ST10F296E
16-bit MCU with MAC unit, 832 Kbyte Flash memory
and 68 Kbyte RAM
Features
■
High performance 16-bit CPU with DSP
functions
– 31.25 ns instruction cycle time at 64 MHz
max CPU clock
– Multiply/accumulate unit (MAC) 16 x 16-bit
multiplication, 40-bit accumulator
– Enhanced boolean bit manipulation
facilities
– Single-cycle context switching support
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
■
■
■
■
Serial channels
– Two synchronous/asynch. serial channels
– Two high-speed synchronous channels
– I2C standard interface
■
Two CAN 2.0B interfaces operating on one or
two CAN busses (64 or 2 x 32 message
objects, C-CAN version)
■
Fail-safe protection
– Programmable watchdog timer
– Oscillator watchdog
■
On-chip bootstrap loader
■
Clock generation
– On-chip PLL and 4-12 MHz oscillator
– Direct or prescaled clock input
Interrupt
– 8-channel peripheral event controller for
single cycle interrupt driven data transfer
– 16-priority-level interrupt system with 56
sources, sampling rate down to 15.6 ns
■
Real-time clock
■
Up to 143 general purpose I/O lines
– Individually programmable as input, output
or special function
– Programmable threshold (hysteresis)
Timers
– Two multi-functional general purpose timer
units with 5 timers
■
Idle, power-down and stand-by modes
■
single voltage supply: 5 V ±10% (embedded
regulator for 1.8 V core supply).
Memory organization
– 512 Kbyte Flash memory (32-bit fetch)
– 320 Kbyte extension Flash memory
(16-bit fetch)
– 100 k erasing/programming cycles
– Up to 16 Mbyte linear address space for
code and data (5 Mbytes with CAN or I2C)
– 2 Kbyte on-chip internal RAM (IRAM)
– 66 Kbyte on-chip extension RAM (XRAM)
– Programmable external bus characteristics
for different address ranges
– Five programmable chip-select signals
– Hold-acknowledge bus arbitration support
■
Two 16-channel capture/compare units
■
Analog-to-digital converter (ADC)
– 32-channel 10-bit
– 3 µs minimum conversion time
– TImer for ADC channel injection
■
PBGA 208
(23 x 23 x 1.96 mm)
Table 1.
Order codes
Temp. range
(°C)
CPU freq. range
(MHz)
-40 to 125
1 to 64
ST10F296
4-channel PWM unit and 4-channel XPWM
October 2008
Device summary
ST10F296TR
Rev 2
1/346
www.st.com
1
Contents
ST10F296E
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2
Ball data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
5
4.1
IFlash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2
XFlash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3
Internal RAM (IRAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4
Extension RAM (XRAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5
Special function register (SFR) areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6
CAN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7
CAN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9
Pulse-width modulation 1 (PWM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.10
ASC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11
SSC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.12
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.13
XTimer/XMiscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.14
XPort 9/XPort 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.15
Visibility of XBus peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.16
XPeripheral configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Internal Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1
5.2
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.1
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2
Module structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.3
Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1
5.3
2/346
Power supply drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Internal Flash memory registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
ST10F296E
Contents
5.4
5.5
Protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1
Protection registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.2
Access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3
Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.4
Temporary unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Write operation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.1
Word program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.2
Double word program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.3
Sector erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.4
Suspend and resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.5
Erase suspend, program and resume . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.6
Set protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
5.6
6
Write operation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
The bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1
Selection among user-code, standard or alternate bootstrap . . . . . . . . . 66
6.2
Standard bootstrap loader (BSL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3
6.4
6.2.1
Entering the standard bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2
ST10 configuration in BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.3
Booting steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.4
Hardware to activate BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.5
Memory configuration in bootstrap loader mode . . . . . . . . . . . . . . . . . . 71
6.2.6
Loading the startup code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.7
Exiting bootstrap loader mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.8
Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Standard bootstrap with UART (RS232 or K-line) . . . . . . . . . . . . . . . . . . 73
6.3.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.2
Entering bootstrap via UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.3
ST10 configuration in UART BSL (RS232 or K-line) . . . . . . . . . . . . . . . 75
6.3.4
Loading the startup code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.5
Choosing the baud rate for the BSL via UART . . . . . . . . . . . . . . . . . . . 76
Standard bootstrap with CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2
Entering the CAN bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.3
ST10 configuration in CAN BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.4
Loading the startup code via CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3/346
Contents
ST10F296E
6.5
6.6
6.4.5
Choosing the baud rate for the BSL via CAN . . . . . . . . . . . . . . . . . . . . 82
6.4.6
How to compute the baud rate error . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4.7
Bootstrap via CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Comparing the old and the new bootstrap loader . . . . . . . . . . . . . . . . . . 85
6.5.1
Software aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.2
Hardware aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Alternate boot mode (ABM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6.1
Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6.2
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6.3
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6.4
ST10 configuration in alternate boot mode . . . . . . . . . . . . . . . . . . . . . . 87
6.6.5
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.6
Exiting alternate boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.7
Alternate boot user software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.8
User/alternate boot mode signature check . . . . . . . . . . . . . . . . . . . . . . 88
6.6.9
Alternate boot user software aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6.10
Internal decoding of test modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6.11
Example of alternate boot mode operation . . . . . . . . . . . . . . . . . . . . . . 89
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
6.7
7
8
9
10
4/346
Selective boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1
Multiplier-accumulator unit (MAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2
Instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3
MAC coprocessor specific instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
External bus controller (EBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1
Programmable chip select timing control . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2
READY programmable polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3
EA functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Interrupt system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.1
XPeripheral interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2
Exception and error traps list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Capture/compare (CAPCOM) units . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ST10F296E
11
12
Contents
General purpose timer unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.1
GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.2
GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Pulse-width modulation (PWM) modules . . . . . . . . . . . . . . . . . . . . . . 114
12.1
XPWM output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.2
XPWM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.2.1
Software control of the XPWM outputs . . . . . . . . . . . . . . . . . . . . . . . . 116
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13
Parallel ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
I/O special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.1.1
Open-drain mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.1.2
Input threshold control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.1.3
I/0 port registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.1.4
Alternate port functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.2.1
Port 0 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.2.2
Alternate functions of Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
13.3.1
Port 1 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
13.3.2
Alternate functions of Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.4.1
Port 2 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.4.2
Alternate functions of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
13.4.3
Port 2 and external interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Port 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.5.1
Port 3 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.5.2
Alternate functions of Port 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Port 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
13.6.1
Port 4 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
13.6.2
Alternate functions of Port 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Port 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.7.1
Port 5 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.7.2
Alternate functions of port 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.7.3
Port 5 analog inputs disturb protection . . . . . . . . . . . . . . . . . . . . . . . . 152
Port 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5/346
Contents
ST10F296E
13.9
13.8.1
Port 6 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
13.8.2
Alternate functions of Port 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Port 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
13.9.1
Port 7 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
13.9.2
Alternate functions of Port 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
13.10 Port 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
13.10.1 Port 8 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
13.10.2 Alternate functions of Port 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
13.11 XPort 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13.11.1 XPort 9 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
13.12 XPort 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.12.1 XPort 10 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.12.2 Alternate functions of XPort 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
13.12.3 XPort 10 analog inputs disturb protection . . . . . . . . . . . . . . . . . . . . . . 174
14
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
14.1
Mode selection and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.2
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
14.3
XTimer module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
14.3.1
15
Serial channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
15.1
Asynchronous/synchronous serial interface (ASC0) . . . . . . . . . . . . . . . 183
15.1.1
ASC0 in asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
15.1.2
Asynchronous mode baud rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.1.3
ASC0 in synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
15.1.4
Synchronous mode baud rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
15.2
Asynchronous/synchronous serial interface (ASC1) . . . . . . . . . . . . . . . 188
15.3
High speed synchronous serial interface (SSC0) . . . . . . . . . . . . . . . . . . 188
15.3.1
15.4
16
6/346
Baud rate generation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
High speed synchronous serial interface (SSC1) . . . . . . . . . . . . . . . . . . 190
I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
16.1
17
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
I2C bus speed selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
ST10F296E
Contents
17.1
CAN module memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
17.1.1
CAN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
17.1.2
CAN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
17.2
Configuration support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
17.3
Clock prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
17.4
CAN bus configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
17.4.1
Single CAN bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
17.4.2
Multiple CAN bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
17.4.3
Parallel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
18
17.5
System clock tolerance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
17.6
Configuration of the CAN controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
17.7
Calculation of the bit timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . 200
17.7.1
Example of bit timing at high baud rate . . . . . . . . . . . . . . . . . . . . . . . . 201
17.7.2
Example of bit timing at low baud rate . . . . . . . . . . . . . . . . . . . . . . . . . 202
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
18.1
RTC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
18.2
Programming the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
19
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
20
System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
20.1
Input filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
20.2
Asynchronous reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
20.3
20.2.1
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
20.2.2
Hardware reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
20.2.3
Exit from asynchronous reset state . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Synchronous reset (warm reset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
20.3.1
Short and long synchronous reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
20.3.2
Exit from synchronous reset state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
20.3.3
Synchronous reset and the RPD pin . . . . . . . . . . . . . . . . . . . . . . . . . . 222
20.4
Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
20.5
Watchdog timer reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
20.6
Bidirectional reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
20.6.1
20.7
WDTCON flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7/346
Contents
21
ST10F296E
20.8
Reset application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
20.9
Reset summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Power reduction modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
21.1
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
21.2
Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
21.3
21.2.1
Protected power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
21.2.2
Interruptible power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
21.4
21.3.1
Entering standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
21.3.2
Exiting standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
22
Programmable output clock divider . . . . . . . . . . . . . . . . . . . . . . . . . . 247
23
Register set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
23.1
Register description format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
23.2
General purpose registers (GPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
23.3
SFRs ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
23.4
SFRs ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
23.5
X registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
23.6
X registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
23.7
Flash registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
23.8
Flash registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
23.9
Identification registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
23.10 System configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
23.10.1 XPEREMU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
23.11 Emulation dedicated registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
24
8/346
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
24.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
24.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
24.3
Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
24.4
Parameter interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
24.5
DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
ST10F296E
Contents
24.6
Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
24.7
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
24.8
24.7.1
Conversion timing control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
24.7.2
ADC conversion accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
24.7.3
Analog reference pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
24.7.4
Analog input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
24.7.5
Example of external network sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
24.8.1
Test waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
24.8.2
Definition of internal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
24.8.3
Clock generation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
24.8.4
Prescaler operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
24.8.5
Direct drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
24.8.6
Oscillator watchdog (OWD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
24.8.7
Phase-locked loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
24.8.8
Voltage controlled oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
24.8.9
PLL jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
24.8.10 Jitter in the input clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
24.8.11 Noise in the PLL loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
24.8.12 PLL lock/unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
24.8.13 Main oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
24.8.14 External clock drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
24.8.15 Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
24.8.16 External memory bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
24.8.17 READY and CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
24.8.18 External bus arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
24.8.19 High-speed synchronous serial interface (SSC) timing modes . . . . . . 338
25
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
26
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
27
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9/346
List of tables
ST10F296E
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ball description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Address ranges for IFlash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Address ranges for IFlash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
XPERCON register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Segment 8 address range mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Flash module absolute mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Sectorization of the Flash modules (read operations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Sectorization of the Flash modules (write operations or with ROMS1 = 1) . . . . . . . . . . . . 44
Control register interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FCR0L register decription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FCR0H register decription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
FCR1L register description (SMOD = 0, XFlash selected) . . . . . . . . . . . . . . . . . . . . . . . . . 50
FCR1L register description (SMOD = 1, IFlash selected). . . . . . . . . . . . . . . . . . . . . . . . . . 50
FCR1H register description (SMOD = 0, XFlash selected). . . . . . . . . . . . . . . . . . . . . . . . . 51
FCR1H register description (SMOD = 1, IFlash selected) . . . . . . . . . . . . . . . . . . . . . . . . . 52
Banks (BxS) and sectors (BxFy) status bits meaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
FDR0L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
FDR0H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FDR1L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FDR1H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FARL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FARH register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FER register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
XFICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
FNVWPXRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
FNVWPXRH register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
FNVWPIRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
FNVWPIRH register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
FNVAPR0 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
FNVAPR1L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
FNVAPR1H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Summary of access protection levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Flash write operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ST10F296E boot mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ST10 configuration in BSL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ST10 configuration in UART BSL mode (RS232 or K-line). . . . . . . . . . . . . . . . . . . . . . . . . 75
ST10 configuration in CAN BSL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Timer content ranges of BRP value in Equation 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Software topics summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Hardware topics summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ST10 configuration in alternate boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
EMUCON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Selective boot mode configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MAC instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
XInterrupt detailed mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
10/346
ST10F296E
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
List of tables
Trap priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Compare modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
CAPCOM timer input frequencies, resolution, and periods at 40 MHz . . . . . . . . . . . . . . . 109
CAPCOM timer input frequencies, resolution, and periods at 64 MHz . . . . . . . . . . . . . . . 109
GPT1 timer input frequencies, resolution, and periods at 40 MHz . . . . . . . . . . . . . . . . . . 111
GPT1 timer input frequencies, resolution, and periods at 64 MHz . . . . . . . . . . . . . . . . . . 111
GPT2 timer input frequencies, resolution, and period at 40 MHz . . . . . . . . . . . . . . . . . . . 112
GPT2 timer input frequencies, resolution, and period at 64 MHz . . . . . . . . . . . . . . . . . . . 112
PWM unit frequencies and resolution at 40 MHz CPU clock . . . . . . . . . . . . . . . . . . . . . . 114
PWM unit frequencies and resolution at 64 MHz CPU clock . . . . . . . . . . . . . . . . . . . . . . 115
XPOLAR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
XPWMPORT register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
PICON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
XPICON register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
XPICON9 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
XPICON9SET register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
XPICON9CLR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
XPICON10 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
P0L and P0H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DP0L and DP0H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
P1L and P1H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DP1L and DP1H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
P2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DP2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
ODP2 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Alternate functions of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
EXISEL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
External interrupt selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
P3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DP3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
ODP3 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Port 3 alternative functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
P4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
DP4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
ODP4 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Port 4 alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
P5 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Port 5 alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
P5DIDIS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
P6 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
DP6 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
ODP6 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
ODP6 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Port 6 alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
P7 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
DP7 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
ODP7 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Port 7 alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
P8 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
DP8 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
ODP8 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
XS1PORT register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
11/346
List of tables
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
ST10F296E
Port 8 alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
XP9 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
XP9SET register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
XP9CLR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
XDP9 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
XDP9SET register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
XDP9CLR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
XODP9 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
XODP9SET register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
XODP9CLR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
XP10 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
XPort 10 alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
XP10DIDIS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
XP10DIDISSET register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
XP10DIDISCLR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
ADC programming at fCPU = 64 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Different counting modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Commonly used baud rates by reload value and deviation error
(fCPU = 40 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Commonly used baud rates by reload value and deviation error
(fCPU = 64 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Commonly used baud rates by reload value and deviation error
(fCPU = 40 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Commonly used baud rates by reload value and deviation errors
(fCPU = 64 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Synchronous baud rate and reload values (fCPU = 40 MHz) . . . . . . . . . . . . . . . . . . . . . . 189
Synchronous baud rate and reload values (fCPU = 64 MHz) . . . . . . . . . . . . . . . . . . . . . . 190
RTCCON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
EXISEL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Interrupt sources associated with the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
WDTCON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
WDTCON bit values on different resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
WDTREL reload value (fCPU = 40 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
WDTREL reload value (fCPU = 64 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Reset event definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Reset events summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Latched configurations of Port 0 for the different reset events . . . . . . . . . . . . . . . . . . . . . 238
EXICON register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
XCLKOUTDIV register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Word register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
General purpose registers (GPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
General purpose registers (GPRs) bit wise addressing . . . . . . . . . . . . . . . . . . . . . . . . . . 250
SFRs ordered by name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
SFRs ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
X registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
X registers ordered by address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Flash registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Flash registers ordered by address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
IDMANUF register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
IDCHIP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
IDMEM register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
12/346
ST10F296E
Table 149.
Table 150.
Table 151.
Table 152.
Table 153.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.
Table 159.
Table 160.
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
List of tables
IDPROG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
SYSCON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
BUSCONx register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RP0H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
EXICON register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
EXISEL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
External interrupt selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
xxIC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
XPERCON register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Segment 8 address range mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Data retention characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
ADC programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
On-chip clock generator selections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Internal PLL divider mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
PLL lock/unlock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Main oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Negative resistance (absolute min value @125 °C/VDD = 4.5 V) . . . . . . . . . . . . . . . . . . . 320
External clock drive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Multiplexed bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Demultiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
READY and CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
External bus arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
PBGA 208 (23 x 23 x 1.96 mm) mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13/346
List of figures
ST10F296E
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Pin configuration (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
ST10F296E on-chip memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Flash modules structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ST10F296E new standard bootstrap loader program flow . . . . . . . . . . . . . . . . . . . . . . . . . 69
Booting steps for the ST10F296E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Hardware provisions to activate the BSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Memory configuration after reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
UART bootstrap loader sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Baud rate deviation between the host and ST10F296E . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
CAN bootstrap loader sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Bit rate measurement over a predefined zero-frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Reference signature computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Reset boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
CPU block diagram (MAC unit not included) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
MAC unit architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Chip select delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
EA/VSTBY external circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
XInterrupt basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
CAPCOM unit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Block diagram of CAPCOM timers T0 and T7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Block diagram of CAPCOM timers T1 and T8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Block diagram of GPT1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Block diagram of GPT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Block diagram of PWM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
XPWM output signal generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
SFRs and pins associated with the parallel ports (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
SFRs and pins associated with the parallel ports (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Output drivers in push-pull mode and in open-drain mode . . . . . . . . . . . . . . . . . . . . . . . . 124
Hysteresis concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Port 0 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Block diagram of a Port 0 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Port 1 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Block diagram of a Port 1 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Port 2 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Block diagram of a Port 2 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Port 3 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Block diagram of a Port 3 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Block diagram of pins P3.15 (CLKOUT) and P3.12 (BHE/WRH) . . . . . . . . . . . . . . . . . . . 142
Port 4 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Block diagram of Port 4 pins 3 to 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Block diagram of pin P4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Block diagram of pin P4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Block diagram of pin P4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Block diagram of pin P4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Port 5 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Block diagram of a Port 5 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
14/346
ST10F296E
List of figures
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.
Figure 100.
Port 6 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Block diagram of Port 6 pins 7, 6, 1, 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Block diagram of pin P6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Block diagram of pins P6.2, P6.3, and P6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Port 7 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Block diagram of Port 7 pins 3 to 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Block diagram of Port 7 pins 7 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Port 8 I/O and alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Block diagram of P8 pins 5 to 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Block diagram of pin P8.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Block diagram of pin P8.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
XPort 10 I/O and alternate functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Block diagram of an XPort 10 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
XTimer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Asynchronous mode of serial channel ASC0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Synchronous mode of serial channel ASC0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Synchronous serial channel SSC0 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Connection to a single CAN bus via separate CAN transceivers . . . . . . . . . . . . . . . . . . . 194
Connection to a single CAN bus via common CAN transceivers . . . . . . . . . . . . . . . . . . . 194
Connection to two different CAN buses (example for gateway application) . . . . . . . . . . . 195
Connection to one CAN bus with internal parallel mode enabled. . . . . . . . . . . . . . . . . . . 195
ESFRs and port pins associated with the RTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
RTC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Prescaler registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Divider counter registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Asynchronous power-on reset (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Asynchronous power-on reset (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Asynchronous hardware reset (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Asynchronous hardware reset (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Synchronous short/long hardware reset (EA = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Synchronous short/long hardware reset (EA = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Synchronous long hardware reset (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Synchronous long hardware reset (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Software/watchdog timer unidirectional reset (EA = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Software/watchdog timer unidirectional reset (EA = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Software/watchdog timer bidirectional reset (EA = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Software/watchdog timer bidirectional reset (EA = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Software/watchdog timer bidirectional reset (EA = 0) followed by a hardware reset . . . . 232
Minimum external reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
System reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Example of software or watchdog bidirectional reset (EA = 1) . . . . . . . . . . . . . . . . . . . . . 235
Example of software or watchdog bidirectional reset (EA = 0) . . . . . . . . . . . . . . . . . . . . . 236
Port 0 bits latched into the different registers after reset . . . . . . . . . . . . . . . . . . . . . . . . . 239
External RC circuit on the RPD pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Simplified power-down exit circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Power-down exit sequence when using an external interrupt (PLL x 2) . . . . . . . . . . . . . . 243
Port 2 test mode structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Supply current versus the operating frequency (run and idle modes) . . . . . . . . . . . . . . . 299
AD conversion characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
ADC input pins scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Charge sharing timing diagram during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . 307
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15/346
List of figures
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
ST10F296E
Anti-aliasing filter and conversion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Input/output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Float waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Generation mechanisms for the CPU clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
ST10F296E PLL jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
ST10F296ECrystal oscillator and resonator connection diagram. . . . . . . . . . . . . . . . . . . 320
External clock drive XTAL1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Multiplexed bus with/without R/W delay and normal ALE. . . . . . . . . . . . . . . . . . . . . . . . . 324
Multiplexed bus with/without R/W delay and extended ALE . . . . . . . . . . . . . . . . . . . . . . 325
Multiplexed bus with/without R/W delay, normal ALE, R/W CS . . . . . . . . . . . . . . . . . . . . 326
Multiplexed bus with/without R/ W delay, extended ALE, R/W CS . . . . . . . . . . . . . . . . . 327
Demultiplexed bus with/without read/write delay and normal ALE . . . . . . . . . . . . . . . . . . 330
Demultiplexed bus with/without R/W delay and extended ALE . . . . . . . . . . . . . . . . . . . . 331
Demultiplexed bus with ALE and R/W CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Demultiplexed bus no R/W delay, extended ALE, R/W CS . . . . . . . . . . . . . . . . . . . . . . . 333
READY and CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
External bus arbitration (releasing the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
External bus arbitration (regaining the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
SSC master timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
SSC slave timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
PBGA 208 (23 x 23 x 1.96 mm) outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
16/346
ST10F296E
1
Description
Description
The ST10F296E is a derivative of the STMicroelectronics ST10 family of 16-bit single-chip
CMOS microcontrollers. It combines high CPU performance (up to 32 million instructions
per second) with high peripheral functionality and enhanced I/O-capabilities. It also provides
on-chip high-speed single voltage Flash memory, on-chip high-speed RAM, and clock
generation via the phase-locked loop (PLL).
ST10F296E is processed in 0.18 µm CMOS technology. The MCU core and the logic is
supplied with a 5 V to 1.8 V on-chip voltage regulator. The part is supplied with a single 5 V
supply and I/Os work at 5 V.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The device is upwardly compatible with the ST10F280 device, with the following differences:
●
The Flash control interface is now based on STMicroelectronics third generation of
standalone Flash memories (M29F400 series), with an embedded program/erase
controller. This completely frees up the CPU during programming or erasing of the
Flash.
●
Pins DC1 and DC2 of ST10F280, are renamed as V18. Do not connect these pins to
5.0 V external supply. Instead, these pin should be connected to a decoupling capacitor
(ceramic type, typical value 10 nF, maximum value 100 nF).
●
The AC and DC parameters are modified due to a difference in the maximum CPU
frequency.
●
The EA pin has assumed a new, alternate functionality: It is also used to provide a
dedicated power supply (see VSTBY) to maintain a portion of the XRAM (16 Kbytes)
biased when the main power supply of the device (VDD and consequently the internally
generated V18) is turned off for low power mode, thereby allowing data retention. VSTBY
voltage is in the range 4.5-5.5 V, and a dedicated embedded low power voltage
regulator provides the 1.8 V for the RAM. The upper limit of up to 6 V may be exceeded
for a very short period of time during the global life of the device. The lower limit of 4 V
may also be exceeded.
●
A second SSC, mapped on the XBus, has been added (SSC of ST10F280 becomes
SSC0, while the new SSC is referred to as XSSC or SSC1). There are some
restrictions and functional differences due to peculiarities present in the XBus between
the classic SSC and the new XSSC.
●
A second ASC, mapped on the XBus, has been added (ASC0 of ST10F280 remains
ASC0, while the new one is referred to as XASC or ASC1). Some restrictions and
functional differences due to peculiarities present in the XBus between the classic
ASC, and the new XASC.
●
The second PWM (XPWM), mapped on the XBus, has been improved adding set/clear
command for safe management of the control register. Memory mapping is thus slightly
different.
●
An I2C interface on the XBus has been added (see X-I2C or simply I2C interface).
●
The CLKOUT function can output either the CPU clock (as in ST10F280) or a software
programmable prescaled value of the CPU clock.
●
the embedded memory size has been significantly increased (both Flash and RAM).
●
PLL multiplication factors have been adapted to new frequency range.
17/346
Description
ST10F296E
●
The ADC is not fully compatible with the ST10F280 (timing and programming model).
The formula for the convertion time is still valid, while the sampling phase programming
model is different.
●
The external memory bus potential limitations on maximum speed and maximum
capacitance load are under evaluation and may be introduced: ST10F296E will
probably not be able to address an external memory at 64 MHz with 0 wait states.
●
The XPERCON register bit mapping has been modified according to new peripheral
implementation (which is not fully compatible with ST10F280).
●
The bondout chip for emulation (ST10R201) cannot achieve more than 50 MHz at room
temperature (so, no real-time emulation is possible at maximum speed).
●
Input section characteristics are different. The threshold programmability is extended to
all port pins (additional XPICON register); it is possible to select standard TTL (with up
to 400 mV of hysteresis) and standard CMOS (with up to 750 mV of hysteresis).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
18/346
●
Output transition is not programmable.
●
An RTC module has been added.
●
The CAN module has been enhanced: ST10F296E implements two C-CAN modules,
so the programming model is slightly different. The possibility to map both CAN
modules simultaneously has been added (on P4.5/P4.6).
●
The on-chip main oscillator input frequency range has been reshaped, reducing it from
1-25 MHz to 4-12 MHz. This is a high performance oscillator amplifier, that provides a
very high negative resistance and wide oscillation amplitude. When this on-chip
amplifier is used as a reference for the RTC module, the power-down consumption is
dominated by the consumption of the oscillator amplifier itself. A metal option is added
to offer a low power oscillator amplifier working in the range 4-8 MHz which allows a
power consumption reduction when the RTC is running in power-down mode using the
on-chip main oscillator clock as a reference.
●
The possibility to reprogram the internal XBus chip select window characteristics
(XRAM2 and XFlash address window) has been added.
ST10F296E
Description
Figure 1.
Logic diagram
V18 VDD VSS
XTAL1
XTAL2
Port 0
16-bit
RSTIN
RSTOUT
Port 1
16-bit
VAREF
Port 2
16-bit
VAGND
Port 3
15-bit
NMI
EA/VSTBY
Port 4
8-bit
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
READY
ALE
RD
WR/WRL
Port 5
16-bit
XPort 10
16-bit
XADCINJ
RPD
ST10F296E
Port 6
8-bit
Port 7
8-bit
Port 8
8-bit
XPort 9
16-bit
XPOUT
3-bit
19/346
Ball data
2
ST10F296E
Ball data
The ST10F296E package is a PBGA measuring 23 x 23 x 1.96 mm. Ball pitch is 1.27 mm.
Pin configuration is shown in Figure 2 while the signal assignment of the balls is given in
Table 2. This package has 25 additional thermal balls.
Figure 2.
1
U
Pin configuration (bottom view)
2
U1
U2
XP10.15 VAREF
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
U3
VAGND
U4
P5.5
U5
P5.9
U6
P5.13
U7
VSS
U8
VDD
U9
P2.7
U10
VSS
U11
V18
U12
P2.13
U13
VSS
U14
VSS
U15
VDD
U16
VSS
U17
VSS
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
20/346
T2
P5.0
U
T
T1
XP10.14
T3
P5.2
T4
P5.4
T5
P5.8
T6
T7
P5.12 P2.0
T8
P2.3
T9
P2.4
T10
P2.8
T11
P2.11
T12
P2.15
T13
P3.1
T14
P3.4
T15
VSS
T16
VSS
T17
P3.15
T
R
R1
R2
XP10.13 XP10.12
R3
P5.1
R4
P5.3
R5
P5.7
R6
R7
R8
P5.11 P5.15 P2.2
R9
P2.6
R10
P2.9
R11
P2.12
R12
P3.0
R13
P3.3
R14
P3.6
R15
P3.8
R16
P3.9
R17
VSS
R
P
P1
P2
P3
XP10.11 XP10.10 XP10.9
P4
XP10.8
P5
P5.6
P6
P7
P8
P5.10 P5.14 P2.1
P9
P10
P11
P2.5 P2.10 P2.14
P12
P3.2
P13
P3.5
P14 P15
P16
P3.7 P3.11 P3.12
P17
VDD
N
N1
N2
XP10.7 XP10.6
N3
XP10.5
N4
XP10.4
N14 N15
P3.10 VSS
N16
P4.0
N17
VSS
P
N
M
M1
M2
XP10.3 XP10.2
M3
XP10.1
M4
XP10.0
M14 M15
P3.13 P4.1
M16
P4.3
M17
RPD
M
L
L1
VSS
L2
P7.7
L3
XADCINJ
L4
VSS
L7
VSS
L8
VSS
L9
VSS
L10
VSS
L11
VSS
L14
P4.2
L15
P4.4
L16
P4.5
L17
VDD
L
K
K1
VDD
K2
P7.4
K3
P7.5
K4
P7.6
K7
VSS
K8
VSS
K9
VSS
K10
VSS
K11
VSS
K14
P4.6
K15
P4.7
K16
VSS
K17
VSS
K
J
J1
P7.3
J2
P7.2
J3
P7.1
J4
P7.0
J7
VSS
J8
VSS
J9
VSS
J10
VSS
J11
VSS
J14
RD
J15
J16
17
WR READY ALE
J
H
H1
VSS
H2
P8.7
H3
P8.6
H4
P8.5
H7
VSS
H8
VSS
H9
VSS
H10
VSS
H11
VSS
H14 H15
H16
P0L.2 P0L.1 P0L.0
H17
EA
H
G
G1
V18
G2
P8.4
G3
P8.3
G4
VSS
G7
VSS
G8
VSS
G9
VSS
G10
VSS
G11
VSS
G14 G15 G16
P0L.5 P0L.4 P0L.3
G17
VDD
G
F
F1
VSS
F2
P8.2
F3
P8.1
F4
P6.6
F14 F15
F16
P0H.2 P0H.0 P0L.6
F17
VSS
F
E
E1
VDD
E2
P8.0
E3
P6.5
E4
P6.0
E14 E15
E16
E17
P0H.7 P0H.4 P0H.1 P0L.7
E
D
D1
P6.7
D2
P6.4
D3
P6.1
D4
XPOUT0
D7
D8
D9
D10
D11
D12
D13
D14 D15
D16
D17
P1H.5 P1H.1 P1L.6 P1L.2 XP9.14 XP9.11 XP9.5 XP9.2 XP9.0 P0H.5 P0H.3
D
C
C1
P6.3
C2
C3
XPOUT3 XPOUT1
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14 C15
C16
C17
P1H.6 P1H.7 P1H.4 P1H.0 P1L.7 P1L.3 P1L.0 XP9.13 XP9.10 XP9.6 XP9.3 XP9.1 P0H.6
C
B
B1
P6.2
B2
XPOUT2
B3
VSS
B4
RSTOUT
A
A1
VSS
A2
VDD
A3
RSTIN
A4
VSS
1
2
3
4
C4
NMI
D5
VSS
B5
VSS
D6
VSS
B6
VSS
B7
B8
P1H.3 VSS
A5
A6
A7
A8
XTAL1 XTAL2 P1H.2 VSS
5
6
7
8
B9
B10
B11
B12
B13
B14 B15
B16
VSS P1L.4 P1L.1 XP9.15 XP9.12 XP9.9 XP9.7 XP9.4
B17
VSS
B
A9
A10
VDD P1L.5
A16
VSS
A17
VSS
A
16
17
9
10
A11
VSS
A12
VDD
A13
VSS
11
12
13
A14 A15
VDD XP9.8
14
15
ST10F296E
Table 2.
Symbol
Ball data
Ball description
Ball
no.
Type
E4
O
P6.0
CS0
Chip select 0 output
D3
O
P6.1
CS1
Chip select 1 output
CS2
Chip select 2 output
SCLK1
SSC1: Master clock
output/slave clock input
CS3
Chip select 3 output
Function (including port, pin and alternate function where applicable)
O
B1
I/O
O
P6.2
8-bit bidirectional I/O port,
bit-wise programmable for
input or output via direction
bit. Programming an I/O pin
P6.3
as input forces the
corresponding output driver
to high impedance state.
Port 6 outputs can be
configured as push-pull or
P6.4
open-drain drivers. The
input threshold of Port 6 is
selectable (TTL or CMOS).
MTSR1
SSC1: Mastertransmitter/slave-receiver
O/I
CS4
Chip select 4 output
MRST1
SSC1: Masterreceiver/slave-transmitter
I/O
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
C1
I/O
P6.0 to P6.7
O
D2
I/O
E3
I
P6.5
HOLD
External master hold
request input
F4
O
P6.6
HLDA
Hold acknowledge output
D1
O
P6.7
BREQ
Bus request output
E2
I/O
P8.0
CC16IO
CAPCOM2: CC16 capture
input/compare output
F3
I/O
P8.1
CC17IO
CAPCOM2: CC17 capture
input/compare output
F2
I/O
P8.2
CC18IO
CAPCOM2: CC18 capture
input/compare output
G3
I/O
P8.3
CC19IO
CAPCOM2: CC19 capture
input/compare output
G2
I/O
P8.4
CC20IO
CAPCOM2: CC20 capture
input/compare output
H4
I/O
P8.5
CC21IO
CAPCOM2: CC21 capture
input/compare output
CC22IO
CAPCOM2: CC22 capture
input/compare output
RxD1
ASC1: Data input
(asynchronous) or I/O
(synchronous)
CC23IO
CAPCOM2: CC23 capture
input/compare output
TxD1
ASC1: Clock/data output
(asynchronous/synchronous)
P8.0 to P8.7
H3
I/O
8-bit bidirectional I/O port,
bit-wise programmable for
input or output via direction
bit. Programming an I/O pin
as input forces the
corresponding output driver
to high impedance state.
Port 8 outputs can be
configured as push-pull or
open-drain drivers. The
input threshold of Port 8 is
selectable (TTL or CMOS).
P8.6
I/O
H2
P8.7
O
21/346
Ball data
Table 2.
Symbol
P7.0 to P7.7
ST10F296E
Ball description (continued)
Ball
no.
Type
J4
O
J3
O
J2
O
J1
O
K2
I/O
Function (including port, pin and alternate function where applicable)
8-bit bidirectional I/O port,
bit-wise programmable for
input or output via direction
bit. Programming an I/O pin
as input forces the
corresponding output driver
to high impedance state.
Port 7 outputs can be
configured as push-pull or
open-drain drivers. The
input threshold of Port 7 is
selectable (TTL or CMOS).
P7.0
POUT0
PWM0: Channel 0 output
P7.1
POUT1
PWM0: Channel 1 output
P7.2
POUT2
PWM0: Channel 2 output
P7.3
POUT3
PWM0: Channel 3 output
P7.4
CC28IO
CAPCOM2: CC28 capture
input/compare output
P7.5
CC29IO
CAPCOM2: CC29 capture
input/compare output
P7.6
CC30IO
CAPCOM2: CC30 capture
input/compare output
P7.7
CC31IO
CAPCOM2: CC31 capture
input/compare output
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
XP10.0 to
XP10.15
22/346
K3
I/O
K4
I/O
L2
I/O
M4
I
XP10.0
M3
I
XP10.1
M2
I
XP10.2
M1
I
XP10.3
N4
I
N3
I
N2
I
N1
I
P4
I
P3
I
P2
I
P1
I
16-bit input-only port with
Schmitt-Trigger
characteristics. The pins of
XPort 10 can be the analog
input channels (up to 16) for
the ADC, where XP10.x
equals ANy (analog input
channel y, where y = x +
16). The input threshold of
XPort 10 is selectable (TTL
or CMOS).
XP10.4
XP10.5
XP10.6
XP10.7
XP10.8
XP10.9
XP10.10
XP10.11
R2
XP10.12
R1
XP10.13
T1
XP10.14
U1
XP10.15
ST10F296E
Table 2.
Symbol
Ball data
Ball description (continued)
Ball
no.
Type
T2
I
P5.0
R3
I
P5.1
T3
I
P5.2
R4
I
P5.3
T4
I
P5.4
U4
I
Function (including port, pin and alternate function where applicable)
P5.5
16-bit input-only port with
Schmitt-Trigger
characteristics. The pins of
Port 5 can be the analog
input channels (up to 16) for
the ADC, where P5.x equals
ANx (analog input channel
x), or they are timer inputs.
The input threshold of Port 5
is selectable (TTL or
CMOS).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P5.0 to
P5.15
P5
I
R5
I
T5
I
U5
I
P6
I
R6
I
T6
P5.6
P5.7
P5.8
P5.9
P5.10
T6EUD
GPT2: Timer T6 external
up/down control input
P5.11
T5EUD
GPT2: Timer T5 external
up/down control input
I
P5.12
T6IN
GPT2: Timer T6 count input
U6
I
P5.13
T5IN
GPT2: Timer T5 count input
P7
I
P5.14
T4EUD
GPT1: Timer T4 external
up/down control input
R7
I
P5.15
T2EUD
GPT1: Timer T2 external
up/down control input
T7
I/O
P2.0
CC0IO
CAPCOM1: CC0 capture
input/compare output
P8
I/O
P2.1
CC1IO
CAPCOM1: CC1 capture
input/compare output
P2.2
CC2IO
CAPCOM1: CC2 capture
input/compare output
P2.3
CC3IO
CAPCOM1: CC3 capture
input/compare output
P2.4
CC4IO
CAPCOM1: CC4 capture
input/compare output
P2.5
CC5IO
CAPCOM1: CC5 capture
input/compare output
16-bit bidirectional I/O port,
bit-wise programmable for
input or output via direction
bit. Programming an I/O pin
as input forces the
corresponding output driver
to high impedance state.
Port 2 outputs can be
configured as push-pull or
open-drain drivers. The
input threshold of Port 2 is
selectable (TTL or CMOS).
R8
I/O
T8
I/O
T9
I/O
P9
I/O
R9
I/O
P2.6
CC6IO
CAPCOM1: CC6 capture
input/compare output
U9
I/O
P2.7
CC7IO
CAPCOM1: CC7 capture
input/compare output
P2.0 to
P2.15
23/346
Ball data
Table 2.
Symbol
ST10F296E
Ball description (continued)
Ball
no.
Type
Function (including port, pin and alternate function where applicable)
CC8IO
CAPCOM1: CC8 capture
input/compare output
I
EX0IN
Fast external interrupt 0
input
I/O
CC9IO
CAPCOM1: CC9 capture
input/compare output
EX1IN
Fast external interrupt 1
input
I/O
T10
P2.8
R10
P2.9
I
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
I/O
P10
I/O
T11
I
I/O
R11
I
I/O
U12
16-bit bidirectional I/O port,
bit-wise programmable for
input or output via direction P2.11
bit. Programming an I/O pin
as input forces the
corresponding output driver
to high impedance state.
P2.12
Port 2 outputs can be
configured as push-pull or
open-drain drivers. The
input threshold of Port 2 is
selectable (TTL or CMOS).
P2.13
I
I/O
P11
I/O
I
I
24/346
EX2IN
Fast external interrupt 2
input
CC11IO
CAPCOM1: CC11 capture
input/compare output
EX3IN
Fast external interrupt 3
input
CC12IO
CAPCOM1: CC12 capture
input/compare output
EX4IN
Fast external interrupt 4
input
CC13IO
CAPCOM1: CC13 capture
input/compare output
EX5IN
Fast external interrupt 5
input
CC14IO
CAPCOM1: CC14 capture
input/compare output
EX6IN
Fast external interrupt 6
input
CC15IO
CAPCOM1: CC15 capture
input/compare output
EX7IN
Fast external interrupt 7
input
T7IN
CAPCOM2: Timer T7 count
input
P2.14
I
T12
CAPCOM1: CC10 capture
input/compare output
P2.10
I
P2.0 to
P2.15 cont’d
CC10IO
P2.15
ST10F296E
Table 2.
Symbol
Ball data
Ball description (continued)
Ball
no.
Type
R12
I
P3.0
T0IN
CAPCOM1: Timer T0 count
input
T13
O
P3.1
T6OUT
GPT2: Timer T6 toggle latch
output
P12
I
P3.2
CAPIN
GPT2: Register caprel
capture input
R13
O
P3.3
T3OUT
GPT1: Timer T3 toggle latch
output
Function (including port, pin and alternate function where applicable)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
T14
I
P3.4
T3EUD
GPT1: Timer T3 external
up/down control input
P13
I
P3.5
T4IN
GPT1: Timer T4 input for
count/gate/reload/capture
R14
I
P3.6
T3IN
GPT1: Timer T3 count/gate
input
P14
I
P3.7
T2IN
GPT1: Timer T2 input for
count/gate/reload/capture
P3.8
MRST0
SSC0: Master receive/slave
transmit I/O
P3.9
MTSR0
SSC0: Master
transmit/slave receive O/I
P3.10
TxD0
ASC0: Clock/data output
(asynchronous/synchronous)
P3.11
RxD0
ASC0: Data input
(asynchronous) or I/O
(synchronous)
BHE
External memory high byte
enable signal
WRH
External memory high byte
write strobe
P3.0 to
P3.13, P3.15 R15
I/O
R16
I/O
N14
I/O
P15
O
P16
O
15-bit (P3.14 is missing)
bidirectional I/O port, bitwise programmable for input
or output via direction bit.
Programming an I/O pin as
input forces the
corresponding output driver
to high impedance state.
Port 3 outputs can be
configured as push-pull or
open-drain drivers. The
input threshold of Port 3 is
selectable (TTL or CMOS).
P3.12
M14
I/O
P3.13
SCLK0
SSC0: Master clock
output/slave clock input
T17
O
P3.15
CLKOUT
Clock output
(programmable divider on
CPU clock)
25/346
Ball data
Table 2.
Symbol
ST10F296E
Ball description (continued)
Ball
no.
Type
N16
O
P4.0
A16
Least significant segment
address line
M15
O
P4.1
A17
Segment address line
L14
O
P4.2
A18
Segment address line
P4.3
A19
Segment address line
A20
Segment address line
M16
O
O
L15
I
Function (including port, pin and alternate function where applicable)
8-bit bidirectional I/O port. It
is bit-wise programmable for
input or output via direction
bit. Programming an I/O pin
as input forces the
corresponding output driver
to high impedance state.
The input threshold is
selectable (TTL or CMOS).
Port 4.4, 4.5, 4.6 and 4.7
outputs can be configured
as push-pull or open-drain
drivers. In case of an
external bus configuration,
Port 4 can be used to output
the segment address lines.
P4.4
CAN2_RxD CAN2: Receive data input
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
I/O
O
P4.0 to P4.7
L16
I
I
O
K14
O
O
P4.5
O
I/O
RD
WR and
WRL
J14
J15
I2C interface: Serial clock
A21
Segment address line
CAN1_RxD CAN1: Receive data input
CAN2_RxD CAN2: Receive Data Input
A22
P4.6
Segment address line
CAN1_TxD CAN1: Transmit data output
CAN2_TxD CAN2: Transmit data output
O
K15
SCL
A23
P4.7
Most significant segment
address line
CAN2_TxD CAN2: Transmit data output
SDA
I2C interface: Serial data
O
External memory read strobe: RD is activated for every external instruction or data
read access.
O
External memory write strobe: In WR mode this pin is activated for every external data
write access. In WRL mode this pin is activated for low byte data write access on a 16bit bus, and, for every data write access on an 8-bit bus. See WRCFG in register
SYSCON for mode selection.
READY and
READY
J16
I
Ready input: The active level is programmable. When the Ready function is enabled,
the selected inactive level at this pin during an external memory access forces the
insertion of memory cycle time waitstates until the pin returns to the selected active
level.
ALE
J17
O
Address latch enable output: Can be used for latching the address into external
memory or an address latch in the multiplexed bus modes.
I
External access enable pin: A low level applied to this pin during and after reset forces
the ST10F296E to start the program from the external memory space. A high level
forces ST10F296E to start in the internal memory space. This pin is also used (when
standby mode is entered: ST10F296E under reset and main VDD turned off) to provide
a reference voltage for the low-power embedded voltage regulator which generates
the internal 1.8 V supply to retain data inside the standby portion of the XRAM (16
Kbyte).
It can range from 4.5 to 5.5 V (6 V for a reduced amount of time during the device life).
In running mode, this pin can be tied low during reset without affecting XRAM
activities, since the presence of a stable VDD guarantees the proper biasing of this
module.
EA and
VSTBY
26/346
H17
ST10F296E
Table 2.
Symbol
Ball data
Ball description (continued)
Ball
no.
Type
H16
I/O
H15
I/O
H14
I/O
G16
I/O
G15
I/O
G14
I/O
Function (including port, pin and alternate function where applicable)
Two 8-bit bidirectional I/O
ports P0L and P0H, bit-wise
programmable for input or
output via direction bit.
Programming an I/O pin as
input forces the
corresponding output driver
to high impedance state.
The input threshold of Port 0
is selectable (TTL or
CMOS).
In case of an external bus
configuration, Port 0 serves
as the address (A) and as
the address/data (AD) bus
in multiplexed bus modes
and as the data (D) bus in
demultiplexed bus modes.
Demultiplexed bus modes
P0L.0-P0L.7: D0-D7 (8-bit),
D0-D7 (16-bit).
P0H.0-P0H.7: I/O (8-bit),
D8-D15 (16-bit).
Multiplexed bus modes
P0L.0-P0L.7: AD0-AD7 (8bit), AD0-AD7 (16-bit).
P0H.0-P0H.7: A8-A15 (8bit), AD8-AD15 (16-bit).
P0L.0
P0L.1
P0L.2
P0L.3
P0L.4
P0L.5
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
POL.0 to
POL.7 and
POH.0 to
POH.7
F16
I/O
E17
I/O
F15
I/O
E16
I/O
F14
I/O
D17
I/O
E15
I/O
D16
I/O
C17
I/O
E14
I/O
P0L.6
P0L.7
P0H.0
P0H.1
P0H.2
P0H.3
P0H.4
P0H.5
P0H.6
P0H.7
27/346
Ball data
Table 2.
Symbol
ST10F296E
Ball description (continued)
Ball
no.
Type
C11
I/O
P1L.0
B11
I/O
P1L.1
D10
I/O
C10
I/O
B10
I/O
A10
I/O
Function (including port, pin and alternate function where applicable)
P1L.2
Port 1 output pins: Two 8-bit
bidirectional I/O ports P1L
and P1H, bit-wise
programmable for input or
output via direction bit.
Programming an I/O pin as
input forces the
corresponding output driver
to high impedance state.
Port 1 is used as the 16-bit
address bus (A) in
demultiplexed bus modes: if
at least BUSCONx is
configured so that the
demultiplexed mode is
selected, the pis of Port 1
are not available for general
purpose I/O function. The
input threshold of Port 1 is
selectable (TTL or CMOS).
P1L.3
P1L.4
P1L.5
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P1L.0 to
P1L.7 and
P1H.0 to
P1H.7
28/346
D9
I/O
C9
I/O
C8
I/O
D8
I/O
A7
I/O
B7
I/O
C7
I
D7
I
C5
C6
P1L.6
P1L.7
P1H.0
P1H.1
P1H.2
P1H.3
P1H.4
CC24I
CAPCOM2: CC24 capture
input
P1H.5
CC25I
CAPCOM2: CC25 capture
input
I
P1H.6
CC26I
CAPCOM2: CC26 capture
input
I
P1H.7
CC27I
CAPCOM2: CC27 capture
input
ST10F296E
Table 2.
Symbol
Ball data
Ball description (continued)
Ball
no.
Type
D15
I/O
XPORT9.0
C16
I/O
XPORT9.1
D14
I/O
XPORT9.2
C15
I/O
XPORT9.3
B16
I/O
D13
I/O
Function (including port, pin and alternate function where applicable)
16-bit bidirectional I/O port.
It is bit-wise programmable
for input or output via
direction bits. For a pin
configured as input, the
output driver is put into highimpedance state. XPort 9
outputs can be configured
as push-pull or open-drain
drivers.The input threshold
of XPort 9 is selectable (TTL
or CMOS).
XPORT9.4
XPORT9.5
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
C14
I/O
B15
I/O
A15
I/O
B14
I/O
C13
I/O
D12
I/O
B13
I/O
XPORT9.12
C12
I/O
XPORT9.13
D11
I/O
XPORT9.14
B12
I/O
XPORT9.15
XTAL1
A5
I
XTAL1: Input to the oscillator amplifier and/or external clock input.
XTAL2
A6
O
XTAL2: Output of the oscillator amplifier circuit. To clock the device from an external
source, drive XTAL1 while leaving XTAL2 unconnected. Minimum and maximum
high/low and rise/fall times specified in the AC characteristics must be observed
XPORT9.0
to
XPORT9.15
XPORT9.6
XPORT9.7
XPORT9.8
XPORT9.9
XPORT9.10
XPORT9.11
RSTIN
A3
I
Reset input with CMOS Schmitt-Trigger characteristics: A low level at this pin for a
specified duration while the oscillator is running resets ST10F296E. An internal pull-up
resistor permits power-on reset using only a capacitor connected to VSS. In
bidirectional reset mode (enabled by setting bit BDRSTEN in SYSCON register), the
RSTIN line is pulled low for the duration of the internal reset sequence.
RSTOUT
B4
O
Internal reset indication output: This pin is driven to a low level during hardware,
software or watchdog timer reset. RSTOUT remains low until the EINIT (end of
initialization) instruction is executed.
NMI
C4
I
Non maskable interrupt input: A high to low transition at this pin causes the CPU to
vector to the NMI trap routine. If bit PWDCFG = 0 in the SYSCON register, when the
PWRDN (power-down) instruction is executed, the NMI pin must be low in order to
force the ST10F296E to go into power-down mode. If NMI is high and PWDCFG = 0,
when PWRDN is executed, the part will continue to run in normal mode.
If not being used, pin NMI should be pulled high externally.
XPOUT.0
D4
O
XPWM: Channel 0 output
XPOUT.1
C3
O
XPWM: Channel 1 output
XPOUT.2
B2
O
XPWM: Channel 2 output
XPOUT.3
C2
O
XPWM: Channel 3 output
XADCINJ
L3
O
Output trigger for ADC channel injection
29/346
Ball data
Table 2.
ST10F296E
Ball description (continued)
Ball
no.
Type
VAREF
U2
-
ADC reference voltage and analog supply
VAGND
U3
-
ADC reference and analog ground
RPD
M17
I/O
Timing pin for the return from power-down circuit and synchronous/
asynchronous reset selection.
V18
G1,
U11
O
1.8 V decoupling pin: A decoupling capacitor (typical value of 10 nF, max 100 nF) must
be connected between this pin and nearest VSS pin.
A2
A9
A12
A14
E1
K1
U8
U15
P17
L17
G17
-
Symbol
Function (including port, pin and alternate function where applicable)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
VDD
30/346
Digital supply voltage: 5 V during normal operation, idle and power-down modes. It
can be turned off when standby RAM mode is selected.
ST10F296E
Table 2.
Symbol
Ball data
Ball description (continued)
Ball
no.
Type
A1,
A4
A8,
A11,
A13,
A16
A17,
B3,
B5
B6,
B8
B9,
B17,
D5,
D6
F1,
F17,
G4,
H1
K16,
K17,
L1,
L4
N15,
N17,
R17,
T15,
T16,
U7,
U10,
U13,
U14,
U16,
U17
-
Function (including port, pin and alternate function where applicable)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
VSS
Digital ground
31/346
Functional description
3
ST10F296E
Functional description
The architecture of the ST10F296E combines advantages of both RISC and CISC
processors and an advanced peripheral subsystem. The block diagram of Figure 3 gives an
overview of the different on-chip components and the high bandwidth internal bus structure
of the ST10F296E.
Figure 3.
Block diagram
16
XFlash
320K
16
32
IFlash
512K
16
IRAM
2K
CPU-Core and MAC unit
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
16
16
XRTC
16
16
16
16
Interrupt controller
16
16
16
16
16
16
XASC
XTimer
Port 6
8
32/346
Port 5
16
BRG
Port 3
15
Port 7
Port 8
8
8
Port 2
BRG
CAPCOM1
10-bit ADC
External bus
controller
Port 1
8
Port 4
Port 0
16
CAPCOM2
XSSC
XPort 10
16
5V-1.8V
voltage
regulator
XCAN2
XPort 9
16
PLL
XCAN1
16
XPWM
16
Oscillator
PWM
4
16
SSC0
XRAM
2K
(PEC)
PEC
ASC0
XRAM
16K
(STBY)
Watchdog
16
XI2C
GPT1/GPT2
XRAM
48K
16
ST10F296E
4
Memory organization
Memory organization
The memory space of the ST10F296E is configured in a unified memory architecture. Code
memory, data memory, registers and I/O ports are organized within the same linear address
space of 16 Mbytes. The entire memory space can be accessed byte wise or word wise.
Particular portions of the on-chip memory have additionally been made directly bit
addressable.
The organization of the ST10F296E memory is described in the sections below and shown
in Figure 4: ST10F296E on-chip memory mapping on page 38.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
4.1
IFlash
IFlash comprises 512 Kbytes of on-chip Flash memory. It is divided into 10 blocks
(B0F0...B0F9) of Bank 0, and two blocks of Bank 1 (B1F0, B1F1). Read-while-write
operations inside the same bank are not allowed. When bootstrap mode is selected, the
Test-Flash Block B0TF (8 Kbyte) appears at address 00’0000h. Refer to Section 5: Internal
Flash memory on page 42 for more details on memory mapping in boot mode. The
summary of address ranges for IFlash is given in Table 3.
Table 3.
Address ranges for IFlash
Blocks
User mode
Size (Kbytes)
B0TF
Not visible
8
B0F0
00’0000h - 00’1FFFh
8
B0F1
00’2000h - 00’3FFFh
8
B0F2
00’4000h - 00’5FFFh
8
B0F3
00’6000h - 00’7FFFh
8
B0F4
01’8000h - 01’FFFFh
32
B0F5
02’0000h - 02’FFFFh
64
B0F6
03’0000h - 03’FFFFh
64
B0F7
04’0000h - 04’FFFFh
64
B0F8
05’0000h - 05’FFFFh
64
B0F9
06’0000h - 06’FFFFh
64
B1F0
07’0000h - 07’FFFFh
64
B1F1
08’0000h - 08’FFFFh
64
33/346
Memory organization
4.2
ST10F296E
XFlash
XFlash comprises 320 Kbytes of on-chip extension Flash memory. The XFLASH address
range is 09’0000h - 0E’FFFFh if enabled (if the XPEN bit, bit 2, of the SYSCON register and
the XFLASHEN bit, bit 5, of the XPERCON register are set ). If the XPEN bit is cleared, any
access in the address range 09’0000h - 0E’FFFFh is directed to the external memory
interface, using the BUSCONx register corresponding to an address matching the
ADDRSELx register. When the XPEN bit is set, but the XFLASHEN and XRAM2EN bits are
cleared.
Note:
When the Flash control registers are not accessible, no program/erase operations are
possible.
XFlash is divided into 3 blocks (B2F0...B0F2) of Bank 2, and two blocks of Bank 3 (B3F0,
B3F1). Read-while-write operations inside the same bank are not allowed. Flash control
registers are mapped in the range 0E’0000h - 0E’FFFFh. The summary of address range for
XFLASH is given in Table 4.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
RAM (IRAM)
O4.3 Internal
e
t
e
l
o
s
b
O
Table 4.
Address ranges for IFlash
Blocks
User Mode
Size (Kbytes)
B2F0
09’0000h - 09’FFFFh
64
B2F1
0A’0000h - 0A’FFFFh
64
B2F2
0B’0000h - 0B’FFFFh
64
B3F0
0C’0000h - 0C’FFFFh
64
B3F1
0D’0000h - 0D’FFFFh
64
CTRL Registers
0E’0000h - 0E’FFFFh
64
The XFlash is accessed like an external memory in 16-bit demultiplexed bus-mode without
read/write delay. The user must set the proper number of waitstates according to the system
frequency (1 waitstate for fCPU higher than 40 MHz, 0 waitstates otherwise). Refer to the
XFICR register described in Section 5: Internal Flash memory on page 42). Byte and word
access is allowed.
Note:
When the ROMEN and XPEN bits in the SYSCON register are set, together with at least
one of the XFLASHEN or XRAM2EN bits in the XPERCON register, the address 08’0000h 08’FFFFh must be reserved (no external memory access is enabled).
2 Kbytes of on-chip IRAM (dual-port) is provided as a storage for data, system stack,
general purpose register bank and code. A register bank includes 16 wordwide (R0 to R15)
and/or bytewide (RL0, RH0, …, RL7, RH7) general purpose registers.
34/346
ST10F296E
4.4
Memory organization
Extension RAM (XRAM)
64 Kbyte and 2 Kbytes of on-chip XRAM (single port XRAM) is provided as a storage for
data, user stack and code.
The XRAM is divided into 2 areas, the first 2 kbytes and second 64 Kbytes, called XRAM1
and XRAM2 respectively, are connected to the internal XBus and are accessed like an
external memory in 16-bit demultiplexed bus-mode without wait state or read/write delay
(31.25 ns access at 64 MHz CPU clock). Byte and word access is allowed.
The XRAM1 address range is 00’E000h - 00’E7FFh if the XPEN bit (bit 2 of the SYSCON
register) and XRAM1EN bit (bit 2 of the XPERCON register) are set. If the XRAM1EN or
XPEN bits are cleared, any access in the address range 00’E000h - 00’E7FFh is directed to
external memory interface, using the BUSCONx register corresponding to an address
matching the ADDRSELx register.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
4.5
Special
function register
s (SFR) areas
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O4.6 CAN1
e
t
e
l
o
s
b
O
The XRAM2 address range is 0F’0000h - 0F’FFFFh if the XPEN bit and XRAM2EN bit (bit 3
of the XPERCON register) are set. If the XRAM2EN or XPEN bits are cleared, any access in
the address range 00’C000h - 00’DFFFh is directed to the external memory interface, using
the BUSCONx register corresponding to an address matching the ADDRSELx register. The
same thing happens when the XPEN bit is set, but both the XRAM2EN and XFLASHEN bits
are cleared.
The lower 16 Kbyte portion of XRAM2 (address range 0F’0000h-0F’3FFFh) represents the
standby RAM which can be maintained biased through EA / VSTBY pin when the main
supply VDD is turned off.
As the XRAM appears as external memory, it cannot be used as a system stack or as a
register bank. The XRAM is not provided for single bit storage and therefore is not bit
addressable.
Note:
When the ROMEN bit in the SYSCON register is low, and the XPEN bit is set, and at least
one of the two bits XFLASHEN or XRAM2EN in the XPERCON register are also set, the
address 08’0000h - 08’FFFFh must be reserved (no external memory access is enabled).
An area of 1024 bytes (2 x 512 bytes) of address space is reserved for special function
registers (SFR) and extended special function registers (ESFR). SFRs are wordwide
registers which are used to control and to monitor the function of the different on-chip units.
Address range 00’EF00h - 00’EFFFh is reserved for the CAN1 module access. CAN1 is
enabled by setting the XPEN bit (bit 2 of the SYSCON register) and the CAN1EN bit (bit 0 of
the XPERCON register). Access to the CAN module use demultiplexed addresses and a 16bit data bus (only word access is possible). Two wait states give an access time of 62.5 ns at
64 MHz CPU clock. No tristate wait states are used.
35/346
Memory organization
4.7
ST10F296E
CAN2
Address range 00’EE00h - 00’EEFFh is reserved for the CAN2 module access. CAN2 is
enabled by setting the XPEN bit (bit 2 of the SYSCON register) and the CAN2EN bit (bit 1 of
the new XPERCON register). Access to the CAN module use demultiplexed addresses and
a 16-bit data bus (only word access is possible). Two wait states give an access time of 62.5
ns at 64 MHz CPU clock. No tristate wait states are used.
Note:
If one or both CAN modules are used, Port 4 cannot be programmed to output all eight
segment address lines. Thus, only four segment address lines can be used, reducing the
external memory space to 5 Mbytes (1 Mbyte per CS line).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
u
4.9
Pulse-width modulation 1 (PWM1) et
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
4.10
ASC1
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O4.11 SSC1
e
t
e
l
o
s
b
O
4.8
Real-time clock (RTC)
Address range 00’ED00h - 00’EDFFh is reserved for the RTC module access. The RTC is
enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 4 of the XPERCON
register. Access to the RTC module use demultiplexed addresses and a 16-bit data bus
(only word access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz
CPU clock. No tristate waitstate is used.
Address range 00’EC00h - 00’ECFFh is reserved for the PWM1 module access. The PWM1
is enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 6 of the
XPERCON register. Access to the PWM1 module use demultiplexed addresses and a 16-bit
data bus (only word access is possible). Two waitstates give an access time of 62.5 ns at 64
MHz CPU clock. No tristate waitstate is used. Only word access is allowed.
Address range 00’E900h - 00’E9FFh is reserved for the ASC1 module access. The ASC1 is
enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 7 of the XPERCON
register. Access to the ASC1 module use demultiplexed addresses and a 16-bit data bus
(only word access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz
CPU clock. No tristate waitstate is used.
Address range 00’E800h - 00’E8FFh is reserved for the SSC1 module access. The SSC1 is
enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 8 of the XPERCON
register. Access to the SSC1 module use demultiplexed addresses and a 16-bit data bus
(only word access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz
CPU clock. No tristate waitstate is used.
36/346
ST10F296E
4.12
Memory organization
I2C
Address range 00’EA00h - 00’EAFFh is reserved for the I2C module access. The I2C is
enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 9 of the XPERCON
register. Access to the I2C module use demultiplexed addresses and a 16-bit data bus (only
word access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz CPU
clock. No tristate waitstate is used.
4.13
XTimer/XMiscellaneous
Address range 00’EB00h - 00’EB7Fh is reserved for the access to XTimer and to a set of
XBus additional features (XMiscellaneous). They are enabled by setting the XPEN bit (bit 2
of the SYSCON register) and bit 10 of the XPERCON register. Access to these additional
modules and features use demultiplexed addresses and a 16-bit data bus (only word access
is possible). Two waitstates give an access time of 62.5 ns at 64 MHz CPU clock. No tristate
waitstate is used. In addition to the XTimer module control registers, the following set of
features are provided:
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
b
ct
4.14
XPort 9/XPortu
10
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
of XBus peripherals
O4.15 Visibility
e
t
e
l
o
s
b
O
●
CLKOUT programmable divider
●
XBus interrupt management registers
●
ADC multiplexing on the P1L register
●
Port 1L digital disable register for extra ADC channels
●
CAN2 multiplexing on P4.5/P4.6
●
CAN1-2 main clock prescaler
●
Main voltage regulator disable for power-down mode
●
TTL/CMOS threshold selection for Port 0, Port 1, Port 5, XPort 9 and XPort 10.
Address range 00’EB80h - 00’EBFFh is reserved for access to XPort 9 and XPort 10. They
are enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 11 of the
XPERCON register. These additional modules are accessed by demultiplexed addresses
and a 16-bit data bus (only word access is possible). Two waitstates give an access time of
62.5 ns at 64 MHz CPU clock. No tristate waitstate is used.
To retain compatibility between the ST10F296E and the ST10F280, the XBus peripherals
can be selected to be visible and/or accessible on the external address/data bus. Different
bits must be set in the XPERCON register to enable the XPeripherals. If these bits are
cleared before global enabling with the XPEN bit (in the SYSCON register), the
corresponding address space, port pins and interrupts are not occupied by the peripherals,
and the peripheral is not visible and not available. Refer to Section 23: Register set on
page 248.
37/346
Memory organization
Figure 4.
ST10F296E
ST10F296E on-chip memory mapping
Code
segment
Data
page
Code
segment
FF FFFF
255
1023
11 FFFF
Data
page
67
66
65
64
67
66
65
64
63
62 64 Kbyte
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
03 0000
11
02 FFFF
10
B0F5
2
9
(IFlash)
8
02 0000
7
01 FFFF
B0F4
6
(IFlash)
1
5
Ext. memory
4
01 0000
3
00 FFFF
Ext. memory 2
B0F3
0
1
B0F2
B0F1
0
B0F0
00 0000
Ext.
17 memory
11 0000
10 FFFF
Ext.
16 memory
10 0000
0F FFFF
XRAM2
15
0F 0000 Standby RAM
0E FFFF Flash registers
+
14
FPEC RAM/ROM
0E 0000
0D FFFF
B3F1
13 (XFlash)
0D 0000
0C FFFF
B3F0
12 (XFlash)
0C 0000
0B FFFF
B2F2
11 (XFlash)
0B 0000
0A FFFF
B2F1
10 (XFlash)
0A 0000
09 FFFF
B2F0
9 (XFlash)
09 0000
08 FFFF
B1F1
8
(IFlash)
08 0000
07 FFFF
B1F0
7
(IFlash)
07 0000
06 FFFF
B0F9
6
(IFlash)
06 0000
05 FFFF
B0F8
5
(IFlash)
05 0000
04 FFFF
B0F7
4
(IFlash)
04 0000
03 FFFF
B0F6
3
(IFlash)
00 FFFF
00 FE00
00 FDFF
SFR
512 byte
IRAM
2 Kbytes
XPeripherals (2 Kbytes)
00 F600
00 F5FF
Reserved
00 F200
00 F1FF
00 F000
00 EFFF
1 Kbyte
00 F000
00 EFFF
CAN1
ESFR
CAN1
CAN2
RTC
PWM1
ASC1
SSC1
512 byte
256 byte
256 byte
256 byte
256 byte
128 + 128
256 byte
256 byte
256 byte
XRAM1
2 Kbytes
256 byte
00 EF00
00 EEFF
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
0
00 0000
16 Mbyte
0
Flash + XRAM - 1 Mbyte
Xmisc/XTimer/XPort
2
I C
00 E800
00 E7FF
CAN2
256 byte
RTC
256 byte
00 EE00
00 EDFF
00 ED00
00 ECFF
PWM1
256 byte
00 EC00
00 EBFF XPort 9 + XPort 10 128 byte
00 EB00
00 EAFF
XMiscellaneous
XTimer
128 byte
2C
256 byte
ASC1
256 byte
SSC1
256 byte
I
00 EA00
00 E9FF
00 E000
00 DFFF
00 E900
00 E8FF
00 E800
00 E7FF
Ext. memory
8 Kbytes
00 C000
Data page 3 (segment 0) - 16 Kbyte
1. Blocks B0F0, B0F1, B0F2, B0F3 may be remapped from segment 0 to segment 1 by setting SYSCONROMS1 (before EINIT).
2. Data page number and absolute memory address are hexadecimal values.
38/346
ST10F296E
4.16
Memory organization
XPeripheral configuration registers
XPERCON register
XPERCON (F024h/12h)
15 14 13 12
-
-
-
-
-
-
-
-
11
ESFR
10
9
8
7
Reset value: 005h
6
5
4
3
2
1
XPORT XMISC XI2C XSSC XASC XPWM XFLASH XRTC XRAM XRAM CAN
EN
EN
EN
EN
EN
EN
EN
EN
2EN
1EN 2EN
RW
Table 5.
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
0
CAN
1EN
RW
XPERCON register description
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
BIt
11
10
9
8
7
6
Bit name
Function
XPORTEN
XPort 9 and XPort 10 enable bit
0: Access to the on-chip XPort 9 and XPort 10 modules is disabled.
Address range 00’EB80h to 00’EBFFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XSSCEN,
XPWMEN, XI2CEN and XMISCEN are also 0.
1: The on-chip XPort 9 and XPort 10 are enabled and can be accessed.
XMISCEN
XBus additional features and XTimer enable bit
0: Access to the additional miscellaneous features is disabled. Address
range 00’EB00h to 00’EB7Fh is directed to the external memory only if
CAN1EN, CAN2EN, XRTCEN, XASCEN, XSSCEN, XPWMEN, XI2CEN
and XPORTEN are also 0.
1: The additional features and XTimer are enabled and can be
accessed.
XI2CEN
I2C enable bit
0: Access to the on-chip I2C is disabled, external access performed.
Address range 00’EA00h to 00’EAFFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XSSCEN,
XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip I2C is enabled and can be accessed.
XSSCEN
SSC1 enable bit
0: Access to the on-chip SSC1 is disabled, external access performed.
Address range 00’E800h to 00’E8FFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XI2CEN,
XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip SSC1 is enabled and can be accessed.
XASCEN
ASC1 enable bit
0: Access to the on-chip ASC1 is disabled, external access performed.
Address range 00’E900h to 00’E9FFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XI2CEN,
XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip ASC1 is enabled and can be accessed.
XPWMEN
XPWM enable
0: Access to the on-chip PWM1 module is disabled, external access is
performed. Address range 00’EC00h to 00’ECFF is directed to the
external memory only if CAN1EN, CAN2EN, XASCEN, XSSCEN,
XI2CEN, XRTCEN, XMISCEN and XPORTEN are also 0.
1: The on-chip PWM1 module is enabled and can be accessed.
39/346
Memory organization
Table 5.
BIt
5
4
ST10F296E
XPERCON register description
Bit name
Function
XFlash enable bit
0: Access to the on-chip XFlash is disabled, external access is
XFLASHEN
performed. Address range 09’0000h to 0E’FFFFh is directed to the
external memory only if XRAM2EN is also 0.
1: The on-chip XFlash is enabled and can be accessed.
XRTCEN
RTC enable
0: Access to the on-chip RTC module is disabled, external access is
performed. Address range 00’ED00h to 00’EDFF is directed to the
external memory only if CAN1EN, CAN2EN, XASCEN, XSSCEN,
XI2CEN, XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip RTC module is enabled and can be accessed.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
3
2
1
0
XRAM2EN
XRAM2 enable bit
0: Access to the on-chip 64 KByte XRAM is disabled, external access is
performed. Address range 0F’0000h to 0F’FFFFh is directed to the
external memory only if XFLASHEN is also 0.
1: The on-chip 64 Kbyte XRAM is enabled and can be accessed.
XRAM1EN
XRAM1 enable bit
0: Access to the on-chip 2 KByte XRAM is disabled. Address range
00’E000h to 00’E7FFh is directed to the external memory.
1: The on-chip 2 Kbyte XRAM is enabled and can be accessed.
CAN2EN
CAN2 enable bit
0: Access to the on-chip CAN2 XPeripheral and its functions is disabled
(P4.4 and P4.7 pins can be used as general purpose IOs, but, address
range 00’EC00h to 00’EFFFh is directed to the external memory only if
CAN1EN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN,
XMISCEN and XPORTEN are also 0).
1: The on-chip CAN2 XPeripheral is enabled and can be accessed.
CAN1EN
CAN1 enable bit
0: Access to the on-chip CAN1 XPeripheral and its functions is disabled
(P4.5 and P4.6 pins can be used as general purpose IOs, but, address
range 00’EC00h to 00’EFFFh is directed to the external memory only if
CAN2EN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN an
XMISCEN are also 0).
1: The on-chip CAN1 XPeripheral is enabled and can be accessed.
When CAN1, CAN2, RTC, ASC1, SSC1, I2C, PWM1, XBus additional features, XTimer and
XPort modules are disabled via XPERCON settings, any access in the address range
00’E800h to 00’EFFFh is directed to the external memory interface, using the BUSCONx
register associated with the ADDRSELx register matching the target address. All pins
involved with the XPeripherals can be used as general purpose IOs whenever the related
module is not enabled.
The default XPER selection after reset is identical to configuration of the XBus in the
ST10F280. CAN1 and XRAM1 are enabled, CAN2 and XRAM2 are disabled, all other
XPeripherals are disabled after reset.
the XPERCON register cannot be changed after globally enabling the XPeripherals (after
setting the XPEN bit in the SYSCON register).
40/346
ST10F296E
Memory organization
In emulation mode, all XPeripherals are enabled (all XPERCON bits are set). The access to
the external memory and/or the XBus is controlled by the bondout chip.
Reserved bits of the XPERCON register must always be written to 0.
When the RTC is disabled (RTCEN = 0) the main clock oscillator is switched off if the ST10
enters power-down mode. When the RTC is enabled, the RTCOFF bit of the RTCCON
register allows the power-down mode of the main clock oscillator to be chosen (eee
Section 18: Real-time clock (RTC) on page 203).
Table 6 summarizes the address range mapping on segment 8 for programming the
ROMEN and XPEN bits (of the SYSCON register) and the XRAM2EN and XFLASHEN bits
(of the XPERCON register).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 6.
Segment 8 address range mapping
ROMEN
XPEN
XRAM2EN
XFLASHEN
Segment 8
0
0
x(1)
x(1)
External memory
0
1
0
0
External memory
Reserved
0
1
1
x(1)
0
1
x(1)
1
Reserved
1
(1)
x(1)
x(1)
IFlash (B1F1)
x
1. Don’t care
XPEREMU register
The XPEREMU register is a write-only register that is mapped on the XBus memory space
at address EB7Eh. It contrasts with the XPERCON register, a read/write ESFR register,
which must be programmed to enable the single XBus modules separately.
Once the XPEN bit of the SYSCON register is set and at least one of the XPeripherals
(except the memories) is activated, the XPEREMU register must be written with the same
content as the XPERCON register. This is to allow a correct emulation of the new set of
features introduced on the XBus for the new ST10 generation. The following instructions
must be added inside the initialization routine:
if (SYSCON.XPEN && (XPERCON & 0x07D3))
then { XPEREMU = XPERCON }
XPEREMU must be programmed after both the XPERCON and SYSCON registers in such
a way that the final configuration for the XPeripherals is stored in the XPEREMU register
and used for the emulation hardware setup.
XPEREMU (EB7Eh)
15
14
13
12
-
-
-
-
-
-
-
-
XBus
11
10
9
8
7
Reset value: xxxxh
6
5
4
3
2
1
0
XPORT XMISC XI2C XSSC XASC XPWM XFLASH XRTC XRAM XRAM CAN CAN
EN
EN
EN
EN
EN
EN
EN
EN
2EN
1EN 2EN 1EN
W
W
W
W
W
W
W
W
W
W
W
W
XPEREMU bit descriptition follows the XPERCON register (see Table 5: XPERCON register
description on page 39).
