0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC56AP60L3BEAAY

SPC56AP60L3BEAAY

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP100

  • 描述:

    IC MCU 32BIT 1MB FLASH 100LQFP

  • 数据手册
  • 价格&库存
SPC56AP60L3BEAAY 数据手册
SPC56AP60x, SPC56AP54x SPC560P60x, SPC560P54x 32-bit Power Architecture® based MCU with 1088KB Flash memory and 80KB RAM for automotive chassis and safety applications Datasheet - production data  General purpose I/Os (80 GPIO + 26 GPI on LQFP144; 49 GPIO + 16 GPI on LQFP100) LQFP100 14 x 14 mm  2 general purpose eTimer units – 6 timers, each with up/down count capabilities – 16-bit resolution, cascadable counters – Quadrature decode with rotation direction flag – Double buffer input capture and output compare LQFP144 20 x 20 mm Features  AEC-Q10x qualified  64 MHz, single issue, 32-bit CPU core complex (e200z0h) – Compliant with Power Architecture® embedded category – Variable Length Encoding (VLE)  Memory organization – Up to 1024 KB on-chip code Flash memory with additional 64 KB for EEPROM emulation (data flash), with ECC, with erase/program controller – Up to 80 KB on-chip SRAM with ECC  Fail safe protection – ECC protection on system SRAM and Flash – Safety port – SWT with servicing sequence pseudorandom generator – Power management – Non-maskable interrupt for both cores – Fault collection and control unit (FCCU) – Safe mode of system-on-chip (SoC) – Register protection scheme  Nexus® L2+ interface  Single 3.3 V or 5 V supply for I/Os and ADC  Communications interfaces – 2 LINFlex modules (LIN 2.1,  1 × Master/Slave, 1 × Master Only) – 5 DSPI modules with automatic chip select generation – 2 FlexCAN interfaces (2.0B Active) with 32 message buffers – 1 Safety port based on FlexCAN; usable as third CAN when not used as safety port – 1 FlexRay™ module (V2.1) with dual or single channel, 64 message buffers and up to 10 Mbit/s  2 CRC units with three contexts and 3 hardwired polynomials(CRC8,CRC32 and CRC-16-CCITT)  10-bit A/D converter – 27 input channels and pre-sampling feature – Conversion time < 1 µs including sampling time at full precision – Programmable cross triggering unit (CTU) – 4 analog watchdog with interrupt capability  On-chip CAN/UART Bootstrap loader with boot assist module (BAM)  Ambient temperature ranges: –40 to 125 °C or –40 to 105 °C  2 on-platform peripherals set with 2 INTC  16-channel eDMA controller with multiple transfer request sources June 2016 This is information on a product in full production. DocID18340 Rev 6 1/105 www.st.com SPC56xP54x, SPC56xP60x Table 1. Device summary Part number Package 2/105 768 KB Flash 1 MB Flash LQFP144 SPC560P54L5 SPC56AP54L5 SPC560P60L5 SPC56AP60L5 LQFP100 SPC560P54L3 SPC56AP54L3 SPC560P60L3 SPC56AP60L3 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 High performance e200z0h core processor . . . . . . . . . . . . . . . . . . . . . . 14 1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.4 On-chip flash memory with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.5 On-chip SRAM with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.7 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.8 Frequency modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 17 1.5.9 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.10 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.11 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.12 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.13 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.14 Fault collection and control unit (FCCU) . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.15 System integration unit (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.16 Boot and censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.17 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.18 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.19 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.20 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.21 Serial communication interface module (LINFlex) . . . . . . . . . . . . . . . . . 22 1.5.22 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 22 1.5.23 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.24 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5.25 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5.26 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.27 Nexus development interface (NDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.28 IEEE 1149.1 (JTAG) controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DocID18340 Rev 6 3/105 5 Contents SPC56xP54x, SPC56xP60x 1.5.29 2 3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 27 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 General notes for specifications at maximum junction temperature . . . 56 3.6 Electromagnetic interference (EMI) characteristics . . . . . . . . . . . . . . . . . 58 3.7 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 58 3.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 58 3.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 58 3.8.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 60 3.9 Power Up/Down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.10 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.10.1 3.11 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.11.1 DC electrical characteristics (5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.11.2 DC electrical characteristics (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.11.3 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.12 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.13 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.14 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 74 3.15 Analog-to-Digital converter (ADC) electrical characteristics . . . . . . . . . . . 74 3.16 4/105 On-chip voltage regulator (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.15.1 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.15.2 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 81 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x 3.17 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.17.1 3.18 4 Contents Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.18.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.18.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.18.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.18.4 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.18.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 LQFP144 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.2 LQFP100 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 DocID18340 Rev 6 5/105 5 List of tables SPC56xP54x, SPC56xP60x List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. 6/105 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SPC56xP54x/SPC56xP60x device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SPC56xP54x/SPC56xP60x device configuration difference . . . . . . . . . . . . . . . . . . . . . . . 10 SPC56xP54x/SPC56xP60x series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Thermal characteristics for 144-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Thermal characteristics for 100-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ESD ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Approved NPN ballast components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . . . . . . . . . . 64 Supply current (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . . . . . . . . . . 67 Supply current (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Peripherals supply current (5 V and 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 I/O supply segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . 72 Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . 72 Input clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 PLLMRFM electrical specifications (VDDPLL = 1.08 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Flash read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. SPC56xP54x/SPC56xP60x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 LQFP176 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 LQFP144 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LQFP100 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Power supplies constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Independent ADC supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Power supplies constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Independent ADC supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Voltage regulator configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Power-up typical sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Power-down typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Brown-out typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 DSPI classic SPI timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 DSPI classic SPI timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DSPI classic SPI timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DSPI classic SPI timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DSPI modified transfer format timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . 