0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC584C80E3G0C0X

SPC584C80E3G0C0X

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TQFP100

  • 描述:

    IC MCU 32BIT 4MB FLASH 100ETQFP

  • 数据手册
  • 价格&库存
SPC584C80E3G0C0X 数据手册
SPC584Cx, SPC58ECx SPC58 C Line - 32 bit Power Architecture automotive MCU Dual z4 cores 180 MHz, 4 MBytes Flash, HSM, ASIL-B Datasheet - production data eTQFP64 (10 x 10 x 1.0 mm) eTQFP100 (14 x 14 x 1.0 mm) – Memory Error Management Unit (MEMU) for collection and reporting of error events in memories – Cyclic redundancy check (CRC) unit • Crossbar switch architecture for concurrent access to peripherals, Flash, or RAM from multiple bus masters with end-to-end ECC eTQFP144 (20 x 20 x 1.0 mm) eLQFP176 (24 x 24 x 1.4 mm) • Enhanced modular IO subsystem (eMIOS): up to 64 timed I/O channels with 16-bit counter resolution FPBGA292 (17 x 17 x 1.8 mm) Features • AEC-Q100 qualified • High performance e200z420n3 dual core – 32-bit Power Architecture technology CPU – Core frequency as high as 180 MHz – Variable Length Encoding (VLE) • 4224 KB (4096 KB code flash + 128 KB data flash) on-chip flash memory: supports read during program and erase operations, and multiple blocks allowing EEPROM emulation • 176 KB HSM dedicated flash memory (144 KB code + 32 KB data) • 384 KB on-chip general-purpose SRAM (in addition to 128 KB core local data RAM: 64 KB included in each CPU) • Multi-channel direct memory access controller (eDMA) with 64 channels • 1 interrupt controller (INTC) • Comprehensive new generation ASIL-B safety concept – ASIL-B of ISO 26262 – FCCU for collection and reaction to failure notifications May 2021 This is information on a product in full production. • Body cross triggering unit (BCTU) – Triggers ADC conversions from any eMIOS channel – Triggers ADC conversions from up to 2 dedicated PIT_RTIs • Enhanced analog-to-digital converter system with: – 3 independent fast 12-bit SAR analog converters – 1 supervisor 12-bit SAR analog converter – 1 10-bit SAR analog converter with STDBY mode support • Communication interfaces – 18 LINFlexD modules – 8 deserial serial peripheral interface (DSPI) modules – 8 MCAN interfaces with advanced shared memory scheme and ISO CAN-FD support – Dual-channel FlexRay controller – 1 ethernet controller 10/100 Mbps, compliant IEEE 802.3-2008 • Low power capabilities – Versatile low power modes – Ultra low power standby with RTC – Smart Wake-up Unit for contact monitoring – Fast wakeup schemes • Dual phase-locked loops with stable clock domain for peripherals and FM modulation domain for computational shell DS11620 Rev 8 1/153 www.st.com SPC584Cx, SPC58ECx • Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some support for 2010 standard • Boot assist Flash (BAF) supports factory programming using a serial bootload through the asynchronous CAN or LIN/UART • Junction temperature range -40 °C to 150 °C Table 1. Device summary Part number Package 2 MB Single core eTQFP64 3 MB Dual core Single core 4 MB Dual core Single core Dual core SPC584C70E1 SPC58EC70E1 SPC584C74E1 SPC58EC74E1 SPC584C80E1 SPC58EC80E1 eTQFP100 SPC584C70E3 SPC58EC70E3 SPC584C74E3 SPC58EC74E3 SPC584C80E3 SPC58EC80E3 eTQFP144 SPC584C70E5 SPC58EC70E5 SPC584C74E5 SPC58EC74E5 SPC584C80E5 SPC58EC80E5 eLQFP176 SPC584C70E7 SPC58EC70E7 SPC584C74E7 SPC58EC74E7 SPC584C80E7 SPC58EC80E7 FPBGA292 SPC584C70C3 SPC58EC70C3 SPC584C74C3 SPC58EC74C3 SPC584C80C3 SPC58EC80C3 2/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 13 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 Power domains and power up/down sequencing . . . . . . . . . . . . . . . . . 19 4.4 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5 Electromagnetic compatibility characteristics . . . . . . . . . . . . . . . . . . . . . . 21 4.6 Temperature profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.7 Device consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.8 I/O pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.8.1 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.8.2 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.8.3 I/O pad current specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.9 Reset pad (PORST) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 37 4.10 PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.11 4.12 4.10.1 PLL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.10.2 PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.11.1 Crystal oscillator 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.11.2 Crystal Oscillator 32 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.11.3 RC oscillator 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.11.4 Low power RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ADC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.12.1 ADC input description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 DS11620 Rev 8 3/153 5 Contents SPC584Cx, SPC58ECx SAR ADC 12-bit electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.12.3 SAR ADC 10-bit electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.13 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.14 LFAST pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.15 5 4.12.2 4.14.1 LFAST interface timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.14.2 LFAST LVDS interface electrical characteristics . . . . . . . . . . . . . . . . . . 58 4.14.3 LFAST PLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.15.1 Power management integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.15.2 Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.15.3 Voltage monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.16 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.17 AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.17.1 Debug and calibration interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.17.2 DSPI timing with CMOS pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.17.3 Ethernet timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.17.4 FlexRay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.17.5 CAN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.17.6 UART timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.17.7 I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1 eTQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1.1 5.2 eTQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.1 5.3 4/153 Package mechanical drawings and data information . . . . . . . . . . . . . 125 FPBGA292 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.5.1 5.6 Package mechanical drawings and data information . . . . . . . . . . . . . 120 eLQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4.1 5.5 Package mechanical drawings and data information . . . . . . . . . . . . . 115 eTQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 5.3.1 5.4 Package mechanical drawings and data information . . . . . . . . . . . . . 110 Package mechanical drawings and data information . . . . . . . . . . . . . 128 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.6.1 eTQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.6.2 eTQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.6.3 eTQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 DS11620 Rev 8 SPC584Cx, SPC58ECx Contents 5.6.4 LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.6.5 FPBGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.6.6 General notes for specifications at maximum junction temperature . . 