41/346
Internal Flash memory
5
ST10F296E
Internal Flash memory
The on-chip Flash is composed of two matrix modules each one containing one array
divided into two banks that can be read and modified independently of the other (i.e. one
bank can be read while the other is under modification).
Figure 5.
Flash modules structure
IFLASH (Module I)
Control Section
XFLASH (Module X)
Bank 1: 128 Kbyte
Program Memory
HV and Ref.
Generator
Bank 3: 128 Kbyte
Program Memory
Bank 0: 384 Kbyte
Program Memory
+
8 Kbyte Test-Flash
Program/Erase
Controller
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
5.1
Functional
description
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
I-BUS Interface
Bank 2: 192 Kbyte
Program Memory
X-BUS Interface
The write operations of the four banks are managed by an embedded Flash program/erase
controller (FPEC). The high voltages needed for program/erase operations are internally
generated.
The data bus is 32 bits wide. Due to ST10 core architecture limitations, only the first 512
Kbytes are accessed at 32-bit (internal Flash bus, also known as IBus), while the remaining
320 Kbytes are accessed at 16-bit (also known as XBus).
5.1.1
Structure
Table 7 shows the address space reserved for the Flash module.
.
Table 7.
Flash module absolute mapping
Description
42/346
Addresses
Size (Kbytes)
IFlash sectors
0x00 0000 to 0x08 FFFF
512
XFlash sectors
0x09 0000 to 0x0D FFFF
320
Registers and Flash internal reserved area
0x0E 0000 to 0x0E FFFF
64
ST10F296E
5.1.2
Internal Flash memory
Module structure
The IFlash module is composed by two banks. Bank 0 contains 384 Kbytes of program
memory divided into 10 sectors. Bank 0 also contains a reserved sector named ‘Test-Flash’.
Bank 1 contains 128 Kbyte of program memory divided into two sectors (64 Kbytes each).
The XFlash module is also composed of two banks. Bank 2 contains 192 Kbytes of program
memory divided into 3 sectors. Bank 3 contains 128 Kbytes of program memory divided into
two sectors (64 Kbytes each).
Addresses from 0x0E 0000 to 0x0E FFFF are reserved for the control register interface and
other internal service memory space used by the Flash program/erase controller.
Table 8 shows the memory mapping of the Flash when it is accessed in read mode and
Table 9 when it is accessed in write or erase mode.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
With this second mapping, the first three banks are remapped into code segment 1 (same
result as setting ROMS1 bit in the SYSCON register).
.
Table 8.
Bank
Sectorization of the Flash modules (read operations)
Description
Addresses
Size
(Kbytes)
Bank 0 Flash 0 (B0F0)
0x0000 0000 - 0x0000 1FFF
8
Bank 0 Flash 1 (B0F1)
0x0000 2000 - 0x0000 3FFF
8
Bank 0 Flash 2 (B0F2)
0x0000 4000 - 0x0000 5FFF
8
Bank 0 Flash 3 (B0F3)
0x0000 6000 - 0x0000 7FFF
8
Bank 0 Flash 4 (B0F4)
0x0001 8000 - 0x0001 FFFF
32
Bank 0 Flash 5 (B0F5)
0x0002 0000 - 0x0002 FFFF
64
Bank 0 Flash 6 (B0F6)
0x0003 0000 - 0x0003 FFFF
64
Bank 0 Flash 7 (B0F7)
0x0004 0000 - 0x0004 FFFF
64
Bank 0 Flash 8 (B0F8)
0x0005 0000 - 0x0005 FFFF
64
Bank 0 Flash 9 (B0F9)
0x0006 0000 - 0x0006 FFFF
64
Bank 1 Flash 0 (B1F0)
0x0007 0000 - 0x0007 FFFF
64
Bank 1 Flash 1 (B1F1)
0x0008 0000 - 0x0008 FFFF
64
Bank 2 Flash 0 (B2F0)
0x0009 0000 - 0x0009 FFFF
64
Bank 2 Flash 1 (B2F1)
0x000A 0000 - 0x000A FFFF
64
Bank 2 Flash 2 (B2F2)
0x000B 0000 - 0x000B FFFF
64
Bank 3 Flash 0 (B3F0)
0x000C 0000 - 0x000C FFFF
64
Bank 3 Flash 1 (B3F1)
0x000D 0000 - 0x000D FFFF
64
ST10 bus size
B0
32-bit (IBus)
B1
B2
16-bit (X-BUS)
B3
43/346
Internal Flash memory
Table 9.
Bank
B0
ST10F296E
Sectorization of the Flash modules (write operations or with ROMS1 = 1)
Description
Addresses
Size
(Kbytes)
Bank 0 Test-Flash (B0TF)
0x0000 0000 - 0x0000 1FFF
8
Bank 0 Flash 0 (B0F0)
0x0001 0000 - 0x0001 1FFF
8
Bank 0 Flash 1 (B0F1)
0x0001 2000 - 0x0001 3FFF
8
Bank 0 Flash 2 (B0F2)
0x0001 4000 - 0x0001 5FFF
8
Bank 0 Flash 3 (B0F3)
0x0001 6000 - 0x0001 7FFF
8
Bank 0 Flash 4 (B0F4)
0x0001 8000 - 0x0001 FFFF
32
ST10 bus size
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Bank 0 Flash 5 (B0F5)
0x0002 0000 - 0x0002 FFFF
64
Bank 0 Flash 6 (B0F6)
0x0003 0000 - 0x0003 FFFF
64
Bank 0 Flash 7 (B0F7)
0x0004 0000 - 0x0004 FFFF
64
Bank 0 Flash 8 (B0F8)
0x0005 0000 - 0x0005 FFFF
64
Bank 0 Flash 9 (B0F9)
0x0006 0000 - 0x0006 FFFF
64
Bank 1 Flash 0 (B1F0)
0x0007 0000 - 0x0007 FFFF
64
Bank 1 Flash 1 (B1F1)
0x0008 0000 - 0x0008 FFFF
64
Bank 2 Flash 0 (B2F0)
0x0009 0000 - 0x0009 FFFF
64
Bank 2 Flash 1 (B2F1)
0x000A 0000 - 0x000A FFFF
64
Bank 2 Flash 2 (B2F2)
0x000B 0000 - 0x000B FFFF
64
Bank 3 Flash 0 (B3F0)
0x000C 0000 - 0x000C FFFF
64
Bank 3 Flash 1 (B3F1)
0x000D 0000 - 0x000D FFFF
64
32-bit (IBus)
B1
B2
16-bit (XBus)
B3
Table 9 refers to the configuration when bit ROMS1 of the SYSCON register is set. When
bootstrap mode is entered:
●
Test-Flash is seen and is available for code fetches (address 00’0000h)
●
User IFlash is only available for read and write access
●
Write access must be made using addresses in segment 1 that start at 01'0000h,
irrespective of the ROMS1 bit value in the SYSCON register. Note that the user must
not rely on the ROMS1 bit because it is ‘don't care’ for write operations.
●
Read access is made in segment 0 or in segment 1 depending on the ROMS1 value.
In bootstrap mode, ROMS1 = 0 by default, so the first 32 Kbytes of IFlash are mapped in
segment 0.
Example
To program address 0 using the default configuration, the user must put the value 01'0000h
in the FARL and FARH registers. However, to verify the content of address 0 a read to
00'0000h must be performed.
44/346
ST10F296E
Internal Flash memory
Table 10 shows the composition of the control register interface. These registers can be
addressed by the CPU
.
Table 10.
Control register interface
Size
ST10
(byte) bus size
Name
Description
Addresses
FCR1-0
Flash control registers 1-0
0x000E 0000 - 0x000E 0007
8
FDR1-0
Flash data registers 1-0
0x000E 0008 - 0x000E 000F
8
FAR
Flash address registers
0x000E 0010 - 0x000E 0013
4
FER
Flash error register
0x000E 0014 - 0x000E 0015
2
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
e operationuc
t
5.2
Write
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
5.1.3
FNVWPXR
Flash non volatile protection X
register
0x000E DFB0 - 0x000E DFB3
FNVWPIR
Flash non volatile protection I
register
0x000E DFB4 - 0x000E DFB7
4
FNVAPR0
Flash non volatile access
protection register 0
0x000E DFB8 - 0x000E DFB9
2
FNVAPR1
Flash non volatile access
protection register 1
0x000E DFBC - 0x000E DFBF
4
XFICR
XFlash interface control register
0x000E E000 - 0x000E E001
2
4
16-bit
(XBus)
Low power mode
The Flash modules are automatically switched off when executing the PWRDN instruction.
Consumption is drastically reduced, but, exiting this state can take a long time (tPD).
Note:
Recovery time from power-down mode for the Flash modules is shorter than the main
oscillator start-up time. To avoid problems restarting to fetch code from the Flash, it is
important to properly size the external circuit on the RPD pin.
Power-off Flash mode is entered only at the end of the Flash write operation.
The Flash modules have a single register interface mapped in the memory space of the
XFlash module (0x0E 0000 to 0x0E 0013). All operations are enabled through four 16-bit
control registers: Flash control register 1-0 high/low (FCR1H/L-FCR0H/L). Eight other 16-bit
registers are used to store Flash addresses and data for program operations (FARH/L and
FDR1H/L-FDR0H/L) and write operation error flags (FERH/L). All registers are accessible
with 8 and 16-bit instructions (since they are mapped on the ST10 XBus).
Note:
Before accessing the XFlash module (and consequently the Flash register to be used for
program/erasing operations), the XFLASHEN bit in the XPERCON register and the XPEN
bit in the SYSCON register must be set.
The four Flash module banks have their own dedicated sense amplifiers, so that any bank
can be read while any other bank is written. However simultaneous write operations (‘write’
meaning either program or erase) on different banks are forbidden. When a write operation
is occurring in the Flash, no other write operations can be performed.
45/346
Internal Flash memory
ST10F296E
During a Flash write operation any attempt to read the bank under modification outputs
invalid data (software trap 009Bh). This means that the Flash bank is not fetchable when a
write operation is active. The write operation commands must be executed from another
bank, from the other module or from another memory (internal RAM or external memory).
Note:
During a write operation, when the LOCK bit of the FCR0 register is set, it is forbidden to
write into the Flash control registers.
5.2.1
Power supply drop
If, during a write operation, the internal low voltage supply drops below a certain internal
voltage threshold, any write operation that is running is suddenly interrupted and the
modules are reset to read mode. Following power-on, an interrupted Flash write operation
must be repeated.
)
s
(
t
5.3
Internal Flash memory registers
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Flash control register 0 low (FCR0L)
The Flash control register 0 low (FCR0L) together with the Flash control register 0 high
(FCR0H) is used to enable and to monitor all the write operations for both Flash modules.
The user has no access in write mode to the Test-Flash (B0TF). The Test-Flash block is only
seen by the user in bootstrap mode.
FCR0L (0x0E 0000)
15
14
13
12
FCR
11
10
9
8
Reserved
-
Table 11.
46/346
6
5
4
3
2
1
0
BSY1 BSY0 LOCK Res. BSY3 BSY2 Res.
R
R
R
R
R
FCR0L register decription
BIt
Bit name
15-7
-
6-5
7
Reset value: 0000h
BSY[1:0]
Function
Reserved
Bank 1:0 busy (IFlash)
These bits indicate that a write operation is running in the
corresponding bank of IFlash. They are automatically set when the
WMS bit of the FCR0H register is set. When the BSY [1:0] bits are set
every read access to the corresponding bank outputs invalid data
(software trap 009Bh), while every write access to the bank is ignored.
At the end of a write operation or during a program or erase suspend
these bits are automatically reset and the bank returns to read mode.
After a program or erase resume these bits are automatically reset.
ST10F296E
Internal Flash memory
Table 11.
BIt
4
FCR0L register decription (continued)
Bit name
Function
LOCK
Flash registers access locked
When this bit is set, access to the Flash control registers
FCR0H/L-FCR1H/L, FDR0H/L-FDR1H/L, FARH/L and FER is locked by
the FPEC. Any read access to the registers outputs invalid data
(software trap 009Bh) and any write access is ineffective. The LOCK bit
is automatically set when the Flash bit WMS of the FCR0H register is
set.
The LOCK bit is the only bit the user can always access to detect the
status of the Flash. If it is low, the remainder of the FCR0L and all other
Flash registers are accessible by the user.
Note: When the LOCK bit is low, the FER register content can be read,
but, its content is updated only when the BSY bits are reset.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
3
-
2-1
BSY[3:2]
0
-
Reserved
Bank 3:2 busy (XFlash)
These bits indicate that a write operation is running on the
corresponding bank of XFlash. They are automatically set when bit
WMS in the FCR0H register is set. Setting the protection operation
automatically sets the BSY2 bit (since the protection registers are in
Block B2). When both busy (XFlash) bits are set, every read access to
the corresponding bank outputs invalid data (software trap 009Bh),
while every write access to the bank is ignored. At the end of a write
operation or during a program or erase suspend these bits are
automatically reset and the bank returns to read mode. After a program
or erase resume these bits are automatically reset.
Reserved
47/346
Internal Flash memory
ST10F296E
Flash control register 0 high (FCR0H)
The Flash control register 0 high (FCR0H) together with the Flash control register 0 low
(FCR0L) is used to enable and monitor write operations for both the Flash modules. The
user has no access in write mode to the Test-Flash (B0TF). The Test-Flash block is only
seen by the user in bootstrap mode.
FCR0H (0x0E 0002)
15
14
13
FCR
12
11
WMS SUSP WPG DWPG SER
RW
RW
RW
RW
RW
10
9
8
7
Reserved SPR SMOD
-
RW
RW
Reset value: 0000h
6
5
4
3
2
1
Reserved
-
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 12.
Bit
15
14
13
48/346
0
FCR0H register decription
Bit name
Function
WMS
Write mode start
This bit must be set to start every write operation in the Flash modules. At
the end of the write operation or during a suspend, this bit is automatically
reset. To resume a suspended operation, this bit must be set again. It is
forbidden to set this bit if the ERR bit of the FER register is high (the
operation is not accepted). It is also forbidden to start a new write (program
or erase) operation (by setting the WMS bit high) when the SUSP bit of the
FCR0 register is high. Resetting this bit by software has no effect.
SUSP
Suspend
This bit must be set to suspend the current program (word or double word)
or sector erase operation to read data in one of the sectors of the bank
under modification or to program data in another bank. The suspend
operation resets the Flash bank to normal read mode (automatically
resetting bits BSYx). When in program suspend, the two Flash modules
accept only read and program resume operations. When in erase suspend,
the modules accept only read, erase resume, and program (word or double
word) operations. Program operations cannot be suspended during erase
suspend. To resume the suspended operation, the WMS bit must be set
again, together with the selection bit corresponding to the operation to
resume (WPG, DWPG, SER).
Note: It is forbidden to start a new write operation with the SUSP bit already
set.
WPG
Word program
This bit must be set to select the word (32 bits) program operation in the
Flash modules. The word program operation allows 0s to be programmed
instead of 1s. The Flash address to be programmed must be written in the
FARH/L registers, while the Flash data to be programmed must be written
in the FDR0H/L registers before starting the execution by setting the WMS
bit. The WPG bit is automatically reset at the end of the word program
operation.
ST10F296E
Internal Flash memory
Table 12.
Bit
12
FCR0H register decription (continued)
Bit name
Function
DWPG
Double word program
This bit must be set to select the double word (64 bits) program operation in
the Flash modules. The double word program operation allows 0s to be
programmed instead of 1s. The Flash address in which to program (aligned
with even words) must be written in the FARH/L registers, while the two
Flash data to be programmed must be written in the FDR0H/L registers
(even word) and FDR1H/L registers (odd word) before starting the
execution by setting the WMS bit. The DWPG bit is automatically reset at
the end of the double word program operation.
Sector erase
This bit must be set to select the sector erase operation in the Flash
modules. The sector erase operation allows all Flash locations to 0xFF to
be erased. 1 to all sectors of the same bank (excluding the Test-Flash for
Bank B0) can be erased through bits BxFy of the FCR1H/L registers before
starting the execution by setting the WMS bit. Preprogramming the sectors
to 0x00 is done automatically. The SER bit is automatically reset at the end
of the sector erase operation.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
11
SER
10-9
-
Reserved
SPR
Set protection
This bit must be set to select the set protection operation. The set
protection operation allows 0s to be programmed instead of 1s in the Flash
non-volatile protection registers. The Flash address in which to program
must be written in the FARH/L registers, while the Flash data to be
programmed must be written in the FDR0H/L before starting the execution
by setting the WMS bit. A sequence error is flagged by the SEQER bit of
the FER register if the address written in FARH/L is not in the range
0x0EDFB0-0x0EDFBF. The SPR bit is automatically reset at the end of the
set protection operation.
7
SMOD
Select module
If this bit is reset, a write operation is performed on the XFlash module. if
this bit is set, a write operation is performed on IFlash module. The SMOD
bit is automatically reset at the end of the write operation.
6-0
-
8
Reserved
49/346
Internal Flash memory
ST10F296E
Flash control register 1 low (FCR1L)
The Flash control register 1 low (FCR1L) and the Flash control register 1 high (FCR1H) are
used to select the sectors to erase or they are used, during any write operation, to monitor
the status of each sector of the module selected by the SMOD bit of the FCR0H register.
FCR1L is shown below when SMOD = 0 and when SMOD = 1.
FCR1L (0x0E 0004) SMOD = 0
15
14
13
12
11
FCR
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
Reserved
B2F2
B2F1
B2F0
-
R
R
R
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 13.
FCR1L register description (SMOD = 0, XFlash selected)
BIt
Bit name
15-3
-
2-0
Function
Reserved
B2F[2:0]
Bank 2 XFlash sector 2:0 status
These bits must be set during a sector erase operation to select the
sectors to be erased in Bank 2. During any erase operation, these bits
are automatically set and give the status of the three sectors of Bank 2
(B2F2-B2F0). The meaning of B2Fy bit for sector y of Bank 2 is given in
Table 17. The BTF [2:0] bits are automatically reset at the end of a write
operation if no errors are detected.
FCR1L (0x0E 0004) SMOD = 1
15
14
13
12
11
Reserved
50/346
8
7
Reset value: 0000h
6
5
4
3
2
1
0
B0F9 B0F8 B0F7 B0F6 B0F5 B0F4 B0F3 B0F2 B0F1 B0F0
RS
RS
RS
RS
RS
RS
RS
RS
RS
FCR1L register description (SMOD = 1, IFlash selected)
BIt
Bit name
15-10
-
9-0
9
RS
-
Table 14.
10
FCR
B0F[9:0]
Function
Reserved
Bank 0 IFlash sector 9:0 status
These bits must be set during a sector erase operation to select the
sectors to be erased in Bank 0. During any erase operation, these bits
are automatically set and give the status of the 10 sectors of Bank 0
(B0F9-B0F0). The meaning of B0Fy bit for sector y of Bank 0 is given in
Table 17. The B0F [9:0] bits are automatically reset at the end of a write
operation if no errors are detected.
ST10F296E
Internal Flash memory
Flash control register 1 high (FCR1H)
The Flash control register 1 high (FCR1H) and the Flash control register 1 low (FCR1L) are
used to select the sectors to erase, or they are used, during any write operation, to monitor
the status of each sector and each bank of the module selected by the SMOD bit of the
FCR0H register. FCR1H is shown below when SMOD = 0 and when SMOD = 1.
FCR1H (0x0E 0006) SMOD = 0
15
14
13
12
11
10
Reserved
FCR
9
8
B3S B2S
-
RS
RS
7
Reset value: 0000h
6
5
4
3
Reserved
-
2
1
0
B3F1 B3F0
RS
RS
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 15.
FCR1H register description (SMOD = 0, XFlash selected)
BIt
Bit name
15-10
-
9-8
B[3:2]S
7-2
-
1-0
B3F[1:0]
Function
Reserved
Bank 3-2 status (XFlash)
During any erase operation, these bits are automatically modified and
give the status of the two banks, B3-B2. The meaning of the BxS bit for
Bank x is given in Table 17. Bits B[3:2]S are automatically reset at the
end of a erase operation if no errors are detected.
Reserved
Bank 3 XFlash sector 1:0 status
During any erase operation, these bits are automatically set and give
the status of the two sectors of Bank 3 (B3F1-B3F0). The meaning of
B3Fy bit for sector y of Bank 1 is given in Table 17. Bits B3F[1:0] are
automatically reset at the end of a erase operation if no errors are
detected.
51/346
Internal Flash memory
ST10F296E
FCR1H (0x0E 0006) SMOD = 1
15
14
13
12
11
FCR
10
Reserved
8
7
6
5
B1S B0S
-
Table 16.
9
Reset value: 0000h
RS
4
3
2
1
Reserved
RS
0
B1F1 B1F0
-
RS
RS
FCR1H register description (SMOD = 1, IFlash selected)
BIt
Bit name
15-10
-
Function
Reserved
Bank 1-0 status (IFlash)
During any erase operation, these bits are automatically modified and
give the status of the two banks, B1-B0. The meaning of BxS bit for
Bank x is given in Table 17. Bits B[1:0]S are automatically reset at the
end of a erase operation if no errors are detected.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
9-8
B[1:0]S
7-2
-
1-0
Reserved
B1F[1:0]
Table 17.
Bank 1 IFlash sector 1:0 status
During any erase operation, these bits are automatically set and give
the status of the two sectors of Bank 1 (B1F1-B1F0). The meaning of
B1Fy bit for sector y of Bank 1 is given in Table 17. These bits are
automatically reset at the end of a erase operation if no errors are
detected.
Banks (BxS) and sectors (BxFy) status bits meaning
ERR
SUSP
BxS = 1 meaning
BxFy = 1 meaning
1
-
Erase error in Bank x
Erase error in sector y of Bank x
0
1
Erase suspended in Bank x
Erase suspended in sector y of Bank x
0
0
Don’t care
Don’t care
Flash data register 0 low (FDR0L)
The Flash address registers (FARH/L) and the Flash data registers (FDR1H/L-FDR0H/L)
are used during program operations to store Flash addresses and data to program.
FDR0L (0x0E 0008)
Reset value: FFFFh
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DIN
15
DIN
14
DIN
13
DIN
12
DIN
11
DIN
10
DIN
9
DIN
8
DIN
7
DIN
6
DIN
5
DIN
4
DIN
3
DIN
2
DIN
1
DIN
0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 18.
BIt
15-0
52/346
FCR
FDR0L register description
Bit name
Function
DIN[15:0]
Data input 15:0
These bits must be written with the data to program the Flash with the
following operations: Word program (32-bit), double word program (64bit) and set protection.
ST10F296E
Internal Flash memory
Flash data register 0 high (FDR0H)
FDR0H (0x0E 000A)
FCR
Reset value: FFFFh
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DIN
31
DIN
30
DIN
29
DIN
28
DIN
27
DIN
26
DIN
25
DIN
24
DIN
23
DIN
22
DIN
21
DIN
20
DIN
19
DIN
18
DIN
17
DIN
16
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 19.
BIt
FDR0H register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
31-16
DIN[31:16]
Data input 31:16
These bits must be written with the data to program the Flash with the
following operations: Word program (32-bit), double word program (64-bit)
and set protection.
Flash data register 1 low (FDR1L)
FDR1L (0x0E 000C)
FCR
Reset value: FFFFh
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DIN
15
DIN
14
DIN
13
DIN
12
DIN
11
DIN
10
DIN
9
DIN
8
DIN
7
DIN
6
DIN
5
DIN
4
DIN
3
DIN
2
DIN
1
DIN
0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 20.
BIt
15-0
FDR1L register description
Bit name
Function
DIN[15:0]
Data input 15:0
These bits must be written with the data to program the Flash with the
following operations: Word program (32-bit), double word program (64bit) and set protection.
Flash data register 1 high (FDR1H)
FDR1H (0x0E 000E)
FCR
Reset value: FFFFh
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DIN
31
DIN
30
DIN
29
DIN
28
DIN
27
DIN
26
DIN
25
DIN
24
DIN
23
DIN
22
DIN
21
DIN
20
DIN
19
DIN
18
DIN
17
DIN
16
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 21.
BIt
31-16
FDR1H register description
Bit name
Function
DIN[31:16]
Data input 31:16
These bits must be written with the data to program the Flash with the
following operations: Word program (32-bit), double word program (64-bit)
and set protection.
53/346
Internal Flash memory
ST10F296E
Flash address register low (FARL)
FARL (0x0E 0010)
15
14
13
FCR
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD
15
14
13
12
11
10
9
8
7
6
5
4
3
2
RW
RW
Table 22.
BIt
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
1
0
Reserved
RW
-
FARL register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15-2
ADD[15:2]
1-0
-
Address 15:2
These bits must be written with the address of the Flash location to
program in the following operations: Word program (32-bit) and double
word program (64-bit). In double word program the ADD2 bit must be
written to 0.
Reserved
Flash address register high (FARH)
FARH (0x0E 0012)
15
14
13
FCR
12
11
10
9
8
7
Reset value: 0000h
6
5
-
54/346
2
1
0
RW
RW
RW
RW
RW
FARH register description
BIt
Bit name
15-5
-
4-0
3
ADD ADD ADD ADD ADD
20
19
18
17
16
Reserved
Table 23.
4
Function
Reserved
Address 20:16
These bits must be written with the address of the Flash location to
ADD[20:16]
program in the following operations: Word program and double word
program.
ST10F296E
Internal Flash memory
Flash error register (FER)
The Flash error register (and all other Flash registers) can only be properly read once the
LOCK bit of the FCR0L register is low. Nevertheless, its content is updated when the BSY
bits are reset. For this reason, it is meaningful to read the FER register content only when
the LOCK bit and all BSY bits are cleared.
FER (0xE 0014)
15
14
13
FCR
12
11
Reserved
-
10
9
8
7
Reset value: 0000h
6
5
4
WPF RESER SEQER Reserved
RC
RC
RC
-
3
2
1
0
10ER PGER ERER ERR
RC
RC
RC
RC
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 24.
FER register description
Bit
Bit name
15-9
-
Function
Reserved
WPF
Write protection flag
This bit is automatically set when trying to program or erase in a sector
that is write protected. In the case of a multiple sector erase,
unprotected sectors are erased, protected sectors are not erased, and
the WPF bit is set. The WPF bit has to be reset by software.
RESER
Resume error
This bit is automatically set when a suspended program or erase
operation is not resumed correctly due to a protocol error. In this case
the suspended operation is aborted. This bit has to be reset by software.
6
SEQER
Sequence error
This bit is automatically set when the control registers (FCR1H/LFCR0H/L, FARH/L, FDR1H/L-FDR0H/L) are not correctly filled to
execute a valid write operation. In this case no write operation is
executed. This bit has to be reset by software.
5-4
-
8
7
3
2
Reserved
10ER
1 over 0 error
This bit is automatically set when trying to program bits to 1 that have
previously been set to 0 (this does not happen when programming the
protection bits). This error is not due to a failure of the Flash cell. It flags
that the desired data has not been written. The 10ER bit has to be reset
by software.
PGER
Program error
This bit is automatically set when a program error occurs during a Flash
write operation. This error is due to a failure of a Flash cell that can no
longer be programmed. The word where this error occurred must be
discarded. This bit has to be reset by software.
55/346
Internal Flash memory
Table 24.
Bit
ST10F296E
FER register description (continued)
Bit name
1
Function
ERER
Erase error
This bit is automatically set when an erase error occurs during a Flash
write operation. This error is due to a failure of a Flash cell that can no
longer be erased. This kind of error is fatal and the sector where it
occurred must be discarded. This bit has to be reset by software.
ERR
Write error
This bit is automatically set when an error occurs during a Flash write
operation or when a bad operation setup is written. Once the error has
been discovered and understood, the ERR bit must be reset by
software.
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
XFlash interface control register (XFICR)
This register is used to configure the XFlash interface behavior on the XBus. It allows the
number of wait states introduced on the XBus to be set before the internal READY signal is
given to the ST10 bus master.
XFICR (0xE E000h)
15
14
Table 25.
12
11
10
9
8
7
Reset value: 000Fh
6
5
4
3
2
1
0
Reserved
WS3
WS2
WS1
WS0
-
RW
RW
RW
RW
XFICR register description
Bit
Bit name
15-4
-
3-0
56/346
13
XBus
WS[3:0]
Function
Reserved
Wait state setting
These three bits are the binary coding of the wait state number
introduced by the XFlash interface through the internal READY signal of
the XBus. The default value after reset is 1111, where up to 15 wait
states are set. Recommendations for the ST10F296E include:
For fCPU > 40 MHz: 1 wait state WS[3:0] = 0001
For fCPU ≤40 MHz: 0 wait state WS[3:0] = 0000
ST10F296E
5.4
Internal Flash memory
Protection strategy
The protection bits are stored in non-volatile Flash cells inside the XFlash module. They are
read once at reset and stored in seven volatile registers. Before they are read from the nonvolatile cells, all available protections are forced active during reset.
Protection can be programmed using the set protection operation (see the Flash control
registers of Section 5.3), that can be executed from all the internal or external memories
except from the Flash bank, B2.
Two kinds of protection are available:
●
Write protections to avoid unwanted writings
●
Access protections to avoid piracy
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
5.4.1
Protection registers
This section describes the seven non-volatile protection registers and their architectural
limitations. These registers are one time programmable.
Four registers (FNVWPXRL/H-FNVWPIRL/H) are used to store the write protection fuses
respectively for each sector of the XFlash module (see ‘X’ in the sections below) and IFlash
module (see ‘I’ in the sections below). The other three registers (FNVAPR0 and
FNVAPR1L/H) are used to store the access protection fuses (common to both Flash
modules, though, with some limitations).
Flash non-volatile write protection X register low (FNVWPXRL)
FNVWPXRL (0x0E DFB0)
15
14
13
12
NVR
11
10
9
8
W2PPR
Reserved
RW
-
Table 26.
Bit
7
Delivery value: FFFFh
6
5
4
3
2
1
0
W2P2 W2P1 W2P0
RW
RW
RW
FNVWPXRL register description
Bit name
15
W2PPR
14-3
-
2-0
W2P[2:0]
Function
Write protection Bank 2 non-volatile cells
This bit, if programmed at 0, disables any write access to the nonvolatile cells of Bank 2. Since these non-volatile cells are dedicated to
protection registers, once the W2PPR bit is set, the configuration of
protection setting is frozen, and can only be modified by executing a
temporary write unprotection operation.
Reserved
Write protection Bank 2 sectors 2-0 (XFlash)
These bits, if programmed at 0, disable any write access to the sectors
of Bank 2 (XFlash).
57/346
Internal Flash memory
ST10F296E
Flash non-volatile write protection X register high (FNVWPXRH)
FNVWPXRH (0x0E DFB2)
15
14
13
12
11
NVR
10
9
8
7
Delivery value: FFFFh
6
5
4
3
2
1
Reserved
W3P1 W3P0
-
Table 27.
0
RW
RW
FNVWPXRH register description
Bit
Bit name
15-2
-
1-0
W3P[1:0]
Function
Reserved
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Write protection Bank 3/sectors 1-0 (XFlash)
These bits, if programmed at 0, disable any write access to the sectors
of Bank 3 (XFlash).
Flash non-volatile write protection I register low (FNVWPIRL)
FNVWPIRL (0x0E DFB4)
15
14
13
NVR
12
11
10
8
7
6
5
4
3
2
1
0
W0P W0P W0P W0P W0P W0P W0P W0P W0P W0P
9
8
7
6
5
4
3
2
1
0
Reserved
-
Table 28.
9
Delivery value: FFFFh
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
FNVWPIRL register description
Bit
Bit name
15-10
-
9-0
W0P[9:0]
Function
Reserved
Write protection Bank 0/sectors 9-0 (IFlash)
These bits, if programmed at 0, disable any write access to the sectors of
Bank 0 (IFlash).
Flash non-volatile write protection I register high (FNVWPIRH)
FNVWPIRH (0x0E DFB6)
15
14
13
12
NVR
11
10
9
8
7
Delivery value: FFFFh
6
5
Reserved
58/346
3
2
1
0
W1P1 W1P0
-
Table 29.
4
RW
RW
FNVWPIRH register description
Bit
Bit name
15-2
-
1-0
W1P[1:0]
Function
Reserved
Write protection Bank 1/sectors 1-0 (IFlash)
These bits, if programmed at 0, disable any write access to the sectors
of Bank 1 (IFlash).
ST10F296E
Internal Flash memory
Flash non-volatile access protection register 0 (FNVAPR0)
Because of the ST10 architecture, the XFlash is seen as external memory. For this reason,
it is impossible to access protect it from the real external memory or internal RAM.
FNVAPR0 (0x0E DFB8)
15
14
13
12
NVR
11
10
9
8
7
Delivery value: ACFFh
6
5
4
3
2
1
Reserved
DBGP ACCP
-
Table 30.
0
RW
RW
FNVAPR0 register description
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Bit
Bit name
15-2
-
1
0
Function
Reserved
DBGP
Debug protection
This bit, if erased at 1, allows all protections to be by-passed using the
debug features through the test interface. If programmed at 0, all the
debug features and Flash test modes, and the test interface are
disabled. STMicroelectronics will be unable to access the device to run
any eventual failure analysis.
ACCP
Access protection
This bit, if programmed at 0, disables any access (read/write) to data
mapped inside the IFlash module address space, unless the current
instruction is fetched from one of the two Flash modules.
Flash non-volatile access protection register 1 low (FNVAPR1L)
FNVAPR1L (0x0E DFBC)
15
14
13
12
NVR
11
10
9
8
7
Delivery value: FFFFh
6
5
4
3
2
1
0
PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RW
RW
Table 31.
Bit
15-0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
FNVAPR1L register description
Bit name
Function
PDS[15:0]
Protections disable 15-0
If bit PDSx is programmed at 0 and bit PENx (of the FNVAPR1H
register) is erased at 1, the ACCP bit action is disabled. Bit PDS0 can be
programmed at 0 only if bits DBGP and ACCP (of the FNVAPR0
register) have already been programmed at 0. Bit PDSx can be
programmed at 0 only if bit PENx-1 has already been programmed at 0.
59/346
Internal Flash memory
ST10F296E
Flash non-volatile access protection register 1 high (FNVAPR1H)
FNVAPR1H (0x0E DFBE)
15
14
13
12
NVR
11
10
9
8
7
Delivery value: FFFFh
6
5
4
3
2
1
0
PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RW
RW
Table 32.
Bit
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
FNVAPR1H register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15-0
5.4.2
PEN[15:0]
Protections enable 15-0
If bit PENx is programmed at 0 and bit PDSx+1 is erased at 1, bit ACCP
action is enabled again. Bit PENx can be programmed at 0 only if bit
PDSx has already been programmed at 0.
Access protection
The Flash modules have one level of access protection (access to data both when reading
and writing). If bit ACCP of the FNVAPR0 register is programmed at 0, the IFlash module
becomes access protected: Data in the IFlash module can be read/written only if the current
execution is from the IFlash module itself.
Protection can be permanently disabled by programming bit PDS0 of the FNVAPR1H
register to analyze rejects. Allowing PDS0 bit programming only when the ACCP bit is
programmed, guarantees that only an execution from the Flash itself can disable the
protections.
Protection can be permanently enabled again by programming bit PEN0 of the FNVAPR1L
register. Access protection can be permanantly disabled and enabled again up to 16 times.
Trying to write into the access protected Flash from internal RAM is unsuccessful. Trying to
read into the access protected Flash from internal RAM outputs dummy data.
When the Flash module is access protected, data access through the program erase
controller (PEC) of a peripheral is forbidden. To read/write data in PEC mode from/to a
protected bank, the Flash module must be temporarily unprotected.
Due to the ST10 architecture, the XFlash is seen as external memory. For this reason, it is
impossible to access protect it from real external memory or internal RAM. Table 33
summarizes the different access protection levels. In particular, it shows what is possible
(and not possible) if trying to enable all access protections when fetching from a memory
(see column 1).
60/346
ST10F296E
Internal Flash memory
Table 33.
Summary of access protection levels
Read IFlash/
Read XFlash/
jump to IFlash jump to XFlash
5.4.3
Read Flash
registers
Write Flash
registers
Fetching from IFlash
Yes/Yes
Yes/Yes
Yes
Yes
Fetching from XFlash
No/Yes
Yes/Yes
Yes
No
Fetching from IRAM
No/Yes
Yes/Yes
Yes
No
Fetching from XRAM
No/Yes
Yes/Yes
Yes
No
Fetching from external memory
No/Yes
Yes/Yes
Yes
No
Write protection
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The Flash modules have one level of write protection. Each sector of each bank of each
Flash module can be software write protected by programming the related WyPx bit of the
FNVWPXRH/L-FNVWPIRH/L registers at 0.
5.4.4
Temporary unprotection
Bits WyPx of the FNVWPXRH/L-FNVWPIRH/L registers can be temporary unprotected by
executing the set protection operation and writing 1 into these bits.
Bit ACCP can be temporarily unprotected by executing the set protection operation and
writing 1 into these bits, bu,t only if these write instructions are executed from the Flash
modules.
To restore the write and access protection bits or to execute a set protection operation and
write 0 into the desired bits, the microcontroller must be reset.
It is not necessary to temporarily unprotect an access protected Flash to update the code. it
is sufficient to execute the updating instructions from another Flash bank.
When a temporary unprotection operation is executed, the corresponding volatile register is
written to 1, while the non-volatile registers bits previously written to 0 (for a protection set
operation), continue to maintain the 0. For this reason, the user software must track the
current protection status (for example, by using a specific RAM area), as it is not possible to
deduce it by reading the non-volatile register content (a temporary unprotection cannot be
detected).
61/346
Internal Flash memory
5.5
ST10F296E
Write operation examples
Examples are presented below for each kind of Flash write operation.
5.5.1
Word program
Example: 32-bit word program of data 0xAAAAAAAA at address 0x0C5554 in XFlash
module.
FCR0H|= 0x2000;
FARL = 0x5554;
FARH = 0x000C;
FDR0L = 0xAAAA;
FDR0H = 0xAAAA;
FCR0H|= 0x8000;
/*Set WPG in FCR0H */
/*Load Add in FARL*/
/*Load Add in FARH*/
/*Load Data in FDR0L*/
/*Load Data in FDR0H*/
/*Operation start*/
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
5.5.2
Double word program
Example: Double word program (64-bit) of data 0x55AA55AA at address 0x095558 and
data 0xAA55AA55 at address 0x09555C in IFlash module.
FCR0H|= 0x1080;
FARL = 0x5558;
FARH = 0x0009;
FDR0L = 0x55AA;
FDR0H = 0x55AA;
FDR1L = 0xAA55;
FDR1H = 0xAA55;
FCR0H|= 0x8000;
/*Set DWPG, SMOD*/
/*Load Add in FARL*/
/*Load Add in FARH*/
/*Load Data in FDR0L*/
/*Load Data in FDR0H*/
/*Load Data in FDR1L*/
/*Load Data in FDR1H*/
/*Operation start*/
Double word program is always performed on the double word aligned on an even word. Bit
ADD2 of FARL is ignored.
5.5.3
Sector erase
Example: Sector erase of sectors B3F1 and B3F0 of Bank 3 in XFlash module.
FCR0H|= 0x0800;
FCR1H|= 0x0003;
FCR0H|= 0x8000;
5.5.4
/*Set SER in FCR0H*/
/*Set B3F1, B3F0*/
/*Operation start*/
Suspend and resume
Example: Word program, double word program, and sector erase operations can be
suspended in the following way:
FCR0H|= 0x4000;
/*Set SUSP in FCR0H*/
The operation can be resumed in the following way:
FCR0H|= 0x0800;
FCR0H|= 0x8000;
/*Set SER in FCR0H*/
/*Operation resume*/
Before resuming a suspended erase, FCR1H/FCR1L registers must be read to check if the
erase is already completed (FCR1H = FCR1L = 0x0000 if erase is complete). The original
setup of select operation bits in the FCR0H/L registers must be restored before the
operation resume, otherwise the operation is aborted and bit RESER of FER is set.
62/346
ST10F296E
5.5.5
Internal Flash memory
Erase suspend, program and resume
A sector erase operation can be suspended in order to program (word or double word)
another sector.
Example: Sector erase of sector B3F1 of Bank 3 in XFlash module.
FCR0H|= 0x0800;
FCR1H|= 0x0002;
FCR0H|= 0x8000;
/*Set SER in FCR0H*/
/*Set B3F1*/
/*Operation start*/
Example: Sector erase suspend
FCR0H|= 0x4000;
/*Set SUSP in FCR0H*/
do
/* Loop to wait for LOCK=0 and BSY bit(s)=0 */
{tmp = FCR0L ;
} while( (tmp && 0x00E6) );
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Example: Word program of data 0x5555AAAA at address 0x0C5554 in XFlash module.
FCR0H&= 0xBFFF;
FCR0H|= 0x2000;
FARL = 0x5554;
FARH = 0x000C;
FDR0L = 0xAAAA;
FDR0H = 0x5555;
FCR0H|= 0x8000;
/*Rst SUSP in FCR0H*/
/*Set WPG in FCR0H*/
/*Load Add in FARL*/
/*Load Add in FARH*/
/*Load Data in FDR0L*/
/*Load Data in FDR0H*/
/*Operation start*/
Once the program operation is finished, the erase operation can be resumed in the following
way:
FCR0H|= 0x0800;
FCR0H|= 0x8000;
/*Set SER in FCR0H*/
/*Operation resume*/
During the program operation in erase suspend, bits SER and SUSP are low. A word or
double word program during erase suspend cannot be suspended.
To summarize:
●
A sector erase can be suspended by setting SUSP bit
●
To perform a word program operation during erase suspend, bits SUSP and SER must
first be reset, then bits WPG and WMS can be set.
●
To resume the sector erase operation bit SER must be set again
●
It is forbidden to start any write operation when the SUSP bit is set
63/346
Internal Flash memory
5.5.6
ST10F296E
Set protection
Example 1: Enable write protection of sectors B0F3-0 of Bank 0 in the IFlash module.
FCR0H|= 0x0100;
FARL = 0xDFB4;
FARH = 0x000E;
FDR0L = 0xFFF0;
FDR0H = 0xFFFF;
FCR0H|= 0x8000;
/*Set SPR in FCR0H*/
/*Load Add of register FNVWPIRL in FARL*/
/*Load Add of register FNVWPIRL in FARH*/
/*Load Data in FDR0L*/
/*Load Data in FDR0H*/
/*Operation start*/
Bit SMOD of FCR0H must not be set as the write protection bits of the IFlash module are
stored in the Test-Flash (XFlash module).
Example 2: Enable access and debug protection.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
FCR0H|= 0x0100;
FARL = 0xDFB8;
FARH = 0x000E;
FDR0L = 0xFFFC;
FCR0H|= 0x8000;
/*Set SPR in FCR0H*/
/*Load Add of register FNVAPR0 in FARL*/
/*Load Add of register FNVAPR0 in FARH*/
/*Load Data in FDR0L*/
/*Operation start*/
Example 3: Disable access and debug protection permanently.
FCR0H|= 0x0100;
FARL = 0xDFBC;
FARH = 0x000E;
FDR0L = 0xFFFE;
FCR0H|= 0x8000;
/*Set SPR in FCR0H*/
/*Load Add of register FNVAPR1L in FARL*/
/*Load Add of register FNVAPR1L in FARH*/
/*Load Data in FDR0L for clearing PDS0*/
/*Operation start*/
Example 4: Re- enable access and debug protection permanently .
FCR0H|= 0x0100;
FARL = 0xDFBC;
FARH = 0x000E;
FDR0H = 0xFFFE;
FCR0H|= 0x8000;
/*Set SPR in FCR0H*/
/*Load Add register FNVAPR1H in FARL*/
/*Load Add register FNVAPR1H in FARH*/
/*Load Data in FDR0H for clearing PEN0*/
/*Operation start*/
Disabling and re-enabling access and debug protection permanently way (as shown above)
can be done up to a maximum of 16 times.
64/346
ST10F296E
5.6
Internal Flash memory
Write operation summary
Write operations are generally started with the following three steps:
1.
The first instruction is used to select the desired operation by setting its corresponding
selection bit in the Flash control register 0. This instruction is also used to select in
which Flash Module to apply the write operation (by setting/resetting the SMOD bit).
2.
The second step is the definition of the address and data for programming or the
sectors or banks to erase.
3.
The third instruction is used to start the write operation, by setting the start bit, WMS, in
the FCR0 register.
Once selected, but not yet started, one operation can be canceled by resetting the operation
selection bit.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
A summary of the available Flash module write operations are shown in Table 34.
Table 34.
Flash write operations
Operation
Select bit
Address and data
Start bit
WPG
FARL/FARH
FDR0L/FDR0H
WMS
DWPG
FARL/FARH
FDR0L/FDR0H
FDR1L/FDR1H
WMS
Sector erase
SER
FCR1L/FCR1H
WMS
Set protection
SPR
FDR0L/FDR0H
WMS
SUSP
None
None
Word program (32-bit)
Double word program (64-bit)
Program/erase suspend
65/346
The bootstrap loader
6
ST10F296E
The bootstrap loader
The ST10F296E implements innovative boot capabilities to:
6.1
●
Support a user defined bootstrap (see ‘alternate bootstrap loader’);
●
Support bootstrap via UART or bootstrap via CAN for the standard bootstrap.
Selection among user-code, standard or alternate bootstrap
The selection among user-code, standard bootstrap or alternate bootstrap is made by
special combinations on Port 0L[5...4] during the time the reset configuration is latched from
Port 0.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The alternate boot mode is triggered with a special combination set on Port 0L[5...4]. These
signals, as with other configuration signals are latched on the rising edge of the RSTIN pin.
The alternate boot function is divided into two functional parts (which are independent from
each other):
Part 1
Selection of the reset sequence according to Port 0 configuration, user mode, and alternate
mode signatures:
●
Decoding reset configuration P0L.5 = 1 and P0L.4 = 1 selects normal mode and
selects that user Flash is mapped from address 00’0000h.
●
Decoding reset configuration P0L.5 = 1 and P0L.4 = 0 selects ST10 standard bootstrap
mode (Test-Flash is active and overlaps user Flash for code fetches from address
00'0000h; user Flash is active and available for read and program).
●
Decoding reset configuration P0L.5 = 0 and P0L.4 = 1 activates new verifications to
select which bootstrap software to execute:
–
If the user mode signature in the user Flash is programmed correctly, a software
reset sequence is selected and the user code is executed.
–
if the user mode signature is not programmed correctly, but, the alternate mode
signature in the user Flash is programmed correctly, alternate boot mode is
selected.
–
If both the user and alternate mode signatures are not programmed correctly in
the user Flash, the user key location is read again. Its value determines the
behavior of the selective bootstrap loader.
Part 2
Running of user selected reset sequences:
66/346
●
Standard bootstrap loader: Jump to a predefined memory location in Test-Flash
(controlled by ST).
●
Alternate boot mode: Jump to address 09’0000h.
●
Selective bootstrap loader: Jump to a predefined location in Test-Flash (controlled by
ST) and check which communication channel is selected.
●
User code: Make a software reset and jump to 00’0000h.
ST10F296E
The bootstrap loader
Table 35.
6.2
ST10F296E boot mode selection
P0.5
P0.4
ST10 decoding
1
1
User mode: User Flash is mapped at 00’0000h
1
0
Standard bootstrap loader: User Flash is mapped from 00’0000h, code
fetches redirected data to Test-Flash at 00’0000h
0
1
Alternate boot mode: Flash mapping depends on signature integrity check
0
0
Reserved
Standard bootstrap loader (BSL)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The built-in bootstrap loader of the ST10F296E provides a mechanism to load the startup
program, which is executed after reset, via the serial interface. In this case no external
(ROM) memory or internal ROM is required for the initialization code starting at location
00’0000H. The bootstrap loader moves code/data into the IRAM, but it is also possible to
transfer data via the serial interface into an external RAM using a second level loader
routine. ROM memory (internal or external) is not necessary. However, it may be used to
provide lookup tables or may provide ‘core-code’, a set of general purpose subroutines, for
I/O operations, number crunching, system initialization, etc.
The bootstrap loader may be used to load the complete application software into ROMless
systems. It may also load temporary software into complete systems for testing or
calibration. in addition, it may be used to load a programming routine for Flash devices.
The BSL mechanism may be used for standard system startup as well as for special
occasions such as system maintenance (firmware update), end-of-line programming, or
testing.
6.2.1
Entering the standard bootstrap loader
The ST10F296E enters BSL mode if pin P0L.4 is sampled low at the end of a hardware
reset. In this case the built-in bootstrap loader is activated independently of the selected bus
mode. The bootstrap loader code is stored in a special Test-Flash: No part of the standard
Flash memory area is required for this.
After entering BSL mode and completing the respective initialization steps, the ST10F296E
scans the RxD0 line and the CAN1_RxD line to receive either a valid dominant bit from the
CAN interface, or a start condition from the UART line.
Start condition on UART RxD: The ST10F296E starts the standard bootstrap loader. This
bootstrap loader is identical to other ST10 devices (for example, the ST10F280). See
Section 6.3: Standard bootstrap with UART (RS232 or K-line) on page 73 for details.
Valid dominant bit on CAN1 RxD: The ST10F296E starts bootstrapping via CAN1. This
bootstrapping method is new and is described in Section 6.4: Standard bootstrap with CAN
on page 78. Figure 6: ST10F296E new standard bootstrap loader program flow on page 69
shows the program flow of the new bootstrap loader. It illustrates how new functionalities are
implemented, which is as follows:
●
UART: UART has priority over CAN after a falling edge on CAN1_RxD untill the first
valid rising edge on CAN1_RxD.
●
CAN: Pulses on CAN1_RxD which are shorter than 20*CPU-cycles, are filtered.
67/346
The bootstrap loader
6.2.2
ST10F296E
ST10 configuration in BSL
When the ST10F296E has entered BSL mode, the configuration shown in Table 36 is
automatically set (values that deviate from the normal reset values, are highlighted in bold
italic).
.
Table 36.
ST10 configuration in BSL mode
Watchdog timer
Disabled
Register SYSCON
0404H(1)
Context pointer CP
FA00H
Register STKUN
FC00H
Stack pointer SP
FA40H
Register STKOV
FA00H
XPEN bit set for bootstrap via CAN or
alternate boot mode
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Register BUSCON0
Register S0CON
Acc. to startup
config.(2)
8011H
Initialized only if bootstrap is run via UART
Acc. to ‘00’ byte
Initialized only if bootstrap is run via UART
P3.10/TXD0
1
Initialized only if bootstrap is run via UART
DP3.10
1
Initialized only if bootstrap is run via UART
0000H
Initialized only if bootstrap is run via CAN
Acc. to 0 frame
Initialized only if bootstrap is run via CAN
Register S0BG
CAN1 status/control register
CAN1 bit timing register
XPERCON
042DH
XRAM1-2, XFlash, CAN1 and XMISC
enabled. Initialized only if bootstrap is run via
CAN
P4.6/CAN1_TxD
1
Initialized only if bootstrap is run via CAN
DP4.6
1
Initialized only if bootstrap is run via CAN
1. In bootstrap modes (standard or alternate) the ROMEN bit, bit 10 of the SYSCON register, is always set
regardless of the EA pin level. The BYTDIS bit, bit 9 of the SYSCON register, is set according to the data
bus width selection via Port 0 configuration.
2. BUSCON0 is initialized with 0000h which disables the external bus if pin EA is high during reset. If pin EA
is low during reset, the BUSACT0 bit, bit 10, and the ALECTL0 bit, bit 9, are set, enabling the external bus
with a lengthened ALE signal. BTYP field, bit 7 and 6, is set according to Port 0 configuration.
68/346
ST10F296E
Figure 6.
The bootstrap loader
ST10F296E new standard bootstrap loader program flow
Start
Falling-edge on
UART0 RxD?
No
Falling-edge on
CAN1 RxD?
No
UART boot
Start timer PT0
Start timer T6
Yes
No
UART RxD = 0?
UART0 RxD = 1?
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Stop timer T6
Initialize UART
Send acknowledge
Address = FA40h
CAN1 RxD = 1?
No
PT0 > 20?
No
No
CAN BOOT
Byte received?
Glitch on CAN1 RxD
Count = 1
Stop timer PT0
Clear timer PT0
[Address] = S0RBUF
Address = Address + 1
CAN RxD = 0?
No
No
Address = FA60h?
CAN1 RxD = 1?
No
Count += 1
Count = 5?
Message received?
No
[Address] = MO15_data0
Address = Address + 1
No
Address = FAC0h?
No
Stop timer PT0
Initialize CAN
Address = FA40h
CAN boot
UART boot
Jump to address FA40h
The watchdog timer is disabled, except after a normal reset, so the bootstrap loading sequence is not
time limited. Depending on the selected serial link (UART0 or CAN1), pin TxD0 or CAN1_TxD is
configured as output, so the ST10F296E can return the acknowledge byte. Even if the internal IFlash is
enabled, no code can be executed out of it.
69/346
The bootstrap loader
6.2.3
ST10F296E
Booting steps
There are four steps to booting the ST10F296E with the boot loader code (see Figure 7):
1.
The ST10F296E is reset with P0L.4 low
2.
The internal new bootstrap code runs on the ST10 and a first level user code is
downloaded from the external device, via the selected serial link (UART0 or CAN1).
The bootstrap code is contained in the ST10F296E Test-Flash and is automatically run
when ST10F296E is reset with P0L.4 low. After loading a preselected number of bytes,
ST10F296E begins executing the downloaded program.
3.
The first level user code is run on ST10F296E. Typically, this user code is another
loader that is used to download the application software into the ST10F296E.
4.
The loaded application software is now running
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 7.
External device
Step3
Loading the application
and exiting BSL
External device
Step4
External device
Download
1st level user code
Download
Application
Serial
Link
Step2
Loading 1st level user code
Serial
Link
External device
Serial
Link
Step1
Entering bootstrap
Serial
Link
6.2.4
Booting steps for the ST10F296E
ST10F296
ST10F296
Run Bootstrap Code
from Test-Flash
ST10F296
Run 1st level Code
from DPRAM @FA40h
ST10F296
Run Application Code
Hardware to activate BSL
The hardware that activates the BSL during every hardware reset may be a simple pulldown resistor on P0L.4. switchable solution (via jumper or an external signal) may be used
for systems that only temporarily use the BSL.
Note:
70/346
The CAN alternate function on Port 4 lines is not activated if the user has selected eight
address segments (Port 4 pins have three functions: I/O port, address-segment, and CAN).
Bootstrapping via CAN requires that four address segments or less are selected.
ST10F296E
The bootstrap loader
Figure 8.
Hardware provisions to activate the BSL
External
Signal
Normal Boot
P0L.4
P0L.4
RP0L.4
8kΩ max.
BSL
RP0L.4
8kΩ max.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Circuit 2
Circuit 1
6.2.5
Memory configuration in bootstrap loader mode
The configuration (i.e. the accessibility) of the ST10F296E’s memory areas after reset in
bootstrap loader mode differs from the standard case. Pin EA is evaluated when BSL mode
is selected to enable the external bus or not:
●
If EA = 1, the external bus is disabled (BUSACT0 = 0 in BUSCON0 register);
●
If EA = 0, the external bus is enabled (BUSACT0 = 1 in BUSCON0 register).
Moreover, while in BSL mode, access to the internal IFlash area are partly redirected:
●
Code access is made from the special Test-Flash seen in the range 00’0000h to
00’01FFFh.
●
User IFlash is only available for read and write access (Test-Flash cannot be read nor
written).
●
Write access must be made with addresses starting in segment 1 from 01'0000h,
whatever the value of the ROMS1 bit in the SYSCON register.
●
Read access is made in segment 0 or in segment 1 depending on the ROMS1 bit
value.
●
In BSL mode, by default, ROMS1= 0 so the first 32 Kbytes of IFlash are mapped in
segment 0.
Example
In default configuration, to program address 0, the user must put the value 01'0000h in the
FARL and FARH registers. However, to verify the content of the address 0 a read to
00'0000h must be performed.
Figure 9 shows the memory configuration after reset.
71/346
The bootstrap loader
Memory configuration after reset
255
Access to
external
bus
1 disabled
Int.
RAM
1
0
User Flash
Test-Flash
Access to
int. Flash
enabled
1
Depends on
reset config.
(EA, PO)
Int.
RAM
0
User Flash
Test-Flash
Access to
external
bus
enabled
Int.
RAM
0
16 Mbytes
255
16 Mbytes
255
16 Mbytes
Access to
int. Flash
enabled
user FLASH
Figure 9.
ST10F296E
Depends on
reset config.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
BSL mode active
Yes (P0L.4 = 0
Yes (P0L.4 = 0
No (P0L.4 = 1
High
Low
According to application
Data fetch from internal Flash
area
Test-Flash access
Test-Flash access
User IFlash access
Code fetch from internal Flash
area
User IFlash access
User IFlash access
User IFlash access
EA pin
1. As long as the ST10F296E is in BSL, user software should not try to execute code from the internal IFlash
as the fetches are redirected to the Test-Flash.
6.2.6
Loading the startup code
After the serial link initialization sequence (see Section 6.3 and Section 6.4), the BSL enters
a loop to receive 32 bytes (boot via UART) or 128 bytes (boot via CAN).
These bytes are stored sequentially into the ST10F296E dual-port RAM from location
00’FA40h.
To execute the loaded code, the BSL jumps to location 00’FA40h. The bootstrap sequence
running from the Test-Flash terminates. However, the microcontroller remains in BSL mode.
The initially loaded routine (the first level user code) most probably loads additional code
and data. This first level user code may use the pre-initialized interface (UART or CAN) to
receive data, a second level code, and store it to arbitrary user-defined locations.
This second level code may be the final application code. It may also be another, more
sophisticated, loader routine that adds a transmission protocol to enhance the integrity of
the loaded code or data. It may also contain a code sequence to change the system
configuration and enable the bus interface to store the received data into external memory.
In all cases, the ST10F296E runs in BSL mode, i.e. with the watchdog timer disabled and
with limited access to the internal IFlash area.
72/346
ST10F296E
6.2.7
The bootstrap loader
Exiting bootstrap loader mode
To execute a program in normal mode, the BSL mode must first be terminated. The
ST10F296E exits BSL mode upon a software reset (level on P0L.4 is ignored) or a hardware
reset (P0L.4 must be high in this case). After the reset, the ST10F296E starts executing
from location 00’0000H of the internal Flash (user Flash) or the external memory, as
programmed via pin EA.
Note:
If a bidirectional software reset is executed, and external memory boot is selected (EA = 0),
a degeneration of the software reset event into a hardware reset can occur. This implies that
P0L.4 becomes transparent, so to exit from bootstrap mode it is necessary to release pin
P0L.4 (it is no longer ignored).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O (RS232
t or K-line)
6.3
Standard bootstrap with- UART
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
6.2.8
Hardware requirements
Although the new bootstrap loader has been designed to be compatible with the old one,
there are a few hardware requirements related to the new one:
6.3.1
●
External bus configuration: Four segment address lines or less (keep CAN I/O’s
available) are required.
●
Use of CAN pins (P4.5 and P4.6): P4.5 (CAN1_RxD) can only be used as a port input.
Pin P4.6 (CAN1_TxD) can be used as input or output.
●
Level on UART RxD and CAN1_RxD during the bootstrap phase (see step 2 of
Figure 7: Booting steps for the ST10F296E on page 70): Must be 1 (external pull-up’s
recommended).
Features
ST10F296E bootstrap via UART has the same overall behavior as the old ST10 bootstrap
via UART:
●
Same bootstrapping steps
●
Same bootstrap method: To analyze the timing of a predefined byte, send back an
acknowledge byte, load a fixed number of bytes and then run.
●
Same functionalities: To boot with different crystals and PLL ratios.
73/346
The bootstrap loader
ST10F296E
Figure 10. UART bootstrap loader sequence
RSTIN
P0L.4
1)
4)
2)
RxD0
3)
TxD0
5)
CSP:IP
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
6)
Int. boot ROM/Test-Flash BSL-routine
32 bytes
user software
1. BSL initialization time > 1ms @ fCPU = 40 MHz.
2. Zero byte (1 start bit, eight 0 data bits, 1 stop bit), sent by host.
3. Acknowledge byte, sent by ST10F296E.
4. 32 bytes of code / data, sent by host.
5. TxD0 is only driven a certain time after reception of the zero byte (1.3 ms @ fCPU = 40 MHz).
6. Internal boot ROM / Test-Flash.
6.3.2
Entering bootstrap via UART
The ST10F296E enters BSL mode at the end of a hardware reset if pin P0L.4 is sampled
low. In this case, the built-in bootstrap loader is activated independent of the selected bus
mode. The bootstrap loader code is stored in a special Test-Flash, for which no part of the
standard mask ROM or Flash memory area is required.
After entering BSL mode and the respective initialization, the ST10F296E scans the RxD0
line to receive a zero byte (one start bit, eight 0 data bits and one stop bit). From this zero
byte, it calculates the corresponding baud rate factor with respect to the current CPU clock,
initializes the serial interface ASC0 accordingly, and switches the TxD0 pin to output. Using
this baud rate, an acknowledge byte is returned to the host that provides the loaded data.
The acknowledge byte for the ST10F296E is D5h.
74/346
ST10F296E
6.3.3
The bootstrap loader
ST10 configuration in UART BSL (RS232 or K-line)
When the ST10F296E has entered BSL mode on the UART, the configuration shown in
Table 37 is automatically set (values that deviate from the normal reset values, are
highlighted in bold italic).
Table 37.
ST10 configuration in UART BSL mode (RS232 or K-line)
Watchdog timer
Disabled
Register SYSCON
0400H(1)
Context pointer CP
FA00H
Register STKUN
FA00H
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Stack pointer SP
FA40H
Register STKOV
FC00H
Register BUSCON0
Acc. to startup
config.(2)
Register S0CON
8011H
Initialized only if bootstrap is run via UART
Acc. to 00 byte
Initialized only if Bootstrap is run via UART
P3.10/TXD0
1
Initialized only if Bootstrap is run via UART
DP3.10
1
Initialized only if Bootstrap is run via UART
Register S0BG
1. In bootstrap modes (standard or alternate) the ROMEN bit, bit 10 of the SYSCON register, is always set
regardless of the EA pin level. The BYTDIS bit, bit 9 of the SYSCON register, is set according to the data
bus width selection via Port 0 configuration.
2. BUSCON0 is initialized with 0000h which disables the external bus if pin EA is high during reset. If pin EA
is low during reset, the BUSACT0 bit, bit 10, and the ALECTL0 bit, bit 9, are set, enabling the external bus
with a lengthened ALE signal. BTYP field, bit 7 and 6, is set according to Port 0 configuration.
The watchdog timer is disabled, except after a normal reset, so the bootstrap loading
sequence is not time limited. Pin TxD0 is configured as output, so the ST10F296E can
return the acknowledge byte. Even if the internal IFlash is enabled, no code can be
executed out of it.
6.3.4
Loading the startup code
After sending the acknowledge byte the BSL enters a loop to receive 32 bytes via ASC0.
These bytes are stored sequentially into locations 00’FA40H through 00’FA5FH of the IRAM.
Up to 16 instructions may be placed into the RAM area. To execute the loaded code the BSL
jumps to location 00’FA40H, i.e. the first loaded instruction. The bootstrap loading sequence
then terminates, however, the ST10F296E remains in BSL mode. It is likely that the initially
loaded routine loads additional code or data, as an average application is likely to require
substantially more than 16 instructions. This second receive loop may directly use the preinitialized interface ASC0 to receive data and store it to arbitrary user-defined locations.
This second level of loaded code may be the final application code. It may also be another,
more sophisticated, loader routine that adds a transmission protocol to enhance the integrity
of the loaded code or data. In addition, it may contain a code sequence to change the
system configuration and enable the bus interface to store the received data into the
external memory.
75/346
The bootstrap loader
ST10F296E
This process may go through several iterations or may directly execute the final application.
In all cases, the ST10F296E runs in BSL mode, i.e. with the watchdog timer disabled and
limited access to the internal Flash area. All code fetches from the internal IFlash area
(01’0000H...08’FFFFH) are redirected to the special Test-Flash. Data read operations
access the internal Flash of the ST10F296E, if any is available, but return undefined data on
ROM-less devices.
6.3.5
Choosing the baud rate for the BSL via UART
The calculation of the serial baud rate for ASC0 from the length of the first zero byte that is
received, allows the bootstrap loader of the ST10F296E to operate with a wide range of
baud rates. However, upper and lower limits have to be respected to insure proper data
transfer.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Equation 1
B ST10F296 = f CPU ⁄ 32 × ( SOBRL + 1 )
The ST10F296E uses Timer T6 to measure the length of the initial zero byte. The
quantization uncertainty of this measurement implies the first deviation from the real baud
rate. The next deviation is implied by the computation of the S0BRL reload value from the
timer contents. Equation 2 below shows the association:
Equation 2
SOBRL = ( T6 – 36 ) ⁄ 72
Where:
T6 = 9 ⁄ 4 × f CPU ⁄ B Host
For correct data transfer from the host to the ST10F296E, the maximum deviation between
the internal initialized baud rate for ASC0 and the real baud rate of the host should be below
2.5 %. The deviation (FB, in percent) between host baud rate and the ST10F296E baud rate
can be calculated via Equation 3:
Equation 3
F B = ( B Contr – B Host ) ⁄ B Contr × 100
where:
FB ≤ 2.5 %
Note:
FB does not consider the tolerances of oscillators and other devices supporting the serial
communication.
This baud rate deviation is a nonlinear function depending on the CPU clock and the baud
rate of the host. The maxima of FB increases with the host baud rate due to the smaller
baud rate pre-scaler factors and the implied higher quantization error (see Figure 11).
76/346
ST10F296E
The bootstrap loader
Figure 11. Baud rate deviation between the host and ST10F296E
I
FB
2.5%
BLow
BHigh
BHOST
II
The minimum baud rate (BLow in Figure 11) is determined by the maximum count capacity
of Timer T6, when measuring the zero byte, i.e. it depends on the CPU clock. Using the
maximum T6 count as 216 in the formula, the minimum baud rate can be calculated. The
lowest standard baud rate in this case is 1200 Baud. Baud rates below BLow cause T6 to
overflow. In this case ASC0 cannot be initialized properly.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The maximum baud rate (BHigh in Figure 11) is the highest baud rate where the deviation
does not exceed the limit, i.e. all baud rates between BLow and BHigh are below the deviation
limit. The maximum standard baud rate that fulfills this requirement is 19200 Baud.
Higher baud rates, however, may be used as long as the actual deviation does not exceed
the limit. The baud rate marked ‘I’ in Figure 11 may violate the deviation limit, while the
higher baud rate, marked ‘II’, in Figure 11 stays well below it. This depends on the host
interface.
77/346
The bootstrap loader
ST10F296E
6.4
Standard bootstrap with CAN
6.4.1
Features
The bootstrap via CAN has the same overall behavior as the bootstrap via UART:
●
Same bootstrapping steps
●
Same bootstrap method: To analyze the timing of a predefined frame, send back an
acknowledge frame (on request only), load a fixed number of bytes and then run.
●
Same functionalities: To boot with different crystals and PLL ratios.
Figure 12. CAN bootstrap loader sequence
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RSTIN
P0L.4
1)
4)
2)
CAN1_RxD
3)
CAN1_TxD
5)
CSP:IP
6)
Int. boot ROM / Test-Flash BSL-routine
128 bytes
user software
1. BSL initialization time > 1ms @ fCPU = 40 MHz
2. Zero frame (CAN message: standard ID = 0, DLC = 0) sent by host
3. CAN message (standard ID = E6h, DLC = 3, Data0 = D5h, Data1-Data2 = IDCHIP_low-high) sent by
ST10F296E on request.
4. 128 bytes of code/data, sent by host
5. CAN1_TxD is only driven a certain time after reception of the zero byte (1.3 ms @ fCPU = 40 MHz).
6. Internal boot ROM/Test-Flash
The bootstrap loader may be used to load the complete application software into ROM-less
systems. It may also load temporary software into complete systems for testing or
calibration. In addition, it may be used to load a programming routine for Flash devices.
The BSL mechanism may be used for standard system start-ups as well as for special
occasions like system maintenance (firmware update), end-of-line programming or testing.
78/346
ST10F296E
6.4.2
The bootstrap loader
Entering the CAN bootstrap loader
The ST10F296E enters BSL mode, if pin P0L.4 is sampled low at the end of a hardware
reset. In this case, the built-in bootstrap loader is activated independent of the selected bus
mode. The bootstrap loader code is stored in a special Test-Flash, no part of the standard
mask ROM or Flash memory area is required for this.
After entering BSL mode and the respective initialization the ST10F296E scans the
CAN1_TxD line to receive the following initialization frame:
●
Standard identifier = 0h
●
DLC = 0h
As all the bits to be transmitted are dominant bits, a succession of five dominant bits and
one stuff bit on the CAN network is used. From the duration of this frame it calculates the
corresponding baud rate factor with respect to the current CPU clock, initializes the CAN1
interface accordingly, switches pin CAN1_TxD to output and enables the CAN1 interface to
take part in the network communication. Using this baud rate, a message object is
configured to send an acknowledge frame. The ST10F296E does send this message object,
but, the host can request it by sending remote frame.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The acknowledge frame is the following for the ST10F296E:
●
Standard identifier = E6h
●
DLC = 3h
●
Data0 = D5h (generic acknowledge of the ST10 devices)
●
Data1 = IDCHIP least significant byte
●
Data2 = IDCHIP most significant byte
For the ST10F296E, IDCHIP = 128Xh.
Note:
Two behaviors can be distinguished regarding acknowledgement of the ST10 by the host. If
the host is behaving according to CAN protocol, as long as the ST10 CAN module is not
configured, the host is alone on the CAN network and does not receive acknowledgement. It
automatically resends the zero frame. As soon as the ST10 CAN is configured, the host
acknowledges the zero frame. The ‘acknowledge frame’, with identifier 0xE6, is configured,
but, the transmit request is not set. The host can request this frame to be sent, and therefore
get the IDCHIP, by sending a remote frame.
As the IDCHIP is sent in the acknowledge frame, Flash programming software now has the
possibility to know immediately the exact type of device to be programmed.
79/346
The bootstrap loader
6.4.3
ST10F296E
ST10 configuration in CAN BSL
When the ST10F296E has entered BSL mode via CAN, the configuration shown in Table 38
is automatically set (values that deviate from the normal reset values, are marked in bold
italic)
.
Table 38.
ST10 configuration in CAN BSL mode
Watchdog timer
Disabled
Register SYSCON
0404H(1)
Context pointer CP
FA00H
Register STKUN
FA00H
XPEN bit set
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Stack pointer SP
FA40H
Register STKOV
FC00H
Register BUSCON0
CAN1 status/control register
CAN1 bit timing register
XPERCON
Acc. to startup
config.(2)
0000H
Initialized only if bootstrap is run via UART
Acc. to 0 frame
Initialized only if bootstrap is run via CAN
042DH
XRAM1-2, XFlash, CAN1 and XMISC enabled
P4.6/CAN1_TxD
1
Initialized only if bootstrap is run via CAN
DP4.6
1
Initialized only if bootstrap is run via CAN
1. In bootstrap modes (standard or alternate) the ROMEN bit, bit 10 of the SYSCON register, is always set
regardless of the EA pin level. The BYTDIS bit, bit 9 of the SYSCON register, is set according to the data
bus width selection via Port 0 configuration.
2. BUSCON0 is initialized with 0000h which disables the external bus if pin EA is high during reset. If pin EA
is low during reset, the BUSACT0 bit, bit 10, and the ALECTL0 bit, bit 9, are set, enabling the external bus
with a lengthened ALE signal. BTYP field, bit 7 and 6, is set according to Port 0 configuration.
The watchdog timer is disabled, except after a normal reset, so the bootstrap loading
sequence is not time limited. The CAN1_TxD1 pin is configured as output, so the
ST10F296E can return the identification frame. Even if the internal IFlash is enabled, no
code can be executed out of it.
80/346
ST10F296E
6.4.4
The bootstrap loader
Loading the startup code via CAN
After sending the acknowledge byte the BSL enters a loop to receive 128 bytes via CAN1.
Note:
The number of bytes loaded when booting via the CAN interface has been extended to 128
bytes to allow re-configuration of the CAN bit timing register with the best timings
(synchronization window, ...). This can be achieved by the following sequence of
instructions:
ReconfigureBaudRate:
MOV R1,#041h
MOV DPP3:0EF00h,R1 ; Put CAN in Init, enable Configuration Change
MOV R1,#01600h
MOV DPP3:0EF06h,R1 ; 1MBaud at Fcpu = 20 MHz
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
These 128 bytes are stored sequentially into locations 00’FA40H to 00’FABFH of the IRAM.
So, up to 64 instructions may be placed into the RAM area. To execute the loaded code the
BSL jumps to location 00’FA40H, the first loaded instruction. The bootstrap loading
sequence is now terminated, however, the ST10F296E remains in BSL mode. It is likely that
the initially loaded routine loads additional code or data (because an average application is
likely to require substantially more than 64 instructions). This second receive loop may
directly use the pre-initialized CAN interface to receive data and store it to arbitrary userdefined locations.
The second level of loaded code may be the final application code. It may also be another,
more sophisticated, loader routine that adds a transmission protocol to enhance the integrity
of the loaded code or data. In addition, it may contain a code sequence to change the
system configuration and enable the bus interface to store the received data into the
external memory.
This process may go through several iterations or may directly execute the final application.
In all cases the ST10F296E runs in BSL mode, with the watchdog timer disabled and limited
access to the internal Flash area. All code fetches from the internal Flash area (01’0000H
...08’FFFFH) are redirected to the special Test-Flash. Data read operations access the
internal Flash of the ST10F296E, if any is available, but return undefined data on ROM-less
devices.
81/346
The bootstrap loader
6.4.5
ST10F296E
Choosing the baud rate for the BSL via CAN
The bootstrap via CAN acts in the same way as the UART bootstrap mode. When the
ST10F296E is started in BSL mode, it polls the RxD0 and CAN1_RxD lines. When polling a
low level on one of these lines, a timer is launched that is stopped when the line goes back
to high level.
For CAN communication, the algorithm is made to receive a zero frame, where the standard
identifier is 0x0 and DLC is 0. This frame produces the following levels on the network: 5D,
1R, 5D, 1R, 5D, 1R, 5D, 1R, 5D, 1R, 4D, 1R, 1D, 11R. The algorithm lets the timer run until
detection of the 5th recessive bit. In this way, the bit timing is calculated over 29 bit time
durations. This minimizes the error introduced by the polling.
Figure 13. Bit rate measurement over a predefined zero-frame
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Start
Stuff bit
Stuff bit
Stuff bit
Stuff bit
........
Measured time
Error induced by the polling
The code used for polling is as follows:
WaitCom:
JNB P4.5,CAN_Boot
JB
P3.11,WaitCom
BSET T6R
....