94 DSPI modified transfer format timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . 95 DSPI modified transfer format timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 95 DSPI modified transfer format timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 96 DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DocID18340 Rev 6 7/105 7 Introduction SPC56xP54x, SPC56xP60x 1 Introduction 1.1 Document overview This document provides electrical specifications, pin assignments, and package diagrams for the SPC56xP54x/SPC56xP60x series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual. 1.2 Description This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications specifically the airbag application. This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. 1.3 Device comparison Table 2 provides a summary of different members of the SPC56xP54x/SPC56xP60x family and their features—relative to Full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family. Table 2. SPC56xP54x/SPC56xP60x device comparison Feature Code Flash memory (with ECC) SPC560P54 SPC560P60 SPC56AP54 SPC56AP60 768 KB 1 MB 768 KB 1 MB 64 KB 80 KB Data Flash / EE (with ECC) SRAM (with ECC) Processor core 64 KB 64 KB 80 KB 32-bit e200z0h Instruction set VLE CPU performance 0-64 MHz FMPLL (frequency-modulated phaselocked loop) modules 1 INTC (interrupt controller) channels PIT (periodic interrupt timer) 8/105 32-bit Dual e200z0h 148 1 (includes four 32-bit timers) DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Introduction Table 2. SPC56xP54x/SPC56xP60x device comparison (continued) Feature SPC560P54 SPC560P60 Enhanced DMA (direct memory access) channels SPC56AP54 16 FlexRay Yes (64 message buffer) 3(1),(2) FlexCAN (controller area network) Safety port Yes (via third FlexCAN module) Yes(3) FCCU (fault collection and control unit) CTU (cross triggering unit) Yes eTimer channels 2×6 FlexPWM (pulse-width modulation) channels No Analog-to-digital converters (ADC) One (10-bit, 27-channel)(4) LINFlex modules 2 (1 × Master/Slave, 1 × Master only)(5) DSPI (deserial serial peripheral interface) modules 5(6) CRC (cyclic redundancy check) units 2(7) JTAG interface Yes Yes (Level 2+)(8) Nexus port controller (NPC) Digital power supply(9) Supply 3.3 V or 5 V single supply with external transistor Analog power supply 3.3 V or 5 V Internal RC oscillator 16 MHz External crystal oscillator 4–40 MHz LQFP100 LQFP144 Packages Temperature SPC56AP60 Standard ambient temperature LQFP100 LQFP144 LQFP176(10) –40 to 125 °C 1. Each FlexCAN module has 32 message buffers. 2. One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s. 3. Enhanced FCCU version. 4. Same amount of ADC channels as on SPC560P44/50 not considering the internally connected ones. 26 channels on LQFP144 and 16 channels on LQFP100. 5. LinFlex_1 is Master Only. 6. Increased number of CS for DSPI_1. 7. Upgraded specification with addition of 8-bits polynomial (CRC-8 VDA CAN) support and 3rd context. 8. Improved debugging capability with data trace capability and increased Nexus throughput available on emulation package. 9. 3.3 V range and 5 V range correspond to different orderable parts. 10. Software development package only. Not available for production. DocID18340 Rev 6 9/105 104 Introduction SPC56xP54x, SPC56xP60x SPC56xP54x/SPC56xP60x is present on the market in two different options enabling different features: Full-featured, and Airbag configuration. Table 3 shows the main differences between the two versions. Table 3. SPC56xP54x/SPC56xP60x device configuration difference Feature FlexCAN (controller area network) Enhanced Full-featured Full-featured Airbag 3 2 2 CTU (cross triggering unit) Yes No Yes (64 message buffer) No DSPI (deserial serial peripheral interface) modules 5 4 CRC (cyclic redundancy check) unit 2 1 FlexRay 1.4 Block diagram Figure 1 shows a top-level block diagram of the SPC56xP54x/SPC56xP60x MCU. Table 4 summarizes the functions of the blocks. 10/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Introduction Figure 1. SPC56xP54x/SPC56xP60x block diagram e200z0 Core PMU INTC_0 SWT_0 STM_0 e200z0 Core 32-bit general purpose registers Variable Exception length handler encoded instructions 32-bit general purpose registers Variable Exception length handler encoded instructions INTC_1 Special purpose registers Integer Instruction execution unit unit Special purpose registers Integer Instruction execution unit unit SWT_1 Branch prediction unit Load/Store unit ECSM_0 Nexus 2+ INSTR STM_1 JTAG ECSM_1 Nexus port controller SEMA4_0 DMAMUX_0 Branch prediction unit Load/Store unit JTAG Nexus 2+ SEMA4_1 DATA INSTR DATA DMA_0 M2 M3 M0 M1 M5 M6 Cross Bar Switch (XBAR, AMBA 2.0 v6 AHB) XBAR_0 Memory protection unit MPU_0 S7 Memory protection unit MPU_1 S2 S0 S1 NASPS_0 P0 PBRIDGE_0 S6 S3 NASPS_1 P1 PFLASHC_0 PBRIDGE_1 SRAMC_0 1024KB code flash with ECC 4x16KB data flash with ECC 32KB SRAM with ECC FCCU_0 DSPI_4 FlexCAN_1 MC_RGM XOSC FMPLL IRCOSC CMU_1 CMU_0 WakeUp MC_CGM FlexCAN_0 Peripheral Bus (IPS) SafetyPort_0 LINFlex_1 LINFlex_0 DSPI_3 DSPI_2 DSPI_1 DSPI_0 eTimer_1 eTimer_0 CTU_0 ADC_0 FlexRay Peripheral Bus (IPS) CRC_1 48KB SRAM with ECC MC_ME SSCM MC_PCU PIT BAM CRC_0 SIUL SRAMC_1 26 DocID18340 Rev 6 11/105 104 Introduction SPC56xP54x, SPC56xP60x Table 4. SPC56xP54x/SPC56xP60x series block summary Block Function Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter Boot assist module (BAM) Block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Controller area network (FlexCAN) Supports the standard CAN communications protocol Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width. Cyclic redundancy checker (CRC) unit Is dedicated to the computation of CRC off-loading the CPU. Each context has a separate CRC computation engine in order to allow the concurrent computation of the CRC of multiple data streams. Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Enhanced direct memory access (eDMA) Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels Enhanced timer (eTimer) Provides enhanced programmable up/down modulo counting Error correction status module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes External oscillator (XOSC) Provides an output clock used as input reference for FMPLL_0 or as reference clock for specific modules depending on system needs Fault collection and control unit (FCCU) Provides functional safety to the device Flash memory Provides non-volatile storage for program code, constants and variables FlexRay (FlexRay communication Provides high-speed distributed control for advanced automotive applications controller) Frequency-modulated phaselocked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications 12/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Introduction Table 4. SPC56xP54x/SPC56xP60x series block summary (continued) Block Function Peripheral bridge (PBRIDGE) Is the interface between the system bus and on-chip peripherals Periodic interrupt timer (PIT) Produces periodic interrupts and triggers Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Semaphore unit (SEMA4) Provides the hardware support needed in multi-core systems for implementing semaphores and provide a simple mechanism to achieve lock/unlock operations via a single write access Static random-access memory (SRAM) Provides storage for program code, constants, and variables Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR(1) and operating system tasks System watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events. 