SPC56EL60x, SPC56EL54x,
SPC564L60x, SPC564L54x
32-bit Power Architecture® microcontroller for automotive
SIL3/ASILD chassis and safety applications
Datasheet - production data
LQFP144 (20 x 20 x 1.4 mm)
LQFP100 (14 x 14x 1.4 mm)
–
–
–
–
–
–
Replicated junction temperature sensor
Non-maskable interrupt (NMI)
16-region memory protection unit (MPU)
Clock monitoring units (CMU)
Power management unit (PMU)
Cyclic redundancy check (CRC) unit
Decoupled Parallel mode for high-performance
use of replicated cores
LFBGA257 (14 x 14 mm)
Nexus Class 3+ interface
Features
High-performance e200z4d dual core
32-bit Power Architecture® technology CPU
Core frequency as high as 120 MHz
Interrupts
– Replicated 16-priority controller
– Replicated 16-channel eDMA controller
Dual issue five-stage pipeline core
GPIOs individually programmable as input,
output or special function
Variable Length Encoding (VLE)
Three 6-channel general-purpose eTimer units
Memory Management Unit (MMU)
2 FlexPWM units
– Four 16-bit channels per module
4 KB instruction cache with error detection
code
Signal processing engine (SPE)
Memory available
– 1 MB flash memory with ECC
– 128 KB on-chip SRAM with ECC
– Built-in RWW capabilities for EEPROM
emulation
SIL3/ASILD innovative safety concept:
LockStep mode and Fail-safe protection
– Sphere of replication (SoR) for key
components (such as CPU core, eDMA,
crossbar switch)
– Fault collection and control unit (FCCU)
– Redundancy control and checker unit
(RCCU) on outputs of the SoR connected
to FCCU
– Boot-time Built-In Self-Test for Memory
(MBIST) and Logic (LBIST) triggered by
hardware
– Boot-time Built-In Self-Test for ADC and
flash memory triggered by software
July 2015
This is information on a product in full production.
Communications interfaces
– 2 LINFlexD channels
– 3 DSPI channels with automatic chip select
generation
– 2 FlexCAN interfaces (2.0B Active) with 32
message objects
– FlexRay module (V2.1 Rev. A) with 2
channels, 64 message buffers and data
rates up to 10 Mbit/s
Two 12-bit analog-to-digital converters (ADCs)
– 16 input channels
– Programmable cross triggering unit (CTU)
to synchronize ADCs conversion with timer
and PWM
Sine wave generator (D/A with low pass filter)
On-chip CAN/UART bootstrap loader
Single 3.0 V to 3.6 V voltage supply
Ambient temperature range –40 °C to 125 °C
Junction temperature range –40 °C to 150 °C
DocID15457 Rev 12
1/165
www.st.com
Contents
SPC56ELx, SPC564Lx
Contents
1
2/165
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1
Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3
Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5
Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1
High-performance e200z4d core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2
Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.3
Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.4
Enhanced Direct Memory Access (eDMA) . . . . . . . . . . . . . . . . . . . . . . 15
1.5.5
On-chip flash memory with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.6
On-chip SRAM with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.7
Platform flash memory controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.8
Platform Static RAM Controller (SRAMC) . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.9
Memory subsystem access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.10
Error Correction Status Module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.11
Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.12
Interrupt Controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.13
System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.14
Frequency-Modulated Phase-Locked Loop (FMPLL) . . . . . . . . . . . . . . 21
1.5.15
Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.16
Internal Reference Clock (RC) oscillator . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.17
Clock, reset, power, mode and test control modules (MC_CGM,
MC_RGM, MC_PCU, and MC_ME) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.18
Periodic Interrupt Timer Module (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.19
System Timer Module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.20
Software Watchdog Timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.21
Fault Collection and Control Unit (FCCU) . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.22
System Integration Unit Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.23
Non-Maskable Interrupt (NMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.24
Boot Assist Module (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.25
System Status and Configuration Module (SSCM) . . . . . . . . . . . . . . . . 24
1.5.26
FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.27
FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DocID15457 Rev 12
SPC56ELx, SPC564Lx
2
3
Contents
1.5.28
Serial communication interface module (LINFlexD) . . . . . . . . . . . . . . . 26
1.5.29
Deserial Serial Peripheral Interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 26
1.5.30
FlexPWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.31
eTimer module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.32
Sine Wave Generator (SWG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.33
Analog-to-Digital Converter module (ADC) . . . . . . . . . . . . . . . . . . . . . . 29
1.5.34
Cross Triggering Unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.35
Cyclic Redundancy Checker (CRC) Unit . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.36
Redundancy Control and Checker Unit (RCCU) . . . . . . . . . . . . . . . . . . 30
1.5.37
Junction temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.38
Nexus Port Controller (NPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.39
IEEE 1149.1 JTAG Controller (JTAGC) . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5.40
Voltage regulator / Power Management Unit (PMU) . . . . . . . . . . . . . . . 33
1.5.41
Built-In Self-Test (BIST) capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 34
2.1
Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2
Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3
System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4
Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4
Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.1
General notes for specifications at maximum junction temperature . . 104
3.6
Electromagnetic Interference (EMI) characteristics . . . . . . . . . . . . . . . . 106
3.7
Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . 107
3.8
Static latch-up (LU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.9
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . 108
3.10
DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.11
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
3.12
Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . .115
DocID15457 Rev 12
3/165
4
Contents
SPC56ELx, SPC564Lx
3.13
Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .116
3.14
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
3.15
16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . .119
3.16
ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
3.16.1
3.17
Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.18
SWG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.19
AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.19.1
3.20
3.21
4
Input Impedance and ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.20.1
Reset sequence duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.20.2
Reset sequence description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.20.3
Reset sequence trigger mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.20.4
Reset sequence — start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.20.5
External watchdog window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.21.1
RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.21.2
WKUP/NMI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.21.3
IEEE 1149.1 JTAG interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.21.4
Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.21.5
External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.21.6
DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.1
ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
SPC56ELx/SPC564Lx device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Platform memory access time summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
LQFP100 pin function summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
LQFP144 pin function summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
LFBGA257 pin function summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Thermal characteristics for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Thermal characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Thermal characteristics for LFBGA257 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
EMI configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
EMI emission testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Voltage regulator electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Current consumption characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Flash memory program and erase electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 125
Flash memory timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
SPC56XL60/54 SWG Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Pad AC specifications (3.3 V, IPP_HVE = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
RESET sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Reset sequence trigger — reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
WKUP/NMI glitch filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
LFBGA257 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
DocID15457 Rev 12
5/165
5
List of figures
SPC56ELx, SPC564Lx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
6/165
SPC56ELx/SPC564Lx block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SPC56ELx/SPC564Lx LQFP144 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SPC56ELx/SPC564Lx LFBGA257 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
BCP68 board schematic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Input Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Transient Behavior during Sampling Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Pad output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Destructive Reset Sequence, BIST enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Destructive Reset Sequence, BIST disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
External Reset Sequence Long, BIST enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Functional Reset Sequence Long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Functional Reset Sequence Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Reset sequence start for Destructive Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Reset sequence start via RESET assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Reset sequence - External watchdog trigger window position . . . . . . . . . . . . . . . . . . . . . 134
Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Nexus EVTI Input Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Nexus Double Data Rate (DDR) Mode output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
DSPI classic SPI timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DSPI classic SPI timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
DSPI classic SPI timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
DSPI classic SPI timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
DSPI modified transfer format timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . 145
DSPI modified transfer format timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . 146
DSPI modified transfer format timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 146
DSPI modified transfer format timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . 147
DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
LFBGA257 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1
Introduction
1.1
Document overview
Introduction
This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the devices.
This document provides electrical specifications, pin assignments, and package diagrams
for the SPC56ELx/SPC564Lx series of microcontroller units (MCUs). For functional
characteristics, see the SPC56ELx/SPC564Lx Microcontroller Reference Manual. For use
of the SPC56ELx/SPC564Lx in a fail-safe system according to safety standard ISO26262,
see the Safety Application Guide for SPCEL60.
1.2
Description
The SPC56ELx/SPC564Lx series microcontrollers are system-on-chip devices that are built
on Power Architecture technology and contain enhancements that improve the
architecture’s fit in embedded applications, include additional instruction support for digital
signal processing (DSP) and integrate technologies such as an enhanced time processor
unit, enhanced queued analog-to-digital converter, Controller Area Network, and an
enhanced modular input-output system.
The SPC56ELx/SPC564Lx family of 32-bit microcontrollers is the latest achievement in
integrated automotive application controllers. It belongs to an expanding range of
automotive-focused products designed to address electrical hydraulic power steering
(EHPS), electric power steering (EPS) and airbag applications. The advanced and costefficient host processor core of the SPC56ELx/SPC564Lx automotive controller family
complies with the Power Architecture embedded category. It operates at speeds as high as
120 MHz and offers high-performance processing optimized for low power consumption. It
capitalizes on the available development infrastructure of current Power Architecture
devices and is supported with software drivers, operating systems and configuration code to
assist with users’ implementations.
DocID15457 Rev 12
7/165
164
Introduction
1.3
SPC56ELx, SPC564Lx
Device comparison
Table 1. SPC56ELx/SPC564Lx device summary
Feature
Type
SPC56EL60
2 × e200z4
(in lock-step or decoupled operation)
Architecture
Harvard
Execution speed
0–120 MHz (+2% FM)
DMIPS intrinsic performance
>240 MIPS
SIMD (DSP + FPU)
CPU
Yes
MMU
16 entry
Instruction set PPC
Yes
Instruction set VLE
Yes
Instruction cache
4 KB, EDC
MPU-16 regions
Yes, replicated module
Semaphore unit (SEMA4)
Buses
Crossbar
Memory
8/165
SPC56EL54
Core bus
Yes
AHB, 32-bit address, 64-bit data
Internal periphery bus
Master × slave ports
Flash
Static RAM (SRAM)
32-bit address, 32-bit data
Lock Step Mode: 4 × 3
Decoupled Parallel Mode: 6 × 3
1 MB, ECC, RWW
768 KB, ECC, RWW
128 KB, ECC
96 KB, ECC
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Introduction
Table 1. SPC56ELx/SPC564Lx device summary (continued)
Feature
Interrupt Controller (INTC)
SPC56EL60
16 interrupt levels, replicated module
Periodic Interrupt Timer (PIT)
1 × 4 channels
System Timer Module (STM)
1 × 4 channels, replicated module
Software Watchdog Timer (SWT)
eDMA
Modules
Yes, replicated module
16 channels, replicated module
FlexRay
1 × 64 message buffers, dual channel
FlexCAN
2 × 32 message buffers
LINFlexD (UART and LIN with
DMA support)
2
Clock out
Yes
Fault Collection and Control Unit
(FCCU)
Yes
Cross Triggering Unit (CTU)
Yes
3 × 6 channels(1)
eTimer
FlexPWM
Analog-to-Digital Converter (ADC)
2 Module 4 × (2 + 1) channels(2)
2 × 12-bit ADC, 16 channels per ADC
(3 internal, 4 shared and 9 external)
Sine Wave Generator (SWG)
Modules
(cont.)
32 point
Deserial Serial Peripheral Interface
(DSPI)
3 × DSPI
as many as 8 chip selects
Cyclic Redundancy Checker (CRC)
unit
Yes
Junction temperature sensor
(TSENS)
Yes, replicated module
16
Digital I/Os
Supply
Device power supply
Analog reference voltage
3.3 V with integrated bypassable ballast transistor
External ballast transistor not needed for bare die
3.0 V – 3.6 V and 4.5 V – 5.5 V
Frequency-modulated phaselocked loop (FMPLL)
Clocking
2
Internal RC oscillator
16 MHz
External crystal oscillator
Debug
Packages
SPC56EL54
4 – 40 MHz
Nexus
Level 3+
LQFP
100 pins
144 pins
LBGA(3)
LBGA257
DocID15457 Rev 12
9/165
164
Introduction
SPC56ELx, SPC564Lx
Table 1. SPC56ELx/SPC564Lx device summary (continued)
Feature
SPC56EL60
SPC56EL54
–40 to 150 °C
Temperature range (junction)
Temperat
Ambient temperature range using
ure
external ballast transistor (LQFP)
–40 to 125 °C
1. The third eTimer (eTimer_2) is available with external I/O access only in the BGA package, on the LQFP package eTimer_2
is available internally only without any external I/O access.
2. The second FlexPWM module is available only in the BGA package.
3. LBGA257 available only as development package.
1.4
Block diagram
Figure 1 shows a top-level block diagram of the SPC56ELx/SPC564Lx device.
10/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Introduction
Figure 1. SPC56ELx/SPC564Lx block diagram
PMU
JTAG
Nexus
e200z4
SWT
ECSM
STM
INTC
SPE
SPE
VLE
ECSM
STM
INTC
MMU
FlexRay
I-CACHE
eDMA
SWT
VLE
MMU
SEMA4
e200z4
SEMA4
I-CACHE
eDMA
RC
Crossbar Switch
Crossbar Switch
Memory Protection Unit
Memory Protection Unit
ECC logic for SRAM
ECC logic for SRAM
PBRIDGE
RC
TSENS
PBRIDGE
RC
Flash memory
ECC bits + logic
TSENS
SRAM
ECC bits
ADC
BAM
CMU
CRC
CTU
DSPI
ECC
ECSM
eDMA
FCCU
FlexCAN
FMPLL
INTC
IRCOSC
JTAG
– Analog-to-Digital Converter
– Boot Assist Module
– Clock Monitoring Unit
– Cyclic Redundancy Check unit
– Cross Triggering Unit
– Serial Peripherals Interface
– Error Correction Code
– Error Correction Status Module
– Enhanced Direct Memory Access controller
– Fault Collection and Control Unit
– Controller Area Network controller
– Frequency Modulated Phase Locked Loop
– Interrupt Controller
– Internal RC Oscillator
– Joint Test Action Group interface
LINFlexD
MC
PBRIDGE
PIT
PMU
RC
RTC
SEMA4
SIUL
SSCM
STM
SWG
SWT
TSENS
XOSC
DocID15457 Rev 12
PIT
FCCU
SWG
CRC
DSPI
DSPI
DSPI
LINFlexD
LINFlexD
FlexCAN
FlexCAN
eTimer
eTimer
eTimer
FlexPWM
FlexPWM
CMU
IRCOSC
ADC
CTU
FMPLL
WakeUp
CMU
Secondary FMPLL
SIUL
CMU
SSCM
XOSC
ADC
BAM
MC
RC
– LIN controller with DMA support
– Mode Entry, Clock, Reset, & Power
– Peripheral bridge
– Periodic Interrupt Timer
– Power Management Unit
– Redundancy Checker
– Real Time Clock
– Semaphore Unit
– System Integration Unit Lite
– System Status and Configuration Module
– System Timer Module
– Sine Wave Generator
– Software Watchdog Timer
– Temperature Sensor
– Crystal Oscillator
11/165
164
Introduction
SPC56ELx, SPC564Lx
High-performance e200z4d dual core
–
–
Core frequency as high as 120 MHz
–
Dual issue five-stage pipeline core
–
Variable Length Encoding (VLE)
–
Memory Management Unit (MMU)
–
4 KB instruction cache with error detection code
–
Signal processing engine (SPE)
Memory available
–
1 MB flash memory with ECC
–
128 KB on-chip SRAM with ECC
–
Built-in RWW capabilities for EEPROM emulation
SIL3/ASILD innovative safety concept: LockStep mode and Fail-safe protection
–
Sphere of replication (SoR) for key components (such as CPU core, eDMA,
crossbar switch)
–
Fault collection and control unit (FCCU)
–
Redundancy control and checker unit (RCCU) on outputs of the SoR connected to
FCCU
–
Boot-time Built-In Self-Test for Memory (MBIST) and Logic (LBIST) triggered by
hardware
–
Boot-time Built-In Self-Test for ADC and flash memory triggered by software
–
Replicated safety enhanced watchdog
–
Replicated junction temperature sensor
–
Non-maskable interrupt (NMI)
–
16-region memory protection unit (MPU)
–
Clock monitoring units (CMU)
–
Power management unit (PMU)
–
Cyclic redundancy check (CRC) unit
Decoupled Parallel mode for high-performance use of replicated cores
Nexus Class 3+ interface
Interrupts
–
Replicated 16-priority controller
–
Replicated 16-channel eDMA controller
GPIOs individually programmable as input, output or special function
Three 6-channel general-purpose eTimer units
2 FlexPWM units
–
12/165
32-bit Power Architecture® technology CPU
Four 16-bit channels per module
Communications interfaces
–
2 LINFlexD channels
–
3 DSPI channels with automatic chip select generation
–
2 FlexCAN interfaces (2.0B Active) with 32 message objects
DocID15457 Rev 12
SPC56ELx, SPC564Lx
–
Introduction
FlexRay module (V2.1 Rev. A) with 2 channels, 64 message buffers and data
rates up to 10 Mbit/s
Two 12-bit analog-to-digital converters (ADCs)
–
16 input channels
–
Programmable cross triggering unit (CTU) to synchronize ADCs conversion with
timer and PWM
Sine wave generator (D/A with low pass filter)
On-chip CAN/UART bootstrap loader
Single 3.0 V to 3.6 V voltage supply
Ambient temperature range –40 °C to 125 °C
Junction temperature range –40 °C to 150 °C
DocID15457 Rev 12
13/165
164
Introduction
SPC56ELx, SPC564Lx
1.5
Feature details
1.5.1
High-performance e200z4d core
The e200z4d Power Architecture® core provides the following features:
2 independent execution units, both supporting fixed-point and floating-point operations
Dual issue 32-bit Power Architecture technology compliant
–
5-stage pipeline (IF, DEC, EX1, EX2, WB)
–
In-order execution and instruction retirement
Full support for Power Architecture instruction set and Variable Length Encoding (VLE)
–
Mix of classic 32-bit and 16-bit instruction allowed
–
Optimization of code size possible
Thirty-two 64-bit general purpose registers (GPRs)
Harvard bus (32-bit address, 64-bit data)
–
I-Bus interface capable of one outstanding transaction plus one piped with no waiton-data return
–
D-Bus interface capable of two transactions outstanding to fill AHB pipe
I-cache and I-cache controller
–
No data cache
16-entry MMU
8-entry branch table buffer
Branch look-ahead instruction buffer to accelerate branching
Dedicated branch address calculator
3 cycles worst case for missed branch
Load/store unit
–
Fully pipelined
–
Single-cycle load latency
–
Big- and little-endian modes supported
–
Misaligned access support
–
Single stall cycle on load to use
Single-cycle throughput (2-cycle latency) integer 32 × 32 multiplication
4 – 14 cycles integer 32 × 32 division (average division on various benchmark of nine
cycles)
Single precision floating-point unit
–
1 cycle throughput (2-cycle latency) floating-point 32 × 32 multiplication
–
Target 9 cycles (worst case acceptable is 12 cycles) throughput floating-point 32 ×
32 division
–
Special square root and min/max function implemented
Signal processing support: APU-SPE 1.1
–
14/165
4 KB, 256-bit cache line (programmable for 2- or 4-way)
Support for vectorized mode: as many as two floating-point instructions per clock
Vectored interrupt support
Reservation instruction to support read-modify-write constructs
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.2
Introduction
Extensive system development and tracing support via Nexus debug port
Crossbar switch (XBAR)
The XBAR multi-port crossbar switch supports simultaneous connections between four
master ports and three slave ports. The crossbar supports a 32-bit address bus width and a
64-bit data bus width.
The crossbar allows four concurrent transactions to occur from any master port to any slave
port, although one of those transfers must be an instruction fetch from internal flash
memory. If a slave port is simultaneously requested by more than one master port,
arbitration logic selects the higher priority master and grants it ownership of the slave port.
All other masters requesting that slave port are stalled until the higher priority master
completes its transactions.
The crossbar provides the following features:
4 masters and 3 slaves supported per each replicated crossbar
–
Masters allocation for each crossbar: e200z4d core with two independent bus
interface units (BIU) for I and D access (2 masters), one eDMA, one FlexRay
–
Slaves allocation for each crossbar: a redundant flash-memory controller with 2
slave ports to guarantee maximum flexibility to handle Instruction and Data array,
one redundant SRAM controller with 1 slave port each and 1 redundant peripheral
bus bridge
32-bit address bus and 64-bit data bus
Programmable arbitration priority
–
Requesting masters can be treated with equal priority and are granted access to a
slave port in round-robin method, based upon the ID of the last master to be
granted access or a priority order can be assigned by software at application run
time
Temporary dynamic priority elevation of masters
The XBAR is replicated for each processing channel.
1.5.3
Memory Protection Unit (MPU)
The Memory Protection Unit splits the physical memory into 16 different regions. Each
master (eDMA, FlexRay, CPU) can be assigned different access rights to each region.
16-region MPU with concurrent checks against each master access
32-byte granularity for protected address region
The memory protection unit is replicated for each processing channel.
1.5.4
Enhanced Direct Memory Access (eDMA)
The enhanced direct memory access (eDMA) controller is a second-generation module
capable of performing complex data movements via 16 programmable channels, with
minimal intervention from the host processor. The hardware micro architecture includes a
DMA engine which performs source and destination address calculations, and the actual
data movement operations, along with an SRAM-based memory containing the transfer
control descriptors (TCD) for the channels. This implementation is used to minimize the
overall block size.
DocID15457 Rev 12
15/165
164
Introduction
SPC56ELx, SPC564Lx
The eDMA module provides the following features:
16 channels supporting 8-, 16-, and 32-bit value single or block transfers
Support variable sized queues and circular buffered queue
Source and destination address registers independently configured to post-increment
or stay constant
Support major and minor loop offset
Support minor and major loop done signals
DMA task initiated either by hardware requestor or by software
Each DMA task can optionally generate an interrupt at completion and retirement of the
task
Signal to indicate closure of last minor loop
Transfer control descriptors mapped inside the SRAM
The eDMA controller is replicated for each processing channel.
1.5.5
On-chip flash memory with ECC
This device includes programmable, non-volatile flash memory. The non-volatile memory
(NVM) can be used for instruction storage or data storage, or both. The flash memory
module interfaces with the system bus through a dedicated flash memory array controller. It
supports a 64-bit data bus width at the system bus port, and a 128-bit read data interface to
flash memory. The module contains four 128-bit prefetch buffers. Prefetch buffer hits allow
no-wait responses. Buffer misses incur a 3 wait state response at 120 MHz.
