SPC58EHx, SPC58NHx
SPC58 H Line - 32 bit Power Architecture automotive MCU
Triple z4 cores 200 MHz, 10 MBytes Flash, HSM, ASIL-D
Datasheet - production data
eTQFP144 (20 x 20 x 1.0 mm)
FPBGA302 (17 x 17 x 1.8 mm)
eLQFP176 (24 x 24 x 1.4 mm)
FPBGA386 (19 x 19 x 1.8 mm)
Features
• AEC-Q100 qualified
• High performance e200z4 triple core:
– 32-bit Power Architecture technology CPU
– Core frequency as high as 200 MHz
– Variable Length Encoding (VLE)
– Floating Point, End-to-End Error Correction
• 10496 KB (10240 KB code Flash + 256 KB
data Flash) on-chip Flash memory:
– Supports read during program and erase
operations, and multiple blocks allowing
EEPROM emulation
– Supports read while read between the two
code Flash partitions
– Hardware support for Flash context
switching (for FOTA with multi software
versions)
• 1088 KB on-chip general-purpose SRAM (in
addition to 192 KB core local data RAM):
– 64 KB in CPU_0, 64 KB in CPU_1 and
64 KB in CPU_2
• 224 KB HSM dedicated Flash memory (192 KB
code + 32 KB data)
• Multi-channel direct memory access controller
(eDMA):
– One eDMA with 64 channels
– One eDMA with 16 channels
• One interrupt controller (INTC)
June 2021
This is information on a product in full production.
• Comprehensive new generation ASIL-D safety
concept:
– ASIL-D of ISO 26262
– One CPU channel in lockstep
– Logic BIST
– FCCU for collection and reaction to failure
notifications
– Memory BIST
– Cyclic redundancy check (CRC) unit
– Memory Error Management Unit (MEMU)
for collection and reporting of error events
in memories
• Crossbar switch architecture for concurrent
access to peripherals, Flash, or RAM from
multiple bus masters with end-to-end ECC
• Body cross triggering unit (BCTU):
– Triggers ADC conversions from any eMIOS
channel
– Triggers ADC conversions from up to 2
dedicated PIT_RTIs
• Enhanced modular IO subsystem (eMIOS):
– up to 96 timed IO channels with 16-bit
counter resolution
• Enhanced analog-to-digital converter system
with:
– 4 independent fast 12-bit SAR analog
converters
– One supervisor 12-bit SAR analog
converter
– One standby 10-bit SAR analog converter
– 100 ADC channels
• Communication interfaces:
– 24 LINFlexD modules
– 10 deserial serial peripheral interface
(DSPI) modules
– 1 deserial serial peripheral interface
(DSPI_LP) module available in low power
mode
DS12304 Rev 5
1/147
www.st.com
SPC58EHx, SPC58NHx
– 16 MCAN interfaces with advanced shared memory scheme and ISO CAN-FD
support
– Dual-channel FlexRay controller
– One SD/SDIO/eMMC module
– One OctalSPI module with double Chip Select
– Two independent Ethernet controllers, one 10/100Mbps and the other one
10/100Mbps or 1Gbps, compliant IEEE 802.3-2008 and OPEN RGMII EPL v2.3
– Four I2C modules
– Two PSI5 modules
• Low power capabilities:
– Versatile low power modes
– Ultra low power standby with RTC
– Smart Wake-up Unit for contact monitoring
– Fast wakeup schemes
• Dual phase-locked loops with stable clock domain for peripherals and FM modulation
domain for computational shell
• Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some
support for 2010 standard
• Boot assist Flash (BAF) supports factory programming using a serial bootload through the
asynchronous CAN or LIN/UART
• Low power supply options:
– Single internal linear regulator with external ballast
– External low voltage supply (1.2V)
• Temperature range:
– -40 °C to 105 °C
– -40 °C to 125 °C
Table 1. Device summary
Part number
Package
6 MB
Dual core
8 MB
Triple core
Dual core
10 MB
Triple core
Dual core
Triple core
eTQFP144 SPC58EH84E5 SPC58NH84E5 SPC58EH90E5 SPC58NH90E5 SPC58EH92E5 SPC58NH92E5
eLQFP176 SPC58EH84E7 SPC58NH84E7 SPC58EH90E7 SPC58NH90E7 SPC58EH92E7 SPC58NH92E7
FPBGA302 SPC58EH84C3 SPC58NH84C3 SPC58EH90C3 SPC58NH90C3 SPC58EH92C3 SPC58NH92C3
FPBGA386 SPC58EH84C5 SPC58NH84C5 SPC58EH90C5 SPC58NH90C5 SPC58EH92C5 SPC58NH92C5
2/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1
Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 17
4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1
Power domains and power up/down sequencing . . . . . . . . . . . . . . . . . 24
4.4
Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5
Electromagnetic compatibility characteristics . . . . . . . . . . . . . . . . . . . . . . 26
4.6
Temperature profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7
Device consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8
I/O pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8.1
I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8.2
I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8.3
I/O pad current specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9
Reset pad (PORST) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 44
4.10
PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11
4.12
4.10.1
PLL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.10.2
PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.10.3
PLL_ETH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.11.1
Crystal oscillator 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.11.2
Crystal Oscillator 32 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.11.3
RC oscillator 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11.4
Low power RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ADC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
DS12304 Rev 5
3/147
5
Contents
SPC58EHx, SPC58NHx
4.12.1
ADC input description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.12.2
SAR ADC 12 bit electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.12.3
SAR ADC 10 bit electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.13
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.14
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.14.1
Power management integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.14.2
Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.14.3
Voltage monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.15
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.16
AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.16.1
Debug and calibration interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.16.2
DSPI timing with CMOS pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.16.3
Ethernet port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.16.4
FlexRay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.16.5
CAN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.16.6
UART timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.16.7
I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.16.8
PSI5 timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.16.9
OctoSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.16.10 SDMMC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1
eTQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
5.1.1
5.2
eLQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
5.2.1
5.3
4/147
Package mechanical drawings and data information . . . . . . . . . . . . . 122
FPBGA386 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.1
5.5
Package mechanical drawings and data information . . . . . . . . . . . . . 119
FPBGA302 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1
5.4
Package mechanical drawings and data information . . . . . . . . . . . . . 114
Package mechanical drawings and data information . . . . . . . . . . . . . 125
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.1
eTQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.2
LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.3
FPBGA302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5.4
FPBGA386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5.5
General notes for specifications at maximum junction temperature . . 129
DS12304 Rev 5
SPC58EHx, SPC58NHx
Contents
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DS12304 Rev 5
5/147
5
Introduction
1
SPC58EHx, SPC58NHx
Introduction
This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the device. To
ensure a complete understanding of the device functionality, refer also to the device
reference manual and errata sheet.
6/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
2
Description
Description
The SPC58EHx, SPC58NHx microcontroller belongs to a family of devices superseding the
SPC58x family. SPC58EHx, SPC58NHx builds on the legacy of the SPC5x family, while
introducing new features coupled with higher throughput to provide substantial reduction of
cost per feature and significant power and performance improvement (MIPS per mW).
2.1
Device feature summary
Table 2 lists a summary of major features for the SPC58EHx, SPC58NHx device. The
feature column represents a combination of module names and capabilities of certain
modules. A detailed description of the functionality provided by each on-chip module is
given later in this document.
Table 2. Features list
Feature
Description
SPC58 family
40 nm
Processing shell
Number of Cores
2
Number of checker cores
1
32 KB Instruction
Local RAM
64 KB Data
Single Precision Floating Point
Yes
SIMD (LSP)
Yes
VLE
Yes
16 KB Instruction
Cache
8 KB Data
Streaming shell
Number of Cores
1
Number of checker cores
0
32 KB Instruction
Local RAM
64 KB Data
Single Precision Floating Point
Yes
SIMD (LSP)
Yes
VLE
Yes
16 KB Instruction
Cache
8 KB Data
Other
Security (HSM Module)
up to 1
DS12304 Rev 5
7/147
16
Description
SPC58EHx, SPC58NHx
Table 2. Features list (continued)
Feature
Description
Core MPU: 24 per CPU
MPU
System MPU: 24 per XBAR
Semaphores
Yes
CRC Channels
2x4
Software Watchdog Timer (SWT)
4
Core Nexus Class
3+
4 x SCU
Event Processor
4 x PMC
Run control Module
Yes
System SRAM
1088 KB (including 256 KB of standby RAM)
User Flash
up to 10240 KB code / 256 KB data
Security Flash
up to 192 KB code / 32 KB data
Flash fetch accelerator
2 x 2 x 4 x 256-bit
DMA channels
80
DMA Nexus Class
3
LINFlexD
24
M_CAN supporting CAN-FD
according to ISO 11898-1 2015
16
DSPI
11
I2C
4
PSI5 / PSI5-S bus
2/1
FlexRay
1 x Dual channel
Ethernet
2 MAC with Time stamping, AVB and VLAN support
8 PIT channels
4 AUTOSAR® (STM)
System Timers
RTC/API
8/147
eMIOS
3 x 32 channels
OctalSPI
1 (2 Chip select)
SDMMC
1
GST
1
BCTU
96 channels
Interrupt controller
> 710 sources
ADC (SAR)
Five 12-bit (4+1 Supervisor); One 10-bit
Temp. sensor
Yes
Self Test Controller
Yes
DS12304 Rev 5
SPC58EHx, SPC58NHx
Description
Table 2. Features list (continued)
Feature
Description
PLL
Dual PLL with FM
External Power Supplies
1.2 V - 3.3 V - 5 V
Integrated linear voltage regulator
Yes
Stop Mode
Low Power Modes
Halt Mode
Smart Standby with output controller, analog and digital inputs
Standby Mode
DS12304 Rev 5
9/147
16
Description
2.2
SPC58EHx, SPC58NHx
Block Diagram
The figures below show the top-level block diagrams.