1. AUTOSAR: AUTomotive Open System ARchitecture (see autosar.org web site). DocID18340 Rev 6 13/105 104 Introduction SPC56xP54x, SPC56xP60x 1.5 Feature details 1.5.1 High performance e200z0h core processor The e200z0h Power Architecture core provides the following features: 1.5.2  High performance e200z0 core processor for managing peripherals and interrupts  Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU  Harvard architecture  Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions – Results in smaller code size footprint – Minimizes impact on performance  Branch processing acceleration using lookahead instruction buffer  Load/store unit – 1-cycle load latency – Misaligned access support – No load-to-use pipeline bubbles  Thirty-two 32-bit general purpose registers (GPRs)  Separate instruction bus and load/store bus Harvard architecture  Hardware vectored interrupt support  Reservation instructions for implementing read-modify-write constructs  Long cycle time instructions, except for guarded loads, do not increase interrupt latency  Extensive system development support through Nexus debug port  Non maskable Interrupt support Crossbar switch (XBAR) The XBAR multi-port crossbar switch supports simultaneous connections between six master ports and six slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width. The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. Requesting masters are treated with equal priority and will be granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access. 14/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Introduction The crossbar provides the following features:   1.5.3 6 master ports: – 2 e200z0 core complex Instruction ports – 2 e200z0 core complex Load/Store Data ports – eDMA – FlexRay 6 slave ports: – 2 Flash memory (code flash and data flash) – 2 SRAM (48 KB + 32 KB) – 2 PBRIDGE  32-bit internal address, 32-bit internal data paths  Fixed Priority Arbitration based on Port Master  Temporary dynamic priority elevation of masters Enhanced direct memory access (eDMA) The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size. The eDMA module provides the following features: 1.5.4  16 channels support independent 8, 16 or 32-bit single value or block transfers  Supports variable sized queues and circular queues  Source and destination address registers are independently configured to postincrement or remain constant  Each transfer is initiated by a peripheral, CPU, or eDMA channel request  Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer  DMA transfers possible between system memories, DSPIs, ADC, eTimer and CTU  Programmable DMA Channel Multiplexer for assignment of any DMA source to any available DMA channel with up to 30 potential request sources  eDMA abort operation through software On-chip flash memory with ECC The SPC56xP54x/SPC56xP60x provides up to 1024 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash memory module interfaces the system bus to a dedicated flash memory array controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains a four-entry, 4x128-bit prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses are registered and are forwarded to the system bus on the following cycle, incurring 2 wait states. DocID18340 Rev 6 15/105 104 Introduction SPC56xP54x, SPC56xP60x The flash memory module provides the following features:  Up to 1024 KB flash memory – 1.5.5 14 blocks (2×16 KB + 2×32 KB + 2×16 KB + 2×64 KB + 6×128 KB) code flash – 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash – Full Read While Write (RWW) capability between code and data flash  Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to prefetch code or data or both)  Typical flash memory access time: 0 wait states for buffer hits, 2 wait states for page buffer miss at 64 MHz  Hardware managed flash memory writes handled by 32-bit RISC Krypton engine  Hardware and software configurable read and write access protections on a per-master basis.  Configurable access timing allowing use in a wide range of system frequencies.  Multiple-mapping support and mapping-based block access timing (0–31 additional cycles) allowing use for emulation of other memory types.  Software programmable block program/erase restriction control.  Erase of selected block(s)  Read page size of 128 bits (4 words)  64-bit ECC with single-bit correction, double-bit detection for data integrity  Embedded hardware program and erase algorithm  Erase suspend, program suspend and erase-suspended program  Censorship protection scheme to prevent flash memory content visibility  Hardware support for EEPROM emulation On-chip SRAM with ECC The SPC56xP54x/SPC56xP60x SRAM module provides a general-purpose memory of up to 80 KB. The SRAM module provides the following features:   Supports read/write accesses mapped to the SRAM memory from any master Up to 80 KB general purpose RAM – 1.5.6 2 blocks (48 KB + 32 KB)  Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory  Typical SRAM access time: 0 wait state for reads and 32-bit writes; 1 wait state for 8and 16-bit writes if back to back with a read to same memory block Interrupt controller (INTC) The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To 16/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Introduction allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource can not preempt each other. The INTC provides the following features:  Unique 9-bit vector for each separate interrupt source  8 software triggerable interrupt sources  16 priority levels with fixed hardware arbitration within priority levels for each interrupt source  Ability to modify the ISR or task priority. –  Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources. 2 external high priority interrupts directly accessing the main core and IOP critical interrupt mechanism The INTC module is replicated for each processor. 1.5.7 System clocks and clock generation The following list summarizes the system clock and clock generation on the SPC56xP54x/SPC56xP60x:  Lock detect circuitry continuously monitors lock status  Loss of clock (LOC) detection for PLL outputs  Programmable output clock divider (1, 2, 4, 8)  Programmable output clock divider (1, 2, 3 to 256)  eTimer module running at the same frequency as the e200z0h core  On-chip oscillator with automatic level control  Internal 16 MHz RC oscillator for rapid start-up and safe mode – 1.5.8 Supports frequency trimming by user application Frequency modulated phase-locked loop (FMPLL) The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The FMPLL multiplication factor, output clock divider ratio are all software configurable. The FMPLL has the following major features:  Input clock frequency from 4 MHz to 40 MHz  Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz  Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock  Modulation enabled/disabled through software DocID18340 Rev 6 17/105 104 Introduction SPC56xP54x, SPC56xP60x  Triangle wave modulation  Programmable modulation depth (±0.25% to ±4% deviation from center frequency) –  1.5.9 Programmable modulation frequency dependent on reference frequency Self-clocked mode (SCM) operation Main oscillator The main oscillator provides these features: 1.5.10  Input frequency range 4 MHz to 40 MHz  Crystal input mode or Oscillator input mode  PLL reference Internal RC oscillator This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap reference voltage. The RC Oscillator provides these features: 1.5.11  Nominal frequency 16 MHz  ±6% variation over voltage and temperature after process trim  Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL  RC oscillator is used as the default system clock during startup Periodic interrupt timer (PIT) The PIT module implements these features: 1.5.12  Up to four general purpose interrupt timers  32-bit counter resolution  Clocked by system clock frequency  Each channel can be used as trigger for a DMA request System timer module (STM) The STM module implements these features:  32-bit up counter with 8-bit prescaler  Four 32-bit compare channels  Independent interrupt source for each channel  Counter can be stopped in debug mode The STM module is replicated for each processor. 18/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x 1.5.13 Introduction Software watchdog timer (SWT) The SWT has the following features:  Fault tolerant output  Safe internal RC oscillator as reference clock  Windowed watchdog  Program flow control monitor with 16-bit pseudorandom key generation The SWT module is replicated for each processor. 1.5.14 Fault collection and control unit (FCCU) The FCCU provides an independent fault reporting mechanism even if the CPU is exhibiting unstable behaviors. The FCCU module has the following features: 1.5.15  Redundant collection of hardware checker results  Redundant collection of error information and latch of faults from critical modules on the device  Collection of self-test results  Configurable and graded fault control – Internal reactions (no internal reaction, IRQ) – External reaction (failure is reported to the external/surrounding system via configurable output pins) System integration unit (SIUL) The SPC56xP54x/SPC56xP60x SIUL controls MCU pad configuration, external interrupts, general purpose I/O (GPIO) pin configuration, and internal peripheral multiplexing. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. The SIUL provides the following features:  Centralized general purpose input output (GPIO) control of input/output pins and analog input-only pads (package dependent)  All GPIO pins can be independently configured to support pull-up, pull down, or no pull  Reading and writing to GPIO supported both as individual pins and 16-bit wide ports  All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins  ADC channels support alternative configuration as general purpose inputs  Direct readback of the pin value is supported on all pins through the SIU  Configurable digital input filter that can be applied to some general purpose input pins for noise elimination – 1.5.16 Up to 4 internal functions can be multiplexed onto one pin Boot and censorship Different booting modes are available in the SPC56xP54x/SPC56xP60x:  From internal flash memory  Via a serial link DocID18340 Rev 6 19/105 104 Introduction SPC56xP54x, SPC56xP60x The default booting scheme is the one which uses the internal flash memory (an internal pull-down is used to select this mode). The alternate option allows the user to boot via FlexCAN or LINFlex (using the boot assist module software). A censorship scheme is provided to protect the contents of the flash memory and offer increased security for the entire device. A password mechanism is designed to grant the legitimate user access to the non-volatile memory. 1.5.16.1 Boot assist module (BAM) The BAM is a block of read-only one-time programmed memory and is identical for all SPC56xP54x/SPC56xP60x devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user. The BAM provides the following features: 1.5.17  Serial bootloading via FlexCAN or LINFlex.  BAM can accept a password via the used serial communication channel to grant the legitimate user access to the non-volatile memory. Error correction status module (ECSM) The ECSM on this device features the following:  Platform configuration and revision  ECC error reporting for flash memory and SRAM  ECC error injection for SRAM The ECSM module is replicated for each processor. 1.5.18 FlexCAN The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: realtime processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. FlexCAN module contains 32 message buffers. The FlexCAN module provides the following features:  20/105 Full implementation of the CAN protocol specification, Version 2.0B – Standard data and remote frames – Extended data and remote frames – 0 to 8 bytes data length – Programmable bit rate as fast as 1 Mbit/s  32 message buffers of 0 to 8 bytes data length  Each message buffer configurable as Rx or Tx, all supporting standard and extended messages  Programmable loop-back mode supporting self-test operation  3 programmable mask registers DocID18340 Rev 6 SPC56xP54x, SPC56xP60x  Programmable transmit-first scheme: lowest ID or lowest buffer number  Time stamp based on 16-bit free-running timer  Global network time, synchronized by a specific message  Maskable interrupts  Independent of the transmission medium (an external transceiver is assumed)  High immunity to EMI  Short latency time due to an arbitration scheme for high-priority messages    1.5.19 Introduction Transmit features – Supports configuration of multiple mailboxes to form message queues of scalable depth – Arbitration scheme according to message ID or message buffer number – Internal arbitration to guarantee no inner or outer priority inversion – Transmit abort procedure and notification Receive features – Individual programmable filters for each mailbox – 8 mailboxes configurable as a six-entry receive FIFO – 8 programmable acceptance filters for receive FIFO Programmable clock source – System clock – Direct oscillator clock to avoid PLL jitter Safety port (FlexCAN) The SPC56xP54x/SPC56xP60x MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features: 1.5.20  Identical to the FlexCAN module  Bit rate as fast as 7.5 Mb at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required)  32 Message buffers of 0 to 8 bytes data length  Can be used as a third independent CAN module FlexRay The FlexRay module provides the following features:  Full implementation of FlexRay Protocol Specification 2.1  64 configurable message buffers can be handled  Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate  Message buffers configurable as Tx, Rx or RxFIFO  Message buffer size configurable  Message filtering for all message buffers based on FrameID, cycle count and message ID  Programmable acceptance filters for RxFIFO message buffers DocID18340 Rev 6 21/105 104 Introduction 1.5.21 SPC56xP54x, SPC56xP60x Serial communication interface module (LINFlex) The LINFlex on the SPC56xP54x/SPC56xP60x features the following:  Supports LIN Master mode (on both modules), LIN Slave mode (on one module) and UART mode  LIN state machine compliant to LIN1.3, 2.0, and 2.1 Specifications  Handles LIN frame transmission and reception without CPU intervention    1.5.22 LIN features – Autonomous LIN frame handling – Message buffer to store Identifier and up to 8 data bytes – Supports message length as long as 64 bytes – Detection and flagging of LIN errors: Sync field; Delimiter; ID parity; Bit; Framing; Checksum and Time-out errors – Classic or extended checksum calculation – Configurable Break duration as long as 36-bit times – Programmable Baud rate prescalers (13-bit mantissa, 4-bit fractional) – Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection – Interrupt-driven operation with 16 interrupt sources LIN slave mode features – Autonomous LIN header handling – Autonomous LIN response handling UART mode – Full-duplex operation – Standard non return-to-zero (NRZ) mark/space format – Data buffers with 4-byte receive, 4-byte transmit – Configurable word length (8-bit or 9-bit words) – Error detection and flagging – Parity, Noise and Framing errors – Interrupt-driven operation with four interrupt sources – Separate transmitter and receiver CPU interrupt sources – 16-bit programmable baud-rate modulus counter and 16-bit fractional – 2 receiver wake-up methods Deserial serial peripheral interface (DSPI) The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC56xP54x/SPC56xP60x MCU and external devices. 22/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Introduction The DSPI modules provide these features: 1.5.23  Full duplex, synchronous transfers  Master or slave operation  Programmable master bit rates  Programmable clock polarity and phase  End-of-transmission interrupt flag  Programmable transfer baud rate  Programmable data frames from 4 to 16 bits  Up to 28 chip select lines available – 8 each on DSPI_0 and DSPI_1 – 4 each on DSPI_2, DSPI_3, and DSPI_4  8 clock and transfer attributes registers  Chip select strobe available as alternate function on one of the chip select pins for deglitching  FIFOs for buffering up to 5 transfers on the transmit and receive side  Queueing operation possible through use of the eDMA  General purpose I/O functionality on pins when not used for SPI eTimer Two eTimer modules are provided, each with six 16-bit general purpose up/down timer/counter per module. The following features are implemented:  Individual channel capability –  Input capture trigger – Output compare – Double buffer (to capture rising edge and falling edge) – Separate prescaler for each counter – Selectable clock source – 0 % to 100% pulse measurement – Rotation direction flag (Quad decoder mode) Maximum count rate – Equals peripheral clock/2 — for external event counting – Equals peripheral clock — for internal clock counting  Cascadeable counters  Programmable count modulo  Quadrature decode capabilities  Counters can share available input pins  Count once or repeatedly  Preloadable counters  Pins available as GPIO when timer functionality not in use DocID18340 Rev 6 23/105 104 Introduction 1.5.24 SPC56xP54x, SPC56xP60x Analog-to-digital converter (ADC) The ADC module provides the following features: Analog part:  1 on-chip analog-to-digital converter  10-bit AD resolution  1 sample and hold unit per ADC  Conversion time, including sampling time, less than 1 s (at full precision)  Typical sampling time is 150 ns min. (at