10.3
Electrical Characteristics
Flash memory start-up/switch-off timings
Table 31. Start-up time/Switch-off time
Symbol
TFLARSTEXIT
C
C
C
D
Delay for flash memory module to exit
reset mode
C
C
T
Delay for flash memory module to exit
low-power mode
Unit
(1)
Code
flash
memory
Code
flash
memory
Min
Typ
—
—
—
Data flash
memory
TFLALPEXIT
Value
Conditions
Parameter
—
Max
125
—
—
—
—
0.5
µs
TFLAPDEXIT
C
C
Delay for flash memory module to exit
T
power-down mode
Code
flash
memory
—
—
Data flash
memory
TFLALPENTR
Y
C
C
T
Delay for flash memory module to
enter low-power mode
Code
flash
memory
—
—
30
—
—
—
—
0.5
1. VDD = 3.3 V ± 10 % / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
3.11
Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
3.11.1
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application.
Software recommendations The software flowchart must include the management of
runaway conditions such as:
–
Corrupted program counter
–
Unexpected reset
–
Critical data corruption (control registers)
Pre-qualification trials Most of the common failures (unexpected reset and program
counter corruption) can be reproduced by manually forcing a low state on the reset pin
or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When
unexpected behavior is detected, the software can be hardened to prevent
unrecoverable errors occurring (see application note Software Techniques For
Improving Microcontroller EMC Performance (AN1015)).
DocID17478 Rev 9
75/123
122
Electrical Characteristics
3.11.2
SPC564Bxx-SPC56ECxx
Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission
test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI
measurements.
Table 32. EMI radiated emission measurement(1)(2)
Value
Symbol
C
Parameter
Conditions
Unit
Min
—
S
R
— Scan range
fCPU
S
R
—
VDD_LV
S
R
—
SEMI
C
C
Typ
—
0.150
Operating
frequency
—
—
LV operating
voltages
—
VDD = 5 V, TA = 25 °C,
LQFP176 package
Test conforming to IEC
61967-2,
fOSC = 40 MHz/fCPU = 120
MHz
T Peak level
Max
1000
MHz
120
—
MHz
—
1.28
—
V
No PLL
frequency
modulation
—
—
18
dBµV
± 2% PLL
frequency
modulation
—
—
14(3)
dBµV
1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.
2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local
marketing representative.
3. All values need to be confirmed during device validation.
3.11.3
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
3.11.3.1
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts (n+1) supply pin). This test
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note Electrostatic Discharge Sensitivity Measurement (AN1181).
Table 33. ESD absolute maximum ratings(1)(2)
Class
Max value(3)
TA = 25 °C
conforming to AEC-Q100-002
H1C
2000
Electrostatic discharge voltage
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003
M2
200
Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-011
C3A
Symbol
Ratings
VESD(HBM)
Electrostatic discharge voltage
(Human Body Model)
VESD(MM)
VESD(CDM)
76/123
Conditions
DocID17478 Rev 9
500
750
(corners)
Unit
V
SPC564Bxx-SPC56ECxx
Electrical Characteristics
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at
room temperature followed by hot temperature, unless specified otherwise in the device specification.
3. Data based on characterization results, not tested in production.
3.11.3.2
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply over-voltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 34. Latch-up results
Symbol
LU
3.12
Parameter
Static latch-up class
Conditions
TA = 125 °C
conforming to JESD 78
Class
II level A
Fast external crystal oscillator (4–40 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 10 describes a simple model of
the internal oscillator driver and provides an example of a connection for an oscillator or a
resonator.
Table 35 provides the parameter description of 4 MHz to 40 MHz crystals used for the
design simulations.
DocID17478 Rev 9
77/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Figure 10. Crystal oscillator and resonator connection scheme
EXTAL
C1
Crystal
XTAL
XTAL
RD
C2
DEVICE
VDD
I
R
EXTAL
EXTAL
Resonator
DEVICE
XTAL
DEVICE
Note:
XTAL/EXTAL must not be directly used to drive external circuits.
Table 35. Crystal description
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)(1)
Shunt
capacitance
between
xtalout
and xtalin
C0(2) (pF)
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR
4
NX8045GB
300
2.68
591.0
21
2.93
8
300
2.46
160.7
17
3.01
10
150
2.93
86.6
15
2.91
120
3.11
56.5
15
2.93
120
3.90
25.3
10
3.00
50
6.18
2.56
8
3.49
12
NX5032GA
16
40
NX5032GA
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,
etc.).
