0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC572L64F2BC6AR

SPC572L64F2BC6AR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TQFP80

  • 描述:

    IC MCU 32BIT 1.5MB FLASH 80ETQFP

  • 数据手册
  • 价格&库存
SPC572L64F2BC6AR 数据手册
SPC572Lx 32-bit Power Architecture® based MCU for automotive powertrain applications Datasheet - production data – Intelligent complex timer module – 72 channels (16 input and 56 output) eTQFP80 10 mm × 10 mm × 1.0 mm 0.4 mm pitch eTQFP100 14 mm × 14 mm × 1.0 mm 0.5 mm pitch Features • Enhanced analog-to-digital converter system with: – Three 12-bit SAR analog converters – One 16-bit Sigma-Delta analog converters • Decimation unit to support SD ADC data conditioning • Two deserial serial peripheral interface (DSPI) modules • AEC-Q100 qualified • One main 32-bit Power Architecture® VLE Compliant CPU core, single issue – Single-precision floating point operations • 1568 KB on-chip RWW flash memory – Supporting EEPROM emulation (32 KB) • Two LIN and UART communication interfaces (LINFlexD) modules • One μs-bus channel (composed by one DSPI and one LINFlexD) • Four SENT channels • 64 KB general-purpose data SRAM • Two modular controller area network (M_CAN) modules • System Memory Protection Unit (SMPU) • Fast Ethernet controller (FEC) • Multi-channel direct memory access controllers (eDMA) with 16-channel for up to 60 DMA sources • Interrupt controller (INTC) • Four 32-bit and one 64-bit Periodic Interrupt Timer channels (PIT) • Single phase-locked loops with stable clock domain for peripherals and core (PLL) • System integration unit lite (SIUL2) • Boot assist flash (BAF) supports factory programming through UART/LIN, CAN • Generic timer module (GTM101) • Fast Asynchronous Serial Transmission (LFAST) • Nexus development interface (NDI) per IEEEISTO 5001-2003 standard, with some support for 2010 standard • Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1 and IEEE 1149.7) • Single 5 V +/-10% Power supply supporting cold start conditions (down to 3.0 V) • Self Test capability • Designed for eTQFP80 and eTQFP100 Table 1. Device summary Root Part Numbers Memory Flash size Package eTQFP80 Package eTQFP100 1056 KByte SPC572L60F2 SPC572L60E3 1568 KByte SPC572L64F2 SPC572L64E3 July 2017 This is information on a product in full production. DocID027866 Rev 5 1/112 www.st.com Table of contents SPC572Lx Table of contents 1 2 3 2/112 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 LVDS pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.4 Generic pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Electromagnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.8 I/O pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.8.1 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8.2 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.9 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.10 Reset pad (PORST, ESR0) electrical characteristics . . . . . . . . . . . . . . . . 36 3.11 Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.12 ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.12.1 ADC input description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.12.2 SAR ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DocID027866 Rev 5 SPC572Lx Table of contents 3.12.3 3.13 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.14 LVDS Fast Asynchronous Serial Transmission (LFAST) pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.15 4 S/D ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.14.1 LFAST interface timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.14.2 LFAST and MSC/DSPI LVDS interface electrical characteristics . . . . . 59 Power management: PMC, POR/LVD, sequencing . . . . . . . . . . . . . . . . . 62 3.15.1 Power management integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.15.2 Main voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . 63 3.15.3 Device voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.15.4 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.16 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.17 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.17.1 Debug and calibration interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.17.2 DSPI timing with CMOS and LVDS pads . . . . . . . . . . . . . . . . . . . . . . . . 75 3.17.3 FEC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.17.4 UART timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.17.5 GPIO delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1 ECOPACK® 4.2 eTQFP80 case drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3 eTQFP100 case drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 General notes for specifications at maximum junction temperature . . . 98 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 DocID027866 Rev 5 3/112 3 List of tables SPC572Lx List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. 4/112 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SPC572Lx device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Power supply and reference pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LVDSM pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Device operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 I/O pad specification descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 WEAK configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 29 MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 30 STRONG configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . 31 VERY STRONG configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . 32 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 PLL0 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 External oscillator electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Selectable load capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Internal RC oscillator electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ADC pin specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 SARn ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 SDn ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LVDS pad startup and receiver electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 59 LFAST transmitter electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 MSC/DSPI LVDS transmitter electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Device supply relation during power-up/power-down sequence. . . . . . . . . . . . . . . . . . . . . 66 Functional terminals state during power-up and reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 RWSC settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Flash memory program and erase specifications (pending silicon characterization) . . . . . 68 Flash memory module extended life specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 DSPI channel frequency support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1 .............................................................................................................................................76 DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 DSPI LVDS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 DocID027866 Rev 5 SPC572Lx Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. List of tables DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1) . . . . . . . . . . . . . . . . . 85 RMII serial management channel timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 RMII receive signal timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 RMII transmit signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 UART frequency support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 GPIO delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 eTQFP80 – STMicroelectronics package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . 93 eTQFP100 – STMicroelectronics package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 96 Thermal characteristics for eTQFP80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Thermal characteristics for eTQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 DocID027866 Rev 5 5/112 5 List of figures SPC572Lx List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. 6/112 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Periphery allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 80-pin QFP configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 100-pin QFP configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Weak pull-up electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I/O output DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 PLL integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Input equivalent circuit (Fast SARn channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Input equivalent circuit (SARB channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 LFAST and MSC/DSPI LVDS timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Power-down exit time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Rise/fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 LVDS pad external load diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Voltage monitor threshold definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 JTAG JCOMP timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Nexus TDI/TDIC, TMS/TMSC, TDO/TDOC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 DSPI CMOS master mode – classic timing, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 DSPI CMOS master mode – classic timing, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 DSPI PCS strobe (PCSS) timing (master mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 DSPI CMOS master mode – modified timing, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 82 DSPI CMOS master mode – modified timing, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 82 DSPI PCS strobe (PCSS) timing (master mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 0 . . . . . . . . 86 DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 1 . . . . . . . . 87 RMII serial management channel timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 RMII receive signal timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 RMII transmit signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 eTQFP80 – STMicroelectronics package mechanical drawing . . . . . . . . . . . . . . . . . . . . . 92 eTQFP100 – STMicroelectronics package mechanical drawing . . . . . . . . . . . . . . . . . . . . 95 Product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DocID027866 Rev 5 SPC572Lx Introduction 1 Introduction 1.1 Document overview This document provides electrical specifications, pin assignments, and package diagrams for the SPC572Lx series of microcontroller units (MCUs). For functional characteristics, see the device reference manual. 1.2 Description This family of MCUs is targeted at automotive powertrain controller applications for fourcylinder gasoline and diesel engines, chassis control applications, transmission control applications, steering and braking applications, as well as low-end hybrid applications. The family is designed to achieve ISO26262 ASIL-A compliance. 1.3 Device feature summary Table 2. SPC572Lx device feature summary Feature Description Process Main processor 55 nm Core e200z2 Number of main cores 1 Single precision floating point Yes VLE Yes Main processor frequency 80 MHz SMPU Yes Software watchdog timer (task SWT/safety SWT) Core Nexus class 2 (1/1) 3 Sequence processing unit (SPU) Yes System SRAM 64 KB Flash memory 1536 KB Flash memory fetch accelerator 8 × 128 bit Data flash memory (EEPROM) 2 × 16 KB Flash memory overlay RAM 8 KB DMA channels 16 LINFlexD (UART/MSC) 3 (2/1) M_CAN/M_TTCAN 2/0 DSPI (SPI/MSC/sync SCI) 2 (1/1/0) Microsecond bus downlink Yes DocID027866 Rev 5 7/112 111 Introduction SPC572Lx Table 2. SPC572Lx device feature summary (continued) Feature Description SENT bus 4 channels Ethernet Yes Zipwire (SIPI / LFAST) Interprocessor bus High speed (4-phase only) System timers 4 PIT channels 1 AUTOSAR® (STM) 64-bit PIT GTM timer 16 input channels, 56 output channels GTM RAM 18.53 KB Interrupt controller 1024 sources ADC (SAR) 3 ADC (SD) 1 Temperature sensor Yes PLL Single PLL with no FM Internal linear voltage regulator 1.2 V 5 V(1) 3.3 V(2) External power supplies Low-power modes Stop mode Slow mode Packages eTQFP80 eTQFP100 1. The device can be powered up at 5 V only. 2. Optional: can be used for special I/O segments 1.4 Block diagram Figure 1 and Figure 2 show the top-level block diagrams. 8/112 DocID027866 Rev 5 SPC572Lx Introduction Figure 1. Block diagram DCI (without LFAST support) SPU JTAGM SWT_3 DMA CH MUX SWT_2 Zipwire (LFAST & SIPI) Ethernet INTC_2 16ch eDMA 40 MHz Scalar SP-FPU Concentrator 40 MHz BIU Load/Store 32 ADD 32 DATA 32 ADD 32 DATA M2 32 ADD 32 DATA Peripheral Bridge 40 MHz Decorated Storage 32 ADD 32 DATA Peripheral Cluster (see Periphery allocation diagram) STM_2 e200z215An3–80 MHz Core Nexus 3 VLE S2 JTAGC Cross Bar Switch (AMBA 2.0 v6 AHB)–80 MHz System Memory Protection Unit (SMPU) S1 32 ADD 32 DATA SRAM Control Decorated Access 32 ADD 32 DATA SRAM 64 KB Instruction 32 ADD 32 DATA M1 M0 S0 32 ADD 32 DATA Overlay Backdoor for system RAM Flash Controller 8 x 128 Mini Cache NAR 128-bit Page Line 1.5 MB flash 6 x 256 KB code flash RAM 8 KB Overlay/Trace DocID027866 Rev 5 2 x 16 KB data EEPROM NVM 9/112 111 Introduction SPC572Lx Figure 2. Periphery allocation SSCM PASS Flash control LFAST_0 SIPI_0 SIUL2 MC_ME MC_CGM CMU_PLL PLLDIG XOSC IRCOSC MC_RGM PMCDIG MC_PCU WKPU DECIFILTER PBRIDGE_A XBAR_0 SMPU_0 PRAM_0 PCM PFLASH_0 INTC_0 SWT_2 SWT_3 STM_2 DMA_0 FEC_0 EIM ERM GTM SAR ADC_0 SAR ADC_4 SAR ADC_B PIT_0 PIT_1 JTAGM DMAMUX SD ADC_3 DTS JDC SENT SRX_0 DSPI_0 DSPI_4 LINFlexD_0 LINFlexD_1 LINFlexD_14 CAN SRAM CCCU M_CAN_1 M_CAN_2 Peripheral Bus A Peripheral Cluster A 10/112 DocID027866 Rev 5 SPC572Lx 1.5 Introduction Features overview On-chip modules within SPC572Lx include the following features: • • 1 main CPU, single issue, 32-bit CPU core complex (e200z2) – Power Architecture embedded specification compliance – Instruction set enhancement allowing variable length encoding (VLE), encoding a mix of 16-bit and 32-bit instructions, for code size footprint reduction – Single-precision floating point operations – Saturation Instructions Extension adding scalar saturating arithmetic support to the PowerISA Integer Saturation (ISAT) 1568 KB (1536 KB code flash + 32 KB data flash) on-chip flash memory – Supporting multiple blocks allowing EEPROM emulation – RWW between data EEPROM and code flash memory • 64 KB general-purpose data SRAM • System Memory Protection Unit (SMPU) • 16-channel Direct Memory Access controllers (eDMA) with two channel multiplexers for up to 60 DMA sources • Interrupt Controller (INTC) supporting up to 1024 interrupt sources (all are not assigned) • System Timer Module (STM) • 2 Software Watchdog Timers (SWT) • 2 Periodic Interrupt Timers (PIT) – 1 PIT with four standard 32-bit timer channels – 1 PIT with two 32-bit timer channels which can be combined into one 64-bit channel • Single phase-locked loop with stable clock domain for peripherals and core (PLL) • Single crossbar switch architecture for concurrent access to peripherals, flash memory, or SRAM from multiple bus masters • System Integration Unit Lite (SIUL2) • Boot Assist Flash (BAF) supports factory programming using a serial bootload through the UART Serial Boot Mode Protocol (physical interface (PHY) can be e.g., UART and CAN) • PASS module (supporting 256-bit JTAG password protection) • Device life cycle monitoring • Generic Timer Module (GTM101) • Enhanced analog-to-digital converter system with: – Three 12-bit SAR analog converters – One 16-bit Sigma-Delta analog converter • Decimation unit to support SD ADC data conditioning • 1 Deserial Serial Peripheral Interface (DSPI) module • 2 LIN and UART communication interfaces (LINFlexD) modules • 1 microsecond-bus channel (composed of one DSPI and one LINFlexD) • 4 SENT (Single Edge Nibble Transmission) channels • 2 Modular Controller Area Network (M_CAN) modules DocID027866 Rev 5 11/112 111 Introduction 12/112 SPC572Lx • 1 Clock Calibration on CAN Unit (CCCU) • Fast Ethernet Controller (FEC) • Fast Asynchronous Serial Transmission (LFAST) • Nexus Development Interface (NDI) per IEEE-ISTO 5001-2003 standard, with partial support for 2010 standard • Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1 and IEEE 1149.7) • On-chip voltage regulator controller manages the supply voltage down to 1.2 V for core logic • Self-test capability DocID027866 Rev 5 SPC572Lx Package pinouts and signal descriptions 2 Package pinouts and signal descriptions 2.1 Package pinouts The QFP package pinouts are shown in Figure 3 and Figure 4. VDD_HV_IO_MAIN PA[11] PA[10] PA[13] PA[12] PA[1] PA[2] 67 66 65 64 63 62 61 PD[3] VDD_HV_IO_FLA PD[2] 68 PD[1] 70 69 PD[0] 71 PE[12] 72 73 PC[13] 76 PC[14] VDD_HV_IO_ETH 77 PC[15] PC[12] 78 74 PC[11] 79 75 PC[10] 80 Figure 3. 