full precision)  Differential non-linearity error (DNL) ±1 LSB  Integral non-linearity error (INL) ±1.5 LSB  Total unadjusted error (TUE) 2.7 V – 0.3 6.0 ADC ground and low reference SR voltage with respect to ground (VSS_HV) — –0.1 0.1 V Slope characteristics on all VDD SR during power up(4) with respect to ground (VSS_HV) — 3.0(5) 500 x 103 (0.5 [V/µs]) V/s — –0.3 6.0 –0.3 VDD_HV_IOx + 0.3 VDD_HV_REG < 2.7 V VSS_HV_AD 0.3 VDD_HV_AD + 0.3 V VDD_HV_REG > 2.7 V VSS_HV_AD VDD_HV_AD V — –10 10 mA Symbol VSS_HV VDD_HV_IOx(3) Parameter VSS_HV_IOx SR VDD_HV_FL 3.3 V / 5.0 V code and data flash SR memory supply voltage with respect to ground (VSS_HV) VSS_HV_FL SR Relative to VDD_HV_IOx Code and data flash memory ground with respect to ground (VSS_HV) VDD_HV_OSC 3.3 V / 5.0 V crystal oscillator SR amplifier supply voltage with respect to ground (VSS_HV) VSS_HV_OSC 3.3 V / 5.0 V crystal oscillator SR amplifier reference voltage with respect to ground (VSS_HV) VDD_HV_REG — 3.3 V / 5.0 V voltage regulator supply SR voltage with respect to ground Relative to (VSS_HV) VDD_HV_IOx VDD_HV_AD VSS_HV_AD TVDD VIN VINAN IINJPAD 3.3 V / 5.0 V ADC supply and high SR reference voltage with respect to ground (VSS_HV) Voltage on any pin with respect to SR ground (VSS_HV_IOx) with respect to ground (VSS_HV) SR Analog input voltage SR Relative to VDD_HV_IOx — Relative to VDD_HV_IOx Injected input current on any pin during overload condition DocID18340 Rev 6 V V V 49/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Table 9. Absolute maximum ratings(1) (continued) Symbol Parameter Conditions Min Max(2) Unit IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 mA IVDD_LV SR Low voltage static current sink through VDD_LV — — 155 mA SR Storage temperature — –55 150 °C SR Junction temperature under bias — –40 150 °C TSTG TJ 1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined. 3. The difference between each couple of voltage supplies must be less than 300 mV, |VDD_HV_IOy – VDD_HV_IOx | < 300 mV. 4. Guaranteed by device validation. 5. Minimum value of TVDD must be guaranteed until VDD_HV_REG reaches 2.6 V (maximum value of VPORH). Figure 5 shows the constraints of the different power supplies. Figure 5. Power supplies constraints VDD_HV_xxx 6.0V -0.3V VDD_HV_IOx -0.3V 6.0V The SPC56xP54x/SPC56xP60x supply architecture provides an ADC supply that is managed independently of standard VDD_HV supply. Figure 6 shows the constraints of the ADC power supply. 50/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 6. Independent ADC supply(e) VDD_HV_AD 6.0V -0.3V VDD_HV_REG 2.7V -0.3V 3.4 6.0V Recommended operating conditions Table 10. Recommended operating conditions (5.0 V) Symbol VSS_HV VDD_HV_IOx(2) Parameter SR Digital ground SR 5.0 V input/output supply voltage VSS_HV_IOx SR Input/output ground voltage VDD_HV_FL 5.0 V code and data flash SR memory supply voltage VSS_HV_FL SR Code and data flash memory ground VDD_HV_OSC 5.0 V crystal oscillator SR amplifier supply voltage VSS_HV_OSC SR 5.0 V crystal oscillator amplifier reference voltage Conditions Min Max(1) Unit — 0 0 V — 4.5 5.5 V — 0 0 V — 4.5 5.5 Relative to VDD_HV_IOx — 0 0 — 4.5 5.5 Relative to VDD_HV_IOx — V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 V V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 V e. Device design targets the removal of this conditions. To be confirmed by design during device validation. DocID18340 Rev 6 51/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Table 10. Recommended operating conditions (5.0 V) (continued) Symbol Parameter 5.0 V voltage regulator SR supply voltage VDD_HV_REG Conditions Min Max(1) — 4.5 5.5 Relative to VDD_HV_IOx SR — 4.5 5.0 V ADC supply and high Relative to reference voltage V – 0.1 VDD_HV_REG DD_HV_REG VSS_HV_AD SR ADC ground and low reference voltage VDD_LV_CORx (3),(4) VSS_LV_CORx(3) TA 5.5 V — — 0 0 V — — — V SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V — –40 125 °C VDD_LV_REGCOR(3),(4) SR Internal supply voltage VSS_LV_REGCOR V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 VDD_HV_AD (3) Unit SR Ambient temperature under bias 1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. 3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—these are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 4. The low voltage supplies (VDD_LV_xxx) are not all independent.  VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Table 11. Recommended operating conditions (3.3 V) Symbol VSS_HV VDD_HV_IOx(2) Parameter SR Digital ground SR 3.3 V input/output supply voltage VSS_HV_IOx SR Input/output ground voltage VDD_HV_FL SR 3.3 V code and data flash memory supply voltage VSS_HV_FL SR Code and data flash memory ground VDD_HV_OSC SR 3.3 V crystal oscillator amplifier supply voltage VSS_HV_OSC SR 3.3 V crystal oscillator amplifier reference voltage 52/105 Conditions Min Max(1) Unit — 0 0 V — 3.0 3.6 V — 0 0 V — 3.0 3.6 Relative to VDD_HV_IOx VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 — 0 0 — 3.0 3.6 Relative to VDD_HV_IOx — DocID18340 Rev 6 VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 V V V V SPC56xP54x, SPC56xP60x Electrical characteristics Table 11. Recommended operating conditions (3.3 V) (continued) Symbol Parameter 3.3 V voltage regulator SR supply voltage VDD_HV_REG VDD_HV_AD SR 3.3 V ADC supply and high reference voltage VSS_HV_AD SR ADC ground and low reference voltage VSS_LV_REGCOR VDD_LV_CORx(3),(4) VSS_LV_CORx(3) TA Min Max(1) — 3.0 3.6 Relative to VDD_HV_IOx — Unit V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 3.0 Relative to V – 0.1 VDD_HV_REG DD_HV_REG 5.5 V 5.5 — 0 0 V — — — V SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V — –40 125 °C VDD_LV_REGCOR(3),(4) SR Internal supply voltage (3) Conditions SR Ambient temperature under bias 1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. 3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—these are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 4. The low voltage supplies (VDD_LV_xxx) are not all independent.  VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Figure 7 shows the constraints of the different power supplies. DocID18340 Rev 6 53/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 7. Power supplies constraints(f) VDD_HV_xxx 5.5V 3.3V 3.2V VDD_HV_IOx 3.2V 3.3V 5.5V The SPC56xP54x/SPC56xP60x supply architecture provides an ADC supply that is managed independently of standard VDD_HV supply. Figure 8 shows the constraints of the ADC power supply. f. 54/105 IO AC and DC characteristics are guaranteed only in the range 3.0 V–3.6 V when PAD3V5V is low, and in the range 4.5 V–5.5 V when PAD3V5V is high. DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 8. Independent ADC supply VDD_HV_AD 5.5V 3.0V VDD_HV_REG 3.0V 3.5 5.5V Thermal characteristics Table 12. Thermal characteristics for 144-pin LQFP Symbol RJA RJB Parameter D Conditions D Thermal resistance junction-to-ambient, natural convection(1) D junction-to-board(2) Thermal resistance RJCtop D Thermal resistance junction-to-case (top) JB D Junction-to-board, natural convection(4) JC D Junction-to-case, natural convection(5) (3) Typical value Unit Single layer board—1s 53.4 °C/W Four layer board—2s2p 43.9 °C/W Four layer board—2s2p 29.6 °C/W Single layer board—1s 9.3 °C/W Operating conditions 29.8 °C/W Operating conditions 1.3 °C/W 1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package. 2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC. DocID18340 Rev 6 55/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Table 13. Thermal characteristics for 100-pin LQFP Symbol RJA Parameter D D Conditions Thermal resistance junction-to-ambient, natural convection(1) (2) Single layer board—1s 47.3 °C/W Four layer board—2s2p 35.6 °C/W Four layer board—2s2p 19.1 °C/W 9.1 °C/W Operating conditions 19.1 °C/W Operating conditions 1.1 °C/W RJB D Thermal resistance junction-to-board RJCtop D Thermal resistance junction-to-case (top)(3) Single layer board—1s JB JC D D Junction-to-board, natural convection Junction-to-case, natural convection (4) (5) Typical value Unit 1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package. 2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC. 3.5.