The flash memory module provides the following features
1.5.6
1 MB of flash memory in unique multi-partitioned hard macro
Sectorization: 16 KB + 2 × 48 KB + 16 KB + 2 × 64 KB + 2 × 128 KB + 2 × 256 KB
EEPROM emulation (in software) within same module but on different partition
16 KB test sector and 16 KB shadow block for test, censorship device and user option
bits
Wait states:
–
3 wait states for frequencies =< 120 MHz
–
2 wait states for frequencies =< 80 MHz
–
1 wait state for frequencies =< 60 MHz
Flash memory line 128-bit wide with 8-bit ECC on 64-bit word (total 144 bits)
Accessed via a 64-bit wide bus for write and a 128-bit wide array for read operations
1-bit error correction, 2-bit error detection
On-chip SRAM with ECC
The SPC56ELx/SPC564Lx SRAM provides a general-purpose single port memory.
ECC handling is done on a 32-bit boundary for data and it is extended to the address to
have the highest possible diagnostic coverage including the array internal address decoder.
16/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Introduction
The SRAM module provides the following features:
System SRAM: 128 KB
ECC on 32-bit word (syndrome of 7 bits)
–
1.5.7
ECC covers SRAM bus address
1-bit error correction, 2-bit error detection
Wait states:
–
1 wait state for frequencies =< 120 MHz
–
0 wait states for frequencies =< 80 MHz
Platform flash memory controller
The following list summarizes the key features of the flash memory controller:
Single AHB port interface supports a 64-bit data bus. All AHB aligned and unaligned
reads within the 32-bit container are supported. Only aligned word writes are
supported.
Array interfaces support a 128-bit read data bus and a 64-bit write data bus for each
bank.
Code flash (bank0) interface provides configurable read buffering and page prefetch
support.
–
Four page-read buffers (each 128 bits wide) and a prefetch controller support
speculative reading and optimized flash access.
Single-cycle read responses (0 AHB data-phase wait states) for hits in the buffers. The
buffers implement a least-recently-used replacement algorithm to maximize
performance.
Programmable response for read-while-write sequences including support for stallwhile-write, optional stall notification interrupt, optional flash operation abort, and
optional abort notification interrupt.
Separate and independent configurable access timing (on a per bank basis) to support
use across a wide range of platforms and frequencies.
Support of address-based read access timing for emulation of other memory types.
Support for reporting of single- and multi-bit error events.
Typical operating configuration loaded into programming model by system reset.
The platform flash controller is replicated for each processor.
1.5.8
Platform Static RAM Controller (SRAMC)
The SRAMC module is the platform SRAM array controller, with integrated error detection
and correction.
The main features of the SRAMC provide connectivity for the following interfaces:
XBAR Slave Port (64-bit data path)
ECSM (ECC Error Reporting, error injection and configuration)
SRAM array
DocID15457 Rev 12
17/165
164
Introduction
SPC56ELx, SPC564Lx
The following functions are implemented:
ECC encoding (32-bit boundary for data and complete address bus)
ECC decoding (32-bit boundary and entire address)
Address translation from the AHB protocol on the XBAR to the SRAM array
The platform SRAM controller is replicated for each processor.
1.5.9
Memory subsystem access time
Every memory access, that the CPU performs, requires at least one system clock cycle for
the data phase of the access. Slower memories or peripherals may require additional data
phase wait states. Additional data phase wait states may also occur if the slave being
accessed is not parked on the requesting master in the crossbar.
Table 2 shows the number of additional data phase wait states required for a range of
memory accesses.
Table 2. Platform memory access time summary
AHB transfer
Data phase
wait states
Description
e200z4d instruction fetch
0
Flash memory prefetch buffer hit (page hit)
e200z4d instruction fetch
3
Flash memory prefetch buffer miss
(based on 4-cycle random flash array access time)
e200z4d data read
0–1
SRAM read
e200z4d data write
0
SRAM 32-bit write
e200z4d data write
0
SRAM 64-bit write (executed as 2 x 32-bit writes)
e200z4d data write
0–2
SRAM 8-,16-bit write
(Read-modify-Write for ECC)
e200z4d flash memory read
0
Flash memory prefetch buffer hit (page hit)
e200z4d flash memory read
3
Flash memory prefetch buffer miss (at 120 MHz; includes 1 cycle
of program flash memory controller arbitration)
1.5.10
Error Correction Status Module (ECSM)
The ECSM on this device manages the ECC configuration and reporting for the platform
memories (flash memory and SRAM). It does not implement the actual ECC calculation. A
detected error (double error for flash memory or SRAM) is also reported to the FCCU. The
following errors and indications are reported into the ECSM dedicated registers:
18/165
ECC error status and configuration for flash memory and SRAM
ECC error reporting for flash memory
ECC error reporting for SRAM
ECC error injection for SRAM
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.11
Introduction
Peripheral bridge (PBRIDGE)
The PBRIDGE implements the following features:
1.5.12
Duplicated periphery
Master access privilege level per peripheral (per master: read access enable; write
access enable)
Checker applied on PBRIDGE output toward periphery
Byte endianess swap capability
Interrupt Controller (INTC)
The INTC provides priority-based preemptive scheduling of interrupt requests, suitable for
statically scheduled hard real-time systems.
For high-priority interrupt requests, the time from the assertion of the interrupt request from
the peripheral to when the processor is executing the interrupt service routine (ISR) has
been minimized. The INTC provides a unique vector for each interrupt request source for
quick determination of which ISR needs to be executed. It also provides an ample number
of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To
allow the appropriate priorities for each source of interrupt request, the priority of each
interrupt request is software configurable.
The INTC supports the priority ceiling protocol for coherent accesses. By providing a
modifiable priority mask, the priority can be raised temporarily so that all tasks which share
the resource can not preempt each other.
The INTC provides the following features:
Duplicated periphery
Unique 9-bit vector per interrupt source
16 priority levels with fixed hardware arbitration within priority levels for each interrupt
source
Priority elevation for shared resource
The INTC is replicated for each processor.
DocID15457 Rev 12
19/165
164
Introduction
1.5.13
SPC56ELx, SPC564Lx
System clocks and clock generation
The following list summarizes the system clock and clock generation on this device:
Lock status continuously monitored by lock detect circuitry
Loss-of-clock (LOC) detection for reference and feedback clocks
On-chip loop filter (for improved electromagnetic interference performance and fewer
external components required)
Programmable output clock divider of system clock (1, 2, 4, 8)
FlexPWM module and as many as three eTimer modules running on an auxiliary clock
independent from system clock (with max frequency 120 MHz)
On-chip crystal oscillator with automatic level control
Dedicated internal 16 MHz internal RC oscillator for rapid start-up
–
20/165
Supports automated frequency trimming by hardware during device startup and by
user application
Auxiliary clock domain for motor control periphery (FlexPWM, eTimer, CTU, ADC, and
SWG)
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.14
Introduction
Frequency-Modulated Phase-Locked Loop (FMPLL)
Each device has two FMPLLs.
Each FMPLL allows the user to generate high speed system clocks starting from a minimum
reference of 4 MHz input clock. Further, the FMPLL supports programmable frequency
modulation of the system clock. The FMPLL multiplication factor, output clock divider ratio
are all software configurable. The FMPLLs have the following major features:
1.5.15
Input frequency: 4–40 MHz continuous range (limited by the crystal oscillator)
Voltage controlled oscillator (VCO) range: 256–512 MHz
Frequency modulation via software control to reduce and control emission peaks
–
Modulation depth ±2% if centered or 0% to –4% if downshifted via software control
register
–
Modulation frequency: triangular modulation with 25 kHz nominal rate
Option to switch modulation on and off via software interface
Output divider (ODF) for reduced frequency operation without re-lock
3 modes of operation
–
Bypass mode
–
Normal FMPLL mode with crystal reference (default)
–
Normal FMPLL mode with external reference
Lock monitor circuitry with lock status
Loss-of-lock detection for reference and feedback clocks
Self-clocked mode (SCM) operation
On-chip loop filter
Auxiliary FMPLL
–
Used for FlexRay due to precise symbol rate requirement by the protocol
–
Used for motor control periphery and connected IP (A/D digital interface CTU) to
allow independent frequencies of operation for PWM and timers and jitter-free
control
–
Option to enable/disable modulation to avoid protocol violation on jitter and/or
potential unadjusted error in electric motor control loop
–
Allows to run motor control periphery at different (precisely lower, equal or higher
as required) frequency than the system to ensure higher resolution
Main oscillator
The main oscillator provides these features:
1.5.16
Input frequency range 4–40 MHz
Crystal input mode
External reference clock (3.3 V) input mode
FMPLL reference
Internal Reference Clock (RC) oscillator
The architecture uses constant current charging of a capacitor. The voltage at the capacitor
is compared to the stable bandgap reference voltage. The RC oscillator is the device safe
clock.
DocID15457 Rev 12
21/165
164
Introduction
SPC56ELx, SPC564Lx
The RC oscillator provides these features:
1.5.17
Nominal frequency 16 MHz
±5% variation over voltage and temperature after process trim
Clock output of the RC oscillator serves as system clock source in case loss of lock or
loss of clock is detected by the FMPLL
RC oscillator is used as the default system clock during startup and can be used as
back-up input source of FMPLL(s) in case XOSC fails
Clock, reset, power, mode and test control modules (MC_CGM,
MC_RGM, MC_PCU, and MC_ME)
These modules provide the following:
1.5.18
Clock gating and clock distribution control
Halt, stop mode control
Flexible configurable system and auxiliary clock dividers
Various execution modes
–
HALT and STOP mode as reduced activity low power mode
–
Reset, Idle, Test, Safe
–
Various RUN modes with software selectable powered modules
–
No stand-by mode implemented (no internal switchable power domains)
Periodic Interrupt Timer Module (PIT)
The PIT module implements the following features:
1.5.19
4 general purpose interrupt timers
32-bit counter resolution
Can be used for software tick or DMA trigger operation
System Timer Module (STM)
The STM implements the following features:
Up-counter with 4 output compare registers
OS task protection and hardware tick implementation per AUTOSAR(a) requirement
The STM is replicated for each processor.
1.5.20
Software Watchdog Timer (SWT)
This module implements the following features:
Fault tolerant output
Safe internal RC oscillator as reference clock
Windowed watchdog
Program flow control monitor with 16-bit pseudorandom key generation
Allows a high level of safety (SIL3 monitor)
a. Automotive Open System Architecture.
22/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Introduction
The SWT module is replicated for each processor.
1.5.21
Fault Collection and Control Unit (FCCU)
The FCCU module has the following features:
1.5.22
Redundant collection of hardware checker results
Redundant collection of error information and latch of faults from critical modules on
the device
Collection of self-test results
Configurable and graded fault control
–
Internal reactions (no internal reaction, IRQ, Functional Reset, Destructive Reset,
or Safe mode entered)
–
External reaction (failure is reported to the external/surrounding system via
configurable output pins)
System Integration Unit Lite (SIUL)
The SIUL controls MCU reset configuration, pad configuration, external interrupt, general
purpose I/O (GPIO), internal peripheral multiplexing, and system reset operation. The reset
configuration block contains the external pin boot configuration logic. The pad configuration
block controls the static electrical characteristics of I/O pins. The GPIO block provides
uniform and discrete input/output control of the I/O pins of the MCU.
The SIU provides the following features:
1.5.23
Centralized pad control on a per-pin basis
–
Pin function selection
–
Configurable weak pull-up/down
–
Configurable slew rate control (slow/medium/fast)
–
Hysteresis on GPIO pins
–
Configurable automatic safe mode pad control
Input filtering for external interrupts
Non-Maskable Interrupt (NMI)
The non-maskable interrupt with de-glitching filter supports high-priority core exceptions.
1.5.24
Boot Assist Module (BAM)
The BAM is a block of read-only memory with hard-coded content. The BAM program is
executed only if serial booting mode is selected via boot configuration pins.
The BAM provides the following features:
Enables booting via serial mode (FlexCAN or LINFlex-UART)
Supports programmable 64-bit password protection for serial boot mode
Supports serial bootloading of either Power Architecture code (default) or VLE code
Automatic switch to serial boot mode if internal flash memory is blank or invalid
DocID15457 Rev 12
23/165
164
Introduction
1.5.25
SPC56ELx, SPC564Lx
System Status and Configuration Module (SSCM)
The SSCM on this device features the following:
1.5.26
System configuration and status
Debug port status and debug port enable
Multiple boot code starting locations out of reset through implementation of search for
valid Reset Configuration Half Word
Sets up the MMU to allow user boot code to execute as either Power Architecture code
(default) or as VLE code out of flash memory
Triggering of device self-tests during reset phase of device boot
FlexCAN
The FlexCAN module is a communication controller implementing the CAN protocol
according to Bosch Specification version 2.0B. The CAN protocol was designed to be used
primarily as a vehicle serial data bus, meeting the specific requirements of this field: realtime processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness
and required bandwidth.
The FlexCAN module provides the following features:
24/165
Full implementation of the CAN protocol specification, version 2.0B
–
Standard data and remote frames
–
Extended data and remote frames
–
0 to 8 bytes data length
–
Programmable bit rate as fast as 1Mbit/s
32 message buffers of 0 to 8 bytes data length
Each message buffer configurable as receive or transmit buffer, all supporting standard
and extended messages
Programmable loop-back mode supporting self-test operation
3 programmable mask registers
Programmable transmit-first scheme: lowest ID or lowest buffer number
Time stamp based on 16-bit free-running timer
Global network time, synchronized by a specific message
Maskable interrupts
Independent of the transmission medium (an external transceiver is assumed)
High immunity to EMI
Short latency time due to an arbitration scheme for high-priority messages
Transmit features
–
Supports configuration of multiple mailboxes to form message queues of scalable
depth
–
Arbitration scheme according to message ID or message buffer number
–
Internal arbitration to guarantee no inner or outer priority inversion
–
Transmit abort procedure and notification
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.27
Introduction
Receive features
–
Individual programmable filters for each mailbox
–
8 mailboxes configurable as a 6-entry receive FIFO
–
8 programmable acceptance filters for receive FIFO
Programmable clock source
–
System clock
–
Direct oscillator clock to avoid FMPLL jitter
FlexRay
The FlexRay module provides the following features:
Full implementation of FlexRay Protocol Specification 2.1 Rev. A
64 configurable message buffers can be handled
Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
Message buffers configurable as transmit or receive
Message buffer size configurable
Message filtering for all message buffers based on Frame ID, cycle count, and
message ID
Programmable acceptance filters for receive FIFO
Message buffer header, status, and payload data stored in system memory (SRAM)
Internal FlexRay memories have error detection and correction
DocID15457 Rev 12
25/165
164
Introduction
1.5.28
SPC56ELx, SPC564Lx
Serial communication interface module (LINFlexD)
The LINFlexD module (LINFlex with DMA support) on this device features the following:
Supports LIN Master mode, LIN Slave mode and UART mode
LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications
Manages LIN frame transmission and reception without CPU intervention
LIN features
1.5.29
–
Autonomous LIN frame handling
–
Message buffer to store as many as 8 data bytes
–
Supports messages as long as 64 bytes
–
Detection and flagging of LIN errors (Sync field, delimiter, ID parity, bit framing,
checksum and Time-out errors)
–
Classic or extended checksum calculation
–
Configurable break duration of up to 50-bit times
–
Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
–
Diagnostic features (Loop back, LIN bus stuck dominant detection)
–
Interrupt driven operation with 16 interrupt sources
LIN slave mode features
–
Autonomous LIN header handling
–
Autonomous LIN response handling
UART mode
–
Full-duplex operation
–
Standard non return-to-zero (NRZ) mark/space format
–
Data buffers with 4-byte receive, 4-byte transmit
–
Configurable word length (8-bit, 9-bit, 16-bit, or 17-bit words)
–
Configurable parity scheme: none, odd, even, always 0
–
Speed as fast as 2 Mbit/s
–
Error detection and flagging (Parity, Noise and Framing errors)
–
Interrupt driven operation with four interrupt sources
–
Separate transmitter and receiver CPU interrupt sources
–
16-bit programmable baud-rate modulus counter and 16-bit fractional
–
Two receiver wake-up methods
Support for DMA enabled transfers
Deserial Serial Peripheral Interface (DSPI)
The DSPI modules provide a synchronous serial interface for communication between the
SPC56ELx/SPC564Lx and external devices.
A DSPI module provides these features:
26/165
Full duplex, synchronous transfers
Master or slave operation
Programmable master bit rates
Programmable clock polarity and phase
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.30
Introduction
End-of-transmission interrupt flag
Programmable transfer baud rate
Programmable data frames from 4 to 16 bits
As many as 8 chip select lines available, depending on package and pin multiplexing
4 clock and transfer attributes registers
Chip select strobe available as alternate function on one of the chip select pins for deglitching
FIFOs for buffering as many as 5 transfers on the transmit and receive side
Queueing operation possible through use of the eDMA
General purpose I/O functionality on pins when not used for SPI
FlexPWM
The pulse width modulator module (FlexPWM) contains four PWM channels, each of which
is configured to control a single half-bridge power stage. Two modules are included on
LFBGA257 devices; on the LQFP144 package, only one module is present. Additionally,
four fault input channels are provided per FlexPWM module.
This PWM is capable of controlling most motor types, including:
AC induction motors (ACIM)
Permanent Magnet AC motors (PMAC)
Brushless (BLDC) and brush DC motors (BDC)
Switched (SRM) and variable reluctance motors (VRM)
Stepper motors
A FlexPWM module implements the following features:
16 bits of resolution for center, edge aligned, and asymmetrical PWMs
Maximum operating frequency as high as 120 MHz
–
Clock source not modulated and independent from system clock (generated via
secondary FMPLL)
Fine granularity control for enhanced resolution of the PWM period
PWM outputs can operate as complementary pairs or independent channels
Ability to accept signed numbers for PWM generation
Independent control of both edges of each PWM output
Synchronization to external hardware or other PWM supported
Double buffered PWM registers
–
Integral reload rates from 1 to 16
–
Half cycle reload capability
Multiple ADC trigger events can be generated per PWM cycle via hardware
Fault inputs can be assigned to control multiple PWM outputs
Programmable filters for fault inputs
Independently programmable PWM output polarity
Independent top and bottom deadtime insertion
Each complementary pair can operate with its own PWM frequency and deadtime
values
DocID15457 Rev 12
27/165
164
Introduction
Individual software control for each PWM output
All outputs can be forced to a value simultaneously
PWMX pin can optionally output a third signal from each channel
Channels not used for PWM generation can be used for buffered output compare
functions
Channels not used for PWM generation can be used for input capture functions
Enhanced dual edge capture functionality
Option to supply the source for each complementary PWM signal pair from any of the
following:
1.5.31
SPC56ELx, SPC564Lx
–
External digital pin
–
Internal timer channel
–
External ADC input, taking into account values set in ADC high- and low-limit
registers
DMA support
eTimer module
The SPC56ELx provides three eTimer modules (on the LQFP package eTimer_2 is
available internally only without any external I/O access). Six 16-bit general purpose
up/down timer/counters per module are implemented with the following features:
Maximum clock frequency of 120 MHz
Individual channel capability
1.5.32
–
Input capture trigger
–
Output compare
–
Double buffer (to capture rising edge and falling edge)
–
Separate prescaler for each counter
–
Selectable clock source
–
0–100% pulse measurement
–
Rotation direction flag (Quad decoder mode)
Maximum count rate
–
Equals peripheral clock divided by 2 for external event counting
–
Equals peripheral clock for internal clock counting
Cascadeable counters
Programmable count modulo
Quadrature decode capabilities
Counters can share available input pins
Count once or repeatedly
Preloadable counters
Pins available as GPIO when timer functionality not in use
DMA support
Sine Wave Generator (SWG)
A digital-to-analog converter is available to generate a sine wave based on 32 stored values
for external devices (ex: resolver).
28/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.33
Introduction
Analog-to-Digital Converter module (ADC)
The ADC module features include:
Analog part:
2 on-chip ADCs
–
12-bit resolution SAR architecture
–
Same digital interface as in the SPC560P family
–
A/D Channels: 9 external, 3 internal and 4 shared with other A/D (total 16
channels)
–
One channel dedicated to each T-sensor to enable temperature reading during
application
–
Separated reference for each ADC
–
Shared analog supply voltage for both ADCs
–
One sample and hold unit per ADC
–
Adjustable sampling and conversion time
Digital part:
4 analog watchdogs comparing ADC results against predefined levels (low, high,
range) before results are stored in the appropriate ADC result location
2 modes of operation: CPU Mode or CTU Mode
CPU mode features
1.5.34
–
Register based interface with the CPU: one result register per channel
–
ADC state machine managing three request flows: regular command, hardware
injected command, software injected command
–
Selectable priority between software and hardware injected commands
–
4 analog watchdogs comparing ADC results against predefined levels (low, high,
range)
–
DMA compatible interface
CTU mode features
–
Triggered mode only
–
4 independent result queues (116 entries, 28 entries, 14 entries)
–
Result alignment circuitry (left justified; right justified)
–
32-bit read mode allows to have channel ID on one of the 16-bit parts
–
DMA compatible interfaces
Built-in self-test features triggered by software
Cross Triggering Unit (CTU)
The ADC cross triggering unit allows automatic generation of ADC conversion requests on
user selected conditions without CPU load during the PWM period and with minimized CPU
load for dynamic configuration.
DocID15457 Rev 12
29/165
164
Introduction
SPC56ELx, SPC564Lx
The CTU implements the following features:
1.5.35
Cross triggering between ADC, FlexPWM, eTimer, and external pins
Double buffered trigger generation unit with as many as 8 independent triggers
generated from external triggers
Maximum operating frequency less than or equal to 120 MHz
Trigger generation unit configurable in sequential mode or in triggered mode
Trigger delay unit to compensate the delay of external low pass filter
Double buffered global trigger unit allowing eTimer synchronization and/or ADC
command generation
Double buffered ADC command list pointers to minimize ADC-trigger unit update
Double buffered ADC conversion command list with as many as 24 ADC commands
Each trigger capable of generating consecutive commands
ADC conversion command allows control of ADC channel from each ADC, single or
synchronous sampling, independent result queue selection
DMA support with safety features
Cyclic Redundancy Checker (CRC) Unit
The CRC module is a configurable multiple data flow unit to compute CRC signatures on
data written to its input register.
The CRC unit has the following features:
1.5.36
3 sets of registers to allow 3 concurrent contexts with possibly different CRC
computations, each with a selectable polynomial and seed
Computes 16- or 32-bit wide CRC on the fly (single-cycle computation) and stores
result in internal register.