133 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 DS11620 Rev 8 5/153 5 Introduction 1 SPC584Cx, SPC58ECx Introduction This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet. 6/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 2 Description Description The SPC584Cx and SPC58ECx microcontroller is the first in a new family of devices superseding the SPC564Cx and SPC56ECx family. SPC584Cx and SPC58ECx builds on the legacy of the SPC564Cx and SPC56ECx family, while introducing new features coupled with higher throughput to provide substantial reduction of cost per feature and significant power and performance improvement (MIPS per mW). On the SPC584Cx and SPC58ECx device, there are two processor cores e200z420 and one e200z0 core embedded in the Hardware Security Module. 2.1 Device feature summary Table 2 lists a summary of major features for the SPC584Cx and SPC58ECx device. The feature column represents a combination of module names and capabilities of certain modules. A detailed description of the functionality provided by each on-chip module is given later in this document. Table 2. Features List Feature Description SPC58 family 40 nm Number of Cores 2 Local RAM 2x 64 KB Data Single Precision Floating Point Yes SIMD No VLE Yes 8 KB Instruction Cache 4 KB Data Core MPU: 24 per CPU MPU System MPU: 24 per XBAR Semaphores Yes CRC Channels 2x4 Software Watchdog Timer (SWT) 3 Core Nexus Class 3+ 4 x SCU Event Processor 4 x PMC Run control Module Yes System SRAM 384 KB (including 256 KB of standby RAM) Flash 4096 KB code / 128 KB data Flash fetch accelerator 2 x 4 x 256-bit DMA channels 64 DS11620 Rev 8 7/153 12 Description SPC584Cx, SPC58ECx Table 2. Features List (continued) Feature Description DMA Nexus Class 3 LINFlexD 18 MCAN (ISO CAN-FD compliant) 8 DSPI 8 I2C 1 FlexRay 1 x Dual channel Ethernet 1 MAC with Time Stamping, AVB and VLAN support SIPI / LFAST Debugger High Speed 8 PIT channels System Timers 4 AUTOSAR® (STM) RTC/API eMIOS 2 x 32 channels BCTU 64 channels Interrupt controller 1 x 568 sources ADC (SAR) 5 Temp. sensor Yes Self Test Controller Yes PLL Dual PLL with FM Integrated linear voltage regulator Yes External Power Supplies 5 V, 3.3 V HALT Mode Low Power Modes STOP Mode Smart Standby with output controller, analog and digital inputs Standby Mode 2.2 Block diagram The figures below show the top-level block diagrams. 8/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Description Figure 1. Block diagram JTAGM JTAGC DCI SPU NPC INTC SWT_0 IAC D-MEM Control D-Cache Control 64 KB D-MEM 4 KB 2 way Core Memory Protection Unit (CMPU) BIU with E2E ECC Decorated Storage Access S6 Instruction 32 ADD 64 DATA Load / Store 32 ADD 64 DATA M0 M1 DMA CHMUX_3 DMA CHMUX_2 DMA CHMUX_1 DMA CHMUX_0 64 Ch eDMA_1 32 ADD 64 DATA Concentrator_1 E2E ECC PAMU VLE Delayed Lock-step with Redundancy Checkers 8 KB 2 way SIPI_1 Unified Backdoor Interface With E2E ECC FlexRay_0 I-Cache Control ETHERNET_0 EFPU2 Delayed Lock-step with Redundancy Checkers VLE Nexus3p Nexus3p e200 z420n3 – 180 MHz dual issue Main Core_0 EFPU2 I-Cache Control 8 KB 2 way HSM D-MEM Control D-Cache Control 64 KB D-MEM 4 KB 2 way Unified Backdoor Interface With E2E ECC Core Memory Protection Unit (CMPU) Delayed Lock-step with Redundancy Checkers SWT_2 IAC e200 z420n3 – 180 MHz dual issue Main Core_2 BIU with E2E ECC Decorated Storage Access Nexus Data Trace Nexus Data Trace Nexus Data Trace 32 ADD 64 DATA 32 ADD 64 DATA 32 ADD 64 DATA Instruction 32 ADD 64 DATA Load / Store 32 ADD 64 DATA M3 M2 M6 M4 M5 Cross Bar Switch (XBAR) AMBA 2.0 v6 AHB – 64 bits System Memory Protection Unit S3 S2 S5 S4 32 ADD 64 DATA 32 ADD 64 DATA 32 ADD 64 DATA 32 ADD 64 DATA Periph. Bridge 2 E2E ECC Periph. Bridge 1 E2E ECC PRAMC_2 with E2E ECC PRAMC_3 with E2E ECC 32 ADD 32 DATA 32 ADD 32 DATA 32 ADD 64 DATA 32 ADD 64 DATA Peripheral Cluster 2 Peripheral Cluster 1 SRAM Array 2 256 KB SRAM Array 3 128 KB DS11620 Rev 8 S0 32 ADD 64 DATA S7 S1 32 ADD 64 DATA PFLASHC_1 Set-Associative Prefetch Buffers with E2E ECC 256 Page Line FLASH 4 MB EEPROM 4x32 KB Non Volatile Memory Multiple RWW partitions 9/153 12 Description SPC584Cx, SPC58ECx Figure 2. Periphery allocation BCTU_0 PBRIDGE_2 STDBY_CTU_0 XBAR_1 eMIOS_0 XBIC_Concentrator_1 ETHERNET_0 SMPU_1 SAR_ADC_12bit_0 XBIC_1 SAR_ADC_10bit_STDBY PCM_0 SAR_ADC_12bit_B0 PFLASH_1 FLEXRAY_0 SEM42 I2C_0 INTC_1 DSPI_0, 2, 4, 6 SWT_0, 2, 3 LINFlexD_0, 2, 4, 6, 8, 10, 12,14,16 STM_0, 2 CAN_SUB_0_MESSAGE_RAM eDMA_1 CAN_SUB_0_M_CAN_0..3 PRAM_2, 3 CCCU TDM_0 HSM DTS JDC JTAGM MEMU IMA CRC_0 DMAMUX_0, 2 PIT_0 RTC/API WKPU MC_PCU PBRIDGE_2 – Peripheral Cluster 2 STCU DSPI_1, 3, 5, 7 LINFlexD_1, 3, 5, 7, 9, 11, 13, 15, 17 MC_RGM CAN_SUB_1_MESSAGE_RAM RCOSC_DIG CAN_SUB_1_M_CAN_1..4 RC1024K_DIG FCCU OSC_DIG CRC_1 OSC32K_DIG DMAMUX_1, 3 PLL_DIG PIT_1 CMU_0_PLL0_XOSC_IRCOSC CMU_1_CORE_XBAR MC_CGM CMU_2_HPBM MC_ME CMU_3_PBRIDGE SIUL2 CMU_6_SARADC FLASH_0 CMU_11_FBRIDGE FLASH_ALT_0 CMU_12_EMIOS PASS CMU_14_PFBRIDGE PBRIDGE_1 – Peripheral Cluster 1 PMC_DIG SSCM PBRIDGE_1 eMIOS_1 SAR_ADC_12bit_1, 3 SIPI_1 LFAST_1 Note: In this diagram, ON-platform modules are shown in orange color and OFF-platform modules are shown in blue color. 10/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 2.3 Description Features overview On-chip modules within SPC584Cx and SPC58ECx include the following features: • • Two main CPUs, dual issue, 32-bit CPU core complexes (e200z4). – Power Architecture embedded specification compliance – Instruction set enhancement allowing variable length encoding (VLE), encoding a mix of 16-bit and 32-bit instructions, for code size footprint reduction – Single-precision floating point operations – 64 KB local data RAM for Core_0 and Core_2 – 8 KB I-Cache and 4 KB D-Cache for Core_0 and Core_2 4224 KB (4096 KB code flash + 128 KB data flash) on-chip flash memory – Supports read during program and erase operations, and multiple blocks allowing EEPROM emulation • 176 KB HSM dedicated flash memory (144 KB code + 32 KB data) • 384 KB on-chip general-purpose SRAM (+ 128 KB local data RAM: 64 KB included in each CPU) • Multi channel direct memory access controllers – 64 eDMA channels • One interrupt controller (INTC) • Dual phase-locked loops with stable clock domain for peripherals and FM modulation domain for computational shell • Crossbar switch architecture for concurrent access to peripherals, Flash, or RAM from multiple bus masters with end-to-end ECC • Hardware security module (HSM) with HW cryptographic co-processor • System integration unit lite (SIUL) • Boot assist Flash (BAF) supports factory programming using a serial bootload through the asynchronous CAN or LIN/UART. • Hardware support for safety ASIL-B level related applications • Enhanced modular IO subsystem (eMIOS): up to 64 (2 x 32) timed I/O channels with 16-bit counter resolution • • – Buffered updates – Support for shifted PWM outputs to minimize occurrence of concurrent edges – Supports configurable trigger outputs for ADC conversion for synchronization to channel output waveforms – Shared or independent time bases – DMA transfer support available Body cross triggering unit (BCTU) – Triggers ADC conversions from any eMIOS channel – Triggers ADC conversions from up to 2 dedicated PIT_RTIs – One event configuration register dedicated to each