0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ST1S14PHR

ST1S14PHR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    HSOP8_4.9X3.9MM_EP

  • 描述:

    高达3 A的降压开关稳压器

  • 数据手册
  • 价格&库存
ST1S14PHR 数据手册
ST1S14 Up to 3 A step-down switching regulator Datasheet - production data Applications • Factory automation • Printers • DC-DC modules +623H[SRVHGSDG HSOP8 - exposed pad • High current LED drivers Features Description • 3 A DC output current The ST1S14 is a step-down monolithic power switching regulator able to deliver up to 3 A DC current to the load depending on the application conditions. The high current level is also achieved thanks to a HSOP8 package with exposed frame, that allows to reduce the Rth(JA) down to approximately 40 °C/W. The output voltage can be set from 1.22 V. The device uses an internal Nchannel DMOS transistor (with a typical RDS(on) of 200 mΩ) as the switching element to minimize the size of the external components. The internal oscillator fixes the switching frequency at 850 kHz. Power good open collector output validates the regulated output voltage as soon as it reaches the regulation. Pulse-by-pulse current limit offers an effective constant current short-circuit protection. Current foldback decreases overstress in a persistent short-circuit condition. • Operating input voltage from 5.5 V to 48 V • 850 kHz internally fixed switching frequency • Internal soft-start • Power good open collector output • Current mode architecture • Embedded compensation network • Zero load current operation • Internal current limiting • Inhibit for zero current consumption • 2 mA maximum quiescent current over temperature range • 250 mΩ typ. RDS(on) • Thermal shutdown Figure 1. Application schematic & 8 9,1 & Q) %227  9,1  (1  (1 676  6: 3*22 ' )% /    X+ 5 . 5 . *1'  & ' 6736/ 8 X) &  3*22' Q) *1' 9287 & X) 5 . VPDOOVLJQDO *1' SRZHUSODQH December 2020 This is information on a product in full production. DocID17977 Rev 3 1/46 www.st.com 46 Contents ST1S14 Contents 1 2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Enable inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Function description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 6 7 4.1 Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.2 Voltage monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.3 Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.4 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.6 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Additional features and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1 Maximum duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Minimum output voltage over VIN range . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1 GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3 Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.4 Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.1 Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.1.1 2/46 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID17977 Rev 3 ST1S14 Contents 7.1.2 Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1.3 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.2 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.3 Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.4 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.5 7.4.1 300 mV < VFB < 1.22 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.4.2 VFB < 300 mV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.4.3 Start up phase in short circuit condition . . . . . . . . . . . . . . . . . . . . . . . . . 33 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 DocID17977 Rev 3 3/46 List of figure ST1S14 List of figure Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. 