The following standard CRC polynomials are implemented:
–
x8 + x4 + x3 + x2 + 1 [8-bit CRC]
–
x16 + x12 + x5 + 1 [16-bit CRC-CCITT]
–
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
[32-bit CRC-ethernet(32)]
Key engine to be coupled with communication periphery where CRC application is
added to allow implementation of safe communication protocol
Offloads core from cycle-consuming CRC and helps checking configuration signature
for safe start-up or periodic procedures
CRC unit connected as peripheral bus on internal peripheral bus
DMA support
Redundancy Control and Checker Unit (RCCU)
The RCCU checks all outputs of the sphere of replication (addresses, data, control signals).
It has the following features:
30/165
Duplicated module to guarantee highest possible diagnostic coverage (check of
checker)
Multiple times replicated IPs are used as checkers on the SoR outputs
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.37
Introduction
Junction temperature sensor
The junction temperature sensor provides a value via an ADC channel that can be used by
software to calculate the device junction temperature.
The key parameters of the junction temperature sensor include:
1.5.38
Nominal temperature range from –40 to 150 °C
Software temperature alarm via analog ADC comparator possible
Nexus Port Controller (NPC)
The NPC module provides real-time development support capabilities for this device in
compliance with the IEEE-ISTO 5001-2003. This development support is supplied for MCUs
without requiring external address and data pins for internal visibility.
The NPC block interfaces to the host processor and internal buses to provide development
support as per the IEEE-ISTO 5001-2003 Class 3+, including selected features from Class
4 standard.
The development support provided includes program trace, data trace, watchpoint trace,
ownership trace, run-time access to the MCUs internal memory map and access to the
Power Architecture internal registers during halt. The Nexus interface also supports a JTAG
only mode using only the JTAG pins. The following features are implemented:
Full and reduced port modes
MCKO (message clock out) pin
4 or 12 MDO (message data out) pins(b)
2 MSEO (message start/end out) pins
EVTO (event out) pin
–
Auxiliary input port
EVTI (event in) pin
5-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK)
–
Supports JTAG mode
Host processor (e200) development support features
–
Data trace via data write messaging (DWM) and data read messaging (DRM).
This allows the development tool to trace reads or writes, or both, to selected
internal memory resources.
–
Ownership trace via ownership trace messaging (OTM). OTM facilitates
ownership trace by providing visibility of which process ID or operating system
task is activated. An ownership trace message is transmitted when a new
process/task is activated, allowing development tools to trace ownership flow.
–
Program trace via branch trace messaging (BTM). Branch trace messaging
displays program flow discontinuities (direct branches, indirect branches,
b. 4 MDO pins on LQFP144 package, 12 MDO pins on LFBGA257 package.
DocID15457 Rev 12
31/165
164
Introduction
SPC56ELx, SPC564Lx
exceptions, etc.), allowing the development tool to interpolate what transpires
between the discontinuities. Thus, static code may be traced.
1.5.39
–
Watchpoint messaging (WPM) via the auxiliary port
–
Watchpoint trigger enable of program and/or data trace messaging
–
Data tracing of instruction fetches via private opcodes
IEEE 1149.1 JTAG Controller (JTAGC)
The JTAGC block provides the means to test chip functionality and connectivity while
remaining transparent to system logic when not in test mode. All data input to and output
from the JTAGC block is communicated in serial format. The JTAGC block is compliant with
the IEEE standard.
The JTAG controller provides the following features:
32/165
IEEE Test Access Port (TAP) interface with 5 pins:
–
TDI
–
TMS
–
TCK
–
TDO
–
JCOMP
Selectable modes of operation include JTAGC/debug or normal system operation
5-bit instruction register that supports the following IEEE 1149.1-2001 defined
instructions:
–
BYPASS
–
IDCODE
–
EXTEST
–
SAMPLE
–
SAMPLE/PRELOAD
3 test data registers: a bypass register, a boundary scan register, and a device
identification register. The size of the boundary scan register is parameterized to
support a variety of boundary scan chain lengths.
TAP controller state machine that controls the operation of the data registers,
instruction register and associated circuitry
DocID15457 Rev 12
SPC56ELx, SPC564Lx
1.5.40
Introduction
Voltage regulator / Power Management Unit (PMU)
The on-chip voltage regulator module provides the following features:
1.5.41
Single external rail required
Single high supply required: nominal 3.3 V both for packaged and Known Good Die
option
–
Packaged option requires external ballast transistor due to reduced dissipation
capacity at high temperature but can use embedded transistor if power dissipation
is maintained within package dissipation capacity (lower frequency of operation)
–
Known Good Die option uses embedded ballast transistor as dissipation capacity
is increased to reduce system cost
All I/Os are at same voltage as external supply (3.3 V nominal)
Duplicated Low-Voltage Detectors (LVD) to guarantee proper operation at all stages
(reset, configuration, normal operation) and, to maximize safety coverage, one LVD
can be tested while the other operates (on-line self-testing feature)
Built-In Self-Test (BIST) capability
This device includes the following protection against latent faults:
Boot-time Memory Built-In Self-Test (MBIST)
Boot-time scan-based Logic Built-In Self-Test (LBIST)
Run-time ADC Built-In Self-Test (BIST)
Run-time Built-In Self Test of LVDs
DocID15457 Rev 12
33/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
2
Package pinouts and signal descriptions
2.1
Package pinouts
Figure 2 shows the LQFP100 pinout.
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2
71
74
70
73
69
72
68
71
67
70
66
69
65
68
64
67
63
66
62
65
61
64
60
63
59
62
58
61
57
60
56
59
55
58
54
57
53
56
52
55
51
54
3
4
LQFP100 package
5
775
74
573
72
6
7
8
A[4]
VPP_TEST
D[14]
C[14]
C[13]
D[12]
VDD_HV_FLA
VSS_HV_FLA
VDD_HV_REG_1
VSS_LV_COR
VDD_LV_COR
A[3]
VDD_HV_IO
VSS_HV_IO
B[4]
TCK
TMS
B[5]
A[2]
C[12]
C[11]
D[11]
D[10]
A[1]
A[0]
3
0
2
9
2
8
2
7
D[7]
FCCU_F[0]
VDD_LV_COR
VSS_LV_COR
B[7]
B[8]
E[2]
VDD_HV_ADR0
VSS_HV_ADR0
B[9]
B[10]
B[11]
B[12]
VDD_HV_ADR1
VSS_HV_ADR1
VDD_HV_ADV
VSS_HV_ADV
B[13]
B[14]
C[0]
E[0]
BCTRL
VDD_LV_COR
VSS_LV_COR
VDD_HV_PMU
2
6
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
NMI
A[6]
D[1]
A[7]
C[4]
A[8]
C[5]
A[5]
C[7]
VDD_HV_REG_0
VSS_LV_COR
VDD_LV_COR
VDD_HV_IO
VSS_HV_IO
D[9]
VDD_HV_OSC
VSS_HV_OSC
XTAL
EXTAL
RESET
D[8]
D[5]
D[6]
VSS_LV_PLL0_PLL1
VDD_LV_PLL0_PLL1
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
A[15]
A[14]
C[6]
FCCU_F[1]
B[6]
A[13]
A[9]
VSS_LV_COR
VDD_LV_COR
VDD_HV_REG_2
D[4]
D[3]
VSS_HV_IO
VDD_HV_IO
D[0]
C[15]
JCOMP
A[12]
A[11]
A[10]
B[3]
B[2]
C[10]
B[1]
B[0]
Figure 2. LQFP100 pinout
Figure 3 shows the SPC56ELx/SPC564Lx in the LQFP144 package.
34/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144 package
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
A[4]
VPP_TEST
F[12]
D[14]
G[3]
C[14]
G[2]
C[13]
G[4]
D[12]
G[6]
VDD_HV_FLA
VSS_HV_FLA
VDD_HV_REG_1
VSS_LV_COR
VDD_LV_COR
A[3]
VDD_HV_IO
VSS_HV_IO
B[4]
TCK
TMS
B[5]
G[5]
A[2]
G[7]
C[12]
G[8]
C[11]
G[9]
D[11]
G[10]
D[10]
G[11]
A[1]
A[0]
D[7]
FCCU_F[0]
VDD_LV_COR
VSS_LV_COR
C[1]
E[4]
B[7]
E[5]
C[2]
E[6]
B[8]
E[7]
E[2]
VDD_HV_ADR0
VSS_HV_ADR0
B[9]
B[10]
B[11]
B[12]
VDD_HV_ADR1
VSS_HV_ADR1
VDD_HV_ADV
VSS_HV_ADV
B[13]
E[9]
B[15]
E[10]
B[14]
E[11]
C[0]
E[12]
E[0]
BCTRL
VDD_LV_COR
VSS_LV_COR
VDD_HV_PMU
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
NMI
A[6]
D[1]
F[4]
F[5]
VDD_HV_IO
VSS_HV_IO
F[6]
MDO0
A[7]
C[4]
A[8]
C[5]
A[5]
C[7]
VDD_HV_REG_0
VSS_LV_COR
VDD_LV_COR
F[7]
F[8]
VDD_HV_IO
VSS_HV_IO
F[9]
F[10]
F[11]
D[9]
VDD_HV_OSC
VSS_HV_OSC
XTAL
EXTAL
RESET
D[8]
D[5]
D[6]
VSS_LV_PLL0_PLL1
VDD_LV_PLL0_PLL1
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
A[15]
A[14]
C[6]
FCCU_F[1]
D[2]
F[3]
B[6]
VSS_LV_COR
A[13]
VDD_LV_COR
A[9]
F[0]
VSS_LV_COR
VDD_LV_COR
VDD_HV_REG_2
D[4]
D[3]
VSS_HV_IO
VDD_HV_IO
D[0]
C[15]
JCOMP
A[12]
E[15]
A[11]
E[14]
A[10]
E[13]
B[3]
F[14]
B[2]
F[15]
F[13]
C[10]
B[1]
B[0]
Figure 3. SPC56ELx/SPC564Lx LQFP144 pinout (top view)
Figure 4 shows the SPC56ELx/SPC564Lx in the LFBGA257 package.
DocID15457 Rev 12
35/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Figure 4. SPC56ELx/SPC564Lx LFBGA257 pinout (top view)
1
A
B
C
2
3
VSS_HV_I VSS_HV_I VDD_HV_
O
O
VSS_HV_I VSS_HV_I
O
VDD_HV_
IO
O
NC
(1)
IO
B[6]
4
5
6
7
8
9
10
11
12
13
14
15
H[2]
H[0]
G[14]
D[3]
C[15]
VDD_HV_
A[12]
H[10]
H[14]
A[10]
B[2]
C[10]
VSS_HV_I VSS_HV_I
A[14]
F[3]
A[9]
D[4]
D[0]
VSS_HV_I
H[12]
E[15]
E[14]
B[3]
F[13]
B[0]
VDD_HV_ VSS_HV_I
VSS_HV_I
VSS_HV_I FCCU_F
[1]
O
D[2]
A[13]
VSS_LV_
VDD_LV_
COR
COR
VDD_HV_ VDD_HV_
REG_2
REG_2
IO
O
I[0]
VDD_HV_ VSS_HV_I
JCOMP
H[11]
I[1]
F[14]
B[1]
NC
A[11]
E[13]
F[15]
VDD_HV_
G[2]
I[3]
NC
C[13]
I[2]
G[4]
D[12]
H[13]
H[9]
G[6]
MDO0
F[6]
D[1]
NMI
F
H[1]
G[12]
A[7]
A[8]
VDD_LV_
VDD_LV_
VDD_LV_
VDD_LV_
VDD_LV_
VDD_LV_
VDD_LV_
COR
COR
COR
COR
COR
COR
COR
G
H[3]
VDD_HV_
C[5]
A[6]
VDD_LV_
VSS_LV_
VSS_LV_
VSS_LV_
VSS_LV_
VSS_LV_
VDD_LV_
COR
COR
COR
COR
COR
COR
COR
H
G[13]
VSS_HV_I
C[4]
A[5]
VDD_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VDD_LV
VSS_LV
J
F[7]
G[15]
VDD_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VDD_LV
VDD_LV
K
F[9]
F[8]
C[7]
VDD_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VDD_LV
L
F[10]
F[11]
D[9]
NC
VDD_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
VSS_LV
D[8]
NC
VDD_LV
VDD_LV
VDD_LV
VDD_LV
VDD_LV
VDD_LV
D[5]
VSS_LV_
M
N
P
R
T
U
VDD_HV_ VDD_HV_
REG_0
REG_0
OSC
IO
XTAL
VSS_HV_I
VSS_HV_
RESET
D[6]
VDD_LV_
VDD_LV_
VSS_LV_
PLL
COR
COR
FCCU
_F[0]
VSS_HV_I
D[7]
B[7]
NC
C[1]
NC
3
OSC
EXTAL
O
VSS_HV_I VDD_HV_
O
IO
VSS_HV_I VSS_HV_I
O
O
1
2
O
NC
E[6]
VDD_HV_
E[5]
E[7]
VSS_HV_
E[4]
C[2]
E[2]
4
5
6
VSS_HV_I VDD_HV_
H[15]
FLA
NC
H[8]
H[7]
A[3]
VDD_LV
NC
TCK
H[4]
B[4]
VDD_LV
C[11]
B[5]
TMS
H[5]
NC
C[12]
A[2]
G[5]
G[10]
G[8]
G[7]
D[11]
G[9]
VSS_LV_
VDD_HV_
COR
IO
B[13]
B[15]
C[0]
BCTRL
A[1]
VSS_HV_I
E[9]
E[10]
E[12]
E[0]
A[0]
D[10]
VDD_HV_ VSS_HV_I
E[11]
NC
NC
VDD_HV_
G[11]
VSS_HV_I VSS_HV_I
11
12
13
14
VDD_HV_
B[11]
VSS_HV_
B[9]
B[12]
VDD_HV_ VSS_HV_
7
8
ADR1
VDD_HV_ VSS_HV_
H[6]
COR
B[10]
ADR0
FLA
VDD_LV_
IO
ADR1
REG_1
B[14]
O
ADR0
VDD_HV_ VDD_HV_
REG_1
PLL
B[8]
F[12]
C[14]
E
VDD_HV_ VDD_HV_
A[4]
NC
C[6]
O
O
G[3]
A[15]
IO
IO
D[14]
F[4]
O
O
VPP
_TEST
F[5]
IO
O
17
IO
D
F[0]
O
16
ADV
ADV
9
10
PMU
O
15
IO
O
O
O
16
17
1. NC = Not connected (the pin is physically not connected to anything on the device).
Table 3, Table 4, and Table 5 provide the pin function summaries for the 100-pin, 144-pin,
and 257-pin packages, respectively, listing all the signals multiplexed to each pin.
36/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 3. LQFP100 pin function summary
Pin #
Port/function
1
NMI
2
3
4
5
6
7
8
9
A[6]
D[1]
A[7]
C[4]
A[8]
C[5]
A[5]
C[7]
Peripheral
Output function
Input function
—
SIUL
GPIO[6]
GPIO[6]
DSPI_1
SCK
SCK
SIUL
—
EIRQ[6]
SIUL
GPIO[49]
GPIO[49]
eTimer_1
ETC[2]
ETC[2]
CTU_0
EXT_TGR
—
FlexRay
—
CA_RX
SIUL
GPIO[7]
GPIO[7]
DSPI_1
SOUT
—
SIUL
—
EIRQ[7]
SIUL
GPIO[36]
GPIO[36]
DSPI_0
CS0
CS0
FlexPWM_0
X[1]
X[1]
SSCM
DEBUG[4]
—
SIUL
—
EIRQ[22]
SIUL
GPIO[8]
GPIO[8]
DSPI_1
—
SIN
SIUL
—
EIRQ[8]
SIUL
GPIO[37]
GPIO[37]
DSPI_0
SCK
SCK
SSCM
DEBUG[5]
—
FlexPWM_0
—
FAULT[3]
SIUL
—
EIRQ[23]
SIUL
GPIO[5]
GPIO[5]
DSPI_1
CS0
CS0
eTimer_1
ETC[5]
ETC[5]
DSPI_0
CS7
—
SIUL
—
EIRQ[5]
SIUL
GPIO[39]
GPIO[39]
FlexPWM_0
A[1]
A[1]
SSCM
DEBUG[7]
—
DSPI_0
—
SIN
10
VDD_HV_REG_0
—
11
VSS_LV_COR
—
DocID15457 Rev 12
37/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 3. LQFP100 pin function summary (continued)
Pin #
Port/function
12
VDD_LV_COR
—
13
VDD_HV_IO
—
14
VSS_HV_IO
—
15
Output function
GPIO[57]
GPIO[57]
FlexPWM_0
X[0]
X[0]
LINFlexD_1
TXD
—
VDD_HV_OSC
—
17
VSS_HV_OSC
—
18
XTAL
—
19
EXTAL
—
20
RESET
—
22
23
D[8]
D[5]
D[6]
SIUL
GPIO[56]
GPIO[56]
DSPI_1
CS2
—
eTimer_1
ETC[4]
ETC[4]
DSPI_0
CS5
—
FlexPWM_0
—
FAULT[3]
SIUL
GPIO[53]
GPIO[53]
DSPI_0
CS3
—
FlexPWM_0
—
FAULT[2]
SIUL
GPIO[54]
GPIO[54]
DSPI_0
CS2
—
FlexPWM_0
X[3]
X[3]
FlexPWM_0
—
FAULT[1]
24
VSS_LV_PLL0_PLL1
—
25
VDD_LV_PLL0_PLL1
—
26
D[7]
SIUL
GPIO[55]
GPIO[55]
DSPI_1
CS3
—
DSPI_0
CS4
—
SWG
Analog output
—
FCCU
F[0]
F[0]
27
FCCU_F[0]
28
VDD_LV_COR
—
29
VSS_LV_COR
—
30
B[7]
Input function
SIUL
16
21
38/165
D[9]
Peripheral
SIUL
—
GPIO[23]
LINFlexD_0
—
RXD
ADC_0
—
AN[0]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 3. LQFP100 pin function summary (continued)
Pin #
31
Port/function
B[8]
Peripheral
Output function
Input function
SIUL
—
GPIO[24]
eTimer_0
—
ETC[5]
ADC_0
—
AN[1]
SIUL
—
GPIO[66]
ADC_0
—
AN[5]
32
E[2]
33
VDD_HV_ADR0
—
34
VSS_HV_ADR0
—
SIUL
35
B[9]
ADC_0
ADC_1
SIUL
36
B[10]
ADC_0
ADC_1
SIUL
37
B[11]
ADC_0
ADC_1
SIUL
38
B[12]
ADC_0
ADC_1
—
GPIO[25]
—
AN[11]
—
GPIO[26]
—
AN[12]
—
GPIO[27]
—
AN[13]
—
GPIO[28]
—
AN[14]
39
VDD_HV_ADR1
—
40
VSS_HV_ADR1
—
41
VDD_HV_ADV
—
42
VSS_HV_ADV
—
43
44
B[13]
B[14]
45
C[0]
46
E[0]
47
BCTRL
SIUL
—
GPIO[29]
LINFlexD_1
—
RXD
ADC_1
—
AN[0]
SIUL
—
GPIO[30]
eTimer_0
—
ETC[4]
SIUL
—
EIRQ[19]
ADC_1
—
AN[1]
SIUL
—
GPIO[32]
ADC_1
—
AN[3]
SIUL
—
GPIO[64]
ADC_1
—
AN[5]
—
DocID15457 Rev 12
39/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 3. LQFP100 pin function summary (continued)
Pin #
Port/function
48
VDD_LV_COR
—
49
VSS_LV_COR
—
50
VDD_HV_PMU
—
51
52
53
54
55
56
57
40/165
A[0]
A[1]
D[10]
D[11]
C[11]
C[12]
A[2]
Peripheral
Output function
Input function
SIUL
GPIO[0]
GPIO[0]
eTimer_0
ETC[0]
ETC[0]
DSPI_2
SCK
SCK
SIUL
—
EIRQ[0]
SIUL
GPIO[1]
GPIO[1]
eTimer_0
ETC[1]
ETC[1]
DSPI_2
SOUT
—
SIUL
—
EIRQ[1]
SIUL
GPIO[58]
GPIO[58]
FlexPWM_0
A[0]
A[0]
eTimer_0
—
ETC[0]
SIUL
GPIO[59]
GPIO[59]
FlexPWM_0
B[0]
B[0]
eTimer_0
—
ETC[1]
SIUL
GPIO[43]
GPIO[43]
eTimer_0
ETC[4]
ETC[4]
DSPI_2
CS2
—
SIUL
GPIO[44]
GPIO[44]
eTimer_0
ETC[5]
ETC[5]
DSPI_2
CS3
—
SIUL
GPIO[2]
GPIO[2]
eTimer_0
ETC[2]
ETC[2]
FlexPWM_0
A[3]
A[3]
DSPI_2
—
SIN
MC_RGM
—
ABS[0]
SIUL
—
EIRQ[2]
SIUL
GPIO[21]
GPIO[21]
JTAGC
—
TDI
58
B[5]
59
TMS
—
60
TCK
—
61
B[4]
SIUL
GPIO[20]
GPIO[20]
JTAGC
TDO
—
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 3. LQFP100 pin function summary (continued)
Pin #
Port/function
62
VSS_HV_IO
—
63
VDD_HV_IO
—
64
A[3]
Peripheral
Output function
SIUL
GPIO[3]
GPIO[3]
eTimer_0
ETC[3]
ETC[3]
DSPI_2
CS0
CS0
FlexPWM_0
B[3]
B[3]
MC_RGM
—
ABS[2]
SIUL
—
EIRQ[3]
65
VDD_LV_COR
—
66
VSS_LV_COR
—
67
VDD_HV_REG_1
—
68
VSS_HV_FLA
—
69
VDD_HV_FLA
—
70
71
72
D[12]
C[13]
C[14]
73
D[14]
74
VPP_TEST(1)
75
A[4]
Input function
SIUL
GPIO[60]
GPIO[60]
FlexPWM_0
X[1]
X[1]
LINFlexD_1
—
RXD
SIUL
GPIO[45]
GPIO[45]
eTimer_1
ETC[1]
ETC[1]
CTU_0
—
EXT_IN
FlexPWM_0
—
EXT_SYNC
SIUL
GPIO[46]
GPIO[46]
eTimer_1
ETC[2]
ETC[2]
CTU_0
EXT_TGR
—
SIUL
GPIO[62]
GPIO[62]
FlexPWM_0
B[1]
B[1]
eTimer_0
—
ETC[3]
—
SIUL
GPIO[4]
GPIO[4]
eTimer_1
ETC[0]
ETC[0]
DSPI_2
CS1
—
eTimer_0
ETC[4]
ETC[4]
MC_RGM
—
FAB
SIUL
—
EIRQ[4]
DocID15457 Rev 12
41/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 3. LQFP100 pin function summary (continued)
Pin #
76
77
78
79
80
81
82
42/165
Port/function
B[0]
B[1]
C[10]
B[2]
B[3]
A[10]
A[11]
Peripheral
Output function
Input function
SIUL
GPIO[16]
GPIO[16]
FlexCAN_0
TXD
—
eTimer_1
ETC[2]
ETC[2]
SSCM
DEBUG[0]
—
SIUL
—
EIRQ[15]
SIUL
GPIO[17]
GPIO[17]
eTimer_1
ETC[3]
ETC[3]
SSCM
DEBUG[1]
—
FlexCAN_0
—
RXD
FlexCAN_1
—
RXD
SIUL
—
EIRQ[16]
SIUL
GPIO[42]
GPIO[42]
DSPI_2
CS2
—
FlexPWM_0
A[3]
A[3]
FlexPWM_0
—
FAULT[1]
SIUL
GPIO[18]
GPIO[18]
LINFlexD_0
TXD
—
SSCM
DEBUG[2]
DEBUG[2]
SIUL
—
EIRQ[17]
SIUL
GPIO[19]
GPIO[19]
SSCM
DEBUG[3]
DEBUG[3]
LINFlexD_0
—
RXD
SIUL
GPIO[10]
GPIO[10]
DSPI_2
CS0
CS0
FlexPWM_0
B[0]
B[0]
FlexPWM_0
X[2]
X[2]
SIUL
—
EIRQ[9]
SIUL
GPIO[11]
GPIO[11]
DSPI_2
SCK
SCK
FlexPWM_0
A[0]
A[0]
FlexPWM_0
A[2]
A[2]
SIUL
—
EIRQ[10]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 3. LQFP100 pin function summary (continued)
Pin #
83
84
85
86
Port/function
A[12]
JCOMP
C[15]
D[0]
Peripheral
Output function
Input function
SIUL
GPIO[12]
GPIO[12]
DSPI_2
SOUT
—
FlexPWM_0
A[2]
A[2]
FlexPWM_0
B[2]
B[2]
SIUL
—
EIRQ[11]
—
—
JCOMP
SIUL
GPIO[47]
GPIO[47]
FlexRay
CA_TR_EN
—
eTimer_1
ETC[0]
ETC[0]
FlexPWM_0
A[1]
A[1]
CTU_0
—
EXT_IN
FlexPWM_0
—
EXT_SYNC
SIUL
GPIO[48]
GPIO[48]
FlexRay
CA_TX
—
eTimer_1
ETC[1]
ETC[1]
FlexPWM_0
B[1]
B[1]
87
VDD_HV_IO
—
88
VSS_HV_IO
—
89
90
D[3]
D[4]
SIUL
GPIO[51]
GPIO[51]
FlexRay
CB_TX
—
eTimer_1
ETC[4]
ETC[4]
FlexPWM_0
A[3]
A[3]
SIUL
GPIO[52]
GPIO[52]
FlexRay
CB_TR_EN
—
eTimer_1
ETC[5]
ETC[5]
FlexPWM_0
B[3]
B[3]
91
VDD_HV_REG_2
—
92
VDD_LV_COR
—
93
VSS_LV_COR
—
94
A[9]
SIUL
GPIO[9]
GPIO[9]
DSPI_2
CS1
—
FlexPWM_0
B[3]
B[3]
FlexPWM_0
—
FAULT[0]
DocID15457 Rev 12
43/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 3. LQFP100 pin function summary (continued)
Pin #
95
96
97
98
99
100
Port/function
A[13]
B[6]
FCCU_F[1]
C[6]
A[14]
A[15]
Peripheral
Output function
Input function
SIUL
GPIO[13]
GPIO[13]
FlexPWM_0
B[2]
B[2]
DSPI_2
—
SIN
FlexPWM_0
—
FAULT[0]
SIUL
—
EIRQ[12]
SIUL
GPIO[22]
GPIO[22]
MC_CGM
clk_out
—
DSPI_2
CS2
—
SIUL
—
EIRQ[18]
FCCU
F[1]
F[1]
SIUL
GPIO[38]
GPIO[38]
DSPI_0
SOUT
—
FlexPWM_0
B[1]
B[1]
SSCM
DEBUG[6]
—
SIUL
—
EIRQ[24]
SIUL
GPIO[14]
GPIO[14]
FlexCAN_1
TXD
—
eTimer_1
ETC[4]
ETC[4]
SIUL
—
EIRQ[13]
SIUL
GPIO[15]
GPIO[15]
eTimer_1
ETC[5]
ETC[5]
FlexCAN_1
—
RXD
FlexCAN_0
—
RXD
SIUL
—
EIRQ[14]
