0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ST1S10PUR

ST1S10PUR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    DFN8_4X4MM_EP

  • 描述:

    3 A、900 kHz、单片同步降压型稳压器 IC

  • 数据手册
  • 价格&库存
ST1S10PUR 数据手册
ST1S10 3 A, 900 kHz, monolithic synchronous step-down regulator IC Datasheet - production data Description DFN8 (4 x 4 mm) PowerSO-8 Features • Step-down current mode PWM regulator • Output voltage adjustable from 0.8 V • Input voltage from 2.5 V up to 18 V • 2% DC output voltage tolerance • Synchronous rectification • Inhibit function • Synchronizable switching frequency from 400 kHz up to 1.2 MHz • Internal soft start The ST1S10 is a high efficiency step-down PWM current mode switching regulator capable of providing up to 3 A of output current. The device operates with an input supply range from 2.5 V to 18 V and provides an adjustable output voltage from 0.8 V (VFB) to 0.85 * VIN_SW [VOUT = VFB * (1 + R1/R2)]. It operates either at a 900 kHz fixed frequency or can be synchronized to an external clock (from 400 kHz to 1.2 MHz). The high switching frequency allows the use of tiny SMD external components, while the integrated synchronous rectifier eliminates the need for a Schottky diode. The ST1S10 provides excellent transient response, and is fully protected against thermal overheating, switching overcurrent and output short-circuit. The ST1S10 is the ideal choice for point of load regulators or LDO pre-regulation. • Dynamic short-circuit protection Table 1. Device summary • Typical efficiency: 90% Order code • 3 A output current capability Part number • Standby supply current: max. 6 µA over temperature range ST1S10 DFN8 (4x4 mm) PowerSO-8 ST1S10PUR ST1S10PHR • Operative junction temp.: from -40 °C to 125 °C Applications • Consumer – STB, DVD, DVD recorders, TV, VCR, car audio, LCD monitors • Networking – XDSL, modems, DC-DC modules • Computer – Optical storage, HD drivers, printers, audio/graphic cards • Industrial and security – Battery chargers, DC-DC converters, PLD, PLA, FPGA, LED drivers February 2020 This is information on a product in full production. DocID13844 Rev 7 1/30 www.st.com Contents ST1S10 Contents 1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2 External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 5.3 Output capacitor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 5.4 Output capacitor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.5 Output voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.6 Inductor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.7 Inductor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8 Function operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8.1 Sync operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8.2 Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.3 OCP (overcurrent protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.4 SCP (short-circuit protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.5 SCP and OCP operation with high capacitive load . . . . . . . . . . . . . . . . 14 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Thermal considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2/30 9.1 Power SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.2 DFN8 (4 x 4) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DocID13844 Rev 7 ST1S10 10 Contents Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DocID13844 Rev 7 3/30 30 List of tables ST1S10 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. 4/30 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power SO-8 (exposed pad) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Power SO-8 (exposed pad) tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . 26 DFN8 (4 x 4) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DFN8 (4x4) tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID13844 Rev 7 ST1S10 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connections (top view for PowerSO-8, bottom view for DFN8) . . . . . . . . . . . . . . . . . . . 7 Application schematic for heavy capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V . . . . . 16 Application schematic for low output voltage (VOUT < 2.5 V) and 8 V < VIN < 16 V . . . . . . 