Figure 1. Block Diagram
-7$*0
$''
'$7$
$''
'$7$
1H[XV'DWD
7UDFH
1H[XV'DWD
7UDFH
$''
'$7$
$''
'$7$
$+%B0
$+%B0
$+%B0
.%
'0(0
.%
ZD\
&RUH0HPRU\3URWHFWLRQ8QLW
&038
$+%B0
$+%B0
$+%B0
/RDG6WRUH
$''
'$7$
$+%B0 $+%B0
$+%B6
$+%B6
$''
'$7$
WR
1H[XV'DWD
7UDFH
$''
'$7$
$''
'$7$
+60
1H[XV'DWD
7UDFH
1H[XV'DWD
7UDFH
6\VWHP0HPRU\3URWHFWLRQ8QLW6038B
$+%B6
$''
'$7$
$''
'$7$
()38
,0(0
&RQWURO
,&DFKH
&RQWURO
.%
,0(0
.%
ZD\
'0(0
&RQWURO
'&DFKH
&RQWURO
.%
'0(0
.%
ZD\
$+%B0
$''
'$7$
$+%B6
$+%B6
$+%B6
$''
'$7$
$''
'$7$
$''
'$7$
35$0&B
ZLWK(((&&
0+]
35$0&B
ZLWK(((&&
0+]
3HULSK%ULGJH
$,36B
(((&&
0+]
$''
'$7$
$''
'$7$
$''
'$7$
$+%B0
$+%B0
$+%B6
$+%B6
$+%B6
3)/$6+&B0+]
6HW$VVRFLDWLYH
3UHIHWFK%XIIHUV
ZLWK(((&&
$''
'$7$
$''
'$7$
$+%B0
$+%B0
H]Q±0+]
GXDOLVVXH
0DLQ&RUHB
1H[XVS
8QLILHG
%DFNGRRU
,QWHUIDFH
:LWK
(((&&
9/(
()38
,0(0
&RQWURO
,&DFKH
&RQWURO
.%
,0(0
.%
ZD\
'0(0
&RQWURO
'&DFKH
&RQWURO
.%
'0(0
.%
ZD\
$+%B6
$+%B6
$+%B6
$''
'$7$
$''
'$7$
$''
'$7$
WR
WR
WR
65$0
$UUD\
.%
65$0
$UUD\
.%
3HULSKHUDO
&OXVWHU
0+]
1H[XVS
8QLILHG
%DFNGRRU
,QWHUIDFH
:LWK
(((&&
&RUH0HPRU\3URWHFWLRQ8QLW
&038
&RUH0HPRU\3URWHFWLRQ8QLW
&038
%,8ZLWK(((&&
'HFRUDWHG6WRUDJH$FFHVV
%,8ZLWK(((&&
'HFRUDWHG6WRUDJH$FFHVV
,QVWUXFWLRQ
$''
'$7$
/RDG6WRUH
$''
'$7$
,QVWUXFWLRQ
$''
'$7$
/RDG6WRUH
$''
'$7$
$+%B0
$+%B0
$+%B0
$+%B0
)DVW&URVV%DU6ZLWFK;%$5B$0%$Y$+%±ELW±0+]
6\VWHP0HPRU\3URWHFWLRQ8QLW6038B
$+%B6
$''
'$7$
$''
'$7$
3DJH/LQH
)/$6+0%
$+%B6
$+%B6
$''
'$7$
$''
'$7$
3)/$6+&B0+]
6HW$VVRFLDWLYH
3UHIHWFK%XIIHUV
ZLWK(((&&
$+%B6
$''
'$7$
35$0&B
ZLWK(((&&
35$0&B
ZLWK(((&&
$''
'$7$
$''
'$7$
65$0
$UUD\
.%
67'%<
65$0
$UUD\
.%
$+%B6
$+%B6
$''
'$7$
$''
'$7$
3HULSK%ULGJH
$,36B
(((&&
0+]
3HULSK%ULGJH
$,36B
(((&&
0+]
)/$6+0%
E&URVV%DU6ZLWFK;%$5B$0%$Y$+%±ELW±0+]
$+%B6
10/147
$''
'$7$
((3520
[.%
$+%B0
$+%B0
6'00&6ODYH,)
$''
'$7$
&K
H'0$B
9/(
%,8ZLWK(((&&
'HFRUDWHG6WRUDJH$FFHVV
6\VWHP0HPRU\3URWHFWLRQ8QLW6038B
$''
'$7$
'0$&+08;B
'&DFKH
&RQWURO
6:7B,$&
H]Q±0+]
GXDOLVVXH
0DLQ&RUHB
'HOD\HG/RFNVWHSZLWK5HGXQGDQF\&KHFNHUV
'0(0
&RQWURO
'0$&+08;B
.%
ZD\
'0$&+08;B
,&DFKH
&RQWURO
.%
,0(0
)DVW&URVV%DU6ZLWFK;%$5B$0%$Y$+%±ELW±0+]
$+%B6
'0$&+08;B
/63
,0(0
&RQWURO
,QVWUXFWLRQ
$''
'$7$
,17&
6:7B,$&
()38
8QLILHG
%DFNGRRU
,QWHUIDFH
:LWK
(((&&
$''
'$7$
H00&
$''
'$7$
1H[XV$XURUD5RXWHU
DůŽĐŬƐĞƚƉĨŽƌĐƵƚϮŽŶůLJ
1H[XVS
'HOD\HG/RFNVWHSZLWK5HGXQGDQF\&KHFNHUV
'0$&+08;B
&RQFHQWUDWRUB
(((&&
3$08
0+]
'HOD\HG/RFNVWHSZLWK5HGXQGDQF\&KHFNHUV
&K
H'0$B
1H[XV'DWD
7UDFH
$+%B0
)OH[5D\
(WKHUQHWB
9/(
$''
'$7$
638
6:7B,$&
H]Q±0+]
GXDOLVVXH
0DLQ&RUHB
(WKHUQHWB
'&,
'HOD\HG/RFNVWHSZLWK5HGXQGDQF\&KHFNHUV
$OOVKDGRZHGPRGXOHV
DUHLQGHO\HG/RFNVWHS
FRQILJXUDWLRQ
-7$*&
1RQ9RODWLOH0HPRU\
0XOWLSOH5::SDUWLWLRQV
2FWDO63,
DS12304 Rev 5
$''
'$7$
$''
'$7$
3HULSKHUDO
&OXVWHU
0+]
3HULSKHUDO
&OXVWHU
0+]
$+%B6
$''
'$7$
%DFNGRRU
3RUW
(((&&
0+]
6ODYH;%$5ZLWK
6038
SPC58EHx, SPC58NHx
Description
Figure 2. Periphery allocation
PBRIDGE_2
Backdoor_XBAR
BCTU_0
STDBY_CTU_0
eMIOS_0
GST_0
XBAR_1
XBIC_Backdoor_XBAR
ON-Platform IP
OFF-Platform IP
XBIC_Concentrator_1
SAR_ADC_12bit_0_seq
SAR_ADC_12bit_2_seq
SAR_ADC_10bit_STDBY_seq
SMPU_1, 3
XBIC_1
SAR_ADC_12bit_SUPERVISOR_seq
PCM_0
SAR_ADC_12bit_0, 2
PFLASH_1
SEMA42
SAR_ADC_10bit_0_STDBY
SAR_ADC_12bit_SUPERVISOR
INTC_1
PSI5_0
FLEXRAY
I2C_0
I2C_2
SWT_0, 2, 3
STM_0, 2
eDMA_1
PRAM_2, 3
TDM_0
DSPI_0, 2, 4, 6, 8
LINFlex_0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
CAN_SUB_0_MESSAGE_RAM
DTS
JDC
STCU
JTAGM
MEMU
IMA
CRC_0
DMAMUX_0, 2
PSI5-S
PIT_0
SAR_ADC_12bit_1, 3
PSI5_1
I2C_1
I2C_3
DSPI_1, 3, 5, 7, 9
LINFlex_1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23
CAN_SUB_1_MESSAGE_RAM
WKPU_0
CAN_SUB_1_M_CAN_1, 2, 3, 4
MC_PCU
FCCU
CRC_1
MC_RGM
DMAMUX_1, 3
PIT_1
RC1024K_DIG
OSC40M_DIG
OSC32K_DIG
WKPU_1
CMU_1_CORE_XBAR
CMU_2_HPBM
PBRIDGE_0
XBAR_0, 2
SMPU 0, 2
PRAM_0,1
PFLASH_0
SWT_1
STM_1
eDMA_0
XBIC_2
PLL_DIG
PLL_DIG_ETH
CMU_3_PBRIDGE
CMU_0_PLL0_XOSC_IRCOSC
CMU_8_PSI5_f189
ETHERNET_0, 1
MC_CGM
CMU_9_PSI5_f125
DSPI_LP
MC_ME
CMU_10_PSI5_1us
SIUL2
CMU_11_FBRIDGE
CMU_12_EMIOS
CMU_14_PFBRIDGE
CMU_15_MMC
CMU_16_OctalSPI
CMU_17_PER1
CMU_18_ETH_50M_125M
PCM_1
CAN_SUB_2_MESSAGE_RAM
CAN_SUB_2_M_CAN_1, 2, 3, 4
CAN_SUB_3_MESSAGE_RAM
FLASH_0
FLASH_ALT_0
PASS
SSCM
BAR
CMU_6_SARADC
DS12304 Rev 5
eMIOS_2
AIPS_0 - Peripheral Cluster 0
PMC_DIG
RC16M_DIG
PBRIDGE_1
eMIOS_1
SAR_ADC_12bit_1_seq
SAR_ADC_12bit_3_seq
AIPS_1 - Peripheral Cluster 1
RTC/API
AIPS_2 - Peripheral Cluster 2
CAN_SUB_0_M_CAN_0, 1, 2, 3
HSMHost I/F
CAN_SUB_3_M_CAN_1, 2, 3, 4
CRC_2
DMAMUX_4
11/147
16
Description
2.3
SPC58EHx, SPC58NHx
Features
On-chip modules within SPC58EHx, SPC58NHx include the following features:
•
12/147
Three main CPUs, dual issue, 32-bit CPU core complexes (e200z4), one of them
having a checker core in lock-step
–
Power Architecture embedded specification compliance
–
Instruction set enhancement allowing variable length encoding (VLE), encoding a
mix of 16-bit and 32-bit instructions, for code size footprint reduction
–
Single-precision floating point operations
–
Lightweight signal processing auxiliary processing unit (LSP APU) instruction
support for digital signal processing (DSP) on Core_0, Core_1, Core_2
–
32 KB local instruction RAM and 64 KB local data RAM for Core_0, Core_1 and
Core_2
–
16 KB I-Cache and 8 KB D-Cache for Core_0, Core_1 and Core_2
–
10 MB on-chip Flash
–
Supports read during program and erase operations, and multiple blocks allowing
EEPROM emulation
–
Supports read while read between the two code Flash partitions.