CAN_Boot:
BSET PWMCON0.0
JMPR cc_UC,WaitRecessiveBit
WaitDominantBit:
JB
P4.5,WaitDominantBit
WaitRecessiveBit:
JNB P4.5,WaitRecessiveBit
CMPI1 R1,#5
JMPR cc_NE,WaitDominantBit
BCLR PWMCON.0
;
;
;
;
if SOF detected on CAN, then go to CAN
loader
Wait for start bit at RxD0
Start Timer T6
; Start PWM Timer0
; (resolution is 1 CPU clk cycle)
; wait for end of stuff bit
;
;
;
;
;
;
wait for 1st dominant bit = Stuff bit
Test if 5th stuff bit detected
No, go back to count more
Stop timer
here the 5th stuff bit is detected:
PT0 = 29 Bit_Time (25D and 4R)
The maximum error at detection of communication on the CAN pin is: (1 not taken + 1 taken
jumps) + 1 taken jump + 1 bit set: (6) + 6 CPU clock cycles
The error at detection of the 5th recessive bit is: (1 taken jump) + 1 not taken jump + 1
compare + 1 bit clear: (4) + 6 CPU cycles
In the worst case scenario, the induced error is 6 CPU clock cycles. So, polling could induce
an error of 6 timer ticks.
82/346
ST10F296E
The bootstrap loader
Error induced by the baud rate calculation
The content of the PT0 timer counter corresponds to 29 bit times. This gives the following
equation:
Equation 4
PT0 = 58 × ( BRP + 1 ) × ( 1 + Tseg1 + Tseg2 )
where BRP (bit rate prescaler), Tseg1 and Tseg2 are the field of the CAN bit timing register.
The CAN protocol specification recommends implementing a bit time composed of at least
eight time quantum (tq). This recommendation has been applied above. The maximum bit
time length is 25 tq. To achieve good precision, the target must have the smallest BRP and
the maximum number of tq in a bit time.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The ranges for PT0 according to BRP are given in Equation 5.
Equation 5
8 ≤ 1 + Tseg1 + Tseg2 ≤ 25
464 x (1 + BRP) ≤ PT0 ≤ 1450 x (1 + BRP)
Table 39.
Timer content ranges of BRP value in Equation 5
BRP
PT0_min
PT0_max
0
464
1450
1
1451
2900
2
2901
4350
3
4351
5800
4
5801
7250
5
7251
8700
..
..
..
43
20416
63800
44
20880
65250
45
21344
66700
..
..
..
63
X
X
Comments
Possible timer overflow
The error coming from the measurement of bit 29 is:
e 1 = 6 ⁄ [ PTO ]
It is maximal for the smallest BRP value and the smallest number of ticks in PT0.
Therefore:
e1 Max = 1.29%
For the best precision possible, the target must have the smallest BRP, which minimises
errors when calculating time quanta in a bit time.
83/346
The bootstrap loader
ST10F296E
To achieve this, the PT0 value is divided into ranges of 1450 ticks. In the bootstrap
algorithm, PT0 is divided by 1451 and the result gives the BRP value.3
This calculated BRP value is then divided into PT0 to give the ‘1+ Tseg1 + Tseg2’ value. A
table is then made to set the values for Tseg1 and Tseg2 according to the ‘1+ Tseg1 +
Tseg2’ value. The Tseg1 and Tseg2 values are chosen to reach a sample point between
70% and 80% of the bit time.
During the calculation of ‘1+ Tseg1 + Tseg2’, an error, e2, can be introduced. The maximum
value of this error is 1 time quantum.
To compensate for any possible errors on the bit rate, the (re)synchronization jump width is
fixed to two time quanta.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
6.4.6
How to compute the baud rate error
An example of the baud rate error computation is as follows:
Conditions:
●
CPU frequency: 20 MHz
●
Target bit rate: 1 Mbit/s
The content of the PTO timer for bit 29 is given in Equation 6:
Equation 6
6
[ PT0 ] = 29 × f CPU ⁄ ( BitRate ) = 29 × 20 × 6 ⁄ 1 × 10 = 580
Therefore:
574 < [PT0] < 586
This gives:
–
BRP = 0
–
tq = 100 ns
Computation of 1 + Tseg1 + Tseg2 considering Equation 4 is given in Equation 7:
Equation 7
574
586
9 = ---------- ≤Tseg1 + Tseg2 ≤---------- = 10
58
58
In the algorithm, a rounding to the superior value is made if the remainder of the division is
greater than half of the divisor. This would have been the case above, if the PT0 content was
574. Thus in this example, 1+Tseg1+Tseg2 = 10, giving a bit time of exactly 1µs => no error
in bit rate.
Note:
In most cases (24 MHz, 32 MHz, and 40 MHz of CPU frequency and 125, 250, 500 or
1Mbyte/s of bit rate) there is no error. However, it is better to check the error with real
application parameters.
The content of the bit timing register is : 0x1640. This gives a sample point of 80%.
Note:
84/346
The (re)synchronization jump width is fixed to 2 time quanta.
ST10F296E
6.4.7
The bootstrap loader
Bootstrap via CAN
After the bootstrap phase, the ST10F296E CAN module is configured as follows:
●
Pin P4.6 is configured as output (the latch value is: 1 = recessive) to assume
CAN1_TxD function.
●
The MO2 is configured to output the acknowledge of the bootstrap with the standard
identifier E6h, DLC = 3, Data0 = D5h, and Data1&2 = IDCHIP.
●
The MO1 is configured to receive messages with the standard identifier 5h. Its
acceptance mask is set in order that all bits must match. The DLC received is not
checked: The ST10 expects only 1 byte of data at a time.
No other message is sent by the ST10F296E after the acknowledge.
)
s
(
t
c
u
d
6.5
Comparing the old and the new bootstrap loader
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
The CAN bootstrap loader waits for 128 bytes of data instead of 32 bytes (see Section 6.3:
Standard bootstrap with UART (RS232 or K-line) on page 73). This is to allow the user to
reconfigure the CAN bit rate as soon as possible.
Table 40 and Table 41 summarize the differences between bootstrapping via UART only (old
ST10 method) and bootstrapping via UART or CAN (new ST10F296E method).
Table 40.
Software topics summary
Old bootstrap loader
New bootstrap loader
Uses only 32 bytes in dualport RAM from 00’FA40h
Uses up to 128 bytes in
dual-port RAM from
00’FA40h
For compatibility between bootstrapping
via UART and bootstrapping via CAN1,
avoid loading the application software in
the 00’FA60h/00’FABFh range
Loads 32 bytes from the
UART
Loads 32 bytes from UART
(bootstrapping via UART
mode)
Same files can be used for bootstrapping
via UART
User selected XPeripherals
can be enabled during
XPeripherals selection is
bootstrapping (see steps 3
fixed.
and 4 of Section 6.2.3:
Booting steps on page 70)
6.5.1
Comments
User can change the XPeripheral
selections through a specific code
Software aspects
As CAN1 is needed, the XPERCON register is configured by the bootstrap loader code and
the XPEN bit of the SYSCON register is set. This is done as follows:
Note:
●
Disable the XPeripherals by clearing the XPEN bit in the SYSCON register.
Caution: This part of code must not be located in the XRAM, because if so, it is
disabled.
●
Enable the XPeripherals that are needed by writing the correct value in the XPERCON
register.
●
Set the XPEN bit in the SYSCON.
The settings can be modified if the EINIT instruction is not executed (and is not in the
bootstrap loader code).
85/346
The bootstrap loader
6.5.2
ST10F296E
Hardware aspects
The new bootstrap loading method via UART and CAN is compatible with the old method via
UART only. However, some additional hardware is required with the new method which is
summarized in Table 41.
.
Table 41.
Hardware topics summary
Actual bootstrap loader
P4.5 can be used as output in
BSL mode
New bootstrap loader
Comments
P4.5 cannot be used as user output
in BSL mode. It can only be used as
CAN1_RxD, input, or addresssegments.
)
s
(
t
c
u
d
o
)
r
s
6.6
Alternate boot mode (ABM)
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The level on CAN1_RxD can
change during step 2 of the
booting steps (see
Section 6.2.3 on page 70)
6.6.1
The level on CAN1_RxD must be
stable at 1 during step 2 of the
booting steps (see Section 6.2.3 on
page 70)
External pull-up on P4.5
needed
Activation
Alternate boot mode is activated with the combination 01 on Port 0L[5..4] at the rising edge
of RSTIN.
6.6.2
Memory mapping
ST10F296E has the same memory mapping for standard and alternate boot mode:
●
Test-Flash: Mapped from 00’0000h. The standard bootstrap loader can be started by
executing a jump to the address of this routine (JMPS 00’xxxx; address to be defined).
●
User Flash: The user Flash is divided into two parts: The IFlash, visible only for
memory reads and memory writes (no code fetch) and the XFlash, visible for any ST10
access (memory read, memory write, code fetch).
●
All ST10F296E XRAM and XPeripheral modules can be accessed if enabled in the
XPERCON register.
Note:
The alternate boot mode can be used to reprogram the whole content of ST10F296E user
Flash (except Block 0 in Bank 2).
6.6.3
Interrupts
The ST10 interrupt vector table is always mapped from address 00’0000h.
As a consequence, interrupts are not allowed in alternate boot mode. All maskable and non
maskable interrupts must be disabled.
86/346
ST10F296E
6.6.4
The bootstrap loader
ST10 configuration in alternate boot mode
When the ST10F296E has entered BSL mode via CAN, the configuration shown in Table 42
is automatically set (values that deviate from the normal reset values, are marked in bold
italic).
Table 42.
ST10 configuration in alternate boot mode
Watchdog timer
Disabled
Register SYSCON
0404H(1)
Context pointer CP
FA00H
Register STKUN
FA00H
XPEN bit set
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Stack pointer SP
FA40H
Register STKOV
FC00H
Register BUSCON0
Acc. to startup
config.(2)
XPERCON
002DH
XRAM1-2, XFlash, CAN1 enabled
1. In bootstrap modes (standard or alternate) the ROMEN bit, bit 10 of the SYSCON register, is always set
regardless of the EA pin level. The BYTDIS bit, bit 9 of the SYSCON register, is set according to the data
bus width selection via Port 0 configuration.
2. BUSCON0 is initialized with 0000h which disables the external bus if pin EA is high during reset. If pin EA
is low during reset, the BUSACT0 bit, bit 10, and the ALECTL0 bit, bit 9, are set, enabling the external bus
with a lengthened ALE signal. BTYP field, bit 7 and 6, is set according to Port 0 configuration.
Even if the internal IFlash is enabled, no code can be executed out of it.
Warning:
As the XFlash is needed, the XPERCON register is configured
by the ABM loader code and the XPEN bit of the SYSCON
register
To do this:
●
●
Copy a function into DPRAM that can do the following:
–
Disable the XPeripherals by clearing the XPEN bit in the SYSCON register
–
Enable the XPeripherals that are needed by writing the correct value in the
XPERCON register
–
Set the XPEN bit in the SYSCON register
–
Return to the calling address
Call the function from XFlash
Changing the XPERCON value can not be executed from the XFlash because the XFlash is
disabled when the XPEN bit in the SYSCON register is cleared.
Note:
The settings can be modified if the EINIT instruction is not executed (and is not in the
bootstrap loader code).
87/346
The bootstrap loader
6.6.5
ST10F296E
Watchdog
The watchdog timer remains disabled during both standard and alternate boot mode. If a
watchdog reset occurs, a software reset is generated.
Note:
See note concerning software reset in Section 6.2.7 on page 73.
6.6.6
Exiting alternate boot mode
Once the ABM mode is entered, it can be exited only with a software or hardware reset.
Note:
See note concerning software reset in Section 6.2.7 on page 73.
6.6.7
Alternate boot user software
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Users can write the software they want to execute in alternate boot user mode if the rules
concerning the following items are met:
●
Mapping variables
●
Disabling interrupts
●
Exiting conditions
●
Predefining vectors in Block 0 of Bank 2
●
Using the watchdog
The starting address is 09’0000h.
6.6.8
User/alternate boot mode signature check
To operate user/alternate boot mode, the signature of two memory location contents are
calculated and compared to a reference signature. Flash memory locations must be
reserved and programmed as follows:
User mode signature
00'0000h: Memory address of operand0 for the signature computing
00’1FFCh: Memory address of operand1 for the signature computing
00’1FFEh: Memory address for the signature reference
Alternate mode signature
09'0000h: Memory address of operand0 for the signature computing
09’1FFCh: Memory address of operand1 for the signature computing
09’1FFEh: Memory address for the signature reference
Correct values for operand0, operand1 and the reference signature allow the sequence in
Figure 14 to execute successfully.
Figure 14. Reference signature computation
88/346
MOV
ADD
CPLB
Rx, CheckBlock1Addr
Rx, CheckBlock2Addr
RLx
CMP
Rx, CheckBlock3Addr
; 00’0000h for standard reset
; 00’1FFCh for standard reset
; 1s complement of the lower
;byte of the sum
; 00’1FFEh for standard reset
ST10F296E
6.6.9
The bootstrap loader
Alternate boot user software aspects
User defined alternate boot code must start at 09’0000h. A new SFR has been created on
ST10F296E to indicate that the device is running in alternate boot mode. Bit 5 of the
EMUCON register (mapped at 0xFE0Ah) is set when the alternate boot is selected by the
reset configuration. All other bits must be ignored when checking the content of this register
to read the value of bit5.
This bit is a read-only bit. It remains set until the next software or hardware reset.
EMUCON register
EMUCON (FE0Ah/05h)
15
14
Table 43.
13
SFR
12
11
9
8
7
6
5
Reserved
ABM
-
R
EMUCON register description
Bit
Bit name
15-6
-
5
ABM
4-0
-
Function
e
t
e
l
Reserved
o
s
b
4
3
(s)
2
1
0
t
c
u
Reserved
od
Pr
-
c
u
d
)
s
t(
o
r
P
ABM Flag (or TMOD3)
0: Alternate boot mode is not selected by reset configuration on
P0L[5..4]
1: Alternate boot mode is selected by reset configuration on P0L[5..4].
This bit is set if P0L[5..4] = 01 during hardware reset.
O
)
s
(
t
c
Reserved
u
d
o
6.6.10
10
Reset value: xxh
e
t
le
o
s
b
O
-
Internal decoding of test modes
r
P
e
)
s
(
ct
The test mode decoding logic is located inside the ST10F296E bus controller.
The decoding is as follows:
let
●
o
s
b
O
●
s
b
O
Standard bootstrap decoding: (P0L.5 & P0L.4)
r
P
e
●
Normal operation: (P0L.5 & P0L.4)
The other configurations select ST internal test modes.
t
e
l
o
6.6.11
u
d
o
Alternate boot mode decoding: (P0L.5 & P0L.4)
Example of alternate boot mode operation
●
The reset configuration is latched on the rising edge of the RSTIN pin.
●
If bootstrap loader mode is not enabled (P0L[5..4] = 11), ST10F296E hardware starts a
standard hardware reset procedure.
●
If standard bootstrap loader is enabled (P0L[5..4] = 10), the standard ST10 bootstrap
loader is enabled and a variable is cleared to indicate that ABM is not enabled.
●
If alternate boot mode is selected (P0L[5..4] = 01), a predefined reset sequence may
be activated. This depends on the user/alternate boot mode signature check.
89/346
The bootstrap loader
6.7
ST10F296E
Selective boot mode
Selective boot mode is a sub-case of alternate boot mode.
The following additional check is made when no signature of the alternate boot mode
signature check is correct:
Address 00’1FFCh is read again.
●
If a value 0000h or FFFFh is obtained, a jump is performed to the standard bootstrap
loader.
●
If the value obtained is not 0000h or FFFFh:
–
High byte bits are disregarded
–
Low byte bits select which communication channel is enabled (see Table 44).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 44.
Bit
Function
0
UART selection
0: UART not watched for a start condition
1: UART is watched for a start condition
1
CAN1 selection
0: CAN1 not watched for a start condition
1: CAN1 is watched for a start condition
2-7
90/346
Selective boot mode configurations
Reserved
Must be programmed to 0 for upward compatibility
●
0xXX03 configures the selective bootstrap loader to poll for RxD0 and CAN1_RxD.
●
0xXX01 configures the selective bootstrap loader to poll RxD0 only (no bootloading via
CAN).
●
0xXX02 configures the selective bootstrap loader to poll CAN1_RxD only (no
bootloading via UART).
●
other values will let the ST10F296E executing an endless loop into the Test-Flash.
ST10F296E
The bootstrap loader
Figure 15. Reset boot sequence
RSTIN 0 to 1
Standard start
No (P0L[5..4] = ‘11’)
Yes (P0L[5..4] = ‘01’)
Boot mode?
Yes (P0L[5..4] = ‘10’)
No (P0L[5..4] = ‘other config.’)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
ST test modes
Software checks
user reset vector
(K1 is OK?)
K1 is OK
K1 is not OK
Software checks
alternate reset vector
(K2 is OK?)
K2 is OK
K2 is not OK
Read 00’1FFCh
Long Jump to
09’0000h
SW reset
Running from test Flash
ABM/user Flash
Start at 09’0000h
Std. bootstrap loader
Jump to Test-Flash
Selective bootstrap loader
Jump to Test-Flash
User mode/User Flash
Start at 00’0000h
91/346
Central processing unit (CPU)
7
ST10F296E
Central processing unit (CPU)
The CPU includes a four-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU)
and dedicated SFRs. Additional hardware has been added for a separate multiply and divide
unit, a bit-mask generator and a barrel shifter.
Most instructions of the ST10F296E can be executed in one instruction cycle which requires
31.25 ns at 25 MHz CPU clock. For example, shift and rotate instructions are processed in
one instruction cycle independent of the number of bits to be shifted.
Multiple-cycle instructions have been optimized. Branches are carried out in two cycles, 16 x
16-bit multiplication in five cycles and a 32/16-bit division in 10 cycles.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The jump cache reduces the execution time of repeatedly performed jumps in a loop, from
two cycles to one cycle.
The CPU uses a bank of 16 word registers to run the current context. This bank of general
purpose registers (GPR) is physically stored within the on-chip internal RAM (IRAM) area. A
context pointer (CP) register determines the base address of the active register bank to be
accessed by the CPU.
The number of register banks is restricted by the available internal RAM space. For easy
parameter passing, a register bank may overlap others.
A system stack of up to 1024 bytes is provided as a storage for temporary data. The system
stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack
pointer (SP) register.
Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer
value upon each stack access for the detection of a stack overflow or underflow.
Figure 16. CPU block diagram (MAC unit not included)
16
CPU
SP
STKOV
STKUN
512 Kbyte
Exec. unit
Instr. ptr
4-stage
pipeline
Flash
memory
32
PSW
SYSCON
BUSCON 0
BUSCON 1
BUSCON 2
BUSCON 3
BUSCON 4
Data pg. ptrs
92/346
MDH
MDL
Mul./div.-HW
Bit-mask gen.
ALU
2 Kbyte
internal
RAM
R15
Bank
n
General
purpose
registers
16-bit
Barrel-Shift
CP
ADDRSEL 1
ADDRSEL 2
ADDRSEL 3
ADDRSEL 4
Code seg. ptr.
R0
Bank
i
16
Bank
0
ST10F296E
7.1
Central processing unit (CPU)
Multiplier-accumulator unit (MAC)
The specialized MAC coprocessor has been added to the ST10 CPU core to improve the
computing performances of the ST10 device during signal processing tasks.
The standard ST10 CPU has been modified to include new addressing capabilities which
enable the CPU to supply the new coprocessor with up to two operands per instruction
cycle.
This new MAC coprocessor contains a fast multiply-accumulate unit and a repeat unit.
The coprocessor instructions extend the ST10 CPU instruction set with multiply, multiplyaccumulate, and 32-bit signed arithmetic operations.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 17. MAC unit architecture
GPR pointers
Operand 1
16
(1)
Operand 2
16
IDX0 pointer
IDX1 pointer
QR0 GPR offset register
QR1 GPR offset register
QX0 IDX offset register
QX1 IDX offset register
16 x 16
signed/unsigned
multiplier
Concatenation
32
32
Mux
Sign extend
MRW
Scaler
0h
40
Repeat unit
Interrupt
controller
08000h
40 40
0h
40
40
Mux
Mux
40
40
A
B
40-bit signed arithmetic unit
MCW
ST10 CPU
MSW
Flags MAE
40
MAH
MAL
Control unit
40
8-bit left/right
shifter
1. Shared with standard ALU
93/346
Central processing unit (CPU)
7.2
ST10F296E
Instruction set summary
Table 45 lists the instructions of the ST10F296E. A detailed description of each instruction
can be found in the ST10 family programming manual (PM0036).
Table 45.
Instruction set summary
Mnemonic
Description
Bytes
ADD(B)
Add word (byte) operands
2/4
ADDC(B)
Add word (byte) operands with carry
2/4
SUB(B)
Subtract word (byte) operands
2/4
SUBC(B)
Subtract word (byte) operands with carry
2/4
MUL(U)
(Un)Signed multiply direct GPR by direct GPR (16-16-bit)
2
DIV(U)
(Un)Signed divide register MDL by direct GPR (16-/16-bit)
2
DIVL(U)
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)
2
CPL(B)
Complement direct word (byte) GPR
2
NEG(B)
Negate direct word (byte) GPR
2
AND(B)
Bit-wise AND, (word/byte operands)
2/4
OR(B)
Bit-wise OR, (word/byte operands)
2/4
XOR(B)
Bit-wise XOR, (word/byte operands)
2/4
BCLR
Clear direct bit
2
BSET
Set direct bit
2
BMOV(N)
Move (negated) direct bit to direct bit
4
BAND, BOR,
BXOR
AND/OR/XOR direct bit with direct bit
4
BCMP
Compare direct bit to direct bit
4
BFLDH/L
Bit-wise modify masked high/low byte of bit-addressable direct word
memory with immediate data
4
CMP(B)
Compare word (byte) operands
2/4
CMPD1/2
Compare word data to GPR and decrement GPR by 1/2
2/4
CMPI1/2
Compare word data to GPR and increment GPR by 1/2
2/4
PRIOR
Determine number of shift cycles to normalize direct word GPR and
store result in direct word GPR
2
SHL/SHR
Shift left/right direct word GPR
2
ROL/ROR
Rotate left/right direct word GPR
2
ASHR
Arithmetic (sign bit) shift right direct word GPR
2
MOV(B)
Move word (byte) data
2/4
MOVBS
Move byte operand to word operand with sign extension
2/4
MOVBZ
Move byte operand to word operand with zero extension
2/4
JMPA, JMPI,
JMPR
Jump absolute/indirect/relative if condition is met
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
94/346
4
ST10F296E
Central processing unit (CPU)
Table 45.
Instruction set summary (continued)
Mnemonic
Bytes
JMPS
Jump absolute to a code segment
4
J(N)B
Jump relative if direct bit is (not) set
4
JBC
Jump relative and clear bit if direct bit is set
4
JNBS
Jump relative and set bit if direct bit is not set
4
CALLA, CALLI,
CALLR
Call absolute/indirect/relative subroutine if condition is met
4
CALLS
Call absolute subroutine in any code segment
4
PCALL
Push direct word register onto system stack and call absolute
subroutine
TRAP
Call interrupt service routine via immediate trap number
PUSH, POP
Push/pop direct word register onto/from system stack
SCXT
Push direct word register onto system stack and update register with
word operand
RET
Return from intra-segment subroutine
RETS
Return from inter-segment subroutine
RETP
Return from intra-segment subroutine and pop direct word register from
system stack
RETI
Return from interrupt service subroutine
SRST
Software reset
IDLE
Enter idle mode
PWRDN
Enter power-down mode (supposes NMI-pin being low)
bs
e
t
e
ol
(s)
ATOMIC
o
r
P
e
EXTR
EXTP(R)
t
c
u
od
Pr
DISWDT
EINIT
ete
ol
SRVWDT
s
b
O
Description
-O
e
t
le
4
t
c
u
od
Pr
Pr
o
s
b
O
-
(s)
od
uc
2
2
)
s
t(
4
2
2
2
2
4
4
4
Service watchdog timer
4
Disable watchdog timer
4
c
u
d
(t s)
Signify end-of-initialization on RSTOUT pin
4
Begin ATOMIC sequence
2
Begin EXTended register sequence
2
Begin EXTended page (and register) sequence
2/4
EXTS(R)
Begin EXTended segment (and register) sequence
2/4
NOP
Null operation
t
e
l
o
2
s
b
O
95/346
Central processing unit (CPU)
7.3
ST10F296E
MAC coprocessor specific instructions
Table 46 lists the MAC instructions of the ST10F296E. A detailed description of each
instruction can be found in the ST10 family programming manual (PM0036). Note that all
MAC instructions are encoded on four bytes.
Table 46.
MAC instruction set summary
Mnemonic
Description
CoABS
Absolute value of the accumulator
CoADD(2)
Addition
CoASHR(rnd)
Accumulator arithmetic shift right and optional round
CoCMP
Compare accumulator with operands
CoLOAD(-,2)
Load accumulator with operands
CoMAC(R,u,s,-,rnd)
(Un)signed/(un)signed multiply-accumulate and optional round
CoMACM(R)(u,s,-,rnd)
(Un)signed/(un)signed multiply-accumulate with parallel data move
and optional round
CoMAX/CoMIN
Maximum/minimum of operands and accumulator
CoMOV
Memory to memory move
CoMUL(u,s,-,rnd)
(Un)signed/(un)signed multiply and optional round
CoNEG(rnd)
Negate accumulator and optional round
CoNOP
No-operation
CoRND
Round accumulator
CoSHL/CoSHR
Accumulator logical shift left/right
CoSTORE
Store a MAC unit register
CoSUB(2,R)
Substraction
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
96/346
ST10F296E
8
External bus controller (EBC)
External bus controller (EBC)
All external memory access is performed by the on-chip external bus controller.
The EBC can be programmed to single chip mode when no external memory is required, or
to one of four different external memory access modes:
●
16-/18-/20-/24-bit addresses and 16-bit data, demultiplexed
●
16-/18-/ 20-/24-bit addresses and 16-bit data, multiplexed
●
16-/18-/20-/24-bit addresses and 8-bit data, multiplexed
●
16-/18-/20-/24-bit addresses and 8-bit data, demultiplexed
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
In demultiplexed bus modes addresses are output on Port 1 and data is input/output on Port
0 or P0L, respectively. In the multiplexed bus modes both addresses and data use Port 0 for
input/output.
Timing characteristics of the external bus interface (memory cycle time, memory tri-state
time, length of ALE and read/write delay) are programmable giving the choice of a wide
range of memories and external peripherals.
Up to four independent address windows may be defined (using register pairs
ADDRSELx/BUSCONx) to access different resources and bus characteristics.
These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3
and BUSCON2 overrides BUSCON1.
Access to locations not covered by these four address windows is controlled by BUSCON0.
Up to five external CS signals (four windows plus default) can be generated to save external
glue logic. Access to very slow memories is supported by a ‘ready’ function.
A HOLD/HLDA protocol is available for bus arbitration which shares external resources with
other bus masters.
The bus arbitration is enabled by setting the HLDEN bit in the PSW register. After setting
HLDEN once, pins P6.7 to P6.5 (BREQ, HLDA, and HOLD) are automatically controlled by
the EBC. In master mode (default after reset) the HLDA pin is an output. By setting bit DP6.7
to 1, slave mode is selected where pin HLDA is switched to input. This directly connects the
slave controller to another master controller without glue logic.
For applications which require less external memory space, the address space can be
restricted to 1 Mbyte, 256 Kbytes or to 64 Kbytes. Port 4 outputs all eight address lines if an
address space of 16 Mbytes is used, otherwise four, two or no address lines.
Chip select timing can be made programmable. By default (after reset), the CSx lines
change half a CPU clock cycle after the rising edge of ALE. With the CSCFG bit set in the
SYSCON register, the CSx lines change with the rising edge of ALE.
The active level of the READY pin can be set by the RDYPOL bit in the BUSCONx registers.
When the READY function is enabled for a specific address window, each bus cycle within
the window must be terminated with the active level defined by the RDYPOL bit in the
associated BUSCON register.
97/346
External bus controller (EBC)
8.1
ST10F296E
Programmable chip select timing control
The ST10F296E allows the user to adjust the position of the CSx line changes. By default
(after reset), the CSx lines change half a CPU clock cycle (7.8 ns at 64 MHz of CPU clock)
after the rising edge of ALE. With the CSCFG bit set in the SYSCON register the CSx lines
change with the rising edge of ALE, thus the CSx lines and the address lines change at the
same time (see Figure 18).
8.2
READY programmable polarity
The active level of the READY pin can be selected by software via the RDYPOL bit in the
BUSCONx registers.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
When the READY function is enabled for a specific address window, each bus cycle within
this window must be terminated with the active level defined by the RDYPOL bit in the
associated BUSCON register.
BUSCONx registers are described in Section 23.10: System configuration registers on
page 280.
Note:
ST10F296E has no internal pull-up resistor on the READY pin.
Figure 18. Chip select delay
Normal demultiplexed
Segment (P4)
ALE lengthen demultiplexed
Bus cycle
Bus cycle
Address (P1)
ALE
Normal CSx
Unlatched CSx
Data
Data
BUS (P0)
RD
Data
Data
BUS (P0)
WR
98/346
Read/write
Read/write
Delay
Delay
ST10F296E
8.3
External bus controller (EBC)
EA functionality
The EA pin of the ST10F296E is shared with the VSTBY supply pin. When VDD main is on
and stable, VSTBY can be temporarily grounded: The logic that in standby mode is powered
by VSTBY (that is standby voltage regulator and 16 Kbyte portion of XRAM), is powered by
VDD main. This allows the EA pin to be driven low during reset, as requested, to configure
the system to start from the external memory.
An appropriate external circuit must be provided to manage dynamically both functionalities
associated with the EA pin. During reset and with stable VDD, the pin can be tied low, while
after reset (or before turning off the main VDD to enter in standby mode) the VSTBY supply is
applied.
Figure 19 shows a diagram of a possible external circuit. Care should be taken when
implementing the resistance for current limitation of bipolar. The resistance should not
disturb standby mode when some current (in the order of hundreds of µA) is provided to the
device by the VSTBY voltage supply source. The voltage at the EA pin of ST10F296E should
not become lower than 4.5 V.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
To reduce the effect of current consumption transients on the VSTBY pin (refer to ISB3 in
Section 24: Electrical characteristics) which may create voltage drops if a very low power
external voltage regulator is used, it is suggested to add an external capacitance which can
filter the eventual current peaks. Additional care must be paid to external hardware to limit
the current peaks due to the presence of the capacitance (when EA functionality is used and
the external bipolar is turned on, see Figure 19).
Figure 19. EA/VSTBY external circuit
4 - 5.5 V
EA/VSTBY
VSTBY
EA function
ST10F296
VSS
VSS
99/346
Interrupt system
9
ST10F296E
Interrupt system
The interrupt response time for internal program execution is from 78 ns to 187.5 ns at 64
MHz CPU clock.
The ST10F296E architecture supports several mechanisms for fast, flexible responses to
service requests that can be generated from various sources (internal or external) to the
microcontroller. Any of these interrupt requests can be serviced by the Interrupt controller or
by the peripheral event controller (PEC).
In contrast to a standard interrupt service where the current program execution is
suspended and a branch to the interrupt vector table is performed, just one cycle is ‘stolen’
from the current CPU activity to perform a PEC service. A PEC service implies a single byte
or word data transfer between any two memory locations with an additional increment of
either the PEC source or destination pointer. An individual PEC transfer counter is implicitly
decremented for each PEC service except when performing in the continuous transfer
mode. When this counter reaches zero, a standard interrupt is performed to the
corresponding source related vector location. PEC services are very well suited to perform
the transmission or the reception of blocks of data. The ST10F296E has eight PEC
channels, each of them offers such fast interrupt-driven data transfer capabilities.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
An interrupt control register which contains an interrupt request flag, an interrupt enable flag
and an interrupt priority bit-field is dedicated to each existing interrupt source. Because of its
related register, each source can be programmed to one of sixteen interrupt priority levels.
Once processing by the CPU starts, an interrupt service can only be interrupted by a higher
prioritized service request. For standard interrupt processing, each possible interrupt
sources has a dedicated vector location.
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with an
individual trap (interrupt) number.
Fast external interrupt inputs are provided to service external interrupts with high precision
requirements. These fast interrupt inputs feature programmable edge detection (rising edge,
falling edge or both edges).
Fast external interrupts may also have interrupt sources selected from other peripherals. For
example, the CANx controller receive signals (CANx_RxD) and I2C serial clock signal can
be used to interrupt the system.
Table 47 shows all the available ST10F296E interrupt sources and the corresponding
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.
100/346
ST10F296E
Interrupt system
Table 47.
Interrupt sources
Source of Interrupt or
PEC service request
Request
flag
Enable
flag
Interrupt
vector
Vector
location
Trap
number
CAPCOM register 0
CC0IR
CC0IE
CC0INT
00’0040h
10h
CAPCOM register 1
CC1IR
CC1IE
CC1INT
00’0044h
11h
CAPCOM register 2
CC2IR
CC2IE
CC2INT
00’0048h
12h
CAPCOM register 3
CC3IR
CC3IE
CC3INT
00’004Ch
13h
CAPCOM register 4
CC4IR
CC4IE
CC4INT
00’0050h
14h
CAPCOM register 5
CC5IR
CC5IE
CC5INT
00’0054h
15h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CAPCOM register 6
CC6IR
CC6IE
CC6INT
00’0058h
16h
CAPCOM register 7
CC7IR
CC7IE
CC7INT
00’005Ch
17h
CAPCOM register 8
CC8IR
CC8IE
CC8INT
00’0060h
18h
CAPCOM register 9
CC9IR
CC9IE
CC9INT
00’0064h
19h
CAPCOM register 10
CC10IR
CC10IE
CC10INT
00’0068h
1Ah
CAPCOM register 11
CC11IR
CC11IE
CC11INT
00’006Ch
1Bh
CAPCOM register 12
CC12IR
CC12IE
CC12INT
00’0070h
1Ch
CAPCOM register 13
CC13IR
CC13IE
CC13INT
00’0074h
1Dh
CAPCOM register 14
CC14IR
CC14IE
CC14INT
00’0078h
1Eh
CAPCOM register 15
CC15IR
CC15IE
CC15INT
00’007Ch
1Fh
CAPCOM register 16
CC16IR
CC16IE
CC16INT
00’00C0h
30h
CAPCOM register 17
CC17IR
CC17IE
CC17INT
00’00C4h
31h
CAPCOM register 18
CC18IR
CC18IE
CC18INT
00’00C8h
32h
CAPCOM register 19
CC19IR
CC19IE
CC19INT
00’00CCh
33h
CAPCOM register 20
CC20IR
CC20IE
CC20INT
00’00D0h
34h
CAPCOM register 21
CC21IR
CC21IE
CC21INT
00’00D4h
35h
CAPCOM register 22
CC22IR
CC22IE
CC22INT
00’00D8h
36h
CAPCOM register 23
CC23IR
CC23IE
CC23INT
00’00DCh
37h
CAPCOM register 24
CC24IR
CC24IE
CC24INT
00’00E0h
38h
CAPCOM register 25
CC25IR
CC25IE
CC25INT
00’00E4h
39h
CAPCOM register 26
CC26IR
CC26IE
CC26INT
00’00E8h
3Ah
CAPCOM register 27
CC27IR
CC27IE
CC27INT
00’00ECh
3Bh
CAPCOM register 28
CC28IR
CC28IE
CC28INT
00’00F0h
3Ch
CAPCOM register 29
CC29IR
CC29IE
CC29INT
00’0110h
44h
CAPCOM register 30
CC30IR
CC30IE
CC30INT
00’0114h
45h
CAPCOM register 31
CC31IR
CC31IE
CC31INT
00’0118h
46h
CAPCOM timer 0
T0IR
T0IE
T0INT
00’0080h
20h
CAPCOM timer 1
T1IR
T1IE
T1INT
00’0084h
21h
101/346
Interrupt system
Table 47.
ST10F296E
Interrupt sources (continued)
Source of Interrupt or
PEC service request
Request
flag
Enable
flag
Interrupt
vector
Vector
location
Trap
number
CAPCOM timer 7
T7IR
T7IE
T7INT
00’00F4h
3Dh
CAPCOM timer 8
T8IR
T8IE
T8INT
00’00F8h
3Eh
GPT1 timer 2
T2IR
T2IE
T2INT
00’0088h
22h
GPT1 timer 3
T3IR
T3IE
T3INT
00’008Ch
23h
GPT1 timer 4
T4IR
T4IE
T4INT
00’0090h
24h
GPT2 timer 5
T5IR
T5IE
T5INT
00’0094h
25h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
GPT2 timer 6
T6IR
T6IE
T6INT
00’0098h
26h
GPT2 CAPREL register
CRIR
CRIE
CRINT
00’009Ch
27h
ADC complete
ADCIR
ADCIE
ADCINT
00’00A0h
28h
ADC overrun error
ADEIR
ADEIE
ADEINT
00’00A4h
29h
ASC0 transmit
S0TIR
S0TIE
S0TINT
00’00A8h
2Ah
ASC0 transmit buffer
S0TBIR
S0TBIE
S0TBINT
00’011Ch
47h
ASC0 receive
S0RIR
S0RIE
S0RINT
00’00ACh
2Bh
ASC0 error
S0EIR
S0EIE
S0EINT
00’00B0h
2Ch
SSC transmit
SCTIR
SCTIE
SCTINT
00’00B4h
2Dh
SSC receive
SCRIR
SCRIE
SCRINT
00’00B8h
2Eh
SSC error
SCEIR
SCEIE
SCEINT
00’00BCh
2Fh
PWM channel 0...3
PWMIR
PWMIE
PWMINT
00’00FCh
3Fh
See Section 9.1
XP0IR
XP0IE
XP0INT
00’0100h
40h
See Section 9.1
XP1IR
XP1IE
XP1INT
00’0104h
41h
See Section 9.1
XP2IR
XP2IE
XP2INT
00’0108h
42h
See Section 9.1
XP3IR
XP3IE
XP3INT
00’010Ch
43h
Hardware traps are exceptions or error conditions that arise during run-time. They cause
immediate non-maskable system reactions similar to a standard interrupt service (branching
to a dedicated vector table location).
The occurrence of a hardware trap is signified by an individual bit in the trap flag register
(TFR). Except when another higher prioritized trap service is in progress, a hardware trap
interrupts any other program execution. Hardware trap services cannot be interrupted by a
standard or PEC interrupt.
102/346
ST10F296E
9.1
Interrupt system
XPeripheral interrupt
The limited number of XBus interrupt lines of the present ST10 architecture, imposes some
constraints on the implementation of the new functionality. In particular, the additional
XPeripherals SSC1, ASC1, I2C, PWM1, and RTC need some resources to implement
interrupt and PEC transfer capabilities. For this reason, a sophisticated but very flexible
multiplexed structure for the interrupt management is proposed (see Figure 20). It shows the
basic structure replicated for each of the four XInterrupt available vectors (XP0INT, XP1INT,
XP2INT, and XP3INT).
It is based on a set of 16-bit registers XIRxSEL (x = 0, 1, 2, 3), divided into two portions
each:
●
Byte high, XIRxSEL[15:8]: Interrupt enable bits
●
Byte low, XIRxSEL[7:0]: Interrupt flag bits
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
When different sources submit an interrupt request, the enable bits (byte high of the
XIRxSEL register) define a mask which controls which sources are associated with the
unique available vector. If more than one source is enabled to issue the request, the service
routine has to identify the real event to be serviced. This can be done by checking the flag
bits (byte low of the XIRxSEL register). Note that the flag bits can also provide information
about events which are not currently serviced by the interrupt controller (since they are
masked through the enable bits). This allows effective software management in the absence
of the possibility to serve the related interrupt request. A periodic polling of the flag bits may
be implemented inside the user application.
Note:
The XIRxSEL registers are mapped into the XMiscellaneous area. Therefore, they can be
accessed only if the XMISCEN and XPEN bits are set in the XPERCON and SYSCON
registers respectively.
Figure 20. XInterrupt basic structure
7
0
Flag[7:0]
XIRxSEL[7:0] (x = 0, 1, 2, 3)
IT source 7
IT source 6
IT source 5
IT source 4
XPxIC.XPxIR (x = 0, 1, 2, 3)
IT source 3
IT source 2
IT source 1
IT source 0
Enable[7:0]
15
XIRxSEL[15:8] (x = 0, 1, 2, 3)
8
103/346
Interrupt system
ST10F296E
Table 48 summarizes the mapping of the different interrupt sources which share the four
XInterrupt vectors.
Table 48.
XInterrupt detailed mapping
Source
CAN1 interrupt
XP0INT
XP1INT
XP2INT
x
CAN2 interrupt
x
x
x
2
x
x
x
2
x
x
x
I C receive
I C transmit
I2
XP3INT
C error
x
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
SSC1 receive
x
x
x
SSC1 transmit
x
x
x
SSC1 error
ASC1 receive
x
x
x
ASC1 transmit
x
x
x
ASC1 transmit buffer
x
x
x
ASC1 error
x
PLL unlock/OWD
x
PWM1 channel 3...0
104/346
x
x
x
ST10F296E
9.2
Interrupt system
Exception and error traps list
Table 49 shows all of the possible exceptions or error conditions that can arise during runtime.
Table 49.
Trap priorities
Trap
vector
Vector
location
Trap
number
Trap
priority(1)
RESET
RESET
RESET
00’0000h
00’0000h
00’0000h
00h
00h
00h
III
III
III
NMI
STKOF
STKUF
NMITRAP
STOTRAP
STUTRAP
00’0008h
00’0010h
00’0018h
02h
04h
06h
II
II
II
UNDOPC
MACTRP
PRTFLT
ILLOPA
ILLINA
ILLBUS
BTRAP
BTRAP
BTRAP
BTRAP
BTRAP
BTRAP
00’0028h
00’0028h
00’0028h
00’0028h
00’0028h
00’0028h
0Ah
0Ah
0Ah
0Ah
0Ah
0Ah
I
I
I
I
I
I
Reserved
[002Ch - 003Ch]
[0Bh - 0Fh]
Software traps:
TRAP Instruction
Any
0000h – 01FCh
in steps of 4h
Any
[00h - 7Fh]
Exception condition
Trap
flag
Reset functions:
Hardware reset
Software reset
Watchdog timer overflow
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Class A hardware traps:
Nonmaskable interrupt
Stack overflow
Stack underflow
Class B hardware traps:
Undefined opcode
MAC Interruption
Protected instruction fault
Illegal word operand access
Illegal instruction access
Illegal external bus access
Current
CPU
priority
1. All class B traps have the same trap number, trap vector, and lower priority compared to class A traps and
resets.
Each class A trap has a dedicated trap number (and vector). They are prioritized in the second priority
level.
Resets have the highest priority level and the same trap number.
The PSW.ILVL CPU priority is forced to the highest level (15) when these exceptions are serviced.
105/346
Capture/compare (CAPCOM) units
10
ST10F296E
Capture/compare (CAPCOM) units
The ST10F296E has two 16 channel CAPCOM units as shown in Figure 21: CAPCOM unit
block diagram. These support generation and control of timing sequences on up to 32
channels with a maximum resolution of 125 ns at 64 MHz CPU clock. The CAPCOM units
are typically used to handle high speed I/O tasks such as pulse and waveform generation,
PMW, digital to analog (D/A) conversion, software timing, or time recording relative to
external events.
Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases
for the capture/compare register array (see Figure 22 and Figure 23).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The input clock for the timers is programmable to several prescaled values of the internal
system clock, or it may be derived from an overflow/underflow of Timer T6 in module GPT2.
This provides a wide range of variation for the timer period and resolution and allows precise
adjustments for application-specific requirements. In addition, external count inputs for
CAPCOM timers T0 and T7 allow event scheduling for the capture/compare registers
relative to external events.
Each of the two capture/compare register arrays contain 16 dual purpose capture/compare
registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7
or T8, respectively), and programmed for capture or compare functions. Each of the 32
registers has one associated port pin which serves as an input pin for triggering the capture
function, or as an output pin to indicate the occurrence of a compare event. Figure 21 shows
the basic structure of the two CAPCOM units.
106/346
ST10F296E
Capture/compare (CAPCOM) units
Figure 21. CAPCOM unit block diagram
Reload register TxREL
CPU
clock
x = 0. 7
2n n = 3...10
TxIN
Tx
input
control
Pin
Interrupt
request
CAPCOM timer Tx
GPT2 timer T6
over/underflow
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Pin
16
Capture inputs
Compare outputs
Mode
control
(capture
or
compare)
Sixteen 16-bit
(capture/compare)
registers
16
Capture/compare(1)
interrupt requests
Pin
CPU
clock
2n n = 3...10
Ty
Input
Control
Interrupt
request
CAPCOM timer Ty
GPT2 timer T6
over/underflow
y = 1. 8
Reload register TyREL
1. The CAPCOM2 unit provides 16 capture inputs, but only 12 compare outputs. CC24I to CC27I are inputs
only.
Figure 22. Block diagram of CAPCOM timers T0 and T7
Reload register TxREL
Txl
Input
control
CPU
clock
X
GPT2 timer T6
over/underflow
MUX
CAPCOM timer Tx
TxIR
Interrupt
request
Edge select
TxR
Txl TxM
Pin
TxIN
Txl
x = 0. 7
107/346
Capture/compare (CAPCOM) units
ST10F296E
Figure 23. Block diagram of CAPCOM timers T1 and T8
Reload register TxREL
Txl
CPU
clock
X
MUX
GPT2 timer T6
over/underflow
CAPCOM timer Tx
TxM
TxR
TxIR
Interrupt
request
x = 1. 8
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
When an external input signal is connected to the input lines of both T0 and T7, these timers
count the input signal synchronously. Thus, the two timers can be regarded as one timer
whose contents can be compared with 32 capture registers.
When a capture/compare register has been selected for capture mode, the current contents
of the allocated timer are latched (captured) into the capture/compare register in response
to an external event at the port pin which is associated with this register. In addition, a
specific interrupt request for this capture/compare register is generated.
Either a positive, a negative, or both a positive and a negative external signal transition at
the pin can be selected as the triggering event. The contents of all registers which have
been selected for one of the five compare modes are continuously compared with the
contents of the allocated timers.
When a match occurs between the timer value and the value in a capture/compare register,
specific actions are taken based on the selected compare mode (see Table 50).
The input frequencies fTx, for the timer input selector Tx, are determined as a function of the
CPU clocks. The timer input frequencies, resolution and periods which result from the
selected prescaler option in TxI when using a 40 MHz and 64 MHz CPU clock are listed in
Table 51 and Table 52 respectively.
The numbers for the timer periods are based on a reload value of 0000h. Note that some
numbers may be rounded to three significant figures.
Table 50.
Compare modes
Compare modes
Function
Mode 0
Interrupt-only compare mode
Several compare interrupts per timer period are possible
Mode 1
Pin toggles on each compare match
Several compare events per timer period are possible
Mode 2
Interrupt-only compare mode
Only one compare interrupt per timer period is generated
Mode 3
Pin set to 1 on match
pin reset to 0 on compare time overflow
Only one compare event per timer period is generated
Two registers operate on one pin
Double register mode Pin toggles on each compare match
Several compare events per timer period are possible
108/346
ST10F296E
Table 51.
Capture/compare (CAPCOM) units
CAPCOM timer input frequencies, resolution, and periods at 40 MHz
Timer input selection TxI
fCPU = 40 MHz
000b
001b
010b
011b
100b
101b
110b
111b
8
16
32
64
128
256
512
1024
Input frequency
5 MHz
2.5 MHz
1.25 MHz
625 kHz
312.5 kHz
156.25 kHz
Resolution
200 ns
400 ns
0.8 µs
1.6 µs
3.2 µs
6.4 µs
12.8 µs
25.6 µs
Period
13.1 ms
26.2 ms
52.4 ms
104.8 ms
209.7 ms
419.4 ms
838.9 ms
1.678 s
Prescaler for fCPU
Table 52.
78.125 kHz 39.1 kHz
CAPCOM timer input frequencies, resolution, and periods at 64 MHz
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Timer input selection TxI
fCPU = 25 MHz
000b
001b
010b
011b
100b
101b
110b
111b
8
16
32
64
128
256
512
1024
Input frequency
8 MHz
4 MHz
2 MHz
1 kHz
500 kHz
250 kHz
128 kHz
64 kHz
Resolution
125 ns
250 ns
0.5 µs
1.0 µs
2.0 µs
4.0 µs
8.0 µs
16.0 µs
Period
8.2 ms
16.4 ms
32.8 ms
65.5 ms
131.1 ms
262.1 ms
524.3 ms
1.049 s
Prescaler for fCPU
109/346
General purpose timer unit
11
ST10F296E
General purpose timer unit
The GPT unit is a flexible multifunctional timer/counter structure which is used for time
related tasks such as event timing and counting, pulse width and duty cycle measurements,
pulse generation, or pulse multiplication. The GPT unit contains five 16-bit timers organized
into two separate modules GPT1 and GPT2. Each timer in each module may operate
independently in several different modes, or may be concatenated with another timer of the
same module.
11.1
GPT1
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Each of the three timers T2, T3, T4 of the GPT1 module can be configured individually for
one of four basic modes of operation: Timer, gated timer, counter mode and incremental
interface mode.
In timer mode, the input clock for a timer is derived from the CPU clock, divided by a
programmable prescaler.
In counter mode, the timer is clocked with reference to external events.
Pulse width or duty cycle measurement is supported in gated timer mode where the
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock
input.
Table 53 and Table 54 list the timer input frequencies, resolution and periods for each prescaler option at 40 MHz and 64 MHz CPU clock respectively. This also applies to the gated
timer mode of T3 and to the auxiliary timers T2 and T4 in timer and gated timer mode. The
count direction (up/down) for each timer is programmable by software or may be altered
dynamically by an external signal on a port pin (TxEUD).
In incremental interface mode, the GPT1 timers (T2, T3, T4) can be directly connected to
the incremental position sensor signals A and B by their respective inputs TxIN and TxEUD.
Direction and count signals are internally derived from these two input signals so that the
contents of the respective timer Tx corresponds to the sensor position. The third position
sensor signal TOP0 can be connected to an interrupt input.
Timer T3 has output toggle latches (TxOTL) which change state on each timer over
flow/underflow. The state of this latch may be output on port pins (TxOUT) for time out
monitoring of external hardware components, or may be used internally to clock timers T2
and T4 for high resolution of long duration measurements.
In addition to their basic operating modes, timers T2 and T4 may be configured as reload or
capture registers for timer T3. When used as capture or reload registers, timers T2 and T4
are stopped. The contents of timer T3 are captured into T2 or T4 in response to a signal at
their associated input pins (TxIN).
Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or
by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are
configured to alternately reload T3 on opposite state transitions of T3OTL with the low and
high times of a PWM signal, this signal can be constantly generated without software
intervention.
Figure 24 shows the block diagram of the GPT1.
110/346
ST10F296E
Table 53.
General purpose timer unit
GPT1 timer input frequencies, resolution, and periods at 40 MHz
Timer input selection T2I/T3I/T4I
fCPU = 40 MHz
000b
001b
010b
011b
100b
101b
110b
111b
Prescaler factor
8
16
32
64
128
256
512
1024
Input frequency
5 MHz
78.125 kHz
39.1 kHz
Resolution
200 ns
Period maximum
13.1 ms 26.2 ms
Table 54.
2.5 MHz 1.25 MHz
400 ns
625 kHz
312.5 kHz 156.25 kHz
0.8 µs
1.6 µs
3.2 µs
6.4 µs
12.8 µs
25.6 µs
52.4 ms
104.8 ms
209.7 ms
419.4 ms
838.9 ms
1.678 s
GPT1 timer input frequencies, resolution, and periods at 64 MHz
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Timer input selection T2I/T3I /T4I
fCPU = 64 MHz
000b
001b
010b
011b
100b
101b
110b
111b
Prescaler factor
8
16
32
64
128
256
512
1024
Input frequency
8 MHz
4 MHz
2 MHz
1 kHz
500 kHz
250 kHz
128 kHz
64 kHz
Resolution
125 ns
250 ns
0.5 µs
1.0 µs
2.0 µs
4.0 µs
8.0 µs
16.0 µs
Period maximum
8.2 ms
16.4 ms
32.8 ms
65.5 ms
131.1 ms
262.1 ms
524.3 ms
1.049 s
Figure 24. Block diagram of GPT1
U/D
T2EUD
CPU Clock
n=3...10
T2IN
CPU Clock
Interrupt
request
GPT1 timer T2
2n
2n n=3...10
T3IN
T2
mode
control
T3
mode
control
Reload
Capture
T3OUT
GPT1 timer T3
T3OTL
U/D
T3EUD
T4
mode
control
T4IN
CPU Clock
T4EUD
2n n=3...10
Capture
Reload
Interrupt
request
GPT1 timer T4
Interrupt
request
U/D
111/346
General purpose timer unit
11.2
ST10F296E
GPT2
The GPT2 module provides precise event control and time measurement. It includes two
timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an
input clock which is derived from the CPU clock via a programmable prescaler or with
external signals. The count direction (up/down) for each timer is programmable by software
or may additionally be altered dynamically by an external signal on a port pin (TxEUD).
Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6
which changes its state on each timer overflow/underflow.
The state of this latch may be used to clock timer T5, or it may be output on a port pin
(T6OUT). The overflow/underflow of timer T6 can also be used to clock the CAPCOM timers
T0 or T1, and to cause a reload from the CAPREL register. The CAPREL register may
capture the contents of timer T5 based on an external signal transition on the corresponding
port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This
allows absolute time differences to be measured or pulse multiplication to be performed
without a software overhead.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The capture trigger (timer T5 to CAPREL) may also be generated upon transition of the
GPT1 timer T3 inputs, T3IN and/or T3EUD. This is advantageous when T3 operates in
incremental interface mode.
Table 55 and Table 56 list the timer input frequencies, resolution and periods for each prescaler option at 40 MHz and 64 MHz CPU clock respectively. This also applies to the gated
timer mode of T6 and to the auxiliary timer T5 in timer and gated timer mode.
Figure 25 shows the block diagram of the GPT2.
Table 55.
GPT2 timer input frequencies, resolution, and period at 40 MHz
Timer Input Selection T5I / T6I
fCPU = 40 MHz
000b
001b
010b
011b
100b
101b
110b
111b
Prescaler factor
4
8
16
32
64
128
256
512
Input frequency
10 MHz
5 MHz
2.5 MHz
1.25 MHz
625 kHz
Resolution
100 ns
200 ns
400 ns
0.8 µs
1.6 µs
3.2 µs
6.4 µs
12.8 µs
Period maximum
6.55 ms
13.1 ms
26.2 ms
52.4 ms
104.8 ms
209.7 ms
419.4 ms
838.9 ms
Table 56.
312.5 kHz 156.25 kHz
78.125 kHz
GPT2 timer input frequencies, resolution, and period at 64 MHz
Timer Input Selection T5I / T6I
fCPU = 64 MHz
000b
001b
010b
011b
100b
101b
110b
111b
Prescaler factor
4
8
16
32
64
128
256
512
Input frequency
16 MHz
8 MHz
4 MHz
2 MHz
1 kHz
500 kHz
250 kHz
128 kHz
Resolution
62.5 ns
125 ns
250 ns
0.5 µs
1.0 µs
2.0 µs
4.0 µs
8.0 µs
Period maximum
4.1 ms
8.2 ms
16.4 ms
32.8 ms
65.5 ms
131.1 ms
262.1 ms
524.3 ms
112/346
ST10F296E
General purpose timer unit
Figure 25. Block diagram of GPT2
T5EUD
U/D
CPU clock
2n n=2...9
T5IN
T5
mode
control
Interrupt
request
GPT2 timer T5
Clear
Capture
Interrupt
request
CAPIN
GPT2 CAPREL
Reload
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Toggle FF
T6IN
CPU Clock
2n n=2...9
T6
mode
control
GPT2 timer T6
U/D
T6EUD
Interrupt
request
T60TL
T6OUT
to CAPCOM
timers
113/346
Pulse-width modulation (PWM) modules
12
ST10F296E
Pulse-width modulation (PWM) modules
Two PWM modules are available on ST10F296E: Standard PWM0 and XBus PWM1. They
can generate up to four PWM output signals each, using edge-aligned or centre-aligned
PWM. In addition, the PWM modules can generate PWM burst signals and single shot
outputs. Table 57 and Table 58 show the PWM frequencies for different resolutions. The
level of the output signals is selectable and the PWM modules can generate interrupt
requests.
Figure 26 shows the block diagram of the PWM module.
Figure 26. Block diagram of PWM module
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
PPx period register(1)
Match
Comparator
Clock 1
Clock 2
Input
control
Run
Up/down/
clear control
PTx
16-bit Up/down counter(1)
Match
Comparator
Output control
POUTx
Enable
Shadow register
Write control
PWx pulse width register(1)
1. User readable/writeable register
Table 57.
114/346
PWM unit frequencies and resolution at 40 MHz CPU clock
Mode 0
Resolution
8-bit
10-bit
12-bit
14-bit
16-bit
CPU clock/1
25 ns
156.25 kHz
39.1 kHz
9.77 kHz
2.44 Hz
610 Hz
CPU clock/64
1.6 µs
2.44kHz
610 Hz
152.6 Hz
38.15Hz
9.54 Hz
Mode 1
Resolution
8-bit
10-bit
12-bit
14-bit
16-bit
CPU clock/1
25 ns
78.12 kHz
19.53 kHz
4.88 kHz
1.22 kHz
305.2 Hz
CPU clock/64
1.6 µs
1.22 kHz
305.17 Hz
76.29 Hz
19.07 Hz
4.77 Hz
ST10F296E
Pulse-width modulation (PWM) modules
Table 58.
PWM unit frequencies and resolution at 64 MHz CPU clock
Mode 0
Resolution
8-bit
10-bit
12-bit
14-bit
16-bit
CPU clock/1
15.6 ns
250 kHz
62.5 kHz
15.63 kHz
3.91 Hz
977 Hz
CPU clock/64
1.0 µs
3.91 kHz
976.6 Hz
244.1 Hz
61.01 Hz
15.26 Hz
Mode 1
Resolution
8-bit
10-bit
12-bit
14-bit
16-bit
CPU clock/1
15.6 ns
125 kHz
31.25 kHz
7.81 kHz
1.95 kHz
488.3 Hz
CPU clock/64
1.0 µs
1.95 kHz
488.28 Hz
122.07 Hz
30.52 Hz
7.63 Hz
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
12.2
XPWM registers
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
12.1
XPWM output signals
The output signals of the four XPWM channels (XPOUT3...XPOUT0) are available as
dedicated pins. The XPWM signals are XORed with the outputs of the XPOLAR register
before being driven to the dedicated pins. This allows the XPWM signal (XPOLAR.x = 0) or
the inverted XPWM signal (XPOLAR.x = 1) to be driven directly.
Note:
Using open-drain mode allows two or more XPWM outputs to be combined through an
AND-wired configuration, using an external pull-up device. This provides a type of burst
mode for any XPWM channel.
XPOLAR register
The XPWMPORT register controls the specific XPWM output pins. Each output can be
enabled/disabled which allows the XPWM to be configured as a push-pull or open-drain
driver. In addition, the signal coming from the XPOLAR register is inverted. If both
XPOLAR.Y and XP.y are set, no inversion is achieved.
XPOLAR (EC04h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: 0000h
6
5
4
2
1
0
XPO XPO XPO XPO
LAR.3 LAR.2 LAR.1 LAR.0
Reserved
-
Table 59.
3
RW
RW
RW
RW
XPOLAR register description
Bit
Bit name
15-4
-
3-0
XPOLAR.Y
Function
Reserved
XPWM channel Y polarity bit
0: Polarity of channel Y is normal
1: Polarity of channel Y is inverted
115/346
Pulse-width modulation (PWM) modules
ST10F296E
XPWMPORT register
XPWMPORT (EC80h)
15
14
13
XBus
12
11
-
Bit
9
8
7
6
5
4
3
2
1
0
XODP XP XDP XODP XP XDP XODP8 XP XDP XODP XP XDP
.3
.3
.3
.2
.2
.2
.1
.1
.1
.0
.0
.0
Reserved
Table 60.
10
Reset value: 0000h
RW
RW RW
RW
RW RW
RW
RW RW
RW
RW RW
XPWMPORT register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15-12
-
11, 8, 5, 2
XODP.y
10, 7, 4, 1
XP.y
9, 6, 3, 0
XDP.y
Reserved
Port open-drain control register bit y
0: Port line XPOUT.y output driver in push-pull mode
1: Port line XPOUT.y output driver in open-drain mode
Port data register bit y
Port direction register bit y
0: Port line XPOUT.y is an input (high impedance)
1: Port line XPOUT.y is an output
The XPWMPORT register is enabled and visible only when the XPEN and XPWMEN bits of
the SYSCON and XPERCON registers respectively are set.
12.2.1
Software control of the XPWM outputs
In an application, the XPWM output signals are generally controlled by the XPWM module.
However, it may be necessary to influence the level of the XPWM output pins via software,
either to initialize the system or to react to some extraordinary conditions such as a system
fault or an emergency.
Clearing the timer run bit PTRx stops the associated counter and leaves the respective
output at its current level.
The individual XPWM channel outputs are controlled by comparators according to the
formula:
PWM output signal = [XPTx] > [XPWx shadow latch]
Whenever software changes register XPTx, the respective output reflects the condition after
the change. Loading timer XPTx with a value greater than or equal to the value in XPWx
immediately sets the respective output, an XPTx value below the XPWx value clears the
respective output.
By clearing or setting the respective XPWMPORT output latch the XPWM channel signal is
driven directly or inverted to the port pin.
Clearing the enable bit PENx disconnects the XPWM channel and switches the respective
pin to the value in the port output latch XP.y.
Note:
To prevent further PWM pulses from occurring after such a software intervention the
respective counter must be stopped first.
Figure 27 shows the XPWM output signal generation.
116/346
ST10F296E
Pulse-width modulation (PWM) modules
Figure 27. XPWM output signal generation
XOR
Latch XP.3
XPOUT.3
XOR
Latch XPOLAR.3
XPOUT.2
XOR
XPWMCON1.PEN3
XOR
XPWM 3
XPOUT.1
XPWMCON1.PEN2
Latch XPOLAR.2
XOR
XPWM 2
Latch XP.2
XPWMCON1.PEN1
Latch XPOLAR.1
XOR
XPWM 1
Latch XP.1
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
&
Latch XPOLAR.0
Latch XP.0
XOR
XPWMCON1.PEN0
XOR
XPWM 0
XPOUT.0
XPWMCON1.PB01
117/346
Parallel ports
13
ST10F296E
Parallel ports
The ST10F296E MCU provides up to 143 I/O lines with programmable features. The MCU is
therefore very flexible for a wide range of applications.
The ST10F296E has 11 groups of I/O lines organized as follows:
●
Port 0 is a two-time, 8-bit port named P0L (low is the least significant byte) and P0H
(high is the most significant byte)
●
Port 1 is a two-time, 8-bit port named P1L and P1H
●
Port 2 is a 16-bit port
●
Port 3 is a 15-bit port (P3.14 line is not implemented)
●
Port 4 is an 8-bit port
●
Port 5 is a 16-bit input only port
●
Port 6, Port 7 and Port 8 are 8-bit ports
●
XPort 9 is a 16-bit general purpose port
●
XPort 10 is a 16-bit input only port
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
These ports may be used as general purpose bidirectional input or output, software
controlled with dedicated registers.
For example the output drivers of seven of the ports (2, 3, 4, 6, 7, 8, and 9) can be
configured (bit-wise) for push-pull or open-drain operation using the ODPx registers (and the
XODP9 register for XPort 9).
The input threshold levels are programmable (TTL/CMOS) for all ports. The logic level of a
pin is clocked into the input latch once per state time, regardless of whether the port is
configured for input or output. The threshold is selected with PICON and XPICON registers
control bits.
A write operation to a port pin configured as an input causes the value to be written into the
port output latch, while a read operation returns the latched state of the pin itself. A readmodify-write operation reads the value of the pin, modifies it, and writes it back to the output
latch.
Writing to a pin configured as an output (DPx.y = 1) causes the output latch and the pin to
have the written value, since the output buffer is enabled. Reading this pin returns the value
of the output latch. A read-modify-write operation reads the value of the output latch,
modifies it, and writes it back to the output latch, thus also modifying the level at the pin.
I/O lines support an alternate function which is detailed in Section 13.1.4, Section 13.2.2,
Section 13.3.2, and Section 13.4.2.
Note:
118/346
The I/O ports XPort 9 and XPort10 are not mapped on the SFR space but on the internal
XBus interface. They are enabled by setting the XPEN bit, bit 2, of the SYSCON register and
bit 11 of the XPERCON register. On the XBus interface, the registers are not bitaddressable
ST10F296E
Parallel ports
Figure 28. SFRs and pins associated with the parallel ports (A)
Threshold/open-drain/dig. disable control
Other registers
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PICON
E
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
XSSCPORT
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
XPICON
X
-
-
-
-
-
- - - - - Y Y Y Y Y Y
XS1PORT
-
-
-
-
-
- - - - - Y Y Y Y Y Y
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
ODP2
E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
ODP3
E
-
- Y - Y Y Y Y Y Y Y Y Y Y Y Y
ODP4
E
-
-
-
-
-
- - - Y Y Y Y - - - -
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
P5DIDIS
ODP6
E
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
ODP7
E
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
ODP8
E
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
XODP9
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XODP9SET
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XODP9CLR
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XPICON9
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XPICON9SET
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XPICON9CLR
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XPICON10
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XPICON10SET
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XPICON10CLR
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XP10DIDIS
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XP10DIDISSET
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XP10DIDISCLR
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
PICON:
P2LIN P2HIN
P3LIN P3HIN
P4LIN
P6LIN
P7LIN
POUTLIN
XPICON:
P0LIN P0HIN
P1LIN P1HIN
P5LIN P5HIN
Y
E
X
:
:
:
:
Bit has an I/O function
Bit has no I/O dedicated function or is not implemented
Register belongs to ESFR area
Register belongs to XBus area
119/346
Parallel ports
ST10F296E
Figure 29. SFRs and pins associated with the parallel ports (B)
Data input/output register
Direction control registers
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P0L
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
DP0L E -
-
-
-
-
- - - Y Y Y Y Y Y Y Y
P0H
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
DP0H E -
-
-
-
-
- - - Y Y Y Y Y Y Y Y
P1L
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
DP1L E -
-
-
-
-
- - - Y Y Y Y Y Y Y Y
P1H
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
DP1H E -
-
-
-
-
- - - Y Y Y Y Y Y Y Y
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P2
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
DP2
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
P3
Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y
DP3
Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y
P4
-
DP4
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
P5
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
P6
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
DP6
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
P7
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
DP7
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
P8
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
DP8
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
-
-
-
-
- - - Y Y Y Y Y Y Y Y
XP9 X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XDP9 X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XP9SET X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y XDP9SET X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XP9CLR X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y XDP9CLR X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
XP10 X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
120/346
ST10F296E
Parallel ports
13.1
I/O special features
13.1.1
Open-drain mode
Some of the I/O ports of the ST10F296E support the open-drain capability. This
programmable feature may be used with an external pull-up resistor to get an AND wired
logical function.
This feature is implemented for ports P2, P3, P4, P6, P7, P8, and XP9 (see Section 13.4,
Section 13.5, Section 13.6, Section 13.8, Section 13.9, Section 13.10, and Section 13.11)
and is controlled through the respective open-drain control registers ODPx (and the XODP9
register for XP9). These registers allow the individual bit-wise selection of the open-drain
mode for each port line. If the respective control bit ODPx.y is 0 (default after reset), the
output driver is in the push-pull mode. If ODPx.y is 1, the open-drain configuration is
selected (see Figure 30). All ODPx registers are located in the ESFR space. The XODP9
register is in the XBus space.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13.1.2
Input threshold control
The standard inputs of the ST10F296E determine the status of input signals according to
TTL levels. To accept and recognize noisy signals, CMOS input thresholds can be selected
instead of standard TTL thresholds for all pins. CMOS thresholds are defined above the TTL
thresholds and feature a higher hysteresis to prevent inputs from toggling while the
respective input signal level is near its threshold.
All options for individual direction and output mode control are available for each pin,
independent of the selected input threshold. The input hysteresis provides stable inputs
from noisy or slowly changing external signals (see Figure 31).
13.1.3
I/0 port registers
The port input control registers, PICON and XPICON, are used to select thresholds for each
byte of the indicated ports. This means the 8-bit ports P0L, P0H, P1L, P1H, P4, P7, and P8
are controlled by one bit each while ports P2, P3, and P5 are controlled by two bits each. In
addition, the registers XPICON9 and XPICON10 allow single bit input threshold control for
XP9 and XP10 respectively.
For XPort 9 and XPort 10, the bit-addressable feature is available via specific ‘set’ and ‘clear’
registers. These are:
●
XPICON9SET and XPICON9CLR for XPICON9
●
XPICON10SET and XPICON10CLR for XPICON10
121/346
Parallel ports
ST10F296E
PICON register
PICON (F1C4h/E2h)
15
14
Table 61.
Bit
13
ESFR
12
11
10
9
8
Reset value: --00h
7
6
5
4
3
2
1
0
Reserved
P8
LIN
P7
LIN
P6
LIN
P4
LIN
P3
HIN
P3
LIN
P2
HIN
P2
LIN
-
RW
RW
RW
RW
RW
RW
RW
RW
PICON register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15-8
-
Reserved
7, 6, 5, 4,
2, 0
PxLIN
Port x low byte input level selection
0: Pins Px.7 to Px.0 switch on standard TTL input levels
1: Pins Px.7 to Px.0 switch on standard CMOS input levels
3, 1
PxHIN
Port x high byte input level selection
0: Pins Px.15 to Px.8 switch on standard TTL input levels
1: Pins Px.15 to Px.8 switch on standard CMOS input levels
XPICON register
XPICON (EB26h)
15
14
Table 62.
122/346
XBus
13
12
11
10
9
8
7
Reset value: --00h
6
5
4
3
2
1
0
Reserved
P5
HIN
P5
LIN
P1
HIN
P1
LIN
P0
HIN
P0
LIN
-
RW
RW
RW
RW
RW
RW
XPICON register description
Bit
Bit name
Function
15-6
-
5, 3, 1
PxHIN
Port x high byte input level selection
0: Pins Px.15 to Px.8 switch on standard TTL input levels
1: Pins Px.15 to Px.8 switch on standard CMOS input levels
4, 2, 0
PxLIN
Port x low byte input level selection
0: Pins Px.7 to Px.0 switch on standard TTL input levels
1: Pins Px.7 to Px.0 switch on standard CMOS input levels
Reserved
ST10F296E
Parallel ports
XPICON9 register
XPICON9 (EB98h)
15
14
13
XBus
12
11
10
9
8
Reset value: 0000h
7
6
5
4
3
2
1
0
XP9I XP9I XP9I XP9I XP9I XP9I XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9
N.15 N.14 N.13 N.12 N.11 N.10 IN.9 IN.8 IN.7 IN.6 IN.5 IN.4 IN.3 IN.2 IN.1 IN.0
RW
RW
Table 63.
Bit
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
XPICON9 register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15-0
XP9IN.y
Port 9 bit y input level selection
0: Port line XP9.y switch on standard TTL input levels
1: Port line XP9.y switch on standard CMOS input levels
XPICON9SET register
XPICON9SET (EB9Ah)
15
14
13
XBus
12
11
10
9
8
Reset value: 0000h
7
6
5
4
3
2
1
0
XP9I XP9I XP9I XP9I XP9I XP9I XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9
NSE NSE NSE NSE NSE NSE INS INS INS INS INS INS INS INS INS INS
T.15 T.14 T.13 T.12 T.11 T.10 ET.9 ET.8 ET.7 ET.6 ET.5 ET.4 ET.3 ET.2 ET.1 ET.0
W
W
Table 64.
W
W
W
W
W
W
W
W
W
W
W
W
W
W
XPICON9SET register description
Bit
Bit name
Function
15-0
XP9INSET.y
Writing a 1 sets the corresponding bit of the XPICON9.y register. Writing a
0 has no effect
XPICON9CLR register
XPICON9CLR (EB9Ch)
15
14
13
12
XBus
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9
INC INC INC INC INC INC INC INC INC INC INC INC INC INC INC INC
LR
LR
LR
LR
LR
LR
LR
LR
LR
LR
LR
LR
LR
LR
LR
LR
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
W
W
Table 65.
W
W
W
W
W
W
W
W
W
W
W
W
W
W
XPICON9CLR register description
Bit
Bit name
15-0
XP9INCLR.y
Function
Writing a 1 clears the corresponding bit of the XPICON9.y register.
Writing a 0 has no effect.
123/346
Parallel ports
ST10F296E
XPICON10 register
XPICON10 (EBD8h)
XBus
15
14
13
12
11
XP1
0IN
.15
XP1
0IN
.14
XP1
0IN
.13
XP1
0IN
.12
XP1
0IN
.11
XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN
.10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
RW
RW
RW
RW
RW
RW
Table 66.
10
9
RW
8
RW
7
Reset value: 0000h
RW
6
RW
5
RW
4
RW
3
RW
2
RW
1
RW
0
RW
XPICON10 register description
Bit
Bit name
15-0
XP10IN.y
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Port 10 bit y input level selection
0: Port line XP10.y switches on standard TTL input levels
1: Port line XP10.y switches on standard CMOS input levels
Figure 30. Output drivers in push-pull mode and in open-drain mode
External
pull-up
Pin
Q
Q
Push-pull output driver
Figure 31. Hysteresis concept
Hysteresis
Input level
Bit state
124/346
Pin
Open-drain output driver
ST10F296E
13.1.4
Parallel ports
Alternate port functions
Each port line has one associated programmable alternate input or output function.
●
Port 0 and Port 1 may be used for address and data lines when accessing the external
memory. Port 1 also provides input capture lines.
●
Port 2, Port 7 and Port 8 are associated with the capture inputs or compare outputs of
the CAPCOM units and/or with the outputs of the PWM0 module, the PWM1 module,
and the ASC1. Port 2 is also used for fast external interrupt inputs and for timer 7 input.
●
Port 3 includes the alternate functions of timers, serial interfaces, the optional bus
control signal BHE and the system clock output (CLKOUT).
●
Port 4 outputs the additional segment address bit A23 to A16 in systems where more
than 64 Kbytes of memory are accessed directly. In addition, CAN1, CAN2 and I2C
lines are provided.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
●
Port 5 is used for the analog input channels of the ADC or for the timer control signals.
●
Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD), chip select
signals, and SSC1 lines.
●
XPort 9 is a general purpose input/output port
●
XPort 10 is used for additional analog input channels of the ADC
If the alternate output function of a pin is being used, the direction of this pin must be
programmed for output (DPx.y = 1), except for some signals that are used directly after reset
and are configured automatically. Otherwise the pin remains in the high impedance state
and is not affected by the alternate output function. The respective port latch should hold a
1, because its output is ANDed with the alternate output data (except for PWM output
signals).