16 PCB layout suggestion - top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PCB layout suggestion - bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Voltage feedback vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Oscillator frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Max. duty cycle vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Inhibit threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Reference line regulation vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Reference load regulation vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ON mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Shutdown mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 PMOS ON-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 NMOS ON-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Efficiency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Efficiency vs. output current at Vout = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Efficiency vs. output current at Vout = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Efficiency vs. output current at Vout = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Power SO-8 (exposed pad) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Power SO-8 (exposed pad) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power SO-8 (exposed pad) tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DFN8 (4 x 4) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DFN8 (4x4) tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DocID13844 Rev 7 5/30 30 Application circuit 1 ST1S10 Application circuit Figure 1. Typical application circuit L1 3.3µH 12V 5V – 3A VIN_SW SW C1 4.7µF EN ST1S10 R1 VIN_A C2 R2 0.1µF SYNC 6/30 22µF FB C3 AGND PGND DocID13844 Rev 7 ST1S10 2 Pin configuration Pin configuration Figure 2. Pin connections (top view for PowerSO-8, bottom view for DFN8) DFN8 (4x4) PowerSO-8 Table 2. Pin description Pin no. Symbol Name and function 1 VIN_A 2 INH (EN) 3 VFB 4 AGND Analog ground 5 SYNC Synchronization and frequency select. Connect SYNC to GND for 900 kHz operation, or to an external clock from 400 kHz to 1.2 MHz. (see Section 5.8.1: Sync operation on page 14) 6 VIN_SW Power input supply voltage to be tied to VIN power supply source 7 SW 8 PGND epad epad Analog input supply voltage to be tied to VIN supply source Inhibit pin active low. Connect to VIN_A if not used Feedback voltage for connection to external voltage divider to set the VOUT from 0.8V up to 0.85*VIN_SW (see Section 5.5: Output voltage selection on page 13) Switching node to be connected to the inductor Power ground Exposed pad to be connected to ground DocID13844 Rev 7 7/30 30 Maximum ratings 3 ST1S10 Maximum ratings Table 3. Absolute maximum ratings Symbol Value Unit Positive power supply voltage -0.3 to 20 V VIN_A Positive supply voltage -0.3 to 20 V VINH Inhibit voltage -0.3 to VIN_A V VSW Output switch voltage -0.3 to 20 V VFB Feedback voltage -0.3 to 2.5 V IFB FB current -1 to +1 mA Sync Synchronization -0.3 to 6 V TSTG Storage temperature range -40 to 150 °C TOP Operating junction temperature range -40 to 125 °C VIN_SW Note: Parameter Absolute maximum ratings are the values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Table 4. Thermal data Symbol Parameter PowerSO-8 DFN8 Unit RthJA Thermal resistance junction ambient 40 40 °C/W RthJC Thermal resistance junction case 12 4 °C/W Table 5. ESD protection Symbol ESD 8/30 Test conditions Value Unit HBM 2 kV CDM 500 V MM 200 V DocID13844 Rev 7 ST1S10 4 Electrical characteristics Electrical characteristics VIN = VIN_SW = VIN_A = VINH = 12 V, VSYNC = GND, VOUT = 5 V, IOUT = 10 mA, CIN = 4.7 µF +0.1 µF, COUT = 22 µF, L1 = 3.3 µH, TJ = -40 to 125 °C (unless otherwise specified, refer to the typical application circuit. Typical values assume TJ = 25 °C). Table 6. Electrical characteristics Symbol Parameter VFB Feedback voltage IFB VFB pin bias current IQ Quiescent current IOUT Output current(1) VINH Inhibit threshold IINH Inhibit pin current %VOUT/ΔVIN Reference line regulation Test conditions Min. Typ. Max. Unit TJ = 25 °C 784 800 816 mV TJ = -25 °C to 125 °C 776 800 824 mV 600 nA 1.5 2.5 mA 2 6 µA VINH > 1.2 V, not switching VINH < 0.4 V VIN = 2.5 V to 18 V VOUT = 0.8 V to 13.6 V(2) 3.0 A Device ON 1.2 V Device OFF V 2 µA 2.5 V < VIN < 18 V 0.4 %VOUT/ ΔVIN 0.5 %VOUT/ ΔIOUT %VOUT/ ΔIOUT Reference load regulation 10 mA < IOUT < 3 A PWM fs PWM switching frequency VFB = 0.7 V, Sync = GND TJ = 25 °C DMAX 0.4 Maximum duty cycle(2) 0.7 0.9 1.1 MHz 85 90 % RDSon-N NMOS switch on resistance ISW = 750 mA 0.10 Ω RDSon-P PMOS switch on resistance ISW = 750 mA 0.12 Ω 5.0 A IOUT = 100 mA to 300 mA 85 % IOUT = 300 mA to 3 A 90 % Thermal shutdown 150 °C Thermal shutdown hysteresis 15 °C ISWL ν TSHDN THYS Switch current limitation Efficiency VOUT/ΔIOUT Output transient response 100 mA < IOUT < 1 A, tR = tF ≥ 500 ns ±5 %VO VOUT/ΔIOUT @IO=short Short-circuit removal response (overshot) 10 mA < IOUT < short ±10 %VO FSYNC SYNC frequency capture range VIN = 2.5 V to 18 V, VSYNC = 0 to 5 V 0.4 SYNCWD SYNC pulse width VIN = 2.5 V to 18 V 250 VIL_SYNC SYNC input threshold low VIN = 2.5 V to 18 V DocID13844 Rev 7 1.2 MHz ns 0.4 V 9/30 30 Electrical characteristics ST1S10 Table 6. Electrical characteristics (continued) Symbol VIH_SYNC Parameter Test conditions Min. SYNC input threshold high VIN = 2.5 V to 18 V 1.6 IIL, IIH SYNC input current VIN = 2.5 V to 18 V, VSYNC = 0 or 5 V -10 UVLO Under voltage lock-out threshold Max. Unit V +10 µA VIN rising 2.3 V Hysteresis 200 mV 1. Guaranteed by design, but not tested in production. 