•
1088 KB on-chip general-purpose SRAM (+ 192 KB data RAM and 96 KB instruction
RAM included in the CPUs)
•
224 KB HSM dedicated flash memory (192 KB code + 32 KB data)
•
Multi channel direct memory access controllers (eDMA)
–
One eDMA with 64 channels
–
One eDMA with 16 channels
•
One interrupt controller (INTC) in lock-step
•
Dual phase-locked loops with stable clock domain for peripherals and FM modulation
domain for processing and streaming shell
•
Dual crossbar switch architecture for concurrent access to peripherals, Flash, or RAM
from multiple bus masters with end-to-end ECC
•
Hardware security module (HSM) compliant with EVITA full
•
System integration unit lite (SIUL)
•
Boot assist Flash (BAF) supports factory programming using a serial bootload through
the asynchronous CAN or LIN/UART.
•
Enhanced analog-to-digital converter system with
–
One supervisor 12-bit SAR analog converter
–
Four separate fast 12-bit SAR analog converters
–
One separate 10-bit SAR analog converter for standby mode
•
Eleven deserial serial peripheral interface (DSPI) modules, one working even in low
power mode
•
Twenty four LIN and UART communication interface (LINFlexD) modules
–
LINFlexD_0 is a Master/Slave
–
All others are Masters
•
Sixteen modular controller area network (MCAN) modules all supporting flexible data
rate (CAN-FD)
•
Dual-channel FlexRay controller
DS12304 Rev 5
SPC58EHx, SPC58NHx
•
Description
On ethernet controller 10/100 Mbps (Ethernet 0)
–
Standard compliance
Ethernet interface is compliant to following standards:
– IEEE 802.3-2008 for Ethernet MAC, Media Independent Interface (MII),
reduced Media Independent Interface (RMII)
– IEEE 1588-2008 for precision networked clock synchronization
– IEEE 802.1AS-2011 and 802.1-Qav-2009 for Audio Video (AV) traffic
– IEEE 802.3az-2010 for Energy Efficient Ethernet (EEE) with MII interface
– RMII specification version 1.2 from RMII consortium
– Turbo MII, overclocked MII @200 Mbps
– AMBA 2.0 for AHB master port and APB slave port
–
MAC Tx and Rx features:
– Separate transmission, reception, and control interfaces to the application
– 10, 100 Mbps data transfer rates with the following PHY interfaces:
IEEE 802.3-compliant MII interface to communicate with an external Fast
Ethernet PHY
RMII interface to communicate with an external Fast Ethernet PHY
– Half-duplex operation
– Full-duplex flow control operations (IEEE 802.3x Pause packets and Priority
flow control)
– Network statistics with RMON or MIB Counters (RFC2819/RFC2665)
– Support Ethernet packet timestamping as described in IEEE 1588-2002 and
IEEE 1588-2008. Both one-step and two-step timestamping is supported in
TX direction
– Flexibility to control the Pulse-Per-Second (PPS) output signal (ptp_pps_o)
– MDIO (Clause 22 and Clause 45) master interface for PHY device
configuration and management
–
MAC Tx features:
– Source Address field insertion or replacement, VLAN insertion, replacement,
and deletion in transmitted packets with per-packet or static-global control
–
MAC Rx features:
– Automatic Pad and CRC Stripping options:
– Option to disable Automatic CRC checking
– Preamble and SFD deletion
– Separate 112-bit or 128-bit status
– Programmable watchdog timeout limit
– Fixed address filtering modes:
Up to 31 additional 48-bit perfect (DA) address filters with masks for each
byte
Up to 31 48-bit SA address comparison check with masks for each byte
Option to pass all multi-cast addressed packets
Promiscuous mode to pass all packets without any filtering for network
monitoring
Pass all incoming packets (as per filter) with a status report
– Additional packet filtering:
DS12304 Rev 5
13/147
16
Description
SPC58EHx, SPC58NHx
VLAN tag-based: Perfect match and Hash-based filtering. Filtering based on
either outer or inner VLAN tag is possible.
Layer 3 and Layer 4-based: TCP or UDP over IPv4 or IPv6
Extended VLAN tag based filtering with 16 filters
– IEEE 802.1Q VLAN tag detection
–
DMA block features:
– 64-bit data transfers
– 2-channel Transmit and Receive engines
– Separate DMA channel in the Transmit path for each queue
– Single or multiple DMA channels for any number of queues in Receive path
– Optimization for packet-oriented DMA transfers with packet delimiters
– Byte-aligned addressing for data buffer support
– Dual-buffer (ring) descriptor support
– Descriptor architecture to allow large blocks of data transfer with minimum
CPU intervention (each descriptor can transfer up to 32 KB of data)
–
Audio and video features:
Ethernet0 can be used in Audio Video (AV) mode, and the supported features are
compliant to the industry standards for AV traffic:
– Separate channels or queues for AV data transfer in 100 Mbps
– Up to 2- queues on the Receive paths for AV traffic and 1-queue on the
Transmit path for AV traffic
– IEEE 802.1-Qav specified credit-based shaper (CBS) algorithm for Transmit
channels
•
One ethernet controller 10/100/1000 Mbps (Ethernet 1)
Features changes on top of Ethernet 0:
–
RGMII PHY interface with DoS on TX clock
–
Transaction layer supports 3-TX queues and 3 RX queues
–
DMA supports 3 TX and 3-RX channels
–
Checksum offload engine on TX Queue0 only
–
16 KB each for both TX and RX FIFOs
–
2 AV queues on TX and 3 AV queues on RX
–
MAC does not support half duplex operations
–
Flexible Receive Parsing based filtering mode:
Programmable lookup table based flexible Parser for filtering all incoming packets
as per the programmable instructions in the memory. partial/group DA/SA match
(bit mask instead of byte mask). partial/group VLAN match (Only perfect match in
fixed/register filter) link DA/SA filter with VLAN filter; fixed/register filter does not
give that flexibility (sequential links) can do any of the fixed/register filter functions;
14/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
Description
only difference is that, it can check for patterns sequentially (1 field at a time)
unlike fixed/register filtering which can compare in parallel and at line rate.
–
TSN features:
IEEE 802.1Qbv (EST)
IEEE 802.1AS-Rev/D2.0 (timing and synchronization)
IEEE 802.3br/D3.1 (frame preemption)
IEEE 802.1Qbu/D3.1 (frame preemption)
•
SD/SDIO/MMC host interface that supports:
–
eMMC - MultiMedia Card Specification v4.51
– 1-bit, 4-bit, 8-bit interface
– Full backward compatibility with legacy MMC cards (0-25 MHz), 25 MB/s
– Full High Speed SDR bus mode (0-50 MHz), 50 MB/s
– Full High Speed DDR bus mode (0-50 MHz), 100 MB/s
– 3.3 V IO voltage
–
SD Card Specification v3.01
– Full support for Default Speed mode (0-25 MHz), 12.5 MB/s
– Full support for High Speed (0-50 MHz) mode, 25 MB/s
– 1-bit, 4-bit interface
– 3.3 V IO voltage
–
SDIO Specification v3.0
– Full support for Default Speed mode (0-25 MHz) mode, 12.5 MB/s
– Full support for High Speed (0-50 MHz) mode, 25 MB/s
– 1-bit or 4-bit interface
– 3.3 V IO voltage
The current version supports only one SD3.01/SDIO3.0/MMC4.51 card at any one
time.
•
OctalSPI host interface that supports:
–
–
SPI mode
– 1-bit, 4-bit, 8-bit interface
– SDR for 1 bit interface only (SPI mode)
– SDR and DDR for 4 and 8 bits interface (quad and Octal SPI mode)
– 3.3 V IO voltage
– Clock up to 100 MHz
– SPI NOR device with DQS mode compliant
Hyperbus(TM) bus mode
– Compliant with “HyperBus™ Specification Low Signal Count, High
Performance DDR Bus”, June 2017, revision F
– DDR for 8-bit interface
– 3.3 V IO voltage
DS12304 Rev 5
15/147
16
Description
SPC58EHx, SPC58NHx
– Single-ended clock up to 100 MHz
The current version supports up to two devices at any one time, which means it has to
Chip selects sharing one 8 bits data bus.
•
16/147
Low Power Supply options:
–
External Regulators (1.2 V core, 3.3 V–5 V IO)
–
Single internal Linear Regulator with external ballast
•
Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some
support for 2010 standard.