4/46 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Internal circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Soft-start phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Soft-start block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Bootstrap operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VO_MIN over input voltage range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Block diagram of the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Transconductance embedded error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Module plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Phase plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Minimum VFB for effective pulse-by-pulse protection over VIN . . . . . . . . . . . . . . . . . . . . . 30 IL diverging triggers hiccup protection (VIN = 48 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Current and frequency foldback triggered when VFB IFOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Start up in short circuit condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Over current protection triggers the frequency foldback . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Over current protection triggers the current and frequency foldback . . . . . . . . . . . . . . . . . 35 Demonstration board application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 PCB layout (component side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 PCB layout (bottom side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 RDSon vs. temperature (VIN = 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 VFB vs. temperature (VIN = 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 fSW vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Shutdown current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Duty cycle max vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Efficiency vs. IOUT (VIN 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 TJ vs. IOUT (VIN 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Efficiency vs. IOUT (VIN 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 TJ vs. IOUT (VIN 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Efficiency vs. IOUT (VIN 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 TJ vs. IOUT (VIN 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1 A to 3 A load transient (VIN 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Zoom - 1 A to 3 A load transient (VIN 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Zoom - 1 A to 3 A rising edge load transient (VIN 12 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1 A to 3 A falling edge load transient (VIN 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DocID17977 Rev 3 ST1S14 Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. List of figure Zoom - 1 A to 3 A rising edge load transient (VIN 24 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Zoom - 1 A to 3 A falling edge load transient (VIN 24 V). . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1 A to 3 A load transient (VIN 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Zoom - 1 A to 3 A rising edge load transient (VIN 32 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Zoom - 1 A to 3 A falling edge load transient (VIN 32 V). . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID17977 Rev 3 5/46 Pin settings ST1S14 1 Pin settings 1.1 Pin connection Figure 2. Pin connection (top view) (;326(' 3$' 72*1' $09 1.2 Pin description Table 1. Pin description 1.3 N Pin Description 1 BOOT Bootstrap capacitor for N-channel gate driver. Connects 100 nF low ESR capacitor from BOOT pin to SW 2 PG Power good 3 EN1 Enable pin active low 4 FB 5 EN2 Enable pin active high 6 GND Ground pin 7 VIN Input supply pin 8 SW Switching node E.p. Exposed pad must be connected to GND Feedback voltage Enable inputs Table 2. Truth table 6/46 EN1 EN2 Device status H L INH H H INH L L INH L H ON DocID17977 Rev 3 ST1S14 Electrical data 2 Electrical data 2.1 Maximum ratings Table 3. Absolute maximum ratings Symbol Value Unit Power supply input voltage -0.3 to 52 V VEN1 Enable 1 voltage -0.3 to 7 V VEN2 Enable 2 voltage -0.3 to (VIN+0.3) V PG Power good -0.3 to (VIN+0.3) V BOOT Bootstrap pin -0.3 to 55 V -1 to (VIN+0.3) V -0.3 to 