0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ST7FLITE39F2U6

ST7FLITE39F2U6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VQFN20

  • 描述:

    IC MCU 8BIT 8KB FLASH 20QFN

  • 数据手册
  • 价格&库存
ST7FLITE39F2U6 数据手册
ST7LITE3xF2 8-bit MCU with single voltage Flash, data EEPROM, ADC, timers, SPI, LINSCI™ Features ■ ■ ■ ■ Memories – 8 Kbytes program memory: single voltage extended Flash (XFlash) Program memory with read-out protection, In-Circuit Programming and In-Application programming (ICP and IAP), data retention: 20 years at 55°C. – 384 bytes RAM – 256 bytes data EEPROM with read-out protection. 300K write/erase cycles guaranteed, data retention: 20 years at 55°C. Clock, Reset and Supply Management – Enhanced reset system – Enhanced low voltage supervisor (LVD) for main supply and an auxiliary voltage detector (AVD) with interrupt capability for implementing safe power-down procedures – Clock sources: Internal RC 1% oscillator, crystal/ceramic resonator or external clock – Optional x4 or x8 PLL for 4 or 8 MHz internal clock – Five Power Saving Modes: Halt, Active-Halt, Wait and Slow, Auto Wake Up From Halt I/O Ports – Up to 15 multifunctional bidirectional I/O lines – 7 high sink outputs 5 Timers – Configurable Watchdog Timer – Two 8-bit Lite Timers with prescaler, 1 realtime base and 1 input capture – Two 12-bit Auto-reload Timers with 4 PWM outputs, input capture and output compare functions QFN20 SO20 DIP20 2 Communication Interfaces – Master/slave LINSCI™ asynchronous serial interface – SPI synchronous serial interface ■ Interrupt Management – 10 interrupt vectors plus TRAP and RESET – 12 external interrupt lines (on 4 vectors) ■ A/D Converter – 7 input channels – 10-bit resolution ■ Instruction Set 8-bit data manipulation – 63 basic instructions with illegal opcode detection – 17 main addressing modes – 8 x 8 unsigned multiply instructions ■ Development Tools – Full hardware/software development package – DM (Debug module) ■ Table 1. Device summary Features Program memory - bytes RAM (stack) - bytes Data EEPROM - bytes Peripherals Operating Supply CPU Frequency Operating Temperature Packages ST7LITE30F2 ST7LITE35F2 ST7LITE39F2 8K 384 (128) 256 Lite Timer, Autoreload Timer, SPI, LINSCI, 10-bit ADC 2.7V to 5.5V Up to 8Mhz Up to 8Mhz (w/ ext OSC up to 16MHz (w/ ext OSC up to 16MHz) and int 1MHz RC 1% PLLx8/4MHz) -40°C to +125°C SO20 300”, DIP20, QFN20 Rev. 9 November 2007 1/173 1 Table of Contents ST7LITE3xF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 PROGRAMMING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.4 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 MEMORY PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.7 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 DATA EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 MEMORY ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.4 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.5 ACCESS ERROR HANDLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.6 DATA EEPROM READ-OUT PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.7 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1 INTERNAL RC OSCILLATOR ADJUSTMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.2 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.3 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.4 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.5 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.6 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.1 NON MASKABLE SOFTWARE INTERRUPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.2 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.3 PERIPHERAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.4 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2/173 2 Table of Contents 9.5 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.6 AUTO WAKE UP FROM HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.3 I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.4 UNUSED I/O PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.5 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.6 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 11 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 11.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 11.2 DUAL 12-BIT AUTORELOAD TIMER 3 (AT3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 11.3 LITE TIMER 2 (LT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.4 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.5 LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER/SLAVE) . . . . . . . . . . 90 11.6 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 12 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 12.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 12.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 13 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 13.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 13.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 13.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 13.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 13.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 13.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 13.7 EMC (ELECTROMAGNETIC COMPATIBILITY) CHARACTERISTICS . . . . . . . . . . . . 146 13.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 13.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 13.10 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 155 13.11 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 14 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 14.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 14.2 THERMAL CHARACTERISTICS 160 15 DEVICE CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 163 15.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 15.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 16 KNOWN LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 16.1 CLEARING ACTIVE INTERRUPTS OUTSIDE INTERRUPT ROUTINE . . . . . . . . . . . . 169 3/173 3 Table of Contents 16.2 LINSCI LIMITATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 17 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 To obtain the most recent version of this datasheet, please check at www.st.com Please also pay special attention to the Section “KNOWN LIMITATIONS” on page 169. 4/173 1 ST7LITE3xF2 1 INTRODUCTION The ST7LITE3 is a member of the ST7 microcontroller family. All ST7 devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set. The ST7LITE3 features FLASH memory with byte-by-byte In-Circuit Programming (ICP) and InApplication Programming (IAP) capability. Under software control, the ST7LITE3 device can be placed in WAIT, SLOW, or HALT mode, reducing power consumption when the application is in idle or standby state. The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes. For easy reference, all parametric data are located in section 13 on page 131. The devices feature an on-chip Debug Module (DM) to support in-circuit debugging (ICD). For a description of the DM registers, refer to the ST7 ICC Protocol Reference Manual. Figure 1. General Block Diagram Int. 1% RC 1MHz 12-Bit Auto-Reload TIMER 2 PLL x 8 or PLL X4 CLKIN 8-Bit LITE TIMER 2 /2 OSC1 OSC2 Ext. OSC 1MHz to 16MHz Internal CLOCK VDD VSS RESET POWER SUPPLY CONTROL 8-BIT CORE ALU ADDRESS AND DATA BUS LVD PORT A PORT B PA7:0 (8 bits) PB6:0 (7 bits) ADC Debug Module SPI LINSCI PROGRAM MEMORY (8K Bytes) WDG RAM (384 Bytes) DATA EEPROM ( 256 Bytes) 5/173 1 ST7LITE3xF2 2 PIN DESCRIPTION OSC2 17 VSS 20 19 18 VDD OSC1/CLKIN Figure 2. 20-Pin QFN Package Pinout RESET 1 16 PA0 (HS)/LTIC SS/AIN0/PB0 2 15 PA1 (HS)/ATIC SCK/AIN1/PB1 3 14 PA2 (HS)/ATPWM0 MISO/AIN2/PB2 4 13 PA3 (HS)/ATPWM1 MOSI/AIN3/PB3 5 12 PA4 (HS)/ATPWM2 11 PA5 (HS)/ATPWM3/ICCDATA ei3 ei0 ei2 ei1 ei2 7 8 9 10 RDI/AIN6/PB6 TDO/PA7(HS) MCO/ICCCLKBREAK/PA6 6 AIN5/PB5 CLKIN/AIN4/PB4 (HS) 20mA High sink capability eix associated external interrupt vector Figure 3. 