78/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Figure 11. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics
S_MTRANS bit (ME_GS register)
1
0
VXTAL
1/fMXOSC
VFXOSC
90%
VFXOSCOP
10%
TMXOSCSU
valid internal clock
Table 36. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics
Symbol
fFXOSC
C
Parameter
Fast external
SR — crystal oscillator
frequency
Value(2)
Conditions(1)
—
Unit
Min
Typ
Max
4.0
—
40.0
VDD = 3.3 V ± 10%
4(3)
—
20(3)
gmFXOSC
Fast external
CC C crystal oscillator
transconductance
VDD = 5.0 V ± 10%
6.5(3)
—
25(3)
VFXOSC
Oscillation
CC T amplitude at
EXTAL
fOSC = 40 MHz
For both VDD = 3.3 V ±
10%, VDD = 5.0 V ± 10%
—
0.95
—
—
1.8
VDD = 3.3 V ± 10%,
fOSC = 40 MHz
—
2
2.2
VDD = 5.0 V ± 10%,
fOSC = 40 MHz
—
2.3
2.5
VDD = 3.3 V ± 10%,
fOSC = 16 MHz
—
1.3
1.5
VDD = 5.0 V ± 10%,
fOSC = 16 MHz
—
1.6
1.8
fOSC = 40 MHz
For both VDD = 3.3 V ±
10%, VDD = 5.0 V ± 10%
—
—
5
VFXOSCOP
IFXOSC(4)
TFXOSCSU
CC P
Oscillation
operating point
Fast external
CC T crystal oscillator
consumption
Fast external
CC T crystal oscillator
start-up time
—
DocID17478 Rev 9
MHz
mA/V
V
V
mA
ms
79/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Table 36. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics (continued)
Symbol
C
Value(2)
Conditions(1)
Parameter
VIH
Input high level
SR P CMOS
(Schmitt Trigger)
Oscillator bypass mode
VIL
Input low level
SR P CMOS
(Schmitt Trigger)
Oscillator bypass mode
Unit
Min
Typ
Max
0.65VDD_
—
VDD_HV_A + 0.4
V
—
0.35VDD_HV_A
V
HV_A
0.3
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. Based on ATE Cz
4. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled
peripherals).
3.13
Slow external crystal oscillator (32 kHz) electrical
characteristics
The device provides a low power oscillator/resonator driver.
Figure 12. Crystal oscillator and resonator connection scheme
OSC32K_EXTAL
OSC32K_EXTAL
Resonator
Crystal
C1
RP
OSC32K_XTAL
C2
DEVICE
Note:
OSC32K_XTAL
DEVICE
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.
l
80/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
Figure 13. Equivalent circuit of a quartz crystal
C0
C1
Crystal
Cm
C2
Rm
Lm
C1
C2
Table 37. Crystal motional characteristics(1)
Value
Symbol
Parameter
Conditions
Unit
Min
Typ
Max
Lm
Motional inductance
—
—
11.796
—
KH
Cm
Motional capacitance
—
—
2
—
fF
Load capacitance at OSC32K_XTAL
and OSC32K_EXTAL with respect to
ground(2)
—
18
—
28
pF
C1/C2
AC coupled @ C0 = 2.85 pF(4)
Rm(3)
—
—
65
pF(4)
—
—
50
AC coupled @ C0 = 7.0 pF(4)
—
—
35
AC coupled @ C0 = 9.0 pF(4)
—
—
30
AC coupled @ C0 = 4.9
Motional resistance
kW
1. The crystal used is Epson Toyocom MC306.
2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It
includes all the parasitics due to board traces, crystal and package.
3. Maximum ESR (Rm) of the crystal is 50 k
4. C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.
DocID17478 Rev 9
81/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics
OSCON bit (OSC_CTL register)
1
0
VOSC32K_XTAL
1/fLPXOSC32K
VLPXOSC32K
90%
10%
TLPXOSC32KSU
valid internal clock
Table 38. Slow external crystal oscillator (32 kHz) electrical characteristics
Symbol
C
Value(2)
Conditions(1)
Parameter
Unit
Min
Typ
Max
32
32.76
8
40
VDD = 3.3 V ± 10%,
13(3)
—
33(3)
VDD = 5.0 V ± 10%
15(3)
—
35(3)
fSXOSC
S
Slow external crystal oscillator
—
R
frequency
gmSXOSC
C
Slow external crystal oscillator
—
C
transconductance
VSXOSC
C
C
T Oscillation amplitude
—
1.2
1.4
1.7
V
ISXOSCBIAS
C
C
T Oscillation bias current
—
1.2
—
4.4
µA
ISXOSC
C
C
T
Slow external crystal oscillator
consumption
—
—
—
7
µA
TSXOSCSU
C
C
T
Slow external crystal oscillator
start-up time
—
—
—
2(4)
s
—
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. Based on ATE CZ
4. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.
