SPV1040
Datasheet
High efficiency solar battery charger with embedded MPPT
Features
•
•
•
•
•
•
•
•
•
•
0.3 V to 5.5 V operating input voltage
140 mΩ internal synchronous rectifier
120 mΩ internal power active switch
100 kHz fixed PWM frequency
Duty cycle controlled by MPPT algorithm
Output voltage regulation, overcurrent and overtemperature protection
Input source reverse polarity protection
Built-in soft-start
Up to 95% efficiency
TSSOP8 package 3x4.4 mm
Applications
•
•
•
•
•
•
Product status link
SPV1040
Product summary
Order code
SPV1040T
Package
TSSOP8
Packing
Tube
Order code
SPV1040TR
Package
TSSOP8
Packing
Tape and reel
Product label
Smart phones and GPS systems
Wireless headsets
Small appliances, sensors
Portable media players
Digital still cameras
Toys and portable healthcare
Description
The SPV1040 device is a low power, low voltage, monolithic step-up converter with
an input voltage range from 0.3 V to 5.5 V, capable of maximizing the energy
generated by solar cells (or fuel cells), where low input voltage handling capability is
extremely important. Thanks to the embedded MPPT algorithm, even under varying
environmental conditions (such as irradiation, dirt, temperature) the SPV1040 offers
maximum efficiency in terms of power harvested from the cells and transferred to
the output. The device employs a voltage regulation loop, which fixes the charging
battery voltage via a resistor divider.
It is possible to set the maximum output current according to charging requirements
by a sense resistor .
The SPV1040 protects itself and other application devices by stopping the PWM
switching if either the maximum current threshold (up to 1.8 Apk) is reached or
the maximum temperature limit (up to 155 °C) is exceeded. An additional built-in
feature of the SPV1040 is the input source reverse polarity protection, which prevents
damage in case of reverse connection of the solar panel on the input.
DS6991 - Rev 9 - February 2021
For further information contact your local STMicroelectronics sales office.
www.st.com
SPV1040
Block diagram
1
Block diagram
Figure 1. Block diagram
VOUT
Lx
START SI GNAL
ZERO- CROSSI NG
DETECTOR
+
VREF
ANALOG BLOCK
I CTRL_PLUS
V MPP- REF
OVERTEMPERATURE
REVERSE POLARI TY
MPP BLOCK
-
CONTROL
DRI VERS
I CTRL_MI NUS
CLOCK
MPP- SET
+
OVERCURRENT
CLOCK
Bur st Ref
XSHUT
BURST MODE
PWM
+
DI GI TAL
CORE
-
DAC CODE
I out Reg
Vin Reg
Vo ut Reg
GND
V MPP- REF
MPP- SET
+
-
VCTRL
VREF
Figure 2. Simplified application circuit
L
Lx
XSHUT
VPV
GND
CIN
MPP- SET
RS
VOUT
I CTRL_PLUS
I CTRL_MI NUS
VBATT
RF1
CF
RF2
R1
COUT
VCTRL
R2
AM02612v1
In order to set up the application and simulate the related test results please go to www.st.com.
DS6991 - Rev 9
page 2/16
SPV1040
Pin description
2
Pin description
Table 1. Pin description
Pin
Name
Type
1
MPP-SET
I
2
GND
Ground
3
LX
I
Booster inductor connection.
4
VOUT
O
Booster output voltage.
5
VCTRL
I
Inverting input of constant
Voltage control loop. It cannot
be left floating.
6
ICTRL_MINUS
7
ICTRL_PLUS
I
I
Description
Non-inverting input to sense
the PV cell voltage. It cannot
be left floating.
Power ground reference.
Inverting input of constant
current control loop.
Connect to GND if not used:
cannot be left floating.
Non-inverting input of
constant current control loop.
Connect to GND if not used:
cannot be left floating.
Shutdown input pin: XSHUT =
low, the device in power off
mode.
8
XSHUT
I
XSHUT = high, the device is
enabled for operating mode.
This pin cannot be left
floating.