20-Pin SO and DIP Package Pinout VSS 20 OSC1/CLKIN 2 19 3 18 OSC2 PA0 (HS)/LTIC SS/AIN0/PB0 4 17 PA1 (HS)/ATIC VDD RESET 1 SCK/AIN1/PB1 5 MISO/AIN2/PB2 6 MOSI/AIN3/PB3 7 CLKIN/AIN4/PB4 8 AIN5/PB5 RDI/AIN6/PB6 9 10 ei3 ei0 ei2 ei1 ei2 16 PA2 (HS)/ATPWM0 15 PA3 (HS)/ATPWM1 14 PA4 (HS)/ATPWM2 13 12 PA5 (HS)/ATPWM3/ICCDATA PA6/MCO/ICCCLK/BREAK 11 PA7 (HS)/TDO (HS) 20mA high sink capability eix associated external interrupt vector 6/173 1 ST7LITE3xF2 PIN DESCRIPTION (Cont’d) Legend / Abbreviations for Table 2: Type: I = input, O = output, S = supply In/Output level: CT= CMOS 0.3VDD/0.7VDD with input trigger Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration: – Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog – Output: OD = open drain, PP = push-pull The RESET configuration of each pin is shown in bold which is valid as long as the device is in reset state. Table 2. Device Pin Description Port / Control S Ground 20 2 VDD 1) S Main power supply 1 3 RESET 2 4 PB0/AIN0/SS I/O CT I/O X CT X X Top priority non maskable interrupt (active low) X X X Port B0 ei3 3 5 4 6 5 7 6 8 7 9 PB5/AIN5 ADC Analog Input 0 or SPI Slave Select (active low) Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132 ADC Analog Input 1 or SPI Serial Clock Caution: No negative current injection allowed on this pin. For details, refer to section 13.2.2 on page 132 ADC Analog Input 2 or SPI Master In/ Slave Out Data ADC Analog Input 3 or SPI Master Out / Slave In Data ADC Analog Input 4 or External clock input CT X X X X Port B1 I/O CT X X X X Port B2 I/O CT X X X X Port B3 I/O CT X X X X Port B4 I/O CT X X X X Port B5 ADC Analog Input 5 CT X X X X Port B6 ADC Analog Input 6 or LINSCI Input X X Port A7 LINSCI Output PB1/AIN1/SCK I/O PB2/AIN2/ MISO PB3/AIN3/ MOSI PB4/AIN4/ CLKIN** Alternate Function PP ana int wpu float Input OD VSS 1) Output 1 Input 19 Pin Name Type SO20/DIP20 Main Output Function (after reset) QFN20 Level 8 10 PB6/AIN6/RDI I/O 9 11 PA7/TDO I/O CT HS ei2 X ei2 X X 7/173 1 ST7LITE3xF2 Port / Control Alternate Function PP Main Output Function (after reset) OD ana int wpu Input float Output Input Pin Name Type SO20/DIP20 QFN20 Level Main Clock Output or In Circuit Communication Clock or External BREAK PA6 /MCO/ 10 12 ICCCLK/ BREAK I/O CT X X X Port A6 ei1 Caution: During normal operation this pin must be pulled- up, internally or externally (external pull-up of 10k mandatory in noisy environment). This is to avoid entering ICC mode unexpectedly during a reset. In the application, even if the pin is configured as output, any reset will put it back in input pull-up. Auto-Reload Timer PWM3 or In Circuit Communication Data PA5 /ATPWM3/ I/O CT HS ICCDATA X X X Port A5 12 14 PA4/ATPWM2 I/O CT HS X X X Port A4 Auto-Reload Timer PWM2 13 15 PA3/ATPWM1 I/O CT HS X X X Port A3 Auto-Reload Timer PWM1 14 16 PA2/ATPWM0 I/O CT HS X X X Port A2 Auto-Reload Timer PWM0 15 17 PA1/ATIC I/O CT HS X X X Port A1 Auto-Reload Timer Input Capture 16 18 PA0/LTIC I/O CT HS X X X Port A0 Lite Timer Input Capture 17 19 OSC2 O Resonator oscillator inverter output 18 20 OSC1/CLKIN I Resonator oscillator inverter input or External clock input 11 13 ei0 X Notes: 1. It is mandatory to connect all available VDD and VDDA pins to the supply voltage and all VSS and VSSA pins to ground. 2. For input with interrupt possibility “eix” defines the associated external interrupt vector which can be assigned to one of the I/O pins using the EISR register. Each interrupt can be either weak pull-up or floating defined through option register OR. 8/173 1 ST7LITE3xF2 3 REGISTER & MEMORY MAP As shown in Figure 4, the MCU is capable of addressing 64K bytes of memories and I/O registers. The available memory locations consist of 128 bytes of register locations, 384 bytes of RAM, 256 bytes of data EEPROM and 8 Kbytes of user program memory. The RAM space includes up to 128 bytes for the stack from 180h to 1FFh. The highest address bytes contain the user reset and interrupt vectors. The Flash memory contains two sectors (see Figure 4) mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh). The size of Flash Sector 0 and other device options are configurable by Option byte. IMPORTANT: Memory locations marked as “Reserved” must never be accessed. Accessing a reseved area can have unpredictable effects on the device. Figure 4. Memory Map 0080h Short Addressing RAM (zero page) 0000h 007Fh 0080h HW Registers (see Table 3) 00FFh 0100h 16-bit Addressing RAM RAM (384 Bytes) 017Fh 0180h Reserved 01FFh 01FFh 0200h 128 Bytes Stack 0FFFh 1000h 10FFh 1100h DEE0h Data EEPROM (256 Bytes) DEE1h RCCRH0 RCCRL0 DEE2h RCCRH1 DEE3h Reserved DFFFh E000h E000h Flash Memory (8K) FFDFh FFE0h 8K FLASH PROGRAM MEMORY FBFFh FC00h FFFFh DEE4h RCCRL1 see section 7.1 on page 23 and Note 1) 7 Kbytes SECTOR 1 1 Kbyte SECTOR 0 Interrupt & Reset Vectors (see Table 6) FFFFh 1. DEE0h, DEE1h, DEE2h and DEE3h addresses are located in a reserved area but are special bytes containing also the RC calibration values which are read-accessible only in user mode. If all the EEPROM data or Flash space (including the RC calibration values locations) has been erased (after the read out protection removal), then the RC calibration values can still be obtained through these addresses. 9/173 1 ST7LITE3xF2 Table 3. Hardware Register Map Address 0000h 0001h 0002h 0003h 0004h 0005h Block Register Label 000Dh 000Eh 000Fh 0010h 0011h 0012h 0013h 0014h 0015h 0016h 0017h 0018h 0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh 0020h 0021h 0022h 0023h 0024h 0025h 1 Remarks Port A Port A Data Register Port A Data Direction Register Port A Option Register FFh1) 00h 40h R/W R/W R/W Port B PBDR PBDDR PBOR Port B Data Register Port B Data Direction Register Port B Option Register FFh 1) 00h 00h R/W R/W R/W2) Reserved area (2 bytes) LITE TIMER 2 AUTORELOAD TIMER 3 LTCSR2 LTARR LTCNTR LTCSR1 LTICR Lite Timer Control/Status Register 2 Lite Timer Auto-reload Register Lite Timer Counter Register Lite Timer Control/Status Register 1 Lite Timer Input Capture Register 0Fh 00h 00h 0x00 00x0b xxh R/W R/W Read Only R/W Read Only ATCSR CNTR1H CNTR1L ATR1H ATR1L PWMCR PWM0CSR PWM1CSR PWM2CSR PWM3CSR DCR0H DCR0L DCR1H DCR1L DCR2H DCR2L DCR3H DCR3L ATICRH ATICRL ATCSR2 BREAKCR ATR2H ATR2L DTGR Timer Control/Status Register Counter Register 1 High Counter Register 1 Low Auto-Reload Register 1 High Auto-Reload Register 1 Low PWM Output Control Register PWM 0 Control/Status Register PWM 1 Control/Status Register PWM 2 Control/Status Register PWM 3 Control/Status Register PWM 0 Duty Cycle Register High PWM 0 Duty Cycle Register Low PWM 1 Duty Cycle Register High PWM 1 Duty Cycle Register Low PWM 2 Duty Cycle Register High PWM 2 Duty Cycle Register Low PWM 3 Duty Cycle Register High PWM 3 Duty Cycle Register Low Input Capture Register High Input Capture Register Low Timer Control/Status Register 2 Break Control Register Auto-Reload Register 2 High Auto-Reload Register 2 Low Dead Time Generator Register 0x00 0000b 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 03h 00h 00h 00h 00h R/W Read Only Read Only R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Read Only Read Only R/W R/W R/W R/W R/W 0026h to 002Dh Reserved area (8 bytes) 002Eh WDG 0002Fh FLASH 00030h EEPROM 10/173 Reset Status PADR PADDR PAOR 0006h 0007h 0008h 0009h 000Ah 000Bh 000Ch Register Name WDGCR Watchdog Control Register 7Fh R/W FCSR Flash Control/Status Register 00h R/W EECSR Data EEPROM Control/Status Register 00h R/W ST7LITE3xF2 Register Label Address Block 0031h 0032h 0033h SPI SPIDR SPICR SPICSR SPI Data I/O Register SPI Control Register SPI Control Status Register xxh 0xh 00h R/W R/W R/W 0034h 0035h 0036h ADC ADCCSR ADCDRH ADCDRL A/D Control Status Register A/D Data Register High A/D control and Data Register Low 00h xxh x0h R/W Read Only R/W 0037h ITC EICR External Interrupt Control Register 00h R/W 0038h MCC MCCSR Main Clock Control/Status Register 00h R/W 0039h 003Ah Clock and Reset RCCR SICSR RC oscillator Control Register System Integrity Control/Status Register FFh 0110 0xx0b R/W R/W 00h R/W 003Bh 003Ch ITC EISR 004Bh 004Ch 004Dh 004Eh 004Fh 0050h 0051h to 007Fh Remarks External Interrupt Selection Register Reserved area (3 bytes) LINSCI (LIN Master/Slave) SCISR SCIDR SCIBRR SCICR1 SCICR2 SCICR3 SCIERPR SCIETPR 0048h 0049h 004Ah Reset Status Reserved area (1 byte) 003Dh to 003Fh 0040h 0041h 0042h 0043h 0044h 0045h 0046h 0047h Register Name SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Control Register 3 SCI Extended Receive Prescaler Register SCI Extended Transmit Prescaler Register C0h xxh 00xx xxxxb xxh 00h 00h 00h 00h Read Only R/W R/W R/W R/W R/W R/W R/W Reserved area (1 byte) AWU AWUPR AWUCSR AWU Prescaler Register AWU Control/Status Register FFh 00h R/W R/W DM3) DMCR DMSR DMBK1H DMBK1L DMBK2H DMBK2L DM Control Register DM Status Register DM Breakpoint Register 1 High DM Breakpoint Register 1 Low DM Breakpoint Register 2 High DM Breakpoint Register 2 Low 00h 00h 00h 00h 00h 00h R/W R/W R/W R/W R/W R/W Reserved area (47 bytes) Legend: x=undefined, R/W=read/write Notes: 1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents. 2. The bits associated with unavailable pins must always keep their reset value. 