•
Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1)
•
Standby power domain with smart wake-up sequence
DS12304 Rev 5
SPC58EHx, SPC58NHx
3
Package pinouts and signal descriptions
Package pinouts and signal descriptions
Refer to the SPC58EHx, SPC58NHx IO_ Definition document.
It includes the following sections:
1.
Package pinouts
2.
Pin descriptions
a)
Power supply and reference voltage pins
b)
System pins
c)
Generic pins
DS12304 Rev 5
17/147
17
Electrical characteristics
SPC58EHx, SPC58NHx
4
Electrical characteristics
4.1
Introduction
The present document contains the target Electrical Specification for the 40 nm family 32-bit
MCU SPC58EHx, SPC58NHx products.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” (Controller Characteristics) is included in the “Symbol”
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” (System Requirement) is included in the
“Symbol” column.
The electrical parameters shown in this document are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Table 3 are used and
the parameters are tagged accordingly in the tables where appropriate.
Table 3. Parameter classifications
Classification tag
18/147
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design validation on a small sample size from typical
devices.
D
Those parameters are derived mainly from simulations.
DS12304 Rev 5
SPC58EHx, SPC58NHx
4.2
Electrical characteristics
Absolute maximum ratings
Table 4 describes the maximum ratings for the device. Absolute maximum ratings are stress
ratings only, and functional operation at the maxima is not guaranteed. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Stress beyond the listed maxima, even momentarily, may affect device reliability or cause
permanent damage to the device.
Table 4. Absolute maximum ratings
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
VDD_LV
SR
D
Core voltage
operating life
range(1)
—
–0.3
—
1.4
V
VDD_HV_IO_MAIN
VDD_HV_OSC
VDD_HV_FLA
VDD_HV_IO_EMMC
VDD_HV_IO_ETH0
VDD_HV_IO_ETH1
SR
D
I/O supply
voltage(2)
—
–0.3
—
6.0
V
VSS_HV_ADV
SR
D
ADC ground
voltage
Reference to
digital ground
–0.3
—
0.3
V
VDD_HV_ADV
SR
D
ADC Supply
voltage(2)
Reference to
VSS_HV_ADV
–0.3
—
6.0
V
VSS_HV_ADR_S
SR
D
SAR ADC
ground
reference
—
–0.3
—
0.3
V
VDD_HV_ADR_S
SR
D
SAR ADC
voltage
reference(2)
Reference to
VSS_HV_ADR_S
–0.3
—
6.0
V
VSS-VSS_HV_ADR_S
SR
D
VSS_HV_ADR_S
differential
voltage
—
–0.3
—
0.3
V
VSS-VSS_HV_ADV
SR
D
VSS_HV_ADV
differential
voltage
—
–0.3
—
0.3
V
—
–0.3
—
6.0
Relative to Vss
–0.3
—
—
Relative to
VDD_HV_IO and
VDD_HV_ADV
—
—
0.3
—
—
—
1
VIN
TTRIN
SR
SR
D
D
I/O input voltage
range(2)(3) (4)
Digital Input pad
transition time(5)
DS12304 Rev 5
V
ms
19/147
21
Electrical characteristics
SPC58EHx, SPC58NHx
Table 4. Absolute maximum ratings (continued)
Value
Symbol
IINJ
TSTG
TPAS
C
SR
SR
SR
Parameter
Conditions
Unit
Min
Typ
Max
T
Maximum DC
injection current
for each
analog/digital
PAD(6)
—
–5
—
5
mA
T
Maximum nonoperating
Storage
temperature
range
—
–55
—
125
°C
C
Maximum
nonoperating
temperature
during passive
lifetime
—
–55
—
150(7)
°C
—
—
20
years
TSTORAGE
SR
—
Maximum
No supply; storage
storage time,
temperature in
assembled part
range –40 °C to
programmed in
60 °C
ECU
TSDR
SR
T
Maximum solder
temperature Pbfree packaged(8)
—
—
—
260
°C
MSL
SR
T
Moisture
sensitivity
level(9)
—
—
—
3
—
Maximum
cumulated
XRAY dose
Typical range for
X-rays source
during
inspection:80 ÷
130 KV; 20 ÷
50 μA
—
—
1
grey
TXRAY dose
SR
T
1. VDD_LV: allowed 1.335 V - 1.400 V for 60 seconds cumulative time at the given temperature profile. Remaining time allowed
1.260 V - 1.335 V for 10 hours cumulative time at the given temperature profile. Remaining time as defined in Section 4.3:
Operating conditions.
2. VDD_HV: allowed 5.5 V – 6.0 V for 60 seconds cumulative time at the given temperature profile, for 10 hours cumulative
time with the device in reset at the given temperature profile. Remaining time as defined in Section 4.3: Operating
conditions.
3. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current
condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin
to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3 V can be used for nominal
calculations.
4. Relative value can be exceeded if design measures are taken to ensure injection current limitation (parameter IINJ).
5. This limitation applies to pads with digital input buffer enabled. If the digital input buffer is disabled, there are no maximum
limits to the transition time.
6. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in
Section 4.8.3: I/O pad current specifications.
20/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
Electrical characteristics
7. 175°C are allowed for limited time. Mission profile with passive lifetime temperature >150°C have to be evaluated by ST to
confirm that are granted by product qualification.
8. Solder profile per IPC/JEDEC J-STD-020D.
9. Moisture sensitivity per JDEC test method A112.
DS12304 Rev 5
21/147
21
Electrical characteristics
4.3
SPC58EHx, SPC58NHx
Operating conditions
Table 5 describes the operating conditions for the device, and for which all the specifications
in the data sheet are valid, except where explicitly noted. The device operating conditions
must not be exceeded or the functionality of the device is not guaranteed.
Table 5. Operating conditions
Value(1)
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
FSYS(2)
SR
P
Operating
system clock
frequency(3)
—
—
—
200
MHz
TA_125 Grade(4)
SR
D
Operating
Ambient
temperature
—
–40
—
125
°C
TJ_125 Grade(4)
SR
P
Junction
temperature
under bias
TA = 125 °C
–40
—
150
°C
TA_105 Grade(4)
SR
D
Ambient
temperature
under bias
—
–40
—
105
°C
TJ_105 Grade(4)
SR
D
Operating
Junction
temperature
TA = 105 °C
–40
—
130
°C
VDD_LV
SR
P
Core supply
voltage(5)
—
1.14
1.20
1.26(6) (7)
V
VDD_HV_IO_MAIN
VDD_HV_IO_EMMC
VDD_HV_IO_ETH0
VDD_HV_IO_ETH1
VDD_HV_FLA
VDD_HV_OSC
SR
P
IO supply
voltage
—
3.0
—
5.5
V
VDD_HV_ADV
SR
P
ADC supply
voltage
—
3.0
—
5.5
V
VSS_HV_ADVVSS
SR
D
ADC ground
differential
voltage
—
–25
—
25
mV
VDD_HV_ADR_S
SR
P
SAR ADC
reference
voltage
—
3.0
—
5.5
V
D
SAR ADC
reference
differential
voltage
—
—
—
25
mV
P
SAR ADC
ground
reference
voltage
—
VDD_HV_ADR_SVDD_HV_ADV
VSS_HV_ADR_S
22/147
SR
SR
DS12304 Rev 5
VSS_HV_ADV
V
SPC58EHx, SPC58NHx
Electrical characteristics
Table 5. Operating conditions (continued)
Value(1)
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
VSS_HV_ADR_SVSS_HV_ADV
SR
D
VSS_HV_ADR_S
differential
voltage
—
–25
—
25
mV
VRAMP_LV
SR
D
Slew rate on
core power
supply pins
VDD_LV
—
—
20
V/ms
VRAMP_HV
SR
D
Slew rate on
HV power
supply
—
—
—
100
V/ms
VIN
SR
P
I/O input
voltage range
—
0
—
5.5
V
Digital pins and
analog pins
–3.0
—
3.0
mA
Digital pins and
analog pins
–10
—
10
mA
IINJ1
SR
T
Injection
current (per
pin) without
performance
degradation(8)
(9) (10)
IINJ2
SR
D
Dynamic
Injection
current (per
pin) with
performance
degradation(10)
(11)
1. The ranges in this table are design targets and actual data may vary in the given range.
2. The PRAM pipeline gasket has to be kept enabled through bit PCM*/BYP_GSKT_XBAR*_TO_PRAMC* to keep system
work at maximum speed; The maximum frequency will go to half if the pipeline gasket is bypassed.
3. Maximum operating frequency is applicable to the cores and platform of the device. See the Clock Chapter in the
Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
4. In order to evaluate the actual difference between ambient and junction temperatures in the application, refer to
Section 5.5: Package thermal characteristics.
5. Core voltage as measured on device pin to guarantee published silicon performance.
6. Core voltage can exceed 1.26 V with the limitations provided in Section 4.2: Absolute maximum ratings, provided that
HVD134_C monitor reset is disabled.
7. 1.260 V - 1.290 V range allowed periodically for supply with sinusoidal shape and average supply value below or equal to
1.236 V at the given temperature profile.
8. Full device lifetime. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these
limits. See Section 4.2: Absolute maximum ratings for maximum input current for reliability requirements.
9. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pins is
above the supply rail, current will be injected through the clamp diode to the supply rails. For external RC network
calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.
10. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in
Section 4.8.3: I/O pad current specifications.
11. Positive and negative Dynamic current injection pulses are allowed up to this limit. See the dedicated chapters for the
different specification limits. See the Absolute Maximum Ratings table for maximum input current for reliability
requirements. Refer to the following pulses definitions: Pulse1 (ISO 7637-2:2011), Pulse 2a (ISO 7637-2:2011 5.6.2), Pulse
3a (ISO 7637-2:2011 5.6.3), Pulse 3b (ISO 7637-2:2011 5.6.3).