Figure 3. Pin connection top view
1
MPP-SET
XSHUT
8
2
GND
ICTRL_PLUS
7
3
LX
ICTRL_MINUS
6
4
VOUT
VCTRL
5
AM02613v1
DS6991 - Rev 9
page 3/16
SPV1040
Electrical ratings
3
Electrical ratings
Table 2. Absolute maximum ratings
Symbol
Parameter
VOUT
VOUT pin voltage range
LX
[-5.5, VOUT]
VOUT-VLX
Maximum voltage drop between VOUT and LX pins
MPP-SET
Analog input
XSHUT
[5.5]
[-5.5, VOUT]
Maximum voltage drop between VOUT and MPPT pins
Analog input
[5.5]
V
[-5.5, VOUT]
VOUT-VXSHUT
Maximum voltage drop between VOUT and X-SHUT pins
ICTRL_PLUS
Analog input
[-0.3, VOUT]
ICTRL_MINUS
Analog input
[-0.3, VOUT]
VCTRL
Analog input
[-0.3, VOUT]
GND
Unit
[-0.3, 5.5]
LX pin voltage range
VOUT-VMPP-SET
Value
[5.5]
Ground
0
Table 3. Thermal data
Symbol
Rthj-amb
Note:
DS6991 - Rev 9
Parameter
Thermal resistance, junction-to-ambient
Value
Unit
135
°C/W
Tjop
Junction operating temperature
-40 to 125
°C
Tstg
Storage temperature
-40 to 150
°C
RthJA has been measured on a 2-layer PCB: FR4, 35 μm Cu thickness, 2.8 cm2
page 4/16
SPV1040
Electrical characteristics
4
Electrical characteristics
VMPP-SET = 0.5 V, VCTRL = Ictrl+ = Ictrl- = GND, XSHUT = 0.5 V, TJ = -40 °C to 125 °C, unless otherwise
specified.
Table 4. Electrical characteristics
Symbol
Parameter
Test
conditions
Min.
Typ.
Max.
Unit
0.4
0.45
0.50
V
Input source section
VMPP-SET
Low boost
voltage
threshold
VOUT = 3.3 V
Iq
Quiescent
current
ILOAD = 0 mA,
VCTRL = 2 V,
VOUT = 3.3 V
60
80
ISD
Shutdown
current
VOUT = 3.3 V,
VCTRL = 2 V,
ILOAD = 0 mA,
XSHUT = GND
0.7
5
Irev
Reverse input
source current
VMPP-SET = -4
V, VOUT = 1.5 V
1
5
Undervoltage
lockout
threshold for
turn ON @VOUT
= 3.3 V
VMPP-SET
increasing
0.27
0.34
Undervoltage
lockout
threshold for
turn OFF
@VOUT = 3.3 V
VMPP-SET
decreasing
VUVLO
µA
V
0.14
0.24
Power section
RDS(on)-N
N-channel
power switch
ON resistance
RDS(on)-P
P-channel
synchronous
rectifier ON
resistance
VCTRL = 2 V
VMPPT-THR
MPPT-mode
threshold
VOUT
increasing,
VMPP-SET = 1.5
V
1.7
VOUT
Output voltage
range
VMPP-SET ≥ 1.5
V
2
POUT (2)
Maximum
output power
VMPP-SET ≥ 1.5
V
ILX
Maximum
inductor current
peak
120
mΩ
140
Control section
DS6991 - Rev 9
1.5
1.8
1.65
2
V
5.2 (1)
V
3
W
1.8
A
page 5/16
SPV1040
Electrical characteristics
Symbol
Parameter
Test
conditions
Min.
Typ.
Max.
Unit
70
100
130
kHz
FPWM
PWM signal
frequency
VREF
Internal VCTRL
reference
voltage
VOUT ≥ 1.8 V,
VCTRL
increasing
1.2
1.25
1.3
V
VICTRL
Sensing current
offset
ICTRL+ - ICTRLdecreasing
40
50
60
mV
XSHUT logic
low
XSHUT
increasing
0.27
0.34
XSHUT logic
High
XSHUT
decreasing
XSHUT
V
0.14
0.24
Thermal shutdown
Tshutdown
Overtemperatur
e threshold for
turn OFF
Temperature
increasing
Overtemperatur
e threshold for
turn ON
Temperature
decreasing
155
°C
130
1. According to the absolute maximum ratings the output charge voltage cannot be above 4.8 V but if a higher VOUT up to
5.2 V is needed, a Schottky diode must be placed between the Lx and VOUT pins as shown in Figure 1. In such way the
Schottky diode in parallel to the embedded P-channel MOSFET reduces the voltage drop between the VLX pin and the
VOUT pin determined by the body diode when the internal PMOS is OFF from 0.7 V down to 0.3 V.