If the alternate input function of a pin is being used, the direction of the pin must be
programmed for input (DPx.y = 0) if an external device is driving the pin. The input direction
is the default after reset. If no external device is connected to the pin, the direction of the pin
can also be set to output. In this case, the pin reflects the state of the port output latch.
Thus, the alternate input function reads the value stored in the port output latch. This can be
used for testing purposes to allow a software trigger of an alternate input function by writing
to the port output latch.
On most of the port lines, the user software is responsible for setting the proper direction
when using an alternate input or output function of a pin.
This is done by setting or clearing the direction control bit DPx.y of the pin before enabling
the alternate function.
However, there are port lines where the direction of the port line is switched automatically.
For instance, in the multiplexed external bus modes of Port 0, the direction must be switched
several times for an instruction fetch to output the addresses and to input the data.
Obviously, this cannot be done through instructions. In these cases, the direction of the port
line is switched automatically by hardware if the alternate function of such a pin is enabled.
To determine the appropriate level of the port output latches, check how the alternate data
output is combined with the respective port latch output.
There is one basic structure for all port lines with only an alternate input function. However,
port lines with only an alternate output function have different structures due to the way the
direction of the pin is switched and depending on whether the pin is accessible by the user
software or not in the alternate function mode.
125/346
Parallel ports
ST10F296E
All port lines that are not used for alternate functions may be used as general purpose I/O
lines. When using port pins for general purpose output, the initial output value should be
written to the port latch prior to enabling the output drivers to avoid undesired transitions on
the output pins. This applies to single pins as well as to pin groups (see example below).
SINGLE_BIT:
BSET
BSET
BFLDH
BFLDH
BIT_GROUP:
Note:
P4.7
DP4.7
P4, #24H, #24H
DP4, #24H, #24H
;
;
;
;
Initial output level
Switch on the output
Initial output level
Switch on the output
is "high"
driver
is "high"
drivers
When using several BSET pairs to control several pins of one port, the pairs must be
separated by instructions which do not apply to the respective port (see Section 7: Central
processing unit (CPU) on page 92).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13.2
Port 0
The two 8-bit ports, P0H and P0L, represent the higher and lower part of Port 0,
respectively. Both halves of Port 0 can be written (for example via a PEC transfer) without
affecting the other half.
If this port is used for general purpose I/O, the direction of each line can be configured via
the corresponding direction registers, DP0H and DP0L.
13.2.1
Port 0 registers
P0L and P0H registers
P0L (FF00h/80h)
15
14
SFR
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Reserved
P0L
.7
P0L
.6
P0L
.5
P0L
.4
P0L
.3
P0L
.2
P0L
.1
P0L
.0
-
RW
RW
RW
RW
RW
RW
RW
RW
P0H (FF02h/81h)
15
14
SFR
13
12
11
10
Reserved
126/346
9
8
7
Reset value: --00h
6
5
RW
RW
P0L and P0H register description
Bit
Bit name
15-8
-
7-0
P0X.y
4
3
2
1
0
P0H P0H P0H P0H P0H P0H P0H P0H
.7
.6
.5
.4
.3
.2
.1
.0
RW
-
Table 67.
Reset value: --00h
Function
Reserved
Port data register P0L or P0H bit y
RW
RW
RW
RW
RW
ST10F296E
Parallel ports
DP0L and DP0H registers
DP0L (F100h/80h)
15
14
13
ESFR
12
11
10
9
8
7
RW
DP0H (F102h/81h)
14
13
6
5
4
3
RW
RW
RW
RW
ESFR
12
11
2
1
0
DP0L DP0L DP0L DP0L DP0L DP0L DP0L DP0L
.7
.6
.5
.4
.3
.2
.1
.0
Reserved
15
Reset value: --00h
10
9
8
7
RW
RW
RW
Reset value: --00h
6
5
4
3
2
1
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
DP0H DP0H DP0H DP0H DP0H DP0H DP0H DP0H
.7
.6
.5
.4
.3
.2
.1
.0
Reserved
RW
-
Table 68.
13.2.2
RW
RW
RW
RW
RW
RW
RW
DP0L and DP0H register description
Bit
Bit name
15-8
-
7-0
DP0X.y
Function
Reserved
Port direction register DP0L or DP0H bit y
0: Port line P0X.y is an input (high impedance)
1: Port line P0X.y is an output
Alternate functions of Port 0
When an external bus is enabled, Port 0 is used as a data bus or an address/data bus.
Note that an external 8-bit demultiplexed bus only uses P0L, while P0H is free for I/O
(provided that no other bus mode is enabled).
Port 0 is also used to select the system startup configuration. During reset, Port 0 is
configured to input, and each line is held high through an internal pull-up device.
Each line can now be individually pulled to a low level (see Section 24.5: DC characteristics)
through an external pull-down device. A default configuration is selected when the
respective Port 0 lines are at a high level. Through pulling individual lines to a low level, this
default can be changed according to the needs of the applications.
Internal pull-up devices are designed so that external pull-down resistors (see Section 24.5:
DC characteristics) can be used to apply a correct low level.
Such external pull-down resistors can remain connected to Port 0 pins during normal
operation. However, care has to be taken that they do not disturb the normal function of Port
0 (for example, if the external resistor is too strong).
At the end of reset, the selected bus configuration is written to the BUSCON0 register. The
configuration of the high byte of Port 0, is copied into the RP0H register.
RPOH is a read-only register that holds the selection for the number of chip selects and
segment addresses. Software can read this register if required. When the reset is
terminated, the internal pull-up devices are switched off, and Port 0 is switched to the
appropriate operating mode.
127/346
Parallel ports
ST10F296E
During external access in multiplexed bus modes, Port 0 first outputs the 16-bit intrasegment address as an alternate output function. Port 0 is then switched to high impedance
input mode to read the incoming instruction or data.
In 8-bit data bus mode, two memory cycles are required for word access. The first memory
cycle is for the low byte of the word and the second is for the high byte. During write cycles
Port 0 outputs the data byte or word after outputting the address. During external access in
de-multiplexed bus modes Port 0 reads the incoming instruction or data word or outputs the
data byte or word (see Figure 32).
When an external bus mode is enabled, the direction of the port pin and the loading of data
into the port output latch are controlled by the bus controller hardware. The input of the port
output latch is disconnected from the internal bus and is switched to the line labeled
‘alternate data output’ via a multiplexer. The alternate data can be the 16-bit intra-segment
address or the 8/16-bit data information. The incoming data on Port 0 is read on the line
‘alternate data input’. While an external bus mode is enabled, the user software should not
write to the port output latch, otherwise unpredictable results may occur.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
When the external bus modes are disabled, the contents of the direction register last written
by the user becomes active. Figure 33 shows the structure of a Port 0 pin.
Figure 32. Port 0 I/O and alternate functions
Alternate functions
P0H
Port 0
P0L
General
purpose
input/output
128/346
(a)
P0H.7
P0H.6
P0H.5
P0H.4
P0H.3
P0H.2
P0H.1
P0H.0
P0L.7
P0L.6
P0L.5
P0L.4
P0L.3
P0L.2
P0L.1
P0L.0
(b)
D7
D6
D5
D4
D3
D2
D1
D0
8-bit
de-multiplexed
bus
(c)
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
16-bit
demultiplexed
bus
(d)
A15
A14
A13
A12
A11
A10
A9
A8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
8-bit
multiplexed
bus
AD15
AD14
AD13
AD12
AD11
AD10
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
16-bit
multiplexed
bus
ST10F296E
Parallel ports
Figure 33. Block diagram of a Port 0 pin
Write DP0H.y/DP0L.y
Alternate
direction
1
MUX
Direction
latch
0
Read DP0H.y/DP0L.y
Alternate
function
enable
Internal bus
Alternate
data
output
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Write P0H.y/P0L.y
1
Port output
latch
Port data
output
MUX
Output
buffer
0
P0H.y
P0L.y
Read P0H.y/P0L.y
Clock
1
MUX
0
Input
latch
y = 7 to 0
129/346
Parallel ports
13.3
ST10F296E
Port 1
The two 8-bit ports P1H and P1L represent the higher and lower part of Port 1, respectively.
Both halves of Port 1 can be written (for example via a PEC transfer) without effecting the
other half. If this port is used for general purpose I/O, the direction of each line can be
configured via the corresponding direction registers DP1H and DP1L.
13.3.1
Port 1 registers
P1L and P1H registers
P1L (FF04h/82h)
15
14
SFR
13
12
11
10
9
8
7
-
RW
P1H (FF06h/83h)
14
12
11
10
9
8
Bit name
15-8
-
d
o
r
s
b
O
130/346
Reserved
P1X.y
P
e
b
O
)
s
(
ct
RW
3
(s)
2
1
t
c
u
5
od
RW
Pr
4
RW
3
RW
0
RW
RW
)
s
t(
Reset value: --00h
uc
d
o
r
P
e
let
RW
b
O
-
so
RW
RW
Function
Port data register P1L or P1H or bit y
u
d
o
r
P
e
t
e
l
o
)
(s
t
c
u
4
2
1
0
P1H P1H P1H P1H P1H P1H P1H P1H
.7
.6
.5
.4
.3
.2
.1
.0
P1L and P1H register description
7-0
s
b
O
6
so
-
Bit
5
e
t
e
l
7
Reserved
t
e
l
o
RW
SFR
13
Table 69.
6
P1L. P1L. P1L. P1L. P1L. P1L. P1L. P1L.
7
6
5
4
3
2
1
0
Reserved
15
Reset value: --00h
RW
RW
RW
RW
RW
ST10F296E
Parallel ports
DP1L and DP1H registers
DP1L (F104h/82h)
15
14
13
ESFR
12
11
10
9
8
7
RW
DP1H (F106h/83h)
14
13
6
5
4
3
RW
RW
RW
RW
ESFR
12
11
2
1
0
DP1L DP1L DP1L DP1L DP1L DP1L DP1L DP1L
.7
.6
.5
.4
.3
.2
.1
.0
Reserved
15
Reset value: --00h
10
9
8
7
RW
RW
RW
Reset value: --00h
6
5
4
3
2
1
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
DP1H DP1H DP1H DP1H DP1H DP1H DP1H DP1H
.7
.6
.5
.4
.3
.2
.1
.0
Reserved
RW
-
Table 70.
13.3.2
RW
RW
RW
RW
RW
RW
RW
DP1L and DP1H register description
Bit
Bit name
15-8
-
7-0
DP1X.y
Function
Reserved
Port direction register DP1L or DP1H bit y
0: Port line P1X.y is an input (high impedance)
1: Port line P1X.y is an output
Alternate functions of Port 1
When a demultiplexed external bus is enabled, Port 1 is used as an address bus. Note that
demultiplexed bus modes use Port 1 as a 16-bit port. Otherwise all 16 port lines can be used
for general purpose I/O. The upper four pins of Port 1 (P1H.7 to P1H.4) are also capture
input lines for the CAPCOM2 unit (CC27-24 I).
The capture input functions of pins P1H.7 to P1H.4 can be used for external interrupt inputs
with a sample rate of eight CPU clock cycles.
As a side effect, the capture input capability of these lines can also be used in the address
bus mode. Changes of the upper address lines may be detected, thereby triggering an
interrupt request that performs some special service routines. External capture signals can
only be applied if no address output is selected for Port 1.
During external access in demultiplexed bus modes, Port 1 outputs the 16-bit intra-segment
address as an alternate output function.
During external access in multiplexed bus modes, when no BUSCON register selects a demultiplexed bus mode, Port 1 is not used and is available for general purpose I/O.
131/346
Parallel ports
ST10F296E
Figure 34. Port 1 I/O and alternate functions
Alternate functions
P1H
PORT1
P1L
(a)
(b)
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
P1H.7
P1H.6
P1H.5
P1H.4
P1H.3
P1H.2
P1H.1
P1H.0
P1L.7
P1L.6
P1L.5
P1L.4
P1L.3
P1L.2
P1L.1
P1L.0
CC27I
CC26I
CC25I
CC24I
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
General purpose
input/output
8/16-bit
demultiplexed bus
CAPCOM2
capture inputs
When an external bus mode is enabled, the direction of the port pin and the loading of data
into the port output latch are controlled by the bus controller hardware. The input of the port
output latch is disconnected from the internal bus and is switched to the line labeled
‘alternate data output’ via a multiplexer. The alternate data is the 16-bit intra-segment
address.
While an external bus mode is enabled, the user software should not write to the port output
latch, otherwise unpredictable results may occur. When the external bus modes are
disabled, the contents of the direction register that was last written by the user becomes
active.
Figure 35 shows the structure of a Port 1 pin.
Figure 35. Block diagram of a Port 1 pin
Write DP1H.y/DP1L.y
1
1
MUX
Direction
latch
0
Read DP1H.y / DP1L.y
Alternate
function
enable
Internal bus
Alternate
data
output
Write P1H.y/P1L.y
1
Port output
latch
Port data
output
MUX
Output
buffer
0
P1H.y
P1L.y
Read P1H.y/P1L.y
Clock
1
MUX
0
132/346
Input
latch
y = 7 to 0
ST10F296E
13.4
Parallel ports
Port 2
If this 16-bit port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction register DP2. Each port line can be switched into push-pull
or open-drain mode via the open-drain control register ODP2.
13.4.1
Port 2 registers
P2 register
P2 (FFC0h/E0h)
SFR
Reset value: 0000h
15
14
13
12
11
10
9
8
7
6
5
4
3
2
P2
.15
P2
.14
P2
.13
P2
.12
P2
.11
P2
.10
P2
.9
P2
.8
P2
.7
P2
.6
P2
.5
P2
.4
P2
.3
P2
.2
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 71.
P2 register description
Bit
Bit name
15-0
P2.y
Function
o
s
b
DP2 register
DP2 (FFC2h/E1h)
15
14
13
e
t
e
l
Port data register P2 bit y
12
11
10
)
s
(
ct
-O
SFR
RW
RW
9
8
7
o
s
b
O
-
e
t
le
6
5
c
u
d
o
r
P
4
3
0
P2
.1
P2
.0
RW
RW
)
s
(
t
c
u
d
o
r
P
1
)
s
t(
Reset value: 0000h
2
1
0
DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2 DP2
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
RW
RW
o
r
P
Table 72.
Bit
e
t
e
ol
15-0
bs
O
du
RW
RW
RW
RW
)
s
(
ct
RW
RW
RW
RW
RW
RW
RW
RW
DP2 register description
Bit name
du
DP2.y
o
r
P
e
Function
Port direction register DP2 bit y
0: Port line P2.y is an input (high impedance)
1: Port line P2.y is an output
t
e
l
o
s
b
O
133/346
Parallel ports
ST10F296E
ODP2 register
ODP2 (F1C2h/E1h)
ESFR
Reset value: 0000h
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OD
P2
.15
OD
P2
.14
OD
P2
.13
OD
P2
.12
OD
P2
.11
OD
P2
.10
OD
P2
.9
OD
P2
.8
OD
P2
.7
OD
P2
.6
OD
P2
.5
OD
P2
.4
OD
P2
.3
OD
P2
.2
OD
P2
.1
OD
P2
.0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 73.
ODP2 register description
Bit
Bit name
15-0
ODP2.y
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13.4.2
Port open-drain control register ODP2 bit y
0: Port line P2.y output driver in push-pull mode
1: Port line P2.y output driver in open-drain mode
Alternate functions of Port 2
All Port 2 lines (P2.15 to P2.0) can be configured as capture inputs or compare outputs
(CC15IO to CC0IO) for the CAPCOM1 unit.
When a Port 2 line is used as a capture input, the state of the input latch, which represents
the state of the port pin, is directed to the CAPCOM unit via the line ‘alternate pin data
input’. If an external capture trigger signal is used, the direction of the respective pin must be
set to input. If the direction is set to output, the state of the port output latch is read since the
pin represents the state of the output latch. This may trigger a capture event through
software by setting or clearing the port latch. Note that in the output configuration, no
external device may drive the pin, otherwise conflicts occur.
When a Port 2 line is used as a compare output (compare modes 1 and 3), the compare
event (or the timer overflow in compare mode 3) directly affects the port output latch. In
compare mode 1, when a valid compare match occurs, the state of the port output latch is
read by the CAPCOM control hardware via the line ‘alternate latch data input’. It is inverted
and written back to the latch via the line ‘alternate data output’. The port output latch is
clocked by the signal ‘compare trigger’ which is generated by the CAPCOM unit.
In compare mode 3, when a match occurs, the value 1 is written to the port output latch via
the line ‘alternate data output’. When an overflow of the corresponding timer occurs, a 0 is
written to the port output latch. In both cases, the output latch is clocked by the signal
‘compare trigger’. The direction of the pin should be set to output by the user, otherwise the
pin is in the high impedance state and does not reflect the state of the output latch.
As can be seen from the port structure (Figure 37), the user software always has free
access to the port pin even when it is used as a compare output. This is useful for setting up
the initial level of the pin when using compare mode 1 or the double-register mode. In these
modes, unlike in compare mode 3, the pin is not set to a specific value when a compare
match occurs. It is toggled instead.
When the user wants to write to the port pin at the same time a compare trigger tries to
clock the output latch, the write operation of the user software has priority. Each time a CPU
write access to the port output latch occurs, the input multiplexer of the port output latch is
switched to the line connected to the internal bus. The port output latch receives the value
from the internal bus and the hardware triggered change is lost.
134/346
ST10F296E
Parallel ports
The capture input function of pins P2.7 to P2.0 can be used for external interrupt inputs with
a sample rate of eight CPU clock cycles.
For pins P2.15 to P2.8, the sampling rate is eight CPU clock cycles when used as capture
input, and one CPU clock cycle if used as fast external input.
The upper eight Port 2 lines (P2.15 to P2.8) also support fast external interrupt inputs
(EX7IN to EX0IN). In addition, P2.15 is the input for CAPCOM2 timer T7 (T7IN). Table 74
summarizes the alternate functions of Port 2. The pins of this port combine internal capture
input bus data with compare output alternate data which is output before the port latch input.
Table 74.
Alternate functions of Port 2
P2 pin
Alternate
function (a)
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P2.8
P2.9
P2.10
P2.11
P2.12
P2.13
P2.14
P2.15
CC0IO
CC1IO
CC2IO
CC3IO
CC4IO
CC5IO
CC6IO
CC7IO
CC8IO
CC9IO
CC10IO
CC11IO
CC12IO
CC13IO
CC14IO
CC15IO
Alternate function
(b)
Alternate function
(c)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
EX0IN
EX1IN
EX2IN
EX3IN
EX4IN
EX5IN
EX6IN
EX7IN
Fast External Interrupt 0 Input
Fast External Interrupt 1 Input
Fast External Interrupt 2 Input
Fast External Interrupt 3 Input
Fast External Interrupt 4 Input
Fast External Interrupt 5 Input
Fast External Interrupt 6 Input
Fast External Interrupt 7 Input T7IN Timer T7 external count input
Figure 36. Port 2 I/O and alternate functions
Alternate functions
Port 2
P2.15
P2.14
P2.13
P2.12
P2.11
P2.10
P2.9
P2.8
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0
General purpose
input/output
(a)
(b)
CC15IO
CC14IO
CC13IO
CC12IO
CC11IO
CC10IO
CC9IO
CC8IO
CC7IO
CC6IO
CC5IO
CC4IO
CC3IO
CC2IO
CC1IO
CC0IO
CAPCOM1
capture input/compare output
(c)
EX7IN
EX6IN
EX5IN
EX4IN
EX3IN
EX2IN
EX1IN
EX0IN
Fast external
interrupt input
T7IN
CAPCOM2
timer T7 input
135/346
Parallel ports
ST10F296E
Figure 37. Block diagram of a Port 2 pin
Write ODP2.y
Open-drain
latch
Read ODP2.y
Write DP2.y
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Internal bus
Direction
latch
Read DP2.y
1
Alternate
data
output
Output
latch
MUX
Output
buffer
0
Write Port P2.y
compare trigger
P2.y
CCyIO
EXxIN
≥1
Read P2.y
Clock
1
MUX
0
Alternate data input
Fast external interrupt input
136/346
Input
latch
x = 7 to 0
y = 15 to 0
ST10F296E
13.4.3
Parallel ports
Port 2 and external interrupts
These interrupt inputs are provided to service external interrupts which have high precision
requirements. These fast interrupt inputs feature programmable edge detection (rising edge,
falling edge, or both edges).
Fast external interrupts may also have interrupt sources selected from other peripherals. For
example, the CANx controller receive signal (CANx_RxD) can be used to interrupt the
system. This new function of the ST10F296E is controlled using the ‘external interrupt
source selection’ register (EXISEL).
External interrupt source selection register (EXISEL)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
EXISEL (F1DAh/EDh)
15
14
13
12
ESFR
11
10
9
8
Reset value: 0000h
7
6
EXI7SS
EXI6SS
EXI5SS
EXI4SS
EXI3SS(1)
R/W
R/W
R/W
R/W
R/W
5
4
3
2
1
0
EXI2SS(2)
EXI1SS
EXI0SS
R/W
R/W
R/W
1. Alarm interrupt request (RTCAI) is linked with EXI3SS
2. Timed interrupt request (RTCSI) is linked with EXI2SS
Table 75.
EXISEL register description
Bit
Bit name
15-0
EXIxSS
Function
External interrupt x source selection (x = 7 to 0)
00: Input from associated Port 2 pin
01: Input from ‘alternate source’(1)
10: Input from Port 2 pin ORed with ‘alternate source’(1)
11: Input from Port 2 pin ANDed with ‘alternate source’
1. Advised configuration
Table 76.
External interrupt selection
EXIxSS
Port 2 pin
Alternate source
0
P2.8
CAN1_RxD
P4.5
1
P2.9
CAN2_RxD/SCL
P4.4
2
P2.10
RTCSI (second)
Internal MUX
3
P2.11
RTCAI (alarm)
Internal MUX
4 to 7
P2.12 to 15
Not used (zero)
-
137/346
Parallel ports
13.5
ST10F296E
Port 3
If this 15 bit port is used for general purpose I/O, the direction of each line can be configured
by the corresponding direction register DP3. Most port lines can be switched into push-pull
or open-drain mode by the open-drain control register ODP3 (pins P3.15 and P3.12 do not
support open-drain mode).
Due to pin limitations, register bit P3.14 is not connected to any output pin.
13.5.1
Port 3 registers
P3 register
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P3 (FFC4h/E2h)
SFR
Reset value: 0000h
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
P3
.15
-
P3
.13
P3
.12
P3
.11
P3
.10
P3
.9
P3
.8
P3
.7
P3
.6
P3
.5
P3
.4
P3
.3
P3
.2
P3
.1
P3
.0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 77.
P3 register description
Bit
Bit name
15, 13-0
P3.y
Function
Port data register P3 bit y
DP3 register
DP3 (FFC6h/E3h)
138/346
12
14
DP3
.15
-
DP3 DP3 DP3 DP3 DP3 DP3 DP3 DP3 DP3 DP3 DP3 DP3 DP3 DP3
.13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
RW
-
RW
RW
11
RW
10
RW
9
RW
8
RW
7
Reset value: 0000h
15
Table 78.
13
SFR
RW
6
RW
5
RW
4
RW
DP3 register description
Bit
Bit name
15, 13-0
DP3.y
Function
Port direction register DP3 bit y
0: Port line P3.y is an input (high impedance)
1: Port line P3.y is an output
3
RW
2
RW
1
RW
0
RW
ST10F296E
Parallel ports
ODP3 register
DP3 (F1C6h/E3h)
ESFR
15
14
13
12
-
-
OD
P3.13
-
-
RW
Table 79.
Bit
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
OD
OD
OD OD OD OD OD OD OD OD OD OD
P3.11 P3.10 P3.9 P3.8 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
ODP3 register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13, 11-0
13.5.2
ODP3.y
Port open-drain control register ODP3 bit y
0: Port line P3.y output driver in push-pull mode
1: Port line P3.y output driver in open-drain mode
Alternate functions of Port 3
The pins of Port 3 are used for various functions which include external timer control lines,
the two serial interfaces and the control lines BHE / WRH and CLKOUT.
Table 80.
Port 3 alternative functions
Port 3
pin
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.10
P3.11
P3.12
P3.13
P3.14
P3.15
Alternate function
T0IN
T6OUT
CAPIN
T3OUT
T3EUD
T4IN
T3IN
T2IN
MRST0
MTSR0
TxD0
RxD0
BHE/WRH
SCLK0
--CLKOUT
CAPCOM1 timer 0 count input
Timer 6 toggle output
GPT2 capture input
Timer 3 toggle output
Timer 3 external up/down input
Timer 4 count input
Timer 3 count input
Timer 2 count input
SSC master receive/slave transmit
SSC master transmit/slave receive
ASC0 transmit data output
ASC0 receive data input (/output in synchronous mode)
Byte high enable/write high output
SSC shift clock input/output
No pin assigned
System clock output (either prescaled or not through register XCLKOUTDIV)
139/346
Parallel ports
ST10F296E
Figure 38. Port 3 I/O and alternate functions
Alternate functions
No pin
Port 3
(a)
(b)
P3.15
CLKOUT
P3.13
P3.12
P3.11
P3.10
P3.9
P3.8
P3.7
P3.6
P3.5
P3.4
P3.3
P3.2
P3.1
P3.0
SCLK0
BHE
RxD0
TxD0
MTSR0
MRST0
T2IN
T3IN
T4IN
T3EUD
T3OUT
CAPIN
T6OUT
T0IN
WRH
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
General purpose
input/output
The structure of the Port 3 pins depends on their alternate function (see Figure 39).
When the on-chip peripheral associated with a Port 3 pin is configured to use the alternate
input function, it reads the input latch, which represents the state of the pin, via the line
labeled ‘alternate data input’. Port 3 pins with alternate input functions are: T0IN, T2IN,
T3IN, T4IN, T3EUD and CAPIN.
When the on-chip peripheral associated with a Port 3 pin is configured to use the alternate
output function, its ‘alternate data output’ line is ANDed with the port output latch line. When
using these alternate functions, the user must set the direction of the port line to output
(DP3.y = 1) and the port to output latch (P3.y = 1).If this is not done, the pin is in its high
impedance state (when configured as input) or the pin is stuck at 0 (when the port output
latch is cleared). When the alternate output functions are not used, the ‘alternate data
output’ line is in its inactive state, which is a high level (1). Port 3 pins with alternate output
functions are: T6OUT, T3OUT, TxD0, BHE and CLKOUT.
When the on-chip peripheral associated with a Port 3 pin is configured to use both the
alternate input and output function, the descriptions above apply to the respective current
operating mode. The direction must be set accordingly. Port 3 pins with alternate
input/output functions are: MTSR0, MRST0, RxD0 and SCLK0.
Note:
140/346
Enabling the CLKOUT function automatically enables the P3.15 output driver. Setting bit
DP3.15 = 1 is not required.
ST10F296E
Parallel ports
Figure 39. Block diagram of a Port 3 pin
Write ODP3.y
Open-drain
latch
Read ODP3.y
Write DP3.y
Internal bus
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Direction
latch
Read DP3.y
Alternate
data input
Write P3.y
Port output
latch
Port data
output
&
Output
buffer
P3.y
Read P3.y
Clock
1
MUX
0
Alternate data input
Input
latch
y = 13, 11 to 0
Pin P3.12 (BHE/WRH) is another pin with an alternate output function. However, its
structure is slightly different to the Port 3 pin (see Figure 40). After reset, the BHE or WRH
function must be used. In either case, port latches cannot be programmed before. Thus, the
appropriate alternate function is selected automatically. If BHE/WRH is not used in the
system, this pin can be used for general purpose I/O by disabling the alternate function
(BYTDIS = 1/WRCFG = 0).
Note:
Enabling the BHE or WRH function automatically enables the P3.12 output driver. Setting bit
DP3.12 = 1 is not required. During bus hold, pin P3.12 is switched back to its standard
function and is then controlled by DP3.12 and P3.12. In this case, keep DP3.12 = 0 to
ensure floating in hold mode.
141/346
Parallel ports
ST10F296E
Figure 40. Block diagram of pins P3.15 (CLKOUT) and P3.12 (BHE/WRH)
Write DP3.x
1
1
MUX
Direction
latch
0
Read DP3.x
Internal bus
Alternate
function
enable
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
13.6
Port 4
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Write P3.x
Alternate
data
output
Port output
latch
1
MUX
P3.12/BHE
P3.15/CLKOUT
Output
buffer
0
Read P3.x
Clock
1
MUX
Input
latch
0
x = 15, 12
If this 8-bit port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction register DP4.
13.6.1
Port 4 registers
P4 register
P4 (FFC8h/E4h)
SFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0
-
-
-
-
-
-
-
-
RW
Table 81.
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
P4 register description
Bit
Bit name
7-0
P4.y
Function
Port data register P4 bit y
Only bits 7 to 0 of the P4 register are implemented. All other bits are read as 0.
142/346
1
RW
0
RW
ST10F296E
Parallel ports
DP4 register
DP4 (FFCAh/E5h)
SFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
DP4 DP4 DP4 DP4 DP4 DP4 DP4 DP4
.7
.6
.5
.4
.3
.2
.1
.0
-
-
-
-
-
-
-
-
RW
Table 82.
Bit
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
1
0
RW
RW
DP4 register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
7-0
DP4.y
Port direction register DP4 bit y
0: Port line P4.y is an input (high impedance)
1: Port line P4.y is an output
Only bits 7 to 0 of the DP4 register are implemented. All other bits are read as 0.
ODP4 register
ODP4 (F1CAh/E5h)
ESFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Table 83.
Bit
7-4
7
Reset value: --00h
6
3
2
1
0
OD OD OD OD
P4.7 P4.6 P4.5 P4.4
-
-
-
-
RW
-
-
-
-
RW
5
RW
4
RW
ODP4 register description
Bit name
ODP4.y
Function
Port open-drain control register ODP4 bit y
0: Port line P4.y output driver in push-pull mode
1: Port line P4.y output driver in open-drain mode if P4.y is not a
segment address line output
Only bits 7 to 4 of the ODP4 register are implemented. All other bits are read as 0.
Note:
When I2C is enabled by setting the XPEN and XI2CEN bits of the SYSCON and XPERCON
registers respectively, pins P4.4 and P4.7 become fully dedicated to the I2C interface. All
alternate functions are bypassed (external memory and CAN2 functions). The pins are also
automatically configured as open-drain as requested by the I2C bus standard. The Port 4
control registers P4, DP4 , and ODP4 can no longer control pins P4.7 and P4.4, as writing in
the bits corresponding to P4.4 and P4.7 of these registers has no effect on pin behavior.
143/346
Parallel ports
13.6.2
ST10F296E
Alternate functions of Port 4
During external bus cycles that use segmentation (for address space above 64 Kbytes) a
number of Port 4 pins may output the segment address lines. The number of pins that are
used for segment address output determines the external address space which is directly
accessible. The other pins of Port 4 (if any) may be used for general purpose I/O. If segment
address lines are selected, the alternate function of Port 4 may be required to access
external memory directly after reset. Consequently, Port 4 is switched to this alternate
function automatically.
The number of segment address lines is selected via Port 0 during reset. The selected value
can be read from the bit-field, SALSEL, in register RP0H (a read-only register) to check
configuration during run time.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The CAN interfaces use two or four pins of Port 4 to interface the CAN module to the
external CAN transceiver. In this case the number of possible segment address lines is
reduced. The case is the same when the I2C interface module is used.
Table 84 summarizes the alternate functions of Port 4 depending on the number of selected
segment address lines (coded via bit-field SALSEL).
.
Table 84.
Port 4
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7
Port 4 alternate functions
Standard function
SALSEL = 01
64 Kbytes
GPIO
GPIO
GPIO
GPIO
GPIO/CAN2_RxD/SCL
GPIO/CAN1_RxD
GPIO/CAN1_TxD
GPIO/CAN2_TxD/SDA
Alternate function
SALSEL = 11
256 Kbytes
Segment address A16
Segment address A17
GPIO
GPIO
GPIO/CAN2_RxD/SCL
GPIO/CAN1_RxD
GPIO/CAN1_TxD
GPIO/CAN2_TxD/SDA
Alternate function
SALSEL = 00
1 Mbyte
Alternate function
SALSEL = 10(1)(2)
16 Mbytes
Segment. address A16
Segment address A17
Segment address A18
Segment address A19
GPIO/CAN2_RxD/SCL
GPIO/CAN1_RxD
GPIO/CAN1_TxD
GPIO/CAN2_TxD/SDA
Segment address A16
Segment address A17
Segment address A18
Segment address A19
Segment address A20
Segment address A21
Segment address A22
Segment address A23
1. When SALSEL = 10, CAN1 and CAN2 cannot be used and the external memory has a higher priority on the CAN alternate
functions. Once the I2C is enabled, P4.4 and P4.7 are dedicated to it and it has higher priority on the CAN alternate
functions and on segment address functions.
2. If SALSEL= 10 and I2C is enabled, P4.5 and P4.6 continue to output address lines.
144/346
ST10F296E
Parallel ports
Figure 41. Port 4 I/O and alternate functions
(a)
Alternate functions
Port 4
(b)
A23
A22
A21
A20
A19
A18
A17
A16
P4.7
P4.6
P4.5
P4.4
P4.3
P4.2
P4.1
P4.0
CAN2_TxD / SDA
CAN1_TxD
CAN1_RxD
CAN2_RxD / SCL
A19
A18
A17
A16
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
General purpose
input/output
Segment address
lines
CAN/I2C I/O and segment
address lines
Figure 42. Block diagram of Port 4 pins 3 to 0
Write DP4.y
1
1
MUX
Direction
latch
0
Read DP4.y
Internal bus
Alternate
function
enable
Write P4.y
Alternate
data
output
Port output
latch
1
P4.y
MUX
Output
buffer
0
Read P4.y
Clock
1
MUX
0
Input
latch
y = 3 to 0
145/346
Parallel ports
ST10F296E
Figure 43. Block diagram of pin P4.4
Write ODP4.4
Open-drain
latch
0
Read ODP4.4
0
MUX
1
1
0
MUX
1
Write DP4.4
1
Direction
latch
0
0
MUX
1
1
MUX
0
0
MUX
1
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Read DP4.4
1
Internal bus
Ext. memory
function
enable
Write P4.4
Ext. memory
data output
Port output
latch
1
MUX
0
0
MUX
1
P4.4
Output
buffer
Read P4.4
1
MUX
0
SCL
data output
Clock
Input
latch
XPERCON.1
(CAN2EN)
XPERCON.9
(I2CEN)
SCL
data input
CAN2_RxD
data input
XPERCON.0
(CAN1EN)
&
0
MUX
1
P4.5
&
XMISC.1
(CANPAR)
1. When SALSEL = 10, 8-bit segment address lines are selected and P4.4 outputs the address. Any attempt
to use the CAN2 on P4.4 is masked. However, by enabling the I2C, the segment function is masked, pin
P4.4 is automatically configured as open-drain and used to input and output the SCL alternate function.
2. When CAN parallel mode is selected, CAN2_RxD is remapped on P4.5. This occurs only if CAN1 is also
enabled. If CAN1 is disabled, no remapping occurs.
146/346
ST10F296E
Parallel ports
Figure 44. Block diagram of pin P4.5
Write ODP4.5
Open-drain
latch
0
Read ODP4.5
0
MUX
1
Write DP4.5
1
Direction
latch
1
MUX
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
0
Read DP4.5
0
MUX
1
Internal bus
Ext. memory
function
enable
Write P4.5
Ext. memory
data output
Port output
latch
1
MUX
0
P4.5
Output
buffer
Read P4.5
1
MUX
0
Clock
Input
latch
XPERCON.0
(CAN1EN)
CAN1_RxD
data input
CAN2_RxD
data input
XPERCON.1
(CAN2EN)
&
1
MUX
0
&
P4.4
&
XMISC.1
(CANPAR)
1. When SALSEL = 10, 8-bit segment address lines are selected and P4.5 outputs the address. Any attempt
to use the CAN1 on P4.5 is masked.
2. When CAN parallel mode is selected, CAN2_RxD is remapped on P4.5. This occurs only if CAN1 is also
enabled. If CAN1 is disabled, no remapping occurs.
147/346
Parallel ports
ST10F296E
Figure 45. Block diagram of pin P4.6
Write ODP4.6
Open-drain
latch
0
Read ODP4.6
0
MUX
1
Write DP4.6
1
Direction
latch
0
MUX
1
1
MUX
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
1
Read DP4.6
Ext. memory
Function
Enable
Write P4.6
Port output
latch
0
MUX
1
Read P4.6
1
MUX
0
Ext. memory
data output
1
MUX
0
Output
buffer
P4.6
Clock
Internal bus
Input
latch
CAN1_TxD
data output
CAN2_TxD
data output
0
MUX
1
&
XPERCON.0
(CAN1EN)
XPERCON.1
(CAN2EN)
&
XMISC.1
(CANPAR)
1. When SALSEL = 10, 8-bit segment address lines are selected and P4.6 outputs the address. Any attempt
to use the CAN1 on P4.6 is masked.
2. When CAN parallel mode is selected, CAN2_TxD is remapped on P4.6. This occurs only if CAN1 is also
enabled. If CAN1 is disabled, no remapping occurs.
148/346
ST10F296E
Parallel ports
Figure 46. Block diagram of pin P4.7
Write ODP4.7
Open-drain
latch
0
Read ODP4.7
0
MUX
1
1
0
MUX
1
Write DP4.7
1
Direction
latch
0
MUX
1
1
MUX
0
0
MUX
1
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
1
Read DP4.7
1
Ext. memory
function
enable
Write P4.7
Port output
latch
0
MUX
1
Read P4.7
1
MUX
0
Ext. memory
data output
1
MUX
0
0
MUX
1
Output
buffer
P4.7
Clock
Internal bus
Input
latch
CAN2_TxD
data output
SDA
data output
XPERCON.1
(CAN2EN)
&
XMISC.1
(CANPAR)
XPERCON.9
(I2CEN)
SDA
data input
1. When SALSEL = 10, 8-bit segment address lines are selected and P4.7 outputs the address. Any attempt
to use the CAN2 on P4.7 is masked. However, by enabling the I2C, the segment function is masked, pin
P4.7 is automatically configured as open-drain and used to input and output the SDA alternate function.
2. When CAN parallel mode is selected, CAN2_TxD is remapped on P4.6. This occurs only if CAN1 is also
enabled. If CAN1 is disabled, no remapping occurs.
149/346
Parallel ports
13.7
ST10F296E
Port 5
This 16-bit input port can only read data. There is no output latch and no direction register.
Data written to P5 is lost.
13.7.1
Port 5 registers
P5 register
P5 (FFA2h/D1h)
15
14
13
SFR
12
11
10
9
8
7
Reset value: XXXXh
6
5
4
3
2
1
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P5
.15
P5
.14
P5
.13
P5
.12
P5
.11
P5
.10
P5
.9
P5
.8
P5
.7
P5
.6
P5
.5
P5
.4
P5
.3
P5
.2
P5
.1
P5
.0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Table 85.
13.7.2
P5 register description
Bit
Bit name
15-0
P5.y
Function
Port data register P5 bit y (read-only)
Alternate functions of port 5
Each line of Port 5 is connected to the input multiplexer of the ADC. All port lines (P5.15 to
P5.0) can accept analog signals (AN15 to AN0) which can then be converted by the ADC.
No special programming is required for pins that are used as analog inputs. The upper 6
pins of Port 5 also serve as external timer control lines for GPT1 and GPT2.
Table 86 summarizes the alternate functions of Port 5.
Table 86.
Port 5 alternate functions
Port 5 pin
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7
P5.8
P5.9
P5.10
P5.11
P5.12
P5.13
P5.14
P5.15
150/346
Alternate function (a)
Analog input AN0
Analog input AN1
Analog input AN2
Analog input AN3
Analog input AN4
Analog input AN5
Analog input AN6
Analog input AN7
Analog input AN8
Analog input AN9
Analog input AN10
Analog input AN11
Analog input AN12
Analog input AN13
Analog input AN14
Analog input AN15
Alternate function (b)
T6EUD timer 6 external up/down input
T5EUD timer 5 external up/down input
T6IN timer 6 count input
T5IN timer 5 count input
T4EUD timer 4 external up/down input
T2EUD timer 2 external up/down input
ST10F296E
Parallel ports
Figure 47. Port 5 I/O and alternate functions
Alternate functions
(a)
P5.15
P5.14
P5.13
P5.12
P5.11
P5.10
P5.9
P5.8
P5.7
P5.6
P5.5
P5.4
P5.3
P5.2
P5.1
P5.0
Port 5
(b)
AN15
AN14
AN13
AN12
AN11
AN10
AN9
AN8
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
T2EUD
T4EUD
T5IN
T6IN
T5EUD
T6EUD
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
ADC input
General purpose input
Timer inputs
Port 5 is an input only port where the analog input channels are directly connected to the
pins rather than to the input latches. For these reasons, Port 5 pins have a special port
structure (see Figure 48).
Figure 48. Block diagram of a Port 5 pin
Internal bus
Channel
select
Analog
switch
To sample + hold
circuit
Read Port P5.y
P5.y/ANy
Clock
P5DIDIS.y
Read
buffer
Input
latch
y = 15 to 0
151/346
Parallel ports
13.7.3
ST10F296E
Port 5 analog inputs disturb protection
A Schmitt trigger protection can be activated on each pin of Port 5 by setting the dedicated
bit of register P5DIDIS. This allows the input leakage effect to be reduced.
P5DIDIS register
P5DIDIS (FFA4h/D2h)
15
14
13
SFR
12
11
10
9
8
Reset value: 0000h
7
6
5
4
3
2
1
0
P5D P5D P5D P5D P5D P5D P5D P5D P5D P5D P5D P5D P5D P5D P5D P5D
IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS IDIS
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
RW
RW
Table 87.
13.8
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
c
u
d
P5DIDIS register description
Bit
Bit name
15-0
P5DIDIS.y
Function
)
s
(
t
RW
o
r
P
RW
RW
)
s
t(
Port 5 digital disable register bit y
0: Port line P5.y digital input is enabled (Schmitt trigger enabled)
1: Port line P5.y digital input is disabled (Schmitt trigger disabled)
e
t
e
l
o
s
b
Port 6
O
)
e
t
le
c
u
d
o
r
P
Port 6 is an 8-bit port. If it is used for general purpose I/O, the direction of each line can be
configured via the corresponding direction register DP6. Each port line can be switched into
push-pull or open-drain mode via the open-drain control register ODP6. In the ST10F296E,
SSC1 is implemented on pins P6.5, P6.6, and P6.7. When the module is enabled through
the XPERCON register, the corresponding bits P6, DP6 and ODP6 are overwritten by the
new XSSCPORT register (mapped on the XBus). This allows the user to program pins P6.5,
P6.6, and P6.7 according to the SSC1 configuration.
s
(
t
c
u
d
o
13.8.1
r
P
e
t
e
l
o
u
d
o
P6 register
s
b
O
152/346
r
P
e
P6 (FFCCh/E6h)
t
e
l
o
bs
O
)
s
(
ct
Port 6 registers
o
s
b
O
SFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
P6.7 P6.6 P6.5 P6.4 P6.3 P6.2 P6.1 P6.0
-
-
-
-
-
-
-
RW
-
Table 88.
7
Reset value: --00h
6
RW
5
RW
P6 register description
Bit
Bit name
7-0
P6.y
Function
Port data register P6 bit y
4
RW
3
RW
2
RW
1
RW
0
RW
ST10F296E
Parallel ports
DP6 register
DP6 (FFCEh/E7h)
SFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
DP6 DP6 DP6 DP6 DP6 DP6 DP6 DP6
.7
.6
.5
.4
.3
.2
.1
.0
-
-
-
-
-
-
-
-
RW
0
Table 89.
Bit
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
1
0
RW
RW
DP6 register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
7-0
DP6.y
Port direction register DP6 bit y
0: Port line P6.y is an input (high impedance)
1: Port line P6.y is an output
ODP6 register
ODP6 (F1CEh/E7h)
ESFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
OD OD OD OD OD OD OD OD
P6.7 P6.6 P6.5 P6.4 P6.3 P6.2 P6.1 P6.0
-
-
-
-
-
-
-
-
RW
Table 90.
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
1
0
RW
RW
ODP6 register description
Bit
Bit name
7-0
ODP6.y
Function
Port open-drain control register ODP6 bit y
0: Port line P6.y output driver in push-pull mode
1: Port line P6.y output driver in open-drain mode
153/346
Parallel ports
ST10F296E
XSSCPORT register
This register is enabled and visible only when the XPEN and XSSCEN bits of the SYSCON
and XPERCON registers respectively are set. However, when SSC1 is disabled, P6, DP6
and ODP6 registers must be used to configure pins P6.2, P6.3, and P6.4.
XSSCPORT (E880h)
XBus
Reset value: 0000h
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
XODP
6.4
XP
6.4
XDP
6.4
XODP
6.3
XP
6.3
XDP
6.3
XODP
6.2
XP
6.2
-
-
-
-
-
-
-
-
RW
RW
RW
RW
RW
RW
RW
RW
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 91.
13.8.2
ODP6 register description
Bit
Bit name
7, 4, 1
XODP6.y
6, 3, 0
XP6.y
5, 2
XDP6.y
Function
Port open-drain control register XODP6 bit y (y = 2, 3, and 4 only)
0: Port line P6.y output driver in push-pull mode
1: Port line P6.y output driver in open-drain mode
Port data register bit XP6 y (y = 2, 3, and 4 only)
Port direction register XDP6 bit y (y = 2, 3, and 4 only)
0: Port line P6.y is an input (high impedance)
1: Port line P6.y is an output
Alternate functions of Port 6
A programmable number of chip select signals (CS4 to CS0) derived from the bus control
registers (BUSCON4 to BUSCON0) can be output on five pins of Port 6. The other three
pins may be used for bus arbitration to accommodate additional masters in a ST10F296E
system.
The number of chip select signals are selected via Port 0 during reset. The selected value
can be read from bit-field CSSEL in the RP0H register to check the configuration during run
time.
Table 92 summarizes the alternate functions of Port 6 depending on the number of chip
select lines (coded via bit-field CSSEL) that are selected.
154/346
ST10F296E
Parallel ports
Table 92.
Port 6 alternate functions
Port 6
pin
Alternate function
CSSEL = 10
Alternate function
CSSEL = 01
Alternate function
CSSEL = 00
Alternate function
CSSEL = 11
P6.0
General purpose I/O
Chip select CS0
Chip select CS0
Chip select CS0
P6.1
General purpose I/O
Chip select CS1
Chip select CS1
Chip select CS1
P6.2
General purpose I/O
SCLK1
General purpose I/O
SCLK1
Chip select CS2
SCLK1
Chip select CS2
SCLK1
P6.3
General purpose I/O
MTSR1
General purpose I/O
MTSR1
General purpose I/O
MTSR1
Chip select CS3
MTSR1
P6.4
General purpose I/O
MRST1
General purpose I/O
MRST1
General purpose I/O
MRST1
Chip select CS4
MRST1
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P6.5
HOLD external hold request input
P6.6
HLDA hold acknowledge output
P6.7
BREQ bus request output
Figure 49. Port 6 I/O and alternate functions
Alternate function
Port 6
P6.7
P6.6
P6.5
P6.4
P6.3
P6.2
P6.1
P6.0
General purpose input/output
(a)
(b)
BREQ
HLDA
HOLD
CS4
CS3
CS2
CS1
CS0
Bus arbitration
BREQ
HLDA
HOLD
MRST1
MTSR1
SCLK1
CS1
CS0
XSSC input/output
The chip select lines of Port 6 have an internal weak pull-up device. This device is switched
on under the following conditions:
●
During reset
●
If Port 6 line is used as a chip select output, the ST10F296E is in hold mode, and the
respective pin driver is in push-pull mode (ODP6.x = 0).
The pull-up device is implemented to drive the chip select lines high during reset to avoid
multiple chip selection and to allow another master to access the external memory via the
same chip select lines (AND-wired) while the ST10F296E is in hold mode.
When ODP6.x = 1 (open-drain output selected), the internal pull-up device is active during
hold mode and external pull-up devices must be used in this case. When entering hold
mode the CS lines are actively driven high for one clock phase, at which point the output
level is controlled by the pull-up devices (if activated).
After reset the CS function must be used. In this case, the port latches cannot be
programmed and the alternate function (CS) is selected automatically.
155/346
Parallel ports
Note:
ST10F296E
The open-drain output option can only be selected via software during the initialization
routine. The CS0 signal is in push-pull output driver mode directly after reset (see Figure 50
on page 156).
The bus arbitration signals HOLD, HLDA and BREQ are selected with the HLDEN bit in the
PSW register. When the bus arbitration signals are enabled via HLDEN, these pins are
switched automatically to the appropriate direction. The pin drivers for HLDA and BREQ are
automatically enabled while the pin driver for HOLD is automatically disabled (see Figure 51
on page 157 and Figure 52 on page 158).
Figure 50. Block diagram of Port 6 pins 7, 6, 1, 0
Write ODP6.y
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Open-drain
latch
1
Read ODP6.y
MUX
0
0
Write DP6.y
Internal bus
1
1
MUX
0
Direction
latch
Read DP6.y
Alternate
function
enable
Write P6.y
Port output
latch
Alternate
data
output
1
MUX
0
Output
buffer
P6.y
Read P6.y
Clock
1
MUX
0
156/346
Input
latch
y = (7, 6, 1, 0)
ST10F296E
Parallel ports
Figure 51. Block diagram of pin P6.5
Write ODP6.5
Open-drain
latch
Read ODP6.5
Internal bus
Write DP6.5
Direction
latch
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Read DP6.5
Write P6.5
Port output
latch
Output
buffer
Read P6.5
P6.5/HOLD
Clock
1
MUX
0
Input
latch
Alternate data input
157/346
Parallel ports
ST10F296E
Figure 52. Block diagram of pins P6.2, P6.3, and P6.4
Write ODP6.y
Open-drain
latch
0
Read ODP6.y
1
MUX
0
0
MUX
1
Write DP6.y
Internal bus
1
1
MUX
0
Direction
latch
0
MUX
1
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Read DP6.y
Alternate
function
enable
Write P6.y
Alternate
data output
Port output
latch
1
MUX
0
0
MUX
1
P6.y
Output
buffer
Read P6.y
1
MUX
0
XSSC
data output
&
Clock
Input
latch
Write XODP6.y
Open-drain
latch
Read XODP6.y
Internal XBus
Write XDP6.y
Direction
latch
Read XDP6.y
XPERCON.8
(XSSCEN)
Write XP6.y
Port output
latch
XSSC
data input
Read XP6.y
(y = 2, 3, 4)
158/346
ST10F296E
13.9
Parallel ports
Port 7
This is an 8-bit port. If it is used for general purpose I/O, the direction of each line can be
configured via the corresponding direction register DP7. Each port line can be switched into
push-pull or open-drain mode via the open-drain control register ODP7.
13.9.1
Port 7 registers
P7 register
P7 (FFD0h/E8h)
SFR
7
Reset value: --00h
15
14
13
12
11
10
9
8
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
P7.7 P7.6 P7.5 P7.4 P7.3 P7.2 P7.1 P7.0
-
-
-
-
-
-
-
-
RW
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 93.
RW
RW
RW
RW
RW
RW
RW
P7 register description
Bit
Bit name
7-0
P7.y
Function
Port data register P7 bit y
DP7 register
DP7 (FFD2h/E9h)
SFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
DP7 DP7 DP7 DP7 DP7 DP7 DP7 DP7
.7
.6
.5
.4
.3
.2
.1
.0
-
-
-
-
-
-
-
-
RW
Table 94.
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
1
0
RW
RW
DP7 register description
Bit
Bit name
7-0
DP7.y
Function
Port direction register DP7 bit y
0: Port line P7.y is an input (high impedance)
1: Port line P7.y is an output
159/346
Parallel ports
ST10F296E
ODP7 register
ODP7 (F1D2h/E9h)
ESFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
OD OD OD OD OD OD OD OD
P7.7 P7.6 P7.5 P7.4 P7.3 P7.2 P7.1 P7.0
-
-
-
-
-
-
-
-
RW
Table 95.
Bit
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
1
RW
0
RW
ODP7 register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
7-0
13.9.2
ODP7.y
Port open-drain control register ODP7 bit y
0: Port line P7.y output driver in push-pull mode
1: Port line P7.y output driver in open-drain mode
Alternate functions of Port 7
The upper 4 lines of Port 7 (P7.7 to P7.4) are used as capture inputs or compare outputs
(CC31IO to CC28IO) for the CAPCOM2 unit.
Port 7 lines are connected to the CAPCOM2 unit and handled by software in a similar way to
Port 2 lines (see Section 13.4.2: Alternate functions of Port 2 on page 134.
The capture input function of pins P7.7 to P7.4 can be used as external interrupt inputs with
a sample rate of eight CPU clock cycles.
The lower 4 lines of Port 7 (P7.3 to P7.0) supports outputs of the PWM module (POUT3 to
POUT0). At these pins, the value of the respective port output latch is XORed with the value
of the PWM output rather than ANDed. This allows the alternate output value to be used as
it is (port latch holds a 0) or to be inverted at the pin (port latch holds a 1).
The PWM outputs must be enabled via the respective PENx bit in the PWMCON1 register.
Table 96 summarizes the alternate functions of Port 7.
Table 96.
Port 7 alternate functions
Port 7 pin
P7.0
P7.1
P7.2
P7.3
P7.4
P7.5
P7.6
P7.7
160/346
Alternate function
POUT0
POUT1
POUT2
POUT3
CC28 I/O
CC29 I/O
CC30 I/O
CC31 I/O
PWM mode channel 0 output
PWM mode channel 1 output
PWM mode channel 2 output
PWM mode channel 3 output
Capture input/compare output channel 28
Capture input/compare output channel 29
Capture input/compare output channel 30
Capture input/compare output channel 31
ST10F296E
Parallel ports
Figure 53. Port 7 I/O and alternate functions
Port 7
CC31IO
CC30IO
CC29IO
CC28IO
POUT3
POUT2
POUT1
POUT0
P7.7
P7.6
P7.5
P7.4
P7.3
P7.2
P7.1
P7.0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Alternate function
General purpose input/output
The structure of Port 7 differs from the other ports in the way the output latches are
connected to the internal bus and to the pin driver (see Figure 54 on page 161 and
Figure 55 on page 162).
Pins P7.3 to P7.0 (POUT3 to POUT0) XOR the alternate data output with the port latch
output. This allows alternate data to be used directly or inverted at the pin driver.
Pins P7.7 to P7.4 (CC31IO to CC28IO) combine internal bus data and alternate data output
before the port latch input.
Figure 54. Block diagram of Port 7 pins 3 to 0
Write ODP7.y
Open-drain
latch
Read ODP7.y
Internal bus
Write DP7.y
Direction
latch
Read DP7.y
Alternate
data
output
Write P7.y
Port output
latch
Port data
output
=1
Output
buffer
P7.y/POUTy
XOR
Read P7.y
Clock
1
MUX
0
Input
latch
y = (3 to 0)
161/346
Parallel ports
ST10F296E
Figure 55. Block diagram of Port 7 pins 7 to 4
Write ODP7.y
Open-drain
latch
Read ODP7.y
Write DP7.y
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Internal bus
Direction
latch
Read DP7.y
1
Alternate
data
output
Output
latch
MUX
Output
buffer
0
Write Port P7.y
Compare trigger
P7.y
CCzIO
Š1
Read P7.y
Clock
1
MUX
0
Alternate latch data input
Alternate pin data input
162/346
Input
latch
y = (7 to 4)
z = (31 to 28)
ST10F296E
13.10
Parallel ports
Port 8
This is an 8-bit port. If it is used for general purpose I/O, the direction of each line can be
configured via the corresponding direction register DP8. Each port line can be switched into
push-pull or open-drain mode via the open-drain control register ODP8.
In the ST10F296E, XASC (or ASC1) is implemented on pins P8.6 and P8.7. When the
module is enabled through the XPERCON register, the corresponding bits P8, DP8 and
ODP8 are overwritten by the new XS1PORT register (mapped on the XBus). This allows the
user to program pins P8.6 and P8.7 according to the ASC1 configuration.
13.10.1
Port 8 registers
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P8 register
P8 (FFD4h/EAh)
SFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
P8.7 P8.6 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0
-
-
-
-
-
-
-
-
RW
Table 97.
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
1
0
RW
RW
P8 register description
Bit
Bit name
7-0
P8.y
Function
Port data register P8 bit y
DP8 register
DP8 (FFD6h/EBh)
SFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
DP8 DP8 DP8 DP8 DP8 DP8 DP8 DP8
.7
.6
.5
.4
.3
.2
.1
.0
-
-
-
-
-
-
-
-
RW
Table 98.
7
Reset value: --00h
6
RW
5
RW
4
RW
3
RW
2
RW
1
0
RW
RW
DP8 register description
Bit
Bit name
7-0
DP8.y
Function
Port direction register DP8 bit y
0: Port line P8.y is an input (high impedance)
1: Port line P8.y is an output
163/346
Parallel ports
ST10F296E
ODP8 register
ODP8 (F1D6h/EBh)
ESFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
OD OD OD OD OD OD OD OD
P8.7 P8.6 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0
-
-
-
-
-
-
-
-
RW
Table 99.
Bit
7
Reset value: --00h
6
5
RW
4
RW
RW
3
RW
2
RW
1
RW
0
RW
ODP8 register description
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
7-0
ODP8.y
Port open-drain control register ODP8 bit y
0: Port line P8.y output driver in push-pull mode
1: Port line P8.y output driver in open-drain mode
XS1PORT register
This register is enabled and visible only when the XPEN and XASCEN bits of the SYSCON
and XPERCON registers respectively are set. However, when ASC1 is disabled, the
standard P8, DP8 and ODP8 registers must be used to configure pins P8.6 and P8.7.
XS1PORT (E980h)
XBus
Reset value: 0000h
15
14
13
12
11
10
9
8
7
6
5
4
-
-
-
-
-
-
-
-
-
-
XOD
X
XD
P8.7 P8.7 P8.7
XOD
X
XD
P8.6 P8.6 P8.6
-
-
-
-
-
-
-
-
-
-
RW
RW
RW
3
RW
Table 100. XS1PORT register description
164/346
Bit
Bit name
5, 2
XODP8.y
4, 1
XP8.y
3, 0
XDP8.y
Function
Port open-drain control register bit y (y = 6, 7 only)
0: Port line P8.y output driver in push-pull mode
1: Port line P8.y output driver in open-drain mode
Port data register bit y (y = 6, 7 only)
Port direction register bit y (y = 6, 7 only)
0: Port line P8.y is an input (high impedance)
1: Port line P8.y is an output
2
1
RW
0
RW
ST10F296E
13.10.2
Parallel ports
Alternate functions of Port 8
All Port 8 lines (P8.7 to P8.0) support capture inputs or compare outputs (CC23IO to
CC16IO) for the CAPCOM2 unit (see Table 101). See Section 13.4.2: Alternate functions of
Port 2 on page 134 for the use of the port lines by the CAPCOM unit, its accessibility via
software, and precautions, all of which are the same as described for Port 2 lines.
The capture input function of pins P8.7 to P8.0 can be used as external interrupt inputs with
a sample rate of eight CPU clock cycles. The pins of Port 8 combine internal bus data and
alternate data output before the port latch input.
Table 101. Port 8 alternate functions
Port 8
pin
Alternate function (a)
Alternate function (b)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P8.0
CC16IO
Capture input/compare output ch. 16
-
P8.1
CC17IO
Capture input/compare output ch. 17
-
P8.2
CC18IO
Capture input/compare output ch. 18
-
P8.3
CC19IO
Capture input/compare output ch. 19
-
P8.4
CC20IO
Capture input/compare output ch. 20
-
P8.5
CC21IO
Capture input/compare output ch. 21
-
P8.6
CC22IO
Capture input/compare output ch. 22
RxD1 XASC receive data input/output
P8.7
CC23IO
Capture input/compare output ch. 23
TxD1 XASC transmit data output
Figure 56. Port 8 I/O and alternate functions
Alternate function
Port 8
P8.7
P8.6
P8.5
P8.4
P8.3
P8.2
P8.1
P8.0
General purpose input/output
(a)
(b)
CC23IO
CC22IO
CC21IO
CC20IO
CC19IO
CC18IO
CC17IO
CC16IO
CAPCOM2 input/output
TxD1
RxD1
-
XASC input/output
165/346
Parallel ports
ST10F296E
Figure 57. Block diagram of P8 pins 5 to 0
Write ODP8.y
Open-drain
latch
Read ODP8.y
Write DP8.y
Direction
latch
Read DP8.y
Internal bus
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CCzIO
data output
1
MUX
0
Write P8.y
Port output
latch
P8.y
Output
buffer
≥1
Compare trigger
Read P8.y
Clock
1
MUX
0
CCzIO
latch data input
CCzIO
data input
166/346
Input
latch
(y = 5 to 0)
(z = 21 to 16)
ST10F296E
Parallel ports
Figure 58. Block diagram of pin P8.6
Write ODP8.6
Open-drain
latch
0
MUX
1
Read ODP8.6
Internal bus
Write DP8.6
Direction
latch
0
MUX
1
Read DP8.6
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CC22IO
data output
1
MUX
0
Write P8.6
Port output
latch
0
MUX
1
≥1
RxD1
data output
Compare trigger
P8.6
Output
buffer
&
Read P8.6
Clock
1
MUX
0
Input
latch
Write XODP8.6
Open-drain
latch
Read XODP8.6
Internal XBus
Write XDP8.6
Direction
latch
Read XDP8.6
XPERCON.7
(XASCEN)
Write XP8.6
Port output
latch
Read XP8.6
CC22IO
latch data input
CC22IO
data input
RxD1
data input
167/346
Parallel ports
ST10F296E
Figure 59. Block diagram of pin P8.7
Write ODP8.7
Open-drain
latch
0
MUX
1
Read OD8.7
Write DP8.7
Internal bus
Direction
latch
0
MUX
1
Read DP8.7
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CCzIO
data output
1
MUX
0
Write P8.7
Port output
latch
0
MUX
1
≥1
TxD1
data output
Compare trigger
&
Read P8.7
Clock
1
MUX
0
Input
latch
Write XODP8.7
Open-drain
latch
Read XODP8.7
Internal XBus
Write XDP8.7
Direction
latch
Read XDP8.7
XPERCON.7
(XASCEN)
Write XP8.7
Port output
latch
Read XP8.7
CC23IO
latch data input
CC23IO
data input
168/346
P8.7
Output
buffer
ST10F296E
13.11
Parallel ports
XPort 9
XPort 9 is enabled by setting the XPEN and XPORTEN bits of the SYSCON and XPERCON
registers respectively. On the XBus interface, the registers are not bit-addressable.
This 16-bit port is used for general purpose I/O. The direction of each line can be configured
via the corresponding direction register XDP9. Each port line can be switched into push-pull
or open-drain output mode via the open-drain control register XODP9. The port lines can
also be switeched into TTL/CMOS input through the input threshold control register
XPICON9 (Section 13.1.2: Input threshold control on page 121).
All port lines can be individually (bit-wise) programmed. The ‘bit-addressable’ feature is
available via specific ‘set’ and ‘clear’ registers: XP9SET, XP9CLR, XDP9SET, XDP9CLR,
XODP9SET, XODP9CLR, XPICON9SET, and XPICON9CLR.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13.11.1
XPort 9 registers
XP9 register
XP9 (EB80h)
15
14
XBus
13
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 102. XP9 register description
Bit
Bit name
15-0
XP9.y
Function
Port data register XP9 bit y
XP9SET register
XP9SET (EB82h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9
SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 103. XP9SET register description
Bit
Bit name
15-0
XP9SET.y
Function
Writing a 1 sets the corresponding bit of the XP9.y register. Writing a 0
has no effect.
169/346
Parallel ports
ST10F296E
XP9CLR register
XP9CLR (EB84h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9 XP9
CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 104. XP9CLR register description
Bit
Bit name
15-0
XP9CLR.y
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Writing a 1 clears the corresponding bit of the XP9.y register. Writing a 0
has no effect.
XDP9 register
XDP9 (EB86h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP
9.15 9.14 9.13 9.12 9.11 9.10 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 105. XDP9 register description
Bit
Bit name
15-0
XDP9.y
Function
Port direction register XDP9 bit y
0: Port line XP9.y is an input (high impedance)
1: Port line XP9.y is an output
XDP9SET register
XDP9SET (EB88h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP
9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE 9SE
T.15 T.14 T.13 T.12 T.11 T.10 T.9 T.8 T.7 T.6 T.5 T.4 T.3 T.2 T.1 T.0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 106. XDP9SET register description
170/346
Bit
Bit name
15-0
XDP9SET.y
Function
Writing a 1 sets the corresponding bit of the XDP9.y register. Writing a 0
has no effect.
ST10F296E
Parallel ports
XDP9CLR register
XDP9CLR (EB8Ah)
15
14
13
XBus
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP XDP
9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL 9CL
R.15 R.14 R.13 R.12 R.11 R.10 R.9 R.8 R.7 R.6 R.5 R.4 R.3 R.2 R.1 R.0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 107. XDP9CLR register description
Bit
Bit name
Function
15-0
XDP9CLR.y
Writing a 1 clears the corresponding bit of the XDP9.y register. Writing a 0
has no effect.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
XODP9 register
XODP9 (EB8Ch)
15
14
13
XBus
12
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO
DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9
.15 .14 .13 .12 .11 .10
.9
.7
.6
.5
.4
.3
.2
.1
.0
.8
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 108. XODP9 register description
Bit
Bit name
15-0
XODP9.y
Function
Port open-drain control register XODP9 bit y
0: Port line XP9.y output driver in push-pull mode
1: Port line XP9.y output driver in open-drain mode
XODP9SET register
XODP9SET (EB8Eh)
15
14
13
12
XBus
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO
DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9
SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 109. XODP9SET register description
Bit
Bit name
Function
15-0
XODP9SET.y
Writing a 1 sets the corresponding bit of the XODP9.y register. Writing a 0
has no effect.
171/346
Parallel ports
ST10F296E
XODP9CLR register
XODP9CLR (EB90h)
15
14
13
12
XBus
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO
DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9 DP9
CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
.15 .14 .13 .12 .11 .10
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 110. XODP9CLR register description
)
s
(
t
c
u
d
o
)
r
13.12
XPort 10
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Bit
Bit name
Function
Writing a 1 clears the corresponding bit of the XODP9.y register. Writing a
XODP9CLR.y
0 has no effect.
15-0
XPort 10 is enabled by setting the XPEN and XPORT10EN/XPORT9EN bits of the
SYSCON and XPERCON registers respectively. On the XBus interface, the register are not
bit-addressable. This 16-bit input port can only read data. There is no output latch and no
direction register. Data written to XP10 are lost.
13.12.1
XPort 10 registers
XP10 register
XP10 (EBC0h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: XXXXh
6
5
4
3
2
1
0
XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1
0.15 0.14 0.13 0.12 0.11 0.10 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
R
R
R
R
R
R
R
R
R
R
R
Table 111. XP10 register description
172/346
Bit
Bit name
15-0
XP10.y
Function
Port data register XP10 bit y
R
R
R
R
R
ST10F296E
13.12.2
Parallel ports
Alternate functions of XPort 10
Each line of XPort 10 is also connected to a multiplexer of the ADC. All port lines (XP10.15
to XP10.0) can accept analog signals (AN31 to AN16) that can be converted by the ADC.
No special programming is required for pins that are used as analog inputs. Table 112
summarizes the alternate functions of XPort 10.
Table 112. XPort 10 alternate functions
XPort 10 pin
Alternate function
XP10.0
XP10.1
XP10.2
XP10.3
XP10.4
XP10.5
XP10.6
XP10.7
XP10.8
XP10.9
XP10.10
XP10.11
XP10.12
XP10.13
XP10.14
XP10.15
Analog input AN16
Analog input AN17
Analog input AN18
Analog input AN19
Analog input AN20
Analog input AN21
Analog input AN22
Analog input AN23
Analog input AN24
Analog input AN25
Analog input AN26
Analog input AN27
Analog input AN28
Analog input AN29
Analog input AN30
Analog input AN31
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 60. XPort 10 I/O and alternate functions
Alternate functions
XPort 10
XP10.15
XP10.14
XP10.13
XP10.12
XP10.11
XP10.10
XP10.9
XP10.8
XP10.7
XP10.6
XP10.5
XP10.4
XP10.3
XP10.2
XP10.1
XP10.0
General purpose input
(a)
AN31
AN30
AN29
AN28
AN27
AN26
AN25
AN24
AN23
AN22
AN21
AN20
AN19
AN18
AN17
AN16
ADC input
173/346
Parallel ports
ST10F296E
XPort 10 pins have a special port structure (see Figure 61) because the port is input only
and because the analog input channels are directly connected to the pins rather than to the
input latches.
Figure 61. Block diagram of an XPort 10 pin
Channel
select
Analog
switch
Internal bus
To sample + hold
circuit
XP10.y/AN(y+16)
Read port XP10.y
Clock
XP10DIDIS.y
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Input
latch
Read
buffer
13.12.3
y = 15 to 0
XPort 10 analog inputs disturb protection
The XP10DIDIS, XP10DIDISSET, and XP10DIDISCLR registers are provided for additional
disturb protection support on the analog inputs. Once one bit of any of the registers is set,
the corresponding pin can no longer be used as general purpose input.
XP10DIDIS register
XP10DIDIS (EBD2h)
15
14
13
12
XBus
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1
0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI
DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
Table 113. XP10DIDIS register description
Bit
15-0
174/346
Bit name
Function
XPort 10 digital disable register bit y
0: Port line XP10.y digital input is enabled (Schmitt trigger enabled)
XP10DIDIS.y
1: Port line XP10.y digital input is disabled (Schmitt trigger disabled,
necessary for input leakage current reduction).
ST10F296E
Parallel ports
XP10DIDISSET register
XP10DIDISSET (EBD4h)
15
14
13
12
XBus
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1
0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI
DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS
SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET
.15 .14 .13 .12 .11 .10
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 114. XP10DIDISSET register description
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Bit
Bit name
15-0 XP10DIDISSET.y
Function
Writing a 1 sets the corresponding bit of the XP10DIDIS.y register. Writing
a 0 has no effect.
XP10DIDISCLR register
XP10DIDISCLR (EBD6h)
15
14
13
12
XBus
11
10
9
8
7
Reset value: 0000h
6
5
4
3
2
1
0
XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1 XP1
0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI 0DI
DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS DIS
CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR
.1
.0
.2
.5
.4
.3
.6
.8
.7
.9
.15 .14 .13 .12 .11 .10
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Table 115. XP10DIDISCLR register description
Bit
Bit name
15-0 XP10DIDISCLR.y
Function
Writing a 1 clears the corresponding bit of the XP10DIDIS.y register.
Writing a 0 has no effect.
175/346
Analog-to-digital converter (ADC)
14
ST10F296E
Analog-to-digital converter (ADC)
A 10-bit ADC with 16+16 multiplexed input channels and a sample and hold circuit is
integrated on-chip. An automatic self-calibration adjusts the ADC module to process
parameter variations at each reset event. The sample time (for loading the capacitors) and
the conversion time is programmable and can be adjusted to the external circuitry.
The ADC input bandwidth is limited by the achievable accuracy as follows: If a maximum
error of 0.5 LSB (2 mV) impacts the global TUE (TUE also depends on other causes) in the
worst case of temperature and process, the maximum frequency for a sine wave analog
signal is around 7.5 kHz. To reduce the effect of the input signal variation on the accuracy to
0.05 LSB, the maximum input frequency of the sine wave should be reduced to 800 Hz.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
If static signal is applied during the sampling phase, the series resistance should not be
greater than 20 kΩ (takingeventual input leakage into account). It is suggested not to
connect any capacitance on analog input pins, to reduce the effect of charge partitioning
(and consequent voltage drop error) between the external and the internal capacitance. If an
RC filter is necessary the external capacitance must be greater than 10 nF to minimize the
accuracy impact.
Overrun error detection/protection is controlled by the ADDAT register. Either, an interrupt
request is generated when the result of a previous conversion has not been read from the
result register at the time the next conversion is complete, or, the next conversion is
suspended until the previous result has been read. For applications which require less than
16 analog input channels, the remaining channel inputs can be used as digital input port
pins. The ADC of the ST10F296E supports different conversion modes:
176/346
●
Single channel single conversion: The analog level of the selected channel is
sampled once and converted. The result of the conversion is stored in the ADDAT
register.
●
Single channel continuous conversion: The analog level of the selected channel is
repeatedly sampled and converted. The result of the conversion is stored in the ADDAT
register.
●
Auto scan single conversion: The analog level of the selected channels are sampled
once and converted. After each conversion the result is stored in the ADDAT register.
The data can be transferred to the RAM by interrupt software management or using the
PEC data transfer.
●
Auto scan continuous conversion: The analog level of the selected channels are
repeatedly sampled and converted. The result of the conversion is stored in the ADDAT
register. The data can be transferred to the RAM by interrupt software management or
using the PEC data transfer.
●
Wait for ADDAT read mode: The ADWR bit of the ADCON control register must be
activated to avoid overwriting the result of a current conversion by the next one, when
using continuous modes. This is because until the ADDAT register is read, the new
result is stored in a temporary buffer and the conversion is on hold.
●
Channel injection mode: When using continuous modes, a selected channel can be
converted between two of the continuous conversions without changing the current
operating mode. The 10-bit data of the conversions are stored in the ADRES field of the
ADDAT2 register. The current continuous mode remains active after the single
conversion is completed.
ST10F296E
14.1
Analog-to-digital converter (ADC)
Mode selection and operation
The analog input channels AN0 to AN15 are alternate functions of Port 5 which is a 16-bit
input-only port (see Section 13.7.2: Alternate functions of port 5 on page 150). Port 5 lines
may either be used as analog or digital inputs. No special action is required to configure the
lines as analog inputs. An additional register P5DIDIS can be used to protect the ADC input
analog section from disabling the digital input section.
The analog input channels AN16 to AN31 are alternate functions of XPort 10 which is also a
16-bit input-only port (see Section 13.12.2: Alternate functions of XPort 10 on page 173).
XPort 10 lines may also be used as either analog or digital inputs and the additional
XP10DIDIS register can be used to protect the ADC input analog section from disabling the
digital input section.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
To configure XPort 10 lines as analog inputs, it is first recommended to set register
XP10DIDIS. Next, bit ADCMUX of register XMISC must be set. This ensures that all analog
input channels of Por t5 are disabled and that the analog signal to the ADC is provided
through the XPort 10 pins.
Note:
Both the XMISC and XP10DIDIS registers can be accessed only after the XMISCEN and
XPEN bits of the XPERCON and SYSCON registers have been set.