3. For a description of the DM registers, see the ST7 ICC Reference Manual. 11/173 1 ST7LITE3xF2 4 FLASH PROGRAM MEMORY 4.1 Introduction The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in parallel. The XFlash devices can be programmed off-board (plugged in a programming tool) or on-board using In-Circuit Programming or In-Application Programming. The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors. 4.2 Main Features ■ ■ ■ ■ ■ ICP (In-Circuit Programming) IAP (In-Application Programming) ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM Sector 0 size configurable by option byte Read-out and write protection 4.3 PROGRAMMING MODES The ST7 can be programmed in three different ways: – Insertion in a programming tool. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased. – In-Circuit Programming. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased without removing the device from the application board. – In-Application Programming. In this mode, sector 1 and data EEPROM (if present) can be programmed or erased without removing 12/173 1 the device from the application board and while the application is running. 4.3.1 In-Circuit Programming (ICP) ICP uses a protocol called ICC (In-Circuit Communication) which allows an ST7 plugged on a printed circuit board (PCB) to communicate with an external programming device connected via cable. ICP is performed in three steps: Switch the ST7 to ICC mode (In-Circuit Communications). This is done by driving a specific signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled low. When the ST7 enters ICC mode, it fetches a specific RESET vector which points to the ST7 System Memory containing the ICC protocol routine. This routine enables the ST7 to receive bytes from the ICC interface. – Download ICP Driver code in RAM from the ICCDATA pin – Execute ICP Driver code in RAM to program the FLASH memory Depending on the ICP Driver code downloaded in RAM, FLASH memory programming can be fully customized (number of bytes to program, program locations, or selection of the serial communication interface for downloading). 4.3.2 In Application Programming (IAP) This mode uses an IAP Driver program previously programmed in Sector 0 by the user (in ICP mode). This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored etc.) IAP mode can be used to program any memory areas except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation. ST7LITE3xF2 FLASH PROGRAM MEMORY (Cont’d) 4.4 ICC INTERFACE ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These pins are: – RESET: device reset – VSS: device power supply ground – ICCCLK: ICC output serial clock pin – ICCDATA: ICC input serial data pin – CLKIN/PB4: main clock input for external source – VDD: application board power supply (optional, see Note 3) Figure 5. Typical ICC Interface PROGRAMMING TOOL ICC CONNECTOR ICC Cable ICC CONNECTOR HE10 CONNECTOR TYPE (See Note 3) OPTIONAL (See Note 4) 9 7 5 3 1 10 8 6 4 2 APPLICATION BOARD APPLICATION RESET SOURCE See Note 2 APPLICATION POWER SUPPLY Notes: 1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented if another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values. 2. During the ICP session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor1K or a reset management IC with open drain output and pull-up resistor>1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session. 3. The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin ICCDATA ST7 ICCCLK RESET CLKIN/PB4 (See Note 5) VDD See Note 1 and caution APPLICATION I/O See Note 1 must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual. 4. Pin 9 must be connected to the PB4 pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability must have OSC2 grounded in this case. 5. With any programming tool, while the ICP option is disabled, the external clock must be provided on PB4. 6. In 38-pulse ICC mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte. For ST7LITE30 devices which do not support the internal RC oscillator, the “option byte disabled” mode must be used (35pulse ICC mode entry, clock provided by the tool). Caution: During normal operation ICCCLK pin must be pulled- up, internally or externally (external pull-up of 10k mandatory in noisy environment). This avoids entering ICC mode unexpectedly during a reset. In the application, even if the pin is configured as output, any reset puts it back in input pull-up. 13/173 1 ST7LITE3xF2 FLASH PROGRAM MEMORY (Cont’d) 4.5 Memory Protection 4.6 Related Documentation There are two different types of memory protection: Read Out Protection and Write/Erase Protection which can be applied individually. 4.5.1 Read out Protection Readout protection, when selected provides a protection against program memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller. Both program and data E2 memory are protected. In flash devices, this protection is removed by reprogramming the option. In this case, both program and data E2 memory are automatically erased and the device can be reprogrammed. – Read-out protection selection is enabled and removed through the FMP_R bit in the option byte. 4.5.2 Flash Write/Erase Protection Write/erase protection, when set, makes it impossible to both overwrite and erase program memory. It does not apply to E2 data. Its purpose is to provide advanced security to applications and prevent any change being made to the memory content. Warning: Once set, Write/erase protection can never be removed. A write-protected flash device is no longer reprogrammable. Write/erase protection is enabled through the FMP_W bit in the option byte. For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual. 14/173 1 4.7 Register Description FLASH CONTROL/STATUS REGISTER (FCSR) Read/Write Reset Value: 000 0000 (00h) 1st RASS Key: 0101 0110 (56h) 2nd RASS Key: 1010 1110 (AEh) 7 0 0 0 0 0 0 OPT LAT PGM Note: This register is reserved for programming using ICP, IAP or other programming methods. It controls the XFlash programming and erasing operations. When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys are sent automatically. ST7LITE3xF2 5 DATA EEPROM 5.1 INTRODUCTION 5.2 MAIN FEATURES The Electrically Erasable Programmable Read Only Memory can be used as a non volatile backup for storing data. Using the EEPROM requires a basic access protocol described in this chapter. ■ ■ ■ ■ ■ ■ Up to 32 Bytes programmed in the same cycle EEPROM mono-voltage (charge pump) Chained erase and programming cycles Internal control of the global programming cycle duration WAIT mode management Readout protection Figure 6. EEPROM Block Diagram HIGH VOLTAGE PUMP EECSR 0 0 0 ADDRESS DECODER 0 0 4 0 E2LAT E2PGM EEPROM ROW MEMORY MATRIX DECODER (1 ROW = 32 x 8 BITS) 128 4 128 DATA 32 x 8 BITS MULTIPLEXER DATA LATCHES 4 ADDRESS BUS DATA BUS 15/173 1 ST7LITE3xF2 DATA EEPROM (Cont’d) 5.3 MEMORY ACCESS The Data EEPROM memory read/write access modes are controlled by the E2LAT bit of the EEPROM Control/Status register (EECSR). The flowchart in Figure 7 describes these different memory access modes. Read Operation (E2LAT=0) The EEPROM can be read as a normal ROM location when the E2LAT bit of the EECSR register is cleared. On this device, Data EEPROM can also be used to execute machine code. Take care not to write to the Data EEPROM while executing from it. This would result in an unexpected code being executed. Write Operation (E2LAT=1) To access the write mode, the E2LAT bit has to be set by software (the E2PGM bit remains cleared). When a write access to the EEPROM area occurs, the value is latched inside the 32 data latches according to its address. When PGM bit is set by the software, all the previous bytes written in the data latches (up to 32) are programmed in the EEPROM cells. The effective high address (row) is determined by the last EEPROM write sequence. To avoid wrong programming, the user must take care that all the bytes written between two programming sequences have the same high address: only the five Least Significant Bits of the address can change. At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously. Note: Care should be taken during the programming cycle. Writing to the same memory location will over-program the memory (logical AND between the two write access data result) because the data latches are only cleared at the end of the programming cycle and by the falling edge of the E2LAT bit. It is not possible to read the latched data. This note is ilustrated by the Figure 9. Figure 7. Data EEPROM Programming Flowchart READ MODE E2LAT=0 E2PGM=0 READ BYTES IN EEPROM AREA WRITE MODE E2LAT=1 E2PGM=0 WRITE UP TO 32 BYTES IN EEPROM AREA (with the same 11 MSB of the address) START PROGRAMMING CYCLE E2LAT=1 E2PGM=1 (set by software) 0 CLEARED BY HARDWARE 16/173 1 E2LAT 1 ST7LITE3xF2 DATA EEPROM (Cont’d) Figure 8. Data E2PROM Write Operation ⇓ Row / Byte ⇒ ROW DEFINITION 0 1 2 3 ... 