80-pin QFP configuration (top view) eTQFP80 46 PF[13] VDD_HV_IO_MAIN 16 45 PB[15] 17 44 VDD_HV_IO_JTAG/ VDD_HV_OSC XTAL PB[14] 18 43 EXTAL PB[13] 19 42 VDD_LV PB[12] 20 41 VDD_HV_IO_MAIN DocID027866 Rev 5 40 15 PA[15] PD[7] VDD_LV 39 47 PD[8] 14 38 PD[6] PE[1] PA[3] 48 37 13 36 PA[8] PE[0] PB[8] 49 PB[9] 12 35 PA[7] PC[0] 34 50 PB[11] 11 PB[10] PA[9] PC[1] 33 51 VDD_HV_ADV PA[5] 10 32 52 PC[2] PB[0] 9 31 PA[6] PC[3] PB[1] 8 53 30 TESTMODE PC[4] PB[2] 54 29 7 28 VDD_HV_PMC PC[5] PB[3] 55 PD[11] 6 27 PORST PC[6] PE[13] 56 26 5 PB[4] ESR0 PC[7] 25 57 PE[14] 4 24 PD[4] PC[8] VDD_HV_ADR 58 23 3 VSS_HV_ADR PD[5] PC[9] 22 PE[9] 59 21 60 2 PG[8] 1 PD[15] PG[7] PD[14] 13/112 111 Package pinouts and signal descriptions SPC572Lx PC[14] PC[15] PE[12] PD[0] PD[1] PD[2] PD[3] VDD_HV_IO_FLA VDD_HV_IO_MAIN PE[11] PE[10] PA[11] PA[10] PA[0] 93 92 91 90 89 88 87 86 85 84 83 82 81 80 PA[2] PC[13] 94 PA[1] VDD_HV_IO_ETH 95 PA[12] PC[12] 96 77 76 PC[11] 97 PA[13] PC[10] 98 78 PF[3] 99 79 PF[2] 100 Figure 4. 100-pin QFP configuration (top view) 75 PE[9] 74 PE[8] 3 73 PD[5] PC[8] 4 72 PD[4] PC[7] 5 71 PE[7] PC[6] 6 70 PE[6] PC[5] 7 69 PE[5] PC[4] 8 68 VDD_LV PC[3] 9 67 ESR0 PC[2] 10 66 PORST PC[1] 11 65 ESR1 PC[0] 12 64 TESTMODE PE[0] 13 63 PA[6] PE[1] 14 62 PA[5] PE[2] 15 61 PA[9] PD[12] 16 60 PA[7] PD[13] 17 59 PA[8] PE[3] 18 58 PD[6] VDD_LV 19 57 PD[7] VDD_HV_IO_MAIN 20 56 PF[13] PB[15] 21 55 PB[14] 22 54 PB[13] 23 53 VDD_HV_IO_JTAG/ VDD_HV_OSC XTAL EXTAL PB[12] 24 52 VDD_LV PG[6] 25 51 VDD_HV_IO_MAIN 2.2 41 42 43 44 45 46 47 48 49 PF[0] PD[9] PD[10] PB[11] PB[10] PB[9] PB[8] PA[3] PD[8] PA[15] 50 40 PB[3] PF[1] 35 PD[11] 39 34 PE[13] VDD_HV_ADV 33 PB[4] 38 32 PE[14] PB[0] 31 37 30 PE[15] PB[1] 29 VDD_HV_ADR 36 28 VSS_HV_ADR PB[2] 27 PC[9] eTQFP100 26 2 PG[8] 1 PD[15] PG[7] PD[14] Pin descriptions The following sections provide signal descriptions and related information about device functionality and configuration. 2.2.1 Power supply and reference voltage pins Table 3 contains information on power supply and reference pin functions for the devices. See the Signal Table (Excel file) attached to this document. Locate the paperclip symbol on the left side of the PDF window, and click it. Double-click on the excel file to open it and select the Supply Pins Table tab. 14/112 DocID027866 Rev 5 SPC572Lx Package pinouts and signal descriptions Table 3. Power supply and reference pins Supply Symbol Type QFP pin Description 80 100 VSS_HV Ground High voltage ground Exposed pad 81 Exposed pad 101 VSS_LV Ground Low voltage ground Exposed pad 81 Exposed pad 101 VSS_HV_OSC Ground Ground supply for the oscillator Exposed pad 81 Exposed pad 101 VDD_LV Power Low voltage power supply for production device (PLL is also powered by this pin.) 15, 42, 68 19, 52, 68 VDD_HV_PMC Power High voltage power supply for internal power management unit 55 — VDD_HV_IO_MAIN Power High voltage power supply for I/O 16, 41, 67 20, 51, 85 VDD_HV_IO_JTAG Power JTAG/Oscillator power supply 45 55 VDD_HV_OSC Power Oscillator voltage supply 45 55 VDD_HV_IO_ETH Power Ethernet 3.3 V I/O supply 77 95 VDD_HV_FLA Power Decoupling supply pin for flash 68 86 VDD_HV_ADV Power High voltage supply for ADC 33 39 VSS_HV_ADR Reference Ground reference of ADCs 23 28 VDD_HV_ADR Reference Voltage reference of ADCs 24 29 2.2.2 System pins Table 4 contains information on system pin functions for the devices. Table 4. System pins QFP pin Symbol Description Direction 80 100 PORST Power on reset with Schmitt trigger characteristics and Bidirectional noise filter. PORST is active low 56 66 ESR0 External functional reset with Schmitt trigger characteristics and noise filter. ESR0 is active low Bidirectional 57 67 Input only 54 64 TESTMODE Pin for testing purpose only. An internal pull-down is implemented on the TESTMODE pin to prevent the device from entering TESTMODE. It is recommended to connect the TESTMODE pin to VSS_HV_IO on the board. The value of the TESTMODE pin is latched at the negation of reset and has no affect afterward. The device will not exit reset with the TESTMODE pin asserted during power-up. DocID027866 Rev 5 15/112 111 Package pinouts and signal descriptions SPC572Lx Table 4. System pins (continued) QFP pin Symbol Description XTAL Analog output of the oscillator amplifier circuit needs to be grounded if oscillator is used in bypass mode. EXTAL Analog input of the oscillator amplifier circuit when oscillator is not in bypass mode Analog input for the clock generator when oscillator is in bypass mode 2.2.3 Direction 80 100 Output 44 54 Input 43 53 LVDS pins Table 5 contains information on LVDS pin functions for the devices. Table 5. LVDSM pin descriptions Package pin number Functional block SIPI LFAST(1) DSPI 4 Microsecond Bus Port pin Signal PF[13] SIPI_RXN Interprocessor Bus LFAST, LVDS Receive Negative Terminal PD[7] SIPI_RXP PD[6] Signal description Direction eTQFP80 eTQFP100 I 46 56 Interprocessor Bus LFAST, LVDS Receive Positive Terminal I 47 57 SIPI_TXN Interprocessor Bus LFAST, LVDS Transmit Negative Terminal O 48 58 PA[8] SIPI_TXP Interprocessor Bus LFAST, LVDS Transmit Positive Terminal O 49 59 PD[3] SCK_N DSPI 4 Microsecond Bus Serial Clock, LVDS Negative Terminal O 69 87 PD[2] SCK_P DSPI 4 Microsecond Bus Serial Clock, LVDS Positive Terminal O 70 88 PD[1] SOUT_N DSPI 4 Microsecond Bus Serial Data, LVDS Negative Terminal O 71 89 PD[0] SOUT_P DSPI 4 Microsecond Bus Serial Data, LVDS Positive Terminal O 72 90 1. DRCLK and TCK/DRCLK usage for SIPI LFAST is described in the SPC572Lx reference manual, refer to SIPI LFAST chapter. 2.2.4 Generic pins The I/O Signal Description Table contains information on generic pins. See the I/O Signal Description and Input Multiplexing Tables (Excel file) attached to this document. Locate the 16/112 DocID027866 Rev 5 SPC572Lx Package pinouts and signal descriptions paperclip symbol on the left side of the PDF window, and click it. Double-click on the excel file to open it and select the I/O Signal Description Table tab. DocID027866 Rev 5 17/112 111 Electrical characteristics SPC572Lx 3 Electrical characteristics 3.1 Introduction This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” (Controller Characteristics) is included in the “Symbol” column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” (System Requirement) is included in the “Symbol” column. Note: Within this document, VDD_HV_IO refers to supply pins VDD_HV_IO_MAIN, VDD_HV_IO_JTAG, VDD_HV_IO_ETH, VDD_HV_PMC and VDD_HV_FLA. 3.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate. Table 6. Parameter classifications Classification tag Note: 18/112 Tag description P Parameters are guaranteed by production testing on each individual device. C Parameters are guaranteed by the design characterization by measuring a statistically relevant sample size across process variations. T Parameters are guaranteed by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Parameters are derived mainly from simulations. The classification is shown in the column labeled “C” in the parameter tables where appropriate. DocID027866 Rev 5 SPC572Lx 3.3 Electrical characteristics Absolute maximum ratings Table 7 describes the maximum ratings of the device. Table 7. Absolute maximum ratings(1) Value Symbol Parameter Conditions Unit Min Max — — 1000 k — — — — — –0.3 1.5 V — –0.3 6.0 V SR SAR and S/D ADC supply voltage Reference to VSS_HV_ADV –0.3 6.0 V VSS_HV_ADR SR SAR and S/D ADC low reference –0.3 0.3 V VDD_HV_ADR SR SAR and S/D ADC high reference Reference to –0.3 corresponding VSS_HV_ADR 6.0 V SR I/O input voltage range(8) –0.3 6.0 V Relative to VSS_HV_IO –0.3 — Relative to VDD_HV_IO — 0.3 Cycle SR Lifetime power cycles SR Ground voltage VSS_HV SR 1.2 V core supply voltage VDD_LV VDD_HV_IO(5) VDD_HV_ADV (7) VIN SR I/O supply voltage (2),(3),(4) (6) Reference to VSS_HV — IINJD SR Maximum DC injection current for Per pin, applies to all digital digital pad pins –5 5 mA IINJA SR Maximum DC injection current for Per pin, applies to all analog pad analog pins –5 5 mA IMAXD SR Maximum output DC current when Medium driven Strong −7 8 mA –10 10 –11 11 Very strong SR Maximum current per power segment(9) — –90 90 mA SR Storage temperature range and non-operating times — –55 175 °C SR Maximum storage time, assembled No supply; storage part programmed in ECU temperature in range –40 °C to 60 °C — 20 years TSDR SR Maximum solder temperature(10) Pb-free package — — 260 °C MSL SR Moisture sensitivity level(11) — — 3 — — 200 ms IMAXSEG TSTG STORAGE tXRAY T X-ray screen time At 80÷130 KV; 20÷50 µA; max 1 Gy dose 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C, remaining time as defined in note 5. 3. Allowed 1.375 – 1.45 V for 10 hours cumulative time at maximum TJ = 125 °C, remaining time as defined in note 5. DocID027866 Rev 5 19/112 111 Electrical characteristics SPC572Lx 4. 1.32 – 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.288 V at maximum TJ = 125 °C 5. VDD_HV_IO refers to supply pins VDD_HV_IO_MAIN, VDD_HV_IO_JTAG, VDD_HV_IO_ETH, VDD_HV_OSC, VDD_HV_FLA. 6. Allowed 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, TJ = 150 °C remaining time at or below 5.5 V. 7. VDD_HV_ADV is also the supply for the device temperature sensor and bandgap reference. 8. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current condition on a pin, the voltage equals the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies significantly across process and temperature, but a value of 0.3 V can be used for nominal calculations. 9. Sum of all controller pins (including both digital and analog) must not exceed 150 mA. A VDD_HV_IO power segment is defined as one or more GPIO pins located between two VDD_HV_IO supply pins. 10. Solder profile per IPC/JEDEC J-STD-020D. 11. Moisture sensitivity per JEDEC test method A112. 3.4 Electromagnetic Compatibility (EMC) EMC measurements to IC-level IEC standards are available from STMicroelectronics on request. 3.5 Electrostatic discharge (ESD) The following table describes the ESD ratings of the device. Table 8. ESD ratings(1),(2) Parameter C Conditions Value Unit ESD for Human Body Model (HBM)(3) T All pins 2000 V ESD for field induced Charged Device Model (CDM)(4) T All pins 500 V 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature. Maximum DC parametrics variation within 10% of maximum specification”. 3. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing. 4. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level. 3.6 Operating conditions The following table describes the operating conditions for the device for which all specifications in the datasheet are valid, except where explicitly noted. The device operating conditions must not be exceeded or the functionality of the device is not guaranteed. 20/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics Table 9. Device operating conditions(1) Value Symbol C Parameter Conditions Unit Min Typ Max — — 80 MHz Frequency fSYS CC TJ −40 °C to 150 °C C Device operating frequency(2) Temperature TJ SR P Operating temperature range junction — –40.0 — 150.0 °C TA (TL to TH) SR P Ambient operating temperature range — –40.0 — 125.0 °C Voltage VDD_LV CC VDD_HV_IO_MAIN(5) SR P Core supply voltage measured at external pin(3)(4) P I/O supply voltage LVD400 enabled(6) 4.5 — 5.5 C LVD400 disabled (6), 4.0 — 5.9 3.0 — 5.9 (7),(8),(9) C VDD_HV_IO_JTAG VDD_HV_IO_ETH SR SR V 5 V range 4.5 — 5.5 3.3 V range 3.0 — 3.6 C 5 V range 4.0 — 5.9 P Ethernet I/O supply voltage C 5 V range 4.5 — 5.5 3.3 V range 3.0 — 3.6 — 3.0 — 5.5 V LVD295/ enabled 4.5 — 5.5 V LVD400 disabled(10),(7),(8) 4.0 — 5.9 LVD295/ disabled(7),(8) 3.7 — 5.9 4.5 — 5.5 4.0 — 5.9 2.0 — 4.0 — — 25 CC P Flash core voltage VDD_HV_ADV SR P SARADC and SDADC supply C voltage C SR V P JTAG I/O supply voltage(10) C VDD_HV_FLA(11),(12) VDD_HV_ADR Refer to Section 3.15: Power management: PMC, POR/LVD, sequencing P SAR and S/D ADC reference C — C VDD_HV_ADR – VDD_HV_ADV SR D SAR and S/D ADC reference voltage — VSS_HV_ADR SR P SD ADC ground reference voltage — VRAMP_HV SR D Slew rate on HV power supply pins — DocID027866 Rev 5 VSS_HV_ADV — — V V V mV V 100 V/ms 21/112 111 Electrical characteristics SPC572Lx Table 9. Device operating conditions(1) (continued) Value Symbol VIN C SR Parameter Conditions C I/O input voltage range — Unit Min Typ Max 0 — 5.5 V Injection current IIC SR T DC injection current Digital pins and (per pin)(13),(14),(15) analog pins –3.0 — 3.0 mA IMAXSEG SR D Maximum current per power segment(16) –80 — 80 mA — 1. The ranges in this table are design targets and actual data may vary in the given range. 2. Maximum operating frequency is applicable to the core and platform for the device. See the Clocking chapter in the SPC572Lx Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device. 3. Core voltage as measured on device pin to guarantee published silicon performance. 4. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. Refer to the Power Management and Reset Generation Module chapters in the SPC572Lx Microcontroller Reference Manual for further information. 5. The VDD_HV_PMC supply providing power to the internal regulator is shorted with the VDD_HV_IO supply within package. 6. LVD400 can be disabled by SW (always enabled after power-up). 7. Maximum voltage is not permitted for entire product life. See Absolute maximum rating. 8. When internal LVD/HVDs are disabled, external monitoring is required to guarantee correct device operation. 9. Reduced output/input capabilities below 4.2 V. See performance operating values in I/O pad electrical characteristics. Not all functionality are guaranteed below 4.2 V. Please check specific supply constraints by module in Table 9 (Device operating conditions). 10. VDD_HV_IO_JTAG supply is shorted with VDD_HV_OSC supply within package. 11. Flash read, program, and erase operations are supported for a minimum VDD_HV_FLA value of 3.0 V. 12. This voltage can be measured on the pin but is not supplied by an external regulator. The Power Management Controller generates PORs based on this voltage. 13. Full device lifetime without performance degradation 14. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the Absolute maximum ratings table for maximum input current for reliability requirements. 15. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current is injected through the clamp diode to the supply rail. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature. 16. Sum of all controller pins (including both digital and analog) must not exceed 150 mA. A VDD_HV_IO power segment is defined as one or more GPIO pins located between two VDD_HV_IO supply pins. 3.7 DC electrical specifications The following table describes the DC electrical specifications. 