2. Given Tj = Ta + RthJA x PD, and assuming RthJA = 135 °C/W, and that in order to avoid device destruction Tjmax must
be ≤ 125 °C, and that in the worst conditions TA = 85 °C, the power dissipated inside the device is given by: PD ≤ TJ-TA/
RthJA=295 mW. Therefore, if in the worst case the efficiency is assumed to be 90%, then PIN-MAX = 3.3 W and POUT-MAX = 3
W.
DS6991 - Rev 9
page 6/16
SPV1040
Typical characteristics
5
Typical characteristics
Table 5. Typical Conversion Efficiency
VIN[V]
PIN[W]
POUT/PIN[%]
1.50
0.25 to 2.0
80% to 90%
2.00
0.25 to 2.5
80% to 95%
2.50
0.25 to 3.0
80% to 95%
Test conditions (ref to Figure 1):
10uH ≤ L ≤ 100uH (LDCR≤ 0.3Ω);
RS = 0Ω; RF1, RF2 and CF unmounted;
ICTRL+ = ICTRL-= GND
Figure 4. VLX and ILX waveforms - D = 39%
DS6991 - Rev 9
Figure 5. VLX and ILX waveforms - D = 68%
page 7/16
SPV1040
Detailed description
6
Detailed description
The SPV1040 is a monolithic, high efficiency, low voltage, self-powered DC-DC converter that operates over a
0.3 V to 5.5 V DC input voltage range and provides a single output voltage. The device provides regulated output
voltage and current by sensing the VCTRL feedback of the external resistor divider and the voltage drop on the
external sense resistor Rs, respectively. High efficiency is ensured by low power consumption in any working
mode and by the embedded perturb and observe MPPT algorithm. The SPV1040 guarantees its own safety and
application safety by stopping the N-channel power switch in case of overcurrent or overtemperature conditions.
6.1
Soft-start
In order to guarantee the power-up even when VOUT is very low (battery completely discharged), a proper
start-up strategy has been implemented. Taking into account that the device is powered by the VOUT voltage,
If VOUT is lower than 0.8 V, the device moves from power off to soft-start mode and the current flows from the
input to output through the intrinsic body diode of the synchronous rectifier. In this condition VOUT follows the LX
voltage. The IC exits start-up mode when VOUT reaches 0.8 V.
6.2
Start-up mode
When VOUT goes above 0.8 V but it is still lower than 2 V, a proper biasing of both MOSFETs is not guaranteed
yet. In such conditions, the N-channel power switch is forced ON with a fixed duty cycle and the energy
is transferred to the load via the intrinsic body diode of the P-channel synchronous switch. If the shutdown
overcurrent limit is exceeded, the power switch is immediately turned OFF. The SPV1040 leaves start-up mode as
soon as VOUT goes above 2 V.
6.3
MPPT mode
Once the device has exited start-up mode, the SPV1040 enters MPPT mode to search for the maximum power
point. The perturb and observe algorithm is based on monitoring either the voltage or the current supplied by the
DC power source unit so that the PWM signal duty cycle is increased or decreased step-by-step according to the
input power trend. Refer to Figure 6 , which illustrates the MPPT working principle.
6.4
Constant voltage regulation
The constant voltage control loop consists of an internal voltage reference, an op-amp and an external resistor
divider that senses the battery voltage and fixes the voltage regulation set-point at the value specified by the user.
6.5
Constant current regulation
The constant current control loop consists of an op-amp and an external sense resistor that feeds the current
sensing circuit with a voltage proportional to the DC output current. This resistor determines the current regulation
set-point and must be adequately rated in terms of power dissipation. It provides the capability to fix the maximum
output current to protect the battery.
6.6
Overcurrent protection (OVC)
When the current that flows through the inductor reaches 1.8 A (overcurrent shutdown limit), the N-channel power
switch is immediately forced OFF and the P-channel synchronous rectifier is switched ON. Once the overcurrent
condition has expired (the inductor current goes below 1.8 Apk) the N-channel power switch is turned back ON.
6.7
Overtemperature protection
When the temperature sensed at silicon level reaches 155 °C (overtemperature shutdown limit), the N-channel
power switch is immediately forced OFF and the P-channel synchronous rectifier is switched ON. The device
becomes operative again as soon as the silicon temperature goes below 130 °C.
DS6991 - Rev 9
page 8/16
SPV1040
Shutdown mode
6.8
Shutdown mode
The XSHUT pin low shuts OFF all internal circuitry, achieving the lowest power consumption mode.