3 V Operating junction temperature range -40 to 150 °C TSTG Storage temperature range -65 to 150 °C TLEAD Lead temperature (soldering 10 sec.) 260 °C Value Unit 40 °C/W Value Unit HBM 4 kV MM 500 V VIN SW Switching node VFB Feedback voltage TJ 2.2 Parameter Thermal data Table 4. Thermal data Symbol Rth JA 2.3 Parameter Thermal resistance junction-ambient ESD protection Table 5. ESD protection Symbol ESD Test condition DocID17977 Rev 3 7/46 Electrical characteristics 3 ST1S14 Electrical characteristics All the population tested at TJ = 25 °C, VCC =12 V, VEN1 = 0 V, VEN2 = VCC unless otherwise specified. The specification is guaranteed from (-40 to +125 °C) TJ temperature range by design, characterization, and statistical correlation. Table 6. Electrical characteristics Symbol VIN RDS(on) ISW Parameter Test condition Min Operating input voltage range MOSFET on resistance Max Unit 48 V 0.2 0.4 Ω 4.5 5.2 A 5.5 ISW=1 A Maximum limiting current 3.7 tHICCUP Hiccup time fSW Typ 16 Switching frequency 600 850 ms 1000 kHz Duty cycle (1) 90 % Minimum conduction TON MIN time of the power element (1) 90 ns Minimum conduction TOFF MIN time of the external diode (1) 75 90 120 ns ILOAD=0 A 1.202 1.22 1.239 V ILOAD=10 mA to 3 A 1.196 1.22 1.245 V DC characteristics VFB Voltage feedback IFB FB biasing current Iq Quiescent current Iqst-by Standby quiescent current 50 VFB=2 V 1.3 2 mA VFB=2 V, VIN=48 V 1.7 2.4 mA Device OFF (see Table 2) 16 34 µA VFB rising edge 0.92* VOUT V VFB falling edge 0.8* VOUT V Power good threshold PG PG output voltage I =6 mA (open collector active) SINK Inhibit 8/46 nA DocID17977 Rev 3 0.4 V ST1S14 Electrical characteristics Table 6. Electrical characteristics (continued) Symbol VEN1 IEN1 VEN2 IEN2 Parameter Enable 1 levels Enable 1 biasing current Enable 2 levels Enable 2 biasing current Test condition Min Typ Device ON VIN=5.5 V to 48 V Device OFF VIN=5.5 V to 48 V 1.5 VEN1=5 V 0.7 Device ON VIN=5.5 V to 48 V 1.5 Max Unit 0.5 V V 1.6 3.5 µA V Device OFF VIN=5.5 V to 48 V 0.5 V VEN1=0 V; VEN2=0 V -1 -2.4 -4.5 µA VEN1=0 V; VEN2=12 V 2.7 5.8 10 µA VEN1=0 V; VCC=VEN2=48 V 3.0 6.0 10 µA 140 150 160 °C Thermal shutdown TSHDWN Thermal shutdown temperature (1) THYS Thermal shutdown hysteresis (1) 15 °C 1. Parameter guaranteed by design DocID17977 Rev 3 9/46 Function description 4 ST1S14 Function description The ST1S14 is based on a “peak current mode”, constant frequency control. As a consequence the intersection between the error amplifier output and the sensed inductor current generates the control signal to drive the power switch. The main internal blocks shown in the block diagram in Figure 3 are: • A fully integrated sawtooth oscillator with a typical frequency of 850 kHz • A transconductance error amplifier • A high side current sense amplifier to track the inductor current • A pulse width modulator (PWM) comparator and the circuitry necessary to drive the internal power element • Soft-start circuitry to decrease the inrush current at power-up • Current limitation circuit based on the pulse-by-pulse current protection with frequency divider based on FB voltage and the hiccup protection • Bootstrap circuitry to drive the embedded N-MOS switch • A multi input inhibit block for standby operation • A circuit to implement the thermal protection function Figure 3. Device block diagram %227 6ORSH FRPSHQVDWLRQ 26& 9& %RRW5HJ 9 7 ($ 5HJ 9,1 .5 ,/ ,B6(1 026)(7 &21752/ /2*,& &RPS 'ULYHU 6: 5F 62)767$57 273 6KXW'RZQ &S 'ULYHU &F 5() 3* (1 (1 *1' $09 10/46 DocID17977 Rev 3 ST1S14 4.1 Function description Power supply and voltage reference The internal regulator circuit consists of a start-up circuit, an internal voltage pre-regulator, the bandgap voltage reference, and the bias block that provides current to all the blocks. The starter supplies the start-up current to the entire device when the input voltage goes high and the device is enabled (inhibit pin connected to ground). The pre-regulator block supplies the bandgap cell with a pre-regulated voltage that has a very low supply voltage noise sensitivity. 