30 31 Physical Address 0 00h...1Fh 1 20h...3Fh ... Nx20h...Nx20h+1Fh N Read operation impossible Byte 1 Byte 2 Byte 32 Read operation possible Programming cycle PHASE 1 PHASE 2 Writing data latches Waiting E2PGM and E2LAT to fall E2LAT bit Set by USER application Cleared by hardware E2PGM bit Note: If a programming cycle is interrupted (by a reset action), the integrity of the data in memory is not guaranteed. 17/173 1 ST7LITE3xF2 DATA EEPROM (Cont’d) 5.4 POWER SAVING MODES 5.5 ACCESS ERROR HANDLING Wait mode The DATA EEPROM can enter WAIT mode on execution of the WFI instruction of the microcontroller or when the microcontroller enters Active-HALT mode.The DATA EEPROM will immediately enter this mode if there is no programming in progress, otherwise the DATA EEPROM will finish the cycle and then enter WAIT mode. If a read access occurs while E2LAT=1, then the data bus will not be driven. If a write access occurs while E2LAT=0, then the data on the bus will not be latched. If a programming cycle is interrupted (by RESET action), the integrity of the data in memory is not guaranteed. 5.6 Data EEPROM Read-out Protection Active-Halt mode Refer to Wait mode. Halt mode The DATA EEPROM immediately enters HALT mode if the microcontroller executes the HALT instruction. Therefore the EEPROM will stop the function in progress, and data may be corrupted. The read-out protection is enabled through an option bit (see section 15.1 on page 161). When this option is selected, the programs and data stored in the EEPROM memory are protected against read-out (including a re-write protection). In Flash devices, when this protection is removed by reprogramming the Option Byte, the entire Program memory and EEPROM is first automatically erased. Note: Both Program Memory and data EEPROM are protected using the same option bit. Figure 9. Data EEPROM Programming Cycle READ OPERATION NOT POSSIBLE READ OPERATION POSSIBLE INTERNAL PROGRAMMING VOLTAGE ERASE CYCLE WRITE OF DATA LATCHES WRITE CYCLE tPROG LAT PGM 18/173 1 ST7LITE3xF2 DATA EEPROM (Cont’d) 5.7 REGISTER DESCRIPTION EEPROM CONTROL/STATUS REGISTER (EECSR) Read/Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 E2LAT E2PGM Bits 7:2 = Reserved, forced by hardware to 0. Bit 1 = E2LAT Latch Access Transfer This bit is set by software. It is cleared by hardware at the end of the programming cycle. It can only be cleared by software if the E2PGM bit is cleared. 0: Read mode 1: Write mode Bit 0 = E2PGM Programming control and status This bit is set by software to begin the programming cycle. At the end of the programming cycle, this bit is cleared by hardware. 0: Programming finished or not yet started 1: Programming cycle is in progress Note: if the E2PGM bit is cleared during the programming cycle, the memory data is not guaranteed Table 4. DATA EEPROM Register Map and Reset Values Address (Hex.) 0030h Register Label 7 6 5 4 3 2 1 0 0 0 0 0 0 0 E2LAT 0 E2PGM 0 EECSR Reset Value 19/173 1 ST7LITE3xF2 6 CENTRAL PROCESSING UNIT 6.1 INTRODUCTION This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation. 6.2 MAIN FEATURES ■ ■ ■ ■ ■ ■ ■ ■ 63 basic instructions Fast 8-bit by 8-bit multiply 17 main addressing modes Two 8-bit index registers 16-bit stack pointer Low power modes Maskable hardware interrupts Non-maskable software interrupt 6.3 CPU REGISTERS The six CPU registers shown in Figure 10 are not present in the memory mapping and are accessed by specific instructions. Accumulator (A) The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data. Index Registers (X and Y) In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.) The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack). Program Counter (PC) The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB). Figure 10. CPU Registers 7 0 ACCUMULATOR RESET VALUE = XXh 7 0 X INDEX REGISTER RESET VALUE = XXh 7 0 Y INDEX REGISTER RESET VALUE = XXh 15 PCH 8 7 PCL 0 PROGRAM COUNTER RESET VALUE = RESET VECTOR @ FFFEh-FFFFh 7 1 1 1 H I 0 N Z C CONDITION CODE REGISTER RESET VALUE = 1 1 1 X 1 X X X 15 8 7 0 STACK POINTER RESET VALUE = STACK HIGHER ADDRESS X = Undefined Value 20/173 1 ST7LITE3xF2 CPU REGISTERS (cont’d) CONDITION CODE REGISTER (CC) Read/Write Reset Value: 111x1xxx 7 1 1 1 H I N Z 0 logical or data manipulation. It is a copy of the 7th bit of the result. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (that is, the most significant bit is a logic 1). C This bit is accessed by the JRMI and JRPL instructions. The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions. Bit 4 = H Half carry This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines. Bit 3 = I Interrupt mask This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software. 0: Interrupts are enabled. 1: Interrupts are disabled. This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM and JRNM instructions. Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptible because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine. Bit 2 = N Negative This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, Bit 1 = Z Zero This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions. Bit 0 = C Carry/borrow This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions. CPU REGISTERS (Cont’d) STACK POINTER (SP) Read/Write Reset Value: 01FFh 15 0 8 0 0 0 0 0 0 7 1 1 0 SP6 SP5 SP4 SP3 SP2 SP1 SP0 The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 11). Since the stack is 128 bytes deep, the 9 most significant bits are forced by hardware. Following an 21/173 1 ST7LITE3xF2 MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address. The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction. Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow. The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc- tions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 11. – When an interrupt is received, the SP is decremented and the context is pushed on the stack. – On return from interrupt, the SP is incremented and the context is popped from the stack. A subroutine call occupies two locations and an interrupt five locations in the stack area. Figure 11. Stack Manipulation Example CALL Subroutine PUSH Y Interrupt Event POP Y RET or RSP IRET @ 0180h SP SP CC A X X X PCH PCH PCH PCL PCL PCL PCH PCH PCH PCH PCH PCL PCL PCL PCL PCL SP @ 01FFh Stack Higher Address = 01FFh Stack Lower Address = 0180h 22/173 1 SP Y CC A CC A SP SP ST7LITE3xF2 7 SUPPLY, RESET AND CLOCK MANAGEMENT The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. Main features ■ Clock Management – 1 MHz internal RC oscillator (enabled by option byte, available on ST7LITE35 and ST7LITE39 devices only) – 1 to 16 MHz or 32kHz External crystal/ceramic resonator (selected by option byte) – External Clock Input (enabled by option byte) – PLL for multiplying the frequency by 8 or 4 (enabled by option byte) ■ Reset Sequence Manager (RSM) ■ System Integrity Management (SI) – Main supply Low voltage detection (LVD) with reset generation (enabled by option byte) – Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply (enabled by option byte) 7.1 INTERNAL RC OSCILLATOR ADJUSTMENT The device contains an internal RC oscillator with an accuracy of 1% for a given device, temperature and voltage range (4.5V-5.5V). It must be calibrated to obtain the frequency required in the application. This is done by software writing a 8-bit calibration value in the RCCR (RC Control Register) and in the bits [6:5] in the SICSR (SI Control Status Register). Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), i.e. each time the device is reset, the calibration value must be loaded in the RCCR. Predefined calibration values are stored in EEPROM for 3V and 5V VDD supply voltages at 25°C, as shown in the following table. RCCR RCCRH0 RCCRL0 RCCRH1 RCCRL1 Conditions VDD=5V TA=25°C fRC=1MHz VDD=3.3V TA=25°C fRC=1MHz ST7LITE3 Addresses DEE0h 1) (CR[9:2] bits) DEE1h 1) (CR[1:0] bits) DEE2h 1) (CR[9:2] bits) DEE3h 1) (CR[1:0] bits) 1. DEE0h, DEE1h, DEE2h and DEE3h addresses are located in a reserved area of non-volatile memory. They are read-only bytes for the applica- tion code. This area cannot be erased or programmed by any ICC operation. For compatibility reasons with the SICSR register, CR[1:0] bits are stored in the 5th and 6th position of DEE1 and DEE3 addresses. Note: – In 38-pulse ICC mode, the internal RC oscillator is forced as a clock source, regardless of the selection in the option byte. For ST7LITE30 devices which do not support the internal RC oscillator, the “option byte disabled” mode must be used (35-pulse ICC mode entry, clock provided by the tool). – See “ELECTRICAL CHARACTERISTICS” on page 131. for more information on the frequency and accuracy of the RC oscillator. – To improve clock stability and frequency accuracy, it is recommended to place a decoupling capacitor, typically 100nF, between the VDD and VSS pins as close as possible to the ST7 device – These bytes are systematically programmed by ST, including on FASTROM devices. Consequently, customers intending to use FASTROM service must not use these bytes. – RCCR0 and RCCR1 calibration values will not be erased if the read-out protection bit is reset after it has been set . See “Read out Protection” on page 14. Caution: If the voltage or temperature conditions change in the application, the frequency may need to be recalibrated. Refer to application note AN1324 for information on how to calibrate the RC frequency using an external reference signal. 7.2 PHASE LOCKED LOOP The PLL can be used to multiply a 1MHz frequency from the RC oscillator or the external clock by 4 or 8 to obtain fOSC of 4 or 8 MHz. The PLL is enabled and the multiplication factor of 4 or 8 is selected by 2 option bits. – The x4 PLL is intended for operation with VDD in the 2.7V to 3.3V range – The x8 PLL is intended for operation with VDD in the 3.3V to 5.5V range Refer to Section 15.1 for the option byte description. If the PLL is disabled and the RC oscillator is enabled, then fOSC = 1MHz. 23/173 1 ST7LITE3xF2 If both the RC oscillator and the PLL are disabled, fOSC is driven by the external clock. Figure 12. PLL Output Frequency Timing Diagram LOCKED bit set 7.3 REGISTER DESCRIPTION MAIN CLOCK CONTROL/STATUS REGISTER (MCCSR) Read / Write Reset Value: 0000 0000 (00h) 7 4/8 x input freq. 0 0 0 0 0 0 0 MCO SMS tSTAB Output freq. Bits 7:2 = Reserved, must be kept cleared. tLOCK tSTARTUP t When the PLL is started, after reset or wakeup from Halt mode or AWUFH mode, it outputs the clock after a delay of tSTARTUP. When the PLL output signal reaches the operating frequency, the LOCKED bit in the SICSCR register is set. Full PLL accuracy (ACCPLL) is reached after a stabilization time of tSTAB (see Figure 12 and 13.3.4Internal RC Oscillator and PLL) Refer to section 7.6.4 on page 34 for a description of the LOCKED bit in the SICSR register. Bit 1 = MCO Main Clock Out enable This bit is read/write by software and cleared by hardware after a reset. This bit allows to enable the MCO output clock. 0: MCO clock disabled, I/O port free for general purpose I/O. 1: MCO clock enabled. Bit 0 = SMS Slow Mode select This bit is read/write by software and cleared by hardware after a reset. This bit selects the input clock fOSC or fOSC/32. 0: Normal mode (fCPU = fOSC 1: Slow mode (fCPU = fOSC/32) RC CONTROL REGISTER (RCCR) Read / Write Reset Value: 1111 1111 (FFh) 7 CR9 0 CR8 CR7 CR6 CR5 CR4 CR3 CR2 Bits 7:0 = CR[9:2] RC Oscillator Frequency Adjustment Bits These bits must be written immediately after reset to adjust the RC oscillator frequency and to obtain an accuracy of 1%. The application can store the correct value for each voltage range in EEPROM and write it to this register at start-up. 00h = maximum available frequency FFh = lowest available frequency These bits are used with the CR[1:0] bits in the SICSR register. Refer to section 7.6.4 on page 34 Note: To tune the oscillator, write a series of different values in the register until the correct frequency is reached. The fastest method is to use a dichotomy starting with 80h. 24/173 1 ST7LITE3xF2 Figure 13. Clock Management Block Diagram CR9 CR8 CR7 CR6 CR5 CR1 CR4 CR3 CR2 RCCR CR0 SICSR CLKIN/2 (Ext Clock) Tunable 1% RC Oscillator 1MHz 8MHz PLL 1MHz -> 8MHz PLL 1MHz -> 4MHz 4MHz OSCRANGE[2:0] Option bits CLKIN CLKIN/ OSC1 OSC2 CLKIN fCLKIN CLKIN OSC Option bit OSC,PLLOFF, OSCRANGE[2:0] Option bits Crystal OSC /2 /2 DIVIDER 8-BIT LITE TIMER 2 COUNTER fOSC /32 DIVIDER fOSC PLLx4x8 /2 DIVIDER OSC 1-16 MHZ or 32kHz RC OSC PLL Clock fOSC/32 fOSC 1 0 fLTIMER (1ms timebase @ 8 MHz fOSC) fCPU TO CPU AND PERIPHERALS MCO SMS MCCSR fCPU MCO 25/173 1 ST7LITE3xF2 7.4 MULTI-OSCILLATOR (MO) Crystal/Ceramic Oscillators This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to section 15.1 on page 161 for more details on the frequency ranges). In this mode of the multi-oscillator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator. These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase. Internal RC Oscillator In this mode, the tunable 1%RC oscillator is used as main clock source. The two oscillator pins have to be tied to ground. 26/173 1 Table 5. ST7 Clock Sources External Clock Hardware Configuration Crystal/Ceramic Resonators External Clock Source In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground. Note: when the Multi-Oscillator is not used, PB4 is selected by default as external clock. The calibration is done through the RCCR[7:0] and SICSR[6:5] registers. Internal RC Oscillator The main clock of the ST7 can be generated by four different source types coming from the multioscillator block (1 to 16MHz or 32kHz): ■ an external source ■ 5 crystal or ceramic resonator oscillators ■ an internal high frequency RC oscillator Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in Table 5. Refer to the electrical characteristics section for more details. ST7 OSC1 OSC2 EXTERNAL SOURCE ST7 OSC1 CL1 OSC2 LOAD CAPACITORS ST7 OSC1 OSC2 CL2 ST7LITE3xF2 7.5 RESET SEQUENCE MANAGER (RSM) 7.5.1 Introduction The reset sequence manager includes three RESET sources as shown in Figure 15: ■ External RESET source pulse ■ Internal LVD RESET (Low Voltage Detection) ■ Internal WATCHDOG RESET Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code. Refer to section 12.2.1 on page 128 for further details. These sources act on the RESET pin and it is always kept low during the delay phase. The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map. The basic RESET sequence consists of 3 phases as shown in Figure 14: ■ Active Phase depending on the RESET source ■ 256 or 4096 CPU clock cycle delay (see table below) ■ RESET vector fetch Caution: When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is not programmed. For this reason, it is recommended to keep the RESET pin in low state until programming mode is entered, in order to avoid unwanted behavior. The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay is automatically selected depending on the clock source chosen by option byte: The RESET vector fetch phase duration is 2 clock cycles. Clock Source Internal RC Oscillator External clock (connected to CLKIN pin) External Crystal/Ceramic Oscillator (connected to OSC1/OSC2 pins) CPU clock cycle delay 256 256 4096 If the PLL is enabled by option byte, it outputs the clock after an additional delay of tSTARTUP (see Figure 12). Figure 14. RESET Sequence Phases RESET Active Phase INTERNAL RESET 256 or 4096 CLOCK CYCLES FETCH VECTOR 7.5.2 Asynchronous External RESET pin The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details. A RESET signal originating from an external source must have a duration of at least th(RSTL)in in order to be recognized (see Figure 16). This detection is asynchronous and therefore the MCU can enter reset state even in HALT mode. 27/173 1 ST7LITE3xF2 Figure 15. Reset Block Diagram VDD RON RESET INTERNAL RESET Filter PULSE GENERATOR WATCHDOG RESET ILLEGAL OPCODE RESET1) LVD RESET Note 1: See “Illegal Opcode Reset” on page 128. for more details on illegal opcode reset conditions. 28/173 1 ST7LITE3xF2 RESET SEQUENCE MANAGER (Cont’d) The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section. 