1. VPP_TEST should always be tied to ground (VSS) for normal operations.
Table 4. LQFP144 pin function summary
Pin #
Port/function
1
NMI
2
44/165
A[6]
Peripheral
Output function
Input function
—
SIUL
GPIO[6]
GPIO[6]
DSPI_1
SCK
SCK
SIUL
—
EIRQ[6]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 4. LQFP144 pin function summary (continued)
Pin #
3
Port/function
D[1]
Peripheral
Output function
Input function
SIUL
GPIO[49]
GPIO[49]
eTimer_1
ETC[2]
ETC[2]
CTU_0
EXT_TGR
—
FlexRay
—
CA_RX
SIUL
GPIO[84]
GPIO[84]
NPC
MDO[3]
—
SIUL
GPIO[85]
GPIO[85]
NPC
MDO[2]
—
4
F[4]
5
F[5]
6
VDD_HV_IO
—
7
VSS_HV_IO
—
8
F[6]
9
MDO0
10
11
12
13
14
A[7]
C[4]
A[8]
C[5]
A[5]
SIUL
GPIO[86]
GPIO[86]
NPC
MDO[1]
—
—
SIUL
GPIO[7]
GPIO[7]
DSPI_1
SOUT
—
SIUL
—
EIRQ[7]
SIUL
GPIO[36]
GPIO[36]
DSPI_0
CS0
CS0
FlexPWM_0
X[1]
X[1]
SSCM
DEBUG[4]
—
SIUL
—
EIRQ[22]
SIUL
GPIO[8]
GPIO[8]
DSPI_1
—
SIN
SIUL
—
EIRQ[8]
SIUL
GPIO[37]
GPIO[37]
DSPI_0
SCK
SCK
SSCM
DEBUG[5]
—
FlexPWM_0
—
FAULT[3]
SIUL
—
EIRQ[23]
SIUL
GPIO[5]
GPIO[5]
DSPI_1
CS0
CS0
eTimer_1
ETC[5]
ETC[5]
DSPI_0
CS7
—
SIUL
—
EIRQ[5]
DocID15457 Rev 12
45/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 4. LQFP144 pin function summary (continued)
Pin #
15
C[7]
Peripheral
Output function
Input function
SIUL
GPIO[39]
GPIO[39]
FlexPWM_0
A[1]
A[1]
SSCM
DEBUG[7]
—
DSPI_0
—
SIN
16
VDD_HV_REG_0
—
17
VSS_LV_COR
—
18
VDD_LV_COR
—
19
F[7]
20
F[8]
21
VDD_HV_IO
—
22
VSS_HV_IO
—
23
F[9]
24
F[10]
25
F[11]
26
D[9]
SIUL
GPIO[87]
GPIO[87]
NPC
MCKO
—
SIUL
GPIO[88]
GPIO[88]
NPC
MSEO[1]
—
SIUL
GPIO[89]
GPIO[89]
NPC
MSEO[0]
—
SIUL
GPIO[90]
GPIO[90]
NPC
EVTO
—
SIUL
GPIO[91]
GPIO[91]
NPC
—
EVTI
SIUL
GPIO[57]
GPIO[57]
FlexPWM_0
X[0]
X[0]
LINFlexD_1
TXD
—
27
VDD_HV_OSC
—
28
VSS_HV_OSC
—
29
XTAL
—
30
EXTAL
—
31
RESET
—
32
33
46/165
Port/function
D[8]
D[5]
SIUL
GPIO[56]
GPIO[56]
DSPI_1
CS2
—
eTimer_1
ETC[4]
ETC[4]
DSPI_0
CS5
—
FlexPWM_0
—
FAULT[3]
SIUL
GPIO[53]
GPIO[53]
DSPI_0
CS3
—
FlexPWM_0
—
FAULT[2]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 4. LQFP144 pin function summary (continued)
Pin #
34
Port/function
D[6]
Peripheral
Output function
Input function
SIUL
GPIO[54]
GPIO[54]
DSPI_0
CS2
—
FlexPWM_0
X[3]
X[3]
FlexPWM_0
—
FAULT[1]
35
VSS_LV_PLL0_PLL1
—
36
VDD_LV_PLL0_PLL1
—
37
D[7]
SIUL
GPIO[55]
GPIO[55]
DSPI_1
CS3
—
DSPI_0
CS4
—
SWG
analog output
—
FCCU
F[0]
F[0]
38
FCCU_F[0]
39
VDD_LV_COR
—
40
VSS_LV_COR
—
41
C[1]
42
E[4]
43
B[7]
44
E[5]
45
C[2]
46
E[6]
47
B[8]
SIUL
—
GPIO[33]
ADC_0
—
AN[2]
SIUL
—
GPIO[68]
ADC_0
—
AN[7]
SIUL
—
GPIO[23]
LINFlexD_0
—
RXD
ADC_0
—
AN[0]
SIUL
—
GPIO[69]
ADC_0
—
AN[8]
SIUL
—
GPIO[34]
ADC_0
—
AN[3]
SIUL
—
GPIO[70]
ADC_0
—
AN[4]
SIUL
—
GPIO[24]
eTimer_0
—
ETC[5]
ADC_0
—
AN[1]
SIUL
—
GPIO[71]
ADC_0
—
AN[6]
SIUL
—
GPIO[66]
ADC_0
—
AN[5]
48
E[7]
49
E[2]
50
VDD_HV_ADR0
—
51
VSS_HV_ADR0
—
DocID15457 Rev 12
47/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 4. LQFP144 pin function summary (continued)
Pin #
52
53
B[9]
B[10]
Peripheral
Output function
Input function
SIUL
—
GPIO[25]
ADC_0
ADC_1
—
AN[11]
SIUL
—
GPIO[26]
ADC_0
ADC_1
—
AN[12]
SIUL
—
GPIO[27]
ADC_0
ADC_1
—
AN[13]
SIUL
—
GPIO[28]
ADC_0
ADC_1
—
AN[14]
54
B[11]
55
B[12]
56
VDD_HV_ADR1
—
57
VSS_HV_ADR1
—
58
VDD_HV_ADV
—
59
VSS_HV_ADV
—
60
61
62
63
64
48/165
Port/function
B[13]
E[9]
B[15]
E[10]
B[14]
65
E[11]
66
C[0]
67
E[12]
SIUL
—
GPIO[29]
LINFlexD_1
—
RXD
ADC_1
—
AN[0]
SIUL
—
GPIO[73]
ADC_1
—
AN[7]
SIUL
—
GPIO[31]
SIUL
—
EIRQ[20]
ADC_1
—
AN[2]
SIUL
—
GPIO[74]
ADC_1
—
AN[8]
SIUL
—
GPIO[30]
eTimer_0
—
ETC[4]
SIUL
—
EIRQ[19]
ADC_1
—
AN[1]
SIUL
—
GPIO[75]
ADC_1
—
AN[4]
SIUL
—
GPIO[32]
ADC_1
—
AN[3]
SIUL
—
GPIO[76]
ADC_1
—
AN[6]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 4. LQFP144 pin function summary (continued)
Pin #
Port/function
68
E[0]
69
BCTRL
—
70
VDD_LV_COR
—
71
VSS_LV_COR
—
72
VDD_HV_PMU
—
73
74
75
76
77
78
79
80
A[0]
A[1]
G[11]
D[10]
G[10]
D[11]
G[9]
C[11]
Peripheral
Output function
Input function
SIUL
—
GPIO[64]
ADC_1
—
AN[5]
SIUL
GPIO[0]
GPIO[0]
eTimer_0
ETC[0]
ETC[0]
DSPI_2
SCK
SCK
SIUL
—
EIRQ[0]
SIUL
GPIO[1]
GPIO[1]
eTimer_0
ETC[1]
ETC[1]
DSPI_2
SOUT
—
SIUL
—
EIRQ[1]
SIUL
GPIO[107]
GPIO[107]
FlexRay
DBG3
—
FlexPWM_0
—
FAULT[3]
SIUL
GPIO[58]
GPIO[58]
FlexPWM_0
A[0]
A[0]
eTimer_0
—
ETC[0]
SIUL
GPIO[106]
GPIO[106]
FlexRay
DBG2
—
DSPI_2
CS3
—
FlexPWM_0
—
FAULT[2]
SIUL
GPIO[59]
GPIO[59]
FlexPWM_0
B[0]
B[0]
eTimer_0
—
ETC[1]
SIUL
GPIO[105]
GPIO[105]
FlexRay
DBG1
—
DSPI_1
CS1
—
FlexPWM_0
—
FAULT[1]
SIUL
—
EIRQ[29]
SIUL
GPIO[43]
GPIO[43]
eTimer_0
ETC[4]
ETC[4]
DSPI_2
CS2
—
DocID15457 Rev 12
49/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 4. LQFP144 pin function summary (continued)
Pin #
81
82
83
84
85
G[8]
C[12]
G[7]
A[2]
G[5]
Peripheral
Output function
Input function
SIUL
GPIO[104]
GPIO[104]
FlexRay
DBG0
—
DSPI_0
CS1
—
FlexPWM_0
—
FAULT[0]
SIUL
—
EIRQ[21]
SIUL
GPIO[44]
GPIO[44]
eTimer_0
ETC[5]
ETC[5]
DSPI_2
CS3
—
SIUL
GPIO[103]
GPIO[103]
FlexPWM_0
B[3]
B[3]
SIUL
GPIO[2]
GPIO[2]
eTimer_0
ETC[2]
ETC[2]
FlexPWM_0
A[3]
A[3]
DSPI_2
—
SIN
MC_RGM
—
ABS[0]
SIUL
—
EIRQ[2]
SIUL
GPIO[101]
GPIO[101]
FlexPWM_0
X[3]
X[3]
DSPI_2
CS3
—
SIUL
GPIO[21]
GPIO[21]
JTAGC
—
TDI
86
B[5]
87
TMS
—
88
TCK
—
89
B[4]
90
VSS_HV_IO
—
91
VDD_HV_IO
—
92
50/165
Port/function
A[3]
SIUL
GPIO[20]
GPIO[20]
JTAGC
TDO
—
SIUL
GPIO[3]
GPIO[3]
eTimer_0
ETC[3]
ETC[3]
DSPI_2
CS0
CS0
FlexPWM_0
B[3]
B[3]
MC_RGM
—
ABS[2]
SIUL
—
EIRQ[3]
93
VDD_LV_COR
—
94
VSS_LV_COR
—
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 4. LQFP144 pin function summary (continued)
Pin #
Port/function
95
VDD_HV_REG_1
—
96
VSS_HV_FLA
—
97
VDD_HV_FLA
—
98
G[6]
99
100
101
102
103
104
105
D[12]
G[4]
C[13]
G[2]
C[14]
G[3]
D[14]
106
F[12]
107
VPP_TEST(1)
Peripheral
Output function
Input function
SIUL
GPIO[102]
GPIO[102]
FlexPWM_0
A[3]
A[3]
SIUL
GPIO[60]
GPIO[60]
FlexPWM_0
X[1]
X[1]
LINFlexD_1
—
RXD
SIUL
GPIO[100]
GPIO[100]
FlexPWM_0
B[2]
B[2]
eTimer_0
—
ETC[5]
SIUL
GPIO[45]
GPIO[45]
eTimer_1
ETC[1]
ETC[1]
CTU_0
—
EXT_IN
FlexPWM_0
—
EXT_SYNC
SIUL
GPIO[98]
GPIO[98]
FlexPWM_0
X[2]
X[2]
DSPI_1
CS1
—
SIUL
GPIO[46]
GPIO[46]
eTimer_1
ETC[2]
ETC[2]
CTU_0
EXT_TGR
—
SIUL
GPIO[99]
GPIO[99]
FlexPWM_0
A[2]
A[2]
eTimer_0
—
ETC[4]
SIUL
GPIO[62]
GPIO[62]
FlexPWM_0
B[1]
B[1]
eTimer_0
—
ETC[3]
SIUL
GPIO[92]
GPIO[92]
eTimer_1
ETC[3]
ETC[3]
SIUL
—
EIRQ[30]
—
DocID15457 Rev 12
51/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 4. LQFP144 pin function summary (continued)
Pin #
108
109
110
111
112
113
114
115
116
52/165
Port/function
A[4]
B[0]
B[1]
C[10]
F[13]
F[15]
B[2]
F[14]
B[3]
Peripheral
Output function
Input function
SIUL
GPIO[4]
GPIO[4]
eTimer_1
ETC[0]
ETC[0]
DSPI_2
CS1
—
eTimer_0
ETC[4]
ETC[4]
MC_RGM
—
FAB
SIUL
—
EIRQ[4]
SIUL
GPIO[16]
GPIO[16]
FlexCAN_0
TXD
—
eTimer_1
ETC[2]
ETC[2]
SSCM
DEBUG[0]
—
SIUL
—
EIRQ[15]
SIUL
GPIO[17]
GPIO[17]
eTimer_1
ETC[3]
ETC[3]
SSCM
DEBUG[1]
—
FlexCAN_0
—
RXD
FlexCAN_1
—
RXD
SIUL
—
EIRQ[16]
SIUL
GPIO[42]
GPIO[42]
DSPI_2
CS2
—
FlexPWM_0
A[3]
A[3]
FlexPWM_0
—
FAULT[1]
SIUL
GPIO[93]
GPIO[93]
eTimer_1
ETC[4]
ETC[4]
SIUL
—
EIRQ[31]
SIUL
GPIO[95]
GPIO[95]
LINFlexD_1
—
RXD
SIUL
GPIO[18]
GPIO[18]
LINFlexD_0
TXD
—
SSCM
DEBUG[2]
—
SIUL
—
EIRQ[17]
SIUL
GPIO[94]
GPIO[94]
LINFlexD_1
TXD
—
SIUL
GPIO[19]
GPIO[19]
SSCM
DEBUG[3]
—
LINFlexD_0
—
RXD
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 4. LQFP144 pin function summary (continued)
Pin #
117
118
119
120
121
122
123
124
Port/function
E[13]
A[10]
E[14]
A[11]
E[15]
A[12]
JCOMP
C[15]
Peripheral
Output function
Input function
SIUL
GPIO[77]
GPIO[77]
eTimer_0
ETC[5]
ETC[5]
DSPI_2
CS3
—
SIUL
—
EIRQ[25]
SIUL
GPIO[10]
GPIO[10]
DSPI_2
CS0
CS0
FlexPWM_0
B[0]
B[0]
FlexPWM_0
X[2]
X[2]
SIUL
—
EIRQ[9]
SIUL
GPIO[78]
GPIO[78]
eTimer_1
ETC[5]
ETC[5]
SIUL
—
EIRQ[26]
SIUL
GPIO[11]
GPIO[11]
DSPI_2
SCK
SCK
FlexPWM_0
A[0]
A[0]
FlexPWM_0
A[2]
A[2]
SIUL
—
EIRQ[10]
SIUL
GPIO[79]
GPIO[79]
DSPI_0
CS1
—
SIUL
—
EIRQ[27]
SIUL
GPIO[12]
GPIO[12]
DSPI_2
SOUT
—
FlexPWM_0
A[2]
A[2]
FlexPWM_0
B[2]
B[2]
SIUL
—
EIRQ[11]
—
—
JCOMP
SIUL
GPIO[47]
GPIO[47]
FlexRay
CA_TR_EN
—
eTimer_1
ETC[0]
ETC[0]
FlexPWM_0
A[1]
A[1]
CTU_0
—
EXT_IN
FlexPWM_0
—
EXT_SYNC
DocID15457 Rev 12
53/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 4. LQFP144 pin function summary (continued)
Pin #
125
D[0]
Peripheral
Output function
Input function
SIUL
GPIO[48]
GPIO[48]
FlexRay
CA_TX
—
eTimer_1
ETC[1]
ETC[1]
FlexPWM_0
B[1]
B[1]
126
VDD_HV_IO
—
127
VSS_HV_IO
—
128
129
D[3]
D[4]
SIUL
GPIO[51]
GPIO[51]
FlexRay
CB_TX
—
eTimer_1
ETC[4]
ETC[4]
FlexPWM_0
A[3]
A[3]
SIUL
GPIO[52]
GPIO[52]
FlexRay
CB_TR_EN
—
eTimer_1
ETC[5]
ETC[5]
FlexPWM_0
B[3]
B[3]
130
VDD_HV_REG_2
—
131
VDD_LV_COR
—
132
VSS_LV_COR
—
133
134
135
136
137
54/165
Port/function
F[0]
A[9]
SIUL
GPIO[80]
GPIO[80]
FlexPWM_0
A[1]
A[1]
eTimer_0
—
ETC[2]
SIUL
—
EIRQ[28]
SIUL
GPIO[9]
GPIO[9]
DSPI_2
CS1
—
FlexPWM_0
B[3]
B[3]
FlexPWM_0
—
FAULT[0]
—
VDD_LV_COR
A[13]
SIUL
GPIO[13]
GPIO[13]
FlexPWM_0
B[2]
B[2]
DSPI_2
—
SIN
FlexPWM_0
—
FAULT[0]
SIUL
—
EIRQ[12]
—
VSS_LV_COR
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 4. LQFP144 pin function summary (continued)
Pin #
138
139
140
141
142
143
144
Port/function
B[6]
F[3]
D[2]
FCCU_F[1]
C[6]
A[14]
A[15]
Peripheral
Output function
Input function
SIUL
GPIO[22]
GPIO[22]
MC_CGM
clk_out
—
DSPI_2
CS2
—
SIUL
—
EIRQ[18]
SIUL
GPIO[83]
GPIO[83]
DSPI_0
CS6
—
SIUL
GPIO[50]
GPIO[50]
eTimer_1
ETC[3]
ETC[3]
FlexPWM_0
X[3]
X[3]
FlexRay
—
CB_RX
FCCU
F[1]
F[1]
SIUL
GPIO[38]
GPIO[38]
DSPI_0
SOUT
—
FlexPWM_0
B[1]
B[1]
SSCM
DEBUG[6]
—
SIUL
—
EIRQ[24]
SIUL
GPIO[14]
GPIO[14]
FlexCAN_1
TXD
—
eTimer_1
ETC[4]
ETC[4]
SIUL
—
EIRQ[13]
SIUL
GPIO[15]
GPIO[15]
eTimer_1
ETC[5]
ETC[5]
FlexCAN_1
—
RXD
FlexCAN_0
—
RXD
SIUL
—
EIRQ[14]