22/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics Table 10. DC electrical specifications(1) Value Symbol C Parameter Conditions Unit Min Typ Max IDD CC P Operating current all supply rails fMAX(2) — — 145 mA IDDPE CC C Operating current all supplies including program/erase fMAX(3) — — 165 mA IDDAPP CC P Operating current all supplies with typical application At TJ VIL = 1.1 V (TTL) 4.5 V < VDD_HV_IO < 5.5 V — — 130 CC P VIN = 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 23 — 65 CC T VIN = 0.49* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V — — 82 CC D 0.49* VDD_HVIO < VIN < 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 34 — 62 Weak pull-up resistance DocID027866 Rev 5 µA kΩ SPC572Lx Electrical characteristics Table 13. I/O pull-up/pull-down DC electrical characteristics (continued) Value Symbol |IWPD| C CC T P Parameter Weak pull-down current absolute value T RWPD CC D Weak pull-down resistance Conditions Unit Min Typ Max VIN < VIL = 0.9 V (TTL) 4.5 V < VDD_HV_IO < 5.5 V 16 — — VIN = 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 50 — 130 VIN = 0.49* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 40 — — 0.49* VDD_HV_IO < VIN < 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 30 — 55 µA kΩ 1. Weak pull-up/down is enabled within tWK_PU = 1 µs after internal/external reset has been asserted. Output voltage will depend on the amount of capacitance connected to the pin. 2. VDD_POR is the minimum VDD_HV_IO supply voltage for the activation of the device pull-up/down, and is given in the Reset electrical characteristics table of Section Reset pad (PORST, ESR0) electrical characteristics in this Datasheet. 3. VDD_POR is defined in the Table 19: Reset electrical characteristics of Section 3.10: Reset pad (PORST, ESR0) electrical characteristics in this Datasheet. 4. Weak pull-up behavior during power-up. Operational with VDD_HV_IO > VDD_POR. Figure 6. Weak pull-up electrical characteristics definition tWK_PU tWK_PU VDD_HV_IO VDD_POR RESET(INTERNAL) pull-up enabled YES NO (1) PAD (1) (1) POWER-UP Application defined RESET Application defined POWER-DOWN 1. Actual PAD slopes will depend on external capacitances and VDD_HV_IO supply. DocID027866 Rev 5 27/112 111 Electrical characteristics 3.8.2 SPC572Lx I/O output DC characteristics The figure below provides description of output DC electrical characteristics. Figure 7. I/O output DC electrical characteristics definition VINTERNAL (SIUL register) 50% 50% tPD10-90 (rising edge) VHYS tPD10-90 (falling edge) tSKEW20-80 Vout 90% 80% 20% 10% tR20-80 tF20-80 tR10-90 tF10-90 tTR(max) = MAX(tR10-90;tF10-90) tTR20-80(max) = MAX(tR20-80;tF20-80) tTR(min) = MIN(tR10-90;tF10-90) tTR20-80(min) = MIN(tR20-80;tF20-80) tSKEW = |tR20-80-tF20-80| The following tables provide DC characteristics for bidirectional pads: Note: • Table 14 provides output driver characteristics for I/O pads when in WEAK configuration. • Table 15 provides output driver characteristics for I/O pads when in MEDIUM configuration. • Table 16 provides output driver characteristics for I/O pads when in STRONG configuration. • Table 17 provides output driver characteristics for I/O pads when in VERY STRONG configuration. Driver configuration is controlled by SIUL2_MSCRn registers. It is available within two PBRIDGEA_CLK clock cycles after the associated SIUL2_MSCRn bits have been written. Table 14 shows the WEAK configuration output buffer electrical characteristics. 28/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics Table 14. WEAK configuration output buffer electrical characteristics Symbol C Conditions(1) Parameter Value(2) Min Typ Max Unit ROH_W CC P PMOS output impedance weak configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 0.5 mA 520 800 1040 Ω ROL_W CC P NMOS output impedance weak configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 0.5 mA 520 800 1040 Ω fMAX_W CC T Output frequency weak configuration CL = 25 pF(3) — — 2 MHz (3) — — 1 CL = 50 pF D tTR_W CC T — — 0.25 CL = 25 pF, 4.5 V < VDD_HV_IO < 5.5 V 40 — 120 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.5 V 80 — 240 CL = 200 pF, 4.5 V < VDD_HV_IO < 5.5 V 320 — 820 CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 50 — 150 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 100 — 300 CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 350 — 1050 CL = 200 pF Transition time output pin weak configuration(4) D |tSKEW_W| (3) ns CC T Difference between rise and fall time — — — 25 % IDCMAX_W CC D Maximum DC current — — — 4 mA TPHL/PLH D Propagation delay CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 120 ns CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 150 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 240 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) — — 300 CC 1. All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid for VSIO[VSIO_xx] = 0 2. All values need to be confirmed during device validation. 3. CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 12) are to be added to calculate total signal capacitance (CTOT = CL + CIN). 4. Transition time maximum value is approximated by the following formula: 0 pF < CL < 50 pFtTR_W(ns) = 22 ns + CL(pF) × 4.4 ns/pF 50 pF < CL < 200 pFtTR_W(ns) = 50 ns + CL(pF) × 3.85 ns/pF 5. Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_ETH segment when VSIO[VSIO_IF] = 0. Table 15 shows the MEDIUM configuration output buffer electrical characteristics. DocID027866 Rev 5 29/112 111 Electrical characteristics SPC572Lx Table 15. MEDIUM configuration output buffer electrical characteristics Symbol C Parameter Conditions Value(2) (1) Unit Min Typ Max ROH_M CC P PMOS output impedance MEDIUM configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 2 mA 120 200 260 Ω ROL_M CC P NMOS output impedance MEDIUM configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 2 mA 120 200 260 Ω fMAX_M CC T Output frequency MEDIUM configuration CL = 25 pF(3) — — 12 MHz (3) — — 6 CL = 200 pF(3) — — 1.5 CL = 25 pF 4.5 V < VDD_HV_IO < 5.5 V 10 — 30 CL = 50 pF 4.5 V < VDD_HV_IO < 5.5 V 20 — 60 CL = 200 pF 4.5 V < VDD_HV_IO < 5.5 V 60 — 200 CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 12 — 42 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 24 — 86 CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 70 — 300 CL = 50 pF D tTR_M CC T Transition time output pin MEDIUM configuration(4) D ns |tSKEW_M| CC T Difference between rise and fall time — — — 25 % IDCMAX_M CC D Maximum DC current — — — 4 mA TPHL/PLH CC D Propagation delay CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 35 ns CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 42 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 70 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) — — 85 1. All VDD_HV_IO conditions for 4.5 V to 5.5 V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid for VSIO[VSIO_xx] = 0 2. All values need to be confirmed during device validation. 3. CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 12) are to be added to calculate total signal capacitance (CTOT = CL + CIN). 30/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics 4. Transition time maximum value is approximated by the following formula: 0 pF < CL < 50 pFtTR_M(ns) = 5.6 ns + CL(pF) × 1.11 ns/pF 50 pF < CL < 200 pFtTR_M(ns) = 13 ns + CL(pF) × 0.96 ns/pF 5. Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_ETH segment when VSIO[VSIO_IF] = 0 Table 16 shows the STRONG configuration output buffer electrical characteristics. Table 16. STRONG configuration output buffer electrical characteristics Symbol C Parameter Conditions Value(2) (1) Unit Min Typ Max ROH_S CC P PMOS output impedance STRONG configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 8 mA 30 50 65 Ω ROL_S CC P NMOS output impedance STRONG configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 8 mA 30 50 65 Ω fMAX_S CC T Output frequency STRONG configuration CL = 25 pF(3) — — 40 MHz CL = 50 pF(3) — — 20 — — 5 CL = 25 pF 4.5 V < VDD_HV_IO < 5.5 V 2.5 — 10 CL = 50 pF 4.5 V < VDD_HV_IO < 5.5 V 3.5 — 16 CL = 200 pF 4.5 V < VDD_HV_IO < 5.5 V 13 — 50 CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 4 — 15 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 6 — 27 CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 20 — 83 CL = 200 tTR_S CC T Transition time output pin STRONG configuration(4) pF(3) ns IDCMAX_S CC D Maximum DC current — — — 10 mA |tSKEW_S| T Difference between rise and fall time — — — 25 % CC DocID027866 Rev 5 31/112 111 Electrical characteristics SPC572Lx Table 16. STRONG configuration output buffer electrical characteristics (continued) Symbol TPHL/PLH C CC D Value(2) Conditions(1) Parameter Propagation delay Unit Min Typ Max CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 12 CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 18 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 20 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) — — 36 ns 1. All VDD_HV_IO conditions for 4.5 V to 5.5 V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0 V to 3.6 V are valid for VSIO[VSIO_xx] = 0 2. All values need to be confirmed during device validation. 3. CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 12) are to be added to calculate total signal capacitance (CTOT = CL + CIN). 4. Transition time maximum value is approximated by the following formula: tTR_S(ns) = 4.5 ns + CL(pF) x 0.23 ns/pF. 5. Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_ETH segment when VSIO[VSIO_IF] = 0 Table 17 shows the VERY STRONG configuration output buffer electrical characteristics. Table 17. VERY STRONG configuration output buffer electrical characteristics Symbol ROH_V C CC P PMOS output impedance VERY STRONG configuration C ROL_V CC P NMOS output impedance VERY STRONG configuration C fMAX_V 32/112 CC T Output frequency VERY STRONG configuration Value(2) Conditions(1) Parameter Unit Min Typ Max VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, IOH = 8 mA 20 40 60 VDD_HV_IO = 3.3 V ± 10%, VSIO[VSIO_xx] = 0, IOH = 7 mA(3) 30 50 75 VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, IOL = 8 mA 20 40 60 VDD_HV_IO = 3.3 V ± 10%, VSIO[VSIO_xx] = 0, IOL = 7 mA(3) 30 50 75 VDD_HV_IO = 5.0 V ± 10%, CL = 25 pF(4) — — 50 VSIO[VSIO_xx] = 1, CL = 15 pF(3),(4) — — 50 DocID027866 Rev 5 Ω Ω MHz SPC572Lx Electrical characteristics Table 17. VERY STRONG configuration output buffer electrical characteristics (continued) Symbol tTR_V tTR20-80 C CC CC T — Value(2) Conditions(1) Parameter Unit Min Typ Max VDD_HV_IO = 5.0 V ± 10%, CL = 25 pF(4) 1 — 5.3 VDD_HV_IO = 5.0 V ± 10%, CL = 50 pF(4) 2.5 — 12 VDD_HV_IO = 5.0 V ± 10%, CL = 200 pF(4) 11 — 45 20–80% threshold transition time output pin VERY STRONG configuration VDD_HV_IO = 5.0 V ± 10%, CL = 25 pF(4) 0.8 — 4 VDD_HV_IO = 3.3 V ± 10%, CL = 15 pF(4) 1 — 5 10–90% threshold transition time output pin VERY STRONG configuration ns ns tTRTTL CC — TTL threshold transition time(5) for output pin in VERY STRONG configuration VDD_HV_IO = 3.3 V ± 10%, CL = 25 pF(4) 1 — 5 ns ΣtTR20-80 CC — Sum of transition time 20– VDD_HV_IO = 5.0 V ± 10%, 80% output pin VERY CL = 25 pF STRONG configuration VDD_HV_IO = 3.3 V ± 10%, CL = 15 pF(4) — — 9 ns — — 9 |tSKEW_V| CC T Difference between rise and fall time at 20–80% VDD_HV_IO = 5.0 V ± 10%, CL = 25 pF(4) 0 — 1 ns TPHL/PLH CC D Propagation delay CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 9 ns CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 10.5 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 15 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 12 — — 10 IDCMAX_VS CC D Maximum DC current — mA 1. All VDD_HV_IO conditions for 4.5 V to 5.5 V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0 V to 3.6 V are valid for VSIO[VSIO_xx] = 0. 2. All values need to be confirmed during device validation. 3. Only available on the VDD_HV_IO_JTAG and VDD_HV_IO_ETH segments. 4. CL is the sum of external capacitance. Add device and package capacitances (CIN, defined in the Table 12: I/O input DC electrical characteristics in this Datasheet) to calculate total signal capacitance (CTOT = CL + CIN). 5. TTL transition time as for Ethernet standard. 3.9 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair. Table 18 provides I/O consumption figures. DocID027866 Rev 5 33/112 111 Electrical characteristics SPC572Lx In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. In order to ensure device functionality, the sum of the dynamic and static currents of the I/O on a single segment should remain below the IDYNSEG maximum value. Pad mapping on each segment can be optimized using the pad usage information provided in the I/O Signal Description table. The sum of all pad usage ratios within a segment should remain below 100%. Note: In order to maintain the required input thresholds for the SENT interface, the sum of all I/O pad output percent IR drop as defined in the I/O Signal Description table, must be below 50 %. See the I/O Signal Description attachment. Note: The SPC572Lx I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® workbook file attached to this document. Locate the paperclip symbol on the left side of the PDF window, and click it. Double-click on the Excel file to open it and select the I/O Signal Description Table tab. Table 18. I/O consumption(1) Value Symbol IRMS_SEG IRMS_W IRMS_M 34/112 C SR CC CC D D D Parameter Conditions Unit Min Typ Max Sum of all the DC I/O current within a supply segment VDD = 5.0 V ± 10% — — 80 VDD = 3.3 V ± 10% — — 80 RMS I/O current for WEAK configuration CL = 25 pF, 2 MHz VDD = 5.0 V ± 10% — — 1.1 CL = 50 pF, 1 MHz VDD = 5.0 V ± 10% — — 1.1 CL = 25 pF, 2 MHz VDD = 3.3 V ± 10% — — 0.6 CL = 50 pF, 1 MHz VDD = 3.3 V ± 10% — — 0.6 CL = 25 pF, 12 MHz VDD = 5.0 V ± 10% — — 4.7 CL = 50 pF, 6 MHz VDD = 5.0 V ± 10% — — 4.8 CL = 25 pF, 12 MHz VDD = 3.3 V ± 10% — — 2.6 CL = 50 pF, 6 MHz VDD = 3.3 V ± 10% — — 2.7 RMS I/O current for MEDIUM configuration DocID027866 Rev 5 mA mA mA SPC572Lx Electrical characteristics Table 18. I/O consumption(1) (continued) Value Symbol IRMS_S IRMS_V IDYN_SEG IDYN_W(2) IDYN_M C CC CC SR CC CC D D D D D Parameter Conditions Unit Min Typ Max CL = 25 pF, 50 MHz VDD = 5.0 V ± 10% — — 19 CL = 50 pF, 25 MHz VDD = 5.0 V ± 10% — — 19 CL = 25 pF, 50 MHz VDD = 3.3 V ± 10% — — 10 CL = 50 pF, 25 MHz VDD = 3.3 V ± 10% — — 10 CL = 25 pF, 50 MHz, VDD = 5.0V +/- 10% — — 22 CL = 50 pF, 25 MHz, VDD = 5.0V ± 10% — — 22 CL = 25 pF, 50 MHz, VDD = 3.3V ± 10% — — 11 CL = 25 pF, 25 MHz, VDD = 3.3V ± 10% — — 11 Sum of all the dynamic and DC I/O VDD = 5.0 V ± 10% current within a supply segment VDD = 3.3 V ± 10% — — 195 — — 150 Dynamic I/O current for WEAK configuration CL = 25 pF, VDD = 5.0 V ± 10% — — 5.0 CL = 50 pF, VDD = 5.0 V ± 10% — — 5.1 CL = 25 pF, VDD = 3.3 V ± 10% — — 2.2 CL = 50 pF, VDD = 3.3 V ± 10% — — 2.3 Dynamic I/O current for MEDIUM CL = 25 pF, configuration VDD = 5.0 V ± 10% — — 15 CL = 50 pF, VDD = 5.0 V ± 10% — — 15.5 CL = 25 pF, VDD = 3.3 V ± 10% — — 7.0 CL = 50 pF, VDD = 3.3 V ± 10% — — 7.1 RMS I/O current for STRONG configuration RMS I/O current for VERY STRONG configuration DocID027866 Rev 5 mA mA mA mA mA 35/112 111 Electrical characteristics SPC572Lx Table 18. I/O consumption(1) (continued) Value Symbol IDYN_S IDYN_V C CC CC D D Parameter Conditions Unit Min Typ Max Dynamic I/O current for STRONG CL = 25 pF, configuration VDD = 5.0 V ± 10% — — 50 CL = 50 pF, VDD = 5.0 V ± 10% — — 55 CL = 25 pF, VDD = 3.3 V ± 10% — — 22 CL = 50 pF, VDD = 3.3 V ± 10% — — 25 CL = 25 pF, VDD = 5.0 V ± 10% — — 60 CL = 50 pF, VDD = 5.0 V ± 10% — — 64 CL = 25 pF, VDD = 3.3 V ± 10% — — 26 CL = 50 pF, VDD = 3.3 V ± 10% — — 29 Dynamic I/O current for VERY STRONG configuration mA mA 1. I/O current consumption specifications for the 4.5 V 4 V, VDD_HV_ADR, VALTREF> 4 V –6 6 T TJ < 150 °C, VDD_HV_ADV > 4 V, 4 V > VALTREF> 2 V –6 6 T TJ < 150 °C, 4 V > VDD_HV_ADV > 3.5 V –12 12 T Total unadjusted error in TJ < 150 °C, 10-bit configuration VDD_HV_ADV > 4 V VDD_HV_ADR, VALTREF > 4 V –1.5 1.5 T –2.0 TJ < 150 °C, VDD_HV_ADV > 4 V, 4 V > VDD_HV_ADR, VALTREF> 2 V DocID027866 Rev 5 µA LSB (10b) 2.0 SPC572Lx Electrical characteristics Table 25. SARn ADC electrical specification(1) (continued) Value Symbol ΔTUE12 DNL C CC CC Parameter Conditions Unit Min Max D TUE degradation due to VIN < VDD_HV_ADV VDD_HV_ADR offset with VDD_HV_ADR − VDD_HV_ADV respect to VDD_HV_ADV ∈ [0:25 mV] 0 0 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –2 2 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –4 4 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –6 6 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [0:25 mV] –2.5 2.5 D VDD_HV_ADV< VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –4 4 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –7 7 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –12 12 –1 2 P Differential non-linearity VDD_HV_ADV > 4 V VDD_HV_ADR > 4 V LSB (12b) LSB (12b) 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Characteristics corresponding to SARB channels apply only for slow SAR channels i.e., all SARB channels except AN16, AN17, and AN24. 3. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within the sampling window. Please refer to Figure 12 and Figure 13 for models of the internal ADC circuit, and the values to use in external RC sizing and calculating the sampling window duration. 4. IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven by the transfer of charge between internal capacitances during the conversion. 5. Current parameter values are for a single ADC. 6. Total consumption is given by the sum for all ADCs (associated to the reference pin) of their dynamic consumption and their static consumption. 7. Typical consumption is 2 µA. 8. Typical consumption is 4 µA. DocID027866 Rev 5 49/112 111 Electrical characteristics SPC572Lx 9. Extra bias current is present only when BIAS is selected. Apply only once for all ADCs. 10. Extended bench validation performed on 3 samples for each process corner. 11. This parameter is guaranteed by bench validation with a small sample of typical devices, and tested in production to ± 6 LSB. 3.12.3 S/D ADC electrical specification The SDn ADCs are Sigma Delta 16-bit analog-to-digital converters with 333 Ksps maximum output rate. Table 26. SDn ADC electrical specification(1) Value Symbol VIN C SR Parameter P ADC input signal Conditions — Unit Min Typ Max 0 — VDD_HV_ADR_ V D VIN_PK2PK(2) SR D Input range peak to peak = VINP(3) D VIN_PK2PK (4) – VINM Single ended VINM = VSS_HV_ADR VDD_HV_ADR/GAIN Single ended VINM = 0.5*VDD_HV_ADR GAIN = 1 ±0.5*VDD_HV_ADR D Single ended VINM = 0.5*VDD_HV_ADR GAIN = 2,4,8,16 ±VDD_HV_ADR/GAIN D Differential, 0 < VIN < VDD_HV_IO_MAIN ±VDD_HV_ADR/GAIN fADCD_M SR P S/D modulator Input Clock fIN SR D Input signal frequency D — 4 14.4 16 MHz SNR = 80 dB fADCD_S = 150 kHz 0.01 — 50(5) kHz SNR = 74 dB fADCD_S = 333 kHz 0.01 — 111(5) — — 333 ksps 24 — 256 — — — 256 — fADCD_S SR D Output conversion rate — CC D Oversampling ratio Internal modulator — External modulator RESOLUTION CC GAIN 50/112 SR V D S/D register resolution(6) 2’s complement notation D ADC gain Defined via ADC_SD[PGA] register. Only integer powers of 2 are valid gain values. DocID027866 Rev 5 16 1 — bit 16 — SPC572Lx Electrical characteristics Table 26. SDn ADC electrical specification(1) (continued) Value Symbol |δGAIN| VOFFSET C CC CC Parameter Conditions Unit Min Typ Max Before calibration (applies to gain setting = 1) — — 1.5 % After calibration, ΔVDD_HV_ADR < 5% ΔVDD_HV_ADV < 10% ΔTJ < 50 °C — — 5 mV After calibration, ΔVDD_HV_ADR < 5% ΔVDD_HV_ADV < 10% ΔTJ < 100 °C — — 7.5 After calibration, ΔVDD_HV_ADR < 5% ΔVDD_HV_ADV < 10% ΔTJ < 150 °C — — 10 P Input Referred Before calibration (applies to Offset Error(7),(8),(9) all gain settings – 1, 2, 4, 8, 16) — 10* (1+1/gain) 20 D — — 5 C Absolute value of the ADC gain error(7),(8) D After calibration, ΔVDD_HV_ADR < 10% ΔTJ < 50 °C After calibration, ΔVDD_HV_ADV < 10% ΔTJ < 100 °C After calibration, ΔVDD_HV_ADV < 10% ΔTJ < 150 °C DocID027866 Rev 5 mV 7.5 0.5 10 51/112 111 Electrical characteristics SPC572Lx Table 26. SDn ADC electrical specification(1) (continued) Value Symbol SNRDIFF150 SNRDIFF333 52/112 C CC CC Parameter Conditions Unit Min Typ Max P Signal to noise ratio 4.5 < VDD_HV_ADV < 5.5 in differential mode VDD_HV_ADR = VDD_HV_ADV 150 ksps output rate GAIN = 1 TJ < 150 °C 80 — — C 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 2 TJ < 150 °C 77 — — C 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 4 TJ < 150 °C 74 — — C 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 8 TJ < 150 °C 71 — — D 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 16 TJ < 150 °C 68 — — P Signal to noise ratio 4.5 < VDD_HV_ADV < 5.5 in differential mode VDD_HV_ADR = VDD_HV_ADV 333 ksps output rate GAIN = 1 TJ < 150 °C 74 — — C 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 2 TJ < 150 °C 71 — — C 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 4 TJ < 150 °C 68 — — C 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 8 TJ < 150 °C 65 — — D 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 16 TJ < 150 °C 62 — — DocID027866 Rev 5 dBFS dBFS SPC572Lx Electrical characteristics Table 26. SDn ADC electrical specification(1) (continued) Value Symbol SNRSE150 C CC Parameter Conditions Unit Min Typ Max C Signal to noise ratio in single ended mode 150 ksps output rate(10) 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 1 TJ < 150 °C 74 — — P 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 1 TJ < 150 °C 68 — — T 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 2 TJ < 150 °C 71 — — 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 4 TJ < 150 °C 68 — — 4.5 < VDD_HV_ADV < 5.5 VDD_HV_ADR = VDD_HV_ADV GAIN = 8 TJ < 150 °C 65 — — 4.5 < VDD_HV_ADV < 5.5 62 — — D dBFS VDD_HV_ADR=VDD_HV_ADV GAIN = 16 TJ < 150 °C SFDR ZDIFF(11) ZCM(11) CC CC CC P Spurious free dynamic range C GAIN = 1 60 — — GAIN = 2 60 — — C GAIN = 4 60 — — C GAIN = 8 60 — — D GAIN = 16 60 — — D Differential input impedance GAIN = 1 1000 1250 1500 GAIN = 2 600 800 1000 GAIN = 4 300 400 500 GAIN = 8 200 250 300 GAIN = 16 200 250 300 GAIN = 1 1400 1800 2200 GAIN = 2 1000 1300 1600 GAIN = 4 700 950 1150 GAIN = 8 500 650 800 GAIN = 16 500 650 800 D Common mode input impedance DocID027866 Rev 5 dBc kΩ kΩ 53/112 111 Electrical characteristics SPC572Lx Table 26. SDn ADC electrical specification(1) (continued) Value Symbol C Parameter Conditions Unit Min Typ Max ΔVINTCM CC D Common mode input reference voltage — -12% — +12% RBIAS CC D Bare bias resistance — 110 144 180 kΩ VBIAS CC D Bias voltage — — VDD_HV_ ADR/2 — V δVBIAS CC D Bias voltage accuracy — –2.5 — +2.5 % CMRR SR D Common mode rejection ratio — 54 — — dB RCaaf SR D Anti-aliasing filter External series resistance — — 20 kΩ CC D Filter capacitances 180 — — pF 0.01 — 0.333 * fADCD_S kHz (12) fPASSBAND CC D Pass band δRIPPLE CC D Pass band ripple(13) 0.333 * fADCD_S –1 — 1 % Frolloff CC D Stop band attenuation [0.5 * fADCD_S, 1.0 * fADCD_S] 40 — — dB [1.0 * fADCD_S, 1.5 * fADCD_S] 45 — — [1.5 * fADCD_S, 2.0 * fADCD_S] 50 — — [2.0 * fADCD_S, 2.5 * fADCD_S] 55 — — [2.5 * fADCD_S, fADCD_M/2] 60 — — 54/112 — DocID027866 Rev 5 SPC572Lx Electrical characteristics Table 26. SDn ADC electrical specification(1) (continued) Value Symbol δGROUP C CC Parameter D Group delay Conditions Unit Min Typ Max Within pass band – Tclk is fADCD_M / 2 — — — — OSR = 24 — — 238.5 Tclk OSR = 28 — — 278 OSR = 32 — — 317.5 OSR = 36 — — 357 OSR = 40 — — 396.5 OSR = 44 — — 436 OSR = 48 — — 475.5 OSR = 56 — — 554.5 OSR = 64 — — 633.5 OSR = 72 — — 712.5 OSR = 75 — — 699 OSR = 80 — — 791.5 OSR = 88 — — 870.5 OSR = 96 — — 949.5 OSR = 112 — — 1107.5 OSR = 128 — — 1265.5 OSR = 144 — — 1423.5 OSR = 160 — — 1581.5 OSR = 176 — — 1739.5 OSR = 192 — — 1897.5 OSR = 224 — — 2213.5 OSR = 256 — — 2529.5 –0.5/ fADCD — +0.5/ fADCD_S — — 10e-5* fADCD_S — — — — 100 µs HPF = ON — — δGROUP + fADCD_S — HPF = OFF — — δGROUP — Distortion within pass band _S fHIGH CC D High pass filter 3dB Enabled frequency tSTARTUP CC D Start-up time from power down state tLATENCY CC D Latency between input data and converted data when input mux does not change — DocID027866 Rev 5 55/112 111 Electrical characteristics SPC572Lx Table 26. SDn ADC electrical specification(1) (continued) Value Symbol tSETTLING C CC tODRECOVERY CC Parameter D Settling time after mux change Conditions Unit Min Typ Max Analog inputs are muxed HPF = ON — — 2*δGROUP + 3*fADCD_S — HPF = OFF — — 2*δGROUP + 2*fADCD_S — — — 2*δGROUP + fADCD_S — — — 2*δGROUP — — — 75*GAIN fF — — 600 fF — — 3.5 mA D Overdrive recovery After input comes within time range from saturation HPF = ON HPF = OFF CS_D CC D S/D ADC sampling GAIN = 1, 2, 4, 8 capacitance after D GAIN = 16 sampling switch(14) IBIAS CC D Bias consumption IADV_D CC P VDD_HV_ADV power S/D ADC Dynamic supply current consumption (single S/D ADC) — — 3.5 mA T — — 3.5 µA — — +8 IADCS/D_REFH CC T At least 1 ADCD enabled S/D ADC Reference Dynamic consumption High Current (Conversion) Static consumption (Power down) 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the signal will only be ‘clipped’. 3. VINP is the input voltage applied to the positive terminal of the SDADC. 4. VINM is the input voltage applied to the negative terminal of the SDADC. 5. Maximum input of 166.67 kHz supported with reduced accuracy. See SNR specifications. 6. When using a GAIN setting of 16, the conversion result will always have a value of zero in the least significant bit. This gives an effective resolution of 15 bits. 7. Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device. 8. Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5*VDD_HV_ADR for differential mode and single ended mode with negative input=0.5*VDD_HV_ADR. Offset Calibration should be done with respect to 0 for "single ended mode with negative input=0". Both offset and Gain Calibration is guaranteed for ±5% variation of VDD_HV_ADR, ±10% variation of VDD_HV_ADV, and ± 50 °C temperature variation. 9. Conversion offset error must be divided by the applied gain factor (1, 2, 4, 8, or 16) to obtain the actual input referred offset error. 10. This parameter is guaranteed by bench validation with a small sample of typical devices, and tested in production to a value of 6 dB less. 11. Impedance given at fADCD_M = 16 MHz. Impedance is inversely proportional to frequency: ZDIFF(fADCD_M) = 16 MHz/fADCD_M * ZDIFF ZCM(fADCD_M) = 16 MHz/fADCD_M * ZCM 12. SNR values guaranteed only if external noise on the ADC input pin is attenuated by the required SNR value in the frequency range of fADCD_M – fADCD_S to fADCD_M + fADCD_S, where fADCD_M is the input sampling frequency, and fADCD_S is the output sample frequency. A proper external input filter should be used to remove any interfering signals in this frequency range. 13. The ±1% passband ripple specification is equivalent to 20 * log10 (0.99) = 0.087 dB. 56/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics 14. This capacitance does not include pin capacitance, that can be considered together with external capacitance, before sampling switch. 3.13 Temperature sensor The following table describes the temperature sensor electrical characteristics. Table 27. Temperature sensor electrical characteristics Value Symbol C Parameter Conditions Unit Min Typ Max — CC — Temperature monitoring range — –40 — 150 °C TSENS CC P Sensitivity — — 5.18 — mV/°C TACC CC P Accuracy TJ < 150 °C –3 — 3 °C ITEMP_SENS CC C VDD_HV_ADV power supply current — — — 700 µA 3.14 LVDS Fast Asynchronous Serial Transmission (LFAST) pad electrical characteristics The LFAST pad electrical characteristics apply to both the SIPI and high-speed debug serial interfaces on the device. The same LVDS pad is used for the Microsecond Channel (MSC) and DSPI LVDS interfaces, with different characteristics given in the following tables. DocID027866 Rev 5 57/112 111 Electrical characteristics 3.14.1 SPC572Lx LFAST interface timing diagrams Figure 14. LFAST and MSC/DSPI LVDS timing definition Signal excursions above this level NOT allowed Max. common mode input at RX 1743 mV 1600 mV |ΔVOD| Max Differential Voltage = 285 mV p-p (LFAST) 400 mV p-p (MSC/DSPI) Minimum Data Bit Time Opening = 0.55 * T (LFAST) 0.50 * T (MSC/DSPI) “No-Go” Area VOS = 1.2 V +/- 10% TX common mode |ΔVOD| Min Differential Voltage = 100 mV p-p (LFAST) 150 mV p-p (MSC/DSPI) VICOM |ΔPEREYE |ΔPEREYE Data Bit Period T = 1 /FDATA Min. common mode input at RX Signal excursions below this level NOT allowed 58/112 DocID027866 Rev 5 150 mV 0V SPC572Lx Electrical characteristics Figure 15. Power-down exit time H lfast_pwr_down L tPD2NM_TX Differential TX Data Lines pad_p/pad_n Data Valid Figure 16. Rise/fall time VIH Differential TX Data Lines 90% 10% pad_p/pad_n VIL tTR tTR 3.14.2 LFAST and MSC/DSPI LVDS interface electrical characteristics The following table contains the electrical characteristics for the LFAST interface. Table 28. LVDS pad startup and receiver electrical characteristics(1)(2) Value Symbol C Parameter Conditions Unit Min Typ Max STARTUP(3),(4) tSTRT_BIAS CC T Bias current reference startup time(5) — — 0.5 4 µs tPD2NM_TX CC T Transmitter startup time (power down to normal mode)(6) — — 0.4 2.75 µs DocID027866 Rev 5 59/112 111 Electrical characteristics SPC572Lx Table 28. LVDS pad startup and receiver electrical characteristics(1)(2) (continued) Value Symbol C Parameter Conditions Unit Min Typ Max Not applicable to the MSC/DSPI LVDS pad — 0.2 0.5 µs — — 20 40 ns tSM2NM_TX CC T Transmitter startup time (sleep mode to normal mode)(7) tPD2NM_RX CC T Receiver startup time (power down to normal mode)(8) tPD2SM_RX CC T Receiver startup time (power down Not applicable to the to sleep mode)(9) MSC/DSPI LVDS pad — 20 50 ns ILVDS_BIAS CC T LVDS bias current consumption — — 0.95 mA 47.5 50 52.5 Ω Tx or Rx enabled TRANSMISSION LINE CHARACTERISTICS (PCB Track) Z0 SR D Transmission line characteristic impedance — ZDIFF SR D Transmission line differential impedance — 95 — 0.15(10) — 1.6(11) V — 100 — — mV — 25 — — mV VDD_HV_IO = 5.0 V ± 10% 80 125 150 Ω VDD_HV_IO = 3.3 V ± 10% 80 115 150 Ω — 3.5 6.0 pF — — 0.5 mA 100 Ω 105 RECEIVER VICOM SR T Common mode voltage voltage(12) |ΔVI| SR P Differential input VHYS CC C Input hysteresis RIN CC D Terminating resistance D CIN CC D Differential input capacitance(13) ILVDS_RX CC T Receiver DC current consumption Enabled — 1. The LVDS pad startup and receiver electrical characteristics in this table apply to the LFAST LVDS pad, and the MSC/DSPI LVDS pad except where noted in the conditions. 2. All LVDS pad electrical characteristics are valid from –40 °C to 150 °C. 3. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS control registers (LCR) of the LFAST and module. The value of the LCR bits for the LFAST/HSD modules don’t take effect until the corresponding SIUL2 MSCR ODC bits are set to LFAST LVDS mode. Startup times for MSC/DSPI LVDS are defined after 2 peripheral bridge clock delay after selecting MSC/DSPI LVDS in the corresponding SIUL2 MSCR ODC field. 4. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter electrical characteristic tables. 5. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being enabled. 6. Total transmitter startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_TX + 2 peripheral bridge clock periods. 7. Total transmitter startup time from sleep mode to normal mode is tSM2NM_TX + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode. 8. Total receiver startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_RX + 2 peripheral bridge clock periods. 9. Total receiver startup time from power down to sleep mode is tPD2SM_RX + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode. 10. Absolute min = 0.15 V – (285 mV/2) = 0 V 11. Absolute max = 1.6 V + (285 mV/2) = 1.743 V 60/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics 12. The LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to ensure proper LFAST receive timing. 13. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. Table 29. LFAST transmitter electrical characteristics(1)(2) Value Symbol C Parameter Conditions Unit Min Typ Max fDATA SR D Data rate — — — 320 Mbps VOS CC P Common mode voltage — 1.08 — 1.32 V |VOD| CC P Differential output voltage swing (terminated)(3)(4) — 110 171 285 mV tTR CC T Rise/Fall time (absolute value of the differential output voltage swing)(3),(4) — 0.26 — 1.5 ns CL SR D External lumped differential load capacitance(3) VDD_HV_IO = 4.5 V — — 9.0 pF VDD_HV_IO = 3.0 V — — 8.5 — — 3.2 ILVDS_TX CC T Transmitter DC current consumption Enabled mA 1. The LFAST pad electrical characteristics are based on worst case internal capacitance values shown in Figure 17. 2. All LFAST LVDS pad electrical characteristics are valid from –40 °C to 150 °C. 3. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 17. 4. Valid for maximum external load CL. Table 30. MSC/DSPI LVDS transmitter electrical characteristics (1)(2) Value Symbol C Parameter Conditions Unit Min Typ Max Data Rate fDATA SR D Data rate — — — 80 Mbps VOS CC P Common mode voltage — 1.08 — 1.32 V |VOD| CC P Differential output voltage swing (terminated)(3)(4) — 150 214 400 mV tTR CC T Rise/Fall time (absolute value of the differential output voltage swing)(3),(4) — 0.8 — 4.0 ns CL SR D External lumped differential load capacitance(3) VDD_HV_IO = 4.5 V — — 41 pF VDD_HV_IO = 3.0 V — — 39 — — 4.0 ILVDS_TX CC T Transmitter DC current consumption Enabled mA 1. The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst case internal capacitance values given in Figure 17. 