4.2 Voltage monitor An internal block continuously senses the Vcc, Vref, and Vbg. If the monitored voltages are good, the regulator begins operating. There is also a hysteresis on the VCC (UVLO). Figure 4. Internal circuit $09 4.3 Soft-start The startup phase minimizes the inrush current and decreases the stress of the power components at the power up. The startup takes place when VIN crosses the selected UVLO threshold. A internal counter (2816 clks) sets the soft start time (see Figure 5). The reference of the error amplifier is ramped smootly in 704 steps (one step every 4 clks). A low pass filter smooths each step to minimize output discontinuity. Considering the typical 850 kHz switching frequency, the phase two duration is 3.3 msec The device has full load current capability during the soft start time in order to charge the output capacitor (see Figure 5). DocID17977 Rev 3 11/46 Function description ST1S14 Figure 5. Soft-start phases During normal operation a new soft start cycle takes place in case of: • HICCUP mode current protection • thermal shutdown event • UVLO event • the device is driven in INH mode Figure 6. Soft-start block diagram 6 95() 9VDZ F 9VHQVH &WUO FONV 6 95()B287 9)% /RJLF ($ P9 ,FODPS 9VHQVH P9 9)% 6+257 $09 12/46 DocID17977 Rev 3 ST1S14 4.4 Function description Error amplifier The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non inverting input is connected to the internal voltage reference (1.222 V), while the inverting input (FB) is connected to the external divider or directly to the output voltage. The error amplifier is internally compensated to minimize the size of the final application. Table 7. Uncompensated error amplifier characteristics Description Values Transconductance 218 µS Low frequency gain 93 dB CP 24 pF CC 211 pF RC 200 kΩ The error amplifier output is compared with the inductor current sense information to perform PWM control. 4.5 Inhibit function The inhibit feature is used to set the device in standby mode according to Table 2. When the device is disabled, the power consumption is reduced to less than 40 µA. The EN2 pin is also VIN compatible. 4.6 Thermal shutdown The shutdown block generates a signal that turns off the power stage if the temperature of the chip goes higher than a fixed internal threshold (150±10 °C). The sensing element of the chip is very close to the PDMOS area, ensuring fast and accurate temperature detection. A hysteresis of approximately 15 °C keeps the device from turning on and off continuously. DocID17977 Rev 3 13/46 Additional features and limitations ST1S14 5 Additional features and limitations 5.1 Maximum duty cycle The bootstrap circuitry charges, cycle-by-cycle, the external bootstrap capacitor to generate a voltage higher than VIN necessary to drive the internal N-channel power element. An internal linear regulator charges the CBOOT during the conduction time of the external freewheeling diode during the switching activity. The internal logic implements a minimum OFF time of the high side switch (90 nsec typ.) to prevent the bootstrap discharge at high duty cycle. As a consequence, the ST1S14 can operate at a maximum duty cycle of around 90 % typ. The ST1S14 embeds the diode VD1 required for the bootstrap operation. Figure 7. Bootstrap operation 9,1 5(*8/$725 9' +6VZLWFK 9'5,9(5 95(*9'9' &%227 9' &287 $09 14/46 DocID17977 Rev 3 ST1S14 5.2 Additional features and limitations Minimum output voltage over VIN range The minimum regulated output voltage at a given input voltage is limited by the minimum conduction time of the power element, that is 90 nsec typ. for the ST1S14: Equation 1 T ON_MIN 90ns V O_MIN ( V IN ) = V IN ⋅ D MIN = V IN ⋅ ---------------------- = V IN ⋅ -----------------T SW 1.18µs which is plotted in Figure 14. The reference of the embedded error amplifier (1.22 V) sets the minimum VO_SET at low VIN. Figure 8. VO_MIN over input voltage range $09 Figure 8 shows the minimum output