1. VPP_TEST should always be tied to ground (VSS) for normal operations.
Table 5. LFBGA257 pin function summary
Pin #
Port/function
Peripheral
Output function
A1
VSS_HV_IO_RING
—
A2
VSS_HV_IO_RING
—
A3
VDD_HV_IO_RING
—
A4
H[2]
Input function
SIUL
GPIO[114]
GPIO[114]
NPC
MDO[5]
—
DocID15457 Rev 12
55/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
Port/function
A5
H[0]
A6
G[14]
A7
A8
A9
A10
A11
A12
A13
A14
56/165
D[3]
C[15]
Peripheral
Output function
Input function
SIUL
GPIO[112]
GPIO[112]
NPC
MDO[7]
—
SIUL
GPIO[110]
GPIO[110]
NPC
MDO[9]
—
SIUL
GPIO[51]
GPIO[51]
FlexRay
CB_TX
—
eTimer_1
ETC[4]
ETC[4]
FlexPWM_0
A[3]
A[3]
SIUL
GPIO[47]
GPIO[47]
FlexRay
CA_TR_EN
—
eTimer_1
ETC[0]
ETC[0]
FlexPWM_0
A[1]
A[1]
CTU_0
—
EXT_IN
FlexPWM_0
—
EXT_SYNC
VDD_HV_IO_RING
A[12]
H[10]
H[14]
A[10]
B[2]
—
SIUL
GPIO[12]
GPIO[12]
DSPI_2
SOUT
—
FlexPWM_0
A[2]
A[2]
FlexPWM_0
B[2]
B[2]
SIUL
—
EIRQ[11]
SIUL
GPIO[122]
GPIO[122]
FlexPWM_1
X[2]
X[2]
eTimer_2
ETC[2]
ETC[2]
SIUL
GPIO[126]
GPIO[126]
FlexPWM_1
A[3]
A[3]
eTimer_2
ETC[4]
ETC[4]
SIUL
GPIO[10]
GPIO[10]
DSPI_2
CS0
CS0
FlexPWM_0
B[0]
B[0]
FlexPWM_0
X[2]
X[2]
SIUL
—
EIRQ[9]
SIUL
GPIO[18]
GPIO[18]
LINFlexD_0
TXD
—
SSCM
DEBUG[2]
—
SIUL
—
EIRQ[17]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
A15
Port/function
C[10]
Peripheral
Output function
Input function
SIUL
GPIO[42]
GPIO[42]
DSPI_2
CS2
—
FlexPWM_0
A[3]
A[3]
FlexPWM_0
—
FAULT[1]
A16
VSS_HV_IO_RING
—
A17
VSS_HV_IO_RING
—
B1
VSS_HV_IO_RING
—
B2
VSS_HV_IO_RING
—
B3
B4
B5
B6
B7
B8
B[6]
A[14]
F[3]
A[9]
D[4]
D[0]
B9
VSS_HV_IO_RING
B10
H[12]
SIUL
GPIO[22]
GPIO[22]
MC_CGM
clk_out
—
DSPI_2
CS2
—
SIUL
—
EIRQ[18]
SIUL
GPIO[14]
GPIO[14]
FlexCAN_1
TXD
—
eTimer_1
ETC[4]
ETC[4]
SIUL
—
EIRQ[13]
SIUL
GPIO[83]
GPIO[83]
DSPI_0
CS6
—
SIUL
GPIO[9]
GPIO[9]
DSPI_2
CS1
—
FlexPWM_0
B[3]
B[3]
FlexPWM_0
—
FAULT[0]
SIUL
GPIO[52]
GPIO[52]
FlexRay
CB_TR_EN
—
eTimer_1
ETC[5]
ETC[5]
FlexPWM_0
B[3]
B[3]
SIUL
GPIO[48]
GPIO[48]
FlexRay
CA_TX
—
eTimer_1
ETC[1]
ETC[1]
FlexPWM_0
B[1]
B[1]
—
SIUL
GPIO[124]
GPIO[124]
FlexPWM_1
B[2]
B[2]
DocID15457 Rev 12
57/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
B11
B12
B13
B14
B15
E[15]
E[14]
B[3]
F[13]
B[0]
Peripheral
Output function
Input function
SIUL
GPIO[79]
GPIO[79]
DSPI_0
CS1
—
SIUL
—
EIRQ[27]
SIUL
GPIO[78]
GPIO[78]
eTimer_1
ETC[5]
ETC[5]
SIUL
—
EIRQ[26]
SIUL
GPIO[19]
GPIO[19]
SSCM
DEBUG[3]
—
LINFlexD_0
—
RXD
SIUL
GPIO[93]
GPIO[93]
eTimer_1
ETC[4]
ETC[4]
SIUL
—
EIRQ[31]
SIUL
GPIO[16]
GPIO[16]
FlexCAN_0
TXD
—
eTimer_1
ETC[2]
ETC[2]
SSCM
DEBUG[0]
—
SIUL
—
EIRQ[15]
B16
VDD_HV_IO_RING
—
B17
VSS_HV_IO_RING
—
C1
VDD_HV_IO_RING
—
C2
Not connected
—
C3
VSS_HV_IO_RING
—
C4
FCCU_F[1]
C5
C6
58/165
Port/function
D[2]
A[13]
FCCU
F[1]
F[1]
SIUL
GPIO[50]
GPIO[50]
eTimer_1
ETC[3]
ETC[3]
FlexPWM_0
X[3]
X[3]
FlexRay
—
CB_RX
SIUL
GPIO[13]
GPIO[13]
FlexPWM_0
B[2]
B[2]
DSPI_2
—
SIN
FlexPWM_0
—
FAULT[0]
SIUL
—
EIRQ[12]
C7
VDD_HV_REG_2
—
C8
VDD_HV_REG_2
—
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
C9
Port/function
I[0]
C10
JCOMP
C11
H[11]
C12
C13
C14
C15
C16
C17
I[1]
F[14]
B[1]
Peripheral
Output function
Input function
SIUL
GPIO[128]
GPIO[128]
eTimer_2
ETC[0]
ETC[0]
DSPI_0
CS4
—
FlexPWM_1
—
FAULT[0]
—
—
JCOMP
SIUL
GPIO[123]
GPIO[123]
FlexPWM_1
A[2]
A[2]
SIUL
GPIO[129]
GPIO[129]
eTimer_2
ETC[1]
ETC[1]
DSPI_0
CS5
—
FlexPWM_1
—
FAULT[1]
SIUL
GPIO[94]
GPIO[94]
LINFlexD_1
TXD
—
SIUL
GPIO[17]
GPIO[17]
eTimer_1
ETC[3]
ETC[3]
SSCM
DEBUG[1]
—
FlexCAN_0
—
RXD
FlexCAN_1
—
RXD
SIUL
—
EIRQ[16]
—
VSS_HV_IO_RING
A[4]
F[12]
D1
F[5]
D2
F[4]
SIUL
GPIO[4]
GPIO[4]
eTimer_1
ETC[0]
ETC[0]
DSPI_2
CS1
—
eTimer_0
ETC[4]
ETC[4]
MC_RGM
—
FAB
SIUL
—
EIRQ[4]
SIUL
GPIO[92]
GPIO[92]
eTimer_1
ETC[3]
ETC[3]
SIUL
—
EIRQ[30]
SIUL
GPIO[85]
GPIO[85]
NPC
MDO[2]
—
SIUL
GPIO[84]
GPIO[84]
NPC
MDO[3]
—
DocID15457 Rev 12
59/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
D3
D4
A[15]
C[6]
Peripheral
Output function
Input function
SIUL
GPIO[15]
GPIO[15]
eTimer_1
ETC[5]
ETC[5]
FlexCAN_1
—
RXD
FlexCAN_0
—
RXD
SIUL
—
EIRQ[14]
SIUL
GPIO[38]
GPIO[38]
DSPI_0
SOUT
—
FlexPWM_0
B[1]
B[1]
SSCM
DEBUG[6]
—
SIUL
—
EIRQ[24]
D5
VSS_LV_CORE_RING
—
D6
VDD_LV_CORE_RING
—
D7
F[0]
SIUL
GPIO[80]
GPIO[80]
FlexPWM_0
A[1]
A[1]
eTimer_0
—
ETC[2]
SIUL
—
EIRQ[28]
D8
VDD_HV_IO_RING
—
D9
VSS_HV_IO_RING
—
D10
Not connected
—
D11
D12
A[11]
E[13]
SIUL
GPIO[11]
GPIO[11]
DSPI_2
SCK
SCK
FlexPWM_0
A[0]
A[0]
FlexPWM_0
A[2]
A[2]
SIUL
—
EIRQ[10]
SIUL
GPIO[77]
GPIO[77]
eTimer_0
ETC[5]
ETC[5]
DSPI_2
CS3
—
SIUL
—
EIRQ[25]
SIUL
GPIO[95]
GPIO[95]
LINFlexD_1
—
RXD
D13
F[15]
D14
VDD_HV_IO_RING
—
D15
VPP_TEST(1)
—
D16
60/165
Port/function
D[14]
SIUL
GPIO[62]
GPIO[62]
FlexPWM_0
B[1]
B[1]
eTimer_0
—
ETC[3]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
D17
Port/function
G[3]
E1
MDO0
E2
F[6]
E3
D[1]
Peripheral
Output function
Input function
SIUL
GPIO[99]
GPIO[99]
FlexPWM_0
A[2]
A[2]
eTimer_0
—
ETC[4]
—
SIUL
GPIO[86]
GPIO[86]
NPC
MDO[1]
—
SIUL
GPIO[49]
GPIO[49]
eTimer_1
ETC[2]
ETC[2]
CTU_0
EXT_TGR
—
FlexRay
—
CA_RX
E4
NMI
—
E14
Not connected
—
E15
E16
E17
C[14]
G[2]
I[3]
F1
H[1]
F2
G[12]
F3
F4
A[7]
A[8]
SIUL
GPIO[46]
GPIO[46]
eTimer_1
ETC[2]
ETC[2]
CTU_0
EXT_TGR
—
SIUL
GPIO[98]
GPIO[98]
FlexPWM_0
X[2]
X[2]
DSPI_1
CS1
—
SIUL
GPIO[131]
GPIO[131]
eTimer_2
ETC[3]
ETC[3]
DSPI_0
CS7
—
CTU_0
EXT_TGR
—
FlexPWM_1
—
FAULT[3]
SIUL
GPIO[113]
GPIO[113]
NPC
MDO[6]
—
SIUL
GPIO[108]
GPIO[108]
NPC
MDO[11]
—
SIUL
GPIO[7]
GPIO[7]
DSPI_1
SOUT
—
SIUL
—
EIRQ[7]
SIUL
GPIO[8]
GPIO[8]
DSPI_1
—
SIN
SIUL
—
EIRQ[8]
F6
VDD_LV_CORE_RING
—
F7
VDD_LV_CORE_RING
—
DocID15457 Rev 12
61/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
Port/function
F8
VDD_LV_CORE_RING
—
F9
VDD_LV_CORE_RING
—
F10
VDD_LV_CORE_RING
—
F11
VDD_LV_CORE_RING
—
F12
VDD_LV_CORE_RING
—
F14
Not connected
—
F15
F16
F17
I[2]
G[4]
G1
H[3]
G2
VDD_HV_IO_RING
G3
G4
62/165
C[13]
C[5]
A[6]
Peripheral
Output function
Input function
SIUL
GPIO[45]
GPIO[45]
eTimer_1
ETC[1]
ETC[1]
CTU_0
—
EXT_IN
FlexPWM_0
—
EXT_SYNC
SIUL
GPIO[130]
GPIO[130]
eTimer_2
ETC[2]
ETC[2]
DSPI_0
CS6
—
FlexPWM_1
—
FAULT[2]
SIUL
GPIO[100]
GPIO[100]
FlexPWM_0
B[2]
B[2]
eTimer_0
—
ETC[5]
SIUL
GPIO[115]
GPIO[115]
NPC
MDO[4]
—
—
SIUL
GPIO[37]
GPIO[37]
DSPI_0
SCK
SCK
SSCM
DEBUG[5]
—
FlexPWM_0
—
FAULT[3]
SIUL
—
EIRQ[23]
SIUL
GPIO[6]
GPIO[6]
DSPI_1
SCK
SCK
SIUL
—
EIRQ[6]
G6
VDD_LV_CORE_RING
—
G7
VSS_LV_CORE_RING
—
G8
VSS_LV_CORE_RING
—
G9
VSS_LV_CORE_RING
—
G10
VSS_LV_CORE_RING
—
G11
VSS_LV_CORE_RING
—
G12
VDD_LV_CORE_RING
—
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
G14
G15
G16
Port/function
D[12]
H[13]
H[9]
G17
G[6]
H1
G[13]
H2
VSS_HV_IO_RING
H3
H4
C[4]
A[5]
Peripheral
Output function
Input function
SIUL
GPIO[60]
GPIO[60]
FlexPWM_0
X[1]
X[1]
LINFlexD_1
—
RXD
SIUL
GPIO[125]
GPIO[125]
FlexPWM_1
X[3]
X[3]
eTimer_2
ETC[3]
ETC[3]
SIUL
GPIO[121]
GPIO[121]
FlexPWM_1
B[1]
B[1]
DSPI_0
CS7
—
SIUL
GPIO[102]
GPIO[102]
FlexPWM_0
A[3]
A[3]
SIUL
GPIO[109]
GPIO[109]
NPC
MDO[10]
—
—
SIUL
GPIO[36]
GPIO[36]
DSPI_0
CS0
CS0
FlexPWM_0
X[1]
X[1]
SSCM
DEBUG[4]
—
SIUL
—
EIRQ[22]
SIUL
GPIO[5]
GPIO[5]
DSPI_1
CS0
CS0
eTimer_1
ETC[5]
ETC[5]
DSPI_0
CS7
—
SIUL
—
EIRQ[5]
H6
VDD_LV
—
H7
VSS_LV
—
H8
VSS_LV
—
H9
VSS_LV
—
H10
VSS_LV
—
H11
VSS_LV
—
H12
VDD_LV
—
H14
VSS_LV
—
H15
VDD_HV_REG_1
—
H16
VDD_HV_FLA
—
DocID15457 Rev 12
63/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
H17
H[6]
Peripheral
Output function
Input function
SIUL
GPIO[118]
GPIO[118]
FlexPWM_1
B[0]
B[0]
DSPI_0
CS5
—
SIUL
GPIO[87]
GPIO[87]
NPC
MCKO
—
SIUL
GPIO[111]
GPIO[111]
NPC
MDO[8]
—
J1
F[7]
J2
G[15]
J3
VDD_HV_REG_0
—
J4
VDD_HV_REG_0
—
J6
VDD_LV
—
J7
VSS_LV
—
J8
VSS_LV
—
J9
VSS_LV
—
J10
VSS_LV
—
J11
VSS_LV
—
J12
VDD_LV
—
J14
VDD_LV
—
J15
VDD_HV_REG_1
—
J16
VSS_HV_FLA
—
J17
H[15]
K1
F[9]
K2
F[8]
K3
K4
64/165
Port/function
RDY
C[7]
SIUL
GPIO[127]
GPIO[127]
FlexPWM_1
B[3]
B[3]
eTimer_2
ETC[5]
ETC[5]
SIUL
GPIO[89]
GPIO[89]
NPC
MSEO[0]
—
SIUL
GPIO[88]
GPIO[88]
NPC
MSEO[1]
—
NPC
RDY
—
SIUL
GPIO[132]
GPIO[132]
SIUL
GPIO[39]
GPIO[39]
FlexPWM_0
A[1]
A[1]
SSCM
DEBUG[7]
—
DSPI_0
—
SIN
K6
VDD_LV
—
K7
VSS_LV
—
K8
VSS_LV
—
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
Port/function
K9
VSS_LV
—
K10
VSS_LV
—
K11
VSS_LV
—
K12
VDD_LV
—
K14
Not connected
—
K15
K16
K17
H[8]
H[7]
A[3]
L1
F[10]
L2
F[11]
L3
D[9]
Peripheral
Output function
Input function
SIUL
GPIO[120]
GPIO[120]
FlexPWM_1
A[1]
A[1]
DSPI_0
CS6
—
SIUL
GPIO[119]
GPIO[119]
FlexPWM_1
X[1]
X[1]
eTimer_2
ETC[1]
ETC[1]
SIUL
GPIO[3]
GPIO[3]
eTimer_0
ETC[3]
ETC[3]
DSPI_2
CS0
CS0
FlexPWM_0
B[3]
B[3]
MC_RGM
—
ABS[2]
SIUL
—
EIRQ[3]
SIUL
GPIO[90]
GPIO[90]
NPC
EVTO
—
SIUL
GPIO[91]
GPIO[91]
NPC
—
EVTI
SIUL
GPIO[57]
GPIO[57]
FlexPWM_0
X[0]
X[0]
LINFlexD_1
TXD
—
L4
Not connected
—
L6
VDD_LV
—
L7
VSS_LV
—
L8
VSS_LV
—
L9
VSS_LV
—
L10
VSS_LV
—
L11
VSS_LV
—
L12
VDD_LV
—
L14
Not connected
—
L15
TCK
—
DocID15457 Rev 12
65/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
L16
H[4]
Peripheral
Output function
Input function
SIUL
GPIO[116]
GPIO[116]
FlexPWM_1
X[0]
X[0]
eTimer_2
ETC[0]
ETC[0]
SIUL
GPIO[20]
GPIO[20]
JTAGC
TDO
—
L17
B[4]
M1
VDD_HV_OSC
—
M2
VDD_HV_IO_RING
—
M3
D[8]
SIUL
GPIO[56]
GPIO[56]
DSPI_1
CS2
—
eTimer_1
ETC[4]
ETC[4]
DSPI_0
CS5
—
FlexPWM_0
—
FAULT[3]
M4
Not connected
—
M6
VDD_LV
—
M7
VDD_LV
—
M8
VDD_LV
—
M9
VDD_LV
—
M10
VDD_LV
—
M11
VDD_LV
—
M12
VDD_LV
—
M14
C[11]
M15
B[5]
M16
TMS
M17
H[5]
SIUL
GPIO[43]
GPIO[43]
eTimer_0
ETC[4]
ETC[4]
DSPI_2
CS2
—
SIUL
GPIO[21]
GPIO[21]
JTAGC
—
TDI
—
SIUL
GPIO[117]
GPIO[117]
FlexPWM_1
A[0]
A[0]
DSPI_0
CS4
—
N1
XTAL
—
N2
VSS_HV_IO_RING
—
N3
N4
66/165
Port/function
D[5]
SIUL
GPIO[53]
GPIO[53]
DSPI_0
CS3
—
FlexPWM_0
—
FAULT[2]
VSS_LV_PLL0_PLL1
—
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
Port/function
N14
Not connected
N15
N16
N17
C[12]
A[2]
G[5]
Peripheral
Output function
—
SIUL
GPIO[44]
GPIO[44]
eTimer_0
ETC[5]
ETC[5]
DSPI_2
CS3
—
SIUL
GPIO[2]
GPIO[2]
eTimer_0
ETC[2]
ETC[2]
FlexPWM_0
A[3]
A[3]
DSPI_2
—
SIN
MC_RGM
—
ABS[0]
SIUL
—
EIRQ[2]
SIUL
GPIO[101]
GPIO[101]
FlexPWM_0
X[3]
X[3]
DSPI_2
CS3
—
P1
VSS_HV_OSC
—
P2
RESET
—
P3
D[6]
SIUL
GPIO[54]
GPIO[54]
DSPI_0
CS2
—
FlexPWM_0
X[3]
X[3]
FlexPWM_0
—
FAULT[1]
P4
VDD_LV_PLL0_PLL1
—
P5
VDD_LV_CORE_RING
—
P6
VSS_LV_CORE_RING
—
P7
B[8]
SIUL
—
GPIO[24]
eTimer_0
—
ETC[5]
ADC_0
—
AN[1]
P8
Not connected
—
P9
VSS_HV_IO_RING
—
P10
VDD_HV_IO_RING
—
P11
B[14]
Input function
SIUL
—
GPIO[30]
eTimer_0
—
ETC[4]
SIUL
—
EIRQ[19]
ADC_1
—
AN[1]
P12
VDD_LV_CORE_RING
—
P13
VSS_LV_CORE_RING
—
P14
VDD_HV_IO_RING
—
DocID15457 Rev 12
67/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
P15
P16
G[10]
G[8]
P17
G[7]
R1
EXTAL
R2
FCCU_F[0]
R3
VSS_HV_IO_RING
R4
R5
D[7]
B[7]
R6
E[6]
R7
VDD_HV_ADR0
R8
B[10]
R9
VDD_HV_ADR1
R10
R11
68/165
Port/function
B[13]
B[15]
Peripheral
Output function
Input function
SIUL
GPIO[106]
GPIO[106]
FlexRay
DBG2
—
DSPI_2
CS3
—
FlexPWM_0
—
FAULT[2]
SIUL
GPIO[104]
GPIO[104]
FlexRay
DBG0
—
DSPI_0
CS1
—
FlexPWM_0
—
FAULT[0]
SIUL
—
EIRQ[21]
SIUL
GPIO[103]
GPIO[103]
FlexPWM_0
B[3]
B[3]
—
FCCU
F[0]
F[0]
—
SIUL
GPIO[55]
GPIO[55]
DSPI_1
CS3
—
DSPI_0
CS4
—
SWG
analog output
—
SIUL
—
GPIO[23]
LINFlexD_0
—
RXD
ADC_0
—
AN[0]
SIUL
—
GPIO[70]
ADC_0
—
AN[4]
—
SIUL
—
GPIO[26]
ADC_0
ADC_1
—
AN[12]
—
SIUL
—
GPIO[29]
LINFlexD_1
—
RXD
ADC_1
—
AN[0]
SIUL
—
GPIO[31]
SIUL
—
EIRQ[20]
ADC_1
—
AN[2]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
Port/function
R12
C[0]
R13
BCTRL
R14
R15
R16
R17
A[1]
Peripheral
Output function
Input function
SIUL
—
GPIO[32]
ADC_1
—
AN[3]
—
SIUL
GPIO[1]
GPIO[1]
eTimer_0
ETC[1]
ETC[1]
DSPI_2
SOUT
—
SIUL
—
EIRQ[1]
VSS_HV_IO_RING
D[11]
G[9]
—
SIUL
GPIO[59]
GPIO[59]
FlexPWM_0
B[0]
B[0]
eTimer_0
—
ETC[1]
SIUL
GPIO[105]
GPIO[105]
FlexRay
DBG1
—
DSPI_1
CS1
—
FlexPWM_0
—
FAULT[1]
SIUL
—
EIRQ[29]
T1
VSS_HV_IO_RING
—
T2
VDD_HV_IO_RING
—
T3
Not connected
—
T4
C[1]
T5
E[5]
T6
E[7]
T7
VSS_HV_ADR0
T8
B[11]
T9
VSS_HV_ADR1
T10
E[9]
T11
E[10]
SIUL
—
GPIO[33]
ADC_0
—
AN[2]
SIUL
—
GPIO[69]
ADC_0
—
AN[8]
SIUL
—
GPIO[71]
ADC_0
—
AN[6]
—
SIUL
—
GPIO[27]
ADC_0
ADC_1
—
AN[13]
—
SIUL
—
GPIO[73]
ADC_1
—
AN[7]
SIUL
—
GPIO[74]
ADC_1
—
AN[8]
DocID15457 Rev 12
69/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 5. LFBGA257 pin function summary (continued)
Pin #
Port/function
T12
E[12]
T13
E[0]
T14
T15
70/165
A[0]
D[10]
Peripheral
Output function
Input function
SIUL
—
GPIO[76]
ADC_1
—
AN[6]
SIUL
—
GPIO[64]
ADC_1
—
AN[5]
SIUL
GPIO[0]
GPIO[0]
eTimer_0
ETC[0]
ETC[0]
DSPI_2
SCK
SCK
SIUL
—
EIRQ[0]
SIUL
GPIO[58]
GPIO[58]
FlexPWM_0
A[0]
A[0]
eTimer_0
—
ETC[0]
T16
VDD_HV_IO_RING
—
T17
VSS_HV_IO_RING
—
U1
VSS_HV_IO_RING
—
U2
VSS_HV_IO_RING
—
U3
Not connected
—
U4
E[4]
U5
C[2]
U6
E[2]
SIUL
—
GPIO[68]
ADC_0
—
AN[7]
SIUL
—
GPIO[34]
ADC_0
—
AN[3]
SIUL
—
GPIO[66]
ADC_0
—
AN[5]
SIUL
—
GPIO[25]
ADC_0
ADC_1
—
AN[11]
SIUL
—
GPIO[28]
ADC_0
ADC_1
—
AN[14]
U7
B[9]
U8
B[12]
U9
VDD_HV_ADV
—
U10
VSS_HV_ADV
—
U11
E[11]
U12
Not connected
—
U13
Not connected
—
U14
VDD_HV_PMU
—
SIUL
—
GPIO[75]
ADC_1
—
AN[4]
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 5. LFBGA257 pin function summary (continued)
Pin #
U15
Port/function
G[11]
Peripheral
Output function
Input function
SIUL
GPIO[107]
GPIO[107]
FlexRay
DBG3
—
FlexPWM_0
—
FAULT[3]