2. See Section 5.5: Output voltage selection for maximum duty cycle conditions. 10/30 Typ. DocID13844 Rev 7 ST1S10 Application information 5 Application information 5.1 Description The ST1S10 is a high efficiency synchronous step-down DC-DC converter with inhibit function. It provides up to 3 A over an input voltage range of 2.5 V to 18 V, and the output voltage can be adjusted from 0.8 V up to 85% of the input voltage level. The synchronous rectification removes the need for an external Schottky diode and allows higher efficiency even at very low output voltages. A high internal switching frequency (0.9 MHz) allows the use of tiny surface-mount components, as well as a resistor divider to set the output voltage value. In typical application conditions, only an inductor and 3 capacitors are required for proper operation. The device can operate in PWM mode with a fixed frequency or synchronized to an external frequency through the SYNC pin. The current mode PWM architecture and stable operation with low ESR SMD ceramic capacitors results in low, predictable output ripple. No external compensation is needed. To maximize power conversion efficiency, the ST1S10 works in pulse skipping mode at light load conditions and automatically switches to PWM mode when the output current increases. The ST1S10 is equipped with thermal shutdown protection activated at 150 °C (typ.). Cycle-by-cycle short-circuit protection provides protection against shorted outputs for the application and the regulator. An internal soft start for start-up current limiting and power ON delay of 275 µs (typ.) helps to reduce inrush current during start-up. 5.2 External components selection Input capacitor The ST1S10 features two VIN pins: VIN_SW for the power supply input voltage where the switching peak current is drawn, and VIN_A to supply the ST1S10 internal circuitry and drivers. The VIN_SW input capacitor reduces the current peaks drawn from the input power supply and reduces switching noise in the IC. A high power supply source impedance requires larger input capacitance. For the VIN_SW input capacitor the RMS current rating is a critical parameter that must be higher than the RMS input current. The maximum RMS input current can be calculated using the following equation: Equation 1 2⋅ D + D I RMS = I O ⋅ D η η 2 2 where η is the expected system efficiency, D is the duty cycle and IO is the output DC current. The duty cycle can be derived using Equation 2. DocID13844 Rev 7 11/30 30 Application information ST1S10 Equation 2 D = (VOUT + VF) / (VIN-VSW) where VF is the voltage drop across the internal NMOS, and VSW represents the voltage drop across the internal PDMOS. The minimum duty cycle (at VIN_max) and the maximum duty cycle (at VIN_min) should be considered in order to determine the max IRMS flowing through the input capacitor. A minimum value of 4.7 µF for the VIN_SW and a 0.1 µF ceramic capacitor for the VIN_A are suitable in most application conditions. A 10 µF or higher ceramic capacitor for the VIN_SW and a 1 µF or higher for the VIN_A are recommended in cases of higher power supply source impedance or where long wires are needed between the power supply source and the VIN pins. The above higher input capacitor values are also recommended in cases where an output capacitive load is present (47 µF < CLOAD < 100 µF), which could impact the switching peak current drawn from the input capacitor during the start-up transient. In cases of very high output capacitive loads (CLOAD > 100 µF), all input/output capacitor values shall be modified as described in Section 5.8.5: SCP and OCP operation with high capacitive load. The input ceramic capacitors should have a voltage rating in the range of 1.5 times the maximum input voltage and be located as close as possible to VIN pins. 5.3 Output capacitor (VOUT > 2.5 V) The most important parameters for the output capacitor are the capacitance, the ESR and the voltage rating. The capacitance and the ESR affect the control loop stability, the output ripple voltage and transient response of the regulator. The ripple due to the capacitance can be calculated with the following equation: Equation 3 VRIPPLE(C) = (0.125 x ΔISW) / (FS x COUT) where FS is the PWM switching frequency and ΔISW is the inductor peak-to-peak switching current, which can be calculated as: Equation 4 ΔISW = [(VIN - VOUT) / (FS x L)] x D where D is the duty cycle. The ripple due to the ESR is given by: Equation 5 VRIPPLE(ESR) = ΔISW x ESR The equations above can be used to define the capacitor selection range, but final values should be verified by testing an evaluation circuit. Lower ESR ceramic capacitors are usually recommended to reduce the output ripple voltage. Capacitors with higher voltage ratings have lower ESR values, resulting in lower output ripple voltage. 