voltage over input voltage range to have constant switching activity and a predictable output voltage ripple. The regulator can, however, regulate the minimum input voltage over the entire input voltage range but, given the 90 ns minimum conduction time of the power element, it skips some pulses to keep the output voltage in regulation when Equation 1 is not satisfied. This operation is not recommended at the nominal input voltage of the application mainly because it affects the output voltage ripple, but it is generally accepted during a line transient event. DocID17977 Rev 3 15/46 Closing the loop 6 ST1S14 Closing the loop Figure 9. Block diagram of the loop 3:0FRQ WURO &XUUHQWVHQV H 9,1 +6 VZ LWFK / /&ILOWHU UHVLVWRUGLYLGHU &287 5   FR PSHQVDWLRQQHWZRUN   3:0FR PSDUDWRU &3 5& )% 95() (UURUDPSOLILHU 5 && $09 16/46 DocID17977 Rev 3 ST1S14 6.1 Closing the loop GCO(s) control to output transfer function The accurate control to output transfer function for a buck peak current mode converter can be written as: Equation 2 s  1 + ---- ω z R0 1 G CO ( s ) = ------- ⋅ ---------------------------------------------------------------------------------------- ⋅ ---------------------- ⋅ F H ( s ) Ri R 0 ⋅ T SW s  1 + ----------------------- ⋅ [ m C ⋅ ( 1 – D ) – 0.5 ]  1 + -----ω p L where R0 represents the load resistance, Ri the equivalent sensing resistor of the current sense circuitry, ωp the single pole introduced by the LC filter, and ωz the zero given by the ESR of the output capacitor. FH(s) accounts for the sampling effect performed by the PWM comparator on the output of the error amplifier that introduces a double pole at one half of the switching frequency. Equation 3 1 ω Z = ------------------------------ESR ⋅ C OUT Equation 4 m C ⋅ ( 1 – D ) – 0.5 1 ω n = -------------------------------------- + --------------------------------------------L ⋅ C OUT ⋅ fSW R LOAD ⋅ C OUT where: Equation 5 Se   m C = 1 + -----Sn  S = V ⋅ f pp SW  e  V IN – V OUT  S = ----------------------------- ⋅ Ri  n L Sn represents the ON time slope of the sensed inductor current, and Se the ON time slope of the external ramp (VPP peak to peak amplitude) that implements the slope compensation to avoid sub-harmonic oscillations at duty cycle over 50 %. The sampling effect contribution FH(s) is: Equation 6 1 F H ( s ) = -----------------------------------------2 s s 1 + ------------------- + ------2 ω n ⋅ QP ω n where: DocID17977 Rev 3 17/46 Closing the loop ST1S14 Equation 7 1 Q P = ---------------------------------------------------------π ⋅ [ m C ⋅ ( 1 – D ) – 0.5 ] 6.2 Error amplifier compensation network The ST1S14 embeds the error amplifier (see Figure 10) and a pre-defined compensation network which is effective in stabilizing the system in most of the application conditions. Figure 10. Transconductance embedded error amplifier  ($ &203  )% 5& &3 && 9 "9 5 *P " 9 & 5& &3 && $09 RC and CC introduce a pole and a zero in the open loop gain. CP does not significantly affect system stability but it is useful to reduce the noise at the output of the error amplifier. The transfer function of the error amplifier and its compensation network is: Equation 8 A V0 ⋅ ( 1 + s ⋅ R c ⋅ C c ) A 0 ( s ) = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 s ⋅ R 0 ⋅ ( C 0 + C p ) ⋅ R c ⋅ C c + s ⋅ ( R0 ⋅ C c + R 0 ⋅ ( C 0 + C p ) + R c ⋅ C c ) + 1 where Avo = Gm · Ro. The poles of this transfer function are (if Cc >> C0+CP): Equation 9 1 f P LF = ---------------------------------2 ⋅ π ⋅ R0 ⋅ Cc 18/46 DocID17977 Rev 3 ST1S14 Closing the loop Equation 10 1 fP HF = ---------------------------------------------------2 ⋅ π ⋅ Rc ⋅ ( C0 + Cp ) whereas the zero is defined as: Equation 11 1 F Z = --------------------------------2 ⋅ π ⋅ Rc ⋅ Cc The embedded compensation network is RC=200 K, CP=24 pF, CC=211 pF and CO can be considered negligible, so the singularities are: Equation 12 f Z = 3, 77 kHz 6.3 f P LF = 3, 01 Hz f P HF = 33, 16 kHz Voltage divider The contribution of a simple voltage