timer event allows to define the corresponding ADC channel – Synchronization with ADC to avoid collision Enhanced analog-to-digital converter system with: – Three independent fast 12-bit SAR analog converters DS11620 Rev 8 11/153 12 Description 12/153 SPC584Cx, SPC58ECx – One supervisor 12-bit SAR analog converter – One 10-bit SAR analog converter with STDBY mode support • Eight deserial serial peripheral interface (DSPI) modules • Eighteen LIN and UART communication interface (LINFlexD) modules – LINFlexD_0 is a Master/Slave – All others are Masters • Eight modular controller area network (MCAN) modules, all supporting flexible data rate (ISO CAN-FD compliant) • Dual-channel FlexRay controller • One ethernet controller 10/100 Mbps, compliant IEEE 802.3-2008 – IEEE 1588-2008 Time stamping (internal 64-bit time stamp) – IEEE 802.1AS and IEEE 802.1Qav (AVB-Feature) – IEEE 802.1Q VLAN tag detection – IPv4 and IPv6 checksum modules • Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some support for 2010 standard. • Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1 and IEEE 1149.7), 2-pin JTAG interface. • Standby power domain with smart wake-up sequence DS11620 Rev 8 SPC584Cx, SPC58ECx 3 Package pinouts and signal descriptions Package pinouts and signal descriptions Refer to the SPC584Cx and SPC58ECx IO_ Definition document. It includes the following sections: 1. Package pinouts 2. Pin descriptions a) Power supply and reference voltage pins b) System pins c) LVDS pins d) Generic pins DS11620 Rev 8 13/153 13 Electrical characteristics SPC584Cx, SPC58ECx 4 Electrical characteristics 4.1 Introduction The present document contains the target Electrical Specification for the 40 nm family 32-bit MCU SPC584Cx and SPC58ECx products. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” (Controller Characteristics) is included in the “Symbol” column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” (System Requirement) is included in the “Symbol” column. The electrical parameters shown in this document are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 3 are used and the parameters are tagged accordingly in the tables where appropriate. Table 3. Parameter classifications Classification tag 14/153 Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design validation on a small sample size from typical devices. D Those parameters are derived mainly from simulations. DS11620 Rev 8 SPC584Cx, SPC58ECx 4.2 Electrical characteristics Absolute maximum ratings Table 4 describes the maximum ratings for the device. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Stress beyond the listed maxima, even momentarily, may affect device reliability or cause permanent damage to the device. Table 4. Absolute maximum ratings Value Symbol C Parameter Conditions Unit Min Typ Max VDD_LV SR D Core voltage operating life range(1) — –0.3 — 1.4 V VDD_HV_IO_MAIN VDD_HV_IO_FLEX VDD_HV_OSC VDD_HV_FLA SR D I/O supply voltage(2) — –0.3 — 6.0 V VSS_HV_ADV SR D ADC ground voltage Reference to digital ground –0.3 — 0.3 V VDD_HV_ADV SR D ADC Supply voltage(2) Reference to VSS_HV_ADV –0.3 — 6.0 V VSS_HV_ADR_S SR D SAR ADC ground reference — –0.3 — 0.3 V VDD_HV_ADR_S SR D SAR ADC voltage reference(2) Reference to VSS_HV_ADR_S –0.3 — 6.0 V VSS-VSS_HV_ADR_S SR D VSS_HV_ADR_S differential voltage — –0.3 — 0.3 V VSS-VSS_HV_ADV SR D VSS_HV_ADV differential voltage — –0.3 — 0.3 V — –0.3 — 6.0 Relative to Vss –0.3 — — Relative to VDD_HV_IO and VDD_HV_ADV — — 0.3 VIN TTRIN IINJ SR SR SR D I/O input voltage range(2)(3) (4) V D Digital Input pad transition time(5) — — — 1 ms T Maximum DC injection current for each analog/digital PAD(6) — –5 — 5 mA DS11620 Rev 8 15/153 16 Electrical characteristics SPC584Cx, SPC58ECx Table 4. Absolute maximum ratings (continued) Value Symbol TSTG TPAS C SR SR Parameter Conditions Unit Min Typ Max T Maximum nonoperating Storage temperature range — –55 — 125 °C C Maximum nonoperating temperature during passive lifetime — –55 — 150(7) °C — — 20 years TSTORAGE SR — Maximum No supply; storage storage time, temperature in assembled part range –40 °C to programmed in 60 °C ECU TSDR SR T Maximum solder temperature Pbfree packaged(8) — — — 260 °C MSL SR T Moisture sensitivity level(9) — — — 3 — Maximum cumulated XRAY dose Typical range for X-rays source during inspection:80 ÷ 130 KV; 20 ÷ 50 μA — — 1 grey TXRAY dose SR T 1. VDD_LV: allowed 1.335 V - 1.400 V for 60 seconds cumulative time at the given temperature profile. Remaining time allowed 1.260 V - 1.335 V for 10 hours cumulative time at the given temperature profile. Remaining time as defined in Section 4.3: Operating conditions. 2. VDD_HV: allowed 5.5 V – 6.0 V for 60 seconds cumulative time at the given temperature profile, for 10 hours cumulative time with the device in reset at the given temperature profile. Remaining time as defined in Section 4.3: Operating conditions. 3. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3 V can be used for nominal calculations. 4. Relative value can be exceeded if design measures are taken to ensure injection current limitation (parameter IINJ). 5. This limitation applies to pads with digital input buffer enabled. If the digital input buffer is disabled, there are no maximum limits to the transition time. 6. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in Section 4.8.3: I/O pad current specifications. 7. 175°C are allowed for limited time. Mission profile with passive lifetime temperature >150°C have to be evaluated by ST to confirm that are granted by product qualification. 8. Solder profile per IPC/JEDEC J-STD-020D. 9. Moisture sensitivity per JDEC test method A112. 16/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 4.3 Electrical characteristics Operating conditions Table 5 describes the operating conditions for the device, and for which all the specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded or the functionality of the device is not guaranteed. Table 5. Operating conditions Value(1) Symbol C Parameter Conditions Unit Min Typ Max FSYS(2) SR P Operating system clock frequency(3) — — — 180 MHz TA_125 Grade(4) SR D Operating Ambient temperature — –40 — 125 °C TJ_125 Grade(4) SR P Junction temperature under bias TA = 125 °C –40 — 150 °C TA_105 Grade(4) SR D Ambient temperature under bias — –40 — 105 °C TJ_105 Grade(4) SR D Operating Junction temperature TA = 105 °C –40 — 130 °C VDD_LV SR P Core supply voltage(5) — 1.14 1.20 1.26(6) (7) V VDD_HV_IO_MAIN VDD_HV_IO_FLEX VDD_HV_FLA VDD_HV_OSC SR P IO supply voltage — 3.0 — 5.5 V VDD_HV_ADV SR P ADC supply voltage — 3.0 — 5.5 V VSS_HV_ADVVSS SR D ADC ground differential voltage — –25 — 25 mV VDD_HV_ADR_S SR P SAR ADC reference voltage — 3.0 — 5.5 V D SAR ADC reference differential voltage — — — 25 mV P SAR ADC ground reference voltage — VDD_HV_ADR_SVDD_HV_ADV VSS_HV_ADR_S SR SR DS11620 Rev 8 VSS_HV_ADV V 17/153 19 Electrical characteristics SPC584Cx, SPC58ECx Table 5. Operating conditions (continued) Value(1) Symbol C Parameter Conditions Unit Min Typ Max VSS_HV_ADR_SVSS_HV_ADV SR D VSS_HV_ADR_S differential voltage — –25 — 25 mV VRAMP_HV SR D Slew rate on HV power supply — — — 100 V/ms VIN SR P I/O input voltage range — 0 — 5.5 V Digital pins and analog pins –3.0 — 3.0 mA Digital pins and analog pins –10 — 10 mA IINJ1 SR T Injection current (per pin) without performance degradation(8) (9) (10) IINJ2 SR D Dynamic Injection current (per pin) with performance degradation(10) (11) 1. The ranges in this table are design targets and actual data may vary in the given range. 