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: Equation 1 TJ = TA + (RJA × PD) where: TA= ambient temperature for the package (oC) RJA= junction to ambient thermal resistance (oC/W) PD= power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: Equation 2 RJA = RJC + RCA where: RJA = junction to ambient thermal resistance (°C/W) RJC= junction to case thermal resistance (°C/W) RCA= case to ambient thermal resistance (°C/W) 56/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Electrical characteristics RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: Equation 3 TJ = TT + (JT × PD) where: TT= thermocouple temperature on top of the package (°C) JT= thermal characterization parameter (°C/W) PD= power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. 3.5.1.1 References Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 U.S.A. (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at jedec.org web site. 1. C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. 2. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic Packaging and Production, pp. 53-58, March 1998. 3. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. DocID18340 Rev 6 57/105 104 Electrical characteristics 3.6 SPC56xP54x, SPC56xP60x Electromagnetic interference (EMI) characteristics Table 14. EMI testing specifications Parameter Symbol Conditions fOSC/fBUS VDD = 5 V; TA = 25 °C VRE_TEM Radiated emissions, electric field 150 kHz–30 MHz RBW 9 kHz, Step Size 5 kHz 30 MHz–1 GHz RBW 120 kHz, Step Size 80 kHz 3.7 Frequency Level (Max) Unit 8 MHz crystal 150 kHz–150 MHz 64 MHz bus 150–1000 MHz No PLL frequency IEC Level modulation 18 150 kHz–150 MHz 18 150–1000 MHz 12 IEC Level M — Conditions Value Unit 2000 V 8 MHz crystal 64 MHz bus ±2% PLL frequency modulation 12 dBV M — dBV Electrostatic discharge (ESD) characteristics Table 15. ESD ratings(1)(2) Symbol Parameter VESD(HBM) SR Electrostatic discharge (Human Body Model) — VESD(CDM) SR Electrostatic discharge (Charged Device Model) — 750 (corners) 500 (other) V 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3.8 Power management electrical characteristics 3.8.1 Voltage regulator electrical characteristics The internal voltage regulator requires an external NPN ballast to be connected as shown in Figure 9. Table 16 contains all approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the VDD_HV_REG, BCTRL and VDD_LV_CORx pins to less than LReg, see Table 17. Note: The voltage regulator output cannot be used to drive external circuits. Output pins are used only for decoupling capacitances. VDD_LV_COR must be generated using internal regulator and external NPN transistor. It is not possible to provide VDD_LV_COR through external regulator. For the SPC56xP54x/SPC56xP60x microcontroller, capacitors, with total values not below CDEC1, should be placed between VDD_LV_CORx/VSS_LV_CORx close to external ballast transistor emitter. 4 capacitors, with total values not below CDEC2, should be placed close to microcontroller pins between each VDD_LV_CORx/VSS_LV_CORx supply pairs and the 58/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Electrical characteristics VDD_LV_REGCOR/VSS_LV_REGCOR pair. Additionally, capacitors with total values not below CDEC3, should be placed between the VDD_HV_REG/VSS_HV_REG pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature. All reported information are valid for voltage and temperature ranges described in recommended operating condition, Table 10 and Table 11. Figure 9. Voltage regulator configuration VDD_HV_REG CDEC3 SPC56xP54x/SPC5 BJT(1) BCTRL VDD_LV_COR CDEC2 CDEC1 1. Refer to Table 16. Table 16. Approved NPN ballast components Manufacturer Approved derivatives(1) ON Semi BCP68 NXP BCP68-25 Infineon BCP68-25 BCX68 Infineon BCX68-10;BCX68-16;BCX68-25 BC868 NXP BC868 Infineon BC817-16;BC817-25;BC817SU; NXP BC817-16;BC817-25 ST BCP56-16 Infineon BCP56-10;BCP56-16 ON Semi BCP56-10 NXP BCP56-10;BCP56-16 Part BCP68 BC817 BCP56 1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification. DocID18340 Rev 6 59/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Table 17. Voltage regulator electrical characteristics Value Symbol C Parameter Conditions Unit Min Output voltage under VDD_LV_REGCOR CC P maximum load run supply current configuration CDEC1 SR — Post-trimming 1.15 — 1.32 V BJT from Table 16. 3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 µF 19.5 30 — µF BJT BC817, one capacitance of 22 µF 14.3 22 Resulting ESR of all three capacitors of CDEC1 BJT from Table 16. 3x10 µF. Absolute maximum value between 100 kHz and 10 MHz — — 50 m Resulting ESR of the unique capacitor CDEC1 BJT BC817, 1x 22 µF. Absolute maximum value between 100 kHz and 10 MHz 10 — 40 m External decoupling/stability ceramic capacitor 4 capacitances (i.e. X7R or X8R capacitors) with nominal 1200 1760 value of 440 nF — nF 3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 µF; CDEC3 has to be equal or greater than CDEC1 19.5 30 — µF — — — 15 nH External decoupling/stability ceramic capacitor SR — RREG CDEC2 SR — CDEC3 External decoupling/stability SR — ceramic capacitor on VDD_HV_REG SR — LReg 3.8.2 Typ Max Resulting ESL of VDD_HV_REG, BCTRL and VDD_LV_CORx pins µF Voltage monitor electrical characteristics The device implements a Power On Reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the VDD and the VDD_LV voltage while device is supplied: 60/105  POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state  LVDHV3 monitors VDD to ensure device reset below minimum functional supply  LVDHV5 monitors VDD when application uses device in the 5.0V ± 10% range  LVDLVCOR monitors low voltage digital power domain DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Electrical characteristics Table 18. Low voltage monitor electrical characteristics Symbol Parameter Conditions(1) Value Unit Min Max — 1.5 2.7 V TA = 25°C 1.0 — V VPORH T Power-on reset threshold VPORUP P Supply for functional POR module VREGLVDMOK_H P Regulator low voltage detector high threshold — — 2.95 V VREGLVDMOK_L P Regulator low voltage detector low threshold — 2.6 — V VFLLVDMOK_H P Flash memory low voltage detector high threshold — — 2.95 V VFLLVDMOK_L P Flash memory low voltage detector low threshold — 2.6 — V VIOLVDMOK_H P I/O low voltage detector high threshold — — 2.95 V VIOLVDMOK_L P I/O low voltage detector low threshold — 2.6 — V VIOLVDM5OK_H P I/O 5V low voltage detector high threshold — — 4.4 V VIOLVDM5OK_L P I/O 5V low voltage detector low threshold — 3.8 — V VMLVDDOK_H P Digital supply low voltage detector high — — 1.15 V VMLVDDOK_L P Digital supply low voltage detector low — 1.08 — V 1. VDD = 3.3V ± 10% / 5.0V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified. 3.9 Power Up/Down sequencing To prevent an overstress event or a malfunction within and outside the device, the SPC56xP54x/SPC56xP60x implements the following sequence to ensure each module is started only when all conditions for switching it ON are available: 1. A POWER_ON module working on voltage regulator supply controls the correct startup of the regulator. This is a key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5V. Associated POWER_ON (or POR) signal is active low. – Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active. – A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, flash memory and RC16 oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated modules are set into a safe state. DocID18340 Rev 6 61/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 10. Power-up typical sequence VPORH VDD_HV_REG VLVDHV3H 3.3V VPOR_UP 0V 3.3V POWER_ON 0V 3.3V LVDM (HV) 0V VMLVDOK_H VDD_LV_REGCOR 1.2V 0V 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM P0 P1 1.2V 0V Figure 11. Power-down typical sequence VLVDHV3L VDD_HV_REG VPORH 3.3V 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V Internal Reset Generation Module FSM IDLE 62/105 P0 DocID18340 Rev 6 1.2V 0V SPC56xP54x, SPC56xP60x Electrical characteristics Figure 12. Brown-out typical sequence VLVDHV3L VLVDHV3H 3.3V VDD_HV_REG 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM IDLE 3.10 P0 P1 1.2V 0V NVUSRO register Portions of the device configuration, such as high voltage supply, and watchdog enable/disable after reset are controlled via bit values in the non-volatile user options register (NVUSRO) register. For a detailed description of the NVUSRO register, please refer to the device reference manual. 3.10.1 NVUSRO[PAD3V5V] field description Table 19 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 19. PAD3V5V field description(1) Value(2) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. See the device reference manual for more information on the NVUSRO register. 