7.5.3 External Power-On RESET If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until VDD is over the minimum level specified for the selected fOSC frequency. A proper reset signal for a slow rising VDD supply can generally be provided by an external RC network connected to the RESET pin. 7.5.4 Internal Low Voltage Detector (LVD) RESET Two different RESET sequences caused by the internal LVD circuitry can be distinguished: ■ Power-On RESET ■ Voltage Drop RESET The device RESET pin acts as an output that is pulled low when VDD Reset value PWM Mode -> Reset value 61/173 1 ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) 11.2.3.2 Output Compare Mode To use this function, load a 12-bit value in the Preload DCRxH and DCRxL registers. When the 12-bit upcounter (CNTR1) reaches the value stored in the Active DCRxH and DCRxL registers, the CMPFx bit in the PWMxCSR register is set and an interrupt request is generated if the CMPIE bit is set. The output compare function is always performed on CNTR1 in both Single Timer mode and Dual Timer mode, and never on CNTR2. The difference is that in Single Timer mode the counter 1 can be compared with any of the four DCR registers, and in Dual Timer mode, counter 1 is compared with DCR0 or DCR1. Notes: 1. The output compare function is only available for DCRx values other than 0 (reset value). 2. Duty cycle registers are buffered internally. The CPU writes in Preload Duty Cycle Registers and these values are transferred in Active Duty Cycle Registers after an overflow event if the corresponding transfer bit (TRAN1 bit) is set. Output compare is done by comparing these active DCRx values with the counter. Figure 41. Block Diagram of Output Compare Mode (single timer) DCRx PRELOAD DUTY CYCLE REGx (ATCSR2) TRAN1 (ATCSR) OVF ACTIVE DUTY CYCLE REGx OUTPUT COMPARE CIRCUIT CNTR1 COUNTER 1 CMP INTERRUPT REQUEST CMPFx (PWMxCSR) CMPIE (ATCSR) 62/173 1 ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) 11.2.3.3 Input Capture Mode The 12-bit ATICR register is used to latch the value of the 12-bit free running upcounter CNTR1 after a rising or falling edge is detected on the ATIC pin. When an input capture occurs, the ICF bit is set and the ATICR register contains the value of the free running upcounter. An IC interrupt is generated if the ICIE bit is set. The ICF bit is reset by reading the ATICRH/ATICRL register when the ICF bit is set. The ATICR is a read only register and always contains the free running upcounter value which corresponds to the most recent input capture. Any further input capture is inhibited while the ICF bit is set. Figure 42. Block Diagram of Input Capture Mode ATIC 12-BIT INPUT CAPTURE REGISTER ATICR IC INTERRUPT REQUEST ATCSR ICF ICIE CK1 fLTIMER (1 ms timebase @ 8MHz) CK0 12-BIT UPCOUNTER1 fCPU CNTR1 OFF ATR1 12-BIT AUTORELOAD REGISTER Figure 43. Input Capture timing diagram fCOUNTER COUNTER1 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah ATIC PIN INTERRUPT ATICR READ INTERRUPT ICF FLAG xxh 04h 09h t 63/173 1 ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) Long input capture Pulses that last between 8µs and 2s can be measured with an accuracy of 4µs if fOSC = 8MHz in the following conditions: – The 12-bit AT3 Timer is clocked by the Lite Timer (RTC pulse: CK[1:0] = 01 in the ATCSR register) – The ICS bit in the ATCSR2 register is set so that the LTIC pin is used to trigger the AT3 Timer capture. ■ – The signal to be captured is connected to LTIC pin – Input Capture registers LTICR, ATICRH and ATICRL are read This configuration allows to cascade the Lite Timer and the 12-bit AT3 Timer to get a 20-bit input capture value. Refer to Figure 44. Figure 44. Long Range Input Capture Block Diagram LTICR 8-bit Input Capture Register fOSC/32 8 LSB bits 8-bit Timebase Counter1 LITE TIMER 12-Bit ARTIMER ATR1 20 cascaded bits 12-bit AutoReload Register fLTIMER ICS 12-bit Upcounter1 OFF LTIC 1 ATIC fcpu CNTR1 0 ATICR 12-bit Input Capture Register Notes: 1. Since the input capture flags (ICF) for both timers (AT3 Timer and LT Timer) are set when signal transition occurs, software must mask one interrupt by clearing the corresponding ICIE bit before setting the ICS bit. 2. If the ICS bit changes (from 0 to 1 or from 1 to 0), a spurious transition might occur on the input capture signal because of different values on LTIC and ATIC. To avoid this situation, it is recommended to do as follows: – First, reset both ICIE bits. – Then set the ICS bit. – Reset both ICF bits. 64/173 1 12 MSB bits – And then set the ICIE bit of desired interrupt. 3. How to compute a pulse length with long input capture feature. As both timers are used, computing a pulse length is not straight-forward. The procedure is as follows: – At the first input capture on the rising edge of the pulse, we assume that values in the registers are as follows: LTICR = LT1 ATICRH = ATH1 ATICRL = ATL1 Hence ATICR1 [11:0] = ATH1 & ATL1 Refer to Figure 45 on page 65. ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) – At the second input capture on the falling edge of the pulse, we assume that the values in the registers are as follows: LTICR = LT2 ATICRH = ATH2 ATICRL = ATL2 Hence ATICR2 [11:0] = ATH2 & ATL2 Now pulse width P between first capture and second capture will be: P = decimal (F9 – LT1 + LT2 + 1) * 0.004ms + decimal (ATICR2 - ATICR1 – 1) * 1ms Figure 45. Long Range Input Capture Timing Diagram fOSC/32 TB Counter1 CNTR1 F9h 00h ___ LT1 F9h 00h ___ ___ ___ ATH1 & ATL1 ___ LT2 ___ ___ ATH2 & ATL2 LTIC LTICR 00h LT1 LT2 ATICRH 0h ATH1 ATH2 ATICRL 00h ATL1 ATL2 ATICR = ATICRH[3:0] & ATICRL[7:0] 11.2.4 Low Power Modes Mode SLOW WAIT ACTIVEHALT HALT Description The input frequency is divided by 32 No effect on AT timer AT timer halted except if CK0=1, CK1=0 and OVFIE=1 AT timer halted. 65/173 1 ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) 11.2.5 Interrupts Interrupt Event 1) Enable Exit Event Control from Flag Bit WAIT Overflow OVF1 OVIE1 Event AT3 IC ICF ICIE Event CMP Event CMPFx CMPIE Exit Exit from from ACTIVE HALT -HALT Yes No Yes2) Yes No No Yes No No Note 1: The CMP and AT3 IC events are connected to the same interrupt vector. The OVF event is mapped on a separate vector (see Interrupts chapter). They generate an interrupt if the enable bit is set in 66/173 1 the ATCSR register and the interrupt mask in the CC register is reset (RIM instruction). Note 2: Only if CK0=1 and CK1=0 (fCOUNTER = fLTIMER) ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) 11.2.6 Register Description TIMER CONTROL STATUS REGISTER (ATCSR) Read / Write Reset Value: 0x00 0000 (x0h) 7 6 0 ICF 0 ICIE CK1 CK0 OVF1 OVFIE1 CMPIE 0: Overflow interrupt disabled. 1: Overflow interrupt enabled. Bit 0 = CMPIE Compare Interrupt Enable. This bit is read/write by software and cleared by hardware after a reset. It can be used to mask the interrupt generated when any of the CMPFx bit is set. 0: Output compare interrupt disabled. 1: Output Compare interrupt enabled. Bit 7 = Reserved. Bit 6 = ICF Input Capture Flag. This bit is set by hardware and cleared by software by reading the ATICR register (a read access to ATICRH or ATICRL will clear this flag). Writing to this bit does not change the bit value. 0: No input capture 1: An input capture has occurred Bit 5 = ICIE IC Interrupt Enable. This bit is set and cleared by software. 0: Input capture interrupt disabled 1: Input capture interrupt enabled COUNTER REGISTER 1 HIGH (CNTR1H) Read only Reset Value: 0000 0000 (000h) 15 0 8 0 0 0 CNTR1_ CNTR1_ CNTR1_ CNTR1_ 11 10 9 8 COUNTER REGISTER 1 LOW (CNTR1L) Read only Reset Value: 0000 0000 (000h) 7 Bits 4:3 = CK[1:0] Counter Clock Selection. These bits are set and cleared by software and cleared by hardware after a reset. They select the clock frequency of the counter. Counter Clock Selection CK1 CK0 OFF 0 0 OFF 1 1 fLTIMER (1 ms timebase @ 8 MHz) 0 1 fCPU 1 0 Bit 2 = OVF1 Overflow Flag. This bit is set by hardware and cleared by software by reading the TCSR register. It indicates the transition of the counter1 CNTR1 from FFh to ATR1 value. 0: No counter overflow occurred 1: Counter overflow occurred 0 CNTR1_ CNTR1_ CNTR1_ CNTR1_ CNTR1_ CNTR1_ CNTR1_ CNTR1_ 7 6 5 4 3 2 1 0 Bits 15:12 = Reserved. Bits 11:0 = CNTR1[11:0] Counter Value. This 12-bit register is read by software and cleared by hardware after a reset. The counter CNTR1 is incremented continuously as soon as a counter clock is selected. To obtain the 12-bit value, software should read the counter value in two consecutive read operations. The CNTR1H register can be incremented between the two reads, and in order to be accurate when fTIMER=fCPU, the software should take this into account when CNTR1L and CNTR1H are read. If CNTR1L is close to its highest value, CNTR1H could be incremented before it is read. When a counter overflow occurs, the counter restarts from the value specified in the ATR1 register. Bit 1 = OVFIE1 Overflow Interrupt Enable. This bit is read/write by software and cleared by hardware after a reset. 