DS12304 Rev 5
23/147
24
Electrical characteristics
4.3.1
SPC58EHx, SPC58NHx
Power domains and power up/down sequencing
The following table shows the constraints and relationships for the different power domains.
Supply1 (on rows) can exceed Supply2 (on columns), only if the cell at the given row and
column is reporting ‘ok’. This limitation is valid during power-up and power-down phases, as
well as during normal device operation.
Table 6. Device supply relation during power-up/power-down sequence
Supply2
VDD_HV_IO_
VDD_LV
Supply1
VDD_LV(1)
MAIN
VDD_HV_FLA
VDD_HV_OSC
ok
VDD_HV_IO_ VDD_HV_IO_ VDD_HV_IO_
VDD_HV_ADV VDD_HV_ADR
ETH0
ETH1
EMMC
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
VDD_HV_IO_MAIN
VDD_HV_FLA
VDD_HV_OSC(2)
ok
VDD_HV_IO_ETH0
ok
not allowed
VDD_HV_IO_ETH1
ok
not allowed
ok
VDD_HV_IO_EMMC
ok
not allowed
ok
ok
VDD_HV_ADV
ok
not allowed
ok
ok
not allowed
VDD_HV_ADR
ok
not allowed
ok
ok
not allowed
ok
not allowed
1. VDD_LV can be higher than VDD_HV supplies only during power-up/down transient ramps, in case of external LV regulator
and if VDD_HV supply voltage level is lower than VDD_LV allowed max operating condition.
2. The application shall grant that these supplies are always at the same voltage level.
During power-up, all functional terminals are maintained in a known state as described in
the device pinout Microsoft Excel file attached to the IO_Definition document.
24/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
4.4
Electrical characteristics
Electrostatic discharge (ESD)
The following table describes the ESD ratings of the device:
•
All ESD testing are in conformity with CDF-AEC-Q100 Stress Test Qualification for
Automotive Grade Integrated Circuits,
•
Device failure is defined as: “If after exposure to ESD pulses, the device does not meet
the device specification requirements, which include the complete DC parametric and
functional testing at room temperature and hot temperature, maximum DC parametric
variation within 10% of maximum specification”.
Table 7. ESD ratings
Parameter
ESD for Human Body Model (HBM)(1)
ESD for field induced Charged Device Model (CDM)(2)
C
Conditions
Value
Unit
T
All pins
2000
V
T
All pins
500
V
T
Corner Pins
750
V
1. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing.
2. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level.
DS12304 Rev 5
25/147
25
Electrical characteristics
4.5
SPC58EHx, SPC58NHx
Electromagnetic compatibility characteristics
EMC measurements at IC-level IEC standards are available from STMicroelectronics on
request.
26/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
4.6
Electrical characteristics
Temperature profile
The device is qualified in accordance to AEC-Q100 Grade1 requirements, such as HTOL
1,000 h and HTDR 1,000 hrs, TJ = 150 °C.
Mission profile exceeding AEC-Q100 Grade 1, and with junction Temperature equal or lower
than 150 °C have to be evaluated by ST to confirm that are covered by product qualification.
Contact your STMicroelectronics Sales representative for validation.
DS12304 Rev 5
27/147
27
Electrical characteristics
4.7
SPC58EHx, SPC58NHx
Device consumption
Table 8. Device consumption
Value(1)
Symbol
IDD_LKG(2),(3)
C
CC
Parameter
Conditions
Unit
Min
Typ
Max
C
TJ = 40 °C
—
—
24
D
TJ = 25 °C
—
—
16
D Leakage current on the
VDD_LV supply
D
TJ = 55 °C
—
—
36
TJ = 95 °C
—
—
110
D
TJ = 120 °C
—
—
220
P
TJ = 150 °C
—
—
500
—
—
—
550
mA
mA
IDD_LV(3)
CC
P
Dynamic current on
the VDD_LV supply,
very high consumption
profile(4)
IDD_HV
CC
P
Total current on the
VDD_HV supply(4)
fMAX
—
—
100
mA
IDD_LV_GW
CC
T
Dynamic current on
the VDD_LV supply,
gateway profile(5)
—
—
—
350
mA
IDD_HV_GW
CC
T
Dynamic current on
the VDD_HV supply,
gateway profile(5),(6)
—
—
—
35
mA
IDD_LV_BCM
CC
T
Dynamic current on
the VDD_LV supply,
body profile(7)
—
—
—
285
mA
IDD_HV_BCM
CC
T
Dynamic current on
the VDD_HV supply,
body profile(7),(6)
—
—
—
40
mA
IDD_MAIN_CORE_AC
CC
T
Main Core dynamic
current(8)
fMAX
—
—
55
mA
IDD_CHKR_CORE_AC
CC
T
Checker Core dynamic
operating current
fMAX
—
—
35
mA
IDD_HSM_AC
CC
T
HSM platform dynamic
operating current(9)
fMAX/2
—
—
30
mA
T
Dynamic current on
the VDD_LV supply
+Total current on the
VDD_HV supply
—
—
106
150
mA
T
Dynamic current on
the VDD_LV supply
+Total current on the
VDD_HV supply
—
—
14.5
60
mA
IDDHALT(10)
IDDSTOP(11)
28/147
CC
CC
DS12304 Rev 5
SPC58EHx, SPC58NHx
Electrical characteristics
Table 8. Device consumption (continued)
Value(1)
Symbol
C
Parameter
Typ
Max
TJ = 25 °C
—
130
380
TJ = 40 °C
—
—
550
TJ = 55 °C
—
—
820
TJ = 120 °C
—
1.37
4
P
TJ = 150 °C
—
2.9
8
D
TJ = 25 °C
—
150
530
µA
TJ = 40 °C
—
—
790
µA
TJ = 55 °C
—
—
1.2
mA
TJ = 120 °C
—
—
5.5
P
TJ = 150 °C
—
—
11
D
TJ = 25 °C
—
190
680
µA
TJ = 40 °C
—
—
1
mA
TJ = 55 °C
—
—
1.5
TJ = 120 °C
—
2.3
7
TJ = 150 °C
—
5
14
D
SSWU running over all
STANDBY period with
OPC/TU commands
execution and keeping
ADC off(14)
TJ = 40 °C
—
1
3.5
mA
D
SSWU running over all
STANDBY period with
OPC/TU/ADC
commands execution
and keeping ADC
on(15)
TJ = 40 °C
—
3.5
5
mA
C
IDDSTBY8
CC
D
D
C
IDDSTBY128
(12)
CC
D
D
C
IDDSTBY256(12)
CC
D
D
Total standby mode
current on VDD_LV and
VDD_HV supply, 8 KB
RAM(13)
Total standby mode
current on VDD_LV and
VDD_HV supply,
128 KB RAM(13)
Total standby mode
current on VDD_LV and
VDD_HV supply,
256 KB RAM(13)
P
IDDSSWU1
IDDSSWU2
CC
CC
Unit
Min
D
(12)
Conditions
µA
mA
mA
mA
1. The ranges in this table are design targets and actual data may vary in the given range.
2. The leakage considered is the sum of core logic and RAM memories. The contribution of analog modules is not considered,
and they are computed in the dynamic IDD_LV and IDD_HV parameters.
3. IDD_LKG (leakage current) and IDD_LV (dynamic current) are reported as separate parameters, to give an indication of the
consumption contributors. The tests used in validation, characterization and production are verifying that the total
consumption (leakage + dynamic) is lower or equal to the sum of the maximum values provided (IDD_LKG + IDD_LV). The
two parameters, measured separately, may exceed the maximum reported for each, depending on the operative conditions
and the software profile used.
4. Use case: 3 x e200Z4 @200 MHz with all locksteps on, HSM @100 MHz, all IPs clock enabled, Flash access with prefetch
disabled, Flash consumption includes parallel read and program/erase, all SARADC in continuous conversion, DMA
continuously triggered by ADC conversion, 4 DSPI / 8 CAN / 8 LINFlex / FlexRay / ENET0 / ENET1 / eMMC and OctoSPI
transmitting, RTC and STM running, 2 x EMIOS running (8 channels in OPWMT mode), FIRC, SIRC, FXOSC, PLL0-1
running. The switching activity estimated for dynamic consumption does not include I/O toggling, which is highly dependent
on the application. Details of the software configuration are available separately. The total device consumption is IDD_LV +
IDD_HV + IDD_LKG for the selected temperature.
5. GW use case: three cores running @200 MHz, no lockstep, HSM @100 MHz, INTC enabled, 1 EDMA triggered by ADC,
PLL0 @200 MHz PLL1 @200 MHz, XOSC = 8/40 MHz, FLASH read only 25%, 12 x CAN running @40 MHz data
4 Mbps/1 Mbps/500 Kbps, 2 x SARADC running @15 MHz with 16 conversion channels, ETH 1 Gbps, OctoSPI @200 Mhz
data 100 MB/sec, all other peripherals frozen.
DS12304 Rev 5
29/147
30
Electrical characteristics
SPC58EHx, SPC58NHx
6. IDD_HV_BCM and IDD_HV_GW consumption measured is averaged in time, by considering non-concurrent peaks from all the
IP contributors (ADCs, FLASH, PADS, PMC, TSENS, Oscillators). Please consider IDD_HV parameter as peak value. IO
consumption contribution may vary, depending on the application loads differences vs the validation board used.
7. BCM use case: two cores running @160 MHz, no lockstep, HSM @80 MHz, INTC enabled, 1 EDMA triggered by ADC,
PLL0 @200 MHz PLL1 @160 MHz, XOSC = 8/40 MHz, FLASH read only 25%, 4 x CAN running @40 MHz data 4 Mbps,
5 x DSPI running @100 MHz data 4 Mbps, 2 EMIOS running @100 MHz - 12 PWM period=3 KHz, 5 x SARADC running
@15 MHz with 23 conversion channels, 10 LIN/UART baud-rate 115200, all other peripherals frozen.