177/346
Analog-to-digital converter (ADC)
ST10F296E
Figure 62. ADC block diagram
AN31
XP10.15
:
:
8
Analog
input
channels
:
:
AN24
XP10.8
AN23
XP10.7
ADCMUX
1
ADCON
:
:
8
Analog
input
channels
:
:
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Conversion
control
ADEIR
AN16
XP10.0
MUX
32-16
MUX
16-1
S+H
10-bit
converter
:
:
8
Analog
input
channels
:
:
AN7
P5.7
:
:
8
Analog
input
channels
:
:
AN0
P5.0
178/346
VAREF
0
Interrupt
requests
Result reg. ADDAT
Result reg. ADDAT2
AN15
P5.15
AN8
P5.8
ADCIR
VAGND
ST10F296E
Analog-to-digital converter (ADC)
Table 116. ADC programming at fCPU = 64 MHz
ADCTC
ADSTC
Sample
Comparison
Extra
Total convertion
00
00
0.94 µs
1.88 µs
0.22 µs
3.03 µs
00
01
1.09 µs
2.19 µs
0.13 µs
3.41 µs
00
10
1.56 µs
2.19 µs
0.41 µs
4.16 µs
00
11
3.13 µs
2.19 µs
0.34 µs
5.66 µs
11
00
1.88 µs
3.75 µs
0.41 µs
6.03 µs
11
01
2.19 µs
4.38 µs
0.22 µs
6.78 µs
11
10
3.13 µs
4.38 µs
0.78 µs
8.28 µs
11
11
6.25 µs
4.38 µs
0.41 µs
11.28 µs
10
00
3.75 µs
7.50 µs
0.78 µs
12.03 µs
10
01
4.38 µs
8.75 µs
0.41 µs
13.53 µs
10
10
6.25 µs
8.75 µs
1.53 µs
16.53 µs
10
11
12.5 µs
8.75 µs
1.28 µs
22.53 µs
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
14.2
Calibration
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
Total conversion time is compatible with the formula valid for the ST10F280, but, the
meaning of the bit fields ADCTC and ADSTC is not. The minimum conversion time is
388 TCL, which at 40 MHz CPU frequency corresponds to 4.85 µs (see the ST10F280
datasheet). ST10F296E devices can target a maximum CPU frequency of 64 MHz. This
means that the minimum conversion time is around 3 µs.
A full calibration sequence is performed after a reset. It lasts 40.629 ± 1 CPU clock cycles.
During this time, the busy flag, ADBSY, is set to indicate the operation. It compensates the
capacitance mismatch, so, the calibration procedure does not need to be updated during
normal operation.
No conversion can be performed during the calibration time. The ADBSY bit must be polled
to verify when calibration is over, and the module can start a convertion.
At the end of the calibration, both the ADCIR and ADEIR flags are set, because the
calibration process repeatedly writes spurious conversion results inside the ADDAT register.
Consequently, before starting a conversion, the application performs a dummy read of the
ADDAT register and clears the two flags in the ADC initialization routine.
Note:
If the ADDAT register is not read before starting the first conversion, and if a ‘wait for read
mode’ is entered (by setting the ADWR bit), the ADC is stacked waiting for the register
ADDAT read. This is because the result of the current conversion cannot be immediately
written inside the ADDAT register which contains the results of the calibration.
179/346
Analog-to-digital converter (ADC)
14.3
ST10F296E
XTimer module
The XTimer module is a 16-bit up/down counter with a 4-bit exponential scaler dedicated to
the channel injection mode of the ADC. This mode injects channel into a running sequence
without disturbing it. The PEC stores the conversion results in the memory without entering
and exiting interrupt routines for each data transfer.
A channel injection can be triggered by an event on the capture/compare CC31 (Port P7.7)
of the CAPCOM2 unit by externally connecting the dedicated output XADCINJ of the XTimer
to the input P7.7/CC31. The ADC exclusively converts Port 5 or XPort 10 inputs. If one ‘y’
channel has to be used continuously in injection mode, it must be externally connected by
hardware to Port5.y and XPort10.y inputs.
The XTimer peripheral is enabled by setting the XPEN bit of the SYSCON register and bit
10 of the XPERCON register.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
14.3.1
Main features
Main features include:
–
16-bit linear timer with 4-bit exponential prescaler
–
Counting between 16-bit ‘start value’ and 16-bit ‘end value’
–
Counting period between four cycles and 233 cycles (62.5 ns and 134 s using 64
MHz CPU clock)
–
1 trigger output (XADCINJ)
Programmable functions include:
–
Up/down counting
–
Reload enable
–
Continue/stop modes
Figure 63. XTimer block diagram
Data bus
XBus interface
XB_CLK
XTCR
register
Exponential
scaler
XTEVR
register
XADCINJ
XADCINJ
180/346
XTSVR
register
XTCVR
register
= +1 -1
ST10F296E
Analog-to-digital converter (ADC)
Clock
The XTCVR register clock is the prescaler output. The prescaler allows the basic register
frequency to be divided, therebyoffering a wide range of counting periods, from 22 to 233
cycles.
Registers
The XTCVR register input is linked to several sources:
●
XTSVR register (start value) for reload when the period is finished, or for load when the
timer is starting.
●
Incrementer output when the ‘up’ mode is selected
●
Decrementer output when the ’down’ mode is selected
●
Selection between sources is made through the XTCR control register.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
By setting the TEN bit of the XTCR register to 1 when starting the timer, XTCVR is loaded
with the XTSVR value on the first rising edge of the counting clock (XB_CLK in Figure 63).
The XTCVR register output is continuously compared to the XTEVR register to detect the
end of the counting period. When the registers are equal, several things are done
depending on the XTCR control register content:
●
The output XADCINJ trigger event is generated conditionally depending on the TOE
control bit.
●
XTCVR is loaded with XTSVR, or it stops, or it continues to count (see Table 117:
Different counting modes on page 181).
XTEVR, XTSVR and all the XTCR bits except TEN must not be modified while the timer is
counting (while XTCR.TEN = 1). The timer can be configured only when it is stopped (TEN =
0). If this rule is not respected, timer behavior is not guaranteed. When programming the
timer, the XTEVR, XTSVR and XTCR bits (except TEN) can be modified, with TEN = 0. The
timer is started by modifying the TEN bit. To stop the timer, the TEN bit is modified from 1 to
0. To avoid any problems, it is recommended to modify the XTCR register in two steps: First,
by writing the new value without setting the TEN bit and second, by re-writing the new value
with the the TEN bit set.
.
Table 117. Different counting modes
TLE
TCS
TCVR(n) = TEVR
TUD
TEN
x
x
x
x
0
TCVR (n+1)
comments
Timer disable
TCVR (n)
x
0
1
x
x
0
x
Stop
Decrement
0
0
1
TCVR (n)-1
1
Decrement (continue)
1
x
x
0
Increment
1
Note:
0
1
1
1
1
1
TCVR (n)+1
Increment (continue)
x
TSVR
Load
Setting the TEN bit to 1 loads the XTCVR register with the TSVR value. If the ‘down’ counter
mode is selected and XTSVR is less then XTEVR, the XTCVR is loaded with the XTSVR
value, but, the timer does not start to count (the current value is hold). The same behavior
occurs in up counter mode (TUD = 1) if TSVR > TEVR.
181/346
Analog-to-digital converter (ADC)
ST10F296E
Timer output
The trigger output, XADCINJ, is generated when the current value of the timer (XTCVR)
matches the end value stored in the XTEVR register and when the output enable bit is set
(XTCR.TOE = 1). If the output enable bit is reset, no event is generated regardless of the
timer status (the XADINJ pin is kept at high impedance state).
The XADCINJ output trigger event is a positive pulse of 12 CPU clock cycles width (187 ns
@64 MHz). To generate an ADC channel injection it has to be externally connected to the
input P7.7/CC31 (CAPCOM2 capture/compare).
The ADC exclusively converts Port 5 or XPort 10 inputs. If one ‘y’ channel has to be used
continuously in injection mode, it must be externally connected by hardware to Port5.y and
XPort10.y inputs.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
182/346
ST10F296E
15
Serial channels
Serial channels
Serial communication with other microcontrollers, microprocessors, terminals or external
peripheral components is provided by up to four serial interfaces: Two
asynchronous/synchronous serial channels (ASC0 and ASC1) and two high-speed
synchronous serial channels (SSC0 and SSC1). Dedicated baud rate generators set up all
standard baud rates without needing to tune the oscillator. For transmission, reception and
erroneous reception, separate interrupt vectors are provided for ASC0 and SSC0 serial
channels. A more complex mechanism of interrupt source multiplexing is implemented for
ASC1 and SSC1 (XBus mapped).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15.1
Asynchronous/synchronous serial interface (ASC0)
The asynchronous/synchronous serial interfaces (ASC0) provides serial communication
between the ST10F296E and other microcontrollers, microprocessors or external
peripherals.
15.1.1
ASC0 in asynchronous mode
In asynchronous mode, 8- or 9-bit data transfer, parity generation and the number of stop
bits can be selected. Parity framing and overrun error detection is provided to increase the
reliability of data transfers. Transmission and reception of data is double-buffered. Fullduplex communication up to 2 Mbauds (at 64 MHz of fCPU) is supported in this mode. For
reference, see Figure 64.
183/346
Serial channels
ST10F296E
Figure 64. Asynchronous mode of serial channel ASC0
Reload register
CPU
clock
2
S0R
16
Baud rate timer
S0M S0STP
S0FE S0PE S0OE
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
S0RIR
Receive interrupt
request
Serial port control
S0TIR
Transmit interrupt
request
Shift clock
S0EIR
Error interrupt
request
Clock
S0REN
S0FEN
S0PEN
S0OEN
Input
RxD0
S0LB
Pin
0
1
MUX
Sampling
Transmit shift
register
Receive shift
register
Pin
TxD0
output
Receive buffer
register S0RBUF
Transmit buffer
register S0TBUF
Internal bus
15.1.2
Asynchronous mode baud rates
For asynchronous operation, the baud rate generator provides a clock with 16 times the rate
of the established baud rate. Every received bit is sampled at the 7th, 8th and 9th cycle of
this clock. The baud rate for asynchronous operations of serial channel ASC0 and the
required reload value for a given baud rate can be determined by the following formulae:
B Async = f CPU ⁄ 16 × [ 2 + ( S0BRS ) ] × [ ( S0BRL ) + 1 ]
S0BRL = ( f CPU ⁄ 16 × [ 2 + ( S0BRS ) ] × B Async ) – 1
(S0BRL) represents the content of the reload register, taken as an unsigned 13-bit integer.
(S0BRS) represents the value of the S0BRS bit (0 or 1), taken as an integer.
Using the above equations, the maximum baud rate can be calculated for any given clock
speed. Baud rate versus the reload register value (for both S0BRS = 0 and S0BRS = 1) is
described in Table 118 and Table 119 for a CPU clock frequency equal to 40 MHz and 64
MHz respectively.
184/346
ST10F296E
Serial channels
Table 118. Commonly used baud rates by reload value and deviation error
(fCPU = 40 MHz)
S0BRS = 0, fCPU = 40 MHz
Baud rate
(baud)
Deviation error(1) Reload value
(%)
(hex)
S0BRS = 1, fCPU = 40 MHz
Baud rate
(baud)
Deviation error(1)
(%)
Reload value
(hex)
1 250 000
0.0/0.0
0000/0000
833 333
0.0/0.0
0000/0000
112 000
1.5/-7.0
000A/000B
112 000
6.3/-7.0
0006/0007
56 000
1.5/-3.0
0015/0016
56 000
6.3/-0.8
000D/000E
38 400
1.7/-1.4
001F/0020
38 400
3.3/-1.4
0014/0015
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
19 200
0.2/-1.4
0040/0041
19 200
0.9/-1.4
002A/002B
9 600
0.2/-0.6
0081/0082
9 600
0.9/-0.2
0055/0056
4 800
0.2/-0.2
0103/0104
4 800
0.4/-0.2
00AC/00AD
2 400
0.2/0.0
0207/0208
2 400
0.1/-0.2
015A/015B
1 200
0.1/0.0
0410/0411
1 200
0.1/-0.1
02B5/02B6
600
0.0/0.0
0822/0823
600
0.1/0.0
056B/056C
300
0.0/0.0
1045/1046
300
0.0/0.0
0AD8/0AD9
153
0.0/0.0
1FE8/1FE9
102
0.0/0.0
1FE8/1FE9
1. The deviation errors given above are rounded. To avoid deviation errors use a baud rate crystal (providing
a multiple of the ASC0 sampling frequency).
Table 119. Commonly used baud rates by reload value and deviation error
(fCPU = 64 MHz)
S0BRS = 0, fCPU = 64 MHz
Baud rate
(baud)
Deviation error(1) Reload value
(%)
(hex)
S0BRS = 1, fCPU = 64 MHz
Baud rate
(baud)
Deviation error(1)
(%)
Reload value
(hex)
2 000 000
0.0/0.0
0000/0000
1 333 333
0.0/0.0
0000/0000
112 000
1.5/-7.0
0010/0011
112 000
6.3/-7.0
000A/000B
56 000
1.5/-3.0
0022/0023
56 000
6.3/-0.8
0016/0017
38 400
1.7/-1.4
0033/0034
38 400
3.3/-1.4
0021/0022
19 200
0.2/-1.4
0067/0068
19 200
0.9/-1.4
0044/0045
9 600
0.2/-0.6
00CF/00D0
9 600
0.9/-0.2
0089/008A
4 800
0.2/-0.2
019F/01A0
4 800
0.4/-0.2
0114/0115
2 400
0.2/0.0
0340/0341
2 400
0.1/-0.2
022A/015B
1 200
0.1/0.0
0681/0682
1 200
0.1/-0.1
0456/0457
600
0.0/0.0
0D04/0D05
600
0.1/0.0
08AD/08AE
300
0.0/0.0
1A09/1A0A
300
0.0/0.0
115B/115C
245
0.0/0.0
1FE2/1FE3
163
0.0/0.0
1FF2/1FF3
1. The deviation errors given above are rounded. To avoid deviation errors use a baud rate crystal (providing
a multiple of the ASC0 sampling frequency).
185/346
Serial channels
15.1.3
ST10F296E
ASC0 in synchronous mode
In synchronous mode, data are transmitted or received synchronously to a shift clock which
is generated by the ST10F296E. Half-duplex communication up to 8 Mbaud (at 40 MHz of
fCPU) is possible in this mode. See Figure 65.
Figure 65. Synchronous mode of serial channel ASC0
Reload register
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CPU
clock
2
S0R
4
Baud rate timer
S0M = 000B
Clock
S0REN
S0OEN
S0LB
Output
TDX0
Pin
S0OE
Serial port control
Shift clock
S0RIR
Receive interrupt
request
S0TIR
Transmit interrupt
request
S0EIR
Error interrupt
request
Input/output
Receive
RxD0
0
Pin
1
Transmit
MUX
Receive shift
register
Transmit shift
register
Receive buffer
register S0RBUF
Transmit buffer
register S0TBUF
Internal bus
15.1.4
Synchronous mode baud rates
For synchronous operation, the baud rate generator provides a clock with four times the rate
of the established baud rate. The baud rate for synchronous operation of serial channel
ASC0 can be determined by the following formulae:
B Sync = f CPU ⁄ 4 × [ 2 + ( S0BRS ) ] × [ ( S0BRL ) + 1 ]
S0BRL = ( f CPU ⁄ 4 × [ 2 + ( S0BRS ) ] × B Sync ) – 1
(S0BRL) represents the content of the reload register, taken as an unsigned 13-bit integer.
(S0BRS) represents the value of the S0BRS bit (0 or 1), taken as an integer.
Using the above equations, the maximum baud rate can be calculated for any clock speed
as given in Table 121 and Table 120 for a CPU clock frequency equal to 40 MHz and 64
MHz respectively.
186/346
ST10F296E
Serial channels
Table 120. Commonly used baud rates by reload value and deviation error
(fCPU = 40 MHz)
S0BRS = 0, fCPU = 40 MHz
Baud rate
(baud)
Deviation error(1) Reload value
(%)
(hex)
S0BRS = 1, fCPU = 40 MHz
Baud rate
(baud)
Deviation error(1)
(%)
Reload value
(hex)
5 000 000
0.0/0.0
0000/0000
3 333 333
0.0/0.0
0000/0000
112 000
1.5/-0.8
002B/002C
112 000
2.6/-0.8
001C/001D
56 000
0.3/-0.8
0058/0059
56 000
0.9/-0.8
003A/003B
38 400
0.2/-0.6
0081/0082
38 400
0.9/-0.2
0055/0056
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
19 200
0.2/-0.2
0103/0104
19 200
0.4/-0.2
00AC/00AD
9 600
0.2/0.0
0207/0208
9 600
0.1/-0.2
015A/015B
4 800
0.1/0.0
0410/0411
4 800
0.1/-0.1
02B5/02B6
2 400
0.0/0.0
0822/0823
2 400
0.1/0.0
056B/056C
1 200
0.0/0.0
1045/1046
1 200
0.0/0.0
0AD8/0AD9
900
0.0/0.0
15B2/15B3
600
0.0/0.0
15B2/15B3
612
0.0/0.0
1FE8/1FE9
407
0.0/0.0
1FFD/1FFE
1. The deviation errors given above are rounded. To avoid deviation errors use a baud rate crystal (providing
a multiple of the ASC0 sampling frequency).
Table 121. Commonly used baud rates by reload value and deviation errors
(fCPU = 64 MHz)
S0BRS = 0, fCPU = 64 MHz
S0BRS = 1, fCPU = 64 MHz
Baud rate
(baud)
Deviation error(1)
(%)
Reload value
(hex)
Baud rate
(baud)
Deviation error(1)
(%)
Reload value
(hex)
8 000 000
0.0/0.0
0000/0000
5 333 333
0.0/0.0
0000/0000
112 000
0.6/-0.8
0046/0047
112 000
1.3/-0.8
002E/002F
56 000
0.6/-0.1
008D/008E
56 000
0.3/-0.8
005E/005F
38 400
0.2/-0.3
00CF/00D0
38 400
0.6/0.1
0089/008A
19 200
0.2/-0.1
019F/01A0
19 200
0.3/-0.1
0114/0115
9 600
0.0/-0.1
0340/0341
9 600
0.1/-0.1
022A/022B
4 800
0.0/0.0
0681/0682
4 800
0.0/-0.1
0456/0457
2 400
0.0/0.0
0D04/0D05
2 400
0.0/0.0
08AD/08AE
1 200
0.0/0.0
1A09/1A0A
1 200
0.0/0.0
115B/115C
977
0.0/0.0
1FFB/1FFC
900
0.0/0.0
1724/1725
652
0.0/0.0
1FF2/1FF3
1. The deviation errors given above are rounded. To avoid deviation errors use a baud rate crystal (providing
a multiple of the ASC0 sampling frequency).
187/346
Serial channels
15.2
ST10F296E
Asynchronous/synchronous serial interface (ASC1)
The XBus asynchronous/synchronous serial interfaces (ASC1) provides the same features
as ASC0. Baud rate formulae are the same. The main differences are the register interface
and interrupt management.
15.3
High speed synchronous serial interface (SSC0)
The high-speed synchronous serial interface, SSC0, provides flexible high-speed serial
communication between the ST10F296E and other microcontrollers, microprocessors or
external peripherals.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The SSC0 supports full-duplex and half-duplex synchronous communication. The serial
clock signal can be generated by the SSC0 itself (master mode) or be received from an
external master (slave mode). Data width, shift direction, clock polarity and phase are
programmable.
The SSC0 allows communication with SPI-compatible devices. Transmission and reception
of data is double-buffered. A 16-bit baud rate generator provides the SSC0 with a separate
serial clock signal. The SSC0 serial channel has its own dedicated 16-bit baud rate
generator with 16-bit reload capability, allowing the baud rate to be generated independently
from the timers.
Figure 66. Synchronous serial channel SSC0 block diagram
CPU
clock
Slave clock
Pin
Clock control
Baud rate generator
SCLK0
Master clock
Shift
clock
Receive interrupt request
SSC0 control
block
Transmit interrupt request
Error interrupt request
Status
Control
Pin
MTSR0
Pin
MRST0
Pin
control
16-bit shift register
Receive buffer
register SSCRB0
Transmit buffer
register SSCTB0
Internal bus
188/346
ST10F296E
15.3.1
Serial channels
Baud rate generation
The baud rate generator is clocked by fCPU/2. The timer counts downwards and can be
started or stopped through the global enable bit SSCEN in the SSCCON0 register. The
SSCBR0 is a dual-function register for baud rate generation and reloading. Reading
SSCBR0, while the SSC0 is enabled, returns the content of the timer. Reading SSCBR0,
while the SSC0 is disabled, returns the programmed reload value. In this mode the desired
reload value can be written to SSCBR0.
Note:
Never write to SSCBR0 while the SSC0 is enabled
The formulae below calculate the resulting baud rate for a given reload value and the
required reload value for a given baud rate:
Baudrate SSC = f CPU ⁄ 2 × [ ( SSCBR ) + 1 ]
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
SSCBR = ( f CPU ⁄ 2 × Baudrate SSC ) – 1
Where (SSCBR) represents the content of the reload register, taken as an unsigned 16-bit
integer. Table 122 and Table 123 list some possible baud rates against the required reload
values and the resulting bit times for 40 MHz and 64 MHz CPU clock respectively. Maximum
baud rate is limited to 8 Mbaud.
Table 122. Synchronous baud rate and reload values (fCPU = 40 MHz)
Baud rate
Bit time
Reload value
Reserved
-
0000h
Can be used only with fCPU = 32 MHz (or lower)
-
0001h
6.6 Mbaud
150 ns
0002h
5 Mbaud
200 ns
0003h
2.5 Mbaud
400 ns
0007h
1 Mbaud
1 µs
0013h
100 Kbaud
10 µs
00C7h
10 Kbaud
100 µs
07CFh
1 Kbaud
1 ms
4E1Fh
306 baud
3.26 ms
FF4Eh
189/346
Serial channels
ST10F296E
Table 123. Synchronous baud rate and reload values (fCPU = 64 MHz)
Baud rate
Bit time
Reload value
Reserved
-
0000h
Can be used only with fCPU = 32 MHz (or lower)
-
0001h
Can be used only with fCPU = 48 MHz (or lower)
-
0002h
8 Mbaud
125 ns
0003h
4 Mbaud
250 ns
0007h
1 Mbaud
1 µs
001Fh
100 Kbaud
10 µs
013Fh
10 Kbaud
100 µs
0C7Fh
1 Kbaud
1 ms
7CFFh
489 baud
2.04 ms
FF9Eh
)
s
(
t
c
u
d
o
)
r
s
15.4
High speed synchronous serial interface (SSC1)
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The XBus high-speed synchronous serial interface, SSC1, provides the same features as
the SSC0. Baud rate formulae are the same. The main differences are the register interface
and interrupt management.
190/346
I2C interface
ST10F296E
16
I2C interface
The integrated I2C bus module handles the transmission and reception of frames over the
two-line SDA/SCL in accordance with the I2C bus specification. The I2C module can operate
in slave mode, in master mode or in multi-master mode. It can receive and transmit data
using 7-bit or 10-bit addressing. Data can be transferred at speeds up to 400 kbit/sec (both
standard and fast I2C bus modes are supported).
The module can generate three different types of interrupt:
●
Requests related to bus events, such as start or stop events, arbitration lost, etc.
●
Requests related to data transmission
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
16.1
I C bus speed selection O
e
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
●
Requests related to data reception
These requests are issued to the interrupt controller by three different lines, and identified as
error, transmit, and receive interrupt lines.
When the I2C module is enabled by setting the XI2CEN bit in the XPERCON register, pins
P4.4 and P4.7 (SCL and SDA respectively mapped as alternate functions) are automatically
configured as bidirectional open-drain. The value of the external pull-up resistor depends on
the application. P4, DP4 and ODP4 cannot influence the pin configuration.
When the I2C cell is disabled (clearing the XI2CEN bit), pins P4.4 and P4.7 are standard I/O
controlled by P4, DP4 and ODP4.
2
The speed of the I2C interface may be selected between standard mode (0-100 kHz) and
fast I2C mode (100-400 kHz). The selection is provided through the FM/SM bit in the clock
control register 1 (CCR1).
Once bus mode is selected, the frequency of the serial clock line can be defined by setting
prescaler bits CC0 to CC11 (CCR1 and CCR2). Different formulae are used according to the
mode selected:
●
Standard mode (FM/SM = 0): FSCL ≤100 kHz
F SCL = F CPU ⁄ ( 2 × [ CC11…CC0 ] + 7 )
●
Fast mode (FM/SM = 1): FSCL > 100 kHz
F SCL = F CPU ⁄ ( 3 × [ CC11…CC0 ] + 9 )
191/346
CAN modules
17
ST10F296E
CAN modules
The two integrated CAN modules (CAN1 and CAN2) are identical and handle the
autonomous transmission and reception of CAN frames according to the CAN specification
V2.0 part B (active). It is based on the C-CAN specification.
Each on-chip CAN module can receive and transmit standard frames with 11-bit identifiers
and extended frames with 29-bit identifiers.
Because of duplication of the CAN controllers, the following adjustments must be
considered:
●
Use the same internal register addresses for both CAN controllers, but, with base
addresses differing in address bit A8. Also, use a separate chip select for each CAN
module. Refer to Section 4: Memory organization on page 33.
●
The CAN1 transmit line (CAN1_TxD) is the alternate function of the Port P4.6 pin and
the receive line (CAN1_RxD) is the alternate function of the Port P4.5 pin.
●
The CAN2 transmit line (CAN2_TxD) is the alternate function of the Port P4.7 pin and
the receive line (CAN2_RxD) is the alternate function of the Port P4.4 pin.
●
The interrupt request lines of the CAN1 and CAN2 modules are connected to the XBus
interrupt lines with other XPeripherals sharing the four vectors.
●
The CAN modules must be selected with the CANxEN bit of the XPERCON register
before the XPEN bit of the SYSCON register is set.
●
The reset default configuration is: CAN1 enabled, CAN2 disabled.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
- O let
17.1
CAN module memory)mapping
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
17.1.1
CAN1
Address range 00’EF00h - 00’EFFFh is reserved for CAN1 module access. CAN1 is
enabled by setting the XPEN bit of the SYSCON register and by setting bit 0 of the
XPERCON register. Accesses to the CAN module use demultiplexed addresses and a 16bit data bus (byte accesses are possible). Two wait states give an access time of 62.5 ns at
64 MHz CPU clock. No tri-state wait states are used.
17.1.2
CAN2
Address range 00’EE00h - 00’EEFFh is reserved for CAN2 module access. CAN2 is
enabled by setting the XPEN bit of the SYSCON register and by setting bit 1 of the
XPERCON register. Accesses to the CAN module use demultiplexed addresses and a 16bit data bus (byte accesses are possible). Two wait states give an access time of 62.5 ns at
64 MHz CPU clock. No tri-state wait states are used.
Note:
192/346
If one or both CAN modules is used, Port 4 cannot be programmed to output all eight
segment address lines. Thus, only four segment address lines can be used, reducing the
external memory space to 5 Mbytes (1 Mbyte per CS line).
ST10F296E
17.2
CAN modules
Configuration support
Both CAN controllers can work on the same CAN bus and support up to 64 message
objects. In this configuration, both receive and transmit signals are linked together when
using the same CAN transceiver. This configuration is particularly supported by providing
open-drain outputs for the CAN1_Txd and CAN2_TxD signals. The open-drain function is
controlled with the ODP4 register for Port P4. In this way it is possible to connect pins P4.4
with P4.5 (receive lines) and pins P4.6 with P4.7 (transmit lines configured to be opendrain).
The user is also allowed to map both CAN modules internally on the same pins, P4.5 and
P4.6. In this way, pins P4.4 and P4.7 may be used either as general purpose I/O lines or for
I2C interface. This is done by setting the CANPAR bit of the XMISC register. To access this
register, the XMISCEN and XPEN bits of the XPERCON and SYSCON registers
respectively must be set.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
17.3
Clock prescaling
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
CAN parallel mode is effective only if both CAN1 and CAN2 are enabled by setting bits
CAN1EN and CAN2EN in the XPERCON register. If CAN1 is disabled, CAN2 remains on
P4.4/P4.7 even if bit CANPAR is set.
The XMISC register also provides a bit (CANCK2) which modifies the clock frequency
driving both the CAN modules. Due to architectural limitations of the CAN module, when the
CPU frequency is higher than 40 MHz, it is recommended to provide each CAN module with
the CPU clock divided by 2. It is sufficient to supply 20 MHz for the CAN module to produce
the maximum baud rate defined by the protocol standard. The CPU frequency can be
reduced down to 8 MHz. It is still possible to obtain the maximum CAN speed (1Mbaud) by
feeding the CAN module directly with the CPU clock disabling the prescaler factor.
After reset, the prescaler is enabled, the CPU clock is divided by two, and provides the CAN
modules. According to the system clock frequency, the application can disable the prescaler
to obtain the required baud rate.
193/346
CAN modules
17.4
ST10F296E
CAN bus configurations
Depending on the application, CAN bus configuration may be one single bus with single or
multiple interfaces or a multiple bus with single or multiple interfaces. The ST10F296E is
able to support both situations.
17.4.1
Single CAN bus
The single CAN bus multiple interface configuration may be implemented using two CAN
transceivers as shown in Figure 67.
Figure 67. Connection to a single CAN bus via separate CAN transceivers
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
XMISC.CANPAR = 0
CAN1
RX
CAN2
TX
P4.5
RX
P4.6
TX
P4.4
CAN
transceiver
P4.7
CAN
transceiver
CAN_H
CAN bus
CAN_L
The ST10F296E also supports single CAN bus multiple (dual) interfaces using the opendrain option of the CANx_TxD output as shown in Figure 68. Due to the OR-wired
connection, only one transceiver is required. In this case the design of the application must
take into account the wire length and the noise environment.
Figure 68. Connection to a single CAN bus via common CAN transceivers
XMISC.CANPAR = 0
CAN1
RX
CAN2
TX
RX
TX
+5 V
P4.5
2.7 kΩ
P4.6
OD
P4.4
P4.7
OD
CAN
transceiver
CAN_H
CAN bus
CAN_L
194/346
OD = Open-drain output
ST10F296E
17.4.2
CAN modules
Multiple CAN bus
The ST10F296E provides two CAN interfaces to support the bus configuration shown in
Figure 69.
Figure 69. Connection to two different CAN buses (example for gateway application)
XMISC.CANPAR = 0
CAN1
RX
CAN2
TX
RX
TX
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P4.5
P4.6
CAN
transceiver
P4.4
P4.7
CAN
transceiver
CAN_H
CAN_H
CAN_L
CAN_L
CAN bus 1
17.4.3
CAN bus 2
Parallel mode
A parallel mode configuration is also supported, as shown in Figure 70.
Figure 70. Connection to one CAN bus with internal parallel mode enabled
CAN1
RX
TX
P4.5
XMISC.CANPAR = 1
(both CANs enabled)
CAN2
RX
P4.6
P4.4
TX
P4.7
CAN
transceiver
CAN_H
CAN bus
CAN_L
1. When P4.4 and P4.7 are not used as CAN functions, they can be used as general purpose I/Os, but, they
cannot be used as external bus address lines. Refer to Section 13.6.2: Alternate functions of Port 4 on
page 144 for more details.
195/346
CAN modules
17.5
ST10F296E
System clock tolerance range
The CAN system clock for the different nodes in the network is typically derived from a
different clock generator source. The actual CAN system clock frequency for each node
(and consequently the actual bit time), is affected by a tolerance. The CAN system clock for
the ST10F296E is derived (prescaled) from the CPU clock, typically generated by the onchip PLL multiplying the frequency of the main oscillator.
For communication to be effective, all CAN nodes in the network should sample the correct
value for each transmitted bit. In addition, those nodes with the largest propagation delay
(typically at opposite ends of the network), and working with system clocks that are at
opposite limits of the frequency tolerance, must be able to correctly receive and decode
every message transmitted on the network.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Considering the effect of the system clock discrepancy between two CAN nodes, and
assuming no bus errors are detected (for example, due to electrical disturbances), bit
stuffing guarantees that, in the worst case condition for the accumulation of phase error
(during normal communication), the maximum time between two re-synchronization edges
is 10 bit periods (five dominant bits followed by five recessive bits are always followed by a
dominant bit).
Calling the CAN bit time, tBT, the maximum time, tJ, between two re-synchronization edges
can be expressed as follows:
Equation 8
t J = 10 × t BT
Then, assuming that the two CAN nodes have opposite system clock generator tolerances
for their respective system clocks, the accumulated phase error, ∆tJ, at the resynchronization instant becomes:
Equation 9
∆t J = ( 2 × df ) × 10 × t BT
Where df is the system clock relative tolerance which can be calculated from Equation 10:
Equation 10
df = f – f N ⁄ f N
f = actual frequency and fN = nominal frequency.
The error in Equation 10 must be compensated. It must be less than the programmed
resynchronization jump width (SJW). Calling tSJW the duration of the resynchronization
segment (programmable from 1 to 4 time quanta), Equation 11 can be written.
Equation 11
( 2 × df ) × 10 × t BT < t SJW
Equation 11 can be seen as a condition for the CAN system clock tolerance, df, as shown in
Equation 12.
Equation 12
df < t SJW ⁄ 2 × 10 × t BT
196/346
ST10F296E
CAN modules
However, considering that real systems typically operate in the presence of electrical
disturbances, errors on the CAN bus may occur. If an error is detected, an error flag is
transmitted on the bus. If the error is local, only the node which detected it transmits the
error flag on the bus; the other nodes receive the error flag and transmit their own error flags
as an echo. If the error is global, all nodes detect it within the same bit time and they
transmit their own error flags simultaneously. In this way, each node can recognize if the
error is local or global simply by detecting whether there is an echo. However, this is
possible only if each node can sample the first bit after the error flag has been transmitted.
The error flag from an error active node is composed of six dominant bits. In the worst case
situation of a bit stuffing error, an additional six dominant bits could be received before the
error flag. This means that the first bit after the error flag is the 13th bit after the last
synchronization. This bit, must be correctly sampled.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Calling tBT the CAN bit time, the maximum time, tS (with correct sampling), between two resynchronization edges can be expressed as shown in Equation 13.
Equation 13
t S = 13 × t BT – t PB2
Where tPB2 corresponds to the duration of Phase_Seg2 (PB = phase buffer).
Assuming that the two CAN nodes have opposite system clock generator tolerances for their
respective system clocks, Equation 14 shows the accumulated phase error, ∆tJ, at the resynchronization instant.
Equation 14
∆t S = ( 2 × df ) × ( 13 × t BT – t PB2 )
For correct sampling, the accumulated phase error must not lead the re-synchronization
edge outside the interval Phase_seg1 + Phase_Seg2. This condition can be expressed as
shown in Equation 15.
Equation 15
t PB1 < ( 2 × df ) × ( 13 × t BT – t Seg2 ) < t PB2
This expression can be translated to a condition for the CAN system clock tolerance, df, as
shown in Equation 16.
Equation 16
df < min ( t PB1, t PB2 ) ⁄ 2 × ( 13 × t BT – t PB2 )
In conclusion, there are two conditions to be satisfied on the CAN system clock tolerance.
If the CAN node generates its system clock through a PLL, the maximum clock tolerance
allowed must also be a function of the PLL jitter. This results in a more severe quality
requirement for the oscillator (crystal or resonator).
The phase error introduced by the PLL jitter is a function of the number of clock periods. In
particular, the jitter increases with the clock period number up to a maximum saturation
value which consists of the long term jitter. Refer to Section 24.8.7: Phase-locked loop (PLL)
on page 315 for more details about the ST10F296E PLL jitter.
197/346
CAN modules
ST10F296E
Considering the PLL effect, Equation 17 and Equation 18 below are modified for the two
CAN conditions to give the phase error:
Equation 17
∆t J = 2 × ( df × 10 × t BT + δPLL )
Equation 18
∆t S = 2 × [ df × ( 13 × t BT – t PB2 ) + δPLL ]
Where δPLL represents the absolute deviation introduced by the PLL jitter.
In Equation 17 and Equation 18 the value of δPLL must be evaluated for different numbers of
clock periods. For the first clock period, the jitter corresponding to 10 bit time periods must
be considered, while for the second clock period, the jitter corresponding to 13 bit time
periods must be considered. The number of clock periods must be computed taking account
of the baud rate prescaler setting. A factor of two, which multiplies the single CAN node
phase deviation, is considered to take account of the worst case scenario where two
communicating nodes are at the opposite limits of the specified frequency tolerance.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
From Equation 17 and Equation 18, the new constraints for the CAN system clock tolerance
can be translated into new quality requirements for the oscillator as shown in Equation 19
and Equation 20.
Equation 19
df < t SJW – 2 × δPLL ⁄ 2 × 10 × t BT
Equation 20
df < min ( t PB1, t PB2 ) – 2 × δPLL ⁄ 2 × ( 13 × t BT – t PB2 )
It is obvious that the PLL jitter imposes more stringent constraints on oscillator tolerance
than what can be accepted when no PLL is used. The ST10F296E PLL characteristics are
such that the oscillator requirements are acceptably impacted by the jitter for the majority of
the worst CAN bus network configurations.
Oscillator tolerance range was increased when the CAN protocol was developed from
version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to
synchronize on edges from dominant to recessive became obsolete and only edges from
recessive to dominant are now considered for synchronization. Protocol update to version
2.0 (A and B) has had no influence on oscillator tolerance.
It must be considered that SJW may not be larger than the smaller of the phase buffer
segments and that the propagation time segment limits the part of the bit time that may be
used for the phase buffer segments.
The combination below allows the largest possible frequency tolerance of 1.58 % (in the
absence of PLL jitter):
●
Prop_Seg = 1
●
Phase_Seg1 = Phase_Seg2 = SJW = 4
This combination with a propagation time segment of only 10 % of the bit time is not suitable
for short bit times. It can be used for bit rates of up to 125 Kbit/s (bit time = 8 µs) with a bus
length of 40 m.
198/346
ST10F296E
17.6
CAN modules
Configuration of the CAN controller
In the C-CAN and in most CAN implementations, the bit timing configuration is programmed
in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSeg1) is combined with
Phase_Seg2 (as TSeg2) in one byte, and SJW and BRP are combined in the second byte.
In these bit timing registers (CANxBTR), the four components TSeg1, TSeg2, SJW, and
BRP have to be programmed to a numerical value that is one less than its functional value.
Therefore, instead of values in the range of [1...n], values are programmed in the range
[0...n-1]. Consequently, SJW (functional range of [1...4]) is represented by only two bits.
The length of the bit time is [TSeg1 + TSeg2 + 3] tq (programmed values) or [Sync_Seg +
Prop_Seg + Phase_Seg1 + Phase_Seg2] tq (functional values).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The data in the bit timing registers are the configuration input of the CAN protocol controller.
The baud rate prescaler (configured by BRP) defines the length of the time quantum and the
basic time unit of the bit time. The bit timing logic (configured by TSeg1, TSeg2, and SJW)
defines the number of time quanta in the bit time.
Processing of the bit time, calculation of the position of the sample point, and occasional
synchronizations are controlled by the bit timing logic (BTL) state machine, which is
evaluated once each time quantum. The rest of the CAN protocol controller, the bit stream
processor (BSP) state machine, is evaluated once each bit time, at the sample point.
The shift register serializes the messages to be sent and parallelizes received messages. Its
loading and shifting is controlled by the BSP.
The BSP translates messages into frames and vice versa. It generates and discards the
enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the cyclic
redundancy check (CRC) code, performs the error management, and decides which type of
synchronization is to be used. It is evaluated at the sample point and processes the sampled
bus input bit. The time after the sample point that is needed to calculate the next bit to be
sent (for example, data bit, CRC bit, stuff bit, error flag, or idle) is called the information
processing time (IPT).
The IPT is application specific but may not be longer than 2 tq. The C-CAN’s IPT is 0 tq. Its
length is the lower limit of the programmed length of Phase_Seg2. In case of a
synchronization, Phase_Seg2 may be shortened to a value less than IPT, which does not
affect bus timing.
199/346
CAN modules
17.7
ST10F296E
Calculation of the bit timing parameters
Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time.
The resulting bit time (1/ bit rate) must be an integer multiple of the system clock period.
The bit time may consist of four to 25 time quanta. The length of the time quantum, tq, is
defined by the baud rate prescaler, with tq = (baud rate prescaler) / fsys. Several
combinations may lead to the desired bit time, allowing iterations of the steps described
below.
The first part of the bit time to be defined is the Prop_Seg. Its length depends on the delay
times measured in the system. A maximum bus length as well as a maximum node delay
has to be defined for expandible CAN bus systems. The resulting time for Prop_Seg is
converted into time quanta (rounded to the nearest integer multiple of tq).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two phase
buffer segments. If the number of the remaining tq is even, the phase buffer segments have
the same length:
Phase_Seg2 = Phase_Seg1
else:
Phase_Seg2 = Phase_Seg1 + 1.
The minimum nominal length of Phase_Seg2 has also to be considered. Phase_Seg2
should not be shorter than the CAN controller’s information processing time, which,
depending on the actual implementation, is in the range of [0...2] tq.
The length of the synchronization jump width is set to its maximum value, which is the
minimum of four times quanta and the value defined by the Phase_Seg1.
The oscillator tolerance range necessary for the resulting configuration is calculated by the
formulae given in Section 17.5: System clock tolerance range on page 196.
If more than one configuration is possible, the configuration allowing the highest oscillator or
PLL tolerance range should be chosen.
CAN nodes with different system clocks require different configurations to come to the same
bit rate. The calculation of the propagation time in the CAN network, based on the nodes
with the longest delay times, is made once for the whole network.
The CAN system’s oscillator (or PLL) tolerance range is limited by the node with the lowest
tolerance range.
The calculation may show that bus length or bit rate have to be decreased, or that the
oscillator frequency stability has to be increased to find a protocol compliant configuration of
the CAN bit timing.
The resulting configuration is written into the bit timing register:
(Phase_Seg2 - 1) &
(Phase_Seg1 + Prop_Seg - 1) &
(SynchronisationJumpWidth - 1) &
(Prescaler - 1)
200/346
ST10F296E
17.7.1
CAN modules
Example of bit timing at high baud rate
In this example, the CPU frequency (CAN module clock) is 10 MHz, BRP is 0, and the bit
rate is 1 Mbit/s.
tq
100 ns = tCPU
Delay of bus driver
50 ns
Delay of receiver circuit
30 ns
Delay of bus line (40 m)
220 ns
tProp
600 ns = 6 x tq
tSJW
100 ns = 1 x tq
tPB1
100 ns = 1 x tq
tSeg1 = tProp + tPB1
700 ns = 7 x tq
tSeg2 = tPB2
200 ns = Information processing time + 1 x tq = 2 x tq
tSync-Seg
100 ns = 1 x tq
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
tBT
Tolerance for CAN clock
1000 ns = tSync-Seg + tSeg1 + tSeg2 = 10 x tq
0.39 % =
min ( t PB1 ,t PB2 ) ÷ ( 13 × t BT – t PB2 ) = 0.1 ( µs ) ⁄ 2 × ( 13 × 1 ( µs ) – 0.2 ( µs ) )
δPLL (13 x tBT = 13 x 10 x tq = 130 tCPU 5 ns = Data from PLL jitter characteristics
Tolerance for oscillator (no PLL effect)0.35% =
min ( t PB1 ,t PB2 ) – 2 × δPLL ⁄ 2 × ( 13 × t BT – t PB2 )
In this example, the concatenated bit time parameters are (2-1)3 & (7-1)4 & (1-1)2 & (1-1)6,
the bit timing register CANxBTR is programmed to = 0x1600h.
201/346
CAN modules
17.7.2
ST10F296E
Example of bit timing at low baud rate
In this example, the frequency of the CAN module clock is 2 MHz, BRP is 1, the bit rate is
100 Kbit/s.
tq
1 µs = 2 x tCPU
Delay of bus driver
200 ns
Delay of receiver circuit
80 ns
Delay of bus line (40m)
220 ns
tProp
1 µs = 1 x tq
tSJW
4 µs = 4 x tq
tPB1
4 µs = 4 x tq
tSeg1 = tProp + tPB1
5 µs = 5 x tq
tSeg2 = tPB2
4 µs = Information processing time + 3 x tq = 4 x tq
tSync-Seg
1 µs = 1 x tq
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
tBT
Tolerance for CAN clock
10 µs = tSync-Seg + tSeg1 + tSeg2 = 10 x tq
1.58 % =
min ( t PB1 ,t PB2 ) ÷ ( 13 × t BT – t PB2 ) = 4 ( µs ) ⁄ 2 × ( 13 × 10 ( µs ) – 4 ( µs ) )
δPLL (13 x tBT = 13 x 10 x tq = 260 tCPU) 10 ns = Data from PLL jitter characteristics
Tolerance for oscillator (no PLL effect 1.57 % =
min ( t PB1 ,t PB2 ) – 2 × δPLL ⁄ 2 × ( 13 × t BT – t PB2 )
In this example, the concatenated bit time parameters are (4-1)3 & (5-1)4 & (4-1)2 & (2-1)6,
the bit timing register CANxBTR is programmed to = 0x34C1h.
202/346
ST10F296E
18
Real-time clock (RTC)
Real-time clock (RTC)
The RTC is an independent timer. It is directly derived from the clock oscillator on XTAL1
(main oscillator) input, so that it can be kept running even in idle or power-down mode (if it is
enabled). Register access is implemented onto the XBus. This module is designed with the
following characteristics:
●
Generation of the current time and date for the system
●
Cyclic time based interrupt on Port 2 external interrupts every ‘RTC basic clock tick’
and after n ‘RTC basic clock ticks’ if enabled (n is programmable).
●
58-bit timer for long-term measurements
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
●
Capability to exit the ST10 chip from power-down mode (if the PWDCFG bit of the
SYSCON register is set) after a programmed delay.
The RTC is based on two main blocks of counters. The first block is a prescaler which
generates a basic reference clock (for example a one-second period). This basic reference
clock comes out of a 20-bit divider (4-bit MSB RTCDH counter and 16-bit LSB RTCDL
counter). The 20-bit divider is driven by an input clock which is derived from the on-chip high
frequency CPU clock and pre-divided by a 1/64 fixed counter (see Figure 72). The divider is
loaded at each basic reference clock period with the value of the 20-bit prescaler register (4bit MSB RTCPH register and 16-bit LSB RTCPL register).
The value of the 20-bit RTCP register determines the period of the basic reference clock. A
timed interrupt request (RTCSI) may be sent on each basic reference clock period. The
second block of the RTC is a 32-bit counter (16-bit RTCH and 16-bit RTCL). This counter
may be initialized with the current system time. The RTCH/RTCL counter is driven with the
basic reference clock signal. To provide an alarm function, the contents of the RTCH/RTCL
counter is compared with a 32-bit alarm register (16-bit RTCAH register and 16-bit RTCAL
register). The alarm register may be loaded with a reference date. An alarm interrupt
request (RTCAI), may be generated when the value of the RTCH/RTCL counter matches
the reference date of the RTCAH/RTCAL register.
The timed RTCSI and the alarm RTCAI interrupt requests can trigger a fast external
interrupt via the EXISEL register of port 2 and can wake-up the ST10 chip when running
power-down mode. Using the RTCOFF bit of the RTCCON register, the user may switch off
the clock oscillator when entering power-down mode.
Since the RTC counter is driven by the main oscillator (powered by the main power supply),
it cannot be maintained running in stand-by mode. The opposite is true in power-down
mode, where the main oscillator can be maintained running to provide the reference to the
RTC module (if not disabled).
Figure 71 below shows the ESFRs and port pins associated with the RTC.
203/346
Real-time clock (RTC)
ST10F296E
Figure 71. ESFRs and port pins associated with the RTC
EXISEL register
-
-
-
-
-
CCxIC register
- - - Y Y Y Y - - - -
-
-
-
-
-
- - - Y Y Y Y Y Y Y Y
EXISEL, external interrupt source selection register, (Port 2)
One second timed interrupt request (RTCSI) triggers firq[2] and alarm interrupt request (RTCAI) triggers firq[3]
RTC data and control registers are implemented onto the XBus.
Figure 72. RTC block diagram
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RTCAI
RTCSI
Main
clock oscillator
OSC_STOP
RTCCON
Alarm IT
Basic clock IT
Programmable alarm register
RTCAH
RTCAL
RTCL
32-bit counter
204/346
RTCPH
RTCPL
Reload
=
RTCH
Programmable prescaler register
RTCDH
RTCDL
Programmable 20-bit divider
/64
ST10F296E
18.1
Real-time clock (RTC)
RTC registers
RTC control register (RTCCON)
The functions of the RTC are controlled by the RTCCON control register (see register table
and description below). If the RTOFF bit is set, the RTC dividers and counter clocks are
disabled and the registers can be written. When the ST10 chip enters power-down mode,
the clock oscillator is switched off. The RTC has two interrupt sources: One is triggered
every basic clock period, the other is the alarm.
Note:
The RTC registers are not bit-addressable.
The RTCCON register includes an interrupt request flag and an interrupt enable bit for each
interrupt source. This register is read and written via the XBus.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RTCCON (ED00h)
XBus
Reset value: --00h
15
14
13
12
11
10
9
8
7
6
5
4
3
2
-
-
-
-
-
-
-
-
RTC
OFF
-
-
-
RTC RTC RTC RTC
AEN AIR SEN SIR
-
-
-
-
-
-
-
-
RW
-
-
-
RW
RW
1
0
RW
RW
Table 124. RTCCON register description
Bit
Bit name
Function
RTCOFF(1)
RTC switch off bit
0: Clock oscillator and RTC keep running even if ST10 is in powerdown mode.
1: If ST10 enters power-down mode, clock oscillator is switched off,
RTC dividers and counters are stopped, and registers can be
written.
3
RTCAEN
RTC alarm interrupt enable
0: RTCAI is disabled
1: RTCAI is enabled; it is generated when the counters reach the
alarm value.
2
RTCAIR(2)(3)
RTC alarm interrupt request flag (when the alarm is triggered)
0: RTCAIR bit is reset in less than an n basic clock tick.
1: An interrupt is triggered
1
RTCSEN
RTC second interrupt enable
0: RTCSI is disabled
1: RTCSI is enabled; it is generated every basic clock tick
0
RTCSIR(2)(3)
RTC second interrupt request flag (every second)
0: RTCSIR bit is reset in less than an a basic clock tick.
1: An interrupt is triggered
7
1. The two RTC interrupt signals are connected to Port 2 to trigger an external interrupt that can wake up the
chip when in power-down mode.
2. To clear the RTC interrupt request flags (bit 0 and bit 2 of the RTCCON register) it is necessary to write a 1
to the corresponding bit of the RTCCON register.
3. As the RTCCON register is not bit-addressable, the value of its bits must be read by checking their
associated CCxIC register.
205/346
Real-time clock (RTC)
ST10F296E
RTC prescaler registers (RTCPH and RTCPL)
The 20-bit programmable prescaler divider is loaded with two registers: The RTC prescaler
high (RTCPH) and RTC prescaler low (RTCPL).
The four most significant bits are stored in the RTCPH and the 16 least significant bits are
stored in the RTCPL.
To maintain the system clock, these registers are not reset. They are write protected by the
RTCOFF bit of the RTCCON register. Write operation is allowed when RTCOFF is set.
RTCPH (ED08h)
15
14
XBus
13
12
11
10
9
8
Reset value: ---Xh
7
6
5
4
3
2
1
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
Reserved
RTCPH
-
RW
Bits 15 to 4 of the RTCPH are not used. When reading this register, the return value of these
bit is zero.
RTCPL (ED06h)
15
14
XBus
13
12
11
10
9
8
Reset value: XXXXh
7
6
5
4
3
2
1
0
RTCPL
RW
Figure 73. Prescaler registers
3
2
1
0
15
14
13
12
11
10
9
8
18
17
6
5
4
3
2
1
0
RTCPL
RTCPH
19
7
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
20-bit word counter
The value stored in RTCPH and RTCPL is called RTCP (coded on 20-bit). The dividing ratio
of the prescaler divider is: 64 x (RTCP).
206/346
ST10F296E
Real-time clock (RTC)
RTC divider counter registers (RTCDH and RTCDL)
The divider counter registers (the basic reference clocks) include the RTC divider high
(RTCDH) and RTC divider low (RTCDL). These registers are read-only. They are reloaded
with the value stored in the prescaler registers, RTCPH and RTCPL. To get accurate time
measurements, the value of the divider can be read by reading the RTCDH and RTCDL.
When a bit is changed in the prescaler register, the value is loaded into the divider. When
the divider increments to reach 00000h, the 20-bit word stored in RTCPH or RTCPL is
loaded into it.
RTCDH (ED0Ch)
15
14
XBus
13
12
11
10
9
8
Reset value: ---Xh
7
6
5
4
3
2
1
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
Reserved
RTCDH
-
R
Bits 15 to 4 of the RTCDH are not used. When reading this register, the return value of these
bit is zero.
RTCDL (ED0Ah)
15
14
XBus
13
12
11
10
9
8
Reset value: XXXXh
7
6
5
4
3
2
1
0
RTCDL
R
Note:
Neither the RTCDH nor the RTCDL counter registers can be reset.
Figure 74. Divider counter registers
3
2
1
0
15
14
13
12
11
10
9
8
18
17
6
5
4
3
2
1
0
RTCDL
RTCDH
19
7
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
20-bit word internal value of the prescaler divider
207/346
Real-time clock (RTC)
ST10F296E
RTC programmable counter registers (RTCH and RTCL)
The RTC has two x 16-bit programmable counters which are controlled by two counter
registers: The RTC counter high register (RTCH) and the RTC counter low register (RTCL).
The count rate of the counters is based on a basic time reference (for example, 1 s). As the
clock oscillator may be kept working, even in power-down mode, the RTC counters may be
used as a system clock. In addition, RTC counters and registers are not modified at a
system reset. The only way to force their value is to write them via the XBus.
The RTC counter registers are write protected. The RTCOFF bit of the RTCCON register
(see Table 124) must be set (RTC dividers and counters are stopped) to enable a write
operation on RTCH or RTCL.
A write operation on RTCH or RTCL register loads the corresponding counter directly. When
reading, the current value in the counter (system date) is returned.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The counters keep running while the clock oscillator is working.
RTCH (ED10h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: XXXXh
6
5
4
3
2
1
0
RTCH
R/W
RTCL (ED0Eh)
15
14
13
XBus
12
11
10
9
8
7
Reset value: XXXXh
6
5
4
3
2
1
0
RTCL
R/W
Note:
Neither the RTCL nor the RTCH registers can be reset.
RTC alarm registers (RTCAH and RTCAL)
The RTC alarm registers include the RTC alarm high (RTCAH) and RTC alarm low
(RTCAL). When the counters reach the 32-bit value stored in the RTCAH and RTCAL
registers, an alarm is triggered and the interrupt request, RTAIR, is generated. These
registers are not protected.
RTCAH (ED14h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: XXXXh
6
5
4
3
2
1
0
RTCAH
R/W
RTCAL (ED12h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: XXXXh
6
RTCAL
R/W
Note:
208/346
Neither the RTCAL nor the RTCAH registers can be reset.
5
4
3
2
1
0
ST10F296E
18.2
Real-time clock (RTC)
Programming the RTC
RTC interrupt request signals are connected to Port 2, pad 10 (RTCSI) and pad 11 (RTCAI).
An alternate function of Port 2 is to generate fast interrupts, firq[7:0]. To trigger firq[2] and
firq[3] the EXICON register must be used. RTC interrupt requests are rising edge active and
the EXICON register controls the external interrupt edge selection.
The EXISEL register enables Port 2 alternate sources. RTC interrupts are alternate sources
2 and 3.
The following Interrupt control registers are common with the CAPCOM1 unit: CC10IC
(RTCSI) and CC11IC (RTCAI).
EXICON register
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
EXICON (F1C0h/E0h)
15
14
13
12
ESFR
11
10
9
8
EXI7ES
EXI6ES
EXI5ES
EXI4ES
R/W
R/W
R/W
R/W
Reset value: 0000h
7
6
(1)(2)
EXI3ES
5
4
3
2
1
0
EXI2ES(1)(3)
EXI1ES
EXI0ES
R/W
R/W
R/W
R/W
1. EXI2ES and EXI3ES must be configured as 01b because RTC interrupt request lines are rising edge
active.
2. Alarm interrupt request line (RTCAI) is linked with EXI3ES
3. Timed interrupt request line (RTCSI) is linked with EXI2ES
EXISEL register
EXISEL (F1DAh/EDh)
15
14
13
12
ESFR
11
10
9
8
7
Reset value: 0000h
6
EXI7SS
EXI6SS
EXI5SS
EXI4SS
EXI3SS(1)
R/W
R/W
R/W
R/W
R/W
5
4
3
2
1
0
EXI2SS(2)
EXI1SS
EXI0SS
R/W
R/W
R/W
1. Alarm interrupt request (RTCAI) is linked with EXI3SS
2. Timed interrupt request (RTCSI) is linked with EXI2SS
Table 125. EXISEL register description
Bit
15-0
Bit name
EXIxSS
Function
External interrupt x source selection (x = 7 to 0)
00: Input from associated Port 2 pin
01: Input from ‘alternate source’(1)
10: Input from Port 2 pin ORed with ‘alternate source’(1)
11: Input from Port 2 pin ANDed with ‘alternate source’
1. Advised configuration
209/346
Real-time clock (RTC)
ST10F296E
CCxIC registers
CC10IC: FF8Ch/C6h
CC11IC: FF8Eh/C7h
CCxIC
SFR
7
Reset value: --00h
15
14
13
12
11
10
9
8
6
5
-
-
-
-
-
-
-
-
CCx CCx
IR
IE
ILVL
GLVL
-
-
-
-
-
-
-
-
RW
RW
RW
RW
4
3
2
1
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 126. Interrupt sources associated with the RTC
210/346
Source of interrupt
Request
flag
Enable
flag
Interrupt
vector
Vector
location
Trap
number
External interrupt 2
CC10IR
CC10IE
CC10INT
00’0068h
1Ah/26
External interrupt 3
CC11IR
CC11IE
CC11INT
00’006Ch
1Bh/27
ST10F296E
19
Watchdog timer
Watchdog timer
The watchdog timer is a fail-safe mechanism which prevents the microcontroller from
malfunctioning over long periods of time.
The watchdog timer is always enabled after a reset of the chip and can only be disabled in
the time interval until the EINIT (end of initialization) instruction has been executed.
Therefore, the chip start-up procedure is always monitored. Software must be designed to
service the watchdog timer before it overflows. If, due to hardware or software related
failures, the software fails to do so, the watchdog timer overflows and generates an internal
hardware reset. It pulls the RSTOUT pin low to allow external hardware components to be
reset.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Each of the different reset sources is indicated in the watchdog control register (WDTCON).
The bits indicated in Table 127 are cleared with the EINIT instruction. The source of the
reset can be identified during the initialization phase.
Watchdog control register (WDTCON)
WDTCON (FFAEh/D7h)
15
14
13
12
SFR
11
10
9
8
Reset value: 00xxh
7
6
5
4
3
2
1
0
WDTREL
-
-
PO
NR
LH
WR
SH
WR
SW
R
WD
TR
WD
TIN
RW
-
-
HR
HR
HR
HR
HR
RW
211/346
Watchdog timer
ST10F296E
Table 127. WDTCON register description
Bit
Bit name
Function
15-8
WDTREL
5
PONR(1)(2)(3)
Power-on (asynchronous) reset indication flag
Set by the input RSTIN if a power-on condition has been detected.
Cleared by the EINIT instruction.
4
LHWR(1)(2)(3)
Long hardware reset indication flag
Set by the input RSTIN. Cleared by the EINIT instruction.
3
SHWR(1)(2)(3)
Short hardware reset indication flag
Set by the input RSTIN. Cleared by the EINIT instruction.
Watchdog reload value
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
2
SWR(1)(2)(3)
1
WDTR(1)(2)(3)
0
WDTIN
Software reset indication flag
Set by the SRST execution. Cleared by the EINIT instruction.
Watchdog timer reset indication flag
Set by the watchdog timer on an overflow. Cleared by a hardware reset
or by the SRVWDT instruction.
Watchdog timer input frequency selection
0: Input frequency is fCPU/2.
1: Input frequency is fCPU/128.
1. More than one reset indication flag may be set. After EINIT, all flags are cleared.
2. Power-on is detected when a rising edge from V18 = 0 V to V18 > 1.5 V is recognized on the internal 1.8 V
supply.
3. Bit cannot be modified directly by software.
The PONR flag of the WDTCON register is set if the output voltage of the internal 1.8 V
supply falls below the threshold of the power-on detection circuit (typically 1.5 V). This circuit
can detect major failures of the external 5 V supply, but, if the internal 1.8 V supply does not
drop below 1.5 V, the PONR flag is not set.
This could occur with a fast switch off/switch on of the 5 V supply. The time needed for such
a sequence to activate the PONR flag depends on the value of the capacitors connected to
the supply and on the exact value of the internal threshold of the detection circuit.
Table 128. WDTCON bit values on different resets
Reset source
Power-on reset
Power-on after partial supply
failure
Long hardware reset
PONR
LHWR
SHWR
SWR
X
X
X
X
(1)(2)
X
X
X
X
X
X
X
X
Short hardware reset
Software reset
X
Watchdog reset
X
1. PONR bit cannot be set because of a short supply failure.
2. For power-on reset and resets after supply partial failure, asynchronous resets must be used.
212/346
WDTR
X
ST10F296E
Watchdog timer
If a bidirectional reset is enabled, and if the RSTIN pin is latched low at the end of an
internal reset sequence, a short hardware reset, a software reset or a watchdog reset
triggers a long hardware reset. Thus, reset indications flags are set to indicate a long
hardware reset.
The watchdog timer is 16-bits in length and is clocked with the system clock divided by 2 or
128. The high byte of the watchdog timer register can be set to a prespecified reload value
(stored in WDTREL).
Each time the high byte of the watchdog timer is serviced by the application software, it is
reloaded. For security reasons, the WDTCON register should be rewritten each time before
the watchdog timer is serviced
Table 129 and Table 130 show the watchdog time range for 40 MHz and 64 MHz CPU clock
respectively.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 129. WDTREL reload value (fCPU = 40 MHz)
Prescaler for fCPU = 40 MHz
Reload value in WDTREL
2 (WDTIN = 0)
128 (WDTIN = 1)
FFh
12.8 µs
819.2 µs
00h
3.277 ms
209.7 ms
Table 130. WDTREL reload value (fCPU = 64 MHz)
Prescaler for fCPU = 64 MHz
Reload value in WDTREL
2 (WDTIN = 0)
128 (WDTIN = 1)
FFh
8 µs
512 µs
00h
2.048 ms
131.1 ms
The watchdog timer period is calculated using the following formula:
Equation 21
P WDT = 1 ⁄ f CPU × 512 × ( 1 + [ WDTIN ] × 63 ) × ( 256 – [ WDTREL ] )
213/346
System reset
20
ST10F296E
System reset
System reset initializes the MCU in a predefined state. There are six ways to activate a reset
state. The system start-up configuration is different for each case as shown in Table 131
.
Table 131. Reset event definition
Reset source
Power-on reset
Flag
RPD
status
PONR
Low
Power-on
Low
tRSTIN > 500 ns and > Port 0 set-up time(1)
High
tRSTIN > (1032 + 12) TCL + max (4 TCL, 500 ns)
tRSTIN > max(4 TCL, 500 ns)
tRSTIN ≤(1032 + 12) TCL + max (4 TCL, 500ns)
Asynchronous hardware
reset
Conditions
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
20.1
Input filter
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
LHWR
Synchronous long
hardware reset
Synchronous short
hardware reset
SHWR
High
Watchdog timer reset
WDTR
(2)
WDT overflow
SWR
(2)
SRST instruction execution
Software reset
1. The RSTIN pulse should be > 500 ns (filter) and > Port 0 set-up time. If Port 0 set-up time is below 500
ns, there is no additional settling time. See Section 20.1 for more details on minimum and reset pulse
duration.
2. The RPD pin status has no influence unless a bidirectional reset is activated (BDRSTEN bit in the
SYSCON register). When RPD is low, bidirectional resets on software and watchdog timer reset events
are inhibited (that is, RSTIN is not activated) Refer to Section 20.4, Section 20.5 and Section 20.6).
On the RSTIN input pin, an on-chip RC filter is implemented. It is sized to filter all the spikes
shorter than 50 ns. On the other side, a valid pulse must be longer than 500 ns so that the
ST10 recognizes a reset command. Between 50 ns and 500 ns, a pulse can either be
filtered or recognized as valid, depending on the operating conditions and process
variations.
For this reason, all minimum durations for the different types of reset events in this section,
should be carefully evaluated taking account of the above requirements.
In particular, for the short hardware reset, where only 4 TCL is specified as the minimum
input reset pulse duration, the operating frequency is a key factor. For example:
214/346
●
For a CPU clock of 64 MHz, 4 TCL is 31.25 ns, so it is filtered: In this case, the
minimum becomes the value imposed by the filter (500 ns).
●
For a CPU clock of 4 MHz, 4 TCL is 500 ns: In this case, the minimum value from the
formula (see conditions column in Table 131) is coherent with the limit imposed by the
filter.
ST10F296E
20.2
System reset
Asynchronous reset
An asynchronous reset is triggered when the RSTIN pin is pulled low while the RPD pin is at
low level. The ST10F296E device is immediately (after the input filter delay) forced into a
reset default state. It pulls the RSTOUT pin low, it cancels pending internal hold states (if
any), it aborts all internal/external bus cycles, it switches buses (data, address and control
signals) and I/O pin drivers to high-impedance, and it pulls the Port 0 pins high.
Note:
If an asynchronous reset occurs in the internal memories during a read or write phase, the
content of the memory itself could be corrupted. To avoid this, synchronous reset usage is
strongly recommended.
20.2.1
Power-on reset
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The asynchronous reset must be used during the power-on of the device. Depending on the
crystal or resonator frequency, the on-chip oscillator needs about 1 ms to 10 ms to stabilize
(refer to Section 24: Electrical characteristics), with an already stable VDD. The logic of the
ST10F296E does not need a stabilized clock signal to detect an asynchronous reset, so it is
suitable for power-on conditions. To ensure a proper reset sequence, the RSTIN pin and the
RPD pin must be held low until the device clock signal is stabilized and the system
configuration value on Port 0 has settled.
At power-on, it is important to respect some additional constraints introduced by the start-up
phase of the different embedded modules.
In particular, the on-chip voltage regulator needs at least 1 ms to stabilize the internal 1.8 V
for the core logic. This time is computed from when the external reference (VDD) becomes
stable inside the specification range (that is at least 4.5 V). This is a constraint for the
application hardware (external voltage regulator). The RSTIN pin assertion must be
extended to guarantee the voltage regulator stabilization.
A second constraint is imposed by the embedded Flash. When booting from the internal
memory, starting from the RSTIN pin being released, the Flash needs a maximum of 1 ms
for its initialization. Before this, the internal reset (RST signal) is not released, so the CPU
does not start code execution in internal memory.
Note:
The above is not true if the external memory is used (pin EA held low during reset phase). In
this case, once the RSTIN pin is released, and after a few CPU clock (filter delay plus 3...8
TCL), the internal reset signal RST is released, afterwhich code execution can start
immediately. Eventual access to the data in the internal Flash is forbidden before its
initialization phase is complete. An eventual access during the starting phase returns FFFFh
at the beginning and 009Bh later on (an illegal opcode trap can be generated).
At power-on, the RSTIN pin must be tied low for a minimum period of time that includes the
start-up time of the main oscillator (tSTUP = 1 ms for the resonator, 10 ms for the crystal) and
the PLL synchronization time (tPSUP = 200 µs). Consequently, if the internal Flash is used,
the RSTIN pin could be released to recover some time in the start-up phase (Flash
initialization needs a stable V18, but, does not need a stable system clock since an internal
dedicated oscillator is used) before the main oscillator and PLL are stable.
215/346
System reset
ST10F296E
Warning:
It is recommended to provide the external hardware with a
current limitation circuitry. This is necessary to avoid
permanent damage to the device during the power-on
transient, when the capacitance on V18 pin is charged. For
the on-chip voltage regulator functionality, 10 nF is sufficient.
A maximum of 100 nF on the V18 pin should not generate
problems of overcurrent (a higher value is allowed if the
current is limited by the external hardware). External current
limitation is also recommended to avoid risks of damage in
case of temporary shorts between V18 and ground. The
internal 1.8 V drivers are sized to drive currents of several
tens of ampere, so, the current must be limited by the
external hardware. The current limit is imposed by power
dissipation considerations (refer to Section 24: Electrical
characteristics).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 75 and Figure 76 show the asynchronous power-on timing diagrams with boot from
internal or external memory respectively. The reset phase extension that is introduced by
the embedded Flash module, is highlighted.
Note:
216/346
Never power the device without keeping the RSTIN pin grounded as the device could enter
unpredictable states which could permanently damage it.
ST10F296E
System reset
Figure 75. Asynchronous power-on reset (EA = 1)
≤1.2 ms (for resonator oscillation + PLL stabilization)
≤10.2 ms (for crystal oscillation + PLL stabilization)
≥ 1 ms (for on-chip VREG stabilization)
≤2 TCL
VDD
V18
XTAL1
...
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RPD
RSTIN
RSTF
(after filter)
≥ 50 ns
≤500 ns
3..4 TCL
Not t.
P0[15:13]
Transparent
P0[12:2]
Transparent
Not t.
P0[1:0]
Not transparent
Not t.
Not t.
7 TCL
IBUS-CS
(Internal)
≤ 1 ms
FLARST
RST
Latching point of Port 0 for
system start-up configuration
217/346
System reset
ST10F296E
Figure 76. Asynchronous power-on reset (EA = 0)
≥ 1.2 ms (for resonator oscillation + PLL stabilization)
≥ 10.2 ms (for crystal oscillation + PLL stabilization)
≥ 1 ms (for on-chip VREG stabilization)
3..8 TCL(1)
VDD
V18
XTAL1
...
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RPD
≥ 50 ns
≤ 500 ns
RSTIN
RSTF
(after filter)
3..4 TCL
P0[15:13]
Transparent
Not t.
P0[12:2]
Transparent
Not t.
P0[1:0]
Not transparent
Not t.
8 TCL
ALE
RST
Latching point of Port 0 for
system start-up configuration
1. Three to eight TCL depending on clock source selection.
20.2.2
Hardware reset
An asynchronous reset is used to recover from catastrophic situations of the application. It
may be triggered by the hardware of the application. Internal hardware logic and application
circuitry are described in Section 20.7: Reset circuitry on page 233 and in Figure 88,
Figure 89 and Figure 91. Asynchronous resets occur when the RSTIN pin is low and the
RPD pin is detected (or becomes) low.
218/346
ST10F296E
20.2.3
System reset
Exit from asynchronous reset state
When the RSTIN pin is pulled high, the device restarts. If the internal Flash is used,
restarting occurs after the embedded Flash initialization routine is completed. The system
configuration is latched from Port 0. ALE, RD and WR/WRL pins are driven to their inactive
level. The ST10F296E starts program execution from memory location 00'0000h in code
segment 0. This starting location typically points to the general initialization routine. Timing
of asynchronous hardware reset sequences are summarized in Figure 77 and Figure 78.
Figure 77. Asynchronous hardware reset (EA = 1)
≤2 TCL
(1)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RPD
≥ 50 ns
≤ 500 ns
RSTIN
≥ 50 ns
≤ 500 ns
RSTF
(after filter)
3..4 TCL
P0[15:13]
Not transparent
Transparent
P0[12:2]
Not transparent
Transparent
Not t.
Not transparent
Not t.
P0[1:0]
Not t.
Not t.
7 TCL
IBUS-CS
(internal)
≤ 1 ms
FLARST
RST
Latching point of Port 0 for
system start-up configuration
1.
Longer than Port 0 settling time + PLL synchronization (if needed, that is P0(15:13) changed) Longer than 500 ns to take
account of input filter on RSTIN pin.
219/346
System reset
ST10F296E
Figure 78. Asynchronous hardware reset (EA = 0)
3..8 TCL(2)
(1)
RPD
≥ 50 ns
≤500 ns
RSTIN
≥ 50 ns
≤500 ns
RSTF
(after filter)
P0[15:13]
3..4 TCL
Not transparent
Transparent
Not t.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
20.3
Synchronousu
reset (warmO
reset)
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P0[12:2]
P0[1:0]
Not transparent
Transparent
Not t.
Not transparent
Not t.
8 TCL
ALE
RST
Latching point of Port 0 for
system start-up configuration
1.
Longer than Port 0 settling time + PLL synchronization (if needed, that is P0(15:13) changed). Longer than 500 ns to take
account of input filter on RSTIN pin.
2. Three to eight TCL depending on clock source selection.
A synchronous reset is triggered when the RSTIN pin is pulled low while the RPD pin is at
high level. To activate the internal reset logic of the device, the RSTIN pin must be held low,
at least, during 4 TCL (2 CPU clock periods). Refer to Section 20.1: Input filter on page 214
for details on minimum reset pulse duration. The I/O pins are set to high impedance and the
RSTOUT pin is driven low. Once the RSTIN level is detected, a short duration of 12 TCL
maximum (6 CPU clock periods) elapses, during which time pending internal hold states are
cancelled and the current internal access cycle (if any) is completed. The external bus cycle
is aborted. The internal pull-down of RSTIN pin is activated if bit BDRSTEN of the SYSCON
register was previously set by software. Note that this bit is always cleared at power-on or
after a reset sequence.
220/346
ST10F296E
20.3.1
System reset
Short and long synchronous reset
Once the first 16 TCL elapse (4 TCL + 12 TCL), the internal reset sequence, of 1024 TCL
cycles, starts. When it is finished and when an additional 8 TCL have elapsed, the level of
the RSTIN pin is sampled (after the filter, see RSTF in Figure 75, Figure 76, Figure 77, and
Figure 78). If the RSTIN pin is high, a short reset is flagged (see Section 19: Watchdog
timer for details on reset flags). If the RSTIN pin is low, a long reset is flagged. The major
difference between long and short resets is that during a long reset, P0(15:13) also become
transparent, so it is possible to change the clock options.
Warning:
When there is a short pulse on the RSTIN pin, and when a
bidirectional reset is enabled, the RSTIN pin is held low by
the internal circuitry. At the end of 1024 TCL cycles, the
RTSIN pin is released, but due to the presence of the input
analog filter, the internal input reset signal (RSTF in
Figure 75, Figure 76, Figure 77, and Figure 78) is released
after it (50 to 500 ns after). This delay corresponds with the
additional 8 TCL. At the end of this delay, the internal input
reset line (RSTF) is sampled to elucidate if the reset event is
short or long.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Short or long reset events
●
If 8 TCL delay is > 500 ns (FCPU < 8 MHz), the reset event is always recognized as
short.