2. The maximum number of PRAM wait states has to be configured accordingly to the system clock frequency. Refer to Table 6. 3. Maximum operating frequency is applicable to the cores and platform of the device. See the Clock Chapter in the Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device. 4. In order to evaluate the actual difference between ambient and junction temperatures in the application, refer to Section 5.6: Package thermal characteristics. 5. Core voltage as measured on device pin to guarantee published silicon performance. 6. Core voltage can exceed 1.26 V with the limitations provided in Section 4.2: Absolute maximum ratings, provided that HVD134_C monitor reset is disabled. 7. 1.260 V - 1.290 V range allowed periodically for supply with sinusoidal shape and average supply value below or equal to 1.236 V at the given temperature profile. 8. Full device lifetime. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See Section 4.2: Absolute maximum ratings for maximum input current for reliability requirements. 9. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pins is above the supply rail, current will be injected through the clamp diode to the supply rails. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature. 10. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in Section 4.8.3: I/O pad current specifications. 11. Positive and negative Dynamic current injection pulses are allowed up to this limit. I/O and ADC specifications are not granted. See the dedicated chapters for the different specification limits. See the Absolute Maximum Ratings table for maximum input current for reliability requirements. Refer to the following pulses definitions: Pulse1 (ISO 7637-2:2011), Pulse 2a(ISO 7637-2:2011 5.6.2), Pulse 3a (ISO 7637-2:2011 5.6.3), Pulse 3b (ISO 7637-2:2011 5.6.3). 18/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Electrical characteristics Table 6. PRAM wait states configuration 4.3.1 PRAMC WS Clock Frequency (MHz) 1 < 180 0 < 120 Power domains and power up/down sequencing The following table shows the constraints and relationships for the different power domains. Supply1 (on rows) can exceed Supply2 (on columns), only if the cell at the given row and column is reporting ‘ok’. This limitation is valid during power-up and power-down phases, as well as during normal device operation. Table 7. Device supply relation during power-up/power-down sequence Supply2 Supply1 VDD_LV VDD_HV_IO_FLEX VDD_HV_IO_MAIN VDD_HV_FLA VDD_HV_OSC VDD_HV_ADV VDD_HV_ADR not allowed ok ok ok ok VDD_HV_IO_FLEX ok VDD_HV_IO_MAIN VDD_HV_FLA VDD_HV_OSC ok ok VDD_HV_ADV ok ok not allowed VDD_HV_ADR ok ok not allowed ok not allowed During power-up, all functional terminals are maintained in a known state as described in the device pinout Microsoft Excel file attached to the IO_Definition document. DS11620 Rev 8 19/153 19 Electrical characteristics 4.4 SPC584Cx, SPC58ECx Electrostatic discharge (ESD) The following table describes the ESD ratings of the device: • All ESD testing are in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits, • Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification requirements, which include the complete DC parametric and functional testing at room temperature and hot temperature, maximum DC parametric variation within 10% of maximum specification”. Table 8. ESD ratings Parameter ESD for Human Body Model (HBM)(1) ESD for field induced Charged Device Model (CDM)(2) C Conditions Value Unit T All pins 2000 V T All pins 500 V T Corner Pins 750 V 1. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing. 2. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level. 20/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 4.5 Electrical characteristics Electromagnetic compatibility characteristics EMC measurements at IC-level IEC standards are available from STMicroelectronics on request. DS11620 Rev 8 21/153 21 Electrical characteristics 4.6 SPC584Cx, SPC58ECx Temperature profile The device is qualified in accordance to AEC-Q100 Grade1 requirements, such as HTOL 1,000 h and HTDR 1,000 hrs, TJ = 150 °C. Mission profile exceeding AEC-Q100 Grade 1, and with junction Temperature equal to or lower than 150 °C have to be evaluated by ST to confirm that are covered by product qualification. Contact your STMicroelectronics Sales representative for validation. 22/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 4.7 Electrical characteristics Device consumption Table 9. Device consumption Value(1) Symbol IDD_LKG(2),(3) C CC Parameter Conditions Unit Min Typ Max C TJ = 40 °C — — 14 D TJ = 25 °C — — 10 D Leakage current on the VDD_LV supply D TJ = 55 °C — — 20 TJ = 95 °C — — 50 D TJ = 120 °C — — 90 P TJ = 150 °C — — 180 — — — 210 mA mA IDD_LV(3) CC P Dynamic current on the VDD_LV supply, very high consumption profile(4) IDD_HV CC P Total current on the VDD_HV supply(4) fMAX — — 64 mA IDD_LV_GW CC T Dynamic current on the VDD_LV supply, gateway profile(5) — — — 170 mA IDD_HV_GW CC T Dynamic current on the VDD_HV supply, gateway profile(5) — — — 37 mA IDD_LV_BCM CC T Dynamic current on the VDD_LV supply, body profile(6) — — — 150 mA IDD_HV_BCM CC T Dynamic current on the VDD_HV supply, body profile(6) — — — 44 mA IDD_MAIN_CORE_AC CC T Main Core dynamic current(7) fMAX — — 50 mA IDD_HSM_AC CC T HSM platform dynamic operating current(8) fMAX/2 — — 20 mA T Dynamic current on the VDD_LV supply +Total current on the VDD_HV supply — — 71 100 mA T Dynamic current on the VDD_LV supply +Total current on the VDD_HV supply — — 15 30 mA IDDHALT(9) IDDSTOP(10) CC CC DS11620 Rev 8 23/153 25 Electrical characteristics SPC584Cx, SPC58ECx Table 9. Device consumption (continued) Value(1) Symbol C Parameter Typ Max TJ = 25 °C — 85 160 TJ = 40 °C — — 250 TJ = 55 °C — — 370 TJ = 120 °C — 1.2 2.2 P TJ = 150 °C — 2.9 5.0 D TJ = 25 °C — 100 180 TJ = 40 °C — — 270 TJ = 55 °C — — 410 TJ = 120 °C — — 2.4 P TJ = 150 °C — — 5.5 D TJ = 25 °C — 150 250 TJ = 40 °C — — 390 TJ = 55 °C — — 590 TJ = 120 °C — 2.0 3.5 TJ = 150 °C — 5.1 8 D SSWU running over all STANDBY period with OPC/TU commands execution and keeping ADC off(12) TJ = 40 °C — 1.0 3.5 mA D SSWU running over all STANDBY period with OPC/TU/ADC commands execution and keeping ADC on(13) TJ = 40 °C — 3.5 5.0 mA C CC D D C IDDSTBY32 CC D D C IDDSTBY256 CC D D Total standby mode current on VDD_LV and VDD_HV supply, 8 KB RAM(11) Total standby mode current on VDD_LV and VDD_HV supply, 32 KB RAM(11) Total standby mode current on VDD_LV and VDD_HV supply, 256 KB RAM(11) P IDDSSWU1 IDDSSWU2 CC CC Unit Min D IDDSTBY8 Conditions µA mA µA mA µA mA 1. The ranges in this table are design targets and actual data may vary in the given range. 2. The leakage considered is the sum of core logic and RAM memories. The contribution of analog modules is not considered, and they are computed in the dynamic IDD_LV and IDD_HV parameters. 