8. Dynamic consumption of one core, including the dedicated I/D-caches and I/D-MEMS contribution.
9. Dynamic consumption of the HSM module, including the dedicated memories, during the execution of Electronic Code
Book crypto algorithm on 1 block of 16 byte of shared RAM.
10. Flash in Low Power. Sysclk at 160 MHz, PLL0_PHI at 160 MHz, XTAL at 40 MHz, FIRC 16 MHz ON, RCOSC1M off.
MCAN: instances: 0, 1, 2, 3, 4, 5, 6 ON (configured but no reception or transmission), Ethernet ON (configured but no
reception or transmission), ADC ON (continuously converting). All others IPs clock-gated.
11. Sysclk = RC16 MHz, RC16 MHz ON, RC1 MHz ON, PLL OFF. All possible peripherals off and clock gated. Flash in power
down mode.
12. The consumption numbers shown here in IDD standby section are considering standby regulator specs, in case of external
regulator mode, the consumption numbers can be higher.
13. STANDBY mode: device configured for minimum consumption, RC16 MHz off, RC1 MHz on.
14. SSWU1 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC off. The total
standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the selected memory size
and temperature.
15. SSWU2 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC on in continuous
conversion. The total standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the
selected memory size and temperature.
30/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
4.8
Electrical characteristics
I/O pad specification
The following table describes the different pad type configurations.
Table 9. I/O pad specification descriptions
Pad type
Description
Weak configuration
Provides a good compromise between transition time and low electromagnetic emission.
Medium configuration
Strong configuration
Provides transition fast enough for the serial communication channels with controlled
current to reduce electromagnetic emission.
Provides fast transition speed; used for fast interface.
Very strong
configuration
Provides maximum speed and controlled symmetric behavior for rise and fall transition.
Used for fast interface including Ethernet, SDMMC, OctalSPI and FlexRay interfaces
requiring fine control of rising/falling edge jitter.
Ultra strong
configuration
Provides very high speed interfaces till 125 MHz. Used for fast interface including
Ethernet, SDMMC, OctalSPI and FlexRay interfaces.
Input only pads
Standby pads
Note:
These low input leakage pads are associated with the ADC channels.
These pads (LP pads) are active during STANDBY. They are configured in CMOS level
logic and this configuration cannot be changed. Moreover, when the device enters the
STANDBY mode, the pad-keeper feature can be activated for LP pads. It means that:
– if the pad voltage level is above the pad keeper high threshold, a weak pull-up resistor
is automatically enabled
– if the pad voltage level is below the pad keeper low threshold, a weak pull-down resistor
is automatically enabled.
For the pad-keeper high/low thresholds please consider (VDD_HV_IO_MAIN / 2) +/-20%.
Each I/O pin on the device supports specific drive configurations. See the signal description
table in the device reference manual for the available drive configurations for each I/O pin.
PMC_DIG_VSIO register has to be configured to select the voltage level (3.3 V or 5.0 V) for
each IO segment.
Logic level is configurable in running mode while it is CMOS not-configurable in STANDBY
for LP (low power) pads, so if a LP pad is used to wakeup from STANDBY, it should be
configured as CMOS also in running mode in order to prevent device wrong behavior in
STANDBY.
The SPC58EHx, SPC58NHx microcontroller has many GPIOs in double bonding; this
feature is in place for all packages but FPBGA386. Indeed some IO PADS are bonded
together within the package, in order to provide different alternative functions to the same
pin/ball.
The application shall enable only one pad at a time for each pin/ball in double bonding, in
order to avoid high current consumption, due to electrical contention, and reliability issues
of the pad drivers.
Refer to the SPC58EHx, SPC58NHx IO_ definition document, where double bonded
ball/pins are clearly identified, paying attention during software design to strictly avoid the
above situation depicted of electrical contention.
4.8.1
I/O input DC characteristics
The following table provides input DC electrical characteristics, as described in Figure 3.
DS12304 Rev 5
31/147
43
Electrical characteristics
SPC58EHx, SPC58NHx
Figure 3. I/O input electrical characteristics
VIN
VDD
VIH
VHYS
VIL
VINTERNAL
(SIUL register)
Table 10. I/O input electrical characteristics
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
TTL
Vihttl
SR
P
Input high level
TTL
—
2
—
VDD_HV_IO
+ 0.3
V
Vilttl
SR
P
Input low level
TTL
—
–0.3
—
0.8
V
Vhysttl
CC
C
Input hysteresis
TTL
—
0.3
—
—
V
CMOS
Vihcmos
SR
P
Input high level
CMOS
—
0.65 * VDD
—
VDD_HV_IO
+ 0.3
V
Vilcmos
SR
P
Input low level
CMOS
—
–0.3
—
0.35 * VDD
V
Vhyscmos
CC
C
Input hysteresis
CMOS
—
0.10 * VDD
—
—
V
COMMON
ILKG
CC
P
Pad input
leakage
INPUT-ONLY pads
TJ = 150 °C
—
—
200
nA
ILKG
CC
P
Pad input
leakage
MEDIUM pads
TJ = 150 °C
—
—
360
nA
ILKG
CC
P
Pad input
leakage
STRONG pads
TJ = 150 °C
—
—
1,000
nA
32/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
Electrical characteristics
Table 10. I/O input electrical characteristics (continued)
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
ILKG
CC
P
Pad input
leakage
VERY STRONG pads,
TJ = 150 °C
—
—
1,000
nA
ILKG
CC
P
Pad input
leakage
ULTRA STRONG
pads, TJ = 150 °C
—
—
1,000
nA
CP1
CC
D
Pad
capacitance
—
—
—
10
pF
Vdrift
CC
D
Input Vil/Vih
temperature
drift
In a 1 ms period, with a
temperature variation
3 V
TJ < 150 °C,
VDD_HV_ADV > 3 V,
V
DD_HV_ADR_S > 3 V
Total unadjusted error
in 12-bit
TJ < 150 °C,
configuration(7)
> 3 V,
V
Unit
Min
Max
–4
4
–6
6
LSB
–6
6
D
High frequency mode,
TJ < 150 °C,
VDD_HV_ADV > 3 V,
VDD_HV_ADR_S > 3 V
–12
12
D
Mode 1, TJ < 150 °C,
VDD_HV_ADV > 3 V
VDD_HV_ADR_S > 3 V
–1.5
1.5
–2.0
2.0
DD_HV_ADV
(12b)
3 V > VDD_HV_ADR_S > 2 V
D
TUE10
CC
C
C
58/147
Mode 1, TJ < 150 °C,
VDD_HV_ADV > 3 V,
Total unadjusted error 3 V > V
DD_HV_ADR_S > 2 V
in 10-bit
Mode 2, TJ < 150 °C,
configuration(7)
VDD_HV_ADV > 3 V
VDD_HV_ADR_S > 3 V
Mode 3, TJ < 150 °C,
VDD_HV_ADV > 3 V
VDD_HV_ADR_S > 3 V
DS12304 Rev 5
LSB
(10b)
–3.0
3.0
–4.0
4.0
SPC58EHx, SPC58NHx
Electrical characteristics
Table 27. SARn ADC electrical specification (continued)
Value
Symbol
ΔTUE12
TUEINJ2
C
CC
CC
D
T
Parameter
TUE degradation
addition, due to
current injection in
IINJ2 range.(8)
Differential nonlinearity
CC
T
Unit
Min
Max
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV
∈ [0:25 mV]
–1
1
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV
∈ [25:50 mV]
–2
2
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV
∈ [50:75 mV]
–4
4
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV
∈ [75:100 mV]
–6
6
–2.5
2.5
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR − VDD_HV_ADV
∈ [25:50 mV]
–4
4
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR − VDD_HV_ADV
∈ [50:75 mV]
–7
7
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR − VDD_HV_ADV
∈ [75:100 mV]
–12
12
TUE degradation due V
DD_HV_ADV < VIN <
to VDD_HV_ADR offset V
DD_HV_ADR
with respect to
VDD_HV_ADR − VDD_HV_ADV
VDD_HV_ADV
∈ [0:25 mV]
P
DNL(9)
Conditions
See Operating Conditions
chapter Table 5, IINJ2
parameter.
+8
Standard frequency mode,
VDD_HV_ADV > 4 V
VDD_HV_ADR_S > 4 V
–1
High frequency mode,
VDD_HV_ADV > 4 V
VDD_HV_ADR_S > 4 V
–1
LSB
(12b)
LSB
2
LSB
(12b)
2
1. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal
sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within
the sampling window. Refer to Figure 8 for models of the internal ADC circuit, and the values to use in external RC sizing
and calculating the sampling window duration.
2. Mode1: 6 sampling cycles + 10 conversion cycles at 13.33 MHz.
3. Mode2: 5 sampling cycles + 10 conversion cycles at 13.33 MHz.
DS12304 Rev 5
59/147
63
Electrical characteristics
SPC58EHx, SPC58NHx
4. Mode3: 6 sampling cycles + 10 conversion cycles at 16 MHz.
5. IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven
by the transfer of charge between internal capacitances during the conversion.
6. Current parameter values are for a single ADC.
7. TUE is granted with injection current within the range defined in Table 26, for parameters classified as T and D.
8. All channels of all SAR-ADC12bit and SAR-ADC10bit are impacted with same degradation, independently from the ADC
and the channel subject to current injection.
9. DNL is granted with injection current within the range defined in Table 26, for parameters classified as T and D.
4.12.3
SAR ADC 10 bit electrical specification
The ADC comparators are 10-bit Successive Approximation Register analog-to-digital
converters with full capacitive DAC. The SARn architecture allows input channel
multiplexing.