●
If 8 TCL delay is < 500 ns (FCPU > 8 MHz), the reset event could be recognized as
either short or long, depending on the real filter delay (between 50 and 500 ns) and the
CPU frequency. If RSTF samples high, a short reset is recognized. If RSTF samples
low, a long reset is recognized. Once the 8 TCL delay has elapsed with a long reset,
the P0(15:13) pins become transparent, and the system clock can be re-configured.
After the internal RSTF signal becomes high, Port 0 returns 3-4 TCL which are not
transparent.
The P0 pins become transparent and Port 0 returns 3-4 TCL which are not transparent
when a unidirectional reset is selected and when the RSTIN pin is held low untill the end of
an internal sequence (1024 TCL + max 16 TCL) and released at that time.
Note:
When the device runs with a CPU frequency lower than 40 MHz, the minimum valid reset
pulse recognized by the CPU (4 TCL) may be longer than the minimum analog filter delay
(50 ns). Consequently, a short reset pulse may not be filtered by the analog input filter.
However, this pulse is not long enough to trigger a CPU reset (as it is shorter than 4 TCL). It
generates a Flash reset, but, not a system reset. In this condition, the Flash always answers
with FFFFh, which leads to an illegal opcode and consequently a trap event is generated.
221/346
System reset
20.3.2
ST10F296E
Exit from synchronous reset state
The reset sequence is extended until the RSTIN level becomes high. It is also internally
prolonged by the Flash initialization when EA = 1 (internal memory selected). Then, the
code execution restarts. The system configuration is latched from Port 0, and the ALE, RD
and WR/WRL pins are driven to their inactive level. The device starts program execution
from memory location 00'0000h in code segment 0. This starting location typically points to
the general initialization routine.
Figure 79 and Figure 80 show the timing of synchronous reset sequences when booting
from internal or external memory respectively. They emphasize a short reset event
degenerating into a long reset.
Figure 81 and Figure 82 shows the timing of a typical synchronous long reset when booting
from internal or external memory respectively.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
20.3.3
Synchronous reset and the RPD pin
When the RSTIN pin is pulled low (by external hardware or as a consequence of a
bidirectional reset), the RPD internal weak pull-down is activated. The external capacitance
(if any) on the RPD pin is slowly discharged through the internal weak pull-down. If the
voltage level on the RPD pin reaches the input low threshold (c. 2.5 V), the reset event
becomes immediately asynchronous.If a short or long hardware reset occurs, the situation
illustrated in Figure 77 takes place.
If RPD rises above the input threshold, the asynchronous reset is completed. To complete a
synchronous reset normally, the capacitance must be big enough to maintain the voltage on
the RPD pin sufficiently high for the duration of the internal reset sequence.
For software or watchdog reset events, an active synchronous reset is completed regardless
of the RPD status.
The signal that makes that RPD status transparent under reset is the internal RSTF (after
the noise filter).
222/346
ST10F296E
System reset
Figure 79. Synchronous short/long hardware reset (EA = 1)
≤4 TCL(4) ≤12 TCL
RSTIN
(1)
≥ 50 ns
≤ 500 ns
< 1032 TCL
(3)
≥ 50 ns
≤ 500 ns
≥ 50 ns
≤ 500 ns
≤ 2 TCL
RSTF
(after filter)
Not transparent
P0[15:13]
P0[12:2]
Not t.
Transparent
Not t.
Not transparent
Not t.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P0[1:0]
7 TCL
IBUS-CS
(internal)
≤1 ms
FLARST
1024 TCL
8 TCL
RST
At this time RSTF is sampled high or low
so it is a short or long reset
RSTOUT
RPD
(2)
200 mA discharge
VRPD > 2.5 V asynchronous reset not entered
1.
RSTIN assertion can be released here. See Section 21.1: Idle mode on page 240 for details on minimum pulse duration.
2.
If RPD voltage drops below the threshold voltage (about 2.5 V for 5 V operation) during the reset condition (RSTIN low), an
asynchronous reset is entered immediately.
3.
The RSTIN pin is pulled low if the BDRSTEN bit (of the SYSCON register) was previously set by software. The BDRSTEN
bit is cleared after reset.
4.
The minimum RSTIN low pulse duration must be longer than 500 ns, to guarantee the pulse is not masked by the internal
filter (see Section 21.1: Idle mode on page 240).
223/346
System reset
ST10F296E
Figure 80. Synchronous short/long hardware reset (EA = 0)
≤4 TCL(5) ≤12 TCL
RSTIN
(1)
≥ 50 ns
≤ 500 ns
< 1032 TCL
(4)
≥ 50 ns
≤ 500 ns
≥ 50 ns
≤ 500 ns
RSTF
(after filter)
P0[15:13]
Not transparent
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P0[12:2]
Not t.
Transparent
Not t.
Not t.
Not transparent
P0[1:0]
3..8
TCL(3)
8 TCL
ALE
1024 TCL
8 TCL
RST
At this time RSTF is sampled high or low
so it is a short or long reset
RSTOUT
RPD
200 mA discharge
224/346
(2) V
RPD
> 2.5 V asynchronous reset not entered
1.
RSTIN assertion can be released here. See Section 21.1: Idle mode on page 240 for details on minimum pulse duration.
2.
If RPD voltage drops below the threshold voltage (about 2.5 V for 5 V operation) during the reset condition (RSTIN low), an
asynchronous reset is entered immediately.
3.
Three to eight TCL depending on clock source selection.
4.
The RSTIN pin is pulled low if the BDRSTEN bit (of the SYSCON register) was previously set by software. The BDRSTEN
bit is cleared after reset.
5.
The minimum RSTIN low pulse duration must be longer than 500 ns, to guarantee the pulse is not masked by the internal
filter (see Section 21.1: Idle mode on page 240).
ST10F296E
System reset
Figure 81. Synchronous long hardware reset (EA = 1)
≤4 TCL(2) ≤12 TCL
1024+8 TCL
RSTIN
≥ 50 ns
≤500 ns
≥ 50 ns
≤500 ns
≥ 50 ns
≤500 ns
RSTF
(after filter)
P0[15:13]
≤2 TCL
3..4 TCL
Transparent
Not transparent
Not t.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P0[12:2]
Not t.
P0[1:0]
Transparent
Not t.
Not transparent
Not t.
7 TCL
IBUS-CS
(internal)
≤ 1 ms
FLARST
1024+8 TCL
RST
At this time RSTF is sampled low
so it is definitely a long reset
RSTOUT
RPD
(1)
200 mA discharge
VRPD > 2.5 V asynchronous reset not entered
1. If RPD voltage drops below the threshold voltage (about 2.5 V for 5 V operation) during the reset condition (RSTIN low),
an asynchronous reset is entered immediately. Even if RPD returns above teh threshold, the reset is taken as
asychronous.
2.
The minimum RSTIN low pulse duration must be longer than 500 ns, to guarantee the pulse is not masked by the internal
filter (see Section 21.1: Idle mode on page 240).
225/346
System reset
ST10F296E
Figure 82. Synchronous long hardware reset (EA = 0)
4 TCL(2) 12 TCL
1024+8 TCL
RSTIN
≥ 50 ns
≤500 ns
≥ 50 ns
≤500 ns
≥ 50 ns
≤500 ns
RSTF
(after filter)
3..4 TCL
P0[15:13]
Not transparent
Not t.
Transparent
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
e resetuc
t
20.4
Software
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P0[12:2]
Transparent
P0[1:0]
Not transparent
Not t.
Not t.
3..8 TCL(3)
8 TCL
ALE
1024+8 TCL
RST
At this time RSTF is sampled low
so it is a long reset
RSTOUT
RPD
(1)
200 mA discharge
VRPD > 2.5 V asynchronous reset not entered
1. If RPD voltage drops below the threshold voltage (about 2.5 V for 5 V operation) during the reset condition (RSTIN low),
an asynchronous reset is entered immediately.
2.
The minimum RSTIN low pulse duration must be longer than 500 ns, to guarantee the pulse is not masked by the internal
filter (see Section 21.1: Idle mode on page 240).
3.
Three to eight TCL depending on clock source selection.
A software reset sequence can be triggered at any time by the protected SRST (software
reset) instruction. This instruction can be executed within a program, for example: On a
hardware trap that reveals system failure or to leave bootstrap loader mode.
On execution of the SRST instruction, the internal reset sequence is started. The
microcontroller behavior is the same as for a synchronous short reset, except that only bits
P0.12...P0.8 are latched at the end of the reset sequence, while previously latched, bits
P0.7...P0.2 are cleared (written at 1).
A software reset is always taken as synchronous. There is no influence on software reset
behavior with RPD status. If a bidirectional reset is selected, a software reset event pulls the
RSTIN pin low. This occurs only if RPD is high. If RPD is low, the RSTIN pin is not pulled low
even though a bidirectional reset is selected.
See Figure 83 and Figure 84 which shows unidirectional software reset timing. See
Figure 85, Figure 86, and Figure 87 for bidirectional software reset timing.
226/346
ST10F296E
20.5
System reset
Watchdog timer reset
When the watchdog timer is not disabled during initialization, or if it is not serviced regularly
during program execution, it overflows and triggers the reset sequence.
Unlike hardware and software resets, the watchdog reset completes a running external bus
cycle if the bus cycle does not use READY, or if READY is sampled active (low) after the
programmed wait states.
When READY is sampled inactive (high) after the programmed wait states, the running
external bus cycle is aborted. Then the internal reset sequence is started.
Bit P0.12...P0.8 are latched at the end of the reset sequence and bit P0.7...P0.2 are cleared
(written at 1).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
A watchdog reset is always taken as synchronous. There is no influence on watchdog reset
behavior with RPD status. If a bidirectional reset is selected, a watchdog reset event pulls
the RSTIN pin low. This occurs only if RPD is high. If RPD is low, the RSTIN pin is not pulled
low even though a bidirectional reset is selected.
See Figure 83 and Figure 84 which shows unidirectional software reset timing. See
Figure 85, Figure 86, and Figure 87 for bidirectional software reset timing.
Figure 83. Software/watchdog timer unidirectional reset (EA = 1)
RSTIN
≤2 TCL
P0[15:13]
Not transparent
P0[12:8]
Transparent
P0[7:2]
Not transparent
P0[1:0]
not transparent
Not t.
Not t.
7 TCL
IBUS-CS
(internal)
≤ 1 ms
FLARST
1024 TCL
RST
RSTOUT
227/346
System reset
ST10F296E
Figure 84. Software/watchdog timer unidirectional reset (EA = 0)
RSTIN
P0[15:13]
Not transparent
P0[12:8]
Transparent
P0[7:2]
Not transparent
P0[1:0]
Not transparent
Not t.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Not t.
8 TCL
ALE
1024 TCL
RST
RSTOUT
228/346
ST10F296E
20.6
System reset
Bidirectional reset
The RSTOUT pin is driven active (low level) at the beginning of any reset sequence
(synchronous/asynchronous hardware, software, and watchdog timer resets). It stays active
low after the end of the initialization routine and until the protected EINIT instruction (End of
Initialization) is completed.
The bidirectional reset function is useful when external devices require a reset signal, but, it
cannot be connected to the RSTOUT pin, because the RSTOUT signal continues during
initialization. In this case, the external memory can run the initialization routine before the
execution of the EINIT instruction.
The bidirectional reset function is enabled by setting the BDRSTEN bit in the SYSCON
register. It can only be enabled during the initialization routine, before the EINIT instruction
is completed.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Once enabled, the open-drain of the RSTIN pin is activated, pulling the reset signal down for
the duration of the internal reset sequence (synchronous/asynchronous hardware,
synchronous software, and synchronous watchdog timer resets). At the end of the internal
reset sequence the pull down is released and:
●
If RSTF is sampled low (8 TCL periods after the internal reset sequence completion,
see Figure 79 and Figure 80) after a short synchronous bidirectional hardware reset,
the short reset becomes a long reset. On the contrary, if RSTF is sampled high, the
device simply exits reset state.
●
After a software or watchdog bidirectional reset, the device exits from reset. If RSTF
remains low for at least 4 TCL periods after exiting reset (minimum time to recognize a
short hardware reset, see Figure 85 and Figure 86), the software or watchdog reset
become a short hardware reset. On the contrary, if RSTF remains low for less than 4
TCL, the device exits the reset state.
The bidirectional reset is not effective when RPD is held low or when a software or
watchdog reset event occurs. On the contrary, if a software or watchdog bidirectional reset
event is active and RPD becomes low, the RSTIN pin is immediately released, while the
internal reset sequence is completed regardless of the RPD status change (1024 TCL).
Note:
The bidirectional reset function is disabled by any reset sequence (when the BDRSTEN bit
of the SYSCON register is cleared). To be activated again, it must be enabled during the
initialization routine.
229/346
System reset
20.6.1
ST10F296E
WDTCON flags
When a bidirectional reset is enabled, a short reset may degenerate into a long reset due to
the presence of the internal filter on the RSTIN pin (see Section 20.3.1: Short and long
synchronous reset on page 221). When the RSTIN pin is released, the internal signal after
the filter (see RSTF in Figure 75 to Figure 78) is delayed, so RSTIN remains active (low) for
a while. Consequently, a short reset may be recognized as a long reset, depending on the
internal clock speed.
When either a software or watchdog bidirectional reset event occurs, the RSTIN pin is
released (at the end of the internal reset sequence), the RSTF internal signal (after the filter)
remains low for a while, and RSTIN is recognized as high or low. Eight TCL after completion
of the internal sequence, the level of the RSTF signal is sampled. If it is recognized as low, a
hardware reset sequence starts, the WDTCON register flags this event, and masks the
previous one (software or watchdog reset). Typically, a short hardware reset is recognized,
unless the RSTIN pin (and consequently the internal RSTF signal) is held sufficiently low by
the external hardware to inject a long hardware reset. The initialization routine is then
unable to recognize a software or watchdog bidirectional reset event, since a different
source is flagged inside the WDTCON register. This phenomenon does not occur when
internal Flash is selected during reset (EA = 1), since the initialization of the Flash itself
extends the internal reset duration beyond the filter delay.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 85, Figure 86, and Figure 87 show the timing for software and watchdog timer
bidirectional reset events. Figure 87 shows the degeneration into a hardware reset.
Figure 85. Software/watchdog timer bidirectional reset (EA = 1)
RSTIN
≥ 50 ns
≤500 ns
≥ 50 ns
≤500 ns
RSTF
(after filter)
P0[15:13]
Not transparent
P0[12:8]
Transparent
P0[7:2]
Not transparent
P0[1:0]
Not transparent
Not t.
Not t.
≤2 TCL
IBUS-CS
(internal)
≤ 1 ms
FLARST
1024 TCL
RST
RSTOUT
230/346
7 TCL
ST10F296E
System reset
Figure 86. Software/watchdog timer bidirectional reset (EA = 0)
RSTIN
≥ 50 ns
≤500 ns
≥ 50 ns
≤500 ns
RSTF
(after filter)
P0[15:13]
Not transparent
P0[12:8]
Transparent
Not t.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P0[7:2]
Not transparent
P0[1:0]
Not transparent
Not t.
8 TCL
ALE
1024 TCL
RST
RSTOUT
At this time RSTF is sampled high
so SW or WDT reset is flagged in WDTCON
231/346
System reset
ST10F296E
Figure 87. Software/watchdog timer bidirectional reset (EA = 0) followed by a
hardware reset
RSTIN
≥ 50 ns
≤500 ns
≥ 50 ns
≤500 ns
RSTF
(after filter)
P0[15:13]
Not transparent
P0[12:8]
Transparent
P0[7:2]
Not transparent
P0[1:0]
Not transparent
Not t.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Not t.
8 TCL
ALE
1024 TCL
RST
RSTOUT
232/346
At this time RSTF is sampled low
so HW reset is entered
ST10F296E
20.7
System reset
Reset circuitry
The internal reset circuitry is described in Figure 91. The RSTIN pin provides an internal
pull-up resistor of 50 kΩ to 250 kΩ (the minimum reset time must be calculated using the
lowest value).
The internal reset circuitry also provides a programmable (BDRSTEN bit of the SYSCON
register) pull-down to output the internal reset state signal (synchronous reset, watchdog
timer reset, or software reset).
This bidirectional reset function is useful in applications where external devices require a
reset signal, but, it cannot be connected to the RSTOUT pin.
In this case, the external memory can run codes before the EINIT instruction is executed
(end of initialization). The RSTOUT pin is pulled high only when EINIT is executed.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The RPD pin provides an internal weak pull-down resistor which discharges an external
capacitor at a typical rate of 200 µA. If the PWDCFG bit of the SYSCON register is set, an
internal pull-up resistor is activated at the end of the reset sequence. This pull-up charges
any capacitor connected to the RPD pin.
The simplest way to reset the device is to insert a capacitor, C1, between the RSTIN pin and
VSS, and a second capacitor, C0, between the RPD pin and VSS, with a pull-up resistor, R0,
between the RPD pin and VDD. The RSTIN input provides an internal pull-up device
equalling a resistor of 50 kΩ to 250 kΩ (the minimum reset time must be determined by the
lowest value). Selecting C1, produces a sufficient discharge time to permit the internal or
external oscillator, and/or the internal PLL, and the on-chip voltage regulator to stabilize.
To ensure correct power-up reset with controlled supply current consumption, in particular if
the clock signal requires a long period of time to stabilize, an asynchronous hardware reset
is required during power-up. Consequently, it is recommended to connect the external R0C0 circuit shown in Figure 88 to the RPD pin. On power-up, the logical low level on the RPD
pin, forces an asynchronous hardware reset when RSTIN is asserted low. The external pullup, R0, then charges the capacitor, C0. Note that an internal pull-down device on the RPD
pin is turned on when the RSTIN pin is low, and causes the external capacitor, C0, to begin
discharging at a typical rate of 100-200 µA. With this mechanism, after power-up reset, short
low pulses applied on RSTIN produce synchronous hardware resets. If RSTIN is asserted
longer than the time needed for C0 to be discharged by the internal pull-down device, the
device is forced into an asynchronous reset. This mechanism ensures recovery from
catastrophic failures.
233/346
System reset
ST10F296E
Figure 88. Minimum external reset circuitry
External hardware
RSTOUT
RSTIN
+
Hardware reset
C1
VCC
For power-up reset (and interruptible power-down mode)
R0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RPD
+
C0
ST10F296
The minimum reset circuit of Figure 88 is not adequate when the RSTIN pin is driven from
the ST10F296E itself during software or watchdog triggered resets. This is because
capacitor C1 keeps the voltage on the RSTIN pin above VIL after the end of the internal reset
sequence, thus triggering an asynchronous reset sequence.
Figure 89 shows an example of a reset circuit. The R1-C1 external circuit is used to
generate power-up or manual reset and the R0-C0 circuit on RPD is used for power-up reset
and to exit from power-down mode. Diode, D1, creates a wired-OR gate connection to the
reset pin and may be replaced by an open-collector Schmitt trigger buffer. Diode, D2,
provides a faster cycle time for repetitive power-on resets.
R2 is an optional pull-up for faster recovery and correct biasing of the TTL open collector
drivers.
Figure 89. System reset circuit
VDD
VDD
R2
External hardware
R1
D2
RSTIN
+
VDD
D1
C1
External
reset source
R0
Open-drain inverter
RPD
+
C0
ST10F296
234/346
ST10F296E
20.8
System reset
Reset application examples
Figure 90 and Figure 91 are timing diagrams that provide additional examples of
bidirectional internal reset events (software and watchdog). They include the external
capacitance charge and discharge transients. Figure 89 shows the external circuit scheme.
Not transparent
Not transparent
Not transparent
EINIT
00h
Figure 90. Example of software or watchdog bidirectional reset (EA = 1)
Transparent
Not transparent
Transparent
0Ch
Not transparent
Not transparent
04h
Not transparent
4 TCL
P0[1:0]
P0[7:2]
P0[12:8]
P0[15:13]
WDTCON
[5:0]
RST
VIL
RPD
RSTF
ideal
RSTIN
RSTOUT
VIH
VIL
Tfilter RST
< 500 ns
1024 TCL (12.8 µs)
Latching point
Latching point
Latching point
< 4 TCL
1 ms (C1 charge)
Transparent
Tfilter RST
< 500 ns
1Ch
3..8 TCL
Latching point
Not transparent
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
235/346
236/346
P0[1:0]
P0[7:2]
P0[12:8]
P0[15:13]
WDTCON
[5:0]
RST
RPD
RSTF
ideal
RSTIN
RSTOUT
VIL
VIH
VIL
Not transparent
Not transparent
Not transparent
04h
Tfilter RST
< 500 ns
0Ch
Not transparent
4 TCL
Tfilter RST
< 500 ns
Transparent
Transparent
Transparent
1 ms (C1 charge)
< 4 TCL
1Ch
Latching point
Latching point
Not transparent
Not transparent
Not transparent
Not transparent
Latching point
Latching point
3..8 TCL
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
1024 TCL (12.8 µs)
00h
EINIT
System reset
ST10F296E
Figure 91. Example of software or watchdog bidirectional reset (EA = 0)
ST10F296E
20.9
System reset
Reset summary
Table 132 summarizes the different reset events.
EA
Bidirectional
synchronous/
asynchronous
PONR
LHWR
SHWR
SWR
WDTR
Event
RPD
Table 132. Reset events summary
0
0
N
Asynch.
1 ms (VREG)
1.2 ms (reson. + PLL)
10.2 ms (crystal + PLL)
-
1
1
1
1
0
0
1
N
Asynch.
1 ms (VREG)
-
1
1
1
1
0
1
x
x
Forbidden
x
x
Y
Not applicable
0
0
N
Asynch.
500 ns
-
0
1
1
1
0
0
1
N
Asynch.
500 ns
-
0
1
1
1
0
0
0
Y
Asynch.
500 ns
-
0
1
1
1
0
0
1
Y
Asynch.
500 ns
-
0
1
1
1
0
1
0
N
Synch.
Max (4 TCL, 500 ns)
1032 + 12 TCL + max (4
TCL, 500 ns)
0
0
1
1
0
1
1
N
Synch.
Max (4 TCL, 500 ns)
1032 + 12 TCL + max (4
TCL, 500ns)
0
0
1
1
0
Max (4 TCL, 500 ns)
1032 + 12 TCL + max (4
TCL, 500 ns)
0
0
1
1
0
0
0
1
1
0
RSTIN
WDTCON flags
Min
Max
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Power-on reset
Hardware reset
(asynchronous)
Short hardware
reset
(synchronous)(1)
1
0
Y
Synch.
Activated by internal logic for 1024 TCL
Max (4 TCL, 500 ns)
1
1
Y
Synch.
1032 + 12 TCL + max (4
TCL, 500 ns)
Activated by internal logic for 1024 TCL
Long hardware
reset
(synchronous)
1
0
N
Synch.
1032 + 12 TCL + max
(4 TCL, 500 ns)
-
0
1
1
1
0
1
1
N
Synch.
1032 + 12 TCL + max(
4 TCL, 500 ns)
-
0
1
1
1
0
0
Y
Synch.
1032 + 12 TCL + max
(4 TCL, 500 ns)
-
1
0
1
1
1
0
0
1
1
1
0
Activated by internal logic only for 1024 TCL
1
1
Y
Synch.
1032 + 12 TCL + max
(4 TCL, 500 ns)
-
Activated by internal logic only for 1024 TCL
237/346
System reset
ST10F296E
synchronous/
asynchronous
PONR
LHWR
SHWR
SWR
WDTR
Watchdog
reset(2)
Bidirectional
Software reset(2)
EA
Event
RPD
Table 132. Reset events summary
x
0
N
Synch.
Not activated
0
0
0
1
0
x
0
N
Synch.
Not activated
0
0
0
1
0
0
1
Y
Synch.
Not activated
0
0
0
1
0
1
1
Y
Synch.
Activated by internal logic for 1024 TCL
0
0
0
1
0
x
0
N
Synch.
Not activated
0
0
0
1
1
x
0
N
Synch.
Not activated
0
0
0
1
1
0
1
Y
Synch.
Not activated
1
1
Y
Synch.
Activated by internal logic for 1024 TCL
du
ct
RSTIN
WDTCON flags
Min
Max
o
r
P
(s)
0
0
0
1
1
0
0
0
1
1
)
s
t(
1. A software hardware reset can degenerate into a long hardware reset and is consequently flagged differently (see
Section 20.3 for details).
e
t
e
l
c
u
d
2. When bidirectional reset is active (and RPD = 0), it can be followed by a short hardware reset and is consequently flagged
differently (see Section 20.6 for details).
o
s
b
o
r
P
Table 133 and Figure 92 shows the start-up configurations and some system features that are selected
on reset sequences. Table 133 describes the system configurations latched onto Port 0 in the six different
reset modes. Figure 92 summarizes the state of the Port 0 bits latched in the RP0H, SYSCON, and
BUSCON0 registers.
O
)
s
(
t
c
e
t
le
o
s
b
O
-
Table 133. Latched configurations of Port 0 for the different reset events(1)
P0H.4
P0H.3
P0H.2
P0H.1
P0H.0 WR config.
P0L.7
P0L.6
P0L.5 Reserved
P0L.4 BSL
P0L.3 Reserved
P0L.2 Reserved
P0L.1 Adapt mode
P0L.0 EMU mode
-
-
X
X
X
X
X
X
X
-
-
-
-
-
-
Watchdog reset
-
-
-
X
X
X
X
X
X
X
-
-
-
-
-
-
Synchronous short hardware
reset
-
-
-
X
X
X
X
X
X
X
X
X
X
X
X
X
Synchronous long hardware
reset
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Asynchronous hardware reset
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Asynchronous power-on reset
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
t
e
l
o
s
b
O
u
d
o
r
P
e
t
e
l
o
Software reset
s
b
O
1. X: Pin is sampled; -: Pin is not sampled.
238/346
Bus type
P0H.5
-
Sample event
Chip selects
P0H.6 Clock options
)
s
(
ct
P0H.7
r
P
e
Segm. addr. lines
u
d
o
Port 0
ST10F296E
System reset
Figure 92. Port 0 bits latched into the different registers after reset
Port 0
H.7
H.6
H.5
CKLKCFG
H.4
H.3
H.2
H.1
H.0
L.7
L.6
SALSEL
CSSEL
WRC BUSTYP
CKLKCFG
SALSEL
CSSEL
WRC
Clock
generator
Port 4
logic
Port 6
logic
L.5
L.4
BSL
L.3
L.2
L.1
L.0
Reserved ADP EMU
RP0H
Bootstrap loader
Internal control logic
2
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
EA/VSTBY
P0L.7
P0L.7
SYSCON
RO
MEN
BYT
DIS
WR
CFG
10
9
7
BUSCON0
BUS ALE
ACTO CTLO
10
9
BTYP
7
6
239/346
Power reduction modes
21
ST10F296E
Power reduction modes
Three different power reduction modes with different levels of power saving have been
implemented in the ST10F296E. In idle mode, the CPU is stopped, but, peripherals still
operate. In power-down mode, both the CPU and peripherals are stopped. In stand-by
mode, the main power supply (VDD) can be turned off while a portion of the internal RAM
remains powered via the dedicated power pin, VSTBY.
Idle and power-down modes are software activated by a protected instruction and are
terminated in different ways as described in the following sections.
Stand-by mode is entered by removing VDD and holding the MCU under reset state.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
21.2
Power-down mode )
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
21.1
Idle mode
Idle mode is entered by running the IDLE protected instruction. CPU operation is stopped
but, the peripherals continue to run.
Idle mode is terminated by any interrupt request. Whether the interrupt is serviced or not,
the instruction following the IDLE instruction, is executed after a return from the interrupt
instruction (RETI). The CPU then resumes normal programming.
Note that a PEC transfer keeps the CPU in idle mode. If the PEC transfer does not succeed,
idle mode is terminated. The watchdog timer must be properly programmed to avoid any
disturbance during idle mode.
Power-down mode starts by running the PWRDN protected instruction. The internal clock is
stopped, all MCU parts, including the watchdog timer, are put on hold. The only exception is
the RTC, if it has been opportunely programmed, and consequently, the main oscillator
circuits.
When the RTC module is used, and the device is in power-down mode, a reference clock is
needed. Accordingly, the main oscillator is kept running (XTAL1/XTAL2 pins). In this way, the
RTC continues counting using the main oscillator clock signal as a reference.
There are two different operating power-down modes:
●
Protected mode
●
Interruptible mode
The internal RAM contents can be preserved through the voltage that is supplied via the
VDD pins. To verify RAM integrity, some dedicated patterns may be written before entering
power-down mode which must be checked after power-down is resumed.
Power-down mode is entered by executing the PWRDN instruction. Before entering it, the
VREGOFF bit in the XMISC register must be set. In this way, as soon as the PWRDN
command is executed, the main voltage regulator is turned off, and only the low power
voltage regulator remains active.
Note:
240/346
Leaving the main voltage regulator active during power-down may lead to unexpected
behavior (example, CPU wake-up). Power consumption is also higher than that specified in
Table 163: DC characteristics on page 295.
ST10F296E
21.2.1
Power reduction modes
Protected power-down mode
This mode is selected when the PWDCFG bit of the SYSCON register is cleared. Protected
power-down mode is only activated if the NMI pin is pulled low when executing the PWRDN
instruction. This mode is only deactivated with an external hardware reset on the RSTIN pin.
21.2.2
Interruptible power-down mode
This mode is selected when the PWDCFG bit of the SYSCON register is set (see
Section 23: Register set on page 248).
Interruptible power-down mode is only activated if all the enabled fast external interrupt pins
are at their inactive level (see Table 134: EXICON register description).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
This mode is deactivated with an external reset applied to the RSTIN pin, with an interrupt
request applied to one of the fast external interrupt pins, with an interrupt generated by the
RTC, or with an interrupt generated by activity on the interfaces of the CAN and I2C
modules. To allow the internal PLL and clock to stabilize, the RSTIN pin must be held low
according the recommendations described in Section 20: System reset.
EXICON register
EXICON (F1C0h/E0h)
15
14
13
12
ESFR
11
10
9
8
Reset value: 0000h
7
6
5
4
3
2
1
0
EXI7ES
EXI6ES
EXI5ES
EXI4ES
EXI3ES
EXI2ES
EXI1ES
EXI0ES
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Table 134. EXICON register description
Bit
15-0
Bit name
Function
EXIxES
External interrupt x edge selection field (x = 7...0)
00: Fast external interrupts disabled (referred to as standard mode). The
EXxIN pin is not taken into account for entering/exiting power-down
mode.
01: Interrupt on positive edge (rising). Power-down mode is entered if
EXiIN = 0 and exited if EXxIN = 1 (referred to as ‘high’ active level).
10: Interrupt on negative edge (falling). Power-down mode is entered if
EXiIN = 1 and exited if EXxIN = 0 (referred to as ‘low’ active level).
11: Interrupt on any edge (rising or falling). Power-down mode is always
entered and is exited if EXxIN level changes.
EXxIN inputs are normally sampled interrupt inputs. However, the power-down mode
circuitry uses them as level-sensitive inputs.
An EXxIN (x = 3...0) interrupt enable bit (bit CCxIE in the CCxIC register) does not need to
be set to bring the device out of power-down mode. An external RC circuit must be
connected to the RPD pin, as shown in Figure 93.
241/346
Power reduction modes
ST10F296E
Figure 93. External RC circuit on the RPD pin
ST10F296E
VDD
R0
220 kΩ minimum
RPD
+
C0
1 µF typical
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
To exit power-down mode with an external interrupt, an EXxIN (x = 7...0) pin has to be
asserted for at least 40 ns.
This signal enables the internal oscillator and PLL circuitry. It also turns on the weak pulldown (see Figure 94).
The discharge of the external capacitor provides a delay that allows the oscillator and PLL
circuits to stabilize before the internal CPU and peripheral clocks are enabled. When the
RPD voltage drops below the threshold voltage (about 2.5 V), the Schmitt trigger clears Q2
flip-flop, the CPU and peripheral clocks are enabled, and the device resumes code
execution.
If the interrupt is enabled (CCxIE bit = 1 in the CCxIC register) before entering power-down
mode, the device executes the interrupt service routine and resumes execution after the
PWRDN instruction (see note below).
If the interrupt is disabled, the device executes the instruction following the PWRDN
instruction and the interrupt request flag remains set (using the CCxIR bit in the CCxIC
register) until it is cleared by software.
Note:
242/346
Due to the internal pipeline, the instruction that follows the PWRDN instruction is executed
before the CPU performs a call of the interrupt service routine when exiting power-down
mode.
ST10F296E
Power reduction modes
Figure 94. Simplified power-down exit circuitry
VDD
D
Stop PLL
Stop oscillator
Q
VDD
Q1
Enter
power-down
exit_pwrd
cd Q
Pull-up
RPD
Weak pull-down
(~ 200 µA)
External
interrupt
Reset
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
VDD
D
Q
en_clk_n
CPU and peripheral clocks
Q2
cd Q System clock
1. Legend:
exit_pwrd = exit power-down internal signal
en_clk_n = clock enable signal (negated: active low)
Figure 95. Power-down exit sequence when using an external interrupt (PLL x 2)
XTAL1
CPU clk
Power-down signal
(internal)
External
interrupt
RPD
~ 2.5 V
exit_pwrd
(internal)
Delay for oscillator/PLL
stabilization
243/346
Power reduction modes
21.3
ST10F296E
Standby mode
In stand-by mode, the RAM array is maintained powered through the dedicated pin, VSTBY,
when the main power supply (VDD) of the ST10F296E is turned off.
To enter stand-by mode, the device must be held under reset. In this way, the RAM is
disabled (see XRAM2EN bit of XPERCON register, Table 5), and its digital interface is
frozen to avoid any kind of data corruption. It is then possible to turn off the main VDD
provided that VSTBY is on.
A dedicated embedded low-power voltage regulator is implemented to generate the internal
low voltage supply to bias the portion of XRAM (16 Kbytes).
In normal running mode (when VDD is on), the VSTBY pin can be tied to VSS during reset, to
exercise the EA functionality associated with the same pin. The voltage supply for the
circuits which are usually biased with VSTBY is granted by the active VDD.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Standby mode can generate problems associated with the use of different power supplies in
CMOS systems. Particular attention must be paid when the ST10F296E I/O lines are
interfaced with other external CMOS integrated circuits. In standby mode, if the VDD of the
device falls below that of the output level forced by the I/O lines of the external integrated
circuits, the device could be powered directly through the inherent diode existing on the
device output driver circuit. The same is valid for the ST10F296E when it is interfaced to
active/inactive communication buses during standby mode. Current injection can be
generated through the inherent diode.
In addition, the sequence of turning on/off the different voltages could be critical for the
system. The device standby mode current (ISTBY) may vary while the VDD to VSTBY
transition occurs (and vice versa) as some current flows between the VDD and VSTBY pins.
System noise on both the VDD and VSTBY pins can increase this phenomenon.
21.3.1
Entering standby mode
To enter standby mode, the XRAM2EN bit in the XPERCON register must be cleared (this
bit is automatically reset by any kind of reset event, see Section 20: System reset). This
allows the RAM interface to be frozen immediately, thereby avoiding any data corruption. As
a consequence of a reset event, the RAM power supply is switched to the internal lowvoltage supply, V18SB (derived from VSTBY through the low-power voltage regulator). The
RAM interface remains frozen until the XRAM2EN bit is set again by the software
initialization routine (at the next exit from VDD power-on reset sequence).
When V18 falls (as a result of VDD being turning off), the XRAM2EN bit is no longer be able
to guarantee its content (logic 0), because the XPERCON register is powered by internal
V18. This does not generate a problem because the standby mode switching dedicated
circuit continues to confirm that the RAM interface is freezing, irrespective of the XRAM2EN
bit content. The XRAM2EN bit status is considered once more when the internal V18 starts
again and replaces the internal stand-by reference V18SB.
If internal V18 falls below the internal stand-by reference (V18SB) by about 0.3 to 0.45 V
when the XRAM2EN bit is set, the RAM supply switching circuit is inactive. If there is a
temporary drop on the internal V18 voltage versus internal V18SB during normal code
execution, no spurious standby mode switching can occur (the RAM is not frozen and can
still be accessed).
244/346
ST10F296E
Power reduction modes
The ST10F296E core module, which generates the RAM control signals, is powered by the
internal V18 supply. During turning off transient phase these control signals follow the V18,
while RAM is switched to V18SB internal reference. A high level of RAM write strobe from the
ST10F296E core (active low signal), may be low enough to be recognized as a logic 0 by
the RAM interface (due to V18 being lower than V18SB). The bus status may contain a valid
address for the RAM and an unwanted data corruption may occur. For this reason, an extra
interface, powered by the switched supply, is used to prevent the RAM from such potential
corruption mechanisms.
Warning:
During power-off phase, the external hardware must maintain
a stable ground level on the RSTIN pin, with no glitches, to
avoid spurious exits from reset status due to an unstable
power supply.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
21.3.2
Exiting standby mode
The procedure to exit standby mode consists of a standard power-on sequence where the
RAM is powered through the V18SB internal reference (derived from the VSTBY pin external
voltage).
It is recommended to hold the device under reset (RSTIN pin forced low) until the external
VDD voltage pin is stable. At the beginning of the power-on phase, the device is maintained
under reset by the internal low voltage detector circuit (implemented inside the main voltage
regulator) until the internal V18 becomes higher than about 1.0 V. Despite this, there is no
warranty that the device stays under reset status if RSTIN is at high level during
power ramp up.
It is imperative that the external hardware guarantees a stable ground level on the
RSTIN pin along the power-on phase, without any temporary glitches.
The external hardware is responsible for driving the RSTIN pin low until the VDD is stable,
even though the internal LVD is active. An additional time period of at least 1 ms is also
requested to allow the internal voltage regulator to stabilize before releasing the RSTIN pin.
This is necessary because the internal Flash has to begin its initialization phase (which
starts when the RSTIN pin is released) with a stable V18.
Once the internal reset signal goes low, the power supply of the RAM (which is still frozen) is
switched to the main V18.
At this point, all voltages are stable, and the execution of the initialization routines can start.
The XRAM2EN bit can be set and the RAM can be enabled.
245/346
Power reduction modes
21.4
ST10F296E
Power reduction modes summary
Table 135 provides a summary of the different power reduction modes
Table 135. Power reduction modes summary
Mode
VDD
VSTBY
CPU
Peripherals
RTC
Main OSC
STBY XRAM
XRAM
On
On
Off
On
Off
Run
Biased
Biased
On
On
Off
On
On
Run
Biased
Biased
On
On
Off
Off
Off
Off
Biased
Biased
On
On
Off
Off
On
On
Biased
Biased
On
On
Off
Off
On
Off
Biased
Biased
Off
On
Off
Off
Off
Off
Biased
Off
Idle
Power-down
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Standby
246/346
ST10F296E
22
Programmable output clock divider
Programmable output clock divider
A specific register mapped on the XBus allows the division factor on the CLKOUT signal
(P3.15) to be chosen. This register, XCLKOUTDIV, is mapped on the XMiscellaneous
memory address range.
XCLKOUTDICV register
XCLKOUTDIV (EB02h)
15
14
13
12
XBus
11
10
9
8
7
Reset value: --00h
6
5
4
3
2
1
0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
-
-
-
-
-
-
-
-
DIV
-
-
-
-
-
-
-
-
RW
Table 136. XCLKOUTDIV register description
Bit
Bit name
7-0
DIV
Function
Clock divider setting
00h: FCLKOUT = FCPU/DIV+1
The CPU clock is output on P3.15, by default, when the CLKOUT function is enabled
(setting the CLKEN bit of the SYSCON register).
By setting the XMISCEN and XPEN bits of the XPERCON and SYSCON registers
respectively, the clock prescaling factor can be programmed. In this way, a prescaled value
of the CPU clock can be output on P3.15.
When the CLKOUT function is not enabled (clearing the CLKEN bit of the SYSCON on
P3.15), P3.15 does not output a clock signal, even though the XCLKOUTDIV register is
programmed.
247/346
Register set
23
ST10F296E
Register set
This section summarizes the registers implemented in the ST10F296E, and explains the
function and layout of the SFRs.
The registers (except the general purpose registers) are organized:
23.1
●
By address, to check which register a given address references.
●
By register name, to find the location of a specific register.
Register description format
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Throughout the document, registers are laid out and described as follows:
Word registers
REG_NAME (A16h/A8h)
15
14
13
12
SFR/ESFR/XBus
11
10
Reserved
Write
only bit
-
W
9
8
7
Reset value: ****h
6
5
4
3
2
1
0
HW Read STD
bit only bit bit
HW
bit
Bitfield
Bitfield
RW
RW
RW
RW
R
RW
Table 137. Word register description
Bit
Bit name
Bit(field)
number in
register
bit(field)
name
Function
Explanation of bit(field) name
Description of the functions controlled by the bit(field)
Byte registers
Byte registers do not contain reserved areas nor read-only/write-only bits.
REG_NAME (A16h/A8h)
248/346
SFR/ESFR/XBus
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
7
6
STD HW
bit
bit
RW
RW
Reset value: --**h
5
4
3
2
1
0
bitfield
bitfield
RW
RW
ST10F296E
Register set
Elements
REG_NAME:
Name of the register
A16h/A8h:
Long address (16-bit)/ Short address (8-bit)
SFR/ESFR/XBus: Register space (SFR, ESFR or XBus register)
(* *) * *
Register contents after reset
0/1: Defined
X: Undefined after power up)
U: Unchanged
HW bit:
Bits that are set/cleared by hardware
STD bit:
Standard ‘normal’ bit (software rather than hardware bit)
)
s
(
t
c
u
23.2
General purpose registers (GPRs)
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The GPRs form the register bank that the CPU works with. This register bank may be
located anywhere within the internal RAM via the context pointer (CP). Due to the
addressing mechanism, GPR banks can only reside within the internal RAM. All GPRs are
bit-addressable.
Table 138. General purpose registers (GPRs)
Name
Physical
address
8-bit
address
R0
(CP) + 0
F0h
CPU general purpose (word) register R0
UUUUh
R1
(CP) + 2
F1h
CPU general purpose (word) register R1
UUUUh
R2
(CP) + 4
F2h
CPU general purpose (word) register R2
UUUUh
R3
(CP) + 6
F3h
CPU general purpose (word) register R3
UUUUh
R4
(CP) + 8
F4h
CPU general purpose (word) register R4
UUUUh
R5
(CP) + 10
F5h
CPU general purpose (word) register R5
UUUUh
R6
(CP) + 12
F6h
CPU general purpose (word) register R6
UUUUh
R7
(CP) + 14
F7h
CPU general purpose (word) register R7
UUUUh
R8
(CP) + 16
F8h
CPU general purpose (word) register R8
UUUUh
R9
(CP) + 18
F9h
CPU general purpose (word) register R9
UUUUh
R10
(CP) + 20
FAh
CPU general purpose (word) register R10
UUUUh
R11
(CP) + 22
FBh
CPU general purpose (word) register R11
UUUUh
R12
(CP) + 24
FCh
CPU general purpose (word) register R12
UUUUh
R13
(CP) + 26
FDh
CPU general purpose (word) register R13
UUUUh
R14
(CP) + 28
FEh
CPU general purpose (word) register R14
UUUUh
R15
(CP) + 30
FFh
CPU general purpose (word) register R15
UUUUh
Description
Reset
value
249/346
Register set
ST10F296E
The first eight GPRs (R7 to R0) may also be accessed byte wise. Writing to a GPR byte
(except for SFRs) does not affect other bytes of the respective GPR. The respective halves
of the byte-accessible registers receive special names listed in Table 139.
Table 139. General purpose registers (GPRs) bit wise addressing
Name
Physical
address
8-bit
address
RL0
(CP) + 0
F0h
CPU general purpose (byte) register RL0
UUh
RH0
(CP) + 1
F1h
CPU general purpose (byte) register RH0
UUh
RL1
(CP) + 2
F2h
CPU general purpose (byte) register RL1
UUh
RH1
(CP) + 3
F3h
CPU general purpose (byte) register RH1
UUh
RL2
(CP) + 4
F4h
CPU general purpose (byte) register RL2
UUh
RH2
(CP) + 5
F5h
CPU general purpose (byte) register RH2
UUh
RL3
(CP) + 6
F6h
CPU general purpose (byte) register RL3
UUh
RH3
(CP) + 7
F7h
CPU general purpose (byte) register RH3
UUh
RL4
(CP) + 8
F8h
CPU general purpose (byte) register RL4
UUh
RH4
(CP) + 9
F9h
CPU general purpose (byte) register RH4
UUh
RL5
(CP) + 10
FAh
CPU general purpose (byte) register RL5
UUh
RH5
(CP) + 11
FBh
CPU general purpose (byte) register RH5
UUh
RL6
(CP) + 12
FCh
CPU general purpose (byte) register RL6
UUh
RH6
(CP) + 13
FDh
CPU general purpose (byte) register RH6
UUh
RL7
(CP) + 14
FEh
CPU general purpose (byte) register RL7
UUh
RH7
(CP) + 15
FFh
CPU general purpose (byte) register RH7
UUh
Description
Reset
value
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
250/346
ST10F296E
23.3
Register set
SFRs ordered by name
Table 140 lists all SFR registers which are implemented in the ST10F296E. They are
ordered by name in alphabetical order.
Bit-addressable SFRs are indicated by the bolded letter ‘b’ in the ‘Name’ column.
SFRs within the ESFR space are indicated by the bolded letter ‘E’ in the ‘Physical address’
column.
Table 140. SFRs ordered by name
Name
Physical
address
8-bit
address
Description
Reset
value
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
ADCIC (b)
FF98h
CCh
ADC end of conversion interrupt control register
--00h
ADCON (b)
FFA0h
D0h
ADC control register
0000h
ADDAT
FEA0h
50h
ADC result register
0000h
ADDAT2
F0A0h (E)
50h
ADC 2 result register
0000h
ADDRSEL1
FE18h
0Ch
Address select register 1
0000h
ADDRSEL2
FE1Ah
0Dh
Address select register 2
0000h
ADDRSEL3
FE1Ch
0Eh
Address select register 3
0000h
ADDRSEL4
FE1Eh
0Fh
Address select register 4
0000h
ADEIC (b)
FF9Ah
CDh
ADC overrun error interrupt control register
--00h
BUSCON0 (b)
FF0Ch
86h
Bus configuration register 0
0xx0h
BUSCON1 (b)
FF14h
8Ah
Bus configuration register 1
0000h
BUSCON2 (b)
FF16h
8Bh
Bus configuration register 2
0000h
BUSCON3 (b)
FF18h
8Ch
Bus configuration register 3
0000h
BUSCON4 (b)
FF1Ah
8Dh
Bus configuration register 4
0000h
CAPREL
FE4Ah
25h
GPT2 capture/reload register
0000h
CC0
FE80h
40h
CAPCOM register 0
0000h
CC0IC (b)
FF78h
BCh
CAPCOM register 0 interrupt control register
--00h
CC1
FE82h
41h
CAPCOM register 1
0000h
CC1IC (b)
FF7Ah
BDh
CAPCOM register 1 interrupt control register
--00h
CC2
FE84h
42h
CAPCOM register 2
0000h
CC2IC (b)
FF7Ch
BEh
CAPCOM register 2 interrupt control register
--00h
CC3
FE86h
43h
CAPCOM register 3
0000h
CC3IC (b)
FF7Eh
BFh
CAPCOM register 3 interrupt control register
--00h
CC4
FE88h
44h
CAPCOM register 4
0000h
CC4IC (b)
FF80h
C0h
CAPCOM register 4 interrupt control register
--00h
CC5
FE8Ah
45h
CAPCOM register 5
0000h
CC5IC (b)
FF82h
C1h
CAPCOM register 5 interrupt control register
--00h
CC6
FE8Ch
46h
CAPCOM register 6
0000h
251/346
Register set
ST10F296E
Table 140. SFRs ordered by name (continued)
Name
Physical
address
8-bit
address
Description
Reset
value
CC6IC (b)
FF84h
C2h
CAPCOM register 6 interrupt control register
--00h
CC7
FE8Eh
47h
CAPCOM register 7
0000h
CC7IC (b)
FF86h
C3h
CAPCOM register 7 interrupt control register
--00h
CC8
FE90h
48h
CAPCOM register 8
0000h
CC8IC (b)
FF88h
C4h
CAPCOM register 8 interrupt control register
--00h
CC9
FE92h
49h
CAPCOM register 9
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CC9IC (b)
FF8Ah
C5h
CAPCOM register 9 interrupt control register
--00h
CC10
FE94h
4Ah
CAPCOM register 10
0000h
CC10IC (b)
FF8Ch
C6h
CAPCOM register 10 interrupt control register
--00h
CC11
FE96h
4Bh
CAPCOM register 11
0000h
CC11IC (b)
FF8Eh
C7h
CAPCOM register 11 interrupt control register
--00h
CC12
FE98h
4Ch
CAPCOM register 12
0000h
CC12IC (b)
FF90h
C8h
CAPCOM register 12 interrupt control register
--00h
CC13
FE9Ah
4Dh
CAPCOM register 13
0000h
CC13IC (b)
FF92h
C9h
CAPCOM register 13 interrupt control register
--00h
CC14
FE9Ch
4Eh
CAPCOM register 14
0000h
CC14IC (b)
FF94h
CAh
CAPCOM register 14 interrupt control register
--00h
CC15
FE9Eh
4Fh
CAPCOM register 15
0000h
CC15IC (b)
FF96h
CBh
CAPCOM register 15 interrupt control register
--00h
CC16
FE60h
30h
CAPCOM register 16
0000h
CC16IC (b)
F160h (E)
B0h
CAPCOM register 16 interrupt control register
--00h
CC17
FE62h
31h
CAPCOM register 17
0000h
CC17IC (b)
F162h (E)
B1h
CAPCOM register 17 interrupt control register
--00h
CC18
FE64h
32h
CAPCOM register 18
0000h
CC18IC (b)
F164h (E)
B2h
CAPCOM register 18 interrupt control register
--00h
CC19
FE66h
33h
CAPCOM register 19
0000h
CC19IC (b)
F166h (E)
B3h
CAPCOM register 19 interrupt control register
--00h
CC20
FE68h
34h
CAPCOM register 20
0000h
CC20IC (b)
F168h (E)
B4h
CAPCOM register 20 interrupt control register
--00h
CC21
FE6Ah
35h
CAPCOM register 21
0000h
CC21IC (b)
F16Ah (E)
B5h
CAPCOM register 21 interrupt control register
--00h
CC22
FE6Ch
36h
CAPCOM register 22
0000h
CC22IC (b)
F16Ch (E)
B6h
CAPCOM register 22 interrupt control register
--00h
CC23
FE6Eh
37h
CAPCOM register 23
0000h
252/346
ST10F296E
Register set
Table 140. SFRs ordered by name (continued)
Name
Physical
address
8-bit
address
Description
Reset
value
CC23IC (b)
F16Eh (E)
B7h
CAPCOM register 23 interrupt control register
--00h
CC24
FE70h
38h
CAPCOM register 24
0000h
CC24IC (b)
F170h (E)
B8h
CAPCOM register 24 interrupt control register
--00h
CC25
FE72h
39h
CAPCOM register 25
0000h
CC25IC (b)
F172h (E)
B9h
CAPCOM register 25 interrupt control register
--00h
CC26
FE74h
3Ah
CAPCOM register 26
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CC26IC (b)
F174h (E)
BAh
CAPCOM register 26 interrupt control register
--00h
CC27
FE76h
3Bh
CAPCOM register 27
0000h
CC27IC (b)
F176h (E)
BBh
CAPCOM register 27 interrupt control register
--00h
CC28
FE78h
3Ch
CAPCOM register 28
0000h
CC28IC (b)
F178h (E)
BCh
CAPCOM register 28 interrupt control register
--00h
CC29
FE7Ah
3Dh
CAPCOM register 29
0000h
CC29IC (b)
F184h (E)
C2h
CAPCOM register 29 interrupt control register
--00h
CC30
FE7Ch
3Eh
CAPCOM register 30
0000h
CC30IC (b)
F18Ch (E)
C6h
CAPCOM register 30 interrupt control register
--00h
CC31
FE7Eh
3Fh
CAPCOM register 31
0000h
CC31IC (b)
F194h (E)
CAh
CAPCOM register 31 interrupt control register
--00h
CCM0 (b)
FF52h
A9h
CAPCOM mode control register 0
0000h
CCM1 (b)
FF54h
AAh
CAPCOM mode control register 1
0000h
CCM2 (b)
FF56h
ABh
CAPCOM mode control register 2
0000h
CCM3 (b)
FF58h
ACh
CAPCOM mode control register 3
0000h
CCM4 (b)
FF22h
91h
CAPCOM mode control register 4
0000h
CCM5 (b)
FF24h
92h
CAPCOM mode control register 5
0000h
CCM6 (b)
FF26h
93h
CAPCOM mode control register 6
0000h
CCM7 (b)
FF28h
94h
CAPCOM mode control register 7
0000h
CP
FE10h
08h
CPU context pointer register
FC00h
CRIC (b)
FF6Ah
B5h
GPT2 CAPREL interrupt control register
--00h
CSP
FE08h
04h
CPU code segment pointer register (read-only)
0000h
DP0L (b)
F100h (E)
80h
P0L direction control register
--00h
DP0H (b)
F102h (E)
81h
P0h direction control register
--00h
DP1L (b)
F104h (E)
82h
P1L direction control register
--00h
DP1H (b)
F106h (E)
83h
P1h direction control register
--00h
DP2 (b)
FFC2h
E1h
Port 2 direction control register
0000h
DP3 (b)
FFC6h
E3h
Port 3 direction control register
0000h
253/346
Register set
ST10F296E
Table 140. SFRs ordered by name (continued)
Name
Physical
address
8-bit
address
Description
Reset
value
DP4 (b)
FFCAh
E5h
Port 4 direction control register
--00h
DP6 (b)
FFCEh
E7h
Port 6 direction control register
--00h
DP7 (b)
FFD2h
E9h
Port 7 direction control register
--00h
DP8 (b)
FFD6h
EBh
Port 8 direction control register
--00h
DPP0
FE00h
00h
CPU data page pointer 0 register (10-bit)
0000h
DPP1
FE02h
01h
CPU data page pointer 1 register (10-bit)
0001h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
DPP2
FE04h
02h
CPU data page pointer 2 register (10-bit)
0002h
DPP3
FE06h
03h
CPU data page pointer 3 register (10-bit)
0003h
EMUCON
FE0Ah
05h
Emulation control register
--XXh
EXICON (b)
F1C0h (E)
E0h
External interrupt control register
0000h
EXISEL (b)
F1DAh (E)
EDh
External interrupt source selection register
0000h
IDCHIP
F07Ch (E)
3Eh
Device identifier register (n is the device revision)
128nh
IDMANUF
F07Eh (E)
3Fh
Manufacturer identifier register
0403h
IDMEM
F07Ah (E)
3Dh
On-chip memory identifier register
30D0h
IDPROG
F078h (E)
3Ch
Programming voltage identifier register
0040h
IDX0 (b)
FF08h
84h
MAC unit address pointer 0
0000h
IDX1 (b)
FF0Ah
85h
MAC unit address pointer 1
0000h
MAH
FE5Eh
2Fh
MAC unit accumulator - high word
0000h
MAL
FE5Ch
2Eh
MAC unit accumulator - low word
0000h
MCW (b)
FFDCh
EEh
MAC unit control word
0000h
MDC (b)
FF0Eh
87h
CPU multiply divide control register
0000h
MDH
FE0Ch
06h
CPU multiply divide register – high word
0000h
MDL
FE0Eh
07h
CPU multiply divide register – low word
0000h
MRW (b)
FFDAh
EDh
MAC unit repeat word
0000h
MSW (b)
FFDEh
EFh
MAC unit status word
0200h
ODP2 (b)
F1C2h (E)
E1h
Port 2 open-drain control register
0000h
ODP3 (b)
F1C6h (E)
E3h
Port 3 open-drain control register
0000h
ODP4 (b)
F1CAh (E)
E5h
Port 4 open-drain control register
--00h
ODP6 (b)
F1CEh (E)
E7h
Port 6 open-drain control register
--00h
ODP7 (b)
F1D2h (E)
E9h
Port 7 open-drain control register
--00h
ODP8 (b)
F1D6h (E)
EBh
Port 8 open-drain control register
--00h
ONES (b)
FF1Eh
8Fh
Constant value 1’s register (read-only)
FFFFh
P0L (b)
FF00h
80h
Port 0 low register (lower half of Port 0)
--00h
P0H (b)
FF02h
81h
Port 0 high register (upper half of Port 0)
--00h
254/346
ST10F296E
Register set
Table 140. SFRs ordered by name (continued)
Name
Physical
address
8-bit
address
Description
Reset
value
P1L (b)
FF04h
82h
Port 1 low register (lower half of Port 1)
--00h
P1H (b)
FF06h
83h
Port 1 high register (upper half of Port 1)
--00h
P2 (b)
FFC0h
E0h
Port 2 register
0000h
P3 (b)
FFC4h
E2h
Port 3 register
0000h
P4 (b)
FFC8h
E4h
Port 4 register (8-bit)
--00h
P5 (b)
FFA2h
D1h
Port 5 register (read-only)
XXXXh
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
P6 (b)
FFCCh
E6h
Port 6 register (8-bit)
--00h
P7 (b)
FFD0h
E8h
Port 7 register (8-bit)
--00h
P8 (b)
FFD4h
EAh
Port 8 register (8-bit)
--00h
P5DIDIS (b)
FFA4h
D2h
Port 5 digital disable register
0000h
PECC0
FEC0h
60h
PEC channel 0 control register
0000h
PECC1
FEC2h
61h
PEC channel 1 control register
0000h
PECC2
FEC4h
62h
PEC channel 2 control register
0000h
PECC3
FEC6h
63h
PEC channel 3 control register
0000h
PECC4
FEC8h
64h
PEC channel 4 control register
0000h
PECC5
FECAh
65h
PEC channel 5 control register
0000h
PECC6
FECCh
66h
PEC channel 6 control register
0000h
PECC7
FECEh
67h
PEC channel 7 control register
0000h
PICON (b)
F1C4h (E)
E2h
Port input threshold control register
--00h
PP0
F038h (E)
1Ch
PWM module period register 0
0000h
PP1
F03Ah (E)
1Dh
PWM module period register 1
0000h
PP2
F03Ch (E)
1Eh
PWM module period register 2
0000h
PP3
F03Eh (E)
1Fh
PWM module period register 3
0000h
PSW (b)
FF10h
88h
CPU program status word
0000h
PT0
F030h (E)
18h
PWM module up/down counter 0
0000h
PT1
F032h (E)
19h
PWM module up/down counter 1
0000h
PT2
F034h (E)
1Ah
PWM module up/down counter 2
0000h
PT3
F036h (E)
1Bh
PWM module up/down counter 3
0000h
PW0
FE30h
18h
PWM module pulse width register 0
0000h
PW1
FE32h
19h
PWM module pulse width register 1
0000h
PW2
FE34h
1Ah
PWM module pulse width register 2
0000h
PW3
FE36h
1Bh
PWM module pulse width register 3
0000h
PWMCON0 (b)
FF30h
98h
PWM module control register 0
0000h
PWMCON1 (b)
FF32h
99h
PWM module control register 1
0000h
255/346
Register set
ST10F296E
Table 140. SFRs ordered by name (continued)
Name
Physical
address
8-bit
address
Description
Reset
value
PWMIC (b)
F17Eh (E)
BFh
PWM module interrupt control register
--00h
QR0
F004h (E)
02h
MAC unit offset register R0
0000h
QR1
F006h (E)
03h
MAC unit offset register r1
0000h
QX0
F000h (E)
00h
MAC unit offset register x0
0000h
QX1
F002h (E)
01h
MAC unit offset register x1
0000h
RP0H (b)
F108h (E)
84h
System start-up configuration register (read-only)
--XXh
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
S0BG
FEB4h
5Ah
Serial channel 0 baud rate generator reload register
0000h
S0CON (b)
FFB0h
D8h
Serial channel 0 control register
0000h
S0EIC (b)
FF70h
B8h
Serial channel 0 error interrupt control register
--00h
S0RBUF
FEB2h
59h
Serial channel 0 receive buffer register (read-only)
--XXh
S0RIC (b)
FF6Eh
B7h
Serial channel 0 receive interrupt control register
--00h
S0TBIC (b)
F19Ch (E)
CEh
Serial channel 0 transmit buffer interrupt control register --00h
S0TBUF
FEB0h
58h
Serial channel 0 transmit buffer register (write-only)
0000h
S0TIC (b)
FF6Ch
B6h
Serial channel 0 transmit interrupt control register
--00h
SP
FE12h
09h
CPU system stack pointer register
FC00h
SSCBR
F0B4h (E)
5Ah
SSC baud rate register
0000h
SSCCON (b)
FFB2h
D9h
SSC control register
0000h
SSCEIC (b)
FF76h
BBh
SSC error interrupt control register
--00h
SSCRB
F0B2h (E)
59h
SSC receive buffer (read-only)
XXXXh
SSCRIC (b)
FF74h
BAh
SSC receive interrupt control register
--00h
SSCTB
F0B0h (E)
58h
SSC transmit buffer (write-only)
0000h
SSCTIC (b)
FF72h
B9h
SSC transmit interrupt control register
--00h
STKOV
FE14h
0Ah
CPU stack overflow pointer register
FA00h
STKUN
FE16h
0Bh
CPU stack underflow pointer register
FC00h
SYSCON (b)
FF12h
89h
CPU system configuration register
0xx0h(1)
T0
FE50h
28h
CAPCOM timer 0 register
0000h
T01CON (b)
FF50h
A8h
CAPCOM timer 0 and timer 1 control register
0000h
T0IC (b)
FF9Ch
CEh
CAPCOM timer 0 interrupt control register
--00h
T0REL
FE54h
2Ah
CAPCOM timer 0 reload register
0000h
T1
FE52h
29h
CAPCOM timer 1 register
0000h
T1IC (b)
FF9Eh
CFh
CAPCOM timer 1 interrupt control register
--00h
T1REL
FE56h
2Bh
CAPCOM timer 1 reload register
0000h
T2
FE40h
20h
GPT1 timer 2 register
0000h
T2CON (b)
FF40h
A0h
GPT1 timer 2 control register
0000h
256/346
ST10F296E
Register set
Table 140. SFRs ordered by name (continued)
Name
Physical
address
8-bit
address
Description
Reset
value
T2IC (b)
FF60h
B0h
GPT1 timer 2 interrupt control register
--00h
T3
FE42h
21h
GPT1 timer 3 register
0000h
T3CON (b)
FF42h
A1h
GPT1 timer 3 control register
0000h
T3IC (b)
FF62h
B1h
GPT1 timer 3 interrupt control register
--00h
T4
FE44h
22h
GPT1 timer 4 register
0000h
T4CON (b)
FF44h
A2h
GPT1 timer 4 control register
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
T4IC (b)
FF64h
B2h
GPT1 timer 4 interrupt control register
--00h
T5
FE46h
23h
GPT2 timer 5 register
0000h
T5CON (b)
FF46h
A3h
GPT2 timer 5 control register
0000h
T5IC (b)
FF66h
B3h
GPT2 timer 5 interrupt control register
--00h
T6
FE48h
24h
GPT2 timer 6 register
0000h
T6CON (b)
FF48h
A4h
GPT2 timer 6 control register
0000h
T6IC (b)
FF68h
B4h
GPT2 timer 6 interrupt control register
--00h
T7
F050h (E)
28h
CAPCOM timer 7 register
0000h
T78CON (b)
FF20h
90h
CAPCOM timer 7 and 8 control register
0000h
T7IC (b)
F17Ah (E)
BDh
CAPCOM timer 7 interrupt control register
--00h
T7REL
F054h (E)
2Ah
CAPCOM timer 7 reload register
0000h
T8
F052h (E)
29h
CAPCOM timer 8 register
0000h
T8IC (b)
F17Ch (E)
BEh
CAPCOM timer 8 interrupt control register
--00h
T8REL
F056h (E)
2Bh
CAPCOM timer 8 reload register
0000h
TFR (b)
FFACh
D6h
Trap flag register
0000h
WDT
FEAEh
57h
Watchdog timer register (read-only)
0000h
WDTCON (b)
FFAEh
D7h
Watchdog timer control register
00xxh(2)
XADRS3
F01Ch (E)
0Eh
XPER address select register 3
800Bh
XP0IC (b)
F186h (E)
C3h
See Section 9.1: XPeripheral interrupt
--00h(3)
XP1IC (b)
F18Eh (E)
C7h
See Section 9.1: XPeripheral interrupt
--00h(3)
XP2IC (b)
F196h (E)
CBh
See Section 9.1: XPeripheral interrupt
--00h(3)
XP3IC (b)
F19Eh (E)
CFh
See Section 9.1: XPeripheral interrupt
--00h (3)
XPERCON
F024h (E)
12h
XPER configuration register
--05h
ZEROS (b)
FF1Ch
8Eh
Constant value 0’s register (read-only)
0000h
1. System configuration is selected during reset. The SYSCON reset value is 0000 0xx0 x000 0000b.
2. The reset value depends on different triggered reset events.
3. The XPnIC interrupt control register control interrupt requests from the integrated XBus peripherals. Some software
controlled interrupt requests may be generated by setting the XPnIR bits (of the XPnIC register) of the unused XPeripheral
nodes.
257/346
Register set
23.4
ST10F296E
SFRs ordered by address
Table 141 lists all SFR registers which are implemented in the ST10F296E, ordered by their
physical address.
Bit-addressable SFRs are indicated by the bolded letter ‘b’ in the ‘Name’ column.
SFRs within the ESFR space are indicated by the bolded letter ‘E’ in the ‘Physical address’
column.