82/123
DocID17478 Rev 9
kHz
µA/V
SPC564Bxx-SPC56ECxx
3.14
Electrical Characteristics
FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to
generate a fast system clock from the main oscillator driver.
Table 39. FMPLL electrical characteristics
Symbol
C
Parameter
Conditions
Value(2)
(1)
Unit
Min
Typ
Max
fPLLIN
S
— FMPLL reference clock(3)
R
—
4
—
64
MHz
PLLIN
S
FMPLL reference clock
—
R
duty cycle(3)
—
40
—
60
%
fPLLOUT
C
FMPLL output clock
P
C
frequency
—
16
—
120
MHz
fCPU
S
— System clock frequency
R
—
—
—
fFREE
C
P Free-running frequency
C
—
20
—
150
MHz
tLOCK
C
P FMPLL lock time
C
Stable oscillator (fPLLIN = 16 MHz)
40
100
µs
tLTJIT
C
— FMPLL long term jitter
C
fPLLIN = 40 MHz (resonator),
fPLLCLK @ 120 MHz, 4000 cycles
—
—
6
(for < 1ppm)
ns
C
C FMPLL consumption
C
TA = 25 °C
—
—
3
mA
IPLL
120 + 2%(4) MHz
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. PLLIN clock retrieved directly from 4-40 MHz XOSC or 16 MIRC. Input characteristics are granted when oscillator is used
in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
4. fCPU 120 + 2% MHz can be achieved at 125 °C.
3.15
Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock
at the power-up of the device and can also be used as input to PLL.
Table 40. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol
fFIRC
C
Value(2)
Conditions(1)
Parameter
C
P
C
Fast internal RC oscillator high
frequency
S
—
R
TA = 25 °C, trimmed
DocID17478 Rev 9
Unit
Min
Typ
Max
—
16
—
MHz
—
12
20
83/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Table 40. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)
Symbol
C
IFIRCRUN(3)
Fast internal RC oscillator high
C
T frequency current in running
C
mode
IFIRCPWD
D
Fast internal RC oscillator high
C
D frequency current in power
C
down mode
D
IFIRCSTOP
Typ
Max
TA = 25 °C, trimmed
—
—
200
µA
TA = 25 °C
—
—
100
nA
TA = 55 °C
—
—
200
nA
TA = 125 °C
—
—
1
µA
sysclk = off
—
500
—
sysclk = 2 MHz
—
600
—
sysclk = 4 MHz
—
700
—
sysclk = 8 MHz
—
900
—
sysclk = 16 MHz
—
1250
—
VDD = 5.0 V ±
10%
—
—
2.0
VDD = 3.3 V ±
10%
—
—
5
Fast internal RC oscillator high
C
T frequency and system clock
TA = 25 °C
C
current in stop mode
TA = 55 °C
—
C
C
Unit
Min
C
TFIRCSU
Value(2)
Conditions(1)
Parameter
Fast internal RC oscillator
start-up time
µs
—
TA =
125 °C
—
VDD = 5.0 V ±
10%
—
—
2.0
VDD = 3.3 V ±
10%
—
—
5
+1
FIRCPRE
Fast internal RC oscillator
C
C precision after software
C
trimming of fFIRC
TA = 25 °C
1
—
FIRCTRIM
C
Fast internal RC oscillator
C
C
trimming step
TA = 25 °C
—
1.6
FIRCVAR
Fast internal RC oscillator
variation over temperature and
C
C supply with respect to fFIRC at
C
TA = 25 °C in high-frequency
configuration
—
5
—
+5
2. All values need to be confirmed during device validation.
3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
DocID17478 Rev 9
%
%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
84/123
µA
%
SPC564Bxx-SPC56ECxx
3.16
Electrical Characteristics
Slow internal RC oscillator (128 kHz) electrical
characteristics
The device provides a 128 kHz low power internal RC oscillator. This can be used as the
reference clock for the RTC module.