2. All MSC and DSPI LVDS pad electrical characteristics are valid from –40 °C to 150 °C. 3. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 17. 4. Valid for maximum external load CL. DocID027866 Rev 5 61/112 111 Electrical characteristics SPC572Lx Figure 17. LVDS pad external load diagram bond pad GPIO Driver CL 1pF 2.5pF 100Ω terminator LVDS Driver bond pad GPIO Driver CL 1pF 2.5pF Die 3.15 Package PCB Power management: PMC, POR/LVD, sequencing The power management module monitors the different power supplies. It also generates the internal supplies that are required for correct device functionality. The power management is supplied by the VDD_HV_PMC supply, with voltage monitors ensuring safe state operation. 62/112 DocID027866 Rev 5 SPC572Lx 3.15.1 Electrical characteristics Power management integration Refer to the integration scheme provided below to ensure correct functionality of the device. Figure 18. Voltage regulator capacitance connection CDECHV (regulator supply decoupling) CDECBV (regulator supply decoupling) VDD_HV_PMC VDD_LV Voltage Regulator I VSS DEVICE CDECREG1 (LV_COR/LV_FLA) VREF VDD_LVn VSS VDD_LV VSS DEVICE VSS VSS VDD_LV VSS VDD_LV CDECREG4 (LV_COR) VDD_HV_PMC VSS CDECREG3 (LV_COR\LV_PLL) VDD_HV_IO VDD_HV_IO_MAIN CDECREG2 (LV_COR) CREG (LV_COR) The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH. A decoupling capacitor must be placed between each VDD_LV supply pin and VSS ground plane to ensure stable voltage. The capacitor should be placed as near as possible to the VDD_LV supply pin. 3.15.2 Main voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage ballast supply VDD_BV_PMC. The regulator itself is supplied by VDD_HV_PMC. Note: Both HV supplies, VDD_HV_PMC and VDD_BV_PMC, are shorted with VDD_HV_IO supply at package level. DocID027866 Rev 5 63/112 111 Electrical characteristics SPC572Lx The following supplies are involved: • HV—High voltage external power supply for voltage regulator module. It is shorted with VDD_HV_IO. • BV—High voltage external power supply for internal ballast module. It is shorted with VDD_HV_IO. • LV—Low voltage internal power supply for core, PLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is split into three further domains to ensure noise isolation between critical LV modules within the device: – LV_COR—Low voltage supply for the core. It is also used to provide supply for PLL through double bonding. – LV_FLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. – LV_PLL—Low voltage supply for PLL. It is shorted to LV_COR through double bonding. Table 31. Voltage regulator electrical characteristics Symbol Value(2) Conditions(1) Parameter Unit Min Typ Max — 1.1 2.2(3) 2.97 µF CREG SR Internal voltage regulator stability external capacitance RREG SR Stability capacitor equivalent serial resistance Total resistance including board track 1 — 50 mΩ CDECREGn SR Internal voltage regulator decoupling external capacitance — 50 100 135 nF RDECREGn SR Stability capacitor equivalent serial resistance — 1 — 50 mΩ CDECBV SR Decoupling capacitance(4) ballast VDD_HV_IO_MAIN/VSS pair — 4(3) — µF CDECHV SR Decoupling capacitance regulator supply VDD_HV_IO_MAIN/VSS pair 10 100 — nF CDECFLA SR Decoupling capacitance for flash supply D VDD_HV_FLA/VSS pair 65 100 — nF CC Main regulator output voltage Before trimming 1.19 1.26 1.33(5) V 1.16 1.28 1.32(6) — — — 125 mA 20 µs observation window –60 — 60 mA — — 1.5 3.0 mA VMREG CC IDDMREG ΔIDDMREG IMREGINT(7) After trimming SR Main regulator current provided to VDD_LV domain SR Main regulator current variation D Main regulator current consumption 1. VDD = 5.0 V ± 10%, TA = –40 / 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. Recommended X7R or X5R ceramic –50% / +35% variation across process, temperature, voltage and after aging. 4. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical value is in the range of 470 nF. 5. At power-up condition before trimming at 27 °C, no load. 64/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics 6. Across the whole process, voltage and temperature range with full load. 7. By simulation. 3.15.3 Device voltage monitoring Voltage monitoring thresholds are shown in the following figure. Figure 19. Voltage monitor threshold definition VDD_xxx VLVD_290 tVDRELEASE tVDASSERT LVD TRIGGER (INTERNAL) The LVDs for the device and their levels are given in the following table. Table 32. Voltage monitor electrical characteristics(1) Value(2) Symbol VLVD270_C VLVD290_C/IJ/F/IF VLVD400_A/IM VLVD108 C Parameter Conditions Unit Min Typ Max CC P HV supply low voltage monitoring Pre-trimming 2610 2760 2910 mV Trimmed(3) 2710 2760 2800 mV CC P HV supply low voltage monitoring Pre-trimming 2660 2820 2980 mV Trimmed(3) 2890 2940 2990 mV CC P HV supply low voltage monitoring Untrimmed(3) 3990 4230 4470 mV Trimmed(3) 4150 4230 4310 mV — 1080 — 1170 mV CC P Core LV internal supply low voltage monitoring DocID027866 Rev 5 65/112 111 Electrical characteristics SPC572Lx Table 32. Voltage monitor electrical characteristics(1) (continued) Value(2) Symbol C Parameter Conditions Unit Min Typ Max tVDASSERT CC D Voltage detector threshold crossing assertion — 0.1 — 2 µs tVDRELEASE CC D Voltage detector threshold crossing de-assertion — 5 — 20 µs 1. For VDD_LV levels, a maximum of 30 mV IR drop is incurred from the pin to all sinks on the die. For other LVD, the IR drop is estimated by the multiplying the supply current by 0.5 Ω. 2. The threshold for all PORs and LVDs are defined when the output transits to 1, i.e., when the sense goes above the reference. 3. Across process, temperature and voltage range. 3.15.4 Power up/down sequencing The following table shows the constraints and relationships for the different power supplies. Table 33. Device supply relation during power-up/power-down sequence Supply 2(1) VDD_LV VDD_HV_IO VDD_HV_ADV VDD_HV_ADR ALTREF(2) Supply 1(1) VDD_LV VDD_HV_IO VDD_HV_ADV 5 mA VDD_HV_ADR 10 mA(3) ALTREF 10 mA(3) 1. Grey cells: Supply 1 (row) can exceed Supply 2 (column), granted that external circuitry ensures current flowing from supply1 is less than absolute maximum rating current value provided. 2. ALTREF are the alternate references for the ADC that can be used in place of the default reference (VDD_HV_ADR_*). It is the SARB.ALTREF. 3. ADC performance is not guaranteed with ALTREFn above VDD_HV_IO/VDD_HV_ADV. During power-up, all functional terminals are maintained into a known state as described in the following table. Table 34. Functional terminals state during power-up and reset POWER-UP(2) RESET Default pad state pad state pad state(3) PORST Strong pulldown(4) Weak pull-down Weak pull-down Power-on reset pad ESR0(5) Strong pull-down Strong pull-down Weak pull-up Functional reset pad TERMINAL(1) 66/112 DocID027866 Rev 5 Comments SPC572Lx Electrical characteristics Table 34. Functional terminals state during power-up and reset (continued) TERMINAL(1) ESR1 TEST_MODE GPIO POWER-UP(2) RESET Default pad state pad state pad state(3) High impedance Weak pull-down (6) Comments Weak pull-down Weak pull-down — (6) Weak pull-down Weak pull-down pull-up(4) Weak pull-up Weak pull-up — Weak — ANALOG High impedance High impedance High impedance — ERROR High impedance High impedance High impedance — TRST High impedance Weak pull-down Weak pull-down — TCK High impedance Weak pull-down Weak pull-down — TMS High impedance Weak pull-up Weak pull-up — TDI High impedance Weak pull-up Weak pull-up — TDO High impedance High impedance High impedance — 1. Refer to pinout information for terminal type. 2. POWER-UP state is guaranteed from VDD_HV_IO > 1.1 V and maintained until supply crosses the power-on reset threshold: VPORUP_LV for LV supply, VPORUP_HV for high voltage supply. 3. Before software configuration. 4. Pull-down and pull-up strength are provided as part of Section 3.8.2, I/O output DC characteristics. 5. As opposed to ESR0, ESR1 is provided via normal GPIO and implements weak pull-up during power-up. 6. TESTMODE pull-down is implemented to prevent device to enter TESTMODE. It is recommended to connect TESTMODE pin to VSS_HV_IO on the board. 3.16 Flash memory electrical characteristics The flash array access time for reads is affected by the number of wait-states added to the minimum time, which is one cycle. Wait states are set in the RWSC field of the Platform Flash Configuration Register 1 (PFCR1) to a value corresponding to the operating frequency of the flash memory controller and the actual read access time of the flash memory controller. Higher operating frequencies require non-zero settings for this field for proper flash operation. Shown below are the maximum operating frequencies (fsys) for legal RWSC settings based on specified access times at 150 °C: Table 35. RWSC settings Flash operating frequency range (MHz) RWSC 00 MHz < fsys < 20 MHz 0 20 MHz < fsys < 40 MHz 1 40 MHz < fsys < 60 MHz 2 60 MHz < fsys < 80 MHz 3 Table 36 shows the estimated Program/Erase characteristics. DocID027866 Rev 5 67/112 111 Electrical characteristics SPC572Lx Table 36. Flash memory program and erase specifications (pending silicon characterization) (1) Value Characteristics(2) Symbol Lifetime Initial max Typ(3) C All 25 °C(6) temp (7) C Typical end of life(4) max(5) Unit C < 1 K < 100 K cycles cycles tdwprogram Double Word (64 bits) program time [Packaged part] 38 C 150 — — 94 500 C µs tpprogram Page (256 bits) program time 78 C 300 — — 214 1000 C µs tpprogrameep Page (256 bits) program time EEPROM (partition 2) [Packaged part] 90 C 330 — — 250 1000 C µs Quad Page (1024 bits) program time 274 C 1000 1500 — 802 2000 C µs tqprogrameep Quad Page (1024 bits) program time EEPROM (partition 2) [Packaged part] 315 C 1100 1650 P 925 2000 C µs t256kpperase 256 KB block pre-program and erase time 1800 C 2400 3400 P 1980 15000 — C ms t256kprogram 256 KB block program time 584 C 760 1140 P 650 17000 — C ms 37 C 48 72 P 69 1000 C ms 350 C 1200 1200 P 600 5000 C ms 2.34 C 3.04 4.56 C 2.60 — C s/MB 7.2 C 14.4 28.8 C 7.92 — C s/MB 4 C 16 24 P 5 26 — C s 12 C 24 30 P 15 40 — C s 5.5 T — — — — — T ms tqprogram t16kprogrameep Program 16 KB EEPROM (partition 1) t16keraseeep Erase 16 KB EEPROM (partition 1) ttr tpr tffprogram tfferase Program rate(8) Erase rate(8) Full flash programming Full flash erasing time(9) time(9) rate(10) tESRT Erase suspend request tPSRT Program suspend request rate(10) 20 T — — — — — T µs tPSUS Program suspend latency(11) — — — — — — 15 T µs 30 T µs (11) tESUS Erase suspend latency — — — — — — tAIC0S Array Integrity Check Partition 0 (1.5 MB, sequential)(12) 20 T — — — — — — — ms tAIC0P Array Integrity Check Partition 0 (1.5 MB, proprietary)(12) 3.35 T — — — — — — — s tMR0S Margin Read Partition 0 (1.5 MB, sequential) 100 T — — — — — — — ms tMR0P Margin Read Partition 0 (1.5 MB, proprietary) 16.7 T — — — — — — — s 1. Characteristics are valid both for DATA Flash and CODE Flash, unless specified in the characteristics column. 68/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics 2. Actual hardware programming times; this does not include software overhead. 3. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 4. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations. These values are characteristic, but not tested. 5. Lifetime maximum program & erase times apply across the voltages and temperatures and occur after the specified number of program/erase cycles. These maximum values are characterized but not tested or guaranteed. 6. Initial factory condition: < 100 program/erase cycles, 20 °C < TJ < 30 °C junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing. 7. Initial maximum “All temp” program and erase times provide guidance for time-out limits used in the factory and apply for less than or equal to 100 program or erase cycles, –40 °C < TJ < 150 °C junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing. 8. Rate computed based on 256K sectors. 9. Only code sectors, not including EEPROM. 10. Time between erase suspend resume and next erase suspend. 11. Timings guaranteed by design. 12. AIC is done using system clock, thus all timing is dependant on system frequency and number of wait states. Timing in the table is calculated at 160 MHz. Table 37. Flash memory module extended life specification(1) Value Symbol C Parameter Conditions Unit Min Typ Max P/E16 CC C Number of program/erase cycles per block for 16 KB EEPROM emulation (2) — 100,000 — — P/E cycles P/E256 CC C Number of program/erase cycles per block for 256 KB blocks(2) — 1000 100,000 — P/E cycles 20 — — years 10 — — Data retention CC C Minimum data retention Blocks with 0 – 10000 P/E cycles Blocks with 10001– 250000 P/E cycles. Data Retention limited to 2, in total, 16 KB sectors within module 1 1. All stated module life data are preliminary targets, and subject to change pending silicon characterization. 2. Program and Erase supported for standard operating temperature range. DocID027866 Rev 5 69/112 111 Electrical characteristics SPC572Lx 3.17 AC specifications 3.17.1 Debug and calibration interface timing 3.17.1.1 JTAG interface timing Table 38. JTAG pin AC electrical characteristics (1)(2) Value # Symbol C Characteristic Unit Min Max 1 tJCYC CC D TCK cycle time 100 — ns 2 tJDC CC T TCK clock pulse width 40 60 % 3 tTCKRISE CC D TCK rise and fall times (40%–70%) — 3 ns 4 tTMSS, tTDIS CC D TMS, TDI data setup time 5 — ns 5 tTMSH, tTDIH CC D TMS, TDI data hold time 5 — ns ns 6 tTDOV CC D TCK low to TDO data valid — 16(3) 7 tTDOI CC D TCK low to TDO data invalid 0 — ns 8 tTDOHZ CC D TCK low to TDO high impedance — 15 ns 9 tJCMPPW CC D JCOMP assertion time 100 — ns 10 tJCMPS CC D JCOMP setup time to TCK low 40 — ns 11 tBSDV CC D TCK falling edge to output valid — 600(4) ns 12 tBSDVZ CC D TCK falling edge to output valid out of high impedance — 600 ns 13 tBSDHZ CC D TCK falling edge to output high impedance — 600 ns 14 tBSDST CC D Boundary scan input valid to TCK rising edge 15 — ns 15 tBSDHT CC D TCK rising edge to boundary scan input invalid 15 — ns 1. These specifications apply to JTAG boundary scan only. See Table 39 for functional specifications. 2. JTAG timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and maximum loading per pad type as specified in the I/O section of the datasheet. 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay. 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay. 70/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics Figure 20. JTAG test clock input timing TCK 2 3 2 1 3 Figure 21. JTAG test access port timing TCK 4 5 TMS, TDI 6 8 7 TDO DocID027866 Rev 5 71/112 111 Electrical characteristics SPC572Lx Figure 22. JTAG JCOMP timing TCK 10 JCOMP 9 72/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics Figure 23. JTAG boundary scan timing TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals 3.17.1.2 Nexus interface timing Table 39. Nexus debug port timing(1) Value # Symbol C Characteristic 7 tEVTIPW CC D EVTI pulse width 8 tEVTOPW CC D EVTO pulse width Unit Min Max 4 — tCYC(2) 40 — ns 2(3),(4) — tCYC(2) ns 9 tTCYC CC D TCK cycle time 9 tTCYC CC D Absolute minimum TCK cycle time(5) (TDO/TDOC sampled on posedge of TCK) 40(6) — Absolute minimum TCK cycle time(7) (TDO/TDOC sampled on negedge of TCK) 20(6) — 5 — 11(8) tNTDIS CC D TDI/TDIC data setup time DocID027866 Rev 5 ns 73/112 111 Electrical characteristics SPC572Lx Table 39. Nexus debug port timing(1) (continued) Value # Symbol C Characteristic Unit Min Max 12 tNTDIH CC D TDI/TDIC data hold time 5 — ns 13(9) tNTMSS CC D TMS/TMSC data setup time 5 — ns 14 tNTMSH CC D TMS/TMSC data hold time 5 — ns 15 (10) 16 (11) — CC D TDO/TDOC propagation delay from falling edge of TCK — 16 ns — CC D TDO/TDOC hold time with respect to TCK falling edge (minimum TDO/TDOC propagation delay) 2.25 — ns 1. Nexus timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and maximum loading per pad type as specified in the I/O section of the datasheet. 2. tCYC is system clock period. 3. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral frequency being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided by a number greater than or equal to that specified here. 4. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the Absolute minimum TCK period specification. 5. This value is TDO/TDOC propagation time 36 ns + 4 ns setup time to sampling edge. 6. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. 7. This value is TDO/TDOC propagation time 16 ns + 4 ns setup time to sampling edge. 8. TDIC represents the TDI bit frame of the scan packet in compact JTAG 2-wire mode. 9. TMSC represents the TMS bit frame of the scan packet in compact JTAG 2-wire mode. 10. TDOC represents the TDO bit frame of the scan packet in compact JTAG 2-wire mode. 11. Timing includes TCK pad delay, clock tree delay, logic delay and TDO/TDOC output pad delay. Figure 24. Nexus event trigger and test clock timings TCK EVTI EVTO 74/112 9 DocID027866 Rev 5 SPC572Lx Electrical characteristics Figure 25. Nexus TDI/TDIC, TMS/TMSC, TDO/TDOC timing TCK 11 13 12 14 TMS/TMSC, TDI/TDIC 15 16 TDO/TDOC 3.17.2 DSPI timing with CMOS and LVDS(a) pads DSPI channel frequency support is shown in Table 40. Timing specifications are shown in Table 41, Table 42 and Table 43. Table 40. DSPI channel frequency support DSPI use mode CMOS (Master mode) LVDS (Master mode) Max usable frequency (MHz)(1),(2) Full duplex – Classic timing (Table 41) 17 Full duplex – Modified timing (Table 42) 30 Output only mode (SCK/SOUT/PCS) (Table 41 and Table 42) 30 Output only mode TSB mode (SCK/SOUT/PCS) (Table 44) 30 Output only mode TSB mode (SCK/SOUT/PCS) (Table 43) 40 1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads. a. DSPI in TSB mode with LVDS pads can be used to implement Micro Second Channel bus protocol. DocID027866 Rev 5 75/112 111 Electrical characteristics SPC572Lx 2. Maximum usable frequency does not take into account external device propagation delay. 3.17.2.1 DSPI master mode full duplex timing with CMOS and LVDS pads 3.17.2.1.1 DSPI CMOS Master Mode – Classic Timing Table 41. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1(1) Value(2) Condition # 1 2 Symbol tSCK tCSC CC CC C Characteristic D SCK cycle time Unit Pad drive(3) Load (CL) 4 tASC tSDC CC CC Max SCK drive strength Very strong 25 pF 33.0 — Strong 50 pF 80.0 — Medium 50 pF 200.0 — ns D PCS to SCK delay SCK and PCS drive strength Very strong 25 pF (N(4) × tSYS(5)) – 16 — Strong 50 pF (N(4) × tSYS(5)) – 16 — Medium 50 pF (N(4) × tSYS(5)) – 26 — (N(4) × tSYS(5)) – 38 — PCS medium PCS = 50 pF and SCK strong SCK = 50 pF 3 Min D After SCK delay D SCK duty cycle(7) ns SCK and PCS drive strength Very strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Medium PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — PCS medium PCS = 0 pF and SCK strong SCK = 50 pF (M(6) × tSYS(5)) – 35 — ns SCK drive strength Very strong Strong Medium 0 pF 1/ t 2 SCK 0 pF 1/ t 2 SCK 0 pF 1/ t 2 SCK –2 1/ 2tSCK +2 –2 1/ 2tSCK +2 –5 1/ 2tSCK +5 ns PCS strobe timing 5 6 tPCSC tPASC 76/112 CC CC D PCSx to PCSS time(8) PCS and PCSS drive strength D PCSS to PCSx time(8) PCS and PCSS drive strength Strong Strong 25 pF 25 pF DocID027866 Rev 5 12.0 — ns 12.0 — ns SPC572Lx Electrical characteristics Table 41. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1(1) (continued) Value(2) Condition # Symbol C Characteristic Unit Pad drive(3) Load (CL) Min Max SIN setup time 7 tSUI CC D SIN setup time to SCK(9) SCK drive strength Very strong 25 pF 25.0 — Strong 50 pF 31.0 — Medium 50 pF 52.0 — –1.0 — ns SIN hold time 8 tHI CC D SIN hold time from SCK drive strength SCK(9) Very strong 0 pF Strong 0 pF –1.0 — Medium 0 pF –1.0 — D SOUT data valid SOUT and SCK drive strength time from SCK(10) Very strong 25 pF — 7.0 Strong 50 pF — 9.0 Medium 50 pF — 25.0 D SOUT data hold SOUT and SCK drive strength time after SCK(10) Very strong 25 pF –7.7 — Strong 50 pF –11.0 — Medium 50 pF –15.0 — ns SOUT data valid time (after SCK edge) 9 tSUO CC ns SOUT data hold time (after SCK edge) 10 tHO CC ns 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 2. All timing values for output signals in this table are measured to 50% of the output voltage. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 5. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 80 MHz (min tSYS = 10 ns). 6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 8. PCSx and PCSS using same pad configuration. 9. Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds. 10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. DocID027866 Rev 5 77/112 111 Electrical characteristics SPC572Lx Figure 26. DSPI CMOS master mode – classic timing, CPHA = 0 tCSC tASC PCSx tSCK tSDC SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSDC tSUI tHI First Data SIN Data Last Data tSUO SOUT tHO Data First Data Last Data Figure 27. DSPI CMOS master mode – classic timing, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSUI SIN tHI First Data Data tSUO SOUT 78/112 First Data Data DocID027866 Rev 5 Last Data tHO Last Data SPC572Lx Electrical characteristics Figure 28. DSPI PCS strobe (PCSS) timing (master mode) tPCSC tPASC PCSS PCSx 3.17.2.1.2 DSPI CMOS Master Mode – Modified Timing Table 42. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1(1) Value(2) Condition # 1 2 Symbol tSCK tCSC CC CC C D D Characteristic SCK cycle time Pad drive(3) 4 tASC tSDC CC CC D D Min Max SCK drive strength Very strong 25 pF 33.0 — Strong 50 pF 80.0 — Medium 50 pF 200.0 — ns PCS to SCK delay SCK and PCS drive strength Very strong 25 pF (N(4) × tSYS(5)) – 16 — Strong 50 pF (N(4) × tSYS(5)) – 16 — Medium 50 pF (N(4) × tSYS(5)) – 26 — PCS = 50 pF SCK = 50 pF (N(4) — PCS medium and SCK strong 3 Unit Load (CL) After SCK delay SCK duty cycle(7) × tSYS(5)) – 38 ns SCK and PCS drive strength Very strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Medium PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — PCS medium and SCK strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — ns SCK drive strength 0 pF 1/ t 2 SCK Strong Medium Very strong –2 1/ t 2 SCK +2 0 pF 1/ t 2 SCK –2 1/ t 2 SCK +2 0 pF 1/ t 2 SCK –5 1/ t 2 SCK +5 ns PCS strobe timing DocID027866 Rev 5 79/112 111 Electrical characteristics SPC572Lx Table 42. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1(1) (continued) Value(2) Condition # 5 6 Symbol tPCSC tPASC CC CC C D D Characteristic Pad drive(3) Unit Load (CL) PCSx to PCSS time(8) PCS and PCSS drive strength PCSS to PCSx time(8) PCS and PCSS drive strength Strong Strong 25 pF 25 pF Min Max 12.0 — ns 12.0 — ns ns SIN setup time 7 tSUI CC D SIN setup time to SCK CPHA = 0(9) SIN setup time to SCK CPHA = 1(9) SCK drive strength Very strong 25 pF 25 – (P(10) × tSYS(5)) — Strong 50 pF 31 – (P(10) × tSYS(5)) — Medium 50 pF 52 – (P(10) × tSYS(5)) — SCK drive strength Very strong 25 pF 25.0 — Strong 50 pF 31.0 — Medium 50 pF 52.0 — – 1 + (P(9) × tSYS(4)) — ns SIN hold time 8 tHI CC D SIN hold time from SCK drive strength SCK Very strong 0 pF CPHA = 09 Strong 0 pF – 1 + (P(9) × tSYS(4)) — Medium 0 pF – 1 + (P(9) × tSYS(4)) — –1.0 — –1.0 — –1.0 — SIN hold time from SCK drive strength SCK Very strong 0 pF CPHA = 19 Strong 0 pF Medium 0 pF SOUT data valid time (after SCK edge) 80/112 DocID027866 Rev 5 ns ns SPC572Lx Electrical characteristics Table 42. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1(1) (continued) Value(2) Condition # 9 Symbol tSUO CC C D Characteristic SOUT data valid time from SCK CPHA = 0(10) SOUT data valid time from SCK CPHA = 1(10) Pad drive(3) Unit Load (CL) Min Max SOUT and SCK drive strength Very strong 25 pF — 7.0 + tSYS(5) ns Strong 50 pF — 9.0 + tSYS(5) Medium 50 pF — 25.0 + tSYS( 5) SOUT and SCK drive strength Very strong 25 pF — 7.0 Strong 50 pF — 9.0 Medium 50 pF — 25.0 25 pF –7.7 + tSYS(5) — 50 pF tSYS(5) — (5) — ns SOUT data hold time (after SCK edge) 10 tHO CC D SOUT data hold time after SCK CPHA = 0(11) SOUT and SCK drive strength Very strong Strong Medium SOUT data hold time after SCK CPHA = 1(11) 50 pF –11.0 + –15.0 + tSYS ns SOUT and SCK drive strength Very strong 25 pF –7.7 — Strong 50 pF –11.0 — Medium 50 pF –15.0 — ns 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 2. All timing values for output signals in this table are measured to 50% of the output voltage. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 5. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 80 MHz (min tSYS = 10 ns). 6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 8. PCSx and PCSS using same pad configuration. 9. Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds. 10. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1. 11. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. DocID027866 Rev 5 81/112 111 Electrical characteristics SPC572Lx Figure 29. DSPI CMOS master mode – modified timing, CPHA = 0 tCSC tASC PCSx tSCK tSDC SCK Output (CPOL = 0) SCK Output (CPOL = 1) SIN tSDC tSUI tHI First Data Data Last Data tSUO SOUT tHO Data First Data Last Data Figure 30. DSPI CMOS master mode – modified timing, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSUI SIN tHI tHI Data First Data tSUO SOUT 82/112 First Data Data DocID027866 Rev 5 Last Data tHO Last Data SPC572Lx Electrical characteristics Figure 31. DSPI PCS strobe (PCSS) timing (master mode) tPCSC tPASC PCSS PCSx 3.17.2.1.3 DSPI Master Mode – Output Only Table 43. DSPI LVDS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock(1)(2) Condition # Symbol C Value Characteristic Unit Pad drive Min Max 15 pF to 50 pF differential 25.0 — ns 1 tSCK CC D SCK cycle time 2 tCSV CC D PCS valid after Very strong SCK(3) Strong (SCK with 50 pF differential load cap.) 25 pF — 6.0 ns 50 pF — 10.5 ns PCS hold after Very strong SCK(3) Strong (SCK with 50 pF differential load cap.) 0 pF –4.0 — ns 0 pF –4.0 — ns SCK duty cycle LVDS (SCK with 50 pF differential load cap.) 15 pF to 50 pF differential 3 4 tCSH tSDC CC CC D D LVDS Load 1/ 2tSCK – 2 1/2tSCK + 2 ns SOUT data valid time (after SCK edge) 5 tSUO CC D SOUT data valid time SOUT and SCK drive strength from SCK(4) LVDS 15 pF to 50 pF differential — 8.0 ns 0.0 — ns SOUT data hold time (after SCK edge) 6 tHO CC D SOUT data hold time SOUT and SCK drive strength after SCK(4) LVDS 15 pF to 50 pF differential 1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers. 2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1. 3. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays. 4. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. DocID027866 Rev 5 83/112 111 Electrical characteristics SPC572Lx Table 44. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock(1)(2) Value(3) Condition # 1 2 3 4 Symbol tSCK tCSV tCSH tSDC CC CC CC CC C D D D D Characteristic Pad drive(4) SCK cycle time PCS valid after SCK Unit Load (CL) Min Max SCK drive strength (5) PCS hold after SCK(5) SCK duty cycle(6) Very strong 25 pF 33.0 — ns Strong 50 pF 80.0 — ns Medium 50 pF 200.0 — ns SCK and PCS drive strength Very strong 25 pF 16 — ns Strong 50 pF 16 — ns Medium 50 pF 26 — ns PCS medium and SCK strong PCS = 50 pF SCK = 50 pF 38 — ns SCK and PCS drive strength Very strong PCS = 0 pF SCK = 50 pF –14 — ns Strong PCS = 0 pF SCK = 50 pF –14 — ns Medium PCS = 0 pF SCK = 50 pF –33 — ns PCS medium and SCK strong PCS = 0 pF SCK = 50 pF –35 — ns 2tSCK + 2 ns SCK drive strength Very strong 0 pF 1/ Strong 0 pF 1 /2tSCK – 2 1 /2tSCK + 2 ns Medium 0 pF 1 /2tSCK – 5 1 /2tSCK + 5 ns 2tSCK –2 1/ SOUT data valid time (after SCK edge) 9 tSUO CC D SOUT data valid time from SCK CPHA = 1(7) SOUT and SCK drive strength Very strong 25 pF — 7.0 ns Strong 50 pF — 9.0 ns Medium 50 pF — 25.0 ns SOUT data hold time (after SCK edge) 10 tHO CC D SOUT data hold time after SCK CPHA = 1(7) SOUT and SCK drive strength Very strong 25 pF –7.7 — ns Strong 50 pF –11.0 — ns Medium 50 pF –15.0 — ns 1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1. 2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 84/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics 3. All timing values for output signals in this table are measured to 50% of the output voltage. 4. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 5. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays. 6. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. Figure 32. DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1 PCSx tCSV tSCK tSDC tCSH SCK Output (CPOL = 0) tSUO First Data SOUT 3.17.2.2 tHO Last Data Data Slave Mode timing Table 45. DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1)(1) Condition # 1 Symbol tSCK CC C D Characteristic SCK Cycle Time(2) — ns — — 16 — ns — — 16 — ns — — 30 — ns Very Strong 25 pF — 50 ns Strong 50 pF — 50 ns Medium 50 pF — 60 ns 25 pF 5 22 ns 50 pF 5 28 ns 50 pF 5 54 ns — — 10 — ns — — 10 — ns SS to SCK Delay 3 tASC SR D SCK to SS Delay(2) 5 6 9 10 tA tDIS tSUI tHI CC CC CC CC D D D D SCK Duty Unit 62 D D Max — SR CC Min — tCSC tSDC Load (2) 2 4 Pad Drive Cycle(2) (2),(3),(4) Slave Access Time (SS active to SOUT driven) Slave SOUT Disable Very Strong Time(2),(3),(4) Strong (SS inactive to SOUT High-Z Medium or invalid) Data Setup Time for Inputs(2) (2) Data Hold Time for Inputs DocID027866 Rev 5 85/112 111 Electrical characteristics SPC572Lx Table 45. DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1)(1) (continued) Condition # 11 12 Symbol tSUO tHO C CC CC D D Characteristic SOUT Valid Time(2),(3),(4) (after SCK edge) (2),(3),(4) SOUT Hold Time (after SCK edge) Min Max Unit 25 pF — 30 ns Strong 50 pF — 30 ns Medium 50 pF — 55 ns Very Strong 25 pF 2.5 — ns Strong 50 pF 2.5 — ns Medium 50 pF 2.5 — ns Pad Drive Load Very Strong 1. DSPI slave operation is only supported for a single master and single slave on the device. Timing is valid for that case only. 2. Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL / Automotive voltage thresholds. 3. All timing values for output signals in this table, are measured to 50% of the output voltage. 4. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. Figure 33. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 0 tASC tCSC SS tSCK SCK Input (CPOL=0) tSDC tSDC SCK Input (CPOL=1) tSUO tA SOUT First Data Data tSUI SIN 86/112 tHO Last Data tHI First Data Data DocID027866 Rev 5 Last Data tDIS SPC572Lx Electrical characteristics Figure 34. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) tSUO tA SOUT First Data Data Last Data Data Last Data tHI tSUI First Data SIN tDIS tHO 3.17.3 FEC timing 3.17.3.1 RMII serial management channel timing (MDIO and MDC) The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 46. RMII serial management channel timing(1) Value Symbol C Characteristic Unit Min Max M10 CC D MDC falling edge to MDIO output invalid (minimum propagation delay) 0 — ns M11 CC D MDC falling edge to MDIO output valid (maximum propagation delay) — 25 ns M12 CC D MDIO (input) to MDC rising edge setup 10 — ns M13 CC D MDIO (input) to MDC rising edge hold 0 — ns M14 CC D MDC pulse width high 40% 60% MDC period M15 CC D MDC pulse width low 40% 60% MDC period 1. All timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and 2.0 V (TTL levels). For 5 V operation, timing is referenced from MDC = 50% to 2.2 V/3.5 V input and output levels. DocID027866 Rev 5 87/112 111 Electrical characteristics SPC572Lx Figure 35. RMII serial management channel timing diagram M14 M15 MDC (output) M10 MDIO (output) M11 MDIO (input) M12 3.17.3.2 M13 RMII receive signal timing (RXD[1:0], CRS_DV) The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK frequency. Table 47. RMII receive signal timing(1) Value Symbol C Characteristic Unit Min Max R1 CC D RXD[1:0], CRS_DV to REF_CLK setup 4 — ns R2 CC D REF_CLK to RXD[1:0], CRS_DV hold 2 — ns R3 CC D REF_CLK pulse width high 35% 65% REF_CLK period R4 CC D REF_CLK pulse width low 35% 65% REF_CLK period 1. All timing specifications are referenced from REF_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V. 88/112 DocID027866 Rev 5 SPC572Lx Electrical characteristics Figure 36. RMII receive signal timing diagram R3 REF_CLK (input) R4 RXD[1:0] (inputs) CRS_DV R2 R1 3.17.3.3 RMII transmit signal timing (TXD[1:0], TX_EN) The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency, which is half that of the REF_CLK frequency. The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either the rising or falling edge of REF_CLK, and the timing is the same in either case. This options allows the use of non-compliant RMII PHYs. Table 48. RMII transmit signal timing(1) Value Symbol C Characteristic Unit Min Max R5 CC D REF_CLK to TXD[1:0], TX_EN invalid 2 — ns R6 CC D REF_CLK to TXD[1:0], TX_EN valid — 16 ns R7 CC D REF_CLK pulse width high 35% 65% REF_CLK period R8 CC D REF_CLK pulse width low 35% 65% REF_CLK period 1. RMII timing is valid only up to a maximum of 150 °C junction temperature. Figure 37. RMII transmit signal timing diagram R7 REF_CLK (input) R5 R8 TXD[1:0] (outputs) TX_EN R6 DocID027866 Rev 5 89/112 111 Electrical characteristics 3.17.4 SPC572Lx UART timing UART channel frequency support is shown in the following table. Table 49. UART frequency support LINFlexD clock frequency LIN_CLK (MHz) Oversampling rate 80 16 Max usable frequency (Mbaud) Voting scheme 3:1 majority voting 5 8 10 6 Limited voting on one sample with configurable sampling point 5 13.33 16 4 100 20 16 3:1 majority voting 6.25 8 12.5 6 Limited voting on one sample with configurable sampling point 5 16.67 20 4 3.17.5 25 GPIO delay timing The GPIO delay timing specification is provided in the following table. Table 50. GPIO delay timing Value Symbol IO_delay 90/112 C CC Parameter D Delay from MSCR bit update to pad function enable DocID027866 Rev 5 Unit Min Max 5 25 ns SPC572Lx Package characteristics 4 Package characteristics 4.