12/30 DocID13844 Rev 7 ST1S10 Application information Also, the capacitor ESL value impacts the output ripple voltage, but ceramic capacitors usually have very low ESL, making ripple voltages due to the ESL negligible. In order to reduce ripple voltages due to the parasitic inductive effect, the output capacitor connection paths should be kept as short as possible. The ST1S10 has been designed to perform best with ceramic capacitors. Under typical application conditions a minimum ceramic capacitor value of 22 µF is recommended on the output, but higher values are suitable considering that the control loop has been designed to work properly with a natural output LC frequency provided by a 3.3 µH inductor and 22 µF output capacitor. If the high capacitive load application circuit shown in Figure 3 is used, a 47 µF (or 2 x 22 µF capacitors in parallel) could be needed as described in Section 5.8.5: SCP and OCP operation with high capacitive load. The use of ceramic capacitors with voltage ratings in the range of 1.5 times the maximum output voltage is recommended. 5.4 Output capacitor (0.8 V < VOUT < 2.5 V) For applications with lower output voltage levels (Vout < 2.5 V) the output capacitance and inductor values should be selected in a way that improves the DC-DC control loop behavior. In this output condition two cases must be considered: VIN > 8 V and VIN < 8 V. For VIN < 8 V the use of 2 x 22 µF capacitors in parallel to the output is recommended, as shown in Figure 4. For VIN > 8 V, a 100 µF electrolytic capacitor with ESR < 0.1 Ω should be added in parallel to the 2 x 22 µF output capacitors as shown in Figure 5. 5.5 Output voltage selection The output voltage can be adjusted from 0.8 V up to 85% of the input voltage level by connecting a resistor divider (see R1 and R2 in the typical application circuit) between the output and the VFB pin. A resistor divider with R2 in the range of 20 kΩ is a suitable compromise in terms of current consumption. Once the R2 value is selected, R1 can be calculated using the following equation: Equation 6 R1 = R2 x (VOUT - VFB) / VFB where VFB = 0.8 V (typ.). Lower values are suitable as well, but will increase current consumption. Be aware that duty cycle must be kept below 85% at all application conditions, so that: Equation 7 D = (VOUT + VF) / (VIN-VSW) < 0.85 where VF is the voltage drop across the internal NMOS, and VSW represents the voltage drop across the internal PDMOS. Note that once the output current is fixed, higher VOUT levels increase the power dissipation of the device leading to an increase in the operating junction temperature. It is recommended to select a VOUT level which maintains the junction temperature below the DocID13844 Rev 7 13/30 30 Application information ST1S10 thermal shut-down protection threshold (150°C typ.) at the rated output current. The following equation can be used to calculate the junction temperature (TJ): Equation 8 TJ = {[VOUT x IOUT x RthJA x (1-η)] / η} +TAMB where RthJA is the junction to ambient thermal resistance, η is the efficiency at the rated IOUT current and TAMB is the ambient temperature. To ensure safe operating conditions the application should be designed to keep TJ < 140°C. 5.6 Inductor (VOUT > 2.5 V) The inductor value fixes the ripple current flowing through output capacitor and switching peak current. The ripple current should be kept in the range of 20-40% of IOUT_MAX (for example it is 0.6 - 1.2 A at IOUT = 3 A). The approximate inductor value can be obtained with the following equation: Equation 9 L = [(VIN - VOUT) / ΔISW] x TON where TON is the ON time of the internal switch, given by: TON = D/FS The inductor should be selected with saturation current (ISAT) equal to or higher than the inductor peak current, which can be calculated with the following equation: Equation 10 IPK = IO + (ΔISW/2), ISAT ≥ IPK The inductor peak current must be designed so that it does not exceed the switching current limit. 