divider is: Equation 13 R2 G DIV ( s ) = -------------------R1 + R2 Figure 11. Leading network example  %227  9,1  (1  (1 6: 3*22 ' )%   5  *1' &5  5 VPDOOVLJQDO SRZHUSODQH $09 A small signal capacitor in parallel to the upper resistor (see Figure 11.) of the voltage divider implements a leading network (fzero < fpole), sometimes necessary to improve the system phase margin: Equation 14 DocID17977 Rev 3 19/46 Closing the loop ST1S14 R2 ( 1 + s ⋅ R 1 ⋅ C R1 ) G DIV ( s ) = -------------------- ⋅ ----------------------------------------------------------R1 + R2  R1 ⋅ R2 -------------------- ⋅ C R1 1 + s ⋅ R 1 + R2 where: 1 f Z = -------------------------------------2 ⋅ π ⋅ R 1 ⋅ C R1 1 fP = --------------------------------------------------R 1 ⋅ R2 2 ⋅ π ⋅ -------------------- ⋅ C R1 R1 + R2 fZ < f P 6.4 Total loop gain In summary, the open loop gain can be expressed as: Equation 15 G ( s ) = G DIV ( s ) ⋅ G CO ( s ) ⋅ A 0 ( s ) Example: VIN = 12 V, VOUT = 3.3 V, ROUT = 2 Ω. The resistor divider is R1=5.6 K, R2=3.3 K. CR1=150 nF implements a leading network (fZ=190 kHz, fP=510 kHz). Selecting L = 8.2 µH, COUT = 100 µF, and ESR = 75 mΩ, the gain and phase bode diagrams are plotted respectively in Figure 12 and 13 over input voltage range (VIN=6 V to 48 V, IOUT=3 A). Figure 12. Module plot 20/46 DocID17977 Rev 3 ST1S14 Closing the loop Figure 13. Phase plot The cut-off frequency and the phase margin are: Equation 16 V IN = 6V f C = 46 kHz pm = 49° V IN = 12V f C = 71 kHz pm = 62° V IN = 48V f C = 97 kHz pm = 78° DocID17977 Rev 3 21/46 Application information ST1S14 7 Application information 7.1 Component selection 7.1.1 Input capacitor The input capacitor must be able to support the maximum input operating voltage and the maximum RMS input current. Since step-down converters draw current from the input in pulses, the input current is squared and the height of each pulse is equal to the output current. The input capacitor has to absorb all this switching current, whose RMS value can be up to the load current divided by two (worst case, with duty cycle of 50 %). For this reason, the quality of these capacitors must be very high to minimize the power dissipation generated by the internal ESR, thereby improving system reliability and efficiency. The critical parameter is usually the RMS current rating, which must be higher than the RMS current flowing through the capacitor. The maximum RMS input current (flowing through the input capacitor) is: Equation 17 2 2 2⋅D D I RMS = I O ⋅ D – --------------- + ------2η η where η is the expected system efficiency, D is the duty cycle, and IO is the output DC current. Considering η = 1 this function reaches its maximum value at D = 0.5 and the equivalent RMS current is equal to IO divided by 2. The maximum and minimum duty cycles are: Equation 18 V OUT + VF D MAX = ------------------------------------V INMIN – V SW and Equation 19 VOUT + V F D MIN = -------------------------------------V INMAX – V SW Where VF is the freewheeling diode forward voltage and VSW the voltage drop across the internal PDMOS. Considering the range DMIN to DMAX, it is possible to determine the maximum IRMS going through the input capacitor. Capacitors that may be considered are: Electrolytic capacitors: These are widely used due to their low cost and their availability in a wide range of RMS current ratings. The only drawback is that, considering ripple current rating requirements, they are physically larger than other capacitors. 