U16
VSS_HV_IO_RING
—
U17
VSS_HV_IO_RING
—
1. VPP_TEST should always be tied to ground (VSS) for normal operations.
2.2
Supply pins
Table 6. Supply pins
Supply
Pin #
100
pkg
144
pkg
257
pkg
Voltage regulator external NPN ballast base control pin
47
69
R13
VDD_LV_COR
Core logic supply
48
70
VDD_LV(1)
VSS_LV_COR
Core regulator ground
49
71
VSS_LV(2)
VDD_HV_PMU
Voltage regulator supply
50
72
U14
Symbol
Description
VREG control and power supply pins
BCTRL
ADC_0/ADC_1 reference voltage and ADC supply
VDD_HV_ADR0
ADC_0 high reference voltage
33
50
R7
VSS_HV_ADR0
ADC_0 low reference voltage
34
51
T7
VDD_HV_ADR1
ADC_1 high reference voltage
39
56
R9
VSS_HV_ADR1
ADC_1 low reference voltage
40
57
T9
VDD_HV_ADV
ADC voltage supply for ADC_0 and ADC_1
41
58
U9
VSS_HV_ADV
ADC ground for ADC_0 and ADC_1
42
59
U10
Power supply pins (3.3 V)
VDD_HV_IO
3.3 V Input/Output supply voltage
—
6
VDD_HV(3)
VSS_HV_IO
3.3 V Input/Output ground
—
7
VSS_HV(4)
10
16
J3
VDD_HV_REG_0 VDD_HV_REG_0
VDD_HV_IO
3.3 V Input/Output supply voltage
13
21
VDD_HV(3)
VSS_HV_IO
3.3 V Input/Output ground
14
22
VSS_HV(4)
VDD_HV_OSC
Crystal oscillator amplifier supply voltage
16
27
M1
VSS_HV_OSC
Crystal oscillator amplifier ground
17
28
P1
VSS_HV_IO
3.3 V Input/Output ground
62
90
VSS_HV(4)
VDD_HV_IO
3.3 V Input/Output supply voltage
63
91
VDD_HV(3)
DocID15457 Rev 12
71/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
Table 6. Supply pins (continued)
Supply
Symbol
Description
VDD_HV_REG_1 VDD_HV_REG_1
Pin #
100
pkg
144
pkg
257
pkg
67
95
H15
VSS_HV_FLA
VSS_HV_FLA
68
96
J16
VDD_HV_FLA
VDD_HV_FLA
69
97
H16
VDD_HV_IO
VDD_HV_IO
87
126
VDD_HV(3)
VSS_HV_IO
VSS_HV_IO
88
127
VSS_HV(4)
91
130
C7
VDD_HV_REG_2 VDD_HV_REG_2
Power supply pins (1.2 V)
VSS_LV_COR
VSS_LV_COR
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV_COR pin.
11
17
VSS_HV(2)
VDD_LV_COR
VDD_LV_COR
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VSS_LV_COR pin.
12
18
VDD_LV(1)
VSS 1V2
VSS_LV_PLL0_PLL1 /
1.2 V Decoupling pins for on-chip FMPLL modules. Decoupling
capacitor must be connected between this pin and VDD_LV_PLL.
24
35
N4
VDD 1V2
VDD_LV_PLL0_PLL1
Decoupling pins for on-chip FMPLL modules. Decoupling capacitor
must be connected between this pin and VSS_LV_PLL.
25
36
P4
VDD_LV_COR
VDD_LV_COR
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VSS_LV_COR pin.
28
39
VDD_LV(1)
VSS_LV_COR
VSS_LV_COR
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV_COR pin.
29
40
VSS_LV(2)
VDD_LV_COR
VDD_LV_COR
Decoupling pins for core logic and Regulator feedback. Decoupling
capacitor must be connected between this pins and VSS_LV_REGCOR.
—
70
VDD_LV(1)
VSS_LV_COR
VSS_LV_REGCOR0
Decoupling pins for core logic and Regulator feedback. Decoupling
capacitor must be connected between this pins and VDD_LV_REGCOR.
—
71
VSS_LV(2)
VDD_LV_COR
VDD_LV_COR
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VSS_LV_COR pin.
65
93
VDD_LV(1)
VSS_LV_COR
VSS_LV_COR
/ 1.2 V Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV_COR pin.
66
94
VSS_LV(2)
VDD_LV_COR
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV_COR pin.
92
131
VDD_LV(1)
VDD 1V2
72/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Package pinouts and signal descriptions
Table 6. Supply pins (continued)
Supply
Symbol
Pin #
Description
100
pkg
144
pkg
257
pkg
VSS 1V2
VSS_LV_COR
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV_COR pin.
93
132
VSS_LV(2)
VDD 1V2
VDD_LV_COR /
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV_COR pin.
—
135
VDD_LV(1)
VSS 1V2
VSS_LV_COR /
Decoupling pins for core logic. Decoupling capacitor must be
connected between these pins and the nearest VDD_LV_COR pin.
—
137
VSS_LV(2)
1. VDD_LV balls are tied together on the LFBGA257 substrate.
2. VSS_LV balls are tied together on the LFBGA257 substrate.
3. VDD_HV balls are tied together on the LFBGA257 substrate.
4. VSS_HV balls are tied together on the LFBGA257 substrate.
2.3
System pins
Table 7. System pins
Pin #
Symbol
Description
Direction
100
pkg
144
pkg
257
pkg
Output only
—
9
E1
Non Maskable Interrupt
Input only
1
1
E4
Input for oscillator amplifier circuit and internal clock generator
Input only
18
29
N1
(4)
19
30
R1
JTAG state machine control
Input only
59
87
M16
JTAG clock
Input only
60
88
L15
JTAG compliance select
Input only
84
123
C10
Bidirectional
20
31
P2
74
107
D15
Dedicated pins
MDO0
NMI
(1)
(2)
XTAL
EXTAL(3)
TMS(2)
(2)
TCK
(5)
JCOMP
Nexus Message Data Output — line
Input/Output
Oscillator amplifier output
Reset pin
RESET
Bidirectional reset with Schmitt-Trigger characteristics and
noise filter. This pin has medium drive strength. Output drive is
open drain and must be terminated by an external resistor of
value 1KOhm.(6)
Test pin
VPP TEST
Pin for testing purpose only. To be tied to ground in normal
operating mode.
1. This pad is configured for Fast (F) pad speed.
DocID15457 Rev 12
73/165
164
Package pinouts and signal descriptions
SPC56ELx, SPC564Lx
2. This pad contains a weak pull-up.
3. EXTAL is an "Output" in "crystal" mode, and is an "Input" in "ext clock" mode.
4. In XOSC Bypass Mode, the analog portion of crystal oscillator (amplifier) is disabled. An external clock can be applied at
EXTAL as an input. In XOSC Normal Mode, EXTAL is an output
5. This pad contains a weak pull-down.
6. RESET output shall be considered valid only after the 3.3V supply reaches its stable value.
Note:
None of system pins (except RESET) provides an open drain output.
2.4
Pin muxing
Table 8 defines the pin list and muxing for this device.
Each entry of Table 8 shows all the possible configurations for each pin, via the alternate
functions. The default function assigned to each pin after reset is indicated by ALT0.
Note:
Pins labeled “NC” are to be left unconnected. Any connection to an external circuit or
voltage may cause unpredictable device behavior or damage.
Note:
Pins labeled “Reserved” are to be tied to ground. Not doing so may cause unpredictable
device behavior.
74/165
DocID15457 Rev 12
Port
name
PCR
Peripheral
Alternate
output
function
Output
mux sel
Input
functions
Input mux
select
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
51
73
T14
—
M
S
52
74
R14
Pull down
M
S
57
84
N16
Port A
A[0]
DocID15457 Rev 12
A[1]
A[2]
SIUL
GPIO[0]
ALT0
GPIO[0]
—
eTimer_0
ETC[0]
ALT1
ETC[0]
PSMI[35];
PADSEL=0
DSPI_2
SCK
ALT2
SCK
PSMI[1];
PADSEL=0
SIUL
—
—
EIRQ[0]
—
SIUL
GPIO[1]
ALT0
GPIO[1]
—
eTimer_0
ETC[1]
ALT1
ETC[1]
PSMI[36];
PADSEL=0
DSPI_2
SOUT
ALT2
—
—
SIUL
—
—
EIRQ[1]
—
SIUL
GPIO[2]
ALT0
GPIO[2]
—
eTimer_0
ETC[2]
ALT1
ETC[2]
PSMI[37];
PADSEL=0
FlexPWM_0
A[3]
ALT3
A[3]
PSMI[23];
PADSEL=0
PCR[0]
PCR[1]
PCR[2]
DSPI_2
—
—
SIN
PSMI[2];
PADSEL=0
MC_RGM
—
—
ABS[0]
—
SIUL
—
—
EIRQ[2]
—
75/165
Package pinouts and signal descriptions
SRC
=1
SPC56ELx, SPC564Lx
Table 8. Pin muxing
Port
name
A[3]
DocID15457 Rev 12
A[4]
PCR[3]
PCR[4]
PCR[5]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[3]
ALT0
GPIO[3]
—
eTimer_0
ETC[3]
ALT1
ETC[3]
PSMI[38];
PADSEL=0
DSPI_2
CS0
ALT2
CS0
PSMI[3];
PADSEL=0
Peripheral
FlexPWM_0
B[3]
ALT3
B[3]
PSMI[27];
PADSEL=0
MC_RGM
—
—
ABS[2]
—
SIUL
—
—
EIRQ[3]
—
SIUL
GPIO[4]
ALT0
GPIO[4]
—
eTimer_1
ETC[0]
ALT1
ETC[0]
PSMI[9];
PADSEL=0
DSPI_2
CS1
ALT2
—
—
eTimer_0
ETC[4]
ALT3
ETC[4]
PSMI[7];
PADSEL=0
MC_RGM
—
—
FAB
—
SIUL
—
—
EIRQ[4]
—
SIUL
GPIO[5]
ALT0
GPIO[5]
—
DSPI_1
CS0
ALT1
CS0
—
eTimer_1
ETC[5]
ALT2
ETC[5]
PSMI[14];
PADSEL=0
DSPI_0
CS7
ALT3
—
—
SIUL
—
—
EIRQ[5]
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
Pull down
M
S
64
92
K17
Pull down
M
S
75
108
C16
—
M
S
8
14
H4
SPC56ELx, SPC564Lx
A[5]
PCR
Alternate
output
function
Package pinouts and signal descriptions
76/165
Table 8. Pin muxing (continued)
Port
name
A[6]
A[7]
A[9]
A[10]
PCR[6]
PCR[7]
PCR[8]
PCR[9]
PCR[10]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[6]
ALT0
GPIO[6]
—
DSPI_1
SCK
ALT1
SCK
—
SIUL
—
—
EIRQ[6]
—
SIUL
GPIO[7]
ALT0
GPIO[7]
—
DSPI_1
SOUT
ALT1
—
—
SIUL
—
—
EIRQ[7]
—
SIUL
GPIO[8]
ALT0
GPIO[8]
—
DSPI_1
—
—
SIN
—
SIUL
—
—
EIRQ[8]
—
SIUL
GPIO[9]
ALT0
GPIO[9]
—
DSPI_2
CS1
ALT1
—
—
FlexPWM_0
B[3]
ALT3
B[3]
PSMI[27];
PADSEL=1
FlexPWM_0
—
—
FAULT[0]
PSMI[16];
PADSEL=0
SIUL
GPIO[10]
ALT0
GPIO[10]
—
DSPI_2
CS0
ALT1
CS0
PSMI[3];
PADSEL=1
FlexPWM_0
B[0]
ALT2
B[0]
PSMI[24];
PADSEL=0
FlexPWM_0
X[2]
ALT3
X[2]
PSMI[29];
PADSEL=0
SIUL
—
—
EIRQ[9]
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
2
2
G4
—
M
S
4
10
F3
—
M
S
6
12
F4
—
M
S
94
134
B6
—
M
S
81
118
A13
77/165
Package pinouts and signal descriptions
DocID15457 Rev 12
A[8]
PCR
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
A[11]
DocID15457 Rev 12
A[12]
PCR[11]
PCR[12]
PCR[13]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[11]
ALT0
GPIO[11]
—
DSPI_2
SCK
ALT1
SCK
PSMI[1];
PADSEL=1
FlexPWM_0
A[0]
ALT2
A[0]
PSMI[20];
PADSEL=0
FlexPWM_0
A[2]
ALT3
A[2]
PSMI[22];
PADSEL=0
SIUL
—
—
EIRQ[10]
—
SIUL
GPIO[12]
ALT0
GPIO[12]
—
DSPI_2
SOUT
ALT1
—
—
FlexPWM_0
A[2]
ALT2
A[2]
PSMI[22];
PADSEL=1
FlexPWM_0
B[2]
ALT3
B[2]
PSMI[26];
PADSEL=0
SIUL
—
—
EIRQ[11]
—
SIUL
GPIO[13]
ALT0
GPIO[13]
—
FlexPWM_0
B[2]
ALT2
B[2]
PSMI[26];
PADSEL=1
DSPI_2
—
—
SIN
PSMI[2];
PADSEL=1
FlexPWM_0
—
—
FAULT[0]
PSMI[16];
PADSEL=1
SIUL
—
—
EIRQ[12]
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
82
120
D11
—
M
S
83
122
A10
—
M
S
95
136
C6
SPC56ELx, SPC564Lx
A[13]
PCR
Alternate
output
function
Package pinouts and signal descriptions
78/165
Table 8. Pin muxing (continued)
Port
name
A[14]
PCR[14]
PCR[15]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[14]
ALT0
GPIO[14]
—
FlexCAN_1
TXD
ALT1
—
—
eTimer_1
ETC[4]
ALT2
ETC[4]
PSMI[13];
PADSEL=0
SIUL
—
—
EIRQ[13]
—
SIUL
GPIO[15]
ALT0
GPIO[15]
—
eTimer_1
ETC[5]
ALT2
ETC[5]
PSMI[14];
PADSEL=1
FlexCAN_1
—
—
RXD
PSMI[34];
PADSEL=0
FlexCAN_0
—
—
RXD
PSMI[33];
PADSEL=0
SIUL
—
—
EIRQ[14]
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
99
143
B4
—
M
S
100
144
D3
—
M
S
76
109
B15
Port B
B[0]
PCR[16]
SIUL
GPIO[16]
ALT0
GPIO[16]
—
FlexCAN_0
TXD
ALT1
—
—
eTimer_1
ETC[2]
ALT2
ETC[2]
PSMI[11];
PADSEL=0
SSCM
DEBUG[0]
ALT3
—
—
SIUL
—
—
EIRQ[15]
—
79/165
Package pinouts and signal descriptions
DocID15457 Rev 12
A[15]
PCR
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
B[1]
DocID15457 Rev 12
B[2]
B[3]
PCR
PCR[17]
PCR[18]
PCR[19]
PCR[20]
B[5]
PCR[21]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[17]
ALT0
GPIO[17]
—
eTimer_1
ETC[3]
ALT2
ETC[3]
PSMI[12];
PADSEL=0
SSCM
DEBUG[1]
ALT3
—
—
FlexCAN_0
—
—
RXD
PSMI[33];
PADSEL=1
FlexCAN_1
—
—
RXD
PSMI[34];
PADSEL=1
SIUL
—
—
EIRQ[16]
—
SIUL
GPIO[18]
ALT0
GPIO[18]
—
LINFlexD_0
TXD
ALT1
—
—
SSCM
DEBUG[2]
ALT3
—
—
SIUL
—
—
EIRQ[17]
—
SIUL
GPIO[19]
ALT0
GPIO[19]
—
SSCM
DEBUG[3]
ALT3
—
—
Peripheral
LINFlexD_0
—
—
RXD
PSMI[31];
PADSEL=0
SIUL
GPIO[20]
ALT0
GPIO[20]
—
JTAGC
TDO
ALT1
—
—
SIUL
GPIO[21]
ALT0
GPIO[21]
—
JTAGC
—
—
TDI
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
77
110
C14
—
M
S
79
114
A14
—
M
S
80
116
B13
—
F
S
61
89
L17
Pull up
M
S
58
86
M15
SPC56ELx, SPC564Lx
B[4](2)
Alternate
output
function
Package pinouts and signal descriptions
80/165
Table 8. Pin muxing (continued)
Port
name
B[6]
B[7]
PCR[22]
PCR[23]
PCR[24]
B[9]
PCR[25]
B[10]
PCR[26]
B[11]
81/165
B[12]
PCR[27]
PCR[28]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[22]
ALT0
GPIO[22]
—
MC_CGM
clk_out
ALT1
—
—
DSPI_2
CS2
ALT2
—
—
SIUL
—
EIRQ[18]
—
SIUL
—
ALT0
GPI[23]
—
LINFlexD_0
—
—
RXD
PSMI[31];
PADSEL=1
ADC_0
—
—
AN[0](3)
—
SIUL
—
ALT0
GPI[24]
—
eTimer_0
—
—
ETC[5]
PSMI[8];
PADSEL=2
ADC_0
—
—
AN[1](3)
—
SIUL
—
ALT0
GPI[25]
—
ADC_0
ADC_1
—
—
AN[11](3)
—
SIUL
—
ALT0
GPI[26]
—
ADC_0
ADC_1
—
—
AN[12](3)
—
SIUL
—
ALT0
GPI[27]
—
ADC_0
ADC_1
—
—
AN[13](3)
—
SIUL
—
ALT0
GPI[28]
—
ADC_0
ADC_1
—
—
AN[14](3)
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
F
S
96
138
B3
—
—
—
30
43
R5
—
—
—
31
47
P7
—
—
—
35
52
U7
—
—
—
36
53
R8
—
—
—
37
54
T8
—
—
—
38
55
U8
Package pinouts and signal descriptions
DocID15457 Rev 12
B[8]
PCR
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
B[13]
B[14]
DocID15457 Rev 12
B[15]
PCR
PCR[29]
PCR[30]
PCR[31]
Alternate
output
function
Output
mux sel
Input
functions
Input mux
select
SIUL
—
ALT0
GPI[29]
—
LINFlexD_1
—
—
RXD
PSMI[32];
PADSEL=0
ADC_1
—
—
AN[0](3)
—
SIUL
—
ALT0
GPI[30]
—
eTimer_0
—
—
ETC[4]
PSMI[7];
PADSEL=2
SIUL
—
—
EIRQ[19]
—
Peripheral
AN[1]
(3)
—
ADC_1
—
—
SIUL
—
ALT0
GPI[31]
—
SIUL
—
—
EIRQ[20]
—
ADC_1
—
—
AN[2](3)
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
—
—
43
60
R10
—
—
—
44
64
P11
—
—
—
—
62
R11
—
—
—
45
66
R12
—
—
—
—
41
T4
—
—
—
—
45
U5
Package pinouts and signal descriptions
82/165
Table 8. Pin muxing (continued)
Port C
PCR[32]
C[1]
PCR[33]
C[2]
PCR[34]
SIUL
—
ALT0
GPI[32]
—
—
ADC_1
—
—
AN[3](3)
SIUL
—
ALT0
GPI[33]
—
—
ADC_0
—
—
AN[2](3)
SIUL
—
ALT0
GPI[34]
—
—
AN[3](3)
—
ADC_0
—
SPC56ELx, SPC564Lx
C[0]
Port
name
C[4]
C[6]
C[7]
PCR[36]
PCR[37]
PCR[38]
PCR[39]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[36]
ALT0
GPIO[36]
—
DSPI_0
CS0
ALT1
CS0
—
FlexPWM_0
X[1]
ALT2
X[1]
PSMI[28];
PADSEL=0
SSCM
DEBUG[4]
ALT3
—
—
SIUL
—
—
EIRQ[22]
—
SIUL
GPIO[37]
ALT0
GPIO[37]
—
DSPI_0
SCK
ALT1
SCK
—
SSCM
DEBUG[5]
ALT3
—
—
Peripheral
83/165
FlexPWM_0
—
—
FAULT[3]
PSMI[19];
PADSEL=0
SIUL
—
—
EIRQ[23]
—
SIUL
GPIO[38]
ALT0
GPIO[38]
—
DSPI_0
SOUT
ALT1
—
—
FlexPWM_0
B[1]
ALT2
B[1]
PSMI[25];
PADSEL=0
SSCM
DEBUG[6]
ALT3
—
—
SIUL
—
—
EIRQ[24]
—
SIUL
GPIO[39]
ALT0
GPIO[39]
—
FlexPWM_0
A[1]
ALT2
A[1]
PSMI[21];
PADSEL=0
SSCM
DEBUG[7]
ALT3
—
—
DSPI_0
—
—
SIN
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
5
11
H3
—
M
S
7
13
G3
—
M
S
98
142
D4
—
M
S
9
15
K4
Package pinouts and signal descriptions