67/173 1 ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) AUTORELOAD REGISTER (ATR1H) Read / Write Reset Value: 0000 0000 (00h) PWMx CONTROL STATUS REGISTER (PWMxCSR) Read / Write Reset Value: 0000 0000 (00h) 15 0 8 0 0 0 ATR11 ATR10 ATR9 AUTORELOAD REGISTER (ATR1L) Read / Write Reset Value: 0000 0000 (00h) 0 ATR6 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0 Bits 11:0 = ATR1[11:0] Autoreload Register 1. This is a 12-bit register which is written by software. The ATR1 register value is automatically loaded into the upcounter CNTR1 when an overflow occurs. The register value is used to set the PWM frequency. PWM OUTPUT CONTROL REGISTER (PWMCR) Read/Write Reset Value: 0000 0000 (00h) 7 0 0 OE3 0 OE2 0 OE1 0 OE0 Bits 7:0 = OE[3:0] PWMx output enable. These bits are set and cleared by software and cleared by hardware after a reset. 0: PWM mode disabled. PWMx Output Alternate Function disabled (I/O pin free for general purpose I/O) 1: PWM mode enabled 68/173 1 6 0 0 0 0 0 0 0 OPx CMPFx Bits 7:2= Reserved, must be kept cleared. 7 ATR7 7 ATR8 Bit 1 = OPx PWMx Output Polarity. This bit is read/write by software and cleared by hardware after a reset. This bit selects the polarity of the PWM signal. 0: The PWM signal is not inverted. 1: The PWM signal is inverted. Bit 0 = CMPFx PWMx Compare Flag. This bit is set by hardware and cleared by software by reading the PWMxCSR register. It indicates that the upcounter value matches the Active DCRx register value. 0: Upcounter value does not match DCRx value. 1: Upcounter value matches DCRx value. BREAK CONTROL REGISTER (BREAKCR) Read/Write Reset Value: 0000 0000 (00h) 7 0 0 0 BA BPEN PWM3 PWM2 PWM1 PWM0 Bits 7:6 = Reserved. Forced by hardware to 0. Bit 5 = BA Break Active. This bit is read/write by software, cleared by hardware after reset and set by hardware when the BREAK pin is low. It activates/deactivates the Break function. 0: Break not active 1: Break active ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) Bit 4 = BPEN Break Pin Enable. This bit is read/write by software and cleared by hardware after Reset. 0: Break pin disabled 1: Break pin enabled Bit 3:0 = PWM[3:0] Break Pattern. These bits are read/write by software and cleared by hardware after a reset. They are used to force the four PWMx output signals into a stable state when the Break function is active. PWMx DUTY CYCLE REGISTER HIGH (DCRxH) Read / Write Reset Value: 0000 0000 (00h) 15 INPUT CAPTURE REGISTER HIGH (ATICRH) Read only Reset Value: 0000 0000 (00h) 15 0 8 0 0 0 ICR11 ICR10 ICR9 ICR8 INPUT CAPTURE REGISTER LOW (ATICRL) Read only Reset Value: 0000 0000 (00h) 7 ICR7 0 ICR6 ICR5 ICR4 ICR3 ICR2 ICR1 ICR0 8 Bits 15:12 = Reserved. 0 0 0 0 DCR11 DCR10 DCR9 DCR8 PWMx DUTY CYCLE REGISTER LOW (DCRxL) Read / Write Reset Value: 0000 0000 (00h) 7 DCR7 DCR6 DCR5 DCR4 DCR3 Bits 11:0 = ICR[11:0] Input Capture Data. This is a 12-bit register which is readable by software and cleared by hardware after a reset. The ATICR register contains captured the value of the 12-bit CNTR1 register when a rising or falling edge occurs on the ATIC or LTIC pin (depending on ICS). Capture will only be performed when the ICF flag is cleared. 0 DCR2 DCR1 DCR0 Bits 15:12 = Reserved. Bits 11:0 = DCRx[11:0] PWMx Duty Cycle Value This 12-bit value is written by software. It defines the duty cycle of the corresponding PWM output signal (see Figure 37). In PWM mode (OEx=1 in the PWMCR register) the DCR[11:0] bits define the duty cycle of the PWMx output signal (see Figure 37). In Output Compare mode, they define the value to be compared with the 12-bit upcounter value. TIMER CONTROL REGISTER2 (ATCSR2) Read/Write Reset Value: 0000 0011 (03h) 7 0 0 0 ICS OVFIE2 OVF2 ENCNT TRAN2 TRAN1 R2 Bits 7:6 = Reserved. Forced by hardware to 0. Bit 5 = ICS Input Capture Shorted This bit is read/write by software. It allows the ATtimer CNTR1 to use the LTIC pin for long input capture. 0 : ATIC for CNTR1 input capture 1 : LTIC for CNTR1 input capture 69/173 1 ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) Bit 4 = OVFIE2 Overflow interrupt 2 enable This bit is read/write by software and controls the overflow interrupt of counter2. 0: Overflow interrupt disabled. 1: Overflow interrupt enabled. Bit 3 = OVF2 Overflow Flag. This bit is set by hardware and cleared by software by reading the ATCSR2 register. It indicates the transition of the counter2 from FFFh to ATR2 value. 0: No counter overflow occurred 1: Counter overflow occurred AUTORELOAD REGISTER2 (ATR2H) Read / Write Reset Value: 0000 0000 (00h) 15 0 8 0 0 0 ATR11 ATR10 ATR9 AUTORELOAD REGISTER (ATR2L) Read / Write Reset Value: 0000 0000 (00h) 7 Bit 2 = ENCNTR2 Enable counter2 This bit is read/write be software and switches the second counter CNTR2. If this bit is set, PWM2 and PWM3 will be generated using CNTR2. 0: CNTR2 stopped. 1: CNTR2 starts running. Bit 1= TRAN2 Transfer enable2 This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR2. It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event. The OPx bits are transferred to the shadow OPx bits in the same way. (Only DCR2/DCR3 can be controlled with this bit) Bit 0 = TRAN1 Transfer enable 1 This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR1. It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event. The OPx bits are transferred to the shadow OPx bits in the same way. 70/173 1 ATR8 ATR7 0 ATR6 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0 Bits 11:0 = ATR2[11:0] Autoreload Register 2. This is a 12-bit register which is written by software. The ATR2 register value is automatically loaded into the upcounter CNTR2 when an overflow of CNTR2 occurs. The register value is used to set the PWM2/PWM3 frequency when ENCNTR2 is set. DEAD TIME GENERATOR REGISTER (DTGR) Read/Write Reset Value: 0000 0000 (00h) 7 DTE 0 DT6 DT5 DT4 DT3 DT2 DT1 DT0 Bits 7 = DTE Dead Time Enable This bit is read/write by software. It enables a dead time generation on PWM0/PWM1. 0: No Dead time insertion. 1: Dead time insertion enabled. Bit 6:0 = DT[6:0] Dead Time Value These bits are read/write by software. They define the dead time inserted between PWM0/PWM1. Dead time is calculated as follows: Dead Time = DT[6:0] x Tcounter1 ST7LITE3xF2 DUAL 12-BIT AUTORELOAD TIMER 3 (Cont’d) Table 16. Register Map and Reset Values Address Register Label 7 6 5 4 3 2 1 0 0D ATCSR Reset Value 0 ICF 0 ICIE 0 CK1 0 CK0 0 OVF1 0 OVFIE1 0 CMPIE 0 0E CNTR1H Reset Value 0 0 0 0 0F CNTR1L CNTR1_7 CNTR1_6 CNTR1_5 CNTR1_4 CNTR1_3 Reset Value 0 0 0 0 0 10 ATR1H Reset Value 0 0 0 0 ATR11 0 ATR10 0 ATR9 0 ATR8 0 11 ATR1L Reset Value ATR7 0 ATR6 0 ATR5 0 ATR4 0 ATR3 0 ATR2 0 ATR1 0 ATR0 0 12 PWMCR Reset Value 0 OE3 0 0 OE2 0 0 OE1 0 0 OE0 0 13 PWM0CSR Reset Value 0 0 0 0 0 0 OP0 0 CMPF0 0 14 PWM1CSR Reset Value 0 0 0 0 0 0 OP1 0 CMPF1 0 15 PWM2CSR Reset Value 0 0 0 0 0 0 OP2 0 CMPF2 0 16 PWM3CSR Reset Value 0 0 0 0 0 0 OP3 0 CMPF3 0 17 DCR0H Reset Value 0 0 0 0 DCR11 0 DCR10 0 DCR9 0 DCR8 0 18 DCR0L Reset Value DCR7 0 DCR6 0 DCR5 0 DCR4 0 DCR3 0 DCR2 0 DCR1 0 DCR0 0 19 DCR1H Reset Value 0 0 0 0 DCR11 0 DCR10 0 DCR9 0 DCR8 0 1A DCR1L Reset Value DCR7 0 DCR6 0 DCR5 0 DCR4 0 DCR3 0 DCR2 0 DCR1 0 DCR0 0 1B DCR2H Reset Value 0 0 0 0 DCR11 0 DCR10 0 DCR9 0 DCR8 0 1C DCR2L Reset Value DCR7 0 DCR6 0 DCR5 0 DCR4 0 DCR3 0 DCR2 0 DCR1 0 DCR0 0 1D DCR3H Reset Value 0 0 0 0 DCR11 0 DCR10 0 DCR9 0 DCR8 0 1E DCR3L Reset Value DCR7 0 DCR6 0 DCR5 0 DCR4 0 DCR3 0 DCR2 0 DCR1 0 DCR0 0 1F ATICRH Reset Value 0 0 0 0 ICR11 0 ICR10 0 ICR9 0 ICR8 0 20 ATICRL Reset Value ICR7 0 ICR6 0 ICR5 0 ICR4 0 ICR3 0 ICR2 0 ICR1 0 ICR0 0 (Hex.) CNTR1_11 CNTR1_10 CNTR1_9 CNTR1_8 0 0 0 0 CNTR1_2 CNTR1_1 CNTR1_0 0 0 0 71/173 1 ST7LITE3xF2 Address Register Label 7 6 21 ATCSR2 Reset Value 0 0 22 BREAKCR Reset Value 0 23 ATR2H Reset Value 24 25 (Hex.) 72/173 1 5 4 3 2 1 0 ICS OVFIE2 OVF2 ENCNTR2 TRAN2 TRAN1 0 0 0 0 1 1 0 BA 0 BPEN 0 PWM3 0 PWM2 0 PWM1 0 PWM0 0 0 0 0 0 ATR11 0 ATR10 0 ATR9 0 ATR8 0 ATR2L Reset Value ATR7 0 ATR6 0 ATR5 0 ATR4 0 ATR3 0 ATR2 0 ATR1 0 ATR0 0 DTGR Reset Value DTE DT6 DT5 DT4 DT3 DT2 DT1 DT0 0 0 0 0 0 0 0 0 ST7LITE3xF2 11.3 LITE TIMER 2 (LT2) 11.3.1 Introduction The Lite Timer can be used for general-purpose timing functions. It is based on two free-running 8bit upcounters and an 8-bit input capture register. ■ 11.3.2 Main Features ■ Realtime Clock (RTC) – One 8-bit upcounter 1 ms or 2 ms timebase period (@ 8 MHz fOSC) – One 