22/46 DocID17977 Rev 3 ST1S14 Application information Ceramic capacitors: If available for the required value and voltage rating, these capacitors usually have a higher RMS current rating for a given physical dimension (due to very low ESR). The drawback is the considerably high cost. Tantalum capacitors: Small tantalum capacitors with very low ESR are becoming more available. However, they can occasionally burn if subjected to very high current during charge. Therefore, it is suggested to avoid this type of capacitor for the input filter of the device as they could be stressed by a high surge current when connected to the power supply. Table 8. List of ceramic capacitors for the ST1S14 Manufacturer Series Capacitor value (µ) Rated voltage (V) TAIYO YUDEN UMK325BJ106MM-T 10 50 MURATA GRM42-2 X7R 475K 50 4.7 50 If the selected capacitor is ceramic (so neglecting the ESR contribution), the input voltage ripple can be calculated as: Equation 20 IO D D V IN PP = ----------------------- ⋅  1 – ---- ⋅ D + ---- ⋅ ( 1 – D ) C IN ⋅ fSW  η η 7.1.2 Output capacitor The output capacitor is very important to meet the output voltage ripple requirement. Using a small inductor value is useful to reduce the size of the choke but it increases the current ripple. So, to reduce the output voltage ripple, a low ESR capacitor is required. Nevertheless, the ESR of the output capacitor introduces a zero in the open loop gain, which helps to increase the phase margin of the system. If the zero goes to a very high frequency, its effect is negligible. Ceramic capacitors Ceramic capacitors and very low ESR capacitors that introduce a zero outside the designed bandwidth (fZ=1/(2*pi*ESR*COUT, see Section 6: Closing the loop) in general should be avoided. A leading network across the upper resistor of the voltage divider is useful to increase the phase margin and compensate the system (see Section 6.3: Voltage divider). The effectiveness of the leading network increases at high output voltage because the singularities become more split. High ESR capacitors The “high ESR capacitor” definition stands for a capacitor having an ESR value able to introduce a zero into the designed system bandwidth, which can be, as a general rule, up to fSW/5 at maximum. Tantalum or electrolytic capacitors belong to this group. Equation 21 f SW 1 f Z = -------------------------------------------------- < BW < --------2 ⋅ π ⋅ ESR ⋅ COUT 5 DocID17977 Rev 3 23/46 Application information ST1S14 A list of some tantalum capacitor manufacturers is provided in Table 9. Table 9. Output capacitor selection Manufacturer Series Rated voltage (V) Nippon Chemicon KZE 6.3 to 50 TAE 4 to 16 THB/C/E 4 to 16 TPS 4 to 35 Sanyo POSCAP(2) AVX Cap value (µF)(1) ESR (mΩ)(1) 1 f Z = -------------------------------------------------- < BW 2 ⋅ π ⋅ ESR ⋅ COUT 1. see Section 6: Closing the loop for the selection of the output capacitor 2. POSCAP capacitors have some characteristics which are very similar to tantalum. 7.1.3 Inductor The inductor value is very important as it fixes the ripple current flowing through the output capacitor. The ripple current is usually fixed at 20 - 40 % of Iomax, which is 0.6 - 1.2 A with IOmax = 3 A. The approximate inductor value is obtained using the following formula: Equation 22 ( VIN – V OUT ) L = ---------------------------------- ⋅ T ON ∆I where TON is the ON time of the internal switch, given by D · T. For example, with VOUT = 3.3 V, VIN = 24 V, and ∆IO = 0.8 A, the inductor value is about 4.7 µH. The peak current through the inductor is given by: Equation 23 ∆I I PK = I O + ----2 and it can be observed that if the inductor value decreases, the peak current (which must be lower than the current limit of the device) increases. So, when the peak current is fixed, a higher inductor value allows a higher value for the output current. In Table 10, some inductor manufacturers are listed. Table 10. Inductor selection Manufacturer Wurth Elektronik Coilcraft 7.2 Series Inductor value (µH) Saturation current (A) WE-HCI 7040 1 to 4.7 20 to 7 WE-HCI 7050 4.9 to 10 20 to 4.0 XPL 7030 2.2 to 10 29 to 7.2 Layout considerations The layout of switching DC-DC converters is very important to minimize noise and interference. Power-generating portions of the layout are the main cause of noise and so 24/46 DocID17977 Rev 3 ST1S14 Application information high switching current loop areas should be kept as small as possible and lead lengths as short as possible. High impedance paths (in particular the feedback