6.9
Undervoltage lockout
In order to prevent batteries from over-discharging, the device turns OFF in case of MPPSET voltage is lower
than 0.24 V (no irradiation). A hysteresis has been implemented to avoid unpredictable ON-OFF switching.
6.10
Reverse polarity
In order to avoid damage to the device and battery discharge when the solar panel connection is reverse-inserted,
a dedicated protection circuit has been implemented. In such condition, the SPV1040 stays OFF until the panel is
inserted correctly.
Figure 6. MPPT working principle
6.11
Burst mode
When the output voltage reaches the battery charge voltage, the MPP-SET voltage drops below 450 mV, or
the output current reaches the output maximum current limit, the duty cycle D drops down to 10% and the
device evolves from operating mode to burst mode. The converter no longer works at constant frequency, but at
frequencies gradually lower (1 TON over 1 PWM cycle, 1 TON over 2 PWM cycles, …,1 TON over 16 PWM cycles)
prior to entering sleep-in mode.
6.12
Sleep-in mode
Once sleep-in mode has been entered, no current is provided to the load. The device exits this mode once the
cause, which forced it into this state, is no longer present.
DS6991 - Rev 9
page 9/16
SPV1040
Package information
7
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK®
packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions
and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
TSSOP8 package information
Figure 7. TSSOP8 package outline
Table 6. TSSOP8 package mechanical data
Dim.
mm
Min.
Typ.
A
DS6991 - Rev 9
Max.
1.20
A1
0.05
0.15
A2
0.80
b
0.19
0.30
c
0.09
0.20
D
2.90
3.00
3.10
E
6.20
6.40
6.60
E1
4.30
4.40
4.50
1.00
1.05
page 10/16
SPV1040
TSSOP8 packing information
Dim.
mm
Min.
e
L
Typ.
0.65
0.45
0.60
L1
1.00
L2
0.25
k
Max.
0
aaa
0.75
8
0.10
Note:
Dimensions D does not include mold flash or protrusions. Mold flash or protrusions do not exceed 0.15 mm per
side.
Dimension E1 does not include interlead flash or protrusions. Interlead flash or protrusions do not exceed 0.25
mm per side.
7.2
TSSOP8 packing information
Figure 8. TSSOP8 carrier tape outline
Figure 9. TSSOP8 reel outline
DS6991 - Rev 9
page 11/16
SPV1040
Revision history
Table 7. Document revision history
Date
DS6991 - Rev 9
Revision
Changes
08-Oct-2010
1
First release.
06-Apr-2011
2
Updated the cover page, DFN8 information deleted, Chapter 3, Chapter 4 and Chapter 6.
04-Oct-2011
3
25-Jul-2012
4
Updated Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9.
21-Mar-2013
5
Updated Figure 1 and note 1 in Table 5.
26-Sep-2016
6
Added Section 7.2 : "Packing information".
06-Feb-2017
7
Update TSSOP8 package information.
17-Jan-2020
8
Figures from 4 to 9 replaced by Table 5; minor text changes.
2-Feb-2021
9
Updated Table 1. Pin description and Table 2. Absolute maximum ratings
– Updated Figure 1, Figure 2, Table 2 and Table 5
– Minor text changes.
page 12/16
SPV1040
Contents
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
4
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
7
6.1
Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2
Start-up mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.3
MPPT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.4
Constant voltage regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.5
Constant current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.6
Overcurrent protection (OVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.7
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.8
Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.9
Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.10
Reverse polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.11
Burst mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.12
Sleep-in mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
7.1
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.2
TSSOP8 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
DS6991 - Rev 9
page 13/16
SPV1040
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Pin description. . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . .
Thermal data. . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . .
Typical Conversion Efficiency . . . .
TSSOP8 package mechanical data
Document revision history . . . . . . .
DS6991 - Rev 9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
. 4
. 5
. 7
10
12
page 14/16
SPV1040
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
DS6991 - Rev 9
Block diagram . . . . . . . . . . . . . .
Simplified application circuit . . . . .
Pin connection top view . . . . . . . .
VLX and ILX waveforms - D = 39% .
VLX and ILX waveforms - D = 68% .
MPPT working principle . . . . . . . .
TSSOP8 package outline . . . . . . .
TSSOP8 carrier tape outline. . . . .
TSSOP8 reel outline . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 2
. 3
. 7
. 7
. 9
10
11
11
page 15/16
SPV1040
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS6991 - Rev 9
page 16/16