DocID15457 Rev 12
C[5]
PCR
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
C[10]
DocID15457 Rev 12
C[11]
C[12]
C[13]
PCR[42]
PCR[43]
PCR[44]
PCR[45]
PCR[46]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[42]
ALT0
GPIO[42]
—
DSPI_2
CS2
ALT1
—
—
FlexPWM_0
A[3]
ALT3
A[3]
PSMI[23];
PADSEL=1
FlexPWM_0
—
—
FAULT[1]
PSMI[17];
PADSEL=0
SIUL
GPIO[43]
ALT0
GPIO[43]
—
eTimer_0
ETC[4]
ALT1
ETC[4]
PSMI[7];
PADSEL=1
DSPI_2
CS2
ALT2
—
—
SIUL
GPIO[44]
ALT0
GPIO[44]
—
eTimer_0
ETC[5]
ALT1
ETC[5]
PSMI[8];
PADSEL=0
DSPI_2
CS3
ALT2
—
—
SIUL
GPIO[45]
ALT0
GPIO[45]
—
eTimer_1
ETC[1]
ALT1
ETC[1]
PSMI[10];
PADSEL=0
CTU_0
—
—
EXT_IN
PSMI[0];
PADSEL=0
FlexPWM_0
—
—
EXT_SYNC
PSMI[15];
PADSEL=0
SIUL
GPIO[46]
ALT0
GPIO[46]
—
eTimer_1
ETC[2]
ALT1
ETC[2]
PSMI[11];
PADSEL=1
CTU_0
EXT_TGR
ALT2
—
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
78
111
A15
—
M
S
55
80
M14
—
M
S
56
82
N15
—
M
S
71
101
F15
—
M
S
72
103
E15
SPC56ELx, SPC564Lx
C[14]
PCR
Alternate
output
function
Package pinouts and signal descriptions
84/165
Table 8. Pin muxing (continued)
Port
name
C[15]
PCR
PCR[47]
DocID15457 Rev 12
Alternate
output
function
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[47]
ALT0
GPIO[47]
—
FlexRay
CA_TR_EN
ALT1
—
—
eTimer_1
ETC[0]
ALT2
ETC[0]
PSMI[9];
PADSEL=1
FlexPWM_0
A[1]
ALT3
A[1]
PSMI[21];
PADSEL=1
CTU_0
—
—
EXT_IN
PSMI[0];
PADSEL=1
FlexPWM_0
—
—
EXT_SYNC
PSMI[15];
PADSEL=1
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
SYM
S
85
124
A8
—
SYM
S
86
125
B8
—
M
S
3
3
E3
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port D
D[1]
PCR[48]
PCR[49]
GPIO[48]
ALT0
GPIO[48]
—
FlexRay
CA_TX
ALT1
—
—
eTimer_1
ETC[1]
ALT2
ETC[1]
PSMI[10];
PADSEL=1
FlexPWM_0
B[1]
ALT3
B[1]
PSMI[25];
PADSEL=1
SIUL
GPIO[49]
ALT0
GPIO[49]
—
eTimer_1
ETC[2]
ALT2
ETC[2]
PSMI[11];
PADSEL=2
CTU_0
EXT_TGR
ALT3
—
—
FlexRay
—
—
CA_RX
—
85/165
Package pinouts and signal descriptions
D[0]
SIUL
Port
name
D[2]
DocID15457 Rev 12
D[3]
D[4]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[50]
ALT0
GPIO[50]
—
eTimer_1
ETC[3]
ALT2
ETC[3]
PSMI[12];
PADSEL=1
FlexPWM_0
X[3]
ALT3
X[3]
PSMI[30];
PADSEL=0
FlexRay
—
—
CB_RX
—
SIUL
GPIO[51]
ALT0
GPIO[51]
—
FlexRay
CB_TX
ALT1
—
—
eTimer_1
ETC[4]
ALT2
ETC[4]
PSMI[13];
PADSEL=1
FlexPWM_0
A[3]
ALT3
A[3]
PSMI[23];
PADSEL=2
SIUL
GPIO[52]
ALT0
GPIO[52]
—
FlexRay
CB_TR_EN
ALT1
—
—
eTimer_1
ETC[5]
ALT2
ETC[5]
PSMI[14];
PADSEL=2
FlexPWM_0
B[3]
ALT3
B[3]
PSMI[27];
PADSEL=2
SIUL
GPIO[53]
ALT0
GPIO[53]
—
DSPI_0
CS3
ALT1
—
—
FAULT[2]
PSMI[18];
PADSEL=0
Peripheral
PCR[50]
PCR[51]
PCR[52]
PCR[53]
FlexPWM_0
—
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
—
140
C5
—
SYM
S
89
128
A7
—
SYM
S
90
129
B7
—
M
S
22
33
N3
SPC56ELx, SPC564Lx
D[5]
PCR
Alternate
output
function
Package pinouts and signal descriptions
86/165
Table 8. Pin muxing (continued)
Port
name
D[6]
D[8]
D[9]
PCR[54]
PCR[55]
PCR[56]
PCR[57]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[54]
ALT0
GPIO[54]
—
DSPI_0
CS2
ALT1
—
—
FlexPWM_0
X[3]
ALT3
X[3]
PSMI[30];
PADSEL=1
FlexPWM_0
—
—
FAULT[1]
PSMI[17];
PADSEL=1
SIUL
GPIO[55]
ALT0
GPIO[55]
—
DSPI_1
CS3
ALT1
—
—
DSPI_0
CS4
ALT3
—
—
SWG
analog output
—
—
—
SIUL
GPIO[56]
ALT0
GPIO[56]
—
DSPI_1
CS2
ALT1
—
—
eTimer_1
ETC[4]
ALT2
ETC[4]
PSMI[13];
PADSEL=2
DSPI_0
CS5
ALT3
—
—
FlexPWM_0
—
—
FAULT[3]
PSMI[19];
PADSEL=1
SIUL
GPIO[57]
ALT0
GPIO[57]
—
FlexPWM_0
X[0]
ALT1
X[0]
—
LINFlexD_1
TXD
ALT2
—
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
23
34
P3
—
M
S
26
37
R4
—
M
S
21
32
M3
—
M
S
15
26
L3
87/165
Package pinouts and signal descriptions
DocID15457 Rev 12
D[7]
PCR
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
D[10]
D[11]
DocID15457 Rev 12
D[12]
D[14]
PCR
PCR[58]
PCR[59]
PCR[60]
PCR[62]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[58]
ALT0
GPIO[58]
—
FlexPWM_0
A[0]
ALT1
A[0]
PSMI[20];
PADSEL=1
eTimer_0
—
—
ETC[0]
PSMI[35];
PADSEL=1
SIUL
GPIO[59]
ALT0
GPIO[59]
—
FlexPWM_0
B[0]
ALT1
B[0]
PSMI[24];
PADSEL=1
eTimer_0
—
—
ETC[1]
PSMI[36];
PADSEL=1
SIUL
GPIO[60]
ALT0
GPIO[60]
FlexPWM_0
X[1]
ALT1
X[1]
PSMI[28];
PADSEL=1
LINFlexD_1
—
—
RXD
PSMI[32];
PADSEL=1
SIUL
GPIO[62]
ALT0
GPIO[62]
—
FlexPWM_0
B[1]
ALT1
B[1]
PSMI[25];
PADSEL=2
eTimer_0
—
—
ETC[3]
PSMI[38];
PADSEL=1
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
53
76
T15
—
M
S
54
78
R16
—
M
S
70
99
G14
—
M
S
73
105
D16
—
—
—
46
68
T13
—
—
—
32
49
U6
Port E
E[0]
PCR[64]
E[2]
PCR[66]
SIUL
—
ALT0
GPI[64]
—
—
ADC_1
—
—
AN[5](3)
SIUL
—
ALT0
GPI[66]
—
—
AN[5](3)
—
ADC_0
—
SPC56ELx, SPC564Lx
Alternate
output
function
Package pinouts and signal descriptions
88/165
Table 8. Pin muxing (continued)
PCR
E[4]
PCR[68]
E[5]
PCR[69]
E[6]
PCR[70]
E[7]
PCR[71]
E[9]
PCR[73]
E[10]
PCR[74]
E[11]
PCR[75]
E[12]
PCR[76]
E[13]
PCR[77]
Peripheral
SIUL
Output
mux sel
Input
functions
Input mux
select
—
ALT0
GPI[68]
—
(3)
—
ADC_0
—
—
AN[7]
SIUL
—
ALT0
GPI[69]
—
ADC_0
—
—
AN[8](3)
—
SIUL
—
ALT0
GPI[70]
—
—
ADC_0
—
—
AN[4](3)
SIUL
—
ALT0
GPI[71]
—
ADC_0
—
—
AN[6](3)
—
SIUL
—
ALT0
GPI[73]
—
—
ADC_1
—
—
AN[7](3)
SIUL
—
ALT0
GPI[74]
—
ADC_1
—
—
AN[8](3)
—
SIUL
—
ALT0
GPI[75]
—
—
ADC_1
—
—
AN[4](3)
SIUL
—
ALT0
GPI[76]
—
ADC_1
—
—
AN[6](3)
—
SIUL
GPIO[77]
ALT0
GPIO[77]
—
eTimer_0
ETC[5]
ALT1
ETC[5]
PSMI[8];
PADSEL=1
DSPI_2
CS3
ALT2
—
—
SIUL
—
—
EIRQ[25]
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
—
—
—
42
U4
—
—
—
—
44
T5
—
—
—
—
46
R6
—
—
—
—
48
T6
—
—
—
—
61
T10
—
—
—
—
63
T11
—
—
—
—
65
U11
—
—
—
—
67
T12
—
M
S
—
117
D12
89/165
Package pinouts and signal descriptions
DocID15457 Rev 12
Port
name
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
E[14]
E[15]
PCR
PCR[78]
PCR[79]
Alternate
output
function
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[78]
ALT0
GPIO[78]
—
eTimer_1
ETC[5]
ALT1
ETC[5]
PSMI[14];
PADSEL=3
SIUL
—
—
EIRQ[26]
—
SIUL
GPIO[79]
ALT0
GPIO[79]
—
DSPI_0
CS1
ALT1
—
—
SIUL
—
—
EIRQ[27]
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
DocID15457 Rev 12
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
—
119
B12
—
M
S
—
121
B11
—
M
S
—
133
D7
—
M
S
—
139
B5
—
F
S
—
4
D2
—
F
S
—
5
D1
—
F
S
—
8
E2
Port F
F[0]
SIUL
GPIO[80]
ALT0
GPIO[80]
—
FlexPWM_0
A[1]
ALT1
A[1]
PSMI[21];
PADSEL=2
PCR[80]
F[3]
PCR[83]
F[4]
PCR[84]
F[5]
PCR[85]
F[6]
PCR[86]
eTimer_0
—
—
ETC[2]
PSMI[37];
PADSEL=1
SIUL
—
—
EIRQ[28]
—
SIUL
GPIO[83]
ALT0
GPIO[83]
—
DSPI_0
CS6
ALT1
—
—
SIUL
GPIO[84]
ALT0
GPIO[84]
—
NPC
MDO[3]
ALT2
—
—
SIUL
GPIO[85]
ALT0
GPIO[85]
—
NPC
MDO[2]
ALT2
—
—
SIUL
GPIO[86]
ALT0
GPIO[86]
—
NPC
MDO[1]
ALT2
—
—
SPC56ELx, SPC564Lx
SRC
=1
Package pinouts and signal descriptions
90/165
Table 8. Pin muxing (continued)
PCR
F[7]
PCR[87]
F[8]
PCR[88]
F[9]
PCR[89]
F[10]
PCR[90]
F[11]
PCR[91]
F[12]
F[13]
PCR[92]
PCR[93]
F[14]
PCR[94]
F[15]
PCR[95]
91/165
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[87]
ALT0
GPIO[87]
—
NPC
MCKO
ALT2
—
—
SIUL
GPIO[88]
ALT0
GPIO[88]
—
NPC
MSEO[1]
ALT2
—
—
SIUL
GPIO[89]
ALT0
GPIO[89]
—
NPC
MSEO[0]
ALT2
—
—
SIUL
GPIO[90]
ALT0
GPIO[90]
—
NPC
EVTO
ALT2
—
—
SIUL
GPIO[91]
ALT0
GPIO[91]
—
NPC
—
ALT2
EVTI
—
SIUL
GPIO[92]
ALT0
GPIO[92]
—
eTimer_1
ETC[3]
ALT1
ETC[3]
PSMI[12];
PADSEL=2
SIUL
—
—
EIRQ[30]
—
SIUL
GPIO[93]
ALT0
GPIO[93]
—
eTimer_1
ETC[4]
ALT1
ETC[4]
PSMI[13];
PADSEL=3
SIUL
—
—
EIRQ[31]
—
SIUL
GPIO[94]
ALT0
GPIO[94]
—
LINFlexD_1
TXD
ALT1
—
—
SIUL
GPIO[95]
ALT0
GPIO[95]
—
LINFlexD_1
—
—
RXD
PSMI[32];
PADSEL=2
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
F
S
—
19
J1
—
F
S
—
20
K2
—
F
S
—
23
K1
—
F
S
—
24
L1
—
M
S
—
25
L2
—
M
S
—
106
C17
—
M
S
—
112
B14
—
M
S
—
115
C13
—
M
S
—
113
D13
Package pinouts and signal descriptions
DocID15457 Rev 12
Port
name
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
PCR
Peripheral
Alternate
output
function
Output
mux sel
Input
functions
Input mux
select
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
FCCU
—
FCCU
F[0]
ALT0
F[0]
—
—
S
S
27
38
R2
FCCU_
F[1]
—
FCCU
F[1]
ALT0
F[1]
—
—
S
S
97
141
C4
—
M
S
—
102
E16
—
M
S
—
104
D17
—
M
S
—
100
F17
—
M
S
—
85
N17
Port G
DocID15457 Rev 12
G[2]
G[3]
G[4]
G[5]
PCR[98]
PCR[99]
PCR[100]
PCR[101]
SIUL
GPIO[98]
ALT0
GPIO[98]
—
FlexPWM_0
X[2]
ALT1
X[2]
PSMI[29];
PADSEL=1
DSPI_1
CS1
ALT2
—
—
SIUL
GPIO[99]
ALT0
GPIO[99]
—
FlexPWM_0
A[2]
ALT1
A[2]
PSMI[22];
PADSEL=2
eTimer_0
—
—
ETC[4]
PSMI[7];
PADSEL=3
SIUL
GPIO[100]
ALT0
GPIO[100]
—
FlexPWM_0
B[2]
ALT1
B[2]
PSMI[26];
PADSEL=2
eTimer_0
—
—
ETC[5]
PSMI[8];
PADSEL=3
SIUL
GPIO[101]
ALT0
GPIO[101]
—
FlexPWM_0
X[3]
ALT1
X[3]
PSMI[30];
PADSEL=2
DSPI_2
CS3
ALT2
—
—
SPC56ELx, SPC564Lx
FCCU_
F[0]
Package pinouts and signal descriptions
92/165
Table 8. Pin muxing (continued)
Port
name
PCR
G[6]
PCR[102]
G[7]
G[9]
G[10]
PCR[104]
PCR[105]
PCR[106]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[102]
ALT0
GPIO[102]
—
FlexPWM_0
A[3]
ALT1
A[3]
PSMI[23];
PADSEL=3
SIUL
GPIO[103]
ALT0
GPIO[103]
FlexPWM_0
B[3]
ALT1
B[3]
PSMI[27];
PADSEL=3
SIUL
GPIO[104]
ALT0
GPIO[104]
—
FlexRay
DBG0
ALT1
—
—
DSPI_0
CS1
ALT2
—
—
Peripheral
FlexPWM_0
—
—
FAULT[0]
PSMI[16];
PADSEL=2
SIUL
—
—
EIRQ[21]
—
SIUL
GPIO[105]
ALT0
GPIO[105]
—
FlexRay
DBG1
ALT1
—
—
DSPI_1
CS1
ALT2
—
—
FlexPWM_0
—
—
FAULT[1]
PSMI[17];
PADSEL=2
SIUL
—
—
EIRQ[29]
—
SIUL
GPIO[106]
ALT0
GPIO[106]
—
FlexRay
DBG2
ALT1
—
—
DSPI_2
CS3
ALT2
—
—
FlexPWM_0
—
—
FAULT[2]
PSMI[18];
PADSEL=1
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
—
98
G17
—
M
S
—
83
P17
—
M
S
—
81
P16
—
M
S
—
79
R17
—
M
S
—
77
P15
93/165
Package pinouts and signal descriptions
DocID15457 Rev 12
G[8]
PCR[103]
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
G[11]
PCR
PCR[107]
DocID15457 Rev 12
G[12]
PCR[108]
G[13]
PCR[109]
G[14]
PCR[110]
G[15]
PCR[111]
Alternate
output
function
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[107]
ALT0
GPIO[107]
—
FlexRay
DBG3
ALT1
—
—
Peripheral
FlexPWM_0
—
—
FAULT[3]
PSMI[19];
PADSEL=2
SIUL
GPIO[108]
ALT0
GPIO[108]
—
NPC
MDO[11]
ALT2
—
—
SIUL
GPIO[109]
ALT0
GPIO[109]
—
NPC
MDO[10]
ALT2
—
—
SIUL
GPIO[110]
ALT0
GPIO[110]
—
NPC
MDO[9]
ALT2
—
—
SIUL
GPIO[111]
ALT0
GPIO[111]
—
NPC
MDO[8]
ALT2
—
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
—
75
U15
—
F
S
—
—
F2
—
F
S
—
—
H1
—
F
S
—
—
A6
—
F
S
—
—
J2
—
F
S
—
—
A5
—
F
S
—
—
F1
—
F
S
—
—
A4
—
F
S
—
—
G1
Package pinouts and signal descriptions
94/165
Table 8. Pin muxing (continued)
Port H
PCR[112]
H[1]
PCR[113]
H[2]
PCR[114]
H[3]
PCR[115]
SIUL
GPIO[112]
ALT0
GPIO[112]
—
NPC
MDO[7]
ALT2
—
—
SIUL
GPIO[113]
ALT0
GPIO[113]
—
NPC
MDO[6]
ALT2
—
—
SIUL
GPIO[114]
ALT0
GPIO[114]
—
NPC
MDO[5]
ALT2
—
—
SIUL
GPIO[115]
ALT0
GPIO[115]
—
NPC
MDO[4]
ALT2
—
—
SPC56ELx, SPC564Lx
H[0]
Port
name
H[4]
H[5]
H[7]
H[8]
H[9]
H[10]
PCR[116]
PCR[117]
PCR[118]
PCR[119]
PCR[120]
PCR[121]
PCR[122]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[116]
ALT0
GPIO[116]
—
FlexPWM_1
X[0]
ALT1
X[0]
—
Peripheral
eTimer_2
ETC[0]
ALT2
ETC[0]
PSMI[39];
PADSEL=0
SIUL
GPIO[117]
ALT0
GPIO[117]
—
FlexPWM_1
A[0]
ALT1
A[0]
—
DSPI_0
CS4
ALT3
—
—
SIUL
GPIO[118]
ALT0
GPIO[118]
—
FlexPWM_1
B[0]
ALT1
B[0]
—
DSPI_0
CS5
ALT3
—
—
SIUL
GPIO[119]
ALT0
GPIO[119]
—
FlexPWM_1
X[1]
ALT1
X[1]
—
95/165
eTimer_2
ETC[1]
ALT2
ETC[1]
PSMI[40];
PADSEL=0
SIUL
GPIO[120]
ALT0
GPIO[120]
—
FlexPWM_1
A[1]
ALT1
A[1]
—
DSPI_0
CS6
ALT3
—
—
SIUL
GPIO[121]
ALT0
GPIO[121]
—
FlexPWM_1
B[1]
ALT1
B[1]
—
DSPI_0
CS7
ALT3
—
—
SIUL
GPIO[122]
ALT0
GPIO[122]
—
FlexPWM_1
X[2]
ALT1
X[2]
—
eTimer_2
ETC[2]
ALT2
ETC[2]
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
—
—
L16
—
M
S
—
—
M17
—
M
S
—
—
H17
—
M
S
—
—
K16
—
M
S
—
—
K15
—
M
S
—
—
G16
—
M
S
—
—
A11
Package pinouts and signal descriptions
DocID15457 Rev 12
H[6]
PCR
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Port
name
PCR
H[11]
PCR[123]
H[12]
PCR[124]
H[13]
DocID15457 Rev 12
H[14]
H[15]
PCR[125]
PCR[126]
PCR[127]
Alternate
output
function
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[123]
ALT0
GPIO[123]
—
FlexPWM_1
A[2]
ALT1
A[2]
—
SIUL
GPIO[124]
ALT0
GPIO[124]
—
FlexPWM_1
B[2]
ALT1
B[2]
—
SIUL
GPIO[125]
ALT0
GPIO[125]
—
FlexPWM_1
X[3]
ALT1
X[3]
—
Peripheral
eTimer_2
ETC[3]
ALT2
ETC[3]
PSMI[42];
PADSEL=0
SIUL
GPIO[126]
ALT0
GPIO[126]
—
FlexPWM_1
A[3]
ALT1
A[3]
—
eTimer_2
ETC[4]
ALT2
ETC[4]
—
SIUL
GPIO[127]
ALT0
GPIO[127]
—
FlexPWM_1
B[3]
ALT1
B[3]
—
eTimer_2
ETC[5]
ALT2
ETC[5]
—
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
—
—
C11
—
M
S
—
—
B10
—
M
S
—
—
G15
—
M
S
—
—
A12
—
M
S
—
—
J17
—
M
S
—
—
C9
Package pinouts and signal descriptions
96/165
Table 8. Pin muxing (continued)
Port I
PCR[128]
GPIO[128]
ALT0
GPIO[128]
—
eTimer_2
ETC[0]
ALT1
ETC[0]
PSMI[39];
PADSEL=1
DSPI_0
CS4
ALT2
—
—
FlexPWM_1
—
—
FAULT[0]
—
SPC56ELx, SPC564Lx
I[0]
SIUL
Port
name
I[1]
I[3]
RDY
PCR[129]
PCR[130]
PCR[131]
PCR[132]
Output
mux sel
Input
functions
Input mux
select
SIUL
GPIO[129]
ALT0
GPIO[129]
—
eTimer_2
ETC[1]
ALT1
ETC[1]
PSMI[40];
PADSEL=1
DSPI_0
CS5
ALT2
—
—
FlexPWM_1
—
—
FAULT[1]
—
SIUL
GPIO[130]
ALT0
GPIO[130]
—
eTimer_2
ETC[2]
ALT1
ETC[2]
PSMI[41];
PADSEL=1
DSPI_0
CS6
ALT2
—
—
FlexPWM_1
—
—
FAULT[2]
—
SIUL
GPIO[131]
ALT0
GPIO[131]
—
eTimer_2
ETC[3]
ALT1
ETC[3]
PSMI[42];
PADSEL=1
DSPI_0
CS7
ALT2
—
—
CTU_0
EXT_TGR
ALT3
—
—
FlexPWM_1
—
—
FAULT[3]
—
SIUL
GPIO[132]
ALT0
GPIO[132]
—
NPC
RDY
ALT2
—
—
Peripheral
Weak pull
config during
reset
Pad
speed(1)
Pin #
SRC
=1
SRC
=0
100
pkg
144
pkg
257
pkg
—
M
S
—
—
C12
—
M
S
—
—
F16
—
M
S
—
—
E17
—
F
S
—
—
1. Programmable via the SRC (Slew Rate Control) bit in the respective Pad Configuration Register; S = Slow, M = Medium, F = Fast, SYM = Symmetric (for FlexRay)
2. The default function of this pin out of reset is ALT1 (TDO).
3. Analog
Note:
Open Drain can be configured by the PCRn for all pins used as output (except FCCU_F[0] and FCCU_F[1]).