Table 141. SFRs ordered by address
Name
Physical
address
8-bit
address
Description
Reset value
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
QX0
F000h (E)
00h
MAC unit offset register X0
0000h
QX1
F002h (E)
01h
MAC unit offset register X1
0000h
QR0
F004h (E)
02h
MAC unit offset register R0
0000h
QR1
F006h (E)
03h
MAC unit offset register R1
0000h
XADRS3
F01Ch (E)
0Eh
XPER address select register 3
800Bh
XPERCON
F024h (E)
12h
XPER configuration register
--05h
PT0
F030h (E)
18h
PWM module up/down counter 0
0000h
PT1
F032h (E)
19h
PWM module up/down counter 1
0000h
PT2
F034h (E)
1Ah
PWM module up/down counter 2
0000h
PT3
F036h (E)
1Bh
PWM module up/down counter 3
0000h
PP0
F038h (E)
1Ch
PWM module period register 0
0000h
PP1
F03Ah (E)
1Dh
PWM module period register 1
0000h
PP2
F03Ch (E)
1Eh
PWM module period register 2
0000h
PP3
F03Eh (E)
1Fh
PWM module period register 3
0000h
T7
F050h (E)
28h
CAPCOM timer 7 register
0000h
T8
F052h (E)
29h
CAPCOM timer 8 register
0000h
T7REL
F054h (E)
2Ah
CAPCOM timer 7 reload register
0000h
T8REL
F056h (E)
2Bh
CAPCOM timer 8 reload register
0000h
IDPROG
F078h (E)
3Ch
Programming voltage identifier register
0040h
IDMEM
F07Ah (E)
3Dh
On-chip memory identifier register
30D0h
IDCHIP
F07Ch (E)
3Eh
Device identifier register (n is the device revision)
128nh
IDMANUF
F07Eh (E)
3Fh
Manufacturer identifier register
0403h
ADDAT2
F0A0h (E)
50h
ADC 2 result register
0000h
SSCTB
F0B0h (E)
58h
SSC transmit buffer (write-only)
0000h
SSCRB
F0B2h (E)
59h
SSC receive buffer (read-only)
XXXXh
SSCBR
F0B4h (E)
5Ah
SSC baud rate register
0000h
DP0L (b)
F100h (E)
80h
P0L direction control register
--00h
DP0H (b)
F102h (E)
81h
P0H direction control register
--00h
258/346
ST10F296E
Register set
Table 141. SFRs ordered by address (continued)
Name
Physical
address
8-bit
address
Description
Reset value
DP1L (b)
F104h (E)
82h
P1L direction control register
--00h
DP1H (b)
F106h (E)
83h
P1H direction control register
--00h
RP0H (b)
F108h (E)
84h
System startup configuration register (read-only)
--XXh
CC16IC (b)
F160h (E)
B0h
CAPCOM register 16 interrupt control register
--00h
CC17IC (b)
F162h (E)
B1h
CAPCOM register 17 interrupt control register
--00h
CC18IC (b)
F164h (E)
B2h
CAPCOM register 18 interrupt control register
--00h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CC19IC (b)
F166h (E)
B3h
CAPCOM register 19 interrupt control register
--00h
CC20IC (b)
F168h (E)
B4h
CAPCOM register 20 interrupt control register
--00h
CC21IC (b)
F16Ah (E)
B5h
CAPCOM register 21 interrupt control register
--00h
CC22IC (b)
F16Ch (E)
B6h
CAPCOM register 22 interrupt control register
--00h
CC23IC (b)
F16Eh (E)
B7h
CAPCOM register 23 interrupt control register
--00h
CC24IC (b)
F170h (E)
B8h
CAPCOM register 24 interrupt control register
--00h
CC25IC (b)
F172h (E)
B9h
CAPCOM register 25 interrupt control register
--00h
CC26IC (b)
F174h (E)
BAh
CAPCOM register 26 interrupt control register
--00h
CC27IC (b)
F176h (E)
BBh
CAPCOM register 27 interrupt control register
--00h
CC28IC (b)
F178h (E)
BCh
CAPCOM register 28 interrupt control register
--00h
T7IC (b)
F17Ah (E)
BDh
CAPCOM timer 7 interrupt control register
--00h
T8IC (b)
F17Ch (E)
BEh
CAPCOM timer 8 interrupt control register
--00h
PWMIC (b)
F17Eh (E)
BFh
PWM module interrupt control register
--00h
CC29IC (b)
F184h (E)
C2h
CAPCOM register 29 interrupt control register
--00h
XP0IC (b)
F186h (E)
C3h
See Section 9.1: XPeripheral interrupt
--00h
CC30IC (b)
F18Ch (E)
C6h
CAPCOM register 30 interrupt control register
--00h
XP1IC (b)
F18Eh (E)
C7h
See Section 9.1: XPeripheral interrupt
--00h
CC31IC (b)
F194h (E)
CAh
CAPCOM register 31 interrupt control register
--00h
XP2IC (b)
F196h (E)
CBh
See Section 9.1: XPeripheral interrupt
--00h
S0TBIC (b)
F19Ch (E)
CEh
Serial channel 0 transmit buffer interrupt control register --00h
XP3IC (b)
F19Eh (E)
CFh
See Section 9.1: XPeripheral interrupt
--00h
EXICON (b)
F1C0h (E)
E0h
External interrupt control register
0000h
ODP2 (b)
F1C2h (E)
E1h
Port 2 open-drain control register
0000h
PICON (b)
F1C4h (E)
E2h
Port input threshold control register
--00h
ODP3 (b)
F1C6h (E)
E3h
Port 3 open-drain control register
0000h
ODP4 (b)
F1CAh (E)
E5h
Port 4 open-drain control register
--00h
ODP6 (b)
F1CEh (E)
E7h
Port 6 open-drain control register
--00h
ODP7 (b)
F1D2h (E)
E9h
Port 7 open-drain control register
--00h
259/346
Register set
ST10F296E
Table 141. SFRs ordered by address (continued)
Name
Physical
address
8-bit
address
Description
Reset value
ODP8 (b)
F1D6h (E)
EBh
Port 8 open-drain control register
--00h
EXISEL (b)
F1DAh (E)
EDh
External interrupt source selection register
0000h
DPP0
FE00h
00h
CPU data page pointer 0 register (10-bit)
0000h
DPP1
FE02h
01h
CPU data page pointer 1 register (10-bit)
0001h
DPP2
FE04h
02h
CPU data page pointer 2 register (10-bit)
0002h
DPP3
FE06h
03h
CPU data page pointer 3 register (10-bit)
0003h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CSP
FE08h
04h
CPU code segment pointer register (read-only)
0000h
EMUCON
FE0Ah
05h
Emulation control register
--XXh
MDH
FE0Ch
06h
CPU multiply divide register – high word
0000h
MDL
FE0Eh
07h
CPU multiply divide register – low word
0000h
CP
FE10h
08h
CPU context pointer register
FC00h
SP
FE12h
09h
CPU system stack pointer register
FC00h
STKOV
FE14h
0Ah
CPU stack overflow pointer register
FA00h
STKUN
FE16h
0Bh
CPU stack underflow pointer register
FC00h
ADDRSEL1
FE18h
0Ch
Address select register 1
0000h
ADDRSEL2
FE1Ah
0Dh
Address select register 2
0000h
ADDRSEL3
FE1Ch
0Eh
Address select register 3
0000h
ADDRSEL4
FE1Eh
0Fh
Address select register 4
0000h
PW0
FE30h
18h
PWM module pulse width register 0
0000h
PW1
FE32h
19h
PWM module pulse width register 1
0000h
PW2
FE34h
1Ah
PWM module pulse width register 2
0000h
PW3
FE36h
1Bh
PWM module pulse width register 3
0000h
T2
FE40h
20h
GPT1 timer 2 register
0000h
T3
FE42h
21h
GPT1 timer 3 register
0000h
T4
FE44h
22h
GPT1 timer 4 register
0000h
T5
FE46h
23h
GPT2 timer 5 register
0000h
T6
FE48h
24h
GPT2 timer 6 register
0000h
CAPREL
FE4Ah
25h
GPT2 capture/reload register
0000h
T0
FE50h
28h
CAPCOM timer 0 register
0000h
T1
FE52h
29h
CAPCOM timer 1 register
0000h
T0REL
FE54h
2Ah
CAPCOM timer 0 reload register
0000h
T1REL
FE56h
2Bh
CAPCOM timer 1 reload register
0000h
MAL
FE5Ch
2Eh
MAC unit accumulator - low word
0000h
MAH
FE5Eh
2Fh
MAC unit accumulator - high word
0000h
260/346
ST10F296E
Register set
Table 141. SFRs ordered by address (continued)
Name
Physical
address
8-bit
address
Description
Reset value
CC16
FE60h
30h
CAPCOM register 16
0000h
CC17
FE62h
31h
CAPCOM register 17
0000h
CC18
FE64h
32h
CAPCOM register 18
0000h
CC19
FE66h
33h
CAPCOM register 19
0000h
CC20
FE68h
34h
CAPCOM register 20
0000h
CC21
FE6Ah
35h
CAPCOM register 21
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CC22
FE6Ch
36h
CAPCOM register 22
0000h
CC23
FE6Eh
37h
CAPCOM register 23
0000h
CC24
FE70h
38h
CAPCOM register 24
0000h
CC25
FE72h
39h
CAPCOM register 25
0000h
CC26
FE74h
3Ah
CAPCOM register 26
0000h
CC27
FE76h
3Bh
CAPCOM register 27
0000h
CC28
FE78h
3Ch
CAPCOM register 28
0000h
CC29
FE7Ah
3Dh
CAPCOM register 29
0000h
CC30
FE7Ch
3Eh
CAPCOM register 30
0000h
CC31
FE7Eh
3Fh
CAPCOM register 31
0000h
CC0
FE80h
40h
CAPCOM register 0
0000h
CC1
FE82h
41h
CAPCOM register 1
0000h
CC2
FE84h
42h
CAPCOM register 2
0000h
CC3
FE86h
43h
CAPCOM register 3
0000h
CC4
FE88h
44h
CAPCOM register 4
0000h
CC5
FE8Ah
45h
CAPCOM register 5
0000h
CC6
FE8Ch
46h
CAPCOM register 6
0000h
CC7
FE8Eh
47h
CAPCOM register 7
0000h
CC8
FE90h
48h
CAPCOM register 8
0000h
CC9
FE92h
49h
CAPCOM register 9
0000h
CC10
FE94h
4Ah
CAPCOM register 10
0000h
CC11
FE96h
4Bh
CAPCOM register 11
0000h
CC12
FE98h
4Ch
CAPCOM register 12
0000h
CC13
FE9Ah
4Dh
CAPCOM register 13
0000h
CC14
FE9Ch
4Eh
CAPCOM register 14
0000h
CC15
FE9Eh
4Fh
CAPCOM register 15
0000h
ADDAT
FEA0h
50h
ADC result register
0000h
WDT
FEAEh
57h
Watchdog timer register (read-only)
0000h
261/346
Register set
ST10F296E
Table 141. SFRs ordered by address (continued)
Name
Physical
address
8-bit
address
Description
Reset value
S0TBUF
FEB0h
58h
Serial channel 0 transmit buffer register (write-only)
0000h
S0RBUF
FEB2h
59h
Serial channel 0 receive buffer register (read-only)
--XXh
S0BG
FEB4h
5Ah
Serial channel 0 baud rate generator reload register
0000h
PECC0
FEC0h
60h
PEC channel 0 control register
0000h
PECC1
FEC2h
61h
PEC channel 1 control register
0000h
PECC2
FEC4h
62h
PEC channel 2 control register
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
PECC3
FEC6h
63h
PEC channel 3 control register
0000h
PECC4
FEC8h
64h
PEC channel 4 control register
0000h
PECC5
FECAh
65h
PEC channel 5 control register
0000h
PECC6
FECCh
66h
PEC channel 6 control register
0000h
PECC7
FECEh
67h
PEC channel 7 control register
0000h
P0L (b)
FF00h
80h
Port 0 low register (lower half of Port 0)
--00h
P0H (b)
FF02h
81h
Port 0 high register (upper half of Port 0)
--00h
P1L (b)
FF04h
82h
Port 1 low register (lower half of Port 1)
--00h
P1H (b)
FF06h
83h
Port 1 high register (upper half of Port 1)
--00h
IDX0 (b)
FF08h
84h
MAC unit address pointer 0
0000h
IDX1 (b)
FF0Ah
85h
MAC unit address pointer 1
0000h
BUSCON0 (b)
FF0Ch
86h
Bus configuration register 0
0xx0h
MDC (b)
FF0Eh
87h
CPU multiply divide control register
0000h
PSW (b)
FF10h
88h
CPU program status word
0000h
SYSCON (b)
FF12h
89h
CPU system configuration register
0xx0h
BUSCON1 (b)
FF14h
8Ah
Bus configuration register 1
0000h
BUSCON2 (b)
FF16h
8Bh
Bus configuration register 2
0000h
BUSCON3 (b)
FF18h
8Ch
Bus configuration register 3
0000h
BUSCON4 (b)
FF1Ah
8Dh
Bus configuration register 4
0000h
ZEROS (b)
FF1Ch
8Eh
Constant value 0’s register (read-only)
0000h
ONES (b)
FF1Eh
8Fh
Constant value 1’s register (read-only)
FFFFh
T78CON (b)
FF20h
90h
CAPCOM timer 7 and 8 control register
0000h
CCM4 (b)
FF22h
91h
CAPCOM mode control register 4
0000h
CCM5 (b)
FF24h
92h
CAPCOM mode control register 5
0000h
CCM6 (b)
FF26h
93h
CAPCOM mode control register 6
0000h
CCM7 (b)
FF28h
94h
CAPCOM mode control register 7
0000h
PWMCON0 (b)
FF30h
98h
PWM module control register 0
0000h
PWMCON1 (b)
FF32h
99h
PWM module control register 1
0000h
262/346
ST10F296E
Register set
Table 141. SFRs ordered by address (continued)
Name
Physical
address
8-bit
address
Description
Reset value
T2CON (b)
FF40h
A0h
GPT1 timer 2 control register
0000h
T3CON (b)
FF42h
A1h
GPT1 timer 3 control register
0000h
T4CON (b)
FF44h
A2h
GPT1 timer 4 control register
0000h
T5CON (b)
FF46h
A3h
GPT2 timer 5 control register
0000h
T6CON (b)
FF48h
A4h
GPT2 timer 6 control register
0000h
T01CON (b)
FF50h
A8h
CAPCOM timer 0 and timer 1 control register
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CCM0 (b)
FF52h
A9h
CAPCOM mode control register 0
0000h
CCM1 (b)
FF54h
AAh
CAPCOM mode control register 1
0000h
CCM2 (b)
FF56h
ABh
CAPCOM mode control register 2
0000h
CCM3 (b)
FF58h
ACh
CAPCOM mode control register 3
0000h
T2IC (b)
FF60h
B0h
GPT1 timer 2 interrupt control register
--00h
T3IC (b)
FF62h
B1h
GPT1 timer 3 interrupt control register
--00h
T4IC (b)
FF64h
B2h
GPT1 timer 4 interrupt control register
--00h
T5IC (b)
FF66h
B3h
GPT2 timer 5 interrupt control register
--00h
T6IC (b)
FF68h
B4h
GPT2 timer 6 interrupt control register
--00h
CRIC (b)
FF6Ah
B5h
GPT2 CAPREL interrupt control register
--00h
S0TIC (b)
FF6Ch
B6h
Serial channel 0 transmit interrupt control register
--00h
S0RIC (b)
FF6Eh
B7h
Serial channel 0 receive interrupt control register
--00h
S0EIC (b)
FF70h
B8h
Serial channel 0 error interrupt control register
--00h
SSCTIC (b)
FF72h
B9h
SSC transmit interrupt control register
--00h
SSCRIC (b)
FF74h
BAh
SSC receive interrupt control register
--00h
SSCEIC (b)
FF76h
BBh
SSC error interrupt control register
--00h
CC0IC (b)
FF78h
BCh
CAPCOM register 0 interrupt control register
--00h
CC1IC (b)
FF7Ah
BDh
CAPCOM register 1 interrupt control register
--00h
CC2IC (b)
FF7Ch
BEh
CAPCOM register 2 interrupt control register
--00h
CC3IC (b)
FF7Eh
BFh
CAPCOM register 3 interrupt control register
--00h
CC4IC (b)
FF80h
C0h
CAPCOM register 4 interrupt control register
--00h
CC5IC (b)
FF82h
C1h
CAPCOM register 5 interrupt control register
--00h
CC6IC (b)
FF84h
C2h
CAPCOM register 6 interrupt control register
--00h
CC7IC (b)
FF86h
C3h
CAPCOM register 7 interrupt control register
--00h
CC8IC (b)
FF88h
C4h
CAPCOM register 8 interrupt control register
--00h
CC9IC (b)
FF8Ah
C5h
CAPCOM register 9 interrupt control register
--00h
CC10IC (b)
FF8Ch
C6h
CAPCOM register 10 interrupt control register
--00h
CC11IC (b)
FF8Eh
C7h
CAPCOM register 11 interrupt control register
--00h
263/346
Register set
ST10F296E
Table 141. SFRs ordered by address (continued)
Name
Physical
address
8-bit
address
Description
Reset value
CC12IC (b)
FF90h
C8h
CAPCOM register 12 interrupt control register
--00h
CC13IC (b)
FF92h
C9h
CAPCOM register 13 interrupt control register
--00h
CC14IC (b)
FF94h
CAh
CAPCOM register 14 interrupt control register
--00h
CC15IC (b)
FF96h
CBh
CAPCOM register 15 interrupt control register
--00h
ADCIC (b)
FF98h
CCh
ADC end of conversion interrupt control register
--00h
ADEIC (b)
FF9Ah
CDh
ADC overrun error interrupt control register
--00h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
T0IC (b)
FF9Ch
CEh
CAPCOM timer 0 interrupt control register
--00h
T1IC (b)
FF9Eh
CFh
CAPCOM timer 1 interrupt control register
--00h
ADCON (b)
FFA0h
D0h
ADC control register
0000h
P5 (b)
FFA2h
D1h
Port 5 register (read-only)
XXXXh
P5DIDIS (b)
FFA4h
D2h
Port 5 digital disable register
0000h
TFR (b)
FFACh
D6h
Trap flag register
0000h
WDTCON (b)
FFAEh
D7h
Watchdog timer control register
00xxh
S0CON (b)
FFB0h
D8h
Serial channel 0 control register
0000h
SSCCON (b)
FFB2h
D9h
SSC control register
0000h
P2 (b)
FFC0h
E0h
Port 2 register
0000h
DP2 (b)
FFC2h
E1h
Port 2 direction control register
0000h
P3 (b)
FFC4h
E2h
Port 3 register
0000h
DP3 (b)
FFC6h
E3h
Port 3 direction control register
0000h
P4 (b)
FFC8h
E4h
Port 4 register (8-bit)
--00h
DP4 (b)
FFCAh
E5h
Port 4 direction control register
--00h
P6 (b)
FFCCh
E6h
Port 6 register (8-bit)
--00h
DP6 (b)
FFCEh
E7h
Port 6 direction control register
--00h
P7 (b)
FFD0h
E8h
Port 7 register (8-bit)
--00h
DP7 (b)
FFD2h
E9h
Port 7 direction control register
--00h
P8 (b)
FFD4h
EAh
Port 8 register (8-bit)
--00h
DP8 (b)
FFD6h
EBh
Port 8 direction control register
--00h
MRW (b)
FFDAh
EDh
MAC unit repeat word
0000h
MCW (b)
FFDCh
EEh
MAC unit control word
0000h
MSW (b)
FFDEh
EFh
MAC unit status word
0200h
264/346
ST10F296E
23.5
Register set
X registers ordered by name
Table 142 lists all XBus registers which are implemented in the ST10F296E ordered by their
name. The Flash control registers are physically mapped on the XBus memory space, but,
are listed in Section 23.7: Flash registers ordered by name. The X registers are not bitaddressable.
Table 142. X registers ordered by name
Name
CAN1BRPER
Physical
address
EF0Ch
Description
CAN1 BRP extension register
Reset
value
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CAN1BTR
EF06h
CAN1 bit timing register
2301h
CAN1CR
EF00h
CAN1 CAN control register
0001h
CAN1EC
EF04h
CAN1 error counter
0000h
CAN1IF1A1
EF18h
CAN1 IF1 arbitration 1
0000h
CAN1IF1A2
EF1Ah
CAN1 IF1 arbitration 2
0000h
CAN1IF1CM
EF12h
CAN1 IF1 command mask
0000h
CAN1IF1CR
EF10h
CAN1 IF1 command request
0001h
CAN1IF1DA1
EF1Eh
CAN1 IF1 data A 1
0000h
CAN1IF1DA2
EF20h
CAN1 IF1 data A 2
0000h
CAN1IF1DB1
EF22h
CAN1 IF1 data B 1
0000h
CAN1IF1DB2
EF24h
CAN1 IF1 data B 2
0000h
CAN1IF1M1
EF14h
CAN1 IF1 mask 1
FFFFh
CAN1IF1M2
EF16h
CAN1 IF1 mask 2
FFFFh
CAN1IF1MC
EF1Ch
CAN1 IF1 message control
0000h
CAN1IF2A1
EF48h
CAN1 IF2 arbitration 1
0000h
CAN1IF2A2
EF4Ah
CAN1 IF2 arbitration 2
0000h
CAN1IF2CM
EF42h
CAN1 IF2 command mask
0000h
CAN1IF2CR
EF40h
CAN1 IF2 command request
0001h
CAN1IF2DA1
EF4Eh
CAN1 IF2 data A 1
0000h
CAN1IF2DA2
EF50h
CAN1 IF2 data A 2
0000h
CAN1IF2DB1
EF52h
CAN1 IF2 data B 1
0000h
CAN1IF2DB2
EF54h
CAN1 IF2 data B 2
0000h
CAN1IF2M1
EF44h
CAN1 IF2 mask 1
FFFFh
CAN1IF2M2
EF46h
CAN1 IF2 mask 2
FFFFh
CAN1IF2MC
EF4Ch
CAN1 IF2 message control
0000h
CAN1IP1
EFA0h
CAN1 interrupt pending 1
0000h
CAN1IP2
EFA2h
CAN1 interrupt pending 2
0000h
CAN1IR
EF08h
CAN1 interrupt register
0000h
265/346
Register set
ST10F296E
Table 142. X registers ordered by name (continued)
Name
Physical
address
Description
Reset
value
CAN1MV1
EFB0h
CAN1 message valid 1
0000h
CAN1MV2
EFB2h
CAN1 message valid 2
0000h
CAN1ND1
EF90h
CAN1 new data 1
0000h
CAN1ND2
EF92h
CAN1 new data 2
0000h
CAN1SR
EF02h
CAN1 status register
0000h
CAN1TR
EF0Ah
CAN1 test register
00x0h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
266/346
CAN1TR1
EF80h
CAN1 transmission request 1
0000h
CAN1TR2
EF82h
CAN1 transmission request 2
0000h
CAN2BRPER
EE0Ch
CAN2 BRP extension register
0000h
CAN2BTR
EE06h
CAN2 bit timing register
2301h
CAN2CR
EE00h
CAN2 CAN control register
0001h
CAN2EC
EE04h
CAN2 error counter
0000h
CAN2IF1A1
EE18h
CAN2 IF1 arbitration 1
0000h
CAN2IF1A2
EE1Ah
CAN2 IF1 arbitration 2
0000h
CAN2IF1CM
EE12h
CAN2 IF1 command mask
0000h
CAN2IF1CR
EE10h
CAN2 IF1 command request
0001h
CAN2IF1DA1
EE1Eh
CAN2 IF1 data A 1
0000h
CAN2IF1DA2
EE20h
CAN2 IF1 data A 2
0000h
CAN2IF1DB1
EE22h
CAN2 IF1 data B 1
0000h
CAN2IF1DB2
EE24h
CAN2 IF1 data B 2
0000h
CAN2IF1M1
EE14h
CAN2 IF1 mask 1
FFFFh
CAN2IF1M2
EE16h
CAN2 IF1 mask 2
FFFFh
CAN2IF1MC
EE1Ch
CAN2 IF1 message control
0000h
CAN2IF2A1
EE48h
CAN2 IF2 arbitration 1
0000h
CAN2IF2A2
EE4Ah
CAN2 IF2 arbitration 2
0000h
CAN2IF2CM
EE42h
CAN2 IF2 command mask
0000h
CAN2IF2CR
EE40h
CAN2 IF2 command request
0001h
CAN2IF2DA1
EE4Eh
CAN2 IF2 data A 1
0000h
CAN2IF2DA2
EE50h
CAN2 IF2 data A 2
0000h
CAN2IF2DB1
EE52h
CAN2 IF2 data B 1
0000h
CAN2IF2DB2
EE54h
CAN2 IF2 data B 2
0000h
CAN2IF2M1
EE44h
CAN2 IF2 mask 1
FFFFh
CAN2IF2M2
EE46h
CAN2 IF2 mask 2
FFFFh
CAN2IF2MC
EE4Ch
CAN2 IF2 message control
0000h
ST10F296E
Register set
Table 142. X registers ordered by name (continued)
Name
Physical
address
Description
Reset
value
CAN2IP1
EEA0h
CAN2 interrupt pending 1
0000h
CAN2IP2
EEA2h
CAN2 interrupt pending 2
0000h
CAN2IR
EE08h
CAN2 interrupt register
0000h
CAN2MV1
EEB0h
CAN2 message valid 1
0000h
CAN2MV2
EEB2h
CAN2 message valid 2
0000h
CAN2ND1
EE90h
CAN2 new data 1
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CAN2ND2
EE92h
CAN2 new data 2
0000h
CAN2SR
EE02h
CAN2 status register
0000h
CAN2TR
EE0Ah
CAN2 test register
00x0h
CAN2TR1
EE80h
CAN2 transmission request 1
0000h
CAN2TR2
EE82h
CAN2 transmission request 2
0000h
I2CCCR1
I2CCCR2
EA06h
EA0Eh
2
I C clock control register 1
clock control register 2
0000h
2C
control register
0000h
I
I2CCR
EA00h
I
I2CDR
EA0Ch
I2C data register
I2COAR1
EA08h
0000h
2C
0000h
2C
own address register 1
0000h
2C
I
EA0Ah
I
own address register 2
0000h
I2CSR1
EA02h
I2C
status register 1
0000h
I2CSR2
EA04h
I2C status register 2
0000h
RTCAH
ED14h
RTC alarm register high byte
XXXXh
RTCAL
ED12h
RTC alarm register low byte
XXXXh
RTCCON
ED00H
RTC control register
000Xh
RTCDH
ED0Ch
RTC divider counter high byte
XXXXh
RTCDL
ED0Ah
RTC divider counter low byte
XXXXh
RTCH
ED10h
RTC programmable counter high byte
XXXXh
RTCL
ED0Eh
RTC programmable counter low byte
XXXXh
RTCPH
ED08h
RTC prescaler register high byte
XXXXh
RTCPL
ED06h
RTC prescaler register low byte
XXXXh
XCLKOUTDIV
EB02h
CLKOUT divider control register
- - 00h
XDP9
EB86h
XPort 9 direction control register
0000h
XDP9CLR
EB8Ah
XPort 9 direction control register clear
0000h
XDP9SET
EB88h
XPort 9 direction control register set
0000h
XEMU0
EB76h
XBus emulation register 0 (write-only)
XXXXh
XEMU1
EB78h
XBus emulation register 1 (write-only)
XXXXh
I2COAR2
267/346
Register set
ST10F296E
Table 142. X registers ordered by name (continued)
Name
Physical
address
Description
Reset
value
XEMU2
EB7Ah
XBus emulation register 2 (write-only)
XXXXh
XEMU3
EB7Ch
XBus emulation register 3 (write-only)
XXXXh
XIR0CLR
EB14h
XInterrupt 0 clear register (write-only)
0000h
XIR0SEL
EB10h
XInterrupt 0 selection register
0000h
XIR0SET
EB12h
XInterrupt 0 set register (write-only)
0000h
XIR1CLR
EB24h
XInterrupt 1 clear register (write-only)
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
268/346
XIR1SEL
EB20h
XInterrupt 1 selection register
0000h
XIR1SET
EB22h
XInterrupt 1 set register (write-only)
0000h
XIR2CLR
EB34h
XInterrupt 2 clear register (write-only)
0000h
XIR2SEL
EB30h
XInterrupt 2 selection register
0000h
XIR2SET
EB32h
XInterrupt 2 set register (write-only)
0000h
XIR3CLR
EB44h
XInterrupt 3 clear selection register (write-only)
0000h
XIR3SEL
EB40h
XInterrupt 3 selection register
0000h
XIR3SET
EB42h
XInterrupt 3 set selection register (write-only)
0000h
XMISC
EB46h
XBus miscellaneous features register
0000h
XODP9
EB8Ch
XPort 9 open-drain control register
0000h
XODP9CLR
EB90h
XPort 9 open-drain control register clear
0000h
XODP9SET
EB8Eh
XPort 9 open-drain control register set
0000h
XP10
EBC0h
XPort 10 register
0000h
XP10DIDIS
EBD2h
XPort 10 digital disable control register
0000h
XP10DIDISSET
EBD4h
XPort 10 digital disable control register set
0000h
XP10DIDISCLR
EBD6h
XPort 10 digital disable control register clear
0000h
XP9
EB80h
XPort 9 register
0000h
XP9CLR
EB84h
XPort 9 register clear
0000h
XP9SET
EB82h
XPort 9 register set
0000h
XPEREMU
EB7Eh
XPERCON copy for emulation (write-only)
XXXXh
XPICON
EB26h
Extended port input threshold control register
- - 00h
XPICON10
EBD8h
XPort 10 input control register
0000h
XPICON10CLR
EBDCh
XPort 10 input control register clear
0000h
XPICON10SET
EBDAh
XPort 10 input control register set
0000h
XPICON9
EB98h
XPort 9 input control register
0000h
XPICON9CLR
EB9Ch
XPort 9 input control register clear
0000h
XPICON9SET
EB9Ah
XPort 9 input control register set
0000h
XPOLAR
EC04h
XPWM module channel polarity register
0000h
ST10F296E
Register set
Table 142. X registers ordered by name (continued)
Name
Physical
address
Description
Reset
value
XPP0
EC20h
XPWM module period register 0
0000h
XPP1
EC22h
XPWM module period register 1
0000h
XPP2
EC24h
XPWM module period register 2
0000h
XPP3
EC26h
XPWM module period register 3
0000h
XPT0
EC10h
XPWM module up/down counter 0
0000h
XPT1
EC12h
XPWM module up/down counter 1
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
XPT2
EC14h
XPWM module up/down counter 2
0000h
XPT3
EC16h
XPWM module up/down counter 3
0000h
XPW0
EC30h
XPWM module pulse width register 0
0000h
XPW1
EC32h
XPWM module pulse width register 1
0000h
XPW2
EC34h
XPWM module pulse width register 2
0000h
XPW3
EC36h
XPWM module pulse width register 3
0000h
XPWMCON0
EC00h
XPWM module control register 0
0000h
XPWMCON0CLR
EC08h
XPWM module clear control register 0 (write-only) 0000h
XPWMCON0SET
EC06h
XPWM module set control register 0 (write-only)
0000h
XPWMCON1
EC02h
XPWM module control register 1
0000h
XPWMCON1CLR
EC0Ch
XPWM module clear control register 0 (write-only) 0000h
XPWMCON1SET
EC0Ah
XPWM module set control register 0 (write-only)
0000h
XPWMPORT
EC80h
XPWM module port control register
0000h
XS1BG
E906h
XASC baud rate generator reload register
0000h
XS1CON
E900h
XASC control register
0000h
XS1CONCLR
E904h
XASC clear control register (write-only)
0000h
XS1CONSET
E902h
XASC set control register (write-only)
0000h
XS1PORT
E980h
XASC port control register
0000h
XS1RBUF
E90Ah
XASC receive buffer register
0000h
XS1TBUF
E908h
XASC transmit buffer register
0000h
XSSCBR
E80Ah
XSSC baud rate register
0000h
XSSCCON
E800h
XSSC control register
0000h
XSSCCONCLR
E804h
XSSC clear control register (write-only)
0000h
XSSCCONSET
E802h
XSSC set control register (write-only)
0000h
XSSCPORT
E880h
XSSC port control register
0000h
XSSCRB
E808h
XSSC receive buffer
XXXXh
XSSCTB
E806h
XSSC transmit buffer
0000h
XTCR
EB50h
XTimer control register
0000h
269/346
Register set
ST10F296E
Table 142. X registers ordered by name (continued)
Name
23.6
Physical
address
Description
Reset
value
XTCVR
EB56h
XTimer current value register
0000h
XTEVR
EB54h
XTimer end value register
0000h
XTSVR
EB52h
XTimer start value register
0000h
X registers ordered by address
Table 143 lists all XBus registers which are implemented in the ST10F296E ordered by their
physical address. The Flash control registers are physically mapped on the XBus memory
space, but, are listed in Section 23.7: Flash registers ordered by name. The X registers are
not bit-addressable.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 143. X registers ordered by address
Name
Description
Reset
value
XSSCCON
E800h
XSSC control register
0000h
XSSCCONSET
E802h
XSSC set control register (write-only)
0000h
XSSCCONCLR
E804h
XSSC clear control register (write-only)
0000h
XSSCTB
E806h
XSSC transmit buffer
0000h
XSSCRB
E808h
XSSC receive buffer
XXXXh
XSSCBR
E80Ah
XSSC baud rate register
0000h
XSSCPORT
E880h
XSSC port control register
0000h
XS1CON
E900h
XASC control register
0000h
XS1CONSET
E902h
XASC set control register (write-only)
0000h
XS1CONCLR
E904h
XASC clear control register (write-only)
0000h
XS1BG
E906h
XASC baud rate generator reload register
0000h
XS1TBUF
E908h
XASC transmit buffer register
0000h
XS1RBUF
E90Ah
XASC receive buffer register
0000h
XS1PORT
E980h
XASC port control register
0000h
2
I2CCR
EA00h
I C control register
0000h
I2CSR1
EA02h
I2C status register 1
0000h
EA04h
I 2C
0000h
EA06h
2
I2CSR2
I2CCCR1
status register 2
I C clock control register 1
2C
0000h
I2COAR1
EA08h
I
own address register 1
0000h
I2COAR2
EA0Ah
I2C own address register 2
0000h
I2CDR
I2CCCR2
270/346
Physical
address
EA0Ch
EA0Eh
2
I C data register
I
2C
clock control register 2
0000h
0000h
ST10F296E
Register set
Table 143. X registers ordered by address (continued)
Name
Physical
address
Description
Reset
value
XCLKOUTDIV
EB02h
CLKOUT divider control register
- - 00h
XIR0SEL
EB10h
XInterrupt 0 selection register
0000h
XIR0SET
EB12h
XInterrupt 0 set register (write-only)
0000h
XIR0CLR
EB14h
XInterrupt 0 clear register (write-only)
0000h
XIR1SEL
EB20h
XInterrupt 1 selection register
0000h
XIR1SET
EB22h
XInterrupt 1 set register (write-only)
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
XIR1CLR
EB24h
XInterrupt 1 clear register (write-only)
0000h
XPICON
EB26h
Extended port input threshold control register
- - 00h
XIR2SEL
EB30h
XInterrupt 2 selection register
0000h
XIR2SET
EB32h
XInterrupt 2 set register (write-only)
0000h
XIR2CLR
EB34h
XInterrupt 2 clear register (write-only)
0000h
XIR3SEL
EB40h
XInterrupt 3 selection register
0000h
XIR3SET
EB42h
XInterrupt 3 set selection register (write-only)
0000h
XIR3CLR
EB44h
XInterrupt 3 clear selection register (write-only)
0000h
XMISC
EB46h
XBus miscellaneous features register
0000h
XTCR
EB50h
XTimer control register
0000h
XTSVR
EB52h
XTimer start value register
0000h
XTEVR
EB54h
XTimer end value register
0000h
XTCVR
EB56h
XTimer current value register
0000h
XEMU0
EB76h
XBus emulation register 0 (write-only)
XXXXh
XEMU1
EB78h
XBus emulation register 1 (write-only)
XXXXh
XEMU2
EB7Ah
XBus emulation register 2 (write-only)
XXXXh
XEMU3
EB7Ch
XBus emulation register 3 (write-only)
XXXXh
XPEREMU
EB7Eh
XPERCON copy for emulation (write-only)
XXXXh
XP9
EB80h
XPort 9 register
0000h
XP9SET
EB82h
XPort 9 register set
0000h
XP9CLR
EB84h
XPort 9 register clear
0000h
XDP9
EB86h
XPort 9 direction control register
0000h
XDP9SET
EB88h
XPort 9 direction control register set
0000h
XDP9CLR
EB8Ah
XPort 9 direction control register clear
0000h
XODP9
EB8Ch
XPort 9 open-drain control register
0000h
XODP9SET
EB8Eh
XPort 9 open-drain control register set
0000h
XODP9CLR
EB90h
XPort 9 open-drain control register clear
0000h
XPICON9
EB98h
XPort 9 input control register
0000h
271/346
Register set
ST10F296E
Table 143. X registers ordered by address (continued)
Name
Physical
address
Description
Reset
value
XPICON9SET
EB9Ah
XPort 9 input control register set
0000h
XPICON9CLR
EB9Ch
XPort 9 input control register clear
0000h
XP10
EBC0h
XPort 10 register
0000h
XP10DIDIS
EBD2h
XPort 10 digital disable control register
0000h
XP10DIDISSET
EBD4h
XPort 10 digital disable control register set
0000h
XP10DIDISCLR
EBD6h
XPort 10 digital disable control register clear
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
272/346
XPICON10
EBD8h
XPort 10 input control register
0000h
XPICON10SET
EBDAh
XPort 10 Input Control Register Set
0000h
XPICON10CLR
EBDCh
XPort 10 input control register clear
0000h
XPWMCON0
EC00h
XPWM module control register 0
0000h
XPWMCON1
EC02h
XPWM module control register 1
0000h
XPOLAR
EC04h
XPWM module channel polarity register
0000h
XPWMCON0SET
EC06h
XPWM module set control register 0 (write-only)
0000h
XPWMCON0CLR
EC08h
XPWM module clear control register 0 (write-only) 0000h
XPWMCON1SET
EC0Ah
XPWM module set control register 0 (write-only)
XPWMCON1CLR
EC0Ch
XPWM module clear control register 0 (write-only) 0000h
XPT0
EC10h
XPWM module up/down counter 0
0000h
XPT1
EC12h
XPWM module up/down counter 1
0000h
XPT2
EC14h
XPWM module up/down counter 2
0000h
XPT3
EC16h
XPWM module up/down counter 3
0000h
XPP0
EC20h
XPWM module period register 0
0000h
XPP1
EC22h
XPWM module period register 1
0000h
XPP2
EC24h
XPWM module period register 2
0000h
XPP3
EC26h
XPWM module period register 3
0000h
XPW0
EC30h
XPWM module pulse width register 0
0000h
XPW1
EC32h
XPWM module pulse width register 1
0000h
XPW2
EC34h
XPWM module pulse width register 2
0000h
XPW3
EC36h
XPWM module pulse width register 3
0000h
XPWMPORT
EC80h
XPWM module port control register
0000h
RTCCON
ED00H
RTC control register
000Xh
RTCPL
ED06h
RTC prescaler register low byte
XXXXh
RTCPH
ED08h
RTC prescaler register high byte
XXXXh
RTCDL
ED0Ah
RTC divider counter low byte
XXXXh
RTCDH
ED0Ch
RTC divider counter high byte
XXXXh
0000h
ST10F296E
Register set
Table 143. X registers ordered by address (continued)
Name
Physical
address
Description
Reset
value
RTCL
ED0Eh
RTC programmable counter low byte
XXXXh
RTCH
ED10h
RTC programmable counter high byte
XXXXh
RTCAL
ED12h
RTC alarm register low byte
XXXXh
RTCAH
ED14h
RTC alarm register high byte
XXXXh
CAN2CR
EE00h
CAN2 CAN control register
0001h
CAN2SR
EE02h
CAN2 status register
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CAN2EC
EE04h
CAN2 error counter
0000h
CAN2BTR
EE06h
CAN2 bit timing register
2301h
CAN2IR
EE08h
CAN2 interrupt register
0000h
CAN2TR
EE0Ah
CAN2 test register
00x0h
CAN2BRPER
EE0Ch
CAN2 BRP extension register
0000h
CAN2IF1CR
EE10h
CAN2 IF1 command request
0001h
CAN2IF1CM
EE12h
CAN2 IF1 command mask
0000h
CAN2IF1M1
EE14h
CAN2 IF1 mask 1
FFFFh
CAN2IF1M2
EE16h
CAN2 IF1 mask 2
FFFFh
CAN2IF1A1
EE18h
CAN2 IF1 arbitration 1
0000h
CAN2IF1A2
EE1Ah
CAN2 IF1 arbitration 2
0000h
CAN2IF1MC
EE1Ch
CAN2 IF1 message control
0000h
CAN2IF1DA1
EE1Eh
CAN2 IF1 data A 1
0000h
CAN2IF1DA2
EE20h
CAN2 IF1 data A 2
0000h
CAN2IF1DB1
EE22h
CAN2 IF1 data B 1
0000h
CAN2IF1DB2
EE24h
CAN2 IF1 data B 2
0000h
CAN2IF2CR
EE40h
CAN2 IF2 command request
0001h
CAN2IF2CM
EE42h
CAN2 IF2 command mask
0000h
CAN2IF2M1
EE44h
CAN2 IF2 mask 1
FFFFh
CAN2IF2M2
EE46h
CAN2 IF2 mask 2
FFFFh
CAN2IF2A1
EE48h
CAN2 IF2 arbitration 1
0000h
CAN2IF2A2
EE4Ah
CAN2 IF2 arbitration 2
0000h
CAN2IF2MC
EE4Ch
CAN2 IF2 message control
0000h
CAN2IF2DA1
EE4Eh
CAN2 IF2 data A 1
0000h
CAN2IF2DA2
EE50h
CAN2 IF2 data A 2
0000h
CAN2IF2DB1
EE52h
CAN2 IF2 data B 1
0000h
CAN2IF2DB2
EE54h
CAN2 IF2 data B 2
0000h
CAN2TR1
EE80h
CAN2 transmission request 1
0000h
273/346
Register set
ST10F296E
Table 143. X registers ordered by address (continued)
Name
Physical
address
Description
Reset
value
CAN2TR2
EE82h
CAN2 transmission request 2
0000h
CAN2ND1
EE90h
CAN2 new data 1
0000h
CAN2ND2
EE92h
CAN2 new data 2
0000h
CAN2IP1
EEA0h
CAN2 interrupt pending 1
0000h
CAN2IP2
EEA2h
CAN2 interrupt pending 2
0000h
CAN2MV1
EEB0h
CAN2 message valid 1
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
274/346
CAN2MV2
EEB2h
CAN2 message valid 2
0000h
CAN1CR
EF00h
CAN1 CAN control register
0001h
CAN1SR
EF02h
CAN1 status register
0000h
CAN1EC
EF04h
CAN1 error counter
0000h
CAN1BTR
EF06h
CAN1 bit timing register
2301h
CAN1IR
EF08h
CAN1 interrupt register
0000h
CAN1TR
EF0Ah
CAN1 test register
00x0h
CAN1BRPER
EF0Ch
CAN1 BRP extension register
0000h
CAN1IF1CR
EF10h
CAN1 IF1 command request
0001h
CAN1IF1CM
EF12h
CAN1 IF1 command mask
0000h
CAN1IF1M1
EF14h
CAN1 IF1 mask 1
FFFFh
CAN1IF1M2
EF16h
CAN1 IF1 mask 2
FFFFh
CAN1IF1A1
EF18h
CAN1 IF1 arbitration 1
0000h
CAN1IF1A2
EF1Ah
CAN1 IF1 arbitration 2
0000h
CAN1IF1MC
EF1Ch
CAN1 IF1 message control
0000h
CAN1IF1DA1
EF1Eh
CAN1 IF1 data A 1
0000h
CAN1IF1DA2
EF20h
CAN1 IF1 data A 2
0000h
CAN1IF1DB1
EF22h
CAN1 IF1 data B 1
0000h
CAN1IF1DB2
EF24h
CAN1 IF1 data B 2
0000h
CAN1IF2CR
EF40h
CAN1 IF2 command request
0001h
CAN1IF2CM
EF42h
CAN1 IF2 command mask
0000h
CAN1IF2M1
EF44h
CAN1 IF2 mask 1
FFFFh
CAN1IF2M2
EF46h
CAN1 IF2 mask 2
FFFFh
CAN1IF2A1
EF48h
CAN1 IF2 arbitration 1
0000h
CAN1IF2A2
EF4Ah
CAN1 IF2 arbitration 2
0000h
CAN1IF2MC
EF4Ch
CAN1 IF2 message control
0000h
CAN1IF2DA1
EF4Eh
CAN1 IF2 data A 1
0000h
CAN1IF2DA2
EF50h
CAN1 IF2 data A 2
0000h
ST10F296E
Register set
Table 143. X registers ordered by address (continued)
Name
Physical
address
Description
Reset
value
CAN1IF2DB1
EF52h
CAN1 IF2 data B 1
0000h
CAN1IF2DB2
EF54h
CAN1 IF2 data B 2
0000h
CAN1TR1
EF80h
CAN1 transmission request 1
0000h
CAN1TR2
EF82h
CAN1 transmission request 2
0000h
CAN1ND1
EF90h
CAN1 new data 1
0000h
CAN1ND2
EF92h
CAN1 new data 2
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
CAN1IP1
EFA0h
CAN1 interrupt pending 1
0000h
CAN1IP2
EFA2h
CAN1 interrupt pending 2
0000h
CAN1MV1
EFB0h
CAN1 message valid 1
0000h
CAN1MV2
EFB2h
CAN1 message valid 2
0000h
275/346
Register set
23.7
ST10F296E
Flash registers ordered by name
Table 144 lists all Flash control registers which are implemented in the ST10F296E ordered
by their name. As these registers are physically mapped on the XBus, they are not bitaddressable.
Table 144. Flash registers ordered by name
Name
Physical
address
Description
Reset
value
FARH
0x000E 0012
Flash address register high
0000h
FARL
0x000E 0010
Flash address register low
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
276/346
FCR0H
0x000E 0002
Flash control register 0 - high
0000h
FCR0L
0x000E 0000
Flash control register 0 - low
0000h
FCR1H
0x000E 0006
Flash control register 1 - high
0000h
FCR1L
0x000E 0004
Flash control register 1 - low
0000h
FDR0H
0x000E 000A
Flash data register 0 - high
FFFFh
FDR0L
0x000E 0008
Flash data register 0 - low
FFFFh
FDR1H
0x000E 000E
Flash data register 1 - high
FFFFh
FDR1L
0x000E 000C
Flash data register 1 - low
FFFFh
FER
0x000E 0014
Flash error register
0000h
FNVAPR0
0x000E DFB8
Flash non volatile access protection register 0
ACFFh
FNVAPR1H
0x000E DFBE
Flash non volatile access protection register 1 - high
FFFFh
FNVAPR1L
0x000E DFBC
Flash non volatile access protection register 1 - low
FFFFh
FNVWPIRH
0x000E DFB6
Flash non volatile protection I register high
FFFFh
FNVWPIRL
0x000E DFB4
Flash non volatile protection I register low
FFFFh
FNVWPXRH
0x000E DFB2
Flash non volatile protection X register high
FFFFh
FNVWPXRL
0x000E DFB0
Flash non volatile protection X register low
FFFFh
XFICR
0x000E E000
XFlash interface control register
000Fh
ST10F296E
23.8
Register set
Flash registers ordered by address
Table 145 lists all Flash control registers which are implemented in the ST10F296E ordered
by their physical address. As these registers are physically mapped on the XBus, they are
not bit-addressable.
Table 145. Flash registers ordered by address
Name
Physical
address
Description
Reset
value
FCR0L
0x000E 0000
Flash control register 0 - low
0000h
FCR0H
0x000E 0002
Flash control register 0 - high
0000h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
FCR1L
0x000E 0004
Flash control register 1 - low
0000h
FCR1H
0x000E 0006
Flash control register 1 - high
0000h
FDR0L
0x000E 0008
Flash data register 0 - low
FFFFh
FDR0H
0x000E 000A
Flash data register 0 - high
FFFFh
FDR1L
0x000E 000C
Flash data register 1 - low
FFFFh
FDR1H
0x000E 000E
Flash data register 1 - high
FFFFh
FARL
0x000E 0010
Flash address register low
0000h
FARH
0x000E 0012
Flash address register high
0000h
FER
0x000E 0014
Flash error register
0000h
FNVWPXRL
0x000E DFB0
Flash non volatile protection X register low
FFFFh
FNVWPXRH
0x000E DFB2
Flash non volatile protection X register high
FFFFh
FNVWPIRL
0x000E DFB4
Flash non volatile protection I register low
FFFFh
FNVWPIRH
0x000E DFB6
Flash non volatile protection I register high
FFFFh
FNVAPR0
0x000E DFB8
Flash non volatile access protection register 0
ACFFh
FNVAPR1L
0x000E DFBC
Flash non volatile access protection register 1 - low
FFFFh
FNVAPR1H
0x000E DFBE
Flash non volatile access protection register 1 - high FFFFh
XFICR
0x000E E000
XFlash interface control register
000Fh
277/346
Register set
23.9
ST10F296E
Identification registers
The ST10F296E has four identification registers, mapped in the ESFR space. These
registers contain:
●
A manufacturer identifier
●
A chip identifier with its revision
●
A internal Flash and size identifier
●
Programming voltage description
IDMANUF register
IDMANUF (F07Eh/3Fh)
ESFR
Reset value: 0403h
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15
14
13
12
11
10
9
8
7
6
5
4
MANUF
3
2
1
0
0
1
R
Table 146. IDMANUF register description
Bit
Bit name
15-5
MANUF
Function
Manufacturer identifier
020h: STMicroelectronics manufacturer (JTAG worldwide
normalization).
IDCHIP register
IDCHIP (F07Ch/3Eh)
15
14
13
12
ESFR
11
10
9
8
Reset value: 128Xh
7
6
5
3
2
1
PCONF
IDCHIP
REVID
R
R
R
Table 147. IDCHIP register description
Bit
278/346
4
Bit name
Function
15-14
PCONF
Peripheral configuration
00: (E) Enhanced (ST10F296E)
01: (B) Basic
10: (D) Dedicated
11: Reserved
13 - 4
IDCHIP
Device identifier
128h: ST10F296E identifier (128h = 296)
3-0
REVID
Device revision identifier
Xh: According to revision number
0
ST10F296E
Register set
IDMEM register
IDMEM (F07Ah/3Dh)
15
14
13
ESFR
12
11
10
9
8
Reset value: 30D0h
7
6
5
MEMTYP
MEMSIZE
R
R
4
3
2
1
0
Table 148. IDMEM register description
Bit
Bit name
Function
15-12
MEMTYP
Internal memory type
0h: ROM-less
1h: (M) ROM memory
2h: (S) Standard Flash memory
3h: (H) High performance Flash memory (ST10F296E)
4h...Fh: Reserved
11 - 0
MEMSIZE
Internal memory size
Internal memory size is 4 x (MEMSIZE) (in Kbyte). The 0D0h for the
ST10F296E is 832 Kbytes
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
IDPROG register
IDPROG (F078h/3Ch)
15
14
13
ESFR
12
11
10
9
8
Reset value: 0040h
7
6
5
4
3
PROGVPP
PROGVDD
R
R
2
1
0
Table 149. IDPROG register description
Bit
Bit name
15-8
PROGVPP
Programming VPP voltage (no need of external VPP) - 00h
No need for external VPP (00h)
PROGVDD
Programming VDD voltage
When programming EPROM or Flash devices, VDD voltage is calculated
using the following formula for 5 V ST10F296E devices:
VDD = 20 x [PROGVDD] / 256 (volts) - 40h
7-0
Note:
Function
All identification registers are read-only registers.
The values written inside different identification register bits are valid only after the Flash
initialization phase has been completed. When code execution starts from the internal
memory (pin EA held high during reset), the Flash has completed initialization and the
identification register bits can be read. When code execution starts from the external
memory (pin EA held low during reset), Flash initialization has not been completed and the
identification register bits cannot be read. The user can poll bits 15 and 14 of the IDMEM
register. When both these bits are read low, Flash initialization can be completed and all
identification register bits can be read.
279/346
Register set
ST10F296E
Before Flash initialization completion, the default settings of the different identification
registers are as follows:
23.10
●
IDMANUF: 0403h
●
IDCHIP: 128xh (x = silicon revision)
●
IDMEM: F0D0h
●
IDPROG: 0040h
System configuration registers
This section lists and describes 12 registers which are used for configuring various aspects
of the ST10F296E system.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
System configuration register (SYSCON)
SYSCON (FF12h/89h)
15
14
13
STKSZ
RW
12
11
Reset value: 0xx0h(1)
SFR
10
9
8
7
6
5
4
3
2
1
0
ROM SGT ROM BYT CLK WRC CSC PWD OWD BDR XP VISI XPERS
S1 DIS EN DIS EN FG
FG CFG DIS STEN EN BLE HARE
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW RW
RW
1. SYSCON reset value is: 0000 0xx0 0x00 0000b.
Table 150. SYSCON register description
Bit
Bit name
15-13
STKSZ
System stack size
Selects the size of the system stack (in the internal IRAM) from 32 to
1024 words.
12
ROMS1
Internal memory mapping
0: Internal memory area mapped to segment 0 (00’0000h...00’7FFFh).
1: Internal memory area mapped to segment 1 (01’0000h...01’7FFFh).
SGTDIS
Segmentation disable/enable control
0: Segmentation enabled (CSP is saved/restored during interrupt
entry/exit).
1: Segmentation disabled (only the IP is saved/restored).
11
10
ROMEN
Internal memory enable (set according to the EA pin during reset)
0: Internal memory disabled. Accesses to the IFlash memory area is
made through the external bus.
1: Internal memory enabled.
9
BYTDIS(1)
Disable/enable control for the BHE pin (set according to data bus width)
0: BHE pin enabled.
1: BHE pin disabled. Pin may be used for general purpose I/O.
8
280/346
Function
(1)
CLKEN
System clock output enable (CLKOUT)
0: CLKOUT disabled. Pin may be used for general purpose I/O.
1: CLKOUT enabled. Pin outputs the system clock signal or a
prescaled value of the system clock according to the XCLKOUTDIV
register setting.
ST10F296E
Register set
Table 150. SYSCON register description (continued)
Bit
7
6
Bit name
Function
WRCFG(1)
Write configuration control (inverted copy of the WRC bit of the RP0H
register)
0: WR and BHE pins retain their normal function.
1: WR and BHE pins behave as the WRL and WRH pins respectively
CSCFG
Chip select configuration control
0: Latched chip select lines, CSx changes 1 TCL after rising edge of
ALE
1: Unlatched chip select lines, CSx changes with rising edge of ALE
PWDCFG
Power-down mode configuration control
0: Power-down mode can only be entered during PWRDN instruction
execution if NMI pin is low, otherwise, the instruction has no effect. To
exit power-down mode, an external reset must occur by asserting the
RSTIN pin.
1: Power-down mode can only be entered during PWRDN instruction
execution if all enabled fast external interrupt EXxIN pins are in their
inactive level. Exiting this mode can be done by asserting one enabled
EXxIN pin.
OWDDIS
Oscillator watchdog disable control
0: Oscillator watchdog (OWD) is enabled. If PLL is bypassed, the
OWD monitors XTAL1 activity. If there is no activity on XTAL1 for at
least 1 µs, the CPU clock is switched automatically to PLL’s base
frequency (250 Hz to 4 MHz).
1: OWD is disabled. If the PLL is bypassed, the CPU clock is always
driven by the XTAL1 signal. The PLL is turned off to reduce power
supply current.
3
BDRSTEN
Bidirectional reset enable
0: RSTIN pin is an input pin only. SW reset or WDT reset have no
effect on this pin.
1: RSTIN pin is a bidirectional pin. This pin is pulled low during 1024
TCL during reset sequence.
2
XPEN
XBus peripheral enable bit
0: Access to the on-chip XPeripherals and their functions are disabled.
1: The on-chip XPeripherals are enabled and can be accessed.
1
VISIBLE
Visible mode control
0: Access to the XBus peripherals is made internally.
1: Access to the XBus peripherals is made visible on the external pins.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
5
4
0
XBus peripheral share mode control
0: External access to the XBus peripherals is disabled.
XPERSHARE
1: XRAM1 and XRAM2 are accessible via the external bus during hold
mode. External access to other XBus peripherals is not guaranteed in
terms of AC timings.
1. Bits are set directly or indirectly during the rest sequence according to Port 0 and the EA pin configuration.
281/346
Register set
ST10F296E
BUSCON0 register
BUSCON0 (FF0Ch/86h)
15
14
13
SFR
12
11
10
9
8
-
BUS
ACT0
ALE
CTL0
-
-
RW
RW
-
CSW CSR RDY RDY
EN0 EN0 POL0 EN0
RW
RW
RW
RW
7
Reset value: 0xx0h
6
5
4
3
2
1
BTYP
MTT
C0
RWD
C0
MCTC
RW
RW
RW
RW
0
BUSCON1 register
BUSCON1 (FF14h/8Ah)
15
14
13
SFR
12
11
10
9
8
-
BUS
ACT1
ALE
CTL1
-
-
RW
RW
-
CSW CSR RDY RDY
EN1 EN1 POL1 EN1
RW
RW
RW
RW
7
Reset value: 0000h
6
5
4
BTYP
MTT
C1
RWD
C1
RW
RW
BUSCON2 register
BUSCON2 (FF16h/8Bh)
15
14
13
RW
RW
12
11
10
9
-
BUS
ACT2
ALE
CTL2
RW
RW
RW
15
u
d
o
Pr
14
13
12
RW
bs
RW
RW
b
O
so
8
7
6
MCTC
c
u
d
RW
)
s
t(
o
r
P
5
4
3
2
1
-
BTYP
MTT
C2
RWD
C2
MCTC
-
RW
RW
RW
RW
e
t
le
o
s
b
O
9
8
7
0
Reset value: 0000h
6
5
4
3
2
1
-
BUS
ACT3
ALE
CTL3
-
BTYP
MTT
C3
RWD
C3
MCTC
-
RW
RW
-
RW
RW
RW
RW
r
P
e
0
Reset value: 0000h
SFR
10
1
0
BUSCON4 register
O
t
e
l
o
s
b
O
282/346
u
d
o
RW
)-
(s)
11
ct
CSW CSR RDY RDY
EN3 EN3 POL3 EN3
e
t
e
ol
-
s
(
t
c
BUSCON3 register
BUSCON3 (FF18h/8Ch)
Pr
)
s
(
t
2
uc
od
RW
SFR
CSW CSR RDY RDY
EN2 EN2 POL2 EN2
RW
e
t
e
l
3
BUSCON4 (FF1Ah/8Dh)
15
14
13
12
CSW CSR RDY RDY
EN4 EN4 POL4 EN4
RW
RW
RW
RW
SFR
11
10
9
8
-
BUS
ACT4
ALE
CTL4
-
-
RW
RW
-
7
Reset value: 0000h
6
5
4
3
2
1
BTYP
MTT
C4
RWD
C4
MCTC
RW
RW
RW
RW
0
ST10F296E
Register set
Table 151. BUSCONx register description
Bit
Bit name
Function
15
CSWENx
Write chip select enable
0: The CS signal is independent of the write command (WR, WRL,
WRH).
1: The CS signal is generated for the duration of the write command.
14
CSRENx
Read chip select enable
0: The CS signal is independent of the read command (RD).
1: The CS signal is generated for the duration of the read command.
Ready active level control
0: Active level on the READY pin is low and he bus cycle terminates
with an 0 on this pin.
1: Active level on the READY pin is high and the bus cycle terminates
with a 1 on this pin.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
13
RDYPOLx
12
RDYENx
READY input enable
0: External bus cycle is controlled by the MCTC bit field.
1: External bus cycle is controlled by the READY input signal.
10
BUSACTx
Bus active control
0: External bus disabled.
1: External bus enabled (within the respective address window, see
ADDRSEL register.
9
ALECTLx
ALE lengthening control
0: Normal ALE signal.
1: Lengthened ALE signal.
External bus configuration
00: 8-bit demultiplexed bus
01: 8-bit multiplexed bus
10: 16-bit demultiplexed bus
11: 16-bit multiplexed bus
Note 1: BTYP bits of BUSCON0 are defined via Port 0 during reset.
They are set according to the configuration of bit 6 and 7 of Port 0
latched at the end of the reset sequence.
Note 2: If the EA pin is high during reset, the BUSCON0 register is
initialized with 0000h. If EA pin is low during reset, the BUSACT0 and
ALECTL0 bits are set (1) and the BTYP bit field is loaded with the bus
configuration selected via Port 0.
7-6
BTYP
5
MTTCx
Memory tristate time control
0: 1 wait state.
1: No wait state.
RWDCx
Read/write delay control for BUSCONx
0: With read/write delay, the CPU inserts 1 TCL after falling edge of
ALE.
1: No read/write delay; RW is activated after falling edge of ALE.
MCTC
Memory cycle time control (number of memory cycle time wait states)
0000: 15 wait states (number of wait states = 15 - [MCTC]).
...
1111: No wait states.
4
3-0
283/346
Register set
ST10F296E
RP0H register
RP0H is a read-only register.
RP0H (F108h/84h)
ESFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Reset value: --XXh
7
-
6
5
CLKSEL
(1)(2)
R
4
3
SALSEL
R
(2)
2
1
CSSEL
(2)
R
0
WRC
R(2)
1. Bits 7 to 5 of the RP0H register are loaded only during a long hardware reset. As pull-up resistors are
active on each Port P0H pins during reset, the RP0H default value is FFh.
2. Bits 7 to 0 of the RP0H register are set according to Port 0 configuration during any reset sequence.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 152. RP0H register description
Bit
Function
CLKSEL
System clock selection
000: fCPU = 16 x fOSC
001: fCPU = 0.5 x fOSC
010: fCPU = 10 x fOSC
011: fCPU = fOSC
100: fCPU = 5 x fOSC
101: fCPU = 8 x fOSC
110: fCPU = 3 x fOSC
111: fCPU = 4 x fOSC
SALSEL
Segment address line selection (number of active segment address
outputs)
00: 4-bit segment addresses, A19 to A16.
01: No segment address lines.
10: 8-bit segment addresses, A23 to A16.
11: 2-bit segment address, A17 and A16 (default without pull-downs).
2-1
CSSEL
Chip select line selection (number of active CS outputs)
00: Three CS lines, CS2 to CS0.
01: Two CS lines, CS1 and CS0.
10: No CS lines.
11: Five CS lines, CS4 to CS0 (default without pull-downs)
0
WRC
7-5
4-3
284/346
Bit name
Write configuration control
0: WR and BHE pins behave as WRL and WRH pins respectively.
1: WR and BHE pins retain their normal functioning.
ST10F296E
Register set
EXICON register
EXICON (F1C0h/E0h)
15
14
13
12
ESFR
11
10
9
8
EXI7ES
EXI6ES
EXI5ES
EXI4ES
R/W
R/W
R/W
R/W
Reset value: 0000h
7
6
5
(1)(2)
4
(1)(3)
EXI3ES
EXI2ES
R/W
R/W
3
2
1
0
EXI1ES
EXI0ES
R/W
R/W
1. EXI2ES and EXI3ES must be configured as 01b because RTC interrupt request lines are rising edge
active.
2. Alarm interrupt request line (RTCAI) is linked with EXI3ES
3. Timed interrupt request line (RTCSI) is linked with EXI2ES
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 153. EXICON register description
Bit
15-0
Bit name
EXIxES
(x = 7 to 0)
Function
External interrupt x edge selection field (x = 7...0)
00: Fast external interrupts disabled (standard mode). EXxIN pin not
taken into account for entering/exiting power-down mode.
01: Interrupt on positive rising edge. Power-down mode is entered if
EXiIN = 0 and exited if EXxIN = 1 (referred as ‘high’ active level).
10: Interrupt on negative falling edge. Power-down mode is entered if
EXiIN = 1 and exited if EXxIN = 0 (referred as ‘low’ active level).
11: Interrupt on any edge (rising or falling). Power-down mode is
always entered. It is exited if the EXxIN level changes.
285/346
Register set
ST10F296E
EXISEL register
EXISEL (F1DAh/EDh)
15
14
13
12
ESFR
11
10
9
8
EXI7SS
EXI6SS
EXI5SS
EXI4SS
R/W
R/W
R/W
R/W
Reset value: 0000h
7
6
(1)
5
4
3
(2)
EXI1SS
EXI0SS
R/W
R/W
EXI3SS
EXI2SS
R/W
R/W
2
1
0
1. Alarm interrupt request (RTCAI) is linked with EXI3SS
2. Timed interrupt request (RTCSI) is linked with EXI2SS
Table 154. EXISEL register description
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Bit
Bit name
15-0
EXIxSS
Function
External interrupt x source selection (x = 7 to 0)
00: Input from associated Port 2 pin.
01: Input from ‘alternate source’(1).
10: Input from Port 2 pin ORed with ‘alternate source’(1).
11: Input from Port 2 pin ANDed with ‘alternate source’.
1. Advised configuration
Table 155. External interrupt selection
286/346
EXIxSS
Port 2 pin
Alternate source
0
P2.8
CAN1_RxD
P4.5
1
P2.9
CAN2_RxD/SCL
P4.4
2
P2.10
RTCSI (second)
Internal MUX
3
P2.11
RTCAI (alarm)
Internal MUX
4 to 7
P2.12 to 15
Not used (zero)
-
ST10F296E
Register set
XP3IC register
This register has the same bit field as the xxIC interrupt register (see below).
XP3IC (F19Eh/CFh)
ESFR
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
7
Reset value: --00h
6
5
XP3IR XP3IE
RW
4
3
2
1
0
XP3ILVL
GLVL
RW
RW
RW
xxIC register
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
xxIC (yyyyh/zzh)
SFR area
7
6
Reset value: --00h
15
14
13
12
11
10
9
8
5
-
-
-
-
-
-
-
-
xxIR xxIE
ILVL
GLVL
-
-
-
-
-
-
-
-
RW
RW
RW
RW
4
3
2
1
0
Table 156. xxIC register description
Bit
Bit name
7
xxIR
Interrupt request flag
0: No request pending
1: This source has raised an interrupt request
xxIE
Interrupt enable control bit (individually enables/disables a specific
source)
0: Interrupt request is disabled
1: Interrupt request is enabled
ILVL
Interrupt priority level
Defines the priority level for the arbitration of requests.
Fh: Highest priority level
0h: Lowest priority level
GLVL
Group level
Defines the internal order for simultaneous requests of the same priority.
3: Highest group priority
0: Lowest group priority
6
5-2
1-0
Function
287/346
Register set
ST10F296E
XPERCON register
XPERCON (F024h/12h)
15 14 13 12
-
-
-
-
-
-
-
-
11
ESFR
10
9
8
7
Reset value: 005h
6
5
4
3
2
1
XPORT XMISC XI2C XSSC XASC XPWM XFLASH XRTC XRAM XRAM CAN
EN
EN
EN
EN
EN
EN
EN
EN
2EN
1EN 2EN
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW
0
CAN
1EN
RW
Table 157. XPERCON register description
BIt
Bit name
Function
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
11
10
9
8
7
6
288/346
XPORTEN
XPort 9 and XPort 10 enable bit
0: Access to the on-chip XPort 9 and XPort 10 modules is disabled.
Address range 00’EB80h to 00’EBFFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XSSCEN,
XPWMEN, XI2CEN and XMISCEN are also 0.
1: The on-chip XPort 9 and XPort 10 are enabled and can be accessed.
XMISCEN
XBus additional features and XTimer enable bit
0: Access to the additional miscellaneous features is disabled. Address
range 00’EB00h to 00’EB7Fh is directed to the external memory only if
CAN1EN, CAN2EN, XRTCEN, XASCEN, XSSCEN, XPWMEN, XI2CEN
and XPORTEN are also 0.
1: The additional features and XTimer are enabled and can be
accessed.
XI2CEN
I2C enable bit
0: Access to the on-chip I2C is disabled, external access performed.
Address range 00’EA00h to 00’EAFFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XSSCEN,
XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip I2C is enabled and can be accessed.
XSSCEN
SSC1 enable bit
0: Access to the on-chip SSC1 is disabled, external access performed.
Address range 00’E800h to 00’E8FFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XI2CEN,
XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip SSC1 is enabled and can be accessed.
XASCEN
ASC1 enable bit
0: Access to the on-chip ASC1 is disabled, external access performed.
Address range 00’E900h to 00’E9FFh is directed to the external
memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XI2CEN,
XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip ASC1 is enabled and can be accessed.
XPWMEN
XPWM enable
0: Access to the on-chip PWM1 module is disabled, external access is
performed. Address range 00’EC00h to 00’ECFF is directed to the
external memory only if CAN1EN, CAN2EN, XASCEN, XSSCEN,
XI2CEN, XRTCEN, XMISCEN and XPORTEN are also 0.
1: The on-chip PWM1 module is enabled and can be accessed.
ST10F296E
Register set
Table 157. XPERCON register description
BIt
5
4
Bit name
Function
XFlash enable bit
0: Access to the on-chip XFlash is disabled, external access is
XFLASHEN
performed. Address range 09’0000h to 0E’FFFFh is directed to the
external memory only if XRAM2EN is also 0.
1: The on-chip XFlash is enabled and can be accessed.
XRTCEN
RTC enable
0: Access to the on-chip RTC module is disabled, external access is
performed. Address range 00’ED00h to 00’EDFF is directed to the
external memory only if CAN1EN, CAN2EN, XASCEN, XSSCEN,
XI2CEN, XPWMEN, XMISCEN and XPORTEN are also 0.
1: The on-chip RTC module is enabled and can be accessed.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
3
2
1
0
XRAM2EN
XRAM2 enable bit
0: Access to the on-chip 64 KByte XRAM is disabled, external access is
performed. Address range 0F’0000h to 0F’FFFFh is directed to the
external memory only if XFLASHEN is also 0.
1: The on-chip 64 Kbyte XRAM is enabled and can be accessed.
XRAM1EN
XRAM1 enable bit
0: Access to the on-chip 2 KByte XRAM is disabled. Address range
00’E000h to 00’E7FFh is directed to the external memory.
1: The on-chip 2 Kbyte XRAM is enabled and can be accessed.
CAN2EN
CAN2 enable bit
0: Access to the on-chip CAN2 XPeripheral and its functions is disabled
(P4.4 and P4.7 pins can be used as general purpose IOs, but, address
range 00’EC00h to 00’EFFFh is directed to the external memory only if
CAN1EN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN,
XMISCEN and XPORTEN are also 0).
1: The on-chip CAN2 XPeripheral is enabled and can be accessed.
CAN1EN
CAN1 enable bit
0: Access to the on-chip CAN1 XPeripheral and its functions is disabled
(P4.5 and P4.6 pins can be used as general purpose IOs, but, address
range 00’EC00h to 00’EFFFh is directed to the external memory only if
CAN2EN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN an
XMISCEN are also 0).
1: The on-chip CAN1 XPeripheral is enabled and can be accessed.
When CAN1, CAN2, RTC, ASC1, SSC1, I2C, PWM1, XBus additional features, XTimer and
XPort modules are disabled via XPERCON settings, any access in the address range
00’E800h to 00’EFFFh is directed to the external memory interface, using the BUSCONx
register associated with the ADDRSELx register matching the target address. All pins
involved with the XPeripherals can be used as general purpose IOs whenever the related
module is not enabled.
The default XPER selection after reset is identical to configuration of the XBus in the
ST10F280. CAN1 and XRAM1 are enabled, CAN2 and XRAM2 are disabled, all other
XPeripherals are disabled after reset.
the XPERCON register cannot be changed after globally enabling the XPeripherals (after
setting the XPEN bit in the SYSCON register).
289/346
Register set
ST10F296E
In emulation mode, all XPeripherals are enabled (all XPERCON bits are set). The access to
the external memory and/or the XBus is controlled by the bondout chip.
Reserved bits of the XPERCON register must always be written to 0.
When the RTC is disabled (RTCEN = 0) the main clock oscillator is switched off if the ST10
enters power-down mode. When the RTC is enabled, the RTCOFF bit of the RTCCON
register allows the power-down mode of the main clock oscillator to be chosen (eee
Section 18: Real-time clock (RTC) on page 203).
Table 158 summarizes the address range mapping on segment 8 for programming the
ROMEN and XPEN bits (of the SYSCON register) and the XRAM2EN and XFLASHEN bits
(of the XPERCON register).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 158. Segment 8 address range mapping
ROMEN
XPEN
XRAM2EN
XFLASHEN
Segment 8
0
0
x(1)
x(1)
External memory
0
1
0
0
External memory
Reserved
0
1
1
x(1)
0
1
x(1)
1
Reserved
1
(1)
x(1)
x(1)
IFlash (B1F1)
x
1. Don’t care
23.10.1
XPEREMU register
The XPEREMU register is a write-only register that is mapped on the XBus memory space
at address EB7Eh. It contrasts with the XPERCON register, a read/write ESFR register,
which must be programmed to enable the single XBus modules separately.
Once the XPEN bit of the SYSCON register is set and at least one of the XPeripherals
(except the memories) is activated, the XPEREMU register must be written with the same
content as the XPERCON register. This is to allow a correct emulation of the new set of
features introduced on the XBus for the new ST10 generation. The following instructions
must be added inside the initialization routine:
if (SYSCON.XPEN && (XPERCON & 0x07D3))
then { XPEREMU = XPERCON }
XPEREMU must be programmed after both the XPERCON and SYSCON registers in such
a way that the final configuration for the XPeripherals is stored in the XPEREMU register
and used for the emulation hardware setup.
XPEREMU (EB7Eh)
15
14
13
12
-
-
-
-
-
-
-
-
XBus
11
10
9
8
7
Reset value: xxxxh
6
5
4
3
2
1
XPORT XMISC XI2C XSSC XASC XPWM XFLASH XRTC XRAM XRAM CAN CAN
EN
EN
EN
EN
EN
EN
EN
EN
2EN
1EN 2EN 1EN
W
W
W
W
W
W
W
W
W
W
W
XPEREMU bit descriptition follows the XPERCON register (see Table 5 and Table 157).
290/346
0
W
ST10F296E
23.11
Register set
Emulation dedicated registers
Four write-only registers of the ST10F296E are described briefly below. These registers are
used for emulation purposes only.
XEMU0 (EB76h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: xxxxh
6
5
4
3
2
1
0
XEMU0(15:0)
W
XEMU1 (EB78h)
15
14
13
XBus
12
11
10
9
8
7
Reset value: xxxxh
6
5
4
3
c
u
d
XEMU1(15:0)
W
XEMU2 (EB7Ah)
XBus
o
r
P
14
13
12
11
10
9
8
7
6
5
4
3
XEMU2(15:0)
W
XEMU3 (EB7Ch)
15
14
13
XBus
12
11
10
9
8
7
1
0
)
s
t(
Reset value: xxxxh
uc
e
t
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
15
)
s
(
t
2
2
1
0
Reset value: xxxxh
6
5
4
3
2
1
0
XEMU3(15:0)
W
291/346
Electrical characteristics
ST10F296E
24
Electrical characteristics
24.1
Absolute maximum ratings
Table 159. Absolute maximum ratings
Symbol
Parameter
VDD
Voltage on VDD pins with respect to ground (VSS)
VSTBY
Voltage on VSTBY pin with respect to ground (VSS)
VAREF
Voltage on VAREF pin with respect to ground (VSS)
Value
Unit
- 0.3 to +6.5
- 0.3 to VDD + 0.3
V
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
VAGND
Voltage on VAGND pin with respect to ground (VSS)
VSS
VIO
Voltage on any pin with respect to ground (VSS)
- 0.5 to VDD + 0.5
IOV
Input current on any pin during overload condition
± 10
ITOV
Absolute sum of all input currents during overload condition
| 75 |
TST
Storage temperature
ESD
ESD susceptibility (human body model)
mA
- 65 to +150
°C
2000
V
Stresses above those listed under ‘Absolute maximum ratings’ may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
datasheet is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS) the
voltage on pins with respect to ground (VSS) must not exceed the values defined by the
absolute maximum ratings.
During power-on and power-off transients (including standby entering/exiting phases), the
relationship between voltages applied to the device and the main VDD must always be
respected. In particular, power-on and power-off of VAREF must be coherent with the VDD
transient, to avoid undesired current injection through the on-chip protection diodes.
292/346
ST10F296E
24.2
Electrical characteristics
Recommended operating conditions
Table 160. Recommended operating conditions
Symbol
VDD
VSTBY
VAREF
Parameter
Min
Max
4.5
5.5
Unit
Operating supply voltage
Operating standby supply voltage(1)
Operating analog reference voltage
TA
Ambient temperature under bias
TJ
Junction temperature under bias
V
(2)
0
VDD
+125
–40
°C
+150
)
s
(
t
c
u
d
o
)
r
s
24.3
Power considerations
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
1. The value of the VSTBY voltage is in the range 4.5 to 5.5 volts. It is acceptable to exceed the upper limit (up
to 6.0 volts) for a maximum of 100 hours over 300 000 hours (about 30 years), which represents the
lifetime of the device. When VSTBY voltage is lower than main VDD, the input section of VSTBY/EA pin can
generate a spurious static consumption on VDD power supply (in the range of a tenth of a µA).
2. For details on operating conditions concerning the use of the ADC, refer to Section 24.7: ADC
characteristics.
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the
following equation:
Equation 22
T J = T A + ( P D × ΘJA )
Where:
TA is the ambient temperature in ° C.
ΘJA is the package junction-to-ambient thermal resistance, in ° C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in Watts. This is the chip internal power.
PI/O represents the power dissipation on the input and output pins which is user determined.
Usually, PI/O < PINT can be neglected. PI/O may be significant if the device is configured to
drive external modules and/or memories continuously.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
Equation 23
P D = K ⁄ ( T J + 273° C )
293/346
Electrical characteristics
ST10F296E
Solving Equation 22 and Equation 23 gives Equation 24:
Equation 24
2
K = P D × ( T A + 273° C ) + ΘJA × P D
Where:
K is a constant for the particular part, which may be determined from Equation 24 by
measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ
may be obtained by solving Equation 22 and Equation 23 iteratively for any value of TA.
Table 161. Thermal characteristics
Symbol
Description
Value (typical)
Unit
30
° C/W
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
24.4
Parameter interpretation
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
ΘJA
Thermal resistance junction-ambient
PBGA 208 package (23 x 23 x 1.96 mm)
Based on thermal characteristics of the package and with reference to the power
consumption values provided in Table 163: DC characteristics and Figure 97: Supply current
versus the operating frequency (run and idle modes)), the product classification in Table 162
is suggested. The exact power consumption of the device inside the application must be
computed according to different working conditions, thermal profiles, real thermal resistance
of the system (including the printed circuit board or other substrata), I/O activity, and so on.
Table 162. Package characteristics
Package
Ambient temperature range
CPU frequency range
PBGA 208
-40 to 125 °C
1 to 64 MHz
The parameters listed in Table 163: DC characteristics represent characteristics of the
ST10F296E and its demands on the system.
Where the ST10F296E logic provides signals with their respective timing characteristics, the
symbol for controller characteristics (CC) is included in the ‘Symbol’ column. Where the
external system must provide signals with their respective timing characteristics to the
ST10F296E, the symbol for system requirement (SR) is included in the ‘Symbol’ column.
294/346
ST10F296E
24.5
Electrical characteristics
DC characteristics
VDD = 5 V ± 10 %, VSS = 0 V, TA = -40 to 125°C
Table 163. DC characteristics
Limit values
Symbol
Parameter
Test condition
Unit
Min
Max
-0.3
0.8
Input low voltage (TTL mode)
(except RSTIN, EA, NMI, RPD,
XTAL1, READY)
-
VILS (SR)
Input low voltage (CMOS mode)
(except RSTIN, EA, NMI, RPD,
XTAL1, READY)
-
-0.3
0.3 VDD
VIL1 (SR)
Input low voltage RSTIN, EA,
NMI, RPD
-
-0.3
0.3 VDD
VIL2 (SR)
Input low voltage XTAL1
(CMOS only)
Direct drive
mode
-0.3
0.3 VDD
VIL3 (SR)
Input low voltage READY
(TTL only)
-
-0.3
0.8
VIH (SR)
Input high voltage (TTL mode)
(except RSTIN, EA, NMI, RPD,
XTAL1)
-
2.0
VDD + 0.3
VIHS (SR)
Input high voltage (CMOS mode)
(except RSTIN, EA, NMI, RPD,
XTAL1)
-
0.7 VDD
VDD + 0.3
VIH1 (SR)
Input high voltage RSTIN, EA,
NMI, RPD
-
0.7 VDD
VDD + 0.3
VIH2 (SR)
Input high voltage XTAL1
(CMOS only)
Direct drive
mode
0.7 VDD
VDD + 0.3
VIH3 (SR)
Input high voltage READY
(TTL only)
VHYS (CC)
VIL (SR)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
V
V
-
2.0
VDD + 0.3
Input hysteresis (TTL mode)
(except RSTIN, EA, NMI, XTAL1,
RPD)
(1)
400
700
Input hysteresis (CMOS mode)
VHYSS (CC) (except RSTIN, EA, NMI, XTAL1,
RPD)
(1)
750
1400
VHYS1 (CC) Input hysteresis RSTIN, EA, NMI
(1)
750
1400
VHYS2 (CC) Input hysteresis XTAL1
(1)
0
50
(1)
400
700
(1)
500
1500
VHYS3 (CC)
Input hysteresis READY
(TTL only)
VHYS4 (CC) Input hysteresis RPD
mV
295/346
Electrical characteristics
ST10F296E
Table 163. DC characteristics (continued)
Limit values
Symbol
Parameter
Test condition
Unit
Min
Max
VOL (CC)
Output low voltage
(P6[7:0], ALE, RD, WR/WRL,
BHE/WRH, CLKOUT, RSTIN,
RSTOUT)
IOL = 8 mA
IOL = 1 mA
-
0.4
0.05
VOL1 (CC)
Output low voltage
(P0[15:0], P1[15:0], P2[15:0],
P3[15,13:0], P4[7:0], P7[7:0],
P8[7:0])
IOL1 = 4 mA
IOL1 = 0.5 mA
-
0.4
0.05
VOL2 (CC)
Output low voltage RPD
IOL2 = 85 µA
IOL2 = 80 µA
IOL2 = 60 µA
-
VOH (CC)
Output high voltage
(P6[7:0], ALE, RD, WR/WRL,
BHE/WRH, CLKOUT, RSTOUT)
IOH = -8 mA
IOH = -1 mA
VDD -0.8
VDD -0.08
-
VOH1 (CC)
Output high voltage(2)
(P0[15:0], P1[15:0], P2[15:0],
P3[15,13:0], P4[7:0], P7[7:0],
P8[7:0])
IOH1 = -4 mA
IOH1 = -0.5 mA
VDD -0.8
VDD -0.08
-
VOH2 (CC)
Output high voltage RPD
IOH2 = -2 mA
IOH2 = -750 µA
IOH2 = -150 µA
0
0.3 VDD
0.5 VDD
-
| IOZ1 | (CC)
Input leakage current
(P5[15:0])(3)
-
-
±0.2
| IOZ2 | (CC)
Input leakage current
(all except P5[15:0], P2.0, RPD)
-
-
±0.5
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
V
µA
| IOZ3 | (CC)
Input leakage current (P2.0)(4)
-
-
+1.0
-0.5
| IOZ4 | (CC)
Input leakage current (RPD)
-
-
±3.0
| IOV1 | (SR)
Overload current (all except P2.0)
(1)(5)
-
±5
mA
| IOV2 | (SR)
Overload current (P2.0)(4)
(1)(5)
-
+5
-1
mA
RRST (CC)
RSTIN pull-up resistor
100 kΩ nominal
50
250
kΩ
VOUT = 2.4 V
-
-40
VOUT = 0.4 V
-500
-
VOUT = 0.4 V
20
-
VOUT = 2.4 V
-
300
IRWH
296/346
VDD
0.5 VDD
0.3 VDD
Read/write inactive
current(6)(7)
IRWL
Read/write active current
IALEL
ALE inactive current(6)(7)
current(6)(8)
(6)(8)
IALEH
ALE active
IP6H
Port 6 inactive current
(P6[4:0])(6)(7)
VOUT = 2.4 V
-
-40
IP6L
Port 6 active current
(P6[4:0])(6)(8)
VOUT = 0.4 V
-500
-
µA
ST10F296E
Electrical characteristics
Table 163. DC characteristics (continued)
Limit values
Symbol
Parameter
IP0H(7)
Test condition
Port 0 configuration current(6)
IP0L(8)
Unit
Min
Max
VIN = 2.0 V
-
-10
VIN = 0.8V
-100
-
(1)(6)
-
10
pF
mA
µA
CIO (CC)
Pin capacitance
(digital inputs/outputs)
ICC1
Run mode power supply current
(execution from internal RAM)(9)
-
-
20 + 2 fCPU
ICC2
Run mode power supply current
(execution from internal
Flash)(1)(9)
-
-
20 + 1.8 fCPU
IID
Idle mode supply current(10)
-
-
TA = 25 °C
IPD1
Power-down supply current
(RTC off, oscillators off, main
voltage regulator off)(11)
IPD2
Power-down supply current(11)
(RTC on, main oscillator on,
main voltage regulator off)
o
r
P
e
t
e
l
TA = 25 °C
-
VSTBY = 5.5 V
TA = TJ = 25 °C
-
O
)
o
s
b
s
(
t
c
r
P
e
t
le
u
d
o
o
s
b
O
-
r
P
e
Standby supply current (VDD
transient condition)(1)(11)
)
s
(
ct
-
c
u
d
mA
20 + 0.6 fCPU mA
1
3
uc
-
TA = 125 °C
Standby supply current (RTC off,
VSTBY = 5.5 V
main oscillator off, VDD off, VSTBY
TA = TJ = 125 °C
(11)
on)
VSTBY = 5.5 V
TJ = 150°C(4)
ISB1
ISB3
TA = 125 °C
-
)
s
(
t
od
8
)
s
t(
mA
mA
10
250
-
500
-
700
-
2.5
µA
mA
1. Not 100% tested, guaranteed by design characterization.
t
e
l
o
2. This specification is not valid for outputs which are switched to open-drain mode. In this case the
respective output floats and the voltage is imposed by the external circuitry.
u
d
o
s
b
O
3. Port 5 and XPort 10 leakage values are granted for unselected ADC channels. One channel is always
selected (by default, after reset, P5.0 is selected). For the selected channel the leakage value is similar to
that of other port pins.
r
P
e
4. The leakage of P2.0 is higher than other pins due to the additional logic (pass gates active only in specific
test modes) implemented on its input path. Do not stress P2.0 input pin with negative overload beyond the
specified limits as failures in Flash reading may occur (sense amplifier perturbation). Refer to Figure 96 for
a scheme of the input circuitry.
s
b
O
t
e
l
o
5. Overload conditions occur if the standard operating conditions are exceeded, that is, the voltage on any pin
exceeds the specified range (VOV > VDD + 0.3 V or VOV < -0.3 V). The absolute sum of input overload
currents on all port pins must not exceed 50 mA. The supply voltage must remain within the specified limits.