Note:
The functional operating conditions are given in the DC electrical specifications. Absolute
maximum ratings are stress ratings only, and functional operation at the maxima is not
guaranteed. Stress beyond the listed maximum may affect device reliability or cause
permanent damage to the device.
Table 28. ADC-Comparator electrical specification
Value
Symbol
C
P
Parameter
Conditions
SR
tADCINIT
SR
— ADC initialization time
tADCBIASINIT
SR
—
ADC BIAS initialization
time
tADCINITSBY
SR
—
ADC initialization time
in standby
tADCPRECH
SR
T
ADC precharge time
ΔVPRECH
SR
D
Precharge voltage
precision
tADCSAMPLE
tADCEVAL
IADCREFH(3),(4)
60/147
SR
SR
CC
T
Clock frequency
P ADC sample time
P
D
T
Max
7.5
13.33
>13.33
16.0
—
1.5
—
µs
—
5
—
µs
8
—
µs
1/fADCK
—
µs
0
0.25
V
5/fADCK(2)
—
µs
10-bit ADC mode, Standard
channel
6/fADCK
—
µs
10-bit ADC mode
10/fADCK
—
ADC comparator mode
2/fADCK
—
Run mode
(average across all codes)
—
7
Power Down mode
—
1
ADC comparator mode
—
19.5
Standard frequency mode
fADCK
High frequency mode
—
10-bit ADC mode, Fast
channel
ADC evaluation time
ADC high reference
current
Standby Mode
TJ < 150 °C
(1)
Unit
Min
DS12304 Rev 5
MHz
µs
µA
SPC58EHx, SPC58NHx
Electrical characteristics
Table 28. ADC-Comparator electrical specification (continued)
Value
Symbol
IADCREFL(5)
IADV_S(5)
TUE10
C
CC
CC
Parameter
Conditions
Unit
Min
Max
Run mode
VDD_HV_ADR_S ≤ 5.5 V
—
15
Power Down mode
VDD_HV_ADR_S ≤ 5.5 V
—
1
ADC comparator mode
—
20.5
Run mode
—
4
Power Down mode
—
0.04
T
TJ < 150 °C,
VDD_HV_ADV > 3 V,
VDD_HV_ADR_S > 3 V
–2
2
P
TJ < 150 °C,
VDD_HV_ADV > 3 V,
VDD_HV_ADR_S > 3 V
–3
3
D
ADC low reference
current
P V
DD_HV_ADV power
D supply current
CC
T
D
Total unadjusted error
in 10-bit configuration(6) TJ < 150 °C,
VDD_HV_ADV > 3 V,
3 V > VDD_HV_ADR_S > 2 V
High frequency mode,
TJ < 150 °C,
VDD_HV_ADV > 3 V,
VDD_HV_ADR_S > 3 V
DS12304 Rev 5
µA
mA
LSB
–3
3
–3
3
(10b)
61/147
63
Electrical characteristics
SPC58EHx, SPC58NHx
Table 28. ADC-Comparator electrical specification (continued)
Value
Symbol
ΔTUE10
TUEINJ2
C
CC
CC
Conditions
TUE degradation due
to VDD_HV_ADR offset
D
with respect to
VDD_HV_ADV
T
P
DNL(7)
Parameter
CC
T
Unit
Min
Max
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV ∈
[0:25 mV]
–1.0
1.0
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV ∈
[25:50 mV]
–2.0
2.0
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV ∈
[50:75 mV]
–3.5
3.5
VIN < VDD_HV_ADV
VDD_HV_ADR − VDD_HV_ADV ∈
[75:100 mV]
–6.0
6.0
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR − VDD_HV_ADV ∈
[0:25 mV]
–2.5
2.5
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR − VDD_HV_ADV ∈
[25:50 mV]
–4.0
4.0
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR − VDD_HV_ADV ∈
[50:75 mV]
–7.0
7.0
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR − VDD_HV_ADV ∈
[75:100 mV]
–12.0
12.0
TUE degradation
See Operating Conditions
addition, due to current
chapter Table 5, IINJ2
injection in IINJ2
parameter.
(5)
range.
Standard frequency mode,
VDD_HV_ADV > 4 V
Differential non-linearity VDD_HV_ADR_S > 4 V
std. mode
High frequency mode,
VDD_HV_ADV > 4 V
VDD_HV_ADR_S > 4 V
3
–1
LSB
(10b)
LSB
2
LSB
(10b)
–1
2
1. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal
sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within
the sampling window. Refer to Figure 8 for models of the internal ADC circuit, and the values to use in external RC sizing
and calculating the sampling window duration.
2. In case the ADC is used as Fast Comparator the sampling time is tADCSAMPLE = 2/fADCK.
3. IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven
by the transfer of charge between internal capacitances during the conversion.
62/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
Electrical characteristics
4. Current parameter values are for a single ADC.
5. All channels of all SAR-ADC12bit and SAR-ADC10bit are impacted with same degradation, independently from the ADC
and the channel subject to current injection.
6. TUE is granted with injection current within the range defined in Table 26, for parameters classified as T and D.
7. DNL is granted with injection current within the range defined in Table 26, for parameters classified as T and D.
DS12304 Rev 5
63/147
63
Electrical characteristics
4.13
SPC58EHx, SPC58NHx
Temperature Sensor
The following table describes the temperature sensor electrical characteristics.
Table 29. Temperature sensor electrical characteristics
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
—
CC
—
Temperature monitoring range
—
–40
—
150
°C
TSENS
CC
T
Sensitivity
—
—
5.18
—
mV/°C
TACC
CC
P
Accuracy
TJ < 150 C
–3
—
3
°C
64/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
4.14
Electrical characteristics
Power management
The power management module monitors the different power supplies as well as it
generates the required internal supplies. The device can operate in the following
configurations:
Table 30. Power management regulators
Device
External
regulator(1)
Internal
SMPS
regulator
SPC58EHx
SPC58NHx
X
—
Internal
linear
regulator
external
ballast
Internal
linear
regulator
internal
ballast
X
—
Clamp
Auxiliary
regulator(2) regulator(2)
X
Internal
standby
regulator(3)
X
X
1. The application can select between the internal or external regulator mode, by controlling the EXTREG_SEL pin of the
device. If EXTREG_SEL is connected to VDD_HV_IO_MAIN, the external regulator mode is selected.
2. In external regulator mode, the auxiliary and clamp regulators can be optionally enabled, to support the compensation of
overshoots and undershoots in the supply. In internal regulator mode, the auxiliary and clamp regulators are always active.
3. Standby regulator is automatically activated when the device enters standby mode.
4.14.1
Power management integration
Use the integration schemes provided below to ensure the proper device function,
according to the selected regulator configuration.
The internal regulators are supplied by VDD_HV_IO_MAIN supply and are used to generate
VDD_LV supply.
Place capacitances on the board as near as possible to the associated pins and limit the
serial inductance of the board to less than 5 nH.
It is recommended to use the internal regulators only to supply the device itself.
DS12304 Rev 5
65/147
74
Electrical characteristics
SPC58EHx, SPC58NHx
Figure 9. External regulator mode
&)/$
9''B+9B,2
9''B+9B,2
9''B+9B)/$
(;75(*B6(/
%&75/
&(
966
&%9
([WHUQDO
5HJXODWRU
9''B+9B,2
&+9Q
9''B/9
966
$X[5HJ
&/9Q
966
&ODPS5HJ
966B+9B$'9
9''B+9B$'9
&$'&
66/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
Electrical characteristics
Figure 10. Internal regulator with external ballast mode
&)/$
966
&(
966
%&75/
(;75(*B6(/
&%
9''B+9B,2
4(;7
&%9
9''B+9B)/$
9''B+9
9''B+9B,2
&+9Q
0DLQ5HJ
966
9''B/9
$X[5HJ
&/9Q
966
&ODPS5HJ
966B+9B$'9
9''B+9B$'9
&$'&
DS12304 Rev 5
67/147
74
Electrical characteristics
SPC58EHx, SPC58NHx
Figure 11. Standby regulator with external ballast mode
&)/$
966
9''B+9
&%9
&(
966
9''B+9B,2
(;75(*B6(/
%&75/
&%
9''B+9B)/$
4(;7
9''B+9B,2
&+9Q
6WDQGE\UHJ
966
9''B/9
&/9Q
966
966B+9B$'9
9''B+9B$'9
&$'&
Table 31. External components integration
Symbol
C
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
—
2× 2.2
—
µF
Total resistance including
board track
—
—
50
mΩ
Each VDD_LV/VSS pair
—
47
—
nF
Common Components
CE
SR
D
Internal voltage regulator stability
external capacitance.(2) (3)
RE
SR
D
Stability capacitor equivalent
serial resistance
CLVn
SR
Internal voltage regulator
D decoupling external
capacitance(2) (4) (5)
RLVn
SR
D
Stability capacitor equivalent
serial resistance
—
—
—
50
mΩ
CBV
SR
D Bulk capacitance for HV supply(2)
on one VDD_HV_IO_MAIN/
VSS pair
—
4.7
—
µF
CHVn
SR
D
on all VDD_HV_IO/VSS and
VDD_HV_ADR/VSS pairs
—
100
—
nF
68/147
Decoupling capacitance for
ballast and IOs(2)
DS12304 Rev 5
SPC58EHx, SPC58NHx
Electrical characteristics
Table 31. External components integration (continued)
Symbol
C
Value
Conditions(1)
Parameter
CFLA
SR
D
Decoupling capacitance for Flash
supply(6)
CADC
SR
D
ADC supply external
capacitance(2)
Unit
Min
Typ
Max
—
—
10
—
nF
VDD_HV_ADV/VSS_HV_ADV
pair.