5.7 Inductor (0.8 V < VOUT < 2.5 V) For applications with lower output voltage levels (Vout < 2.5 V) the description in the previous section is still valid but it is recommended to keep the inductor values in a range from 1µH to 2.2 µH in order to improve the DC-DC control loop behavior, and increase the output capacitance depending on the VIN level as shown in Figure 4 and Figure 5. In most application conditions a 2.2 µH inductor is the best compromise between DC-DC control loop behavior and output voltage ripple. 5.8 Function operation 5.8.1 Sync operation The ST1S10 operates at a fixed frequency or can be synchronized to an external frequency with the SYNC pin. The ST1S10 switches at a frequency of 900 kHz when the SYNC pin is connected to ground, and can synchronize the switching frequency between 400 kHz to 1.2 MHz from an external clock applied to the SYNC pin. When the SYNC feature is not used, 14/30 DocID13844 Rev 7 ST1S10 Application information this pin must be connected to ground with a path as short as possible to avoid any possible noise injected in the SYNC internal circuitry. 5.8.2 Inhibit function The inhibit pin can be used to turn OFF the regulator when pulled down, thus drastically reducing the current consumption down to less than 6 µA. When the inhibit feature is not used, this pin must be tied to VIN to keep the regulator output ON at all times. To ensure proper operation, the signal source used to drive the inhibit pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section under VINH. Any slew rate can be used to drive the inhibit pin. 5.8.3 OCP (overcurrent protection) The ST1S10 DC-DC converter is equipped with a switch overcurrent protection. In order to provide protection for the application and the internal power switches and bonding wires, the device goes into a shutdown state if the switch current limit is reached and is kept in this condition for the TOFF period (TOFF(OCP) = 135 µs typ.) and turns on again for the TON period (TON(OCP) = 22 µs typ.) under typical application conditions. This operation is repeated cycle by cycle. Normal operation is resumed when no overcurrent is detected. 5.8.4 SCP (short-circuit protection) In order to protect the entire application and reduce the total power dissipation during an overload or an output short-circuit condition, the device is equipped with dynamic shortcircuit protection which works by internally monitoring the VFB (feedback voltage). In the event of an overload or output short-circuit, if the VOUT voltage is reduced causing the feedback voltage (VFB) to drop below 0.3 V (typ.), the device goes into shutdown for the TOFF time (TOFF(SCP) = 288 µs typ.) and turns on again for the TON period (TON(SCP) = 130 µs typ.). This operation is repeated cycle by cycle, and normal operation is resumed when no overload is detected (VFB > 0.3 V typ.) for the full TON period. This dynamic operation can greatly reduce the power dissipation in overload conditions, while still ensuring excellent power-on startup in most conditions. 5.8.5 SCP and OCP operation with high capacitive load Thanks to the OCP and SCP circuit, ST1S10 is strongly protected against damage from short-circuit and overload. However, a highly capacitive load on the output may cause difficulties during start-up. This can be resolved by using the modified application circuit shown in Figure 3, in which a minimum of 10 µF for C1 and a 4.7 µF ceramic capacitor for C3 are used. Moreover, for CLOAD > 100 µF, it is necessary to add the C4 capacitor in parallel to the upper voltage divider resistor (R1) as shown in Figure 3. The recommended value for C4 is 4.7 nF. Note that C4 may impact the control loop response and should be added only when a capacitive load higher than 100 µF is continuously present. If the high capacitive load is variable or not present at all times, in addition to C4 an increase in the output ceramic capacitor C2 from 22 µF to 47 µF (or 2 x 22 µF capacitors in parallel) is recommended. Also in this case it is suggested to further increase the input capacitors to a minimum of 10 µF for C1 and a 4.7 µF ceramic capacitor for C3 as shown in Figure 3. DocID13844 Rev 7 15/30 30 Application information ST1S10 Figure 3. Application schematic for heavy capacitive load L1 3.3µH 12V C4 (*) 4.7nF VIN_SW 5V – 3A SW C1 EN 10µF ST1S10 R1 LOAD VIN_A C2(*) 22µF FB C3 CLOAD R2 4.7µF SYNC AGND Output Load PGND (*) see OCP and SCP descriptions for C2 and C4 selection. Figure 4. Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V L1 2.2µH VIN
ST1S10PUR 价格&库存

很抱歉,暂时无法提供与“ST1S10PUR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ST1S10PUR
  •  国内价格 香港价格
  • 4500+7.537024500+0.91169

库存:0

ST1S10PUR
  •  国内价格
  • 1+14.22430

库存:4