connections) are susceptible to interference, so they should be as far as possible from the high current paths. A layout example is provided in Figure 14 below. The input and output loops are minimized to avoid radiation and high frequency resonance problems. The feedback pin connections to the external divider are very close to the device in order to avoid pick-up noise. Another important issue is the ground plane of the board. As the package has an exposed pad, it is very important to connect it to an extended ground plane in order to reduce the thermal resistance junction-to-ambient. To increase the design noise immunity, different signal and power ground should be implemented in the layout (see Section 7.5: Application circuit). The signal ground serves the small signal components, the device ground pin, the exposed pad, and a small filtering capacitor connected to the VCC pin. The power ground serves the external diode and the input filter. The different grounds are connected underneath the output capacitor. Neglecting the current ripple contribution, the current flowing through this component is constant during the switching activity and so this is the cleanest ground point of the buck application circuit. Figure 14. Layout example $09 DocID17977 Rev 3 25/46 Application information 7.3 ST1S14 Thermal considerations The dissipated power of the device is tied to three different sources: • Conduction losses due to the not insignificant RDSON, which are equal to: Equation 24 2 P ON = R DSON ⋅ ( IOUT ) ⋅ D where D is the duty cycle of the application. Note that the duty cycle is theoretically given by the ratio between VOUT and VIN, but in practice it is substantially higher than this value to compensate for the losses in the overall application. For this reason, the conduction losses related to the RDSON increase compared to an ideal case. • Switching losses due to turning on and off. These are derived using the following equation: Equation 25 ( T RISE + T FALL ) P SW = V IN ⋅ I OUT ⋅ ----------------------------------------- ⋅ F SW = VIN ⋅ I OUT ⋅ T SW_EQ ⋅ F SW 2 where TRISE and TFALL represent the switching times of the power element that cause the switching losses when driving an inductive load (see Figure 15). TSW is the equivalent switching time. Figure 15. Switching losses $09 • Quiescent current losses. Equation 26 P Q = V IN ⋅ I Q 26/46 DocID17977 Rev 3 ST1S14 Application information Example: – VIN = 24 V – VOUT = 5 V – IOUT = 3 A RDS(on) has a typical value of 0.2 Ω @ 25 °C and increases to a maximum value of 0.4 Ω @ 125 °C. We can consider a value of 0.3 Ω. TSW_EQ is approximately 12 ns. IQ has a typical value of 2 mA @ VIN = 24 V. The overall losses are: Equation 27 2 P TOT = R DSON ⋅ ( I OUT ) ⋅ D + V IN ⋅ I OUT ⋅ T SW ⋅ F SW + V IN ⋅ I Q = "" 2 = 0.3 ⋅ ( 3 ) ⋅ 0.137 + 24 ⋅ 3 ⋅ 12 ⋅ 10 –9 ⋅ 850 ⋅ 10 –3 + 24 ⋅ 2 ⋅ 10 –3 ≅ 1.15W The junction temperature of the device is: Equation 28 T J = T A + Rth J – A ⋅ P TOT where TA is the ambient temperature and RthJ-A is the thermal resistance junction-toambient. Considering that the device is mounted on board with a good ground plane, that it has a thermal resistance junction-to-ambient (RthJ-A) of about 40 °C/W, and an ambient temperature of about 40 °C: T J = 40 + 1.15 ⋅ 40 ≅ 86°C 7.4 Short-circuit protection In overcurrent protection mode, when the peak current reaches the current limit, the device disables the power element and it is able to reduce the conduction time down to the minimum value (approximately 90 nsec typical) to keep the inductor current limited. This is the pulse by pulse current limitation to implement constant current protection feature. For the ST1S14, the operation of the pulse by pulse current limitation out of the soft start time depends on the FB voltage: • 300 mV
ST1S14PHR 价格&库存

很抱歉,暂时无法提供与“ST1S14PHR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ST1S14PHR
  •  国内价格
  • 1+6.69440

库存:0

ST1S14PHR
  •  国内价格
  • 1+10.43540
  • 10+9.52874
  • 30+9.34741

库存:1093