—
2.2
—
µF
2.0
—
HV_IO
Internal Linear Regulator with External Ballast Mode
QEXT
SR
D
Recommended external NPN
transistors
VQ
SR
D
External NPN transistor collector
voltage
—
NJD2873T4, BCP68
VDD_
V
_MAIN
CB
SR
Internal voltage regulator stability
D external capacitance on ballast
base(4) (7)
—
—
2.2
—
µF
RB
SR
D
Stability capacitor equivalent
serial resistance
Total resistance including
board track
—
—
50
mΩ
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TJ = –40 / 150 °C, unless otherwise specified.
2. Recommended X7R or X5R ceramic –50% / +35% variation across process, temperature, voltage and after aging.
3. CE capacitance is required both in internal and external regulator mode.
4. For noise filtering, add a high frequency bypass capacitance of 10 nF.
5. For applications it is recommended to implement at least 5 CLV capacitances.
6. Recommended X7R capacitors. For noise filtering, add a high frequency bypass capacitance of 100 nF.
7. CB capacitance is required if only the external ballast is implemented.
DS12304 Rev 5
69/147
74
Electrical characteristics
4.14.2
SPC58EHx, SPC58NHx
Voltage regulators
Table 32. Linear regulator specifications
Value
Symbol
C
Parameter
Conditions
CC P
Main regulator output voltage
VMREG
CC P
Unit
Min
Typ
Max
Power-up, before
trimming, no load
1.12
1.20
1.28
After trimming,
maximum load
1.08
1.18
1.23
—
—
700
mA
—
—
400
mA
-200
—
200
mA
IMREG = max
—
—
22
IMREG = 0 mA
—
—
V
Main regulator current provided to
VDD_LV domain
The maximum current required by
T the device (IDD_LV) may exceed
the maximum current which can
be provided by the internal linear
regulator. In this case, the internal
regulator mode cannot be used.
IDDMREG
CC
IDDCLAMP
Main regulator rush current
sinked from VDD_HV_IO_MAIN
CC D
domain during VDD_LV domain
loading
ΔIDDMREG
CC
T
IMREGINT
CC
D Main regulator current
D consumption
Main regulator output current
variation
—
Power-up condition
20 µs observation
window
mA
Table 33. Auxiliary regulator specifications
Value
Symbol
C
Parameter
Conditions
CC
P
CC
P
IDDAUX
CC
T
ΔIDDAUX
CC
T Aux regulator current variation
IAUXINT
CC
D Aux regulator current
D consumption
Aux regulator output voltage
VAUX
70/147
Unit
Min
Typ
Max
After trimming, internal
regulator mode
1.08
1.18
1.21
After trimming, external
regulator mode
1.03
1.12
1.16
—
—
—
250
mA
100
—
100
mA
IMREG = max
—
—
1.1
IMREG = 0 mA
—
—
1.1
Aux regulator current provided to
VDD_LV domain
20 µs observation
window
DS12304 Rev 5
V
mA
SPC58EHx, SPC58NHx
Electrical characteristics
Table 34. Clamp regulator specifications
Value
Symbol
C
Parameter
Conditions
CC P
Clamp regulator output voltage
VCLAMP
CC P
ΔIDDCLAMP CC T Clamp regulator current variation
ICLAMPINT
CC D
Clamp regulator current
consumption
Unit
Min
Typ
Max
After trimming, internal
regulator mode
1.17
1.21
1.32
After trimming, external
regulator mode
1.24
1.28
1.39
20 µs observation
window
100
—
100
mA
—
—
0.7
mA
IMREG = 0 mA
V
Table 35. Standby regulator specifications
Value
Symbol
VSBY
IDDSBY
4.14.3
C
Parameter
Conditions
CC P Standby regulator output voltage
CC T
Standby regulator current
provided to VDD_LV domain
After trimming,
maximum load
—
Unit
Min
Typ
Max
1.02
1.06
1.26
V
—
—
50
mA
Voltage monitors
The monitors and their associated levels for the device are given in Table 36. Figure 12
illustrates the workings of voltage monitoring threshold.
DS12304 Rev 5
71/147
74
Electrical characteristics
SPC58EHx, SPC58NHx
Figure 12. Voltage monitor threshold definition
VDD_xxx
VHVD
VLVD
TVMFILTER
TVMFILTER
HVD TRIGGER
(INTERNAL)
TVMFILTER
TVMFILTER
LVD TRIGGER
(INTERNAL)
Table 36. Voltage monitor electrical characteristics
Symbol
C
Supply/Parameter(1)
Value(2)
Conditions
Unit
Min
Typ
Max
1.80
2.18
2.40
V
PowerOn Reset HV
VPOR200_C
CC P VDD_HV_IO_MAIN
—
Minimum Voltage Detectors HV
VMVD270_C
CC P VDD_HV_IO_MAIN
—
2.71
2.76
2.80
V
VMVD270_F
CC P VDD_HV_FLA
—
2.71
2.76
2.80
V
CC P VDD_HV_IO_MAIN (in Standby)
—
2.71
2.76
2.80
V
VMVD270_SBY
Low Voltage Detectors HV
VLVD290_C
CC P VDD_HV_IO_MAIN
—
2.89
2.94
2.99
V
VLVD290_F
CC P VDD_HV_FLA
—
2.89
2.94
2.99
V
VLVD290_IE
CC P VDD_HV_EMMC
—
2.89
2.94
2.99
V
VLVD290_AS
CC P VDD_HV_ADV (ADCSAR pad)
—
2.89
2.94
2.99
V
VLVD290_IE1
CC P VDD_HV_IO_ETH1
—
2.89
2.94
2.99
V
72/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
Electrical characteristics
Table 36. Voltage monitor electrical characteristics (continued)
Symbol
C
Supply/Parameter(1)
Value(2)
Conditions
Unit
Min
Typ
Max
VLVD290_IE0
CC P VDD_HV_IO_ETH0
—
2.89
2.94
2.99
V
VLVD400_IE
CC P VDD_HV_EMMC
—
4.15
4.23
4.31
V
VLVD400_AS
CC P VDD_HV_ADV (ADCSAR pad)
—
4.15
4.23
4.31
V
VLVD400_IM
CC P VDD_HV_IO_MAIN
—
4.15
4.23
4.31
V
VLVD400_IE1
CC P VDD_HV_IO_ETH1
4.15
4.23
4.31
V
VLVD400_IE0
CC P VDD_HV_IO_ETH0
4.15
4.23
4.31
V
—
High Voltage Detectors HV
VHVD400_C
CC P VDD_HV_IO_MAIN
3.68
3.75
3.82
V
VHVD400_IE1
CC P VDD_HV_IO_ETH1
3.68
3.75
3.82
V
VHVD400_IE0
CC P VDD_HV_IO_ETH0
3.68
3.75
3.82
V
5.72
5.82
5.92
V
—
Upper Voltage Detectors HV
VUVD600_C
CC P VDD_HV_IO_MAIN
VUVD600_F
CC P VDD_HV_FLA
—
5.72
5.82
5.92
V
VUVD600_IE1
CC P VDD_HV_IO_ETH1
—
5.72
5.82
5.92
V
VUVD600_IE0
CC P VDD_HV_IO_ETH0
—
5.72
5.82
5.92
V
—
0.29
0.60
0.97
V
PowerOn Reset LV
VPOR031_C
CC P VDD_LV
Minimum Voltage Detectors LV
VMVD082_C
CC P VDD_LV
—
0.85
0.88
0.91
V
VMVD094_C
CC P VDD_LV
—
0.98
1.00
1.02
V
VMVD094_FA
CC P VDD_LV (Flash)
—
1.00
1.02
1.04
V
VMVD094_FB
CC P VDD_LV (Flash)
—
1.00
1.02
1.04
V
Low Voltage Detectors LV
VLVD100_C
CC P VDD_LV
—
1.06
1.08
1.11
V
VLVD100_SB
CC P VDD_LV (In Standby)
—
0.99
1.01
1.03
V
VLVD100_F
CC P VDD_LV (Flash)
—
1.08
1.10
1.12
V
1.28
1.31
1.33
V
High Voltage Detectors LV
VHVD134_C
CC P VDD_LV
—
Upper Voltage Detectors LV
VUVD140_C
CC P VDD_LV
—
1.34
1.37
1.39
V
VUVD140_F
CC P VDD_LV (Flash)
—
1.34
1.37
1.39
V
—
5
—
30
μs
Common
TVMFILTER
CC D Voltage monitor filter(3)
DS12304 Rev 5
73/147
74
Electrical characteristics
SPC58EHx, SPC58NHx
1. Even if LVD/HVD monitor reaction is configurable, the application ensures that the device remains in the operative
condition range, and the internal LVDx monitors are disabled by the application. Then an external voltage monitor with
minimum threshold of VDD_LV(min) = 1.08 V measured at the device pad, has to be implemented.
For HVDx, if the application disables them, then they need to grant that VDD_LV and VDD_HV voltage levels stay withing
the limitations provided in Section 4.2: Absolute maximum ratings.
2. The values reported are Trimmed values, where applicable.
3. See Figure 12. Transitions shorter than minimum are filtered. Transitions longer than maximum are not filtered, and will be
delayed by TVMFILTER time. Transitions between minimum and maximum can be filtered or not filtered, according to
temperature, process and voltage variations.
74/147
DS12304 Rev 5
SPC58EHx, SPC58NHx
4.15
Electrical characteristics
Flash memory
The following table shows the Wait State configuration.
Table 37. Wait State configuration
APC
000
(1)
100(2)
001
(3)
RWSC
Frequency range (MHz)
0
f < 30
1
f < 60
2
f < 90
3
f < 120
4
f < 150
5
f < 180
6
f < 200
0
f < 30
1
f < 60
2
f < 90
3
f < 120
4
f < 150
5
f < 180
6
f < 200
2
55