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID027866 Rev 5 91/112 111 Package characteristics 4.2 SPC572Lx eTQFP80 case drawing Figure 38. eTQFP80 – STMicroelectronics package mechanical drawing MECHANICAL PACKAGE DRAWINGS eTQFP80 BODY 10x10x1.0 mm FOOT PRINT 1.0 mm EXPOSED PAD DOWN PACKAGE CODE :A0R6 REFERENCE : 8384969 92/112 JEDEC/EIAJ REFERENCE NUMBER : JEDEC MS-026-ACE-HD DocID027866 Rev 5 SPC572Lx Package characteristics Table 51. eTQFP80 – STMicroelectronics package mechanical data Dimensions Symbol Inches(1) Millimeters Min Typ Max Min Typ Max q 0° 3.5° 7° 0° 3.5° 7° q1 0° — — 0° — — q2 10° 12° 14° 10° 12° 14° q3 10° 12° 14° 10° 12° 14° — — 1.20 — — 0.047 A1(3) 0.05 — 0.15 0.002 — 0.006 A2(2) (2) A 0.95 1.00 1.05 0.037 0.039 0.041 (4) (5) 0.13 0.18 0.23 0.005 0.007 0.009 b1(4) 0.13 0.16 0.19 0.005 0.006 0.007 c(4) 0.09 — 0.20 0.004 — 0.008 0.09 — 0.16 0.004 — 0.006 b (4) c1 D(6) (7) (8) D1 12.00 BSC 0.472 BSC 10.00 BSC 0.394 BSC D2(9) — — 5.83 — — 0.229 D3(10) 4.00 — — 0.157 — — e (6) E E1(7) (8) 0.016 BSC 12.00 BSC 0.472 BSC 10.00 BSC 0.394 BSC (9) — — 5.83 — — 0.229 (10) 4.00 — — 0.157 — — L 0.45 0.60 0.75 0.018 0.024 0.030 E2 E3 L1 N 0.40 BSC (11) 1.00 REF 0.039 REF 80 3.149 R1 0.08 — — 0.003 — — R2 0.08 — — 0.003 — — S 0.20 — — 0.008 — — aaa(12) 0.20 0.008 (12) 0.20 0.008 (12) ccc 0.08 0.003 ddd(12) 0.07 0.003 bbb 1. Values in inches are converted from millimeters (mm) and rounded to three decimal digits. 2. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface. DocID027866 Rev 5 93/112 111 Package characteristics SPC572Lx 3. A1 is defined as the distance from the seating plane to the lowest point on the package body. 4. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages. 5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 6. To be determined at seating datum plane C. 7. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm. 8. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is “0.25 mm” per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch. 9. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of exposed pad is variable depending on leadframe pad design (T1, T2, T3). End user should verify D2 and E2 dimensions according to specific device application. 10. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove. 11. “N” is the number of terminal positions for the specified body size. 12. Tolerance 94/112 DocID027866 Rev 5 SPC572Lx 4.3 Package characteristics eTQFP100 case drawing Figure 39. eTQFP100 – STMicroelectronics package mechanical drawing MECHANICAL PACKAGE DRAWINGS eTQFP100 BODY 14x14x1.0 mm FOOT PRINT 1.0 mm EXPOSED PAD DOWN PACKAGE CODE :YE JEDEC/EIAJ REFERENCE NUMBER : JEDEC MS-026-AED-HD REFERENCE : 7357321 DocID027866 Rev 5 95/112 111 Package characteristics SPC572Lx Table 52. eTQFP100 – STMicroelectronics package mechanical data Dimensions Symbol Inches(1) Millimeters Min Typ Max Min Typ Max q 0° 3.5° 7° 0° 3.5° 7° q1 0° — — 0° — — q2 10° 12° 14° 10° 12° 14° q3 10° 12° 14° 10° 12° 14° — — 1.20 — — 0.047 A1 0.05 — 0.15 0.002 — 0.006 A2(2) 0.95 1.00 1.05 0.037 0.039 0.041 (2) A (3) (4) 0.17 0.22 0.27 0.007 0.009 0.011 b1(4) 0.175 0.20 0.23 0.007 0.008 0.009 c(4) 0.09 — 0.20 0.004 — 0.008 0.09 — 0.16 0.004 — 0.006 b (4) c1 D(5) (6) (7) D1 16.00 BSC 0.629 BSC 14.00 BSC 0.551 BSC D2(8) — — 5.67 — — 0.223 D3(9) 4.00 — — 0.157 — — e (5) E E1(6) (7) 0.50 BSC 0.019 BSC 16.00 BSC 0.629 BSC 14.00 BSC 0.551 BSC (8) — — 5.67 — — 0.223 (9) E3 4.00 — — 0.157 — — L 0.45 0.60 0.75 0.018 0.024 0.030 E2 L1 (10) N 1.00 REF 0.039 REF 100 3.937 R1 0.08 — — 0.003 — — R2 0.08 — — 0.003 — — S 0.20 — — 0.008 — — aaa(11) 0.15 0.006 (11) 0.20 0.008 (11) 0.05 0.002 ddd(11) 0.07 0.003 bbb ccc 1. Values in inches are converted from millimeters (mm) and rounded to three decimal digits. 2. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface. 96/112 DocID027866 Rev 5 SPC572Lx Package characteristics 3. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages. 4. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 5. To be determined at seating datum plane C. 6. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm. 7. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is “0.25 mm” per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch. 8. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of exposed pad is variable depending on leadframe pad design (T1, T2, T3). End user should verify D2 and E2 dimensions according to specific device application. 9. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove. 10. “N” is the number of terminal positions for the specified body size. 11. Tolerance 4.4 Thermal characteristics Table 53 and Table 54 describe the thermal characteristics of the device. Table 53. Thermal characteristics for eTQFP80(1) Symbol C Parameter Conditions Value Unit RθJA CC D Junction-to-ambient, natural convection(2) Four layer board—2s2p 29.6 °C/W RθJMA CC D Junction-to-moving-air, ambient(2) At 200 ft./min., four layer board—2s2p 23.5 °C/W RθJB CC D Junction-to-board(3) RθJCtop CC D Ring cold plate 9.6 °C/W Junction-to-case top(4) Cold plate 13.2 °C/W bottom(5) Cold plate 1.0 °C/W Natural convection 0.4 °C/W RθJCbotttom CC D Junction-to-case ΨJT CC D Junction-to-package top(6) 1. The values are based on simulation; actual data may vary in the given range. The specified characteristics are subject to change per final device design and characterization. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal. 3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored. 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. DocID027866 Rev 5 97/112 111 Package characteristics SPC572Lx Table 54. Thermal characteristics for eTQFP100(1) Symbol C Parameter Conditions Value Unit RθJA CC D Junction-to-ambient, natural convection(2) Four layer board—2s2p 27.9 °C/W RθJMA CC D Junction-to-moving-air, ambient(2) At 200 ft./min., four layer board—2s2p 22.8 °C/W RθJB CC D Junction-to-board(3) Ring cold plate 11.3 °C/W RθJCtop CC D Junction-to-case top(4) RθJCbotttom ΨJT CC D CC D Cold plate 13.0 °C/W (5) Cold plate 1.0 °C/W (6) Natural convection 0.4 °C/W Junction-to-case bottom Junction-to-package top 1. The values are based on simulation; actual data may vary in the given range. The specified characteristics are subject to change per final device design and characterization. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal. 3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored. 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. 4.4.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from the equation: Equation 1 TJ = TA + (RθJA * PD) where: TA = ambient temperature for the package (°C) RθJA = junction-to-ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: • Construction of the application board (number of planes) • Effective size of the board which cools the component • Quality of the thermal and electrical connections to the planes • Power dissipated by adjacent components Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. 98/112 DocID027866 Rev 5 SPC572Lx Package characteristics As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: • One oz. (35 micron nominal thickness) internal planes • Components are well separated • Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: Equation 2 TJ = TB + (RθJB * PD) where: TB = board temperature for the package perimeter (°C) RθJB = junction-to-board thermal resistance (°C/W) per JESD51-8 PD = power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: Equation 3 RθJA = RθJC + RθCA where: RθJA = junction-to-ambient thermal resistance (°C/W) RθJC = junction-to-case thermal resistance (°C/W) RθCA = case to ambient thermal resistance (°C/W) RθJC is device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RθCA. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. More accurate compact Flotherm models can be generated upon request. DocID027866 Rev 5 99/112 111 Package characteristics SPC572Lx To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (ΨJT) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation: Equation 4 TJ = TT + (ΨJT x PD) where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. When board temperature is perfectly defined below the device, it is possible to use the thermal characterization parameter (ΨJPB) to determine the junction temperature by measuring the temperature at the bottom center of the package case (exposed pad) using the following equation: Equation 5 TJ = TB + (ΨJPB x PD) where: TT = thermocouple temperature on bottom of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) 100/112 DocID027866 Rev 5 SPC572Lx 5 Ordering information Ordering information Figure 40. Product code structure Example code: SPC57 2 L 64 E3 B C 6 A R Product identifier Core Family Memory Package Reserved Temperature Frequency Reserved Packing Y = Tray R = Tape and Reel 6 = 80 MHz 4 = 64 MHz C = 125 oC Ta F2 = eTQFP80, 0.4 mm pitch E3 = eTQFP100, 0.5 mm pitch 64 = 1.5 MB 60 = 1 MB L = SPC57L family 2 = Single Computing e200z2 core SPC57 = Power Architecture in 55 nm 1. Order on 1 MB part numbers can be entered upon ST’s acceptance conditioned by volumes. Please contact your ST sales office to ask for the availability of a particular commercial product. 2. Features (e.g. flash, RAM or peripherals) not included in the commercial product cannot be used. ST cannot be called to take any liability for features used outside the commercial product. DocID027866 Rev 5 101/112 111 Revision history 6 SPC572Lx Revision history Table 55 summarizes revisions to this document. Table 55. Document revision history Date Revision 18-Jul- 2012 1 Initial release. 2 Formatting and editorial changes throughout document. Table 2: SPC572Lx device feature summary: Changed title (was SPC5726SPC572L64 device feature summary) Figure 2 (Periphery allocation): Removed BAR module from diagram. Section 1.5, Features overview: Added detail to PIT descriptions (2 bullets). Added Saturation Instructions Extension... feature item. Figure 4 (100-pin QFP configuration (top view)): Changed pin 65 to “ESR1” Table 3 (Power supply and reference pins): For row VDD_LV: added pin 68 for 100 pin and 80 pin packages. Section 2.2.1, Power supply and reference voltage pins: Added 2 sentences starting from “The Supply Pins Table contains...” Table 5 (Port pins description): From PC[10] to PC[15] - changed VDD_HV_IO_FLEX to VDD_HV_IO_ETH Table 7 (Absolute maximum ratings): Added footnote VDD_HV_IO refers to... Section 2.2.1, Power supply and reference voltage pins: Added 2 sentences starting from The Supply Pins Table contains... Table 8 (ESD ratings,): Added classification column Table 9 (Device operating conditions): Removed rows VDD_HV_ADR_D and VDD_HV_ADR_S For row VDD_HV_ADR: divided Value Min column data into “C” (3.0) and “P” (4.0) values and added the word reference to the Parameter description column Changed row VSS_HV_ADR symbol (was VSS_HV_ADR_D) Changed VDD_HV_ADV Value Min column data for P characteristic to 4.0 (was 4.2) Table 9 (Device operating conditions): For row VDD_HV_ADR: inverted the C and P Parameter Classification values. Table 10 (DC electrical specifications): Removed the following rows: VDD_HV_IO, VDD_HV_IO_JTAG, VDD_HV_IO_ETH, VDD_HV_ADV, VDD_HV_ADR, VDD_HV_ADR – VDD_HV_ADV Table 12 (I/O input DC electrical characteristics): In row VIHTTL condition changed to 4.5 V < VDD_HV_IO < 5.5 V. In row VILTTL condition changed to 4.5 V < VDD_HV_IO < 5.5 V. In row VHYSTTL condition changed to 4.5 V < VDD_HV_IO < 5.5 V. In row VIHCMOS_H condition changed to 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V. In row VIHCMOS condition changed to 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V. In row VILCMOS_H condition changed to 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V. In row VHYSCMOS condition changed to 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V. 03-Apr-2013 102/112 Changes DocID027866 Rev 5 SPC572Lx Revision history Table 55. Document revision history (continued) Date 03-Apr-2013 Revision Changes 2 (cont.) Table 13 (I/O pull-up/pull-down DC electrical characteristics): In row |IWPU| changed to Weak pull-up current absolute value In row |IWPU| (P) condition changed to VIN < VIH = 0.69*VDD_HV_IO, 4.5 V < VDD_HV_IO < 5.5 V. In row |IWPU| (P) minimum changed to 23 µA; maximum value deleted. In row |IWPD| (P) minimum deleted; maximum value changed to 130 µA. In row |IWPD| (P) condition changed to VIN > VIH = 0.69*VDDE, 4.5 V < VDD < 5.5 V. Deleted: |IWPU| (T) at VIN = 0 V, 3.0 V < VDD_HV_IO < 4.0 V. Added |IWPU| (T) at VIN > VIL = 0.49*VDDE, 4.5 V < VDD < 5.5 V. Added |IWPU| (T) at VIN > VIL = 1.1 V (TTL), 4.5 V < VDD < 5.5 V. Added RWPU (Weak pull-up resistance). Deleted: |IWPD| (T) at VIN = VDD_HV_IO, 3.0 V < VDD_HV_IO < 4.0 V. Added |IWPD| (T) at VIN < VIL = 0.49*VDDE, 4.5 V < VDD < 5.5 V. Added |IWPD| (T) at VIN < VIL = 0.9 V (TTL), 4.5 V < VDD < 5.5 V. Added RWPD (Weak pull-down resistance). Table 14 (WEAK configuration output buffer electrical characteristics): Added footnote 4. Specification changes: In row ROH_W condition changed to 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 0.5 mA. In row ROL_W condition changed to 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 0.5 mA. In row tTR_W condition CL = 25 pF, 4.0 V < VDD_HV_IO < 5.9 V changed to CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V In row tTR_W condition CL = 50 pF, 4.0 V < VDD_HV_IO < 5.9 V changed to CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V In row tTR_W condition CL = 200 pF, 4.0 V < VDD_HV_IO < 5.9 V changed to CL = 200 pF, 4.5 V < VDD_HV_IO < 5.9 V Table 15 (MEDIUM configuration output buffer electrical characteristics): Added footnote 4. In ROH_M condition changed to 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 2 mA. In ROL_M condition changed to 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 2 mA. In tTR_M condition changed to CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V. In tTR_M condition changed to CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V. In tTR_M condition changed to CL = 200 pF, 4.5 V < VDD_HV_IO < 5.9 V. Table 16 (STRONG configuration output buffer electrical characteristics): Added footnote 4. In ROH_S condition changed to 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 8 mA. IN ROL_S condition changed to 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 8 mA. In tTR_S condition changed to CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V. In tTR_S condition changed to CL = 200 pF, 4.5 V < VDD_HV_IO < 5.9 V. In tTR_S condition CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V. Table 17 (VERY STRONG configuration output buffer electrical characteristics): Removed footnote: For specification per Electrical Physical Layer Specification 3.0.1... Section 3.9, I/O pad current specification: Changed Note In order to ensure ... remain below 10%. changed to ...below 50%. Table 19 (Reset