3. IDD_LKG (leakage current) and IDD_LV (dynamic current) are reported as separate parameters, to give an indication of the consumption contributors. The tests used in validation, characterization and production are verifying that the total consumption (leakage+dynamic) is lower or equal to the sum of the maximum values provided (IDD_LKG + IDD_LV). The two parameters, measured separately, may exceed the maximum reported for each, depending on the operative conditions and the software profile used. 4. Use case: 2 x e200Z4 @180 MHz, HSM @90 MHz, all IPs clock enabled, Flash access with prefetch disabled, Flash consumption includes parallel read and program/erase, all SARADC in continuous conversion, DMA continuously triggered by ADC conversion, 4 DSPI / 8 CAN / 2 LINFlex and 2 DSPI transmitting, 2 x EMIOS running (8 channels in OPWMT mode), FIRC, SIRC, FXOSC, PLL0-1 running. The switching activity estimated for dynamic consumption does not include I/O toggling, which is highly dependent on the application. Details of the software configuration are available separately. The total device consumption is IDD_LV + IDD_HV + IDD_LKG for the selected temperature. 5. Gateway use case: Two cores running at 160 MHz, DMA, PLL, FLASH read only 25%, 8xCAN, 1xEthernet, HSM, 2xSARADC. 6. BCM use case: One Core running at 160 MHz, no lockstep no, DMA, PLL, FLASH read only 25%, 2xCAN, HSM, 4xSARADC. 24/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Electrical characteristics 7. Dynamic consumption of one core, including the dedicated I/D-caches and I/D-MEMS contribution. 8. Dynamic consumption of the HSM module, including the dedicated memories, during the execution of Electronic Code Book crypto algorithm on 1 block of 16 byte of shared RAM. 9. Flash in Low Power. Sysclk at 160 MHz, PLL0_PHI at 160 MHz, XTAL at 40 MHz, FIRC 16 MHz ON, RCOSC1M off. FlexCAN: instances: 0, 1, 2, 3, 4, 5, 6, 7 ON (configured but no reception or transmission), Ethernet ON (configured but no reception or transmission), ADC ON (continuously converting). All others IPs clock-gated. 10. Sysclk = RC16 MHz, RC16 MHz ON, RC1 MHz ON, PLL OFF. All possible peripherals off and clock gated. Flash in power down mode. 11. STANDBY mode: device configured for minimum consumption, RC16 MHz off, RC1 MHz on, OSC32K off, SSWU off. 12. SSWU1 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC off. The total standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the selected memory size and temperature. 13. SSWU2 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC on in continuous conversion. The total standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the selected memory size and temperature. DS11620 Rev 8 25/153 25 Electrical characteristics 4.8 SPC584Cx, SPC58ECx I/O pad specification The following table describes the different pad type configurations. Table 10. I/O pad specification descriptions Pad type Description Weak configuration Provides a good compromise between transition time and low electromagnetic emission. Medium configuration Strong configuration Provides transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. Provides fast transition speed; used for fast interface. Very strong configuration Provides maximum speed and controlled symmetric behavior for rise and fall transition. Used for fast interface including Ethernet and FlexRay interfaces requiring fine control of rising/falling edge jitter. Differential configuration A few pads provide differential capability providing very fast interface together with good EMC performances. Input only pads Standby pads Note: These low input leakage pads are associated with the ADC channels. These pads (LP pads) are active during STANDBY. They are configured in CMOS level logic and this configuration cannot be changed. Moreover, when the device enters the STANDBY mode, the pad-keeper feature is activated for LP pads. It means that: – if the pad voltage level is above the pad keeper high threshold, a weak pull-up resistor is automatically enabled – if the pad voltage level is below the pad keeper low threshold, a weak pull-down resistor is automatically enabled. For the pad-keeper high/low thresholds please consider (VDD_HV_IO_MAIN / 2) +/-20%. Each I/O pin on the device supports specific drive configurations. See the signal description table in the device reference manual for the available drive configurations for each I/O pin. PMC_DIG_VSIO register has to be configured to select the voltage level (3.3 V or 5.0 V) for each IO segment. Logic level is configurable in running mode while it is CMOS not-configurable in STANDBY for LP (low power) pads, so if a LP pad is used to wakeup from STANDBY, it should be configured as CMOS also in running mode in order to prevent device wrong behavior in STANDBY. 4.8.1 I/O input DC characteristics The following table provides input DC electrical characteristics, as described in Figure 3. 26/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Electrical characteristics Figure 3. I/O input electrical characteristics VIN VDD VIH VHYS VIL VINTERNAL (SIUL register) Table 11. I/O input electrical characteristics Value Symbol C Parameter Conditions Unit Min Typ Max TTL Vihttl SR P Input high level TTL — 2 — VDD_HV_IO + 0.3 V Vilttl SR P Input low level TTL — –0.3 — 0.8 V Vhysttl CC C Input hysteresis TTL — 0.3 — — V CMOS Vihcmos SR P Input high level CMOS — 0.65 * VDD — VDD_HV_IO + 0.3 V Vilcmos SR P Input low level CMOS — –0.3 — 0.35 * VDD V Vhyscmos CC C Input hysteresis CMOS — 0.10 * VDD — — V COMMON ILKG CC P Pad input leakage INPUT-ONLY pads TJ = 150 °C — — 200 nA ILKG CC P Pad input leakage STRONG pads TJ = 150 °C — — 1,000 nA ILKG CC P Pad input leakage VERY STRONG pads, TJ = 150 °C — — 1,000 nA DS11620 Rev 8 27/153 36 Electrical characteristics SPC584Cx, SPC58ECx Table 11. I/O input electrical characteristics (continued) Value Symbol C Parameter Conditions Unit Min Typ Max CP1 CC D Pad capacitance — — — 10 pF Vdrift CC D Input Vil/Vih temperature drift In a 1 ms period, with a temperature variation 3 V TJ < 150 °C, VDD_HV_ADV > 3 V, V DD_HV_ADR_S > 3 V Total unadjusted error in 12-bit TJ < 150 °C, configuration(7) > 3 V, V Unit Min Max –4 4 –6 6 LSB –6 6 D High frequency mode, TJ < 150 °C, VDD_HV_ADV > 3 V, VDD_HV_ADR_S > 3 V –12 12 D Mode 1, TJ < 150 °C, VDD_HV_ADV > 3 V VDD_HV_ADR_S > 3 V –1.5 1.5 –2.0 2.0 DD_HV_ADV (12b) 3 V > VDD_HV_ADR_S > 2 V D TUE10 CC C C Mode 1, TJ < 150 °C, VDD_HV_ADV > 3 V, Total unadjusted error 3 V > V DD_HV_ADR_S > 2 V in 10-bit Mode 2, TJ < 150 °C, configuration(7) VDD_HV_ADV > 3 V VDD_HV_ADR_S > 3 V Mode 3, TJ < 150 °C, VDD_HV_ADV > 3 V VDD_HV_ADR_S > 3 V DS11620 Rev 8 LSB (10b) –3.0 3.0 –4.0 4.0 51/153 55 Electrical characteristics SPC584Cx, SPC58ECx Table 27. SARn ADC electrical specification (continued) Value Symbol ΔTUE12 C CC D Parameter Differential nonlinearity CC T Unit Min Max VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [0:25 mV] –1 1 VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –2 2 VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –4 4 VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –6 6 –2.5 2.5 VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –4 4 VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –7 7 VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –12 12 Standard frequency mode, VDD_HV_ADV > 4 V VDD_HV_ADR_S > 4 V –1 2 High frequency mode, VDD_HV_ADV > 4 V VDD_HV_ADR_S > 4 V –1 TUE degradation due V DD_HV_ADV < VIN < to VDD_HV_ADR offset V DD_HV_ADR with respect to VDD_HV_ADR − VDD_HV_ADV VDD_HV_ADV ∈ [0:25 mV] P DNL(8) Conditions LSB (12b) LSB (12b) 2 1. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within the sampling window. Refer to Figure 8 for models of the internal ADC circuit, and the values to use in external RC sizing and calculating the sampling window duration. 