K3
97/165
Package pinouts and signal descriptions
DocID15457 Rev 12
I[2]
PCR
Alternate
output
function
SPC56ELx, SPC564Lx
Table 8. Pin muxing (continued)
Electrical characteristics
SPC56ELx, SPC564Lx
3
Electrical characteristics
3.1
Introduction
This section contains detailed information on power considerations, DC/AC electrical
characteristics, and AC timing specifications for this device.
This device is designed to operate at 120 MHz. The electrical specifications are preliminary
and are from previous designs, design simulations, or initial evaluation. These specifications
may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized
specifications will be published after complete characterization and device qualifications
have been completed.
The “Symbol” column of the electrical parameter and timings tables contains an additional
column containing “SR”, “CC”, “P”, “C”, “T”, or “D”.
3.2
“SR” identifies system requirements—conditions that must be provided to ensure
normal device operation. An example is the input voltage of a voltage regulator.
“CC” identifies controller characteristics—indicating the characteristics and timing of
the signals that the chip provides.
“P”, “C”, “T”, or “D” apply only to controller characteristics—specifications that define
normal device operation. They specify how each characteristic is guaranteed.
–
P: parameter is guaranteed by production testing of each individual device.
–
C: parameter is guaranteed by design characterization. Measurements are taken
from a statistically relevant sample size across process variations.
–
T: parameter is guaranteed by design characterization on a small sample size
from typical devices under typical conditions unless otherwise noted. All values
are shown in the typical (“typ”) column are within this category.
–
D: parameters are derived mainly from simulations.
Absolute maximum ratings
Table 9. Absolute maximum ratings(1)
Symbol
VDD_HV_REG
Parameter
SR
3.3 V voltage regulator supply voltage
Conditions
Min
Max
Unit
—
–0.3
4.5(2), (3)
V
(2), (3)
V
VDD_HV_IOx
SR
3.3 V input/output supply voltage
—
–0.3
VSS_HV_IOx
SR
Input/output ground voltage
—
–0.1
4.5
0.1
(2), (3)
V
VDD_HV_FLA
SR
3.3 V flash supply voltage
—
–0.3
VSS_HV_FLA
SR
Flash memory ground
—
–0.1
0.1
V
VDD_HV_OSC
SR
3.3 V crystal oscillator amplifier supply
voltage
—
–0.3
4.5 (2), (3)
V
SR
3.3 V crystal oscillator amplifier reference
voltage
—
–0.1
0.1
V
SR
3.3 V / 5.0 V ADC_0 high reference
voltage
3.3 V / 5.0 V ADC_1 high reference
voltage
—
–0.3
6.4 (2)
V
VSS_HV_OSC
VDD_HV_ADR0
(2)(3)
VDD_HV_ADR1
98/165
DocID15457 Rev 12
4.5
V
SPC56ELx, SPC564Lx
Electrical characteristics
Table 9. Absolute maximum ratings(1) (continued)
Symbol
Parameter
Conditions
Min
Max
Unit
VSS_HV_ADR0
VSS_HV_ADR1
SR
ADC_0 ground and low reference voltage
ADC_1 ground and low reference voltage
—
–0.1
0.1
V
VDD_HV_ADV
SR
3.3 V ADC supply voltage
—
–0.3
4.5 (4), (3)
V
VSS_HV_ADV
SR
3.3 V ADC supply ground
—
–0.1
0.1
V
TVDD
SR
Supply ramp rate
—
3.0 × 10-6
(3.0
V/sec)
0.5 V/µs
V/µs
Valid only for
ADC pins
–0.3
6.0 (4)
SR
Voltage on any pin with respect to ground
(VSS_HV_IOx) or Vss_HV_ADRx
Relative to VDD
–0.3
VDD + 0.3(4),
VIN
V
(5)
IINJPAD
SR
Injected input current on any pin during
overload condition
—
–10
10
mA
IINJSUM
SR
Absolute sum of all injected input currents
during overload condition
—
–50
50
mA
TSTG
SR
Storage temperature
—
–55
150
°C
1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings
only, and functional operation at the maxima is not guaranteed. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability or cause permanent damage to the device.
2. Any voltage between operating condition and absolute max rating can be sustained for maximum cumulative time of 10
hours.
3. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
4. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the
maximum injection current specification is met and VDDE is within the operating voltage specifications.
5. VDD has to be considered equal to VDD_HV_ADRx in case of ADC pins, whilst it is VDD_HV_IOx for any other pin.
3.3
Recommended operating conditions
Table 10. Recommended operating conditions (3.3 V)
Symbol
Parameter
Conditions
Min(1)
Max
Unit
VDD_HV_REG
SR 3.3 V voltage regulator supply voltage
—
3.0
3.63
V
VDD_HV_IOx
SR 3.3 V input/output supply voltage
—
3.0
3.63
V
VSS_HV_IOx
SR Input/output ground voltage
—
0
0
V
VDD_HV_FLA
SR 3.3 V flash supply voltage
—
3.0
3.63
V
VSS_HV_FLA
SR Flash memory ground
—
0
0
V
VDD_HV_OSC
SR 3.3 V crystal oscillator amplifier supply voltage
—
3.0
3.63
V
VSS_HV_OSC
SR
3.3 V crystal oscillator amplifier reference
voltage
—
0
0
V
SR
3.3 V / 5.0 V ADC_0 high reference voltage
3.3 V / 5.0 V ADC_1 high reference voltage
—
4.5 to 5.5 or
3.0 to 3.63
V
VDD_HV_ADR0(2),
(3)
VDD_HV_ADR1
DocID15457 Rev 12
99/165
164
Electrical characteristics
SPC56ELx, SPC564Lx
Table 10. Recommended operating conditions (3.3 V) (continued)
Symbol
Parameter
Conditions
Min(1)
Max
Unit
—
3.0
3.63
V
—
0
0
V
VDD_HV_ADV
SR 3.3 V ADC supply voltage
VSS_HV_AD0
VSS_HV_AD1
SR
VSS_HV_ADV
SR 3.3 V ADC supply ground
—
0
0
V
VDD_LV_REGCOR
SR Internal supply voltage
—
—
—
V
VSS_LV_REGCOR
SR Internal reference voltage
—
0
0
V
VDD_LV_CORx(2)
SR Internal supply voltage
—
—
—
V
VSS_LV_CORx(3)
SR Internal reference voltage
—
0
0
V
SR Internal supply voltage
—
—
—
V
SR Internal reference voltage
—
0
0
V
(4)
(5)
VDD_LV_PLL(2)
VSS_LV_PLL
(3)
ADC_0 ground and low reference voltage
ADC_1 ground and low reference voltage
TA
SR Ambient temperature under bias
fCPU 120 MHz
–40
125
°C
TJ
SR Junction temperature under bias
—
–40
150
°C
1. Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and
I/Os DC electrical specification may not be guaranteed.
2. VDD_HV_ADR0 and VDD_HV_ADR1 cannot be operated at different voltages, and need to be supplied by the same voltage
source.
3.
must always be applied and should be stable before LBIST starts. If this supply is not above its absolute
minimum level, LBIST operations can fail.
VDD_HV_ADRx
4. Can be connected to emitter of external NPN. Low voltage supplies are not under user control. They are produced by an onchip voltage regulator.
5. For the device to function properly, the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds
(VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter, if one is used.
3.4
Decoupling capacitors
The internal voltage regulator requires an external NPN ballast and some additional
decoupling capacitors. These capacitors shall be placed on the board as close as possible
to the associated pin.
Table 11. Decoupling capacitors
Symbol
Parameter
Value
Conditions(1)
Unit
Min
CCOL
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
Max ESR = 100 mΩ.
CLV1
SR
External decoupling /
stability capacitor
Sum of CLV1 placed close to
VDD/VSS_LV_CORy pairs(2).
CLV2
SR
External decoupling /
stability capacitor
Sum of CLV2 placed close to
VDD/VSS_LV_CORy pairs shall be
between 300 nF and 900 nF.
100/165
DocID15457 Rev 12
Typ
Max
20
12µF
µF
40µF
100(2)
µF
nF
SPC56ELx, SPC564Lx
Electrical characteristics
Table 11. Decoupling capacitors (continued)
Symbol
Parameter
Value
Conditions(1)
Unit
Min
Typ
Max
CPMU1
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
10
µF
CPMU2
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
100
nF
CREG
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
20
µF
CIO1
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
100
nF
CIO2
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
470
pF
CFLA1
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
100
nF
CFLA2
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
10
nF
COSC1
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
100
nF
COSC2
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
10
nF
CPLL1
SR
External decoupling /
stability capacitor
CADR1
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
Ceramic capacitor.
10
nF
CADR2
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
Ceramic capacitor.
47
nF
CADR3
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
Electrolytic or tantalum capacitor.
1
µF
CADV1
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
Ceramic capacitor.
10
nF
CADV2
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
Ceramic capacitor.
47
nF
CADV3
SR
External decoupling /
stability capacitor
Accuracy -50%/+35%.
Electrolytic or tantalum capacitor.
1
µF
22
100
nF
1. Capacitors shall be placed as close as possible to the respective pads.
2. Total ESR considering all decoupling capacitor close to the VDD/VSS_LV_CORy pairs shall be between 1 mΩ and 100 mΩ.
DocID15457 Rev 12
101/165
164
Electrical characteristics
SPC56ELx, SPC564Lx
Figure 5. Decoupling capacitors
9
9
9''B+9B,2\
&,2
&&2/
%&75/
&,2
966B+9B,2\
9
9''B+9B,2[
&,2
&,2
9
9''B/9B&25\
966B+9B,2[
&/9
&/9
966B/9B&25\
9
RQO\LILQWHUQDO
EDOODVWLVXVHG
9''B+9B)/$
&)/$
&)/$
9''B/9B&25[
966B+9B)/$
&/9
&9/
966B/9B&25[
9''B+9B26&
&26&
&26&
966B+9B26&
9
9''B+9B308
&308
&308
63&(/[
9
9''B/9B3//
9''B+9B5(*[
&3//
966B/9B3//
$'&[UHIHUHQFH
&$'5
&5(*
9''B+9B$'5[
&$'5
&$'5
966B+9B$'5[
$'&VXSSO\
9''B+9B$'9
&$'9
&$'9
&$'9
966B+9B$'9
(;7$/
&&26&
966B+9B26&
102/165
DocID15457 Rev 12
;7$/
&&26&
SPC56ELx, SPC564Lx
3.5
Electrical characteristics
Thermal characteristics
Table 12. Thermal characteristics for LQFP100 package(1)
Symbol
Parameter
Conditions
46
Four layer board – 2s2p
34
D
Thermal resistance, junction-to-ambient forced Single layer board – 1s
convection at 200 ft/min
Four layer board – 2s2p
36
D
Thermal resistance junction-to-board(3)
—
19
°C/W
—
8
°C/W
—
2
°C/W
D
Thermal resistance, junction-to-ambient
natural convection(2)
RJMA
RJB
JT
Unit
Single layer board – 1s
RJA
RJC
Value
D
D
(4)
Thermal resistance junction-to-case
Junction-to-package-top natural
convection(5)
28
°C/W
°C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5. Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
Table 13. Thermal characteristics for LQFP144 package(1)
Symbol
Parameter
Conditions
Value
Unit
Single layer board – 1s
44
Four layer board – 2s2p
36
D
Thermal resistance, junction-to-ambient forced Single layer board – 1s
convection at 200 ft/min
Four layer board – 2s2p
35
D
Thermal resistance junction-to-board(3)
—
24
°C/W
—
8
°C/W
—
2
°C/W
RJA
D
Thermal resistance, junction-to-ambient
natural convection(2)
RJMA
RJB
junction-to-case(4)
RJC
D
Thermal resistance
JT
D
Junction-to-package-top natural convection(5)
30
°C/W
°C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5. Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
DocID15457 Rev 12
103/165
164
Electrical characteristics
SPC56ELx, SPC564Lx
Table 14. Thermal characteristics for LFBGA257 package(1)
Symbol
Parameter
Conditions
Value
Unit
RJA
D
Thermal resistance junction-to-ambient natural Single layer board – 1s
convection(2)
Four layer board – 2s2p
46
RJMA
D
Thermal resistance, junction-to-ambient forced Single layer board – 1s
convection at 200 ft/min
Four layer board – 2s2p
37
RJB
D
Thermal resistance junction-to-board(3)
—
13
°C/W
—
8
°C/W
—
2
°C/W
RJC
JT
D
D
(4)
Thermal resistance junction-to-case
Junction-to-package-top natural convection
(5)
26
22
°C/W
°C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5. Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
3.5.1
General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, TJ, can be obtained from Equation 1:
Equation 1: TJ = TA + (RJA × PD)
where:
TA= ambient temperature for the package (oC)
RJA= junction to ambient thermal resistance (oC/W)
PD= power dissipation in the package (W)
The junction to ambient thermal resistance is an industry standard value that provides a
quick and easy estimation of thermal performance. Unfortunately, there are two values in
common usage: the value determined on a single layer board and the value obtained on a
board with two planes. For packages such as the PBGA, these values can be different by a
factor of two. Which value is closer to the application depends on the power dissipated by
other components on the board. The value obtained on a single layer board is appropriate
for the tightly packed printed circuit board. The value obtained on the board with the internal
planes is usually appropriate if the board has low power dissipation and the components are
well separated.
When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a
junction to case thermal resistance and a case to ambient thermal resistance:
104/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Equation 2:
Electrical characteristics
RJA = RJC + RCA
where:
RJA = junction to ambient thermal resistance (°C/W)
RJC= junction to case thermal resistance (°C/W)
RCA= case to ambient thermal resistance (°C/W)
RJC is device related and cannot be influenced by the user. The user controls the thermal
environment to change the case to ambient thermal resistance, RCA. For instance, the user
can change the size of the heat sink, the air flow around the device, the interface material,
the mounting arrangement on printed circuit board, or change the thermal dissipation on the
printed circuit board surrounding the device.
To determine the junction temperature of the device in the application when heat sinks are
not used, the Thermal Characterization Parameter (JT) can be used to determine the
junction temperature with a measurement of the temperature at the top center of the
package case using Equation 3:
Equation 3 TJ = TT + (JT × PD)
where:
TT= thermocouple temperature on top of the package (°C)
JT= thermal characterization parameter (°C/W)
PD= power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a 40
gauge type T thermocouple epoxied to the top center of the package case. The
thermocouple should be positioned so that the thermocouple junction rests on the package.
A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of
wire extending from the junction. The thermocouple wire is placed flat against the package
case to avoid measurement errors caused by cooling effects of the thermocouple wire.
3.5.1.1
References
Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134 USA
(408) 943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering
Documents at 800-854-7179 or 303-397-7956.
JEDEC specifications are available on the WEB on JEDEC site.
1.
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998,
pp. 47–54.
2.
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled
Applications,” Electronic Packaging and Production, pp. 53–58, March 1998.
3.
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal
Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San
Diego, 1999, pp. 212–220.
DocID15457 Rev 12
105/165
164
Electrical characteristics
3.6
SPC56ELx, SPC564Lx
Electromagnetic Interference (EMI) characteristics
The characteristics in Table 16 were measured using:
Device configuration, test conditions, and EM testing per standard IEC61967-2
Supply voltage of 3.3 V DC
Ambient temperature of 25 C
The configuration information referenced in Table 16 is explained in Table 15.
Table 15. EMI configuration summary
Configuration name
Description
Configuration A
–
–
–
–
–
High emission = all pads have max slew rate, LVDS pads running at 40 MHz
Oscillator frequency = 40 MHz
System bus frequency = 80 MHz
No PLL frequency modulation
IEC level I ( 36 dBµV)
Configuration B
–
–
–
–
–
Reference emission = pads use min, mid and max slew rates, LVDS pads disabled
Oscillator frequency = 40 MHz
System bus frequency = 80 MHz
2% PLL frequency modulation
IEC level K( 30 dBµV)
Table 16. EMI emission testing specifications
Symbol
VEME
Parameter
CC Radiated emissions
Conditions
Min
Typ
Max
Configuration A; frequency range
150 kHz–50 MHz
—
16
—
Configuration A; frequency range 50–
150 MHz
—
16
—
Configuration A; frequency range 150–
500 MHz
—
32
—
Configuration A; frequency range 500–
1000 MHz
—
25
—
Configuration B; frequency range 50–
150 MHz
—
15
—
Configuration B; frequency range 50–
150 MHz
—
21
—
Configuration B; frequency range 150–
500 MHz
—
30
—
Configuration B; frequency range 500–
1000 MHz
—
24
—
Unit
dBµV
EMC testing was performed and documented according to these standards: [IEC61508-27.4.5.1.b, IEC61508-2-7.2.3.2.e, IEC61508-2-Table-A.17 (partially), IEC61508-2-TableB.5(partially),SRS2110]
106/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Electrical characteristics
EME testing was performed and documented according to these standards: [IEC 61967-2 &
-4]
EMS testing was performed and documented according to these standards: [IEC 62132-2 &
-4]
Refer SPC56EL60 for detailed information pertaining to the EMC, EME, and EMS testing
and results.
3.7
Electrostatic discharge (ESD) characteristics
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note Electrostatic Discharge Sensitivity Measurement (AN1181).
DocID15457 Rev 12
107/165
164
Electrical characteristics
SPC56ELx, SPC564Lx
Table 17. ESD ratings(1), (2)
No.
Symbol
Parameter
Conditions
Class
Max value(3)
Unit
1
VESD(HBM)
SR
Electrostatic discharge
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002
H1C
2000
V
2
VESD(MM)
SR
Electrostatic discharge
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003
M2
200
V
3
VESD(CDM)
SR
Electrostatic discharge TA = 25 °C
(Charged Device Model) conforming to AEC-Q100-011
C3A
500
750 (corners)
V
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at
room temperature followed by hot temperature, unless specified otherwise in the device specification.
3. Data based on characterization results, not tested in production.
3.8
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 18. Latch-up results
No.
1
3.9
Symbol
LU
Parameter
SR
Static latch-up class
Conditions
TA = 125 °C conforming to JESD 78
Class
II level A
Voltage regulator electrical characteristics
The voltage regulator is composed of the following blocks:
High power regulator HPREG1 (internal ballast to support core current)
High power regulator HPREG2 (external NPN to support core current)
Low voltage detector (LVD_MAIN_1) for 3.3 V supply to IO (VDDIO)
Low voltage detector (LVD_MAIN_2) for 3.3 V supply (VDDREG)
Low voltage detector (LVD_MAIN_3) for 3.3 V flash supply (VDDFLASH)
Low voltage detector (LVD_DIG_MAIN) for 1.2 V digital core supply (HPVDD)
Low voltage detector (LVD_DIG_BKUP) for the self-test of LVD_DIG_MAIN
High voltage detector (HVD_DIG_MAIN) for 1.2 V digital CORE supply (HPVDD)
High voltage detector (HVD_DIG_BKUP) for the self-test of HVD_DIG_MAIN.
Power on Reset (POR)
HPREG1 uses an internal ballast to support the core current. HPREG2 is used only when
external NPN transistor is present on board to supply core current. The SPC56XL60/54
always powers up using HPREG1 if an external NPN transistor is present. Then the
108/165
DocID15457 Rev 12
SPC56ELx, SPC564Lx
Electrical characteristics
SPC56XL60/54 makes a transition from HPREG1 to HPREG2. This transition is dynamic.
Once HPREG2 is fully operational, the controller part of HPREG1 is switched off.
The following bipolar transistors are supported:
BCP68 from ON Semiconductor
BCX68 from Infineon
Table 19. Characteristics
Symbol
hFE( )
PD
Parameter
DC current gain (Beta)
Value
Unit
85 - 375
—
1.5
W
1.0
A
Maximum power dissipation @
TA=25°C(1)
ICMaxDC
Maximum peak collector current
VCESAT
Collector-to-emitter saturation
voltage (Max)
600(2)
mV
VBE
Base-to-emitter voltage (Max)
1.0
V
1. Derating factor 12mW/degC.
2. Adjust resistor at bipolar transistor collector for 3.3V to avoid VCE