6. This specification is only valid during reset, or during hold or adapt mode. Port 6 pins are only affected if
they are used for CS output and the open drain function is not enabled.
7. The maximum current may be drawn while the respective signal line remains inactive.
8. The minimum current must be drawn to drive the respective signal line active.
297/346
Electrical characteristics
ST10F296E
9. The power supply current is a function of the operating frequency (fCPU is expressed in MHz). This
dependency is illustrated in Figure 97 below. This parameter is tested at VDDmax and at maximum CPU
clock frequency with all outputs disconnected, all inputs at VIL or VIH, and RSTIN pin at VIH1min: This
implies that I/O current is not considered. The device does the following:
- Fetches code from IRAM and XRAM1, read and write accesses both XRAM modules
- Enables watchdog timer and services it regularly
- RTC runs with main oscillator clock as reference, generating a tick interrupt every 192 clock cycles
- Four XPWM channels run (wave periods: 2, 2.5, 3, and 4 CPU clock cycles): No output toggling
- Five general purpose timers run in timer mode with prescaler equal to 8 (T2, T3, T4, T5, and T6)
- ADC is in auto scan continuous conversion mode on all 16 channels of Port 5
- All interrupts generated by XPWM, RTC, timers and ADC are not serviced
10. The idle mode supply current is a function of the operating frequency (fCPU is expressed in MHz). This
dependency is illustrated in Figure 97 below. These parameters are tested at maximum CPU clock with all
outputs disconnected, all inputs at VIL or VIH, and the RSTIN pin at VIH1min.
11. Testing of this parameter includes leakage currents. All inputs (including pins configured as inputs) are at 0
to 0.1 V or at VDD - 0.1 V to VDD, VAREF = 0 V, all outputs (including pins configured as outputs) are
disconnected. The main voltage regulator is assumed to be off. If this is not the case, an additional 1 mA
must be assumed.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 96. Port 2 test mode structure
Output
buffer
Clock
Alternate data input
Input
latch
Fast external interrupt input
Test mode
Flash sense amplifier
and column decoder
1. For the complete structure of Port 2, see Figure 37 in Section 13.4
298/346
P2.0
CC0IO
ST10F296E
Electrical characteristics
Figure 97. Supply current versus the operating frequency (run and idle modes)
150
ICC1
ICC2
I [mA]
100
IID
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
50
0
0
10
20
30
40
50
60
70
fCPU [MHz]
299/346
Electrical characteristics
24.6
ST10F296E
Flash characteristics
VDD = 5 V ± 10%, VSS = 0 V
Table 164. Flash characteristics
Maximum
TA = 125 °C
Typical
TA = 25 °C
Parameter
0
Word program (32-bit)(3)
(3)
Double word program (64-bit)
cycles(1)
0 cycles
(1)
Unit
Notes
(2)
100 k cycles
35
80
290
µs
-
60
150
570
µs
-
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Maximum word program (32-bit)
-
560
1385
µs
Maximum double word program
(64-bit)
-
1160
2760
µs
-
Bank 0 program (384 Kbyte)
(double word program)
2.9
7.4
28.0
s
-
Bank 1 program (128 Kbyte)
(double word program)
1.0
2.5
9.3
s
-
Bank 2 program (192 Kbyte)
(double word program)
1.5
3.7
14.0
s
-
Bank 3 program (128 Kbyte)
(double word program)
1.0
2.5
9.3
s
-
Sector erase (8 Kbyte)
0.6
0.5
0.9
0.8
1.0
0.9
s
Not preprogrammed
Preprogrammed
Sector erase (32 Kbyte)
1.1
0.8
2.0
1.8
2.7
2.5
s
Not preprogrammed
Preprogrammed
Sector erase (64K)
1.7
1.3
3.7
3.3
5.1
4.7
s
Not preprogrammed
Preprogrammed
Bank 0 erase (384 Kbyte)(4)
8.2
5.8
20.2
17.7
28.6
26.1
s
Not preprogrammed
Preprogrammed
Bank 1 erase (128 Kbyte)(4)
3.0
2.2
7.0
6.2
9.8
9.0
s
Not preprogrammed
Preprogrammed
Bank 2 erase (192 Kbyte)(4)
4.3
3.1
10.3
9.1
14.5
13.3
s
Not preprogrammed
Preprogrammed
Bank 3 erase (128 Kbyte)(4)
3.0
2.2
7.0
6.2
9.8
9.0
s
Not preprogrammed
Preprogrammed
Imodule erase (512 Kbyte)(5)
11.2
7.6
27.2
23.5
38.4
34.7
s
Not preprogrammed
Preprogrammed
Xmodule erase (320 Kbyte)(5)
7.3
4.9
17.3
14.8
24.3
21.8
s
Not preprogrammed
Preprogrammed
Chip erase (832 Kbyte)(6)
18.5
12.0
44.4
37.9
62.6
56.1
s
Not preprogrammed
Preprogrammed
Recovery from power-down (tPD)
–
40
40
µs
(7)
Program suspend latency(7)
-
10
10
µs
300/346
ST10F296E
Electrical characteristics
Table 164. Flash characteristics (continued)
Parameter
0
Erase suspend latency
Maximum
TA = 125 °C
Typical
TA = 25 °C
(7)
cycles(1)
0 cycles
(1)
Unit
Notes
(2)
100 k cycles
-
30
30
µs
Erase suspend request rate(7)
20
20
20
ms
Set protection(7)
40
170
170
µs
Min delay between two
requests
1. Values are after about 100 cycles due to testing routines (0 cycles for the final customer).
2. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
3. Word and double word programming times are provided as average values derived from a full sector programming time.
The absolute value of a word or double word programming time may be longer than the provided average value.
4. Bank erase is obtained through a multiple sector erase operation (setting bits related to all sectors of the bank).
5. Module erase is obtained through a sequence of two bank erase operations (since each module is composed of two
banks).
6. Chip erase is obtained through a sequence of two module erase operations on the Imodule and Xmodule.
7. Not 100% tested, guaranteed by design characterization.
Table 165. Data retention characteristics
Number of program/erase cycles
(-40 °C ≤TA ≤125 °C)
Data retention time
(average ambient temperature 60 °C)
832 Kbyte
(code store)
64 Kbyte
(EEPROM emulation)(1)
0 - 100
> 20 years
> 20 years
1,000
-
> 20 years
10,000
-
10 years
100,000
-
1 year
1. Two 64 Kbyte Flash sectors may be typically used to emulate up to 4, 8, or 16 Kbytes of EEPROM.
Therefore, in case of an emulation of a 16 Kbyte EEPROM, 100 000 Flash program/erase cycles are
equivalent to 800 000 EEPROM program/erase cycles. For an efficient use of the read while write feature
and/or EEPROM emulation, please refer to the dedicated application note (AN2061, EEPROM Emulation
with ST10F2xx) on www.st.com.
301/346
Electrical characteristics
24.7
ST10F296E
ADC characteristics
VDD = 5 V ± 10 %, VSS = 0 V, TA = -40 to 125°C,
4.5 V ≤ VAREF ≤ VDD,
VSS ≤VAGND ≤VSS + 0.2 V
Table 166. ADC characteristics
Limit values
Symbol
Parameter
Test condition
Unit
Min
Max
VAREF (SR) Analog reference voltage(1)
4.5
VDD
V
VAGND (SR) Analog ground voltage
VSS
VSS + 0.2
V
VAGND
VAREF
V
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
VAIN (SR)
Analog input
voltage(2)
mode(3)
IAREF (CC)
Reference supply current
Running
Power-down mode
-
5
1
mA
µA
tS (CC)
Sample time
(4)
1
-
µs
tC (CC)
Conversion time
(5)
3
-
µs
DNL (CC)
Differential nonlinearity(6)
No overload
-1
1
LSB
No overload
-1.5
1.5
LSB
No overload
-1.5
1.5
LSB
-2.0
2.0
LSB
-
10-6
-
-
3
pF
-
5
5
pF
pF
-
3.5
pF
-
600
1600
Ω
Ω
-
1300
Ω
INL (CC)
OFS (CC)
Integral nonlinearity
Offset error
(6)
(6)
(6)
TUE (CC)
Total unadjusted error
K (CC)
Coupling factor between
inputs(3)(7)
On both Port 5 and XPort 10
CP1 (CC)
Input pin capacitance(3)(8)
CP2 (CC)
CS (CC)
RSW (CC)
Port 5
XPort 10
Sampling capacitance(3)(8)
Analog switch resistance
(3)(8)
Port 5
XPort 10
RAD (CC)
1. VAREF can be tied to ground when ADC is not in use: An extra consumption (around 200 µA) on main VDD
is added because the internal analog circuitry is not completely turned off. It is suggested to maintain the
VAREF at VDD level even when not in use, and to eventually switch off the ADC circuitry setting bit, ADOFF,
in the ADCON register.
2. VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in
these cases is 0x000H or 0x3FFH, respectively.
3. Not 100% tested, guaranteed by design characterization.
4. During the sample time, tS, the input capacitance, CAIN, can be charged/discharged by the external source.
The internal resistance of the analog source must allow the capacitance to reach its final voltage level
within tS. After the end of the sample time, changes of the analog input voltage have no effect on the
conversion result. Values for the sample clock, tS, depend on programming and can be taken from
Table 167.
5. This parameter includes the sample time, tS, the time for determining the digital result, and the time to load
the result register with the conversion result. Values for the conversion clock, tCC, depend on programming
and can be taken from Table 167.
302/346
ST10F296E
Electrical characteristics
6. DNL, INL, OFS and TUE are tested at VAREF = 5.0 V, VAGND = 0 V, VDD = 5.0 V. They are guaranteed by
design characterization for all other voltages within the defined voltage range. ‘LSB’ has a value of
VAREF/1024. The specified TUE (±2 LSB) is also guaranteed with an overload condition (see IOV
specification) occurring on a maximum of two unselected analog input pins if the absolute sum of input
overload currents on all analog input pins does not exceed 10 mA.
7. The coupling factor is measured on a channel while the overload condition occurs on the adjacent
unselected channels with the overload current within the different specified ranges (for both positive and
negative injection current).
8. Refer to Figure 99
24.7.1
Conversion timing control
When a conversion starts, the capacitances of the converter are first loaded via the
respective analog input pin to the current analog input voltage. The time to load the
capacitances is referred to as the sample time. Next, the sampled voltage is converted into a
digital value in several successive steps which corresponds to the 10-bit resolution of the
ADC. During these steps the internal capacitances are repeatedly charged and discharged
via the VAREF pin.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
The current that must be drawn from the sources for sampling and changing charges
depends on the duration of each step because the capacitors must reach their final voltage
level as close to the given time as possible. However, the maximum current that a source
can deliver depends on its internal resistance.
The amount of time that sampling and converting takes during conversion can be
programmed within a certain range in the ST10F296E relative to the CPU clock. The
absolute time consumed by the different conversion steps is therefore independent from the
general speed of the controller. This allows the device ADC to be adjusted to the properties
of the system.
Fast conversion can be achieved by programming the respective times to their absolute
possible minimum. This is preferable for scanning high frequency signals. However, the
internal resistance of the analog source and analog supply must be sufficiently low.
High internal resistance can be achieved by programming the respective times to a higher
value or to their possible maximum. This is preferable when using analog sources and
supplies with a high internal resistance to keep the current as low as possible. However, the
conversion rate in this case may be considerably lower.
The conversion times are programmed via the upper four bits of the ADCON register. Bit
fields ADCTC and ADSTC define the basic conversion time and in particular the partition
between the sample phase and comparison phases. Table 167 lists the possible
combinations. The timings refer to the unit TCL, where fCPU = 1/2 TCL. A complete
conversion time includes the conversion itself, the sample time and the time required to
transfer the digital value to the result register.
303/346
Electrical characteristics
ST10F296E
Table 167. ADC programming
ADCTC
ADSTC
Sample
Comparison
Extra
Total conversion
00
00
TCL * 120
TCL * 240
TCL * 28
TCL * 388
00
01
TCL * 140
TCL * 280
TCL * 16
TCL * 436
00
10
TCL * 200
TCL * 280
TCL * 52
TCL * 532
00
11
TCL * 400
TCL * 280
TCL * 44
TCL * 724
11
00
TCL * 240
TCL * 480
TCL * 52
TCL * 772
11
01
TCL * 280
TCL * 560
TCL * 28
TCL * 868
11
10
TCL * 400
TCL * 560
TCL * 100
TCL * 1060
11
11
TCL * 800
TCL * 560
TCL * 52
TCL * 1444
10
00
TCL * 480
TCL * 960
TCL * 100
TCL * 1540
10
01
TCL * 560
TCL * 1120
TCL * 52
TCL * 1732
10
10
TCL * 800
TCL * 1120
TCL * 196
TCL * 2116
10
11
TCL * 1600
TCL * 1120
TCL * 164
TCL * 2884
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Note:
The total conversion time is compatible with the formula valid for the ST10F280, while the
meaning of the bit fields ADCTC and ADSTC is no longer compatible: The minimum
conversion time is 388 TCL, which at 40 MHz CPU frequency corresponds to 4.85µsµ (see
ST10F280).
24.7.2
ADC conversion accuracy
The ADC compares the analog voltage sampled on the selected analog input channel to its
analog reference voltage (VAREF) and converts it into 10-bit digital data item. The absolute
accuracy of the AD conversion is the deviation between the input analog value and the
output digital value. ADC conversion accuracy includes the following errors:
–
Offset error (OFS)
–
Gain error (GE)
–
Quantization error
–
Nonlinearity error (differential and integral)
These errors are explained below using Figure 98.
Offset error
Offset error is the deviation between actual and ideal AD conversion characteristics when
the digital output value changes from the minimum zero voltage, 00, to 01 (see OFS in
Figure 98).
Gain error
Gain error is the deviation between the actual and ideal AD conversion characteristics when
the digital output value changes from 3FE to 3FF, after subtracting offset error. Gain error
combined with offset error represents full-scale error (see OFS + GE in Figure 98).
Quantization error
Quantization error is the intrinsic error of the ADC and is expressed as 1/2 LSB.
304/346
ST10F296E
Electrical characteristics
Nonlinearity error
Nonlinearity error is the deviation between the actual and the best-fitting AD conversion
characteristics (see Figure 98):
Note:
–
Differential nonlinearity error is the actual step dimension versus the ideal one
(1 LSBIDEAL).
–
Integral nonlinearity error is the distance between the center of the actual step and
the center of the bisector line, in the actual characteristics. Note that for integral
nonlinearity error, the effects of offset, gain and quantization errors are not
included.
The bisector characteristic is obtained by drawing a line from 1/2 LSB to a point before the
first step of the real characteristic, and another line from 1/2 LSB to a point after the last step
of the real characteristic (see Figure 98).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Total unadjusted error
The total unadjusted error (TUE) specifies the maximum deviation from the ideal
characteristic. The value provided in this datasheet represents the maximum error with
respect to the entire characteristic. It is a combination of the offset, gain and integral linearity
errors. The different errors may compensate each other depending on the relative sign of
the offset and gain errors (see TUE in Figure 98).
Figure 98. AD conversion characteristic
Offset error (OFS)
Gain error (GE)
3FF
3FE
(6)
3FD
Ideal characteristic
3FC
3FB
3FA
Bisector characteristic
(2)
Digital
out
(HEX)
007
(7)
(1)
006
005
(5)
004
(4)
003
002
(3)
001
1 LSB (ideal)
000
1
2
3
4
5
6
7
1018
1020
1022
1024
VAIN (LSBIDEAL) [LSBIDEAL = VAREF/1024]
Offset error (OFS)
1. Legend:
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential Nonlinearity Error (DNL)
(4) Integral Nonlinearity Error (INL)
(5) Center of a step of the actual transfer curve
(6) Quantization Error (1/2 LSB)
(7) Total Unadjusted Error (TUE)
305/346
Electrical characteristics
24.7.3
ST10F296E
Analog reference pins
The accuracy of the ADC converter depends on the accuracy of its analog reference. A
noise in the reference results in the same proportion of error in a conversion. A low pass
filter on the ADC converter reference source (supplied through the VAREF and VAGND pins),
is recommended to clean the signal thereby minimizing the noise. A simple capacitive
bypassing may be sufficient in most cases. In the presence of high RF noise energy,
inductors or ferrite beads may be necessary.
In the ST10F296E architecture, the VAREF and VAGND pins also represent the power supply
of the analog circuitry of the ADC. An effective DC current is required from the reference
voltage to the internal resistor string in the R-C DAC array and to the rest of the analog
circuitry.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
An external resistance on VAREF could introduce error under certain conditions. For this
reason, series resistance is not advisable. Any series devices in the filter network should be
designed to minimize the DC resistance.
24.7.4
Analog input pins
To improve the accuracy of the ADC, analog input pins must have low AC impedance.
Placing a capacitor with good high frequency characteristics at the input pin of the device
can be effective. The capacitor should be as large as possible, ideally infinite. This capacitor
contributes to attenuating the noise present on the input pin. Moreover, the source of the
capacitor charges during the sampling phase, when the analog signal source is a highimpedance source.
A real filter is typically obtained by using a series resistance with a capacitor on the input pin
(simple RC filter). RC filtering may be limited according to the value of the impedance
source of the transducer or circuit supplying the analog signal to be measured. The filter at
the input pins must be designed to account for the dynamic characteristics of the input
signal (bandwidth).
Figure 99. ADC input pins scheme
External circuit
internal circuit
VDD
Source
RS
VA
Filter
Current limiter
RF
RL
CF
1. Legend:
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW: Channel selection switch impedance
RAD: Sampling switch impedance
cp: Pin capacitance (two contributions, CP1 and CP2)
CS: Sampling capacitance
VA: Source voltage
306/346
CP1
Channel
selection
Sampling
RSW
RAD
CP2
CS
ST10F296E
Electrical characteristics
Input leakage and external circuit
The series resistor used to limit the current to a pin (see RL in Figure 99), in combination
with a large source of impedance, can lead to a degradation of the ADC accuracy when
input leakage is present.
Data about maximum input leakage current at each pin is provided in Section 24.5: DC
characteristics. Input leakage is greatest at high operating temperatures and generally
decreases by one half a degree for each 10 ° C decrease in temperature.
Considering that one count of a 10-bit ADC is about 5 mV (assuming VAREF = 5 V), an input
leakage of 100 nA acting though an RL = 50 kΩ of external resistance, leads to an error of
exactly one count (5 mV). If the resistance is 100 kΩ, the error is two counts (10 mV).
Additional leakage due to external clamping diodes must also be taken into account in
computing the total leakage affecting the ADC measurements. Another contribution to the
total leakage is represented by the charge sharing effects with the sampling capacitance.
The sampling capacitance, CS, is essentially a switched capacitance with a frequency equal
to the conversion rate of a single channel (maximum when the fixed channel continuous
conversion mode is selected). It can be seen as a resistive path to ground. For instance,
assuming a conversion rate of 250 kHz and a CS of 4 pF, a resistance of 1 MΩ is obtained
(REQ = 1/fCCS, where fC represents the conversion rate at the considered channel). To
minimize the error induced by the voltage partitioning between this resistance (sampled
voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be
designed to respect the following relation:
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Equation 25
V A × ( R S + R F + R L + R SW + R AD ) ⁄ R EQ < ( 1 ⁄ 2 )LSB
Equation 25 places constraints on the external network design, in particular on the resistive
path.
A second aspect of the capacitance network must be considered. Assuming the three
capacitances, CF, CP1 and CP2, are initially charged at the source voltage VA (see
Figure 99), when the sampling phase is started (ADC switch closed), a charge-sharing
phenomena begins (see Figure 100).
Figure 100. Charge sharing timing diagram during sampling phase
Voltage transient on CS
VCS
VA
VA2
∆V < 0.5 LSB
1
2
τ 1 < (RSW + RAD) CS 2048 × C S
309/346
Electrical characteristics
24.7.5
ST10F296E
Example of external network sizing
This section provides an example of how to design an external network, based on realistic
values for the internal parameters and on a hypothesis concerning the characteristics of the
analog signal to be sampled.
The following hypothesis is formulated to design the external network on the ADC input pins:
–
Analog signal source bandwidth (f0):
10 kHz
–
Conversion rate (fC):
25 kHz
–
Sampling time (TS):
1 µs
–
Pin input capacitance (CP1):
5 pF
–
Pin input routing capacitance (CP2):
1 pF
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
–
Sampling capacitance (CS):
4 pF
–
Maximum input current injection (IINJ):
3 mA
–
Maximum analog source voltage (VAM):
12 V
–
Analog source impedance (RS):
100 Ω
–
Channel switch resistance (RSW):
500 Ω
–
Sampling switch resistance (RAD):
200 Ω
If designing a filter with the pole at the maximum frequency of the signal, the time constant
of the filter is given in Equation 34:
Equation 34
R C C F = 1 ⁄ ( 2πf 0 ) = 15.9µs
Using the relationship between CF and CS (Equation 33) and taking some margin (4000
instead of 2048), it is possible to define CF as shown in Equation 35.
Equation 35
C F = 4000 × C S = 16nF
Equation 34 and Equation 35 allow the RC to be calculated as shown in Equation 36.
Equation 36
R F = 1 ⁄ ( 2πf 0 C F ) = 995Ω ≅ 1kΩ
Total series resistance can be calculated using Equation 37 where the current injection
limitation is considered and it is assumed that the source can go up to 12 V.
Equation 37
R S + R F + R L = V AM ⁄ I INJ = 4kΩ
Equation 37 allows a value for RL to be defined as shown in Equation 38.
310/346
ST10F296E
Electrical characteristics
Equation 38
R L = ( V AM ⁄ I INJ ) – R F – R S = 2.9kΩ
Equation 36, and Equation 38 define respectively the three elements of an external circuit,
RF, CF, and RL. Next, some conditions which are used to size the circuit must be verified.
The first of these is a calculation which allows the accuracy error, introduced by the switched
capacitance equivalent resistance, to be minimized. This is given in Equation 39.
Equation 39
R EQ = 1 ⁄ f C C S = 10MΩ
The error due to the voltage partitioning between the real resistive path and CS is less then
half a count if considering the worst case when VA = 5 V (see Equation 40).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
24.8
AC characteristics
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Equation 40
V A × ( R S + R F + R L + R SW + R AD ) ⁄ R EQ = 2.35mV < ( 1 ⁄ 2 )LSB
The other conditions to verify are if the time constants of the transients are shorter than the
sampling period duration, TS, and whether the distance is significant. These calculations are
given in Equation 41 and Equation 42.
Equation 41
τ 1 = ( R SW + R AD ) × C S = 2.8ns « T S = 1µs
Equation 42
10 × τ 2 = 10 × R L × ( C S + C P1 + C P2 ) = 290ns < T S = 1µs
For a complete set of parameter characterization of the ST10F296E ADC equivalent circuit,
refer to Table 166: ADC characteristics on page 302.
24.8.1
Test waveforms
Figure 102. Input/output waveforms
2.4 V
2.0 V
2.0 V
Test points
0.4 V
0.8 V
0.8 V
1. AC inputs during testing are driven at 2.4 V for a logic 1 and at 0.4 V for a logic 0.
2. Timing measurements are made at VIH min. for a logic 1 and VIL max for a logic 0.
311/346
Electrical characteristics
ST10F296E
Figure 103. Float waveforms
VOH
VLOAD + 0.1 V
VLOAD
VLOAD - 0.1 V
VOH - 0.1 V
Timing
reference
points
VOL + 0.1 V
VOL
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
1. For timing purposes, a port pin is no longer floating when VLOAD changes of ±100 mV occur.
2. VLOAD begins to float when a 100 mV change from the loaded VOH/VOL level occurs (IOH/IOL = 20 mA).
24.8.2
Definition of internal timing
The internal operation of the ST10F296E is controlled by the internal CPU clock fCPU. Both
edges of the CPU clock can trigger internal (for example, pipeline) or external (for example,
bus cycle) operations.
The specification of the external timing (AC characteristics) depends on the time (TCL)
between two consecutive edges of the CPU clock.
The CPU clock signal can be generated by different mechanisms. The duration of TCL and
its variation (and also the derived external timing) depends on the mechanism used to
generate fCPU.
The fCPU influence must be regarded when calculating the timings for the ST10F296E.
The example for PLL operation shown in Figure 104 refers to a PLL factor of four.
The mechanism used to generate the CPU clock is selected during reset by the logic levels
on pins P0.15-13 (P0H.7-5).
312/346
ST10F296E
Electrical characteristics
Figure 104. Generation mechanisms for the CPU clock
PLL operation
fXTAL
fCPU
TCL TCL
Direct clock drive
fXTAL
fCPU
TCL TCL
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Prescaler operation
fXTAL
fCPU
TCL
24.8.3
TCL
Clock generation modes
Figure 168 associates combinations of the P0.15-13 (P0H.7-5) bits with the respective clock
generation mode.
Table 168. On-chip clock generator selections
P0.15-13
(P0H.7-5)
CPU frequency
fCPU = fXTAL x F
External clock
input range
1
1
1
FXTAL x 4
4 to 8 MHz
1
1
0
FXTAL x 3
5.3 to 10.6 MHz
1
0
1
FXTAL x 8
4 to 8 MHz
1
0
0
FXTAL x 5
6.4 to 12 MHz
0
1
1
FXTAL x 1
1 to 64 MHz
0
1
0
FXTAL x 10
4 to 6.4 MHz
0
0
1
FXTAL/2
4 to 12 MHz
0
0
0
FXTAL x 16
4 MHz
Notes
Default configuration
Direct drive (oscillator bypassed)(1)
CPU clock via prescaler(1)
1. The maximum frequency of the external clock depends on the duty cycle of the external clock signal. When
64 MHz is used, 50 % duty cycle is granted (low phase = high phase = 7.8 ns). When 32 MHz is selected,
a 25 % duty cycle can be accepted (minimum, high or low phase = 7.8 ns).
The external clock input range refers to a CPU clock range of 1 to 64 MHz. In addition, PLL
use is limited to 4-12 MHz input frequency range. All configurations need a crystal (or
ceramic resonator) to generate the CPU clock through the internal oscillator amplifier (apart
from direct drive). On the contrary, the clock can be forced through an external clock source
only in direct drive mode (on-chip oscillator amplifier disabled, so no crystal or resonator can
be used).
313/346
Electrical characteristics
ST10F296E
The limits on input frequency are 4-12 MHz since use of the internal oscillator amplifier is
required. When the PLL is not used and the CPU clock corresponds to FXTAL/2, an external
crystal or resonator must be used. It is not possible to force any clock though an external
clock source.
24.8.4
Prescaler operation
When pins P0.15-13 (P0H.7-5) equal 001 during reset, the CPU clock is derived from the
internal oscillator (input clock signal) by a 2:1 prescaler.
The frequency of fCPU is half the frequency of fXTAL and the high and low time of fCPU
(duration of an individual TCL) is defined by the period of the input clock fXTAL.
The timings listed in this section that refer to TCL can be calculated using the fXTAL period
for any TCL.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
If the OWDDIS bit in the SYSCON register is cleared, the PLL runs on its free-running
frequency and delivers the clock signal for the oscillator watchdog. If the OWDDIS bit is set,
the PLL is switched off.
24.8.5
Direct drive
When pins P0.15-13 (P0H.7-5) equal 011 during reset, the on-chip PLL is disabled, the onchip oscillator amplifier is bypassed and the CPU clock is directly driven by the input clock
signal on the XTAL1 pin.
The frequency of the CPU clock (fCPU) directly follows the frequency of fXTAL, so, the high
and low time of fCPU (duration of an individual TCL) is defined by the duty cycle of the input
clock fXTAL.
Therefore, the timings given in this section refer to the minimum TCL. This minimum value
can be calculated using Equation 43.
Equation 43
TCL min = 1 ⁄ f XTAL × DC min
Where DC = Duty cycle.
For two consecutive TCLs, the deviation caused by the duty cycle of fXTAL is compensated,
so, the duration of 2TCL is always 1/fXTAL.
The minimum value, TCLmin, is used only once for timings that require an odd number of
TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use Equation
44.
Equation 44
2TCL = 1 ⁄ f XTAL
The address float timings in multiplexed bus mode (t11 and t45) use the maximum duration of
TCL (TCLmax = 1/fXTAL x DCmax) instead of TCLmin.
If the OWDDIS bit in the SYSCON register is cleared, the PLL runs on its free-running
frequency and delivers the clock signal for the oscillator watchdog. If the OWDDIS bit is set,
the PLL is switched off.
314/346
ST10F296E
24.8.6
Electrical characteristics
Oscillator watchdog (OWD)
An on-chip watchdog oscillator is implemented in the ST10F296E. This feature is used for
safety reasons with an external crystal oscillator (available only when using direct drive
mode with or without prescaler, so the PLL is not used to generate the CPU clock
multiplying the frequency of the external crystal oscillator). The watchdog oscillator operates
as follows:
The reset default configuration enables the watchdog oscillator. It can be disabled by setting
the OWDDIS bit (bit 4) of the SYSCON register.
When the OWD is enabled, the PLL runs at its free-running frequency and it increments the
watchdog counter. At each transition of the external clock, the watchdog counter is cleared.
If an external clock failure occurs, the watchdog counter overflows (after 16 PLL clock
cycles).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
When overflow occurs, the CPU clock signal is switched to the PLL free-running clock signal
and the oscillator watchdog interrupt request is flagged. The CPU clock does not switch
back to the external clock even if a valid external clock exits on the XTAL1 pin. Only a
hardware reset (or bidirectional software/watchdog reset) can switch the CPU clock source
back to direct clock input.
When the OWD is disabled, the CPU clock is always the external oscillator clock (in direct
drive or prescaler operation) and the PLL is switched off to decrease consumption supply
current.
24.8.7
Phase-locked loop (PLL)
For all combinations of pins P0.15-13 (P0H.7-5) other than 011, during reset, the on-chip
PLL is enabled and it provides the CPU clock (see Table 168). The PLL multiplies the input
frequency by the factor ‘F’ which is selected via the combination of pins P0.15-13 (fCPU =
fXTAL x F). With every F’th transition of fXTAL, the PLL circuit synchronizes the CPU clock to
the input clock. This synchronization is done smoothly, so the CPU clock frequency does not
change abruptly.
Due to this synchronization with the input clock, the frequency of fCPU is constantly adjusted
so it is locked to fXTAL. The resulting slight variation causes a jitter of fCPU which also effects
the duration of individual TCLs.
The timings listed in this section that refer to TCLs must be calculated using the minimum
possible TCL under the respective circumstances.
The minimum value for TCL depends on the jitter of the PLL. The PLL tunes the fCPU to
keep it locked on fXTAL. The relative deviation of TCL is the maximum when it is referred to
one TCL period.
This is especially important for bus cycles using wait states and for the operation of timers, serial
interfaces, etc. For all slower operations and longer periods (such as, pulse train generation or
measurement, lower baud rates, etc) the deviation caused by the PLL jitter is negligible. Refer to
Section 24.8.9: PLL jitter for more details.
315/346
Electrical characteristics
24.8.8
ST10F296E
Voltage controlled oscillator
The ST10F296E implements a PLL which combines different levels of frequency dividers
with a voltage controlled oscillator (VCO) working as a frequency multiplier. Table 169
presents a summary of the internal PLL settings and VCO frequencies.
Table 169. Internal PLL divider mechanism
Input
prescaler
PLL
P0.15-13
(P0H.7-5)
XTAL frequency
1
1
1
4 to 8 MHz
FXTAL/4
64
4
-
FXTAL x 4
1
1
0
5.3 to 10.6 MHz
FXTAL/4
48
4
-
FXTAL x 3
1
0
1
4 to 8 MHz
FXTAL/4
64
2
-
FXTAL x 8
1
0
0
6.4 to 12 MHz
FXTAL/4
40
2
-
FXTAL x 5
0
1
1
1 to 64 MHz
–
PLL bypassed
-
FXTAL x 1
0
1
0
4 to 6.4 MHz
FXTAL/2
40
-
FXTAL x 10
0
0
1
4 to 12 MHz
–
PLL bypassed
FPLL/2
FXTAL/2
0
0
0
4 MHz
FXTAL/2
64
–
FXTAL x 16
Multiply by Divide by
Output
CPU frequency
prescaler fCPU = fXTAL x F
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
2
2
The PLL input frequency range is limited to 1 to 3.5 MHz, while the VCO oscillation range is
64 to 128 MHz. The CPU clock frequency range when PLL is used is 16 to 64 MHz.
Example 1
–
FXTAL = 4 MHz
–
P0(15:13) = 110 (multiplication by 3)
–
PLL input frequency = 1 MHz
–
VCO frequency = 48 MHz => Not valid
–
PLL output frequency = Not Valid
–
FCPU = Not Valid
Example 2
316/346
–
FXTAL = 8 MHz
–
P0(15:13) = 100 (multiplication by 5)
–
PLL input frequency = 2 MHz
–
VCO frequency = 80 MHz
–
PLL output frequency = 40 MHz (VCO frequency divided by 2)
–
FCPU = 40 MHz (no effect of output prescaler)
ST10F296E
24.8.9
Electrical characteristics
PLL jitter
Two kinds of PLL jitter are defined:
Self referred single period jitter
Also called ‘period jitter’. It can be defined as the difference between the Tmax and Tmin,
where Tmax is the maximum time period of the PLL output clock and Tmin is the minimum
time period of the PLL output clock.
Self referred long term jitter
Also called ‘N period jitter’. It can be defined as the difference of Tmax and Tmin, where Tmax
is the maximum time difference between N + 1 clock rising edges and Tmin is the minimum
time difference between N + 1 clock rising edges. N should be kept sufficiently large to have
obtain long term jitter. N = 1 becomes the single period jitter.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Jitter at the PLL output is caused by:
24.8.10
●
Jitter in the input clock
●
Noise in the PLL loop
Jitter in the input clock
The PLL acts as a low pass filter for any jitter in the input clock. Input clock jitter, with the
frequencies within the PLL loop bandwidth, is passed to the PLL output and higher
frequency jitter (frequency > PLL bandwidth) is attenuated at 20 dB/decade.
24.8.11
Noise in the PLL loop
Noise is attributed to the following sources:
●
Device noise of the circuit in the PLL
●
Noise in the supply and substrate
Device noise of the circuit in the PLL
Long term jitter is inversely proportional to the bandwidth of the PLL. The wider the loop
bandwidth, the lower the jitter, due to noise in the loop. Moreover, long term jitter is
practically independent of the multiplication factor.
The most noise sensitive circuit in the PLL is the VCO. There are two main sources of noise:
Thermal (random and frequency independent noise) and flicker (low frequency noise, 1/f).
For the frequency characteristics of the VCO circuitry, the effect of the thermal noise results
in a 1/f2 region in the output noise spectrum, while the flicker noise results in 1/f3. Assuming
a noiseless PLL input and supposing that the VCO is dominated by its 1/f2 noise, the root
mean square value of the accumulated jitter is proportional to the square root of N, where N
is the number of clock periods within the considered time interval.
On the contrary, assuming a noiseless PLL input and supposing that the VCO is dominated
by its 1/f3 noise, the RMS value of the accumulated jitter is proportional to N, where N is the
number of clock periods within the considered time interval.
317/346
Electrical characteristics
ST10F296E
The jitter in the PLL loop can be modeled as being dominated by the i1/f2 noise for N smaller
than a ‘certain’ value that depends on the PLL output frequency and on the bandwidth
characteristics of the program loop. Above this ‘certain’ value, the jitter becomes dominated
by the i1/f3 noise component. For N greater than a second value of N, the jitter does not
increase with a longer time interval due to an apparent saturation effect (the jitter is stable,
thereby increasing the number of clock periods, N). The PLL loop acts as a high pass filter
for any noise in the loop, with a cutoff frequency equal to the bandwidth of the PLL. The
saturation value corresponds to self referred long term jitter of the PLL. Figure 105 shows
the maximum jitter trend versus the number of clock periods N (for some typical CPU
frequencies). The curves represent the worst case situations, as they are computed taking
into account all temperature ranges, power supplies and process variations. ‘Real’ jitter is
always measured well below the given worst case value.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Noise in supply and substrate
Digital supply noise adds determining elements to PLL output jitter, independent of the
multiplication factor. Its effect is strongly reduced thanks to the particular care taken when
integrating and implementing the PLL module inside the device. In addition, the contribution
of digital noise to global jitter is widely taken into account in the curves provided in
Figure 105.
Figure 105. ST10F296E PLL jitter
±5
16 MHz 24 MHz
32 MHz
40 MHz
64 MHz
±4
Jitter [ns]
±3
±2
±1
TJIT
0
0
200
400
600
800
N (CPU clock periods)
318/346
1000
1200
1400
ST10F296E
24.8.12
Electrical characteristics
PLL lock/unlock
If the PLL is unlocked for any reason during normal operation, an interrupt request to the
CPU is generated and the reference clock (oscillator) is automatically disconnected from the
PLL input. In this way, the PLL goes into free-running mode, providing the system with a
backup clock signal (free running frequency Ffree). This feature allows the device to recover
from a crystal failure occurrence without risking entering an undefined configuration. The
system is provided with a clock allowing the execution of the PLL unlock interrupt routine in
a safe mode.
The path between the reference clock and PLL input can be restored only by a hardware
reset or by a bidirectional software or watchdog reset event that forces the RSTIN pin low.
Note:
The external RC circuit on the RSTIN pin must be the right size to extend the duration of the
low pulse that locks the PLL before the level at the RSTIN pin is recognized as being high. A
bidirectional reset internally drives the RSTIN pin low for 1024 TCL (which is not sufficient to
lock the PLL when starting from free-running mode).
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Conditions: VDD = 5 V ±10 %, TA = -40/125 oC.
Table 170. PLL lock/unlock timing
Value
Symbol
Parameter
Conditions
Unit
Min
Max
TPSUP
PLL start-up time(1)
Stable VDD and reference clock
-
300
TLOCK
PLL lock-in time
Stable VDD and reference clock,
starting from free-running mode
-
250
TJIT
Single period jitter(1)
(cycle to cycle = 2 TCL)
6 sigma time period variation
(peak to peak)
-500
+500
ps
Ffree
PLL free running frequency
Multiplication factors: 3, 4
Multiplication factors: 5, 8, 10, 16
250
500
2000
4000
kHz
µs
1. Not 100% tested, guaranteed by design characterization.
24.8.13
Main oscillator specifications
Conditions: VDD = 5 V ±10 %, TA = -40/125 °C
Table 171. Main oscillator specifications
Value
Symbol
gm
VOSC
Parameter
Conditions
Typ
Max
8
17
35
Peak to peak
-
VDD -0.4
-
Sine wave middle
-
VDD/2 - 0.25
-
Stable VDD - crystal
-
3
4
Stable VDD, resonator
-
2
3
Oscillator transconductance
Oscillation
amplitude(1)
level(1)
VAV
Oscillation voltage
tSTUP
Oscillator start-up time(1)
Unit
Min
mA/V
V
ms
1. Not 100% tested, guaranteed by design characterization
319/346
Electrical characteristics
ST10F296E
Figure 106. ST10F296ECrystal oscillator and resonator connection diagram
Crystal
XTAL2
XTAL1
ST10F296E
XTAL2
XTAL1
ST10F296E
Resonator
CA
CA
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Table 172. Negative resistance (absolute min value @125 °C/VDD = 4.5 V)
CA (pF)
12
15
18
22
27
33
39
47
4 MHz
460 Ω
550 Ω
675 Ω
800 Ω
840 Ω
1000 Ω
1180 Ω
1200 Ω
8 MHz
380 Ω
460 Ω
540 Ω
640 Ω
580 Ω
-
-
-
12 MHz
370 Ω
420 Ω
360 Ω
-
-
-
-
-
The given values of CA do not include the stray capacitance of the package or of the printed
circuit board. The negative resistance values are calculated assuming an additional 5 pF to
the values in Table 172. The crystal shunt capacitance (C0), the package, and the stray
capacitance between XTAL1 and XTAL2 pins is globally assumed to be 4 pF.
The external resistance between XTAL1 and XTAL2 does not have to be taken into account,
since it is already present on the silicon.
24.8.14
External clock drive XTAL1
When direct drive configuration is selected during reset, it is possible to drive the CPU clock
directly from the XTAL1 pin, without any particular restrictions on the maximum frequency,
since the on-chip oscillator amplifier is bypassed. The speed limit is imposed by internal
logic that targets a maximum CPU frequency of 64 MHz.
In all other clock configurations (direct drive with prescaler or PLL use) the on-chip oscillator
amplifier is not bypassed, so it determines the input clock speed limit. In this case, an
external clock source can be used, but it is limited in the range of frequencies defined for the
use of crystal and resonator (see Table 168 on page 313).
External clock drive timing conditions: VDD = 5 V ±10 %, VSS = 0 V, TA = -40 to 125 °C.
320/346
ST10F296E
Electrical characteristics
Table 173. External clock drive timing
Symbol
tOSC (SR)
Direct drive with
prescaler
fCPU = fXTAL/2
Direct drive
fCPU = fXTAL
Parameter
XTAL1 period(1)
PLL use
fCPU = fXTAL x F
Min
Max
Min
Max
Min
Max
15.625
-
83.3
250
83.3
250
6
-
3
-
6
-
Unit
(2)
t1 (SR)
High time
t2 (SR)
Low time(2)
t3 (SR)
(2)
Rise time
ns
-
2
-
2
-
2
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t4 (SR)
Fall time(2)
1. The minimum value for the XTAL1 signal period is considered as the theoretical minimum. The real
minimum value depends on the duty cycle of the input clock signal.
2. The input clock signal must reach the defined levels VIL2 and VIH2.
The input frequency range is 4-12 MHz when using an external clock source. With an
external clock source, 64 MHz can be applied only when Direct Drive mode is selected. In
this case, the oscillator amplifier is bypassed so it does not limit the input frequency.
Figure 107. External clock drive XTAL1
t3
t1
t4
VIH2
VIL2
t2
tOSC
1. When direct drive is selected, an external clock source can be used to drive XTAL1. The maximum
frequency of the external clock source depends on the duty cycle. When 64 MHz is used, 50 % duty cycle
is granted (low phase = high phase = 7.8 ns). When 32 MHz is used, a 25 % duty cycle can be accepted
(minimum, high or low phase = 7.8 ns).
24.8.15
Memory cycle variables
Table 174 describes how three variables derived from the BUSCONx registers are
computed. These variables represent special characteristics of the programmed memory
cycle.
Table 174. Memory cycle variables
Symbol
Description
Values
tA
ALE extension
TCL x [ALECTL]
tC
Memory cycle time wait states
2TCL x (15 - [MCTC])
tF
Memory tri-state time
2TCL x (1 - [MTTC])
321/346
Electrical characteristics
24.8.16
ST10F296E
External memory bus timing
The next sections, Multiplexed bus timings and Demultiplexed bus timings, describe the
external memory bus timings. The given values are computed for a maximum CPU clock of
40 MHz.
It is clear that when a higher CPU clock frequency is used (up to 64 MHz), some numbers in
the timing formulas become zero or negative, which in most cases is not acceptable or
meaningful. In these cases, the speed of the bus settings tA, tC and tF must be correctly
adjusted.
Note:
All external memory bus timings and SSC timings presented in the following tables are given
by design characterization and not fully tested in production.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Multiplexed bus timings
VDD = 5 V ±10 %, VSS = 0 V, TA = -40 to 125 °C, CL = 50 pF,
ALE cycle time = 6 TCL + 2tA + tC + tF (75 ns at 40 MHz CPU clock without wait states).
Table 175. Multiplexed bus timings
Symbol
Parameter
FCPU = 40 MHz
TCL = 12.5 ns
Min
t5 (CC)
ALE high time
t6 (CC)
Address setup to ALE
t7 (CC)
Address hold after ALE
Max
Variable CPU clock
1/2 TCL = 1 to 64 MHz
Min
4 + tA
TCL - 8.5 + tA
1.5 + tA
TCL - 11 + tA
4 + tA
Max
TCL - 8.5 + tA
-
-
t8 (CC)
ALE falling edge to RD, WR
(with R/W delay)
4 + tA
TCL - 8.5 + tA
t9 (CC)
ALE falling edge to RD and
WR (no R/W delay)
-8.5 + tA
-8.5 + tA
t10 (CC)
Address float after RD and
WR (with R/W delay)(1)
6
-
6
-
t11 (CC)
Address float after RD and
WR (no R/W delay)(1)
t12 (CC)
RD and WR low time
(with R/W delay)
t13 (CC)
RD and WR low time
(no R/W delay)
t14 (SR)
RD to valid data in
(with R/W delay)
t15 (SR)
RD to valid data in
(no R/W delay)
t16 (SR)
ALE low to valid data in
17.5 + tA + tC
3TCL - 20 + tA + tC
t17 (SR)
Address/unlatched CS to valid
data in
20 + 2tA + tC
4TCL - 30 + 2tA + tC
t18 (SR)
Data hold after RD rising edge
18.5
TCL + 6
ns
2TCL - 9.5 + tC
15.5 + tC
-
322/346
Unit
-
3TCL - 9.5 + tC
28 + tC
2TCL - 19 + tC
6 + tC
-
0
18.5 + tC
-
-
0
3TCL - 19 + tC
-
ST10F296E
Electrical characteristics
Table 175. Multiplexed bus timings (continued)
Symbol
Parameter
t19 (SR)
Data float after RD
t22 (CC)
Data valid to WR
t23 (CC)
t25 (CC)
(1)
FCPU = 40 MHz
TCL = 12.5 ns
Variable CPU clock
1/2 TCL = 1 to 64 MHz
Min
Max
Min
Max
-
16.5 + tF
-
2TCL - 8.5 + tF
10 + tC
2TCL - 15 + tC
Data hold after WR
4 + tF
2TCL - 8.5 + tF
ALE rising edge after RD and
WR
15 + tF
-
2TCL - 10 + tF
Unit
-
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t27 (CC)
Address/unlatched CS hold
after RD and WR
10 + tF
t38 (CC)
ALE falling edge to latched
CS
-4 - tA
10 - tA
-4 - tA
10 - tA
t39 (SR)
Latched CS low to valid data
in
-
16.5 + tC+ 2tA
-
3TCL - 21+ tC+ 2tA
t40 (CC)
Latched CS hold after RD and
WR
27 + tF
t42 (CC)
ALE falling edge to RdCS and
WrCS (with R/W delay)
7 + tA
t43 (CC)
ALE falling edge to RdCS and
WrCS (no R/W delay)
-5.5 + tA
t44 (CC)
Address float after RdCS and
WrCS (with R/W delay)(1)
1.5
1.5
t45 (CC)
Address float after RdCS and
WrCS (no R/W delay)
14
TCL + 1.5
t46 (SR)
RdCS to valid data in
(with R/W delay)
4 + tC
2TCL - 21 + tC
t47 (SR)
RdCS to valid data in
(no R/W delay)
16.5 + tC
3TCL - 21 + tC
t48 (CC)
RdCS and WrCS low time
(with R/W delay)
15.5 + tC
t49 (CC)
RdCS and WrCS low time
(no R/W delay)
28 + tC
t50 (CC)
Data valid to WrCS
10 + tC
2TCL - 15 + tC
t51 (SR)
Data hold after RdCS
0
0
t52 (SR)
Data float after RdCS(1)
-
16.5 + tF
-
2TCL - 8.5 + tF
t54 (CC)
Address hold after
RdCS and WrCS
6 + tF
-
2TCL - 19 + tF
-
t56 (CC)
Data hold after WrCS
2TCL - 15 + tF
3TCL - 10.5 + tF
-
TCL - 5.5 + tA
-
-5.5 + tA
-
ns
-
2TCL - 9.5 + tC
-
3TCL - 9.5 + tC
-
1. Partially tested, guaranteed by design characterization.
323/346
Electrical characteristics
ST10F296E
The following figures (Figure 108 to Figure 111) present the different configurations of the
external memory cycle for a multiplxed bus.
Figure 108. Multiplexed bus with/without R/W delay and normal ALE
CLKOUT
t5
t25
t16
ALE
t6
t38
t17
t40
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t27
t39
CSx
t6
t27
t17
A23-A16
(A15-A8)
Address
BHE
t16
Read cycle
Address/data
bus (P0)
t6m
t7
t18
Address
Data in
t10
t8
Address
t19
t14
RD
t13
t9
t11
t15
Write cycle
Address/data
bus (P0)
t12
t23
Address
Data out
t8
WR
WRL
WRH
324/346
t22
t9
t12
t13
ST10F296E
Electrical characteristics
Figure 109. Multiplexed bus with/without R/W delay and extended ALE
CLKOUT
t16
t5
t25
ALE
t6
t38
t17
t40
t39
t27
CSx
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t6
t17
A23-A16
(A15-A8)
Address
BHE
t27
Read cycle
Address/data
bus (P0)
t6
t7
Data in
Address
t8
t9
t18
t10
t19
t11
t14
RD
t15
t12
t13
Write cycle
Address/data
bus (P0)
Address
Data out
t23
t8
t9
WR
WRL
WRH
t10
t11
t13
t22
t12
325/346
Electrical characteristics
ST10F296E
Figure 110. Multiplexed bus with/without R/W delay, normal ALE, R/W CS
CLKOUT
t5
t25
t16
ALE
t6
t27
t17
A23-A16
(A15-A8)
Address
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
BHE
t16
Read cycle
Address/data
bus (P0)
t6
t7
t51
Address
Address
Data in
t44
t42
t52
t46
RdCSx
t49
t43
t45
t47
Write cycle
Address/data
bus (P0)
t48
t56
Address
Data out
t42
WrCSx
t50
t43
t48
t49
326/346
ST10F296E
Electrical characteristics
Figure 111. Multiplexed bus with/without R/ W delay, extended ALE, R/W CS
CLKOUT
t16
t5
t25
ALE
t6
t17
A23-A16
(A15-A8)
Address
BHE
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t54
Read cycle
Address/data
bus (P0)
t6
t7
Data in
Address
t43
t18
t44
t42
t19
t45
t46
RdCSx
t48
t47
t49
Write cycle
Address/data
bus (P0)
Data out
Address
t42
t43
t56
t44
t45
t50
WrCSx
t48
t49
327/346
Electrical characteristics
ST10F296E
Demultiplexed bus timings
VDD = 5 V ±10 %, VSS = 0 V, TA = -40 to 125°C, CL = 50 pF,
ALE cycle time = 4 TCL + 2tA + tC + tF (50 ns at 40 MHz CPU clock without wait states).
Table 176. Demultiplexed bus
Symbol
FCPU = 40 MHz
TCL = 12.5 ns
Parameter
Variable CPU clock
1/2 TCL = 1 to 64 MHz
Min
Max
Min
Max
4 + tA
-
TCL - 8.5 + tA
-
t5 (CC)
ALE high time
t6 (CC)
Address setup to ALE
1.5 + tA
-
TCL - 11 + tA
t80 (CC)
Address/unlatched CS
setup to RD and WR
(with R/W delay)
12.5 + 2tA
-
2TCL - 12.5 + 2tA
t81 (CC)
Address/unlatched CS
setup to RD and WR
(no R/W delay)
0.5 + 2tA
-
TCL - 12 + 2tA
t12 (CC)
RD and WR low time (with
R/W delay)
15.5 + tC
-
2TCL - 9.5 + tC
t13 (CC)
RD and WR low time
(no R/W delay)
28 + tC
-
t14 (SR)
RD to valid data in
(with R/W delay)
t15 (SR)
RD to valid data in
(no R/W delay)
t16 (SR)
ALE low to valid data in
t17 (SR)
Address/unlatched CS to
valid data in
t18 (SR)
Data hold after RD
rising edge
ol
t21 (SR)
Data float after RD rising
edge (no R/W delay)(1)
t22 (CC)
Data valid to WR
s
b
O
bs
t24 (CC)
O
Data hold after WR
-
ns
ns
ns
-
3TCL - 19 + tC
ns
17.5 + tA + tC
-
3TCL - 20 + tA + tC
ns
20 + 2tA + tC
-
4TCL - 30 + 2tA + tC
ns
0
-
0
-
ns
-
16.5 + tF
-
2TCL - 8.5 + tF + 2tA
ns
-
4 + tF
-
TCL - 8.5 + tF + 2tA
ns
10 + tC
-
2TCL - 15 + tC
-
ns
4 + tF
-
TCL - 8.5 + tF
-
ns
-10 + tF
-
-10 + tF
-
ns
-
(s)
-
t
c
u
t
e
l
o
c
u
d
)
s
t(
2TCL - 19 + tC
O
)
s
(
t
c
d
o
r
P
e
Data float after RD rising
edge (with R/W delay)(1)
-
ns
-
-
t20 (SR)
d
o
r
o
r
P
3TCL - 9.5 + tC
ns
ns
du
ete
o
s
b
(s)
-
-
o
r
P
let
ns
t
c
u
-
P
e
Unit
e
t
le
6 + tC
o
s
b
O
18.5 + tC
t26 (CC)
ALE rising edge after RD
and WR
t28 (CC)
Address/unlatched CS hold
after RD and WR(2)
0 + tF
-
0 + tF
-
ns
t28h (CC)
Address/unlatched CS hold
after WRH
-5 + tF
-
-5 + tF
-
ns
328/346
ST10F296E
Electrical characteristics
Table 176. Demultiplexed bus (continued)
Symbol
FCPU = 40 MHz
TCL = 12.5 ns
Parameter
Variable CPU clock
1/2 TCL = 1 to 64 MHz
Min
Max
Min
Max
Unit
t38 (CC)
ALE falling edge to latched
CS
-4 - tA
6 - tA
-4 - tA
6 - tA
ns
t39 (SR)
Latched CS low to valid data
in
-
16.5 + tC + 2tA
-
3TCL - 21+ tC + 2tA
ns
t41 (CC)
Latched CS hold after RD
and WR
2 + tF
-
TCL - 10.5 + tF
-
ns
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t82 (CC)
Address setup to RdCS and
WrCS
(with R/W delay)
14 + 2tA
-
2TCL - 11 + 2tA
-
ns
t83 (CC)
Address setup to RdCS and
WrCS (no R/W delay)
2 + 2tA
-
TCL - 10.5 + 2tA
-
ns
t46 (SR)
RdCS to valid data in
(with R/W delay)
-
4 + tC
-
2TCL - 21 + tC
ns
t47 (SR)
RdCS to valid data in
(no R/W delay)
-
16.5 + tC
-
3TCL - 21 + tC
ns
t48 (CC)
RdCS and WrCS low time
(with RW-delay)
15.5 + tC
-
2TCL - 9.5 + tC
-
ns
t49 (CC)
RdCS and WrCS low time
(no R/W delay)
28 + tC
-
3TCL - 9.5 + tC
-
ns
t50 (CC)
Data valid to WrCS
10 + tC
-
2TCL - 15 + tC
-
ns
t51 (SR)
Data hold after RdCS
0
-
0
-
ns
t53 (SR)
Data float after RdCS
(with R/W delay)
-
16.5 + tF
-
2TCL - 8.5 + tF
ns
t68 (SR)
Data float after RdCS
(no R/W delay)
-
4 + tF
-
TCL - 8.5 + tF
ns
t55 (CC)
Address hold after RdCS
and WrCS
-8.5 + tF
-
-8.5 + tF
-
ns
t57 (CC)
Data hold after WrCS
2 + tF
-
TCL - 10.5 + tF
-
ns
1. R/W delay and tA refer to the next bus cycle.
2. Read data is latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address
changes which occur before the end of RD have no impact on read cycles.
1
Partially tested, guaranteed by design characterization.
329/346
Electrical characteristics
ST10F296E
The following figures (Figure 112 to Figure 115) present the different configurations of
external memory cycle for a demultiplxed bus.
Figure 112. Demultiplexed bus with/without read/write delay and normal ALE
CLKOUT
t5
t26
t16
ALE
t6
t38
t41
t17
t41u (1)
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t39
CSx
t6
t28 (or t28h)
t17
A23-A16
A15-A0 (P1)
Address
BHE
t18
Read cycle
Data bus (P0)
(D15-D8) D7-D0
Data in
(1)
t80
t81
t20
t14
t21
t15
RD
t12
t13
Write cycle
Data bus (P0)
(D15-D8) D7-D0
Data out
t80
t22
t81
WR
WRL
WRH
t12
t13
1. Unlatched CSx = t41u = t41 TCL = 10.5 + tF.
330/346
t24
ST10F296E
Electrical characteristics
Figure 113. Demultiplexed bus with/without R/W delay and extended ALE
CLKOUT
t5
t26
t16
ALE
t6
t38
t41
t17
t28
t39
CSx
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t6
t28
t17
A23-A16
A15-A0 (P1)
Address
BHE
t18
Read cycle
Data bus (P0)
(D15-D8) D7-D0
Data in
t20
t14
t80
t15
t81
t21
RD
t12
t13
Write cycle
Data bus (P0)
(D15-D8) D7-D0
Data out
t80
t81
t22
WR
WRL
WRH
t24
t12
t13
331/346
Electrical characteristics
ST10F296E
Figure 114. Demultiplexed bus with ALE and R/W CS
CLKOUT
t5
t26
t16
ALE
t6
A23-A16
A15-A0 (P1)
t17
t55
Address
BHE
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t51
Read cycle
Data bus (P0)
(D15-D8) D7-D0
Data in
t82
t83
t53
t46
t68
t47
RdCSx
t48
t49
Write cycle
Data bus (P0)
(D15-D8) D7-D0
Data out
t82
t50
t83
WrCSx
t48
t49
332/346
t57
ST10F296E
Electrical characteristics
Figure 115. Demultiplexed bus no R/W delay, extended ALE, R/W CS
CLKOUT
t5
t26
t16
ALE
t6
t55
t17
A23-A16
A15-A0 (P1)
BHE
Address
t51
Read cycle
Data Bus (P0)
(D15-D8) D7-D0
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Data in
t53
t46
t82
t47
t83
t68
RdCSx
t48
t49
Write cycle
Data Bus (P0)
(D15-D8) D7-D0
Data out
t82
t83
t50
t57
WrCSx
t48
t49
333/346
Electrical characteristics
24.8.17
ST10F296E
READY and CLKOUT
VDD = 5 V ±10 %, VSS = 0 V, TA = -40 to 125°C, CL = 50 pF.
Table 177. READY and CLKOUT
Symbol
Parameter
FCPU = 40 MHz
TCL = 12.5 ns
Variable CPU clock
1/2 TCL = 1 to 64 MHz
Min
Max
Min
Max
25
2 TCL
2 TCL
t29 (CC)
CLKOUT cycle time
25
t30 (CC)
CLKOUT high time
9
Unit
TCL - 3.5
-
-
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
t31 (CC)
CLKOUT low time
t32 (CC)
CLKOUT rise time
t33 (CC)
CLKOUT fall time
t34 (CC)
10
TCL - 2.5
-
4
-
4
CLKOUT rising edge to
ALE falling edge
-2 + tA
8 + tA
-2 + tA
8 + tA
t35 (SR)
Synchronous READY
setup time to CLKOUT
17
17
t36 (SR)
Synchronous READY
hold time after CLKOUT
2
2
t37 (SR)
Asynchronous READY low
time
35
t58 (SR)
Asynchronous READY
setup time(1)
17
17
t59 (SR)
Asynchronous READY
hold time(1)
2
2
t60 (SR)
Asynchronous READY
hold time after RD and
WR high
(demultiplexed bus)(2)
0
-
2tA + tC + tF
2 TCL + 10
0
ns
-
2tA + tC + tF
1. These timings are given for characterization purposes only, to assure recognition at a specific clock edge.
2. Demultiplexed bus is the worst case scenario. For a multiplexed bus, 2TCLs must be added to the
maximum values. This adds even more time for deactivating READY. 2tA and tC refer to the next bus cycle
and tF refers to the current bus cycle.
334/346
ST10F296E
Electrical characteristics
Figure 116. READY and CLKOUT
READY
Running cycle(1)
CLKOUT
t32
wait state
MUX/tri-state(6)
t33
t30
t29
t31
t34
(7)
ALE
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RD, WR
(2)
t35
Synchronous
t36
t35
READY
(3)
(3)
Asynchronous
t58
t59
t36
t58
t59
t60
(4)
(3)
READY
(3)
t37
(5)
(6)
1. Cycle as programmed, including MCTC wait states (example shows 0 MCTC wait states).
2. The leading edge of the respective command depends on R/W delay.
3. READY sampled high at this sampling point generates a READY controlled wait state, READY sampled
low at this sampling point terminates the current running bus cycle.
4. READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or
WR).
5. If the asynchronous READY signal does not fulfill the indicated setup and hold times with respect to
CLKOUT (for example, because CLKOUT is not enabled), it must fulfill t37 to be safely synchronized. This
is guaranteed if READY is removed in response to the command (see Note 4).
6. Multiplexed bus modes have a MUX wait state added after a bus cycle, and an additional MTTC wait state
may be inserted here. For a multiplexed bus with MTTC wait state this delay is 2 CLKOUT cycles. For a
demultiplexed bus without MTTC wait state this delay is zero.
7. The next external bus cycle may start here.
335/346
Electrical characteristics
24.8.18
ST10F296E
External bus arbitration
VDD = 5 V ±10 %, VSS = 0 V, TA = -40 to 125°C, CL = 50 pF.
Table 178. External bus arbitration
Symbol
FCPU = 40 MHz
TCL = 12.5 ns
Parameter
HOLD input setup time to
CLKOUT
t61 (SR)
t62 (CC)
CLKOUT to HLDA high or
BREQ low delay
t63 (CC)
CLKOUT to HLDA low or
BREQ high delay
t64 (CC)
CSx release1
t65 (CC)
CSx drive
Variable CPU clock
1/2 TCL = 1 to 64 MHz
Min
Max
Min
Max
18.5
-
18.5
-
Unit
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
12.5
t66 (CC)
Other signals release
t67 (CC)
Other signals drive
12.5
-
-
ns
20
20
-4
15
-4
15
-
20
-
20
-4
15
-4
15
1
Figure 117. External bus arbitration (releasing the bus)
CLKOUT
t61
HOLD
t63
(1)
HLDA
t62
BREQ
(2)
t64
(3)
CSx
(P6.x)
(1)
t66
Others
1. The ST10F296E completes the current running bus cycle before granting bus access.
2. This is the first possibility for BREQ to become active.
3. The CS outputs are resistive high (pull-up) after t64.
336/346
ST10F296E
Electrical characteristics
Figure 118. External bus arbitration (regaining the bus)
(2)
CLKOUT
t61
HOLD
t62
HLDA
t62
t62
t63
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
BREQ
(1)
t65
CSx
(on P6.x)
t67
Other signals
1. This is the last chance for BREQ to trigger the indicated regain sequence. Even if BREQ is activated
earlier, the regain sequence is initiated by HOLD going high. Note that HOLD may also be deactivated
without the ST10F296E requesting the bus.
2. The next ST10F296E driven bus cycle may start here.
337/346
Electrical characteristics
24.8.19
ST10F296E
High-speed synchronous serial interface (SSC) timing modes
Master mode
VDD = 5 V ±10 %, VSS = 0 V, TA = -40 to 125°C, CL = 50 pF.
Table 179. Master mode
Symbol
Parameter
Max baud rate 6.6 MBd
@FCPU = 40 MHz
( = 0002h)(1)
Min
t300 (CC)
SSC clock cycle time(2)
t301 (CC)
SSC clock high time
t302 (CC)
SSC clock low time
t303 (CC)
SSC clock rise time
t304 (CC)
SSC clock fall time
t305 (CC)
Write data valid after shift edge
t306 (CC)
Write data hold after shift edge 3
Max
Variable baud rate
( = 0001h - FFFFh)
Min
Unit
Max
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
150
150
8 TCL
262144 TCL
63
–
t300/2 - 12
-
10
Read data setup time before latch
t307p (SR) edge, phase error detection on
(SSCPEN = 1)
Read data hold time after latch
t308p (SR) edge, phase error detection on
(SSCPEN = 1)
-
10
-
15
15
-2
-2
37.5
2TCL + 12.5
50
ns
4 TCL
-
-
t307 (SR)
Read data setup time before latch
edge, phase error detection off
(SSCPEN = 0)
25
2 TCL
t308 (SR)
Read data hold time after latch
edge, phase error detection off
(SSCPEN = 0)
0
0
1. Maximum baud rate is 8 Mbaud and can be reached with 64 MHz CPU clock and set to 3h, or with 48 MHz CPU
clock and set to 2h. When 40 MHz CPU clock is used, the maximum baud rate cannot be higher than 6.6 Mbaud
( = 2h) due to the limited granularity of . A value of 1h for may be used only with a CPU
clock equal to (or lower than) 32 MHz (after checking that timings are in line with the target slave).
2. The formula for the SSC clock cycle time is:
t300 = 4 TCL x ( + 1)
Where represents the content of the SSC baud rate register, taken as an unsigned 16-bit integer. The minimum
limit allowed for t300 is 125 ns (corresponding to 8 Mbaud).
338/346
ST10F296E
Electrical characteristics
Figure 119. SSC master timing
t300
(1)
t301
t302
(2)
SCLK
t304
t305
t303
t305
1st out bit
MTSR
t307
t306
t305
2nd out bit
t308
Last out bit
t307
t308
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
MRST
1st in bit
2nd in bit
Last in bit
1. The phase and polarity of the shift and latch edges of SCLK are programmable. Figure 119 uses the
leading clock edge as the shift edge with the latch on the trailing edge (SSCPH = 0b). The idle clock line is
low and the leading clock edge is low-to-high transition (SSCPO = 0b).
2. The bit timing is repeated for all bits that have to be transmitted or received.
339/346
Electrical characteristics
ST10F296E
Slave mode
VDD = 5 V ±10%, VSS = 0 V, TA = -40 to 125°C, CL = 50 pF
Table 180. Slave mode
Symbol
Parameter
t310 (SR)
SSC clock cycle time(2)
t311 (SR)
SSC clock high time
t312 (SR)
SSC clock low time
t313 (SR)
SSC clock rise time
t314 (SR)
SSC clock fall time
t315 (CC)
Write data valid after shift edge
t316 (CC)
Write data hold after shift edge
Max. baud rate 6.6 MBd
@FCPU = 40 MHz
( = 0002h)(1)
Variable baud rate
( = 0001h - FFFFh)
Min
Max
Min
Max
150
150
8 TCL
262144 TCL
Unit
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
63
-
t310/2 - 12
10
-
-
10
-
55
2TCL + 30
0
0
Read data setup time before latch
t317p (SR) edge, phase error detection on
(SSCPEN = 1)
62
4TCL + 12
Read data hold time after latch
t318p (SR) edge, phase error detection on
(SSCPEN = 1)
87
ns
6TCL + 12
-
-
t317 (SR)
Read data setup time before latch
edge, phase error detection off
(SSCPEN = 0)
6
6
t318 (SR)
Read data hold time after latch
edge, phase error detection off
(SSCPEN = 0)
31
2TCL + 6
1. Maximum baud rate is 8 Mbaud and can be reached with 64 MHz CPU clock and set to 3h, or with 48 MHz CPU
clock and set to 2h. When 40 MHz CPU clock is used, the maximum baud rate cannot be higher than 6.6 Mbaud
( = 2h) due to the limited granularity of . A value of 1h for may be used only with a CPU
clock lower than 32 MHz (after checking that timings are in line with the target slave).
2. The formula for the SSC clock cycle time is:
t310 = 4 TCL * ( + 1)
Where represents the content of the SSC baud rate register, taken as an unsigned 16-bit integer. The minimum
limit allowed for t310 is 125 ns (corresponding to 8 Mbaud).
340/346
ST10F296E
Electrical characteristics
Figure 120. SSC slave timing
t310
t311
t312
(1)
(2)
SCLK
t314
t315
MRST
t313
t316
t315
1st out bit
t315
2nd out bit
t317 t318
Last out bit
t317 t318
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
MTSR
1st in bit
2nd in bit
Last in bit
1. The phase and polarity of the shift and latch edges of SCLK are programmable. Figure 120 uses the
leading clock edge as the shift edge with the latch on the trailing edge (SSCPH = 0b). The idle clock line is
low and the leading clock edge is low-to-high transition (SSCPO = 0b).
2. The bit timing is repeated for all bits that have to be transmitted or received.
341/346
Package mechanical data
25
ST10F296E
Package mechanical data
To meet environmental requirements, ST offers the device in ECOPACK® packages. These
packages have a lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with
JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also
marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK® specifications are available at www.st.com..
Figure 121. PBGA 208 (23 x 23 x 1.96 mm) outline
000 C
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Seating
plane
C
A2
A1
A3
A
D
D1
f
e
f
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
E1 E
e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A1 ball pad corner 2
φ b (208 + 25 balls)
1. PBGA stands for plastic ball grid array.
2. The terminal A1 corner of the package must be identified on the top surface by using a corner chamfer, ink
or metallized marking, identation or other feature of the package body or an integral heastslug. A
distinguishing feature is also allowable on the bottom of the package to identify the terminal A1 corner. The
exact shape and size of this feature is optional.
342/346
ST10F296E
Package mechanical data
Table 181. PBGA 208 (23 x 23 x 1.96 mm) mechanical data
Inches (approx)(1)
Millimeters
Dimensions
Minimum
A
A1
Typical
Maximum
Minimum
1.960
0.500
0.600
Typical
Maximum
0.0772
0.700
0.0197
0.0236
A2
1.360
0.0535
A3
0.560
0.0220
0.0276
φb
0.600
0.760
0.900
0.0236
0.0299
0.0354
D
22.900
23.000
23.100
0.9016
0.9055
0.9094
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
D1
E
20.320
22.900
23.000
0.8000
23.100
0.9016
0.9055
E1
20.320
0.8000
e
1.270
0.0500
f
1.240
1.340
1.440
0.0488
0.0528
0.9094
0.0567
1. Values in inches are converted from mm and rounded to four decimal digits.
343/346
Ordering information
26
ST10F296E
Ordering information
Table 182. Order codes
Order codes
Package
ST10F296
Packing
CPU frequency range
(MHz)
-40 to 125
1 to 64
Tray
PBGA208
ST10F296TR
Temperature range
(°C)
Tape and reel
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
344/346
ST10F296E
27
Revision history
Revision history
Table 183. Document revision history
Date
Revision
24-Jan-2005
1
Changes
Initial release.
Initial public release.
Document reformatted; content of Features reworked to fit into one
page (no technical changes); content of remaining document
reworked to improve readability (no technical changes).
Updated Table 1: Device summary.
Section 7: Central processing unit (CPU): Removed sections on the
SYSCON register and MAC features; amended Section 7.3;
removed table entitled MAC coprocessor specific instructions and
replaced with Table 46; removed tables entitled Pointer
postmodification combinations for Rwn and IDXi and MAC registers
referenced as ‘CoReg’.
Section 9: Interrupt system: Updated introductory text; removed
sections on Extrenal interrupts and Interrupt control register;
removed some text from Section 9.1: XPeripheral interrupt.
Section 24: Electrical characteristics: Updated Table 164, Table 172,
Table 176, Figure 99, and Figure 120.
Section 25: Package mechanical data: Added ECOPACK text.
Table 181: PBGA 208 (23 x 23 x 1.96 mm) mechanical data:
Converted values in inches to four decimal places.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
20-Oct-2008
2
345/346
ST10F296E
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
346/346