2. Mode1: 6 sampling cycles + 10 conversion cycles at 13.33 MHz. 3. Mode2: 5 sampling cycles + 10 conversion cycles at 13.33 MHz. 4. Mode3: 6 sampling cycles + 10 conversion cycles at 16 MHz. 5. IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven by the transfer of charge between internal capacitances during the conversion. 6. Current parameter values are for a single ADC. 52/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Electrical characteristics 7. TUE is granted with injection current within the range defined in Table 26, for parameters classified as T and D. 8. DNL is granted with injection current within the range defined in Table 26, for parameters classified as T and D. 4.12.3 SAR ADC 10-bit electrical specification The ADC comparators are 10-bit Successive Approximation Register analog-to-digital converters with full capacitive DAC. The SARn architecture allows input channel multiplexing. Note: The functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maximum may affect device reliability or cause permanent damage to the device. Table 28. ADC-Comparator electrical specification Value Symbol C P Parameter Conditions SR tADCINIT SR — ADC initialization time tADCBIASINIT SR — ADC BIAS initialization time tADCINITSBY SR — ADC initialization time in standby tADCPRECH SR T ADC precharge time ΔVPRECH SR D Precharge voltage precision tADCSAMPLE tADCEVAL IADCREFH(3),(4) IADCREFL(5) SR SR CC CC T Clock frequency P ADC sample P D T D 13.33 >13.33 16.0 — 1.5 — µs — 5 — µs 8 — µs Fast channel 1/fADCK — Standard channel 2/fADCK — 0 0.25 V 5/fADCK(2) — µs 10-bit ADC mode, Standard channel 6/fADCK — µs 10-bit ADC mode 10/fADCK — ADC comparator mode 2/fADCK — Run mode (average across all codes) — 7 Power Down mode — 1 ADC comparator mode — 19.5 Run mode VDD_HV_ADR_S ≤ 5.5 V — 15 Power Down mode VDD_HV_ADR_S ≤ 5.5 V — 1 ADC comparator mode — 20.5 Standby Mode TJ < 150 °C 10-bit ADC mode, Fast channel ADC evaluation time ADC low reference current 7.5 High frequency mode time(1) ADC high reference current Max Standard frequency mode fADCK Unit Min DS11620 Rev 8 MHz µs µs µA µA 53/153 55 Electrical characteristics SPC584Cx, SPC58ECx Table 28. ADC-Comparator electrical specification (continued) Value Symbol IADV_S(5) TUE10 C CC Parameter Conditions Max Run mode — 4 Power Down mode — 0.04 T TJ < 150 °C, VDD_HV_ADV > 3 V, VDD_HV_ADR_S > 3 V –2 2 P TJ < 150 °C, VDD_HV_ADV > 3 V, VDD_HV_ADR_S > 3 V –3 3 P V DD_HV_ADV power supply current D CC T Total unadjusted error in 10-bit configuration(6) TJ < 150 °C, VDD_HV_ADV > 3 V, 3 V > VDD_HV_ADR_S > 2 V 54/153 CC TUE degradation due to VDD_HV_ADR offset D with respect to VDD_HV_ADV 3 –3 3 VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [0:25 mV] –1.0 1.0 VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –2.0 2.0 VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –3.5 3.5 VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –6.0 6.0 VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [0:25 mV] –2.5 2.5 VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –4.0 4.0 VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –7.0 7.0 VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –12.0 12.0 DS11620 Rev 8 mA LSB –3 High frequency mode, TJ < 150 °C, VDD_HV_ADV > 3 V, VDD_HV_ADR_S > 3 V D ΔTUE10 Unit Min (10b) LSB (10b) SPC584Cx, SPC58ECx Electrical characteristics Table 28. ADC-Comparator electrical specification (continued) Value Symbol C P DNL(7) CC Parameter Conditions Standard frequency mode, VDD_HV_ADV > 4 V Differential non-linearity VDD_HV_ADR_S > 4 V std. mode High frequency mode, T VDD_HV_ADV > 4 V VDD_HV_ADR_S > 4 V Unit Min Max –1 2 LSB (10b) –1 2 1. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within the sampling window. Refer to Figure 8 for models of the internal ADC circuit, and the values to use in external RC sizing and calculating the sampling window duration. 2. In case the ADC is used as Fast Comparator the sampling time is tADCSAMPLE = 2/fADCK. 3. IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven by the transfer of charge between internal capacitances during the conversion. 4. Current parameter values are for a single ADC. 5. All channels of all SAR-ADC12bit and SAR-ADC10bit are impacted with same degradation, independently from the ADC and the channel subject to current injection. 6. TUE is granted with injection current within the range defined in Table 26, for parameters classified as T and D. 7. DNL is granted with injection current within the range defined in Table 26, for parameters classified as T and D. DS11620 Rev 8 55/153 55 Electrical characteristics 4.13 SPC584Cx, SPC58ECx Temperature Sensor The following table describes the temperature sensor electrical characteristics. Table 29. Temperature sensor electrical characteristics Value Symbol C Parameter Conditions Unit Min Typ Max — CC — Temperature monitoring range — –40 — 150 °C TSENS CC T Sensitivity — — 5.18 — mV/°C TACC CC P Accuracy TJ < 150 °C –3 — 3 °C 56/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 4.14 Electrical characteristics LFAST pad electrical characteristics The LFAST(LVDS Fast Asynchronous Serial Transmission) pad electrical characteristics apply to high-speed debug serial interfaces on the device. 4.14.1 LFAST interface timing diagrams Figure 9. LFAST LVDS timing definition Signal excursions above this level NOT allowed Max. common mode input at RX 1743 mV 1600 mV |ΔVOD| Max Differential Voltage = 285 mV (LFAST) PAD_P Minimum Data Bit Time Opening = 0.55 * T (LFAST) |ΔVOD| Min Differential Voltage = 100 mV (LFAST) “No-Go” VOS = 1.2 V +/- 10% TX common mode VICOM PAD_N ΔPEREYE ΔPEREYE Data Bit Period T = 1 /FDATA Min. common mode input at RX Signal excursions below this level NOT allowed DS11620 Rev 8 150 mV 0V 57/153 62 Electrical characteristics SPC584Cx, SPC58ECx Figure 10. Power-down exit time H lfast_pwr_down L tPD2NM_TX Differential Data Lines TX pad_p/pad_n Data Valid Figure 11. Rise/fall time VIH Differential Data Lines TX |ΔVOD(min)| |ΔVOD(min)| pad_p/pad_n VIL tTR tTR 4.14.2 LFAST LVDS interface electrical characteristics The following table contains the electrical characteristics for the LFAST interface. Table 30. LVDS pad startup and receiver electrical characteristics Symbol(1),(2) Value C Parameter Conditions Unit Min Typ Max STARTUP(3),(4) tSTRT_BIAS CC T Bias current reference startup time(5) — — 0.5 4 μs tPD2NM_TX CC T Transmitter startup time (power down to normal mode)(6) — — 0.4 2.75 μs 58/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Electrical characteristics Table 30. LVDS pad startup and receiver electrical characteristics (continued) Symbol(1),(2) Value C Parameter Conditions Unit Min Typ Max tSM2NM_TX CC T Transmitter startup time (sleep mode to normal mode)(7) Not applicable to the MSC/DSPI LVDS pad — 0.4 0.6 µs tPD2NM_RX CC T Receiver startup time (power down to normal mode)(8) — — 20 40 ns tPD2SM_RX CC T Receiver startup time (power down to sleep mode)(9) Not applicable to the MSC/DSPI LVDS pad — 20 50 ns ILVDS_BIAS CC D LVDS bias current consumption Tx or Rx enabled — — 0.95 mA TRANSMISSION LINE CHARACTERISTICS (PCB Track) Z0 SR D Transmission line characteristic impedance — 47.5 50 52.5 Ω ZDIFF SR D Transmission line differential impedance — 95 100 105 Ω (10) — 1.6(11) V RECEIVER 0.15 VICOM SR T Common mode voltage — |ΔVI| SR T Differential input voltage(12) — 100 — — mV VHYS CC T Input hysteresis — 25 — — mV RIN CC D Terminating resistance VDD_HV_IO = 5.0 V ± 10% -40 °C < TJ< 150 °C 80 — 150 VDD_HV_IO = 3.3 V ± 10% -40 °C < TJ < 150 °C 80 — 175 — — 3.5 6.0 pF CIN CC D Differential input capacitance(13) Ω ILVDS_RX CC C Receiver DC current consumption Enabled — — 1.6 mA IPIN_RX CC D Maximum consumption on receiver input pin ΔVI = 400 mV, RIN = 80 Ω — — 5 mA 1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST & High-speed Debug (HSD) LVDS pad. 2. All LVDS pad electrical characteristics are valid from -40 °C to 150 °C. 3. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS control registers (LCR) of the LFAST and High-speed Debug modules. The value of the LCR bits for the LFAST/HSD modules don’t take effect until the corresponding SIUL2 MSCR ODC bits are set to LFAST LVDS mode. Startup times for MSC/DSPI LVDS are defined after 2 peripheral bridge clock delay after selecting MSC/DSPI LVDS in the corresponding SIUL2 MSCR ODC field. 4. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter electrical characteristic tables. 5. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being enabled. 6. Total transmitter startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_TX + 2 peripheral bridge clock periods. 7. Total transmitter startup time from sleep mode to normal mode is tSM2NM_TX + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode. DS11620 Rev 8 59/153 62 Electrical characteristics SPC584Cx, SPC58ECx 8. Total receiver startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_RX + 2 peripheral bridge clock periods. 9. Total receiver startup time from power down to sleep mode is tPD2SM_RX + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode. 10. Absolute min = 0.15 V – (285 mV/2) = 0 V 11. Absolute max = 1.6 V + (285 mV/2) = 1.743 V 12. Value valid for LFAST mode. The LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to ensure proper LFAST receive timing. 13. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. Table 31. LFAST transmitter electrical characteristics Value Symbol(1),(2),(3) C fDATA SR VOS Parameter D Conditions Unit Min Typ Max Data rate — — — 320 Mbps CC P Common mode voltage — 1.08 — 1.32 V |ΔVOD| CC P Differential output voltage swing (terminated)(4),(5) — 110 — 285 mV tTR CC T Rise time from -|ΔVOD(min)| to +|ΔVOD(min)|. Fall time from +|ΔVOD(min)| to -|ΔVOD(min)| — 0.26 — 1.25 ns CL SR External lumped differential load capacitance(4) VDD_HV_IO = 4.5 V — — 6.0 VDD_HV_IO = 3.0 V — — 4.0 — 3.6 mA 2.85 mA D ILVDS_TX CC C Transmitter DC current consumption Enabled — IPIN_TX CC D Transmitter DC current sourced through output pin — 1.1 1. This table is applicable to LFAST LVDS pads used in LFAST configuration (SIUL2_MSCR_IO_n.ODC=101). 2. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance values shown in Figure 12. 3. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C. 4. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 12. 5. Valid for maximum external load CL. 60/153 DS11620 Rev 8 pF SPC584Cx, SPC58ECx Electrical characteristics Figure 12. LVDS pad external load diagram Die PCB Package GPIO Driver CL 1pF 2.5pF 100 Ω terminator LVDS Driver GPIO Driver CL 1pF 2.5pF 4.14.3 LFAST PLL electrical characteristics The following table contains the electrical characteristics for the LFAST PLL. Table 32. LFAST PLL electrical characteristics Symbol(1) Value C Parameter Conditions Unit Min Typ Max fRF_REF SR D PLL reference clock frequency (CLKIN) — 10(2) — 30 MHz ERRREF CC D — -1 — 1 % — 30 — 70 % DCREF PLL reference clock frequency error CC D PLL reference clock duty cycle (CLKIN) PN CC D Integrated phase noise (single side band) fRF_REF = 20 MHz — — -58 dBc fVCO CC P PLL VCO frequency — 312 — 320(3) MHz — 150(4) µs tLOCK CC D PLL phase lock — DS11620 Rev 8 — 61/153 62 Electrical characteristics SPC584Cx, SPC58ECx Table 32. LFAST PLL electrical characteristics (continued) Symbol(1) Value C Parameter Conditions T ΔPERREF SR Input reference clock jitter (peak to peak) T ΔPEREYE CC T Unit Min Typ Max Single period, fRF_REF = 20 MHz — — 350 ps Long term, fRF_REF = 20 MHz -500 — 500 ps — — — 400 ps Output Eye Jitter (peak to peak)(5) 1. The specifications in this table apply to both the interprocessor bus and debug LFAST interfaces. 2. If the input frequency is lower than 20 MHz, it is required to set a input division factor of 1. 3. The 320 MHz frequency is achieved with a 20 MHz reference clock. 4. The total lock time is the sum of the coarse lock time plus the programmable lock delay time 2 clock cycles of the peripheral bridge clock that is connected to the PLL on the device (to set the PLL enable bit). 5. Measured at the transmitter output across a 100 Ω termination resistor on a device evaluation board. See Figure 12. 62/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 4.15 Electrical characteristics Power management The power management module monitors the different power supplies as well as it generates the required internal supplies. The device can operate in the following configurations: Table 33. Power management regulators Device External regulator Internal SMPS regulator SPC584Cx SPC58ECx — — Internal linear regulator external ballast Internal linear regulator internal ballast Auxiliary regulator Clamp regulator Internal standby regulator(1) X X(2) X X X 1. Standby regulator is automatically activated when the device enters standby mode. 2. The operability of the device with internal ballast can be limited by the maximum thermal dissipation of the device in the application. The internal ballast option is available only on specific devices, contact the local sales. 4.15.1 Power management integration Use the integration schemes provided below to ensure the proper device function, according to the selected regulator configuration. The internal regulators are supplied by VDD_HV_IO_MAIN supply and are used to generate VDD_LV supply. Place capacitances on the board as near as possible to the associated pins and limit the serial inductance of the board to less than 5 nH. It is recommended to use the internal regulators only to supply the device itself. DS11620 Rev 8 63/153 72 Electrical characteristics SPC584Cx, SPC58ECx Figure 13. Internal regulator with external ballast mode &)/$ 9''B+9 &( 966 %&75/ 9''B+9B)/$ &% 9''B+9B,2 4(;7 &%9 9''B+9B,2 &+9Q 0DLQ5HJ 966 9''B/9 $X[5HJ &/9Q 966 &ODPS5HJ 966B+9B$'9 &$'& 64/153 DS11620 Rev 8 9''B+9B$'9 SPC584Cx, SPC58ECx Electrical characteristics Figure 14. Internal regulator with internal ballast mode &)/$ &( 966 9''B+9B,2 %&75/ 9''B+9B)/$ &%9 9''B+9B,2 0DLQ5HJ 9''B/9 &/9Q 966 &+9Q $X[5HJ 966 &ODPS5HJ 966B+9B$'9 9''B+9B$'9 &$'& DS11620 Rev 8 65/153 72 Electrical characteristics SPC584Cx, SPC58ECx Figure 15. Standby regulator with external ballast mode &)/$ 9''B+9 &%9 &( 966 9''B+9B,2 %&75/ &% 9''B+9B)/$ 4(;7 9''B+9B,2 &+9Q 6WDQGE\UHJ 9''B/9 &/9Q 966 966B+9B$'9 9''B+9B$'9 &$'& 66/153 DS11620 Rev 8 966 SPC584Cx, SPC58ECx Electrical characteristics Figure 16. Standby regulator with internal ballast mode &)/$ &( 966 9''B+9B,2 9''B+9B)/$ &%9 9''B+9B,2 &+9Q 6WDQGE\ 5HJ 9''B/9 966 &/9Q 966 966B+9B$'9 9''B+9B$'9 &$'& Table 34. External components integration Symbol C Value Conditions(1) Parameter Unit Min Typ Max — 1.1 2.2 3.0 µF Total resistance