electrical characteristics) Added footnote to row IOL_R: IOL_R applies to both PORST and ESR0... In row IOL_R condition changed to Device under power-on reset, 3.0 V < VDD_HV_IO < 5.5 V, VOL > 1.0 V. In row IOL_R minimum for conditions Device under power-on reset, 3.0 V < VDD_HV_IO < 5.5 V, VOL > 1.0 V changed to12 mA. Table 23 (Internal RC oscillator electrical specifications): In row tstart_T Parameter Classification changed to D (was T). DocID027866 Rev 5 103/112 111 Revision history SPC572Lx Table 55. Document revision history (continued) Date 03-Apr-2013 Revision 2 (cont.) Changes Table 25 (SARn ADC electrical specification): Row VDD_HV_ADR_S removed. In row VIN Max Value cell changed to VDD_HV_ADR (was VDD_HV_ADR_S) In row TUE12 updated conditions In row TUE10 changed Characteristic for both conditions to T and updated conditions In row VALTREF changed the Parameter Classification to C (was P). Added phrase For parameters classified as T and D. to footnote TUE and DNL... Table 26 (SDn ADC electrical specification) In row fIN - changed Parameter Classification for both conditions to D (was P) Removed rows – VDD_HV_ADV, VSS_HV_ADR_D, VDD_HV_ADR_D For VIN_PK2PK (Input range peak to peak VIN_PK2PK = VINP – VINM) corrected GAIN condition for Single ended – VINM = 0.5*VDD_HV_ADR_D GAIN = 2,4,8,16. In δGROUP condition OSR = 75, changed Max Value to 596. Added footnote VINM is the input voltage applied to the negative terminal of the SDADC. For rows SNRDIFF150, SNRDIFF333 and SNRSE150 added footnote SNR degradated by 3dB, in the range 3.6 V< VDD_HV_ADV < 5.5 V. Table 27 (Temperature sensor electrical characteristics): In row ITEMP_SENS changed description to VDD_HV_ADV power supply current. Section 3.15.2, Main voltage regulator electrical characteristics: Changed HV and BV supply voltage descriptions. Table 31 (Voltage regulator electrical characteristics): Updated all values. Figure 19 (Voltage monitor threshold definition): Reworked diagram Table 32 (Voltage monitor electrical characteristics): Refomatted table and updated all content. Table 34 (Functional terminals state during power-up and reset): in TERMINAL ERROR row removed Comments. Section 3.16, Flash memory electrical characteristics: Added content relating to Flash read wait states and added Table 35 (RWSC settings). Table 36 (Flash memory program and erase specifications (pending silicon characterization)): Updated footnotes, parameter classifications, Initial Max 25 °C values, Initial max parameter classifications and Typical end of life values. Added rows tpprogrameep and tqprogrameep In Rows t16kprogrameep and t16keraseeep changed partition information to partition 1. Table 41 (DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1) Changed footnote Maximum frequency is 100 MHz to Maximum frequency is 80 MHz. Table 42 (DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1) Changed footnote Maximum frequency is 100 MHz to Maximum frequency is 80 MHz. Table 49 (DSPI LVDS slave timing – full duplex – modified transfer format (MTFE = 0/1)): Changed footnote Maximum frequency is 100 MHz to Maximum frequency is 80 MHz. Table 49 (UART frequency support): Added row clock frequency 100. Section 4.2: eTQFP80 case drawing Added mechanical drawings. Section 4.3: eTQFP100 case drawing Added mechanical drawings. Table 53 (Thermal characteristics for eTQFP80): 104/112 DocID027866 Rev 5 SPC572Lx Revision history Table 55. Document revision history (continued) Date Revision 03-Apr-2013 2 (cont.) Changes Updated table, added RθJA Min and Max values Table 54 (Thermal characteristics for eTQFP100): Updated table, added RθJA Min and Max values Following are the changes in this version of the Datasheet: Formatting and editorial changes throughout document. Table 2 (SPC572Lx device feature summary): Replaced SIPI/LAST Interprocessor bus with Zipwire (SIPI/LAST) Interprocessor bus. Updated the description of SENT bus. Figure 1 (Block diagram): Replaced LFAST & SIPI with Zipwire (LFAST & SIPI). Section 1.5, Features overview Reworded the PIT bullet points. Replaced “two channel multiplexer” with “two channel multiplexers” Removed “Port pins description” table since the table is included in the JPC5726M_IO_Signal_Table.xlsx sheet. Section 3.1, Introduction Added VDD_HV_PMC to the note section. 18-May-2015 3 Table 7 (Absolute maximum ratings): In row VDD_LV added footnotes: Allowed 1.375 – 1.45 V for 10 hours... 1.32 – 1.375 V range allowed periodically for supply... In footnote: 1.32 – 1.375 V range allowed periodically... changed 1.275 V to 1.288 V Removed VDD_HV_FLA and VDD_HV_IO_JTAG rows. Removed TJ row. For IMAXD, replaced minimum and maximum values of “-10” and “10” with “-11” and “11”. Updated tXRAY. Added a note to VDD_HV_ADV. Table 9 (Radiated emissions testing specification): Added “36 dBµV” in all the rows of column “BISS radiated emissions limit”. Table 10 (Conducted emissions testing specifications): Added “BISS limit” column. Table 8 (ESD ratings,): Classification parameter for ESD for Human Body Model is now T. DocID027866 Rev 5 105/112 111 Revision history SPC572Lx Table 55. Document revision history (continued) Date Revision Changes Table 9 (Device operating conditions): Changed VRAMP to VRAMP_LV, changed parameter to “slew rate on core power supply pins”. Added VRAMP_HV specification, parameter “Slew rate on HV power supply pins”, max value 100 V/ms. Updated the classification of fSYS to “C”. Updated the VDD_HV_IO_MAIN classification, minimum, and maximum values. Updated the VDD_HV_IO_JTAG classification, minimum, and maximum values. Added VIN symbol. Updated all the columns of the VDD_HV_ADV symbol. Replaced note below the table “Reduced output/input capabilities below 4.2 V. See performance ...” with “Reduced output/input capabilities below 4.2 V. See performance operating values in I/O pad electrical characteristics. Not all functionality are guaranteed below 4.2V. Please check ...” 18-May-2015 3 (cont.) Table 10 (DC electrical specifications): Updated the maximum values of IDD from “100” to “145”. Changed the classification of IDDPE from “P” to “C”. Updated the condition of IDDAPP and the maximum value is updated to 125 mA. Updated the parameter, conditions, and maximum values of IDDAR. Added another row to it. Changed the classification of ISPIKE from “C” to “T”. Changed the classification of dl from “C” to “T”. Replaced “20 us” with “< 20 us” in the conditions column of dl. Changed the classification of ISR from “C” to “D”. Updated the parameter column of ISR. Deleted IINACT_D, IIC, and TA (TL to TH). Replaced the maximum value of “90” with “60” for ISPIKE Replaced the maximum value of “120” with “165” for IDDPE. Added VREF_BG_T, VREF_BG_TC, and VREF_BG_LR symbols. Table 11 (I/O pad specification descriptions): In row Very Strong Configuration, removed reference to FlexRay. Table 12 (I/O input DC electrical characteristics): For VHYSTTL replaced “0.3” with “0.275” for minimum value. For VILAUT replaced “2.2” with “2.1” for maximum value. For VHYSAUT replaced “0.5” with “0.4” for minimum value. Updated the ILKG. Updated the conditions of ILKG_MED. Added “GPIO input pins” to the conditions column of CIN. Updated Note 6 below the table. For VDRFTTT, VDRFTAUT, and VDRFTCMOS replaced “C” with “T” in characteristics column. Updated note in maximum value of VIHAUT. Table 13 (I/O pull-up/pull-down DC electrical characteristics): VDDE replaced by VDD_HV_IO. Updated IWPU rows. Updated IWPD rows. Added RWPU parameter. Added conditions to RWPD parameter. 106/112 DocID027866 Rev 5 SPC572Lx Revision history Table 55. Document revision history (continued) Date Revision Changes Table 14 (WEAK configuration output buffer electrical characteristics): “4.5 V < VDD_HV_IO < 5.9 V” replaced by “4.5 V < VDD_HV_IO < 5.5 V” in ROH_W and ROL_W rows. Minimum values of ROH_W and ROL_W changed from “560” to “520” Replaced “VDD_HV_IO_FLEX” with “VDD_HV_IO_ETH” in note below the table. Table 15 (MEDIUM configuration output buffer electrical characteristics): Added note to the conditions column. “4.5 V < VDD_HV_IO < 5.9 V” replaced by “4.5 V < VDD_HV_IO < 5.5 V” in ROH_M and ROL_Mrows. Replaced “VDD_HV_IO_FLEX” with “VDD_HV_IO_ETH” in note below the table. Minimum values of ROH_M and ROL_M changed from “140” to “120” Table 16 (STRONG configuration output buffer electrical characteristics): Added note to the conditions column. “4.5 V < VDD_HV_IO < 5.9 V” replaced by “4.5 V < VDD_HV_IO < 5.5 V” in ROH_S and ROL_S rows. Replaced “VDD_HV_IO_FLEX” with “VDD_HV_IO_ETH” in note below the table. Minimum values of ROH_S and ROL_S changed from “35” to “30” Updated the minimum values of tTR_S 18-May-2015 3 (cont.) Table 17 (VERY STRONG configuration output buffer electrical characteristics): Added note to the conditions column. Updated ROH_V and ROL_V rows. Removed footnotes: • Refer to FlexRay section for... • 20–80% transition time... Updated the minimum values of tTR_V Removed “EBI output driver electrical characteristics” table. Table 18 (I/O consumption): Added a footnote to the table. Removed footnote: Data based on simulation results... Updated all the condition rows of the table. Table 19 (Reset electrical characteristics): Replaced minimum value of “300” with “275” in the VHYS row. Replaced “0.9 V” with “1.0 V” in the in the condition column of IOL_R row. Replaced minimum value of “11” with “12” in the IOL_R row. Updated IWPU and IWPD rows. Table 20 (PLL0 electrical characteristics): Added fPLL0PHI1 and fPLL0FREE symbols. Replaced maximum value of “100” with “80” in the fPLL0PHI0 row. In footnote: PLL0IN clock retrieved... the second sentence now reads Input characteristics are granted when using XOSC. In fPLL0IN added a second note to parameter column. Updated maximum value of fPLL0LOCK. DocID027866 Rev 5 107/112 111 Revision history SPC572Lx Table 55. Document revision history (continued) Date Revision 18-May-2015 3 (cont.) Changes Table 21 (External oscillator electrical specifications): Updated the minimum and maximum values of fXTAL. Updated VIHEXT, VILEXT, gm, and IXTAL. Added VHYS. Table 22 (Selectable load capacitance): Updated the table. Table 23 (Internal RC oscillator electrical specifications): Removed IAVDD5, and IDVDD12 rows. Updated parameter column of δfvar_SW. Table 24 (ADC pin specification): Removed ILK_IN symbol. Added VREF_BG_T, VREF_BG_TC, and VREF_BG_LR symbols. Updated conditions column of IBG symbol. Removed the table footnote “Leakage current is a....” Added ΣIADR Updated ILK_INUD, ILK_INUSD, ILK_INREF, and ILK_INOUT. Replaced maximum value of “6.5” with “8.5” for CS. Table 25 (SARn ADC electrical specification): Updated conditions, minimum, and maximum columns of VALTREF. Updated parameter, conditions, and maximum columns of IADCREFH. Replaced the maximum value of “1” with “+8” in IADCREFH symbol (power down mode). Replaced “IADCVDD” with “IADV_S” and updated its conditions and maximum columns. Updated minimum and maximum columns of DNL. Table 26 (SDn ADC electrical specification): In the fADCD_M symbol replaced “S/D clock 3” with “S/D modulator Input clock”. Added minimum value of “4”. Updated the maximum values of |δGAIN| Replaced the unit values of “dB” with “dBFS” in the SNRDIFF150, SNRDIFF333, and SNRSE150 symbols. Replaced the unit values of “dB” with “dBc” in SFDR symbol. Added CMRR symbol and replaced the minimum value of “20” with “54”. Added RCaaf and Frolloff symbols. Updated the maximum values of IADV_D and ΣIADR_D. Removed ΣIADR_D. Replaced maximum value of “2*δGROUP” with “δGROUP” for tLATENCY. Replaced maximum value of “15” with “16” for GAIN. Added IADCS/D_REFH. Updated the minimum, typical and maximum values of ZIN. Table 27 (Temperature sensor electrical characteristics): Added rows: • temperature monitoring range • temperature sensitivity (TSENS) • temperature accuracy (TACC) 108/112 DocID027866 Rev 5 SPC572Lx Revision history Table 55. Document revision history (continued) Date Revision Changes Table 28 (LVDS pad startup and receiver electrical characteristics): Replaced “C” with “T” in the characteristics column of ILVDS_BIAS and ILVDS_RX. Table 29 (LFAST transmitter electrical characteristics), and Table 30 (MSC/DSPI LVDS transmitter electrical characteristics): Replaced “C” with “T” in the characteristics column of ILVDS_TX. Table 39 (Nexus debug port timing): Replaced “P” with “D” in the characteristics column of tEVTIPW and tEVTOPW. Figure 18 (Voltage regulator capacitance connection): Updated the figure. Table 31 (Voltage regulator electrical characteristics): Replaced RDECREGn with RREG. Updated the conditions column of CDECBV and CDECHV. Changed the classification of IMREGINT from “P” to “D”. Added “- at 27 oC , no load” to note 6. Added “with full load” to note 7. Table 36 (Flash memory program and erase specifications (pending silicon characterization)): For tESUS, replaced lifetime max value of “20” WITH “30”. For tpsus, replaced lifetime max value of “10” WITH “15”. 18-May-2015 3 (cont.) Table 40 (DSPI channel frequency support): Removed “Full duplex” from LVDS (Master mode). Table 41 (DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1): Updated the minimum values of tCSC, tPCSC, and tPASC and maximum values of tSUO. Table 42 (DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1): Updated the minimum values of tCSC, tPCSC, and tPASC and maximum values of tSUO. Removed section “DSPI LVDS Master Mode — Modified Timing.” Table 44 (DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock): Updated the minimum values of tCSV and maximum values of tSUO. Table 45 (DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1)): Updated the minimum and maximum values of tDIS. Replaced the maximum value of “50” with “55” in tSUO (medium). Table 48 (RMII transmit signal timing): Replaced the maximum value of “14” with “16” for R6. DocID027866 Rev 5 109/112 111 Revision history SPC572Lx Table 55. Document revision history (continued) Date Revision Changes Section 3.17.5, GPIO delay timing: Added this section. Replaced “four” with “three” in the table footnotes in Table 51 (eTQFP80 – STMicroelectronics package mechanical data) and Table 52 (eTQFP100 – STMicroelectronics package mechanical data). 18-May-2015 3 (cont.) Table 51 (eTQFP80 – STMicroelectronics package mechanical data): Second note removed from E2 parameter and added to E3 parameter. Table 53 (Thermal characteristics for eTQFP80): Updated the table and its values. Table 54 (Thermal characteristics for eTQFP100): Updated the table and its values. Table 60 (Order codes (ST)) Updated the table. 15-Jun-2017 110/112 4 Following are the changes in this version of the Datasheet: Replaced eLQFP100 with eTQFP100 throughout the document. Removed all requirement tagging from the document. Replaced RPNs: SPC572L64F2B, SPC572L64E3B with SPC572Lx. Replaced SPC572LxB with SPC572Lx. Replaced bullet point “On-chip voltage...” with “Single 5V +/-10%....” on the cover page. Table 1 (Device summary): – Updated the table. Table 2 (SPC572Lx device feature summary): – Updated the notes of “External power supplies” Section 3.4: Electromagnetic Compatibility (EMC): – Updated the section. Table 9 (Device operating conditions): – Updated the values of parameter VDD_LV. – Updated notes in the table. Removed section: “Temperature profile.” Table 26 (SDn ADC electrical specification): – Updated the values for RBIAS parameter. – Added parameters ZDIFF, ZCM, and ΔVINTCM. Table 31 (Voltage regulator electrical characteristics): – Added parameter CDECFLA Table 32 (Voltage monitor electrical characteristics): – Added parameter VLVD108 Section 4.3: eTQFP100 case drawing: – Updated the Figure 39: eTQFP100 – STMicroelectronics package mechanical drawing. – Updated the Table 52 (eTQFP100 – STMicroelectronics package mechanical data). Section 5: Ordering information: – Removed table: Order codes (ST). Added Figure 40: Product code structure. DocID027866 Rev 5 SPC572Lx Revision history Table 55. Document revision history (continued) Date Revision 06-Jul-2017 5 Changes Removed “ST Restricted” watermark DocID027866 Rev 5 111/112 111 SPC572Lx IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 112/112 DocID027866 Rev 5
SPC572L64F2BC6AR 价格&库存

很抱歉,暂时无法提供与“SPC572L64F2BC6AR”相匹配的价格&库存,您可以联系我们找货

免费人工找货