2. '1' is delivery value. It is part of shadow Flash, thus programmable by customer. The DC electrical characteristics are dependent on the PAD3V5V bit value. DocID18340 Rev 6 63/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x 3.11 DC electrical characteristics 3.11.1 DC electrical characteristics (5 V) Table 20 gives the DC electrical characteristics at 5 V (4.5 V < VDD_HV_IOx < 5.5 V, NVUSRO[PAD3V5V]=0) as described in Figure 13. Figure 13. I/O input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Table 20. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) Symbol Parameter Conditions Min Max Unit VIL D Minimum low level input voltage — –0.1(1) — V VIL P Maximum level input voltage — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IOx — V D Maximum high level input voltage — — VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_S P Slow, high level output voltage IOH = –3 mA 0.8VDD_HV_IOx — V VOL_M P Medium, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_M P Medium, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VOL_F P Fast, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_F P Fast, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V — 0.1 VDD_HV_IOx V 0.8 VDD_HV_IOx — V VIH VOL_SYM P Symmetric, low level output voltage IOL = 3 mA VOH_SYM P Symmetric, high level output voltage IOH = –3 mA 64/105 DocID18340 Rev 6 VDD_HV_IOx + 0.1(1) V SPC56xP54x, SPC56xP60x Electrical characteristics Table 20. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) (continued) Symbol Parameter Conditions Min Max VIN = VIL –130 — VIN = VIH — –10 VIN = VIL 10 — VIN = VIH — 130 Unit IPU P Equivalent pull-up current IPD P Equivalent pull-down current IIL P Input leakage current (all bidirectional ports) TA = –40 to 125 °C –1 1 µA IIL P Input leakage current (all ADC input-only ports) TA = –40 to 125 °C –0.5 0.5 µA CIN D Input capacitance — — 10 pF IPU D RESET, equivalent pull-up current VIN = VIL –130 — VIN = VIH — –10 IPD D VIN = VIL 10 — VIN = VIH — 130 RESET, equivalent pull-down current µA µA µA µA 1. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. DocID18340 Rev 6 65/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Table 21. Supply current (5.0 V, NVUSRO[PAD3V5V]=0) Value Symbol Parameter Conditions RUN — Maximum Mode(1) Max VDD_LV_CORE externally forced at 1.3 V 64 MHz ADC Freq = 32 MHz PLL Freq = 64 MHz 90 120 16 MHz 21 37 40 MHz 35 55 64 MHz 48 72 16 MHz 24 41 40 MHz 42 64 64 MHz 58 85 RUN - Platform consumption, single core(2) T VDD_LV_CORE externally forced to 1.3V IDD_LV_CORE RUN - Platform consumption, dual core(3) Supply current P IDD_FLASH T Unit Typ RUN — Maximum Mode(4) VDD_LV_CORE externally forced at 1.3 V 64 MHz 85 113 HALT Mode(5) VDD_LV_CORE externally forced at 1.3 V — 5.5 15 STOP Mode(6) VDD_LV_CORE externally forced at 1.3 V — 4.5 13 Flash memory supply current during read VDD_HV_FL at 5.0 V — — 14 Flash memory supply current during erase operation on 1 flash memory module VDD_HV_FL at 5.0 V — — 42 — 3 4 8 MHz 2.6 3.2 IDD_ADC T ADC supply current — Maximum Mode VDD_HV_AD at 5.0 V ADC Freq = 16 MHz IDD_OSC T OSC supply current VDD_OSC at 5.0 V mA 1. Maximum mode configuration: Code fetched from Flash executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 2. RAM, Code and Data Flash powered, code fetched from Flash executed by single core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM. 3. RAM, Code and Data Flash powered, code fetched from Flash executed by dual core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM. 4. Maximum mode configuration: Code fetched from RAM executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 5. HALT mode configuration, only for the “P” classification: Code Flash memory in low power mode, data Flash memory in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. 6. STOP mode configuration, only for the “P” classification: Code and data Flash memories in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. 66/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x 3.11.2 Electrical characteristics DC electrical characteristics (3.3 V) Table 22 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IOx < 3.6 V, NVUSRO[PAD3V5V]=1) as described in Figure 14. Figure 14. I/O input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Table 22. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)(1) Symbol Parameter Conditions Min Max Unit VIL D Minimum low level input voltage — –0.1(2) — V VIL P Maximum low level input voltage — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IOx — V D Maximum high level input voltage — — VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 1.5 mA — 0.5 V VOH_S P Slow, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V VOL_M P Medium, low level output voltage IOL = 2 mA — 0.5 V VOH_M P Medium, high level output voltage IOH = –2 mA VDD_HV_IOx – 0.8 — V VOL_F P Fast, high level output voltage IOL = 11 mA — 0.5 V VOH_F P Fast, high level output voltage IOH = –11 mA VDD_HV_IOx – 0.8 — V — 0.5 V VDD_HV_IOx – 0.8 — V VIN = VIL –130 — VIN = VIH — –10 VIH VOL_SYM P Symmetric, high level output voltage IOL = 1.5 mA VOH_SYM P Symmetric, high level output voltage IOH = –1.5 mA IPU P Equivalent pull-up current DocID18340 Rev 6 VDD_HV_IOx + 0.1(2) V µA 67/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Table 22. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)(1) (continued) Symbol Parameter Conditions Min Max VIN = VIL 10 — VIN = VIH — 130 Unit IPD P Equivalent pull-down current IIL P Input leakage current  (all bidirectional ports) TA = –40 to 125 °C — 1 µA IIL P Input leakage current  (all ADC input-only ports) TA = –40 to 125 °C — 0.5 µA CIN D Input capacitance — — 10 pF IPU D RESET, equivalent pull-up current VIN = VIL –130 — VIN = VIH — –10 IPD D VIN = VIL 10 — VIN = VIH — 130 RESET, equivalent pull-down current 1. These specifications are design targets and subject to change per device characterization. 2. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. 68/105 DocID18340 Rev 6 µA µA µA SPC56xP54x, SPC56xP60x Electrical characteristics Table 23. Supply current (3.3 V, NVUSRO[PAD3V5V]=1) Value Symbol Parameter Conditions Max 64 MHz 90 120 16 MHz 21 37 40 MHz 35 55 64 MHz VDD_LV_CORE externally forced to 1.3V 16 MHz 48 72 24 41 40 MHz 42 64 64 MHz 58 85 VDD_LV_CORE externally forced at 1.3 V 64 MHz 85 113 HALT Mode(5) VDD_LV_CORE externally forced at 1.3 V — 5.5 15 STOP Mode(6) VDD_LV_CORE externally forced at 1.3 V — 4.5 13 Flash memory supply current during read VDD_HV_FL at 3.3 V — — 14 Flash memory supply current during erase operation on 1 flash memory module VDD_HV_FL at 3.3 V — — 42 — 3 4 8 MHz 2.4 3 RUN — Maximum Mode(1) T RUN - Platform consumption, dual core(3) Supply current P IDD_FLASH VDD_LV_CORE externally forced at 1.3 V ADC Freq = 32 MHz PLL Freq = 64 MHz RUN - Platform consumption, single core(2) IDD_LV_CORE D Unit Typ RUN — Maximum Mode(4) IDD_ADC T ADC supply current — Maximum Mode VDD_HV_AD at 3.3 V ADC Freq = 16 MHz IDD_OSC T OSC supply current VDD_OSC at 3.3 V mA 1. Maximum mode configuration: Code fetched from Flash executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 2. RAM, Code and Data Flash powered, code fetched from Flash executed by single core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM. 3. RAM, Code and Data Flash powered, code fetched from Flash executed by dual core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM. 4. Maximum mode configuration: Code fetched from RAM executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 5. HALT mode configuration, only for the “P” classification: Code Flash memory in low power mode, data Flash memory in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. 