including board track 5 — 50 mΩ Each VDD_LV/VSS pair — 100 — nF Common Components CE SR D Internal voltage regulator stability external capacitance(2) (3) RE SR D Stability capacitor equivalent serial resistance CLVn SR Internal voltage regulator D decoupling external capacitance RLVn SR D Stability capacitor equivalent serial resistance — — — 50 mΩ CBV SR Bulk capacitance for HV supply D (2) on one VDD_HV_IO_MAIN/ VSS pair — 4.7 — µF CHVn SR D Decoupling capacitance for ballast and IOs (2) on all VDD_HV_IO/VSS and VDD_HV_ADR/VSS pairs — 100 — nF (2) (4) (5) DS11620 Rev 8 67/153 72 Electrical characteristics SPC584Cx, SPC58ECx Table 34. External components integration (continued) Symbol C Value Conditions(1) Parameter CFLA SR D Decoupling capacitance for Flash supply (2)(6) CADC SR D ADC supply external capacitance(2) (6) Unit Min Typ Max — — 10 — nF VDD_HV_ADV/VSS_HV_ADV pair — 1.5 — µF — HV_IO Internal Linear Regulator with External Ballast Mode QEXT SR D Recommended external NPN transistors VQ SR D External NPN transistor collector voltage — NJD2873T4, BCP68, 2SCR574D 2.0 VDD_ V _MAIN CB SR Internal voltage regulator stability D external capacitance on ballast base (2) (7) — — 2.2 — µF RB SR D Stability capacitor equivalent serial resistance Total resistance including board track 5 — 50 mΩ 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TJ = –40 / 150 °C, unless otherwise specified. 2. Recommended X7R or X5R ceramic –50% / +35% variation across process, temperature, voltage and after aging. 3. CE capacitance is required both in internal and external ballast mode. 4. For noise filtering, add a high frequency bypass capacitance of 10 nF. 5. For applications it is recommended to implement at least 5 CLV capacitances. 6. Recommended X7R capacitors. For noise filtering, add a high frequency bypass capacitance of 100 nF. 7. CB capacitance is required if only the external ballast is implemented. 68/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 4.15.2 Electrical characteristics Voltage regulators Table 35. Linear regulator specifications Value Symbol C Parameter Conditions CC P Main regulator output voltage VMREG CC P Typ Max Power-up, before trimming, no load 1.14 1.22 1.30 After trimming, maximum load 1.09 1.19 1.24 — — 325 — — 450 — — 150 mA -100 — 100 mA IMREG = max — — 17 IMREG = 0 mA — — — Main regulator current provided to Internal ballast VDD_LV domain T The maximum current supported is the sum of the Main Regulator External ballast and the Auxiliary Regulator maximum current both regulators are working in parallel. IDDMREG CC IDDCLAMP Main regulator rush current sinked from VDD_HV_IO_MAIN CC D domain during VDD_LV domain loading ΔIDDMREG CC T IMREGINT CC D Main regulator current D consumption Main regulator output current variation Unit Min Power-up condition 20 µs observation window V mA mA Table 36. Auxiliary regulator specifications Value Symbol C Parameter Conditions VAUX CC P Aux regulator output voltage IDDAUX CC T ΔIDDAUX CC T Aux regulator current variation IAUXINT CC D Aux regulator current D consumption Unit Min Typ Max After trimming, internal regulator mode 1.09 1.19 1.22 V — — — 150 mA -100 — 100 mA IMREG = max — — 1.1 IMREG = 0 mA — — 1.1 Aux regulator current provided to VDD_LV domain 20 µs observation window DS11620 Rev 8 mA 69/153 72 Electrical characteristics SPC584Cx, SPC58ECx Table 37. Clamp regulator specifications Value Symbol VCLAMP C Parameter Conditions CC P Clamp regulator output voltage ΔIDDCLAMP CC T Clamp regulator current variation ICLAMPINT CC D Clamp regulator current consumption Unit Min Typ Max After trimming, internal regulator mode 1.18 1.22 1.33 V 20 µs observation window -100 — 100 mA — — 0.7 mA IMREG = 0 mA Table 38. Standby regulator specifications Value Symbol VSBY IDDSBY 4.15.3 C Parameter Conditions CC P Standby regulator output voltage CC T Standby regulator current provided to VDD_LV domain Unit Min Typ Max After trimming, maximum load 1.02 1.06 1.26 External Ballast — — 50 Internal Ballast — — 10 V mA Voltage monitors The monitors and their associated levels for the device are given in Table 39. Figure 17 illustrates the workings of voltage monitoring threshold. 70/153 DS11620 Rev 8 SPC584Cx, SPC58ECx Electrical characteristics Figure 17. Voltage monitor threshold definition VDD_xxx VHVD VLVD TVMFILTER TVMFILTER HVD TRIGGER (INTERNAL) TVMFILTER TVMFILTER LVD TRIGGER (INTERNAL) Table 39. Voltage monitor electrical characteristics Symbol C Supply/Parameter(1) Value(2) Conditions Unit Min Typ Max 1.80 2.18 2.40 V PowerOn Reset HV VPOR200_C CC P VDD_HV_IO_MAIN — Minimum Voltage Detectors HV VMVD270_C CC P VDD_HV_IO_MAIN — 2.71 2.76 2.80 V VMVD270_F CC P VDD_HV_FLA — 2.71 2.76 2.80 V CC P VDD_HV_IO_MAIN (in Standby) — 2.68 2.76 2.84 V VMVD270_SBY Low Voltage Detectors HV VLVD290_C CC P VDD_HV_IO_MAIN — 2.89 2.94 2.99 V VLVD290_F CC P VDD_HV_FLA — 2.89 2.94 2.99 V VLVD290_AS CC P VDD_HV_ADV (ADCSAR pad) — 2.89 2.94 2.99 V VLVD290_IF CC P VDD_HV_IO_FLEX — 2.89 2.94 2.99 V VLVD400_AS CC P VDD_HV_ADV (ADCSAR pad) — 4.15 4.23 4.31 V DS11620 Rev 8 71/153 72 Electrical characteristics SPC584Cx, SPC58ECx Table 39. Voltage monitor electrical characteristics (continued) Symbol C Supply/Parameter(1) Value(2) Conditions Unit Min Typ Max VLVD400_IM CC P VDD_HV_IO_MAIN — 4.15 4.23 4.31 V VLVD400_IF CC P VDD_HV_IO_FLEX — 4.15 4.23 4.31 V 3.68 3.75 3.82 V High Voltage Detectors HV VHVD400_IF CC P VDD_HV_IO_FLEX — Upper Voltage Detectors HV VUVD600_F CC P VDD_HV_FLA — 5.72 5.82 5.92 V VUVD600_IF CC P VDD_HV_IO_FLEX — 5.72 5.82 5.92 V — 0.29 0.60 0.97 V PowerOn Reset LV VPOR031_C CC P VDD_LV Minimum Voltage Detectors LV VMVD082_C CC P VDD_LV — 0.85 0.88 0.91 V VMVD094_C CC P VDD_LV — 0.98 1.00 1.02 V VMVD094_FA CC P VDD_LV (Flash) — 1.00 1.02 1.04 V VMVD094_FB CC P VDD_LV (Flash) — 1.00 1.02 1.04 V Low Voltage Detectors LV VLVD100_C CC P VDD_LV — 1.06 1.08 1.11 V VLVD100_SB CC P VDD_LV (In Standby) — 0.99 1.01 1.03 V VLVD100_F CC P VDD_LV (Flash) — 1.08 1.10 1.12 V 1.28 1.31 1.33 V High Voltage Detectors LV VHVD134_C CC P VDD_LV — Upper Voltage Detectors LV VUVD140_C CC P VDD_LV — 1.34 1.37 1.39 V VUVD140_F CC P VDD_LV (Flash) — 1.34 1.37 1.39 V — 5 — 25 μs Common TVMFILTER CC D Voltage monitor filter(3) 1. Even if LVD/HVD monitor reaction is configurable, the application ensures that the device remains in the operative condition range, and the internal LVDx monitors are disabled by the application. Then an external voltage monitor with minimum threshold of VDD_LV(min) = 1.08 V measured at the device pad, has to be implemented. For HVDx, if the application disables them, then they need to grant that VDD_LV and VDD_HV voltage levels stay withing the limitations provided in Section 4.2: Absolute maximum ratings. 2. The values reported are Trimmed values, where applicable. 3. See Figure 17. Transitions shorter than minimum are filtered. Transitions longer than maximum are not filtered, and will be delayed by TVMFILTER time. Transitions between minimum and maximum can be filtered or not filtered, according to temperature, process and voltage variations. 72/153 DS11620 Rev 8 SPC584Cx, SPC58ECx 4.16 Electrical characteristics Flash The following table shows the Wait State configuration. Table 40. Wait State configuration APC RWSC Frequency range (MHz) 0 f
SPC584C80E3G0C0X 价格&库存

很抱歉,暂时无法提供与“SPC584C80E3G0C0X”相匹配的价格&库存,您可以联系我们找货

免费人工找货