Table 41. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol
fSIRC
C
Parameter
Conditions
C
P
C
Slow internal RC oscillator low
frequency
S
—
R
Value(2)
(1)
TA = 25 °C, trimmed
Unit
Min
Typ
Max
—
128
—
kHz
untrimmed, across
temperatures
84
—
205
TA = 25 °C, trimmed
—
—
5
µA
µs
ISIRC(3)
C
Slow internal RC oscillator low
C
C
frequency current
TSIRCSU
C
Slow internal RC oscillator startP
C
up time
TA = 25 °C, VDD = 5.0 V ± 10%
—
8
12
SIRCPRE
Slow internal RC oscillator
C
C precision after software trimming
C
of fSIRC
TA = 25 °C
2
—
+2
SIRCTRIM
C
Slow internal RC oscillator
C
C
trimming step
—
—
2.7
—
SIRCVAR
Variation in fSIRC across
C
C temperature and fluctuation in
C
supply voltage, post trimming
—
10
—
+10
%
%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. All values need to be confirmed during device validation.
3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
3.17
ADC electrical characteristics
3.17.1
Introduction
The device provides two Successive Approximation Register (SAR) analog-to-digital
converters (10-bit and 12-bit).
Note:
Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time
i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done,
neither of the ADCs can guarantee their conversion accuracies.
DocID17478 Rev 9
85/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Figure 15. ADC_0 characteristic and error definitions
Offset Error OSE
Gain Error GE
1023
1022
1021
1020
1019
1 LSB ideal = VDD_ADC / 1024
1018
(2)
code out
7
(1)
6
(1) Example of an actual transfer curve
5
(2) The ideal transfer curve
(5)
(3) Differential non-linearity error (DNL)
4
(4) Integral non-linearity error (INL)
(4)
(5) Center of a step of the actual transfer curve
3
(3)
2
1
1 LSB (ideal)
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023
Vin(A) (LSBideal)
Offset Error OSE
3.17.1.1
Input impedance and ADC accuracy
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedance. Placing a capacitor with good high frequency characteristics at the input
pin of the device, can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin;
furthermore, it sources charge during the sampling phase, when the analog signal source is
a high-impedance source. A real filter, can typically be obtained by using a series resistance
with a capacitor on the input pin (simple RC Filter). The RC filtering may be limited
according to the value of source impedance of the transducer or circuit supplying the analog
signal to be measured. The filter at the input pins must be designed taking into account the
dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance
of the ADC itself.
86/123
DocID17478 Rev 9
SPC564Bxx-SPC56ECxx
Electrical Characteristics
In fact a current sink contributor is represented by the charge sharing effects with the
sampling capacitance: being CS and Cp2 substantially two switched capacitances, with a
frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to
ground. For instance, assuming a conversion rate of 1MHz, with CS+Cp2 equal to 3pF, a
resistance of 330K is obtained (Reqiv = 1 / (fc*(CS+Cp2)), where fc represents the
conversion rate at the considered channel). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF,
the external circuit must be designed to respect the following relation
Equation 4
RS + RF
1
V A --------------------- --- LSB
R EQ
2
The formula above provides a constraint for external network design, in particular on
resistive path.
Figure 16. Input equivalent circuit (precise channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
RS
Filter
RF
VA
Current Limiter
RL
CF
CP1
Channel
Selection
Sampling
RSW
RAD
CP2
CS
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW Channel Selection Switch Impedance
RADSampling Switch Impedance
CP Pin Capacitance (two contributions, CP1 and CP2)
CS Sampling Capacitance
DocID17478 Rev 9
87/123
122
Electrical Characteristics
SPC564Bxx-SPC56ECxx
Figure 17. Input equivalent circuit (extended channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
Filter
RS
Current Limiter
RF
RL
CF
VA
CP1
Channel
Selection
Extended
Switch
Sampling
RSW1
RSW2
RAD
CP3
CP2
CS
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limiter Resistance
RSW Channel Selection Switch Impedance (two contributions RSW1 and RSW2)
RADSampling Switch Impedance
CP Pin Capacitance (three contributions, CP1, CP2 and CP3)
CS Sampling Capacitance
A second aspect involving the capacitance network shall be considered. Assuming the three
capacitances CF, CP1 and CP2 initially charged at the source voltage VA (refer to the
equivalent circuit reported in Figure 16): when the sampling phase is started (A/D switch
close), a charge sharing phenomena is installed.
Figure 18. Transient behavior during sampling phase
Voltage Transient on CS
VCS
VA
V