6. STOP mode configuration, only for the “P” classification: Code and data Flash memories in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. DocID18340 Rev 6 69/105 104 Value Symbol Parameter Conditions Total (static + dynamic) consumption: – FlexCAN in loop-back mode – XTAL@ 8 MHz used as CAN engine clock source – Message sending period is 580 µs Unit Typ Max 21.6 * fperiph 28.1* fperiph DocID18340 Rev 6 IDD_HV(CAN) CAN (FlexCAN) T supply current on VDD_HV_REG 500 Kbyte/s IDD_HV(SCI) SCI (LINFlex) supply T current on VDD_HV_REG Total (static + dynamic) consumption: – LIN mode – Baudrate: 115.2 Kbyte/s 10.8 * fperiph 14.1 * fperiph IDD_HV(SPI) SPI (DSPI) supply T current on VDD_HV_REG Ballast dynamic consumption (continuous communication): – Baudrate: 2 Mbit/s – Transmission every 8 µs – Frame: 16 bits 4.8 * fperiph 6.3 * fperiph IDD_HV(ADC) T ADC supply current on VDD_HV_REG VDD = 5.5 V Ballast dynamic consumption (continuous conversion) 120 * fperiph 156 * fperiph IDD_HV_ADC(ADC) T ADC supply current on VDD_HV_ADC VDD = 5.5 V Analog dynamic consumption (continuous conversion) T IDD_HV(FlexRay) FlexRay supply T current on VDD_HV_REG Static consumption 1. Operating conditions: fperiph = 8 MHz to 64 MHz Dynamic consumption does not change varying the frequency µA 0.005 * fperiph + 2.8 0.007 * fperiph + 3.4 mA 1.8 2.4 mA 4.2 * fperiph 5.5 * fperiph µA SPC56xP54x, SPC56xP60x eTimer supply current PWM signals generation on VDD_HV_REG on all 1 channel @10kHz IDD_HV(eTimer) Electrical characteristics 70/105 Table 24. Peripherals supply current (5 V and 3.3 V)(1) SPC56xP54x, SPC56xP60x 3.11.3 Electrical characteristics I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 25. Table 25. I/O supply segment Supply segment Package 1 2 3 4 5 6 7 LQFP144 pin8 – pin20 pin23 – pin38 pin39 – pin55 pin58 – pin68 pin73 – pin89 pin92 – pin125 pin128 – pin5 LQFP100 pin15 – pin26 pin27 – pin38 pin41 – pin46 pin51 – pin61 pin64 – pin86 pin89 – pin10 — Table 26. I/O consumption Symbol ISWTSLW(2) ISWTMED (2) ISWTFST(2) C Dynamic I/O current CC D for SLOW CL = 25 pF configuration Dynamic I/O current CC D for MEDIUM CL = 25 pF configuration Dynamic I/O current CC D for FAST CL = 25 pF configuration CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz IRMSSLW Root medium square C = 100 pF, 2 MHz L CC D I/O current for SLOW CL = 25 pF, 2 MHz configuration CL = 25 pF, 4 MHz CL = 25 pF, 13 MHz Unit Min Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 110 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 50 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 — — 6.6 — — 13.4 — — 18.3 — — 5 — — 8.5 — — 11 VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz IRMSMED Value Conditions(1) Parameter VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 25 pF, 40 MHz Root medium square CL = 100 pF, 13 MHz I/O current for CC D MEDIUM CL = 25 pF, 13 MHz configuration VDD = 3.3 V ± 10%, CL = 25 pF, 40 MHz PAD3V5V = 1 CL = 100 pF, 13 MHz DocID18340 Rev 6 mA mA mA mA mA 71/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x Table 26. I/O consumption (continued) Symbol C Typ Max — — 22 — — 33 — — 56 — — 14 — — 20 CL = 100 pF, 40 MHz — — 35 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 CL = 25 pF, 64 MHz Root medium square C = 100 pF, 40 MHz L CC D I/O current for FAST CL = 25 pF, 40 MHz configuration CL = 25 pF, 64 MHz IAVGSEG Sum of all the static SR D I/O current within a supply segment Unit Min CL = 25 pF, 40 MHz IRMSFST Value Conditions(1) Parameter VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 mA mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified. 2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. 3.12 Main oscillator electrical characteristics The SPC56xP54x/SPC56xP60x provides an oscillator/resonator driver. Table 27. Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) Symbol fOSC Parameter SR Oscillator frequency gm P Transconductance VOSC T Oscillation amplitude on EXTAL pin tOSCSU T Start-up time(1),(2) Min Max Unit 4 40 MHz 6.5 25 mA/V 1 — V 8 — ms 1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of EXTAL. Table 28. Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) Symbol fOSC Parameter SR Oscillator frequency Min Max Unit 4 40 MHz gm P Transconductance 4 20 mA/V VOSC T Oscillation amplitude on EXTAL pin 1 — V 8 — ms tOSCSU T Start-up time(1),(2) 1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of EXTAL. 72/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Electrical characteristics Table 29. Input clock characteristics Symbol 3.13 Parameter Min Typ Max Unit fOSC SR Oscillator frequency 4 — 40 MHz fCLK SR Frequency in bypass — — 64 MHz trCLK SR Rise/fall time in bypass — — 1 ns tDC SR Duty cycle 47.5 50 52.5 % FMPLL electrical characteristics Table 30. PLLMRFM electrical specifications (VDDPLL = 1.08 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH) Value Symbol Parameter Conditions Unit min max 4 40 MHz fref_crystal fref_ext D PLL reference frequency range(1) fpll_in D Phase detector input frequency range (after pre-divider) — 4 16 MHz fFMPLLOUT D Clock frequency range in normal mode — 4 120 MHz fFREE P Free running frequency 20 150 MHz fsys D On-chip PLL frequency — 16 64 MHz tCYC D System clock period — — 1 / fsys ns fLORL fLORH D Loss of reference frequency window(2) Lower limit 1.6 3.7 Upper limit 24 56 fSCM D Self-clocked mode frequency(3),(4) — 20 150 MHz fSYS maximum –4 4 % fCLKOUT fPLLIN = 16 MHz (resonator), fPLLCLK at 64 MHz, 4000 cycles — 10 ns Crystal reference Measured using clock division — typically /16 (9) Short-term jitter MHz CJITTER T CLKOUT period Long-term jitter (avg. jitter(5),(6),(7),(8) over 2 ms interval) tlpll D PLL lock time (10), (11) — — 200 µs tdc D Duty cycle of reference — 40 60 % fLCK D Frequency LOCK range — –6 6 % fsys fUL D Frequency un-LOCK range — –18 18 % fsys fCS fDS D Modulation Depth Center spread ±0.25 ±4.0(12) Down Spread –0.5 –8.0 fMOD D Modulation frequency(13) — 70 — %fsys kHz 1. Considering operation with PLL not bypassed. DocID18340 Rev 6 73/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x 2. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode. 3. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. 4. fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 5. This value is determined by the crystal manufacturer and board design. 6. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 7. Proper PC board layout procedures must be followed to achieve specifications. 8. Values are obtained with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 9. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4. 10. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 11. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 12. This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz). 13. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz. 3.14 16 MHz RC oscillator electrical characteristics Table 31. 16 MHz RC oscillator electrical characteristics Symbol fRC Parameter Conditions Min Typ Max Unit TA = 25 °C — 16 — MHz — –6 — 6 % P RC oscillator frequency RCMVAR P Fast internal RC oscillator variation over temperature and supply with respect to fRC at TA = 25 °C in high-frequency configuration RCMTRIM T Post Trim Accuracy: The variation of the PTF(1) from the 16 MHz TA = 25 °C –1 — 1 % RCMSTEP T Fast internal RC oscillator trimming step TA = 25 °C — 1.6 — % 1. PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and temperature 3.15 Analog-to-Digital converter (ADC) electrical characteristics The device provides a 10-bit Successive Approximation Register (SAR) Analog-to-Digital Converter. 74/105 DocID18340 Rev 6 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 15. ADC characteristics and error definitions Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (5) (2) The ideal transfer curve 4 (4) (3) Differential non-linearity error (DNL) 3 (3) 2 1 (4) Integral non-linearity error (INL) 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE 3.15.1 Input impedance and ADC accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high-frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuate the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured. DocID18340 Rev 6 75/105 104 Electrical characteristics SPC56xP54x, SPC56xP60x The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being CS and CP2 substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS + CP2 equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fc ×(CS + CP2)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS + CP2) and the sum of RS + RF, the external circuit must be designed to respect the Equation 4: Equation 4 RS + RF 1 V A  ---------------------  --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. Figure 16. Input equivalent circuit (precise channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter Current Limiter RF RL CF CP1 RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RADSampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) 76/105 DocID18340 Rev 6 Channel Selection Sampling RSW1 RAD CP2 CS SPC56xP54x, SPC56xP60x Electrical characteristics Figure 17. Input equivalent circuit (extended channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS RF Current Limiter RL CF VA CP1 Channel Selection Extended Switch Sampling RSW1 RSW2 RAD CP3 CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2) RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1, CP2 and CP3) CS: Sampling capacitance A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Figure 18. Transient behavior during sampling phase Voltage Transient on CS VCS VA VA2 V
SPC56AP60L3BEAAY 价格&库存

很抱歉,暂时无法提供与“SPC56AP60L3BEAAY”相匹配的价格&库存,您可以联系我们找货

免费人工找货