8-bit upcounter with autoreload and programmable timebase period from 4µs to 1.024ms in 4µs increments (@ 8 MHz fOSC) – 2 Maskable timebase interrupts Input Capture – 8-bit input capture register (LTICR) – Maskable interrupt with wakeup from Halt Mode capability Figure 46. Lite Timer 2 Block Diagram fOSC/32 LTTB2 LTCNTR Interrupt request LTCSR2 8-bit TIMEBASE COUNTER 2 0 0 0 0 0 0 TB2IE TB2F 8 LTARR fLTIMER 8-bit AUTORELOAD REGISTER /2 8-bit TIMEBASE COUNTER 1 fLTIMER 8 To 12-bit AT TImer 1 0 Timebase 1 or 2 ms (@ 8MHz fOSC) LTICR LTIC 8-bit INPUT CAPTURE REGISTER LTCSR1 ICIE ICF TB TB1IE TB1F LTTB1 INTERRUPT REQUEST LTIC INTERRUPT REQUEST 73/173 1 ST7LITE3xF2 LITE TIMER (Cont’d) 11.3.3 Functional Description 11.3.3.1 Timebase Counter 1 The 8-bit value of Counter 1 cannot be read or written by software. After an MCU reset, it starts incrementing from 0 at a frequency of fOSC/32. An overflow event occurs when the counter rolls over from F9h to 00h. If fOSC = 8 MHz, then the time period between two counter overflow events is 1 ms. This period can be doubled by setting the TB bit in the LTCSR1 register. When Counter 1 overflows, the TB1F bit is set by hardware and an interrupt request is generated if the TB1IE bit is set. The TB1F bit is cleared by software reading the LTCSR1 register. 11.3.3.2 Timebase Counter 2 Counter 2 is an 8-bit autoreload upcounter. It can be read by accessing the LTCNTR register. After an MCU reset, it increments at a frequency of fOSC/32 starting from the value stored in the LTARR register. A counter overflow event occurs when the counter rolls over from FFh to the LTARR reload value. Software can write a new value at anytime in the LTARR register, this value will be automatically loaded in the counter when the next overflow occurs. When Counter 2 overflows, the TB2F bit in the LTCSR2 register is set by hardware and an interrupt request is generated if the TB2IE bit is set. The TB2F bit is cleared by software reading the LTCSR2 register. 11.3.3.3 Input Capture The 8-bit input capture register is used to latch the free-running upcounter (Counter 1) 1 after a rising or falling edge is detected on the LTIC pin. When an input capture occurs, the ICF bit is set and the LTICR register contains the value of Counter 1. An interrupt is generated if the ICIE bit is set. The ICF bit is cleared by reading the LTICR register. The LTICR is a read-only register and always contains the data from the last input capture. Input capture is inhibited if the ICF bit is set. Figure 47. Input Capture Timing Diagram. 4µs (@ 8MHz fOSC) fCPU fOSC/32 8-bit COUNTER 1 01h 02h 03h 04h 05h 06h 07h CLEARED BY S/W READING LTIC REGISTER LTIC PIN ICF FLAG LTICR REGISTER xxh 04h 07h t 74/173 1 ST7LITE3xF2 LITE TIMER (Cont’d) 11.3.4 Low Power Modes 11.3.6 Register Description Mode Description No effect on Lite timer SLOW (this peripheral is driven directly by fOSC/32) WAIT No effect on Lite timer ACTIVE-HALT No effect on Lite timer HALT Lite timer stops counting 11.3.5 Interrupts Interrupt Event 7 0 0 0 0 0 0 0 TB2IE TB2F Bits 7:2 = Reserved, must be kept cleared. Exit from Wait Exit from Active Halt Exit from Halt TB1IE Yes Yes No TB2IE Yes No No ICIE Yes No No Enable Event Control Flag Bit Timebase 1 TB1F Event Timebase 2 TB2F Event IC Event ICF LITE TIMER CONTROL/STATUS REGISTER 2 (LTCSR2) Read / Write Reset Value: 0x00 0000 (x0h) Note: The TBxF and ICF interrupt events are connected to separate interrupt vectors (see Interrupts chapter). They generate an interrupt if the enable bit is set in the LTCSR1 or LTCSR2 register and the interrupt mask in the CC register is reset (RIM instruction). Bit 1 = TB2IE Timebase 2 Interrupt enable. This bit is set and cleared by software. 0: Timebase (TB2) interrupt disabled 1: Timebase (TB2) interrupt enabled Bit 0 = TB2F Timebase 2 Interrupt Flag. This bit is set by hardware and cleared by software reading the LTCSR2 register. Writing to this bit has no effect. 0: No Counter 2 overflow 1: A Counter 2 overflow has occurred LITE TIMER AUTORELOAD (LTARR) Read / Write Reset Value: 0000 0000 (00h) REGISTER 7 AR7 0 AR7 AR7 AR7 AR3 AR2 AR1 AR0 Bits 7:0 = AR[7:0] Counter 2 Reload Value. These bits register is read/write by software. The LTARR value is automatically loaded into Counter 2 (LTCNTR) when an overflow occurs. 75/173 1 ST7LITE3xF2 LITE TIMER (Cont’d) LITE TIMER COUNTER 2 (LTCNTR) Read only Reset Value: 0000 0000 (00h) 7 CNT7 0 CNT7 CNT7 CNT7 CNT3 CNT2 CNT1 CNT0 Bits 7:0 = CNT[7:0] Counter 2 Reload Value. This register is read by software. The LTARR value is automatically loaded into Counter 2 (LTCNTR) when an overflow occurs. LITE TIMER CONTROL/STATUS REGISTER (LTCSR1) Read / Write Reset Value: 0x00 00x0 (xxh) 7 ICIE 0 ICF TB TB1IE TB1F - - Bit 6 = ICF Input Capture Flag. This bit is set by hardware and cleared by software by reading the LTICR register. Writing to this bit does not change the bit value. 0: No input capture 1: An input capture has occurred Note: After an MCU reset, software must initialise the ICF bit by reading the LTICR register 1 Bit 4 = TB1IE Timebase Interrupt enable. This bit is set and cleared by software. 0: Timebase (TB1) interrupt disabled 1: Timebase (TB1) interrupt enabled Bit 3 = TB1F Timebase Interrupt Flag. This bit is set by hardware and cleared by software reading the LTCSR register. Writing to this bit has no effect. 0: No counter overflow 1: A counter overflow has occurred Bits 2:0 = Reserved - Bit 7 = ICIE Interrupt Enable. This bit is set and cleared by software. 0: Input Capture (IC) interrupt disabled 1: Input Capture (IC) interrupt enabled 76/173 Bit 5 = TB Timebase period selection. This bit is set and cleared by software. 0: Timebase period = tOSC * 8000 (1ms @ 8 MHz) 1: Timebase period = tOSC * 16000 (2ms @ 8 MHz) LITE TIMER INPUT CAPTURE REGISTER (LTICR) Read only Reset Value: 0000 0000 (00h) 7 ICR7 0 ICR6 ICR5 ICR4 ICR3 ICR2 ICR1 ICR0 Bits 7:0 = ICR[7:0] Input Capture Value These bits are read by software and cleared by hardware after a reset. If the ICF bit in the LTCSR is cleared, the value of the 8-bit up-counter will be captured when a rising or falling edge occurs on the LTIC pin. ST7LITE3xF2 LITE TIMER (Cont’d) Table 17. Lite Timer Register Map and Reset Values Address Register Label 7 6 5 4 3 2 1 0 08 LTCSR2 Reset Value 0 0 0 0 0 0 TB2IE 0 TB2F 0 09 LTARR Reset Value AR7 0 AR6 0 AR5 0 AR4 0 AR3 0 AR2 0 AR1 0 AR0 0 0A LTCNTR Reset Value CNT7 0 CNT6 0 CNT5 0 CNT4 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 0B LTCSR1 Reset Value ICIE 0 ICF x TB 0 TB1IE 0 TB1F 0 0 x 0 0C LTICR Reset Value ICR7 0 ICR6 0 ICR5 0 ICR4 0 ICR3 0 ICR2 0 ICR1 0 ICR0 0 (Hex.) 77/173 1 ST7LITE3xF2 ON-CHIP PERIPHERALS (cont’d) 11.4 SERIAL PERIPHERAL INTERFACE (SPI) 11.4.1 Introduction The Serial Peripheral Interface (SPI) allows fullduplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves or a system in which devices may be either masters or slaves. 11.4.2 Main Features ■ Full duplex synchronous transfers (on three lines) ■ Simplex synchronous transfers (on two lines) ■ Master or slave operation ■ 6 master mode frequencies (fCPU/4 max.) ■ fCPU/2 max. slave mode frequency (see note) ■ SS Management by software or hardware ■ Programmable clock polarity and phase ■ End of transfer interrupt flag ■ Write collision, Master Mode Fault and Overrun flags Note: In slave mode, continuous transmission is not possible at maximum frequency due to the software overhead for clearing status flags and to initiate the next transmission sequence. 78/173 1 11.4.3 General Description Figure 48 on page 79 shows the serial peripheral interface (SPI) block diagram. There are three registers: – SPI Control Register (SPICR) – SPI Control/Status Register (SPICSR) – SPI Data Register (SPIDR) The SPI is connected to external devices through four pins: – MISO: Master In / Slave Out data – MOSI: Master Out / Slave In data – SCK: Serial Clock out by SPI masters and input by SPI slaves – SS: Slave select: This input signal acts as a ‘chip select’ to let the SPI master communicate with slaves individually and to avoid contention on the data lines. Slave SS inputs can be driven by standard I/O ports on the master Device. ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (SPI) (cont’d) Figure 48. Serial Peripheral Interface Block Diagram Data/Address Bus SPIDR Read Interrupt request Read Buffer MOSI MISO 8-bit Shift Register SPICSR 7 SPIF WCOL OVR MODF SOD bit 0 SOD SSM 0 SSI Write SS SPI STATE CONTROL SCK 7 SPIE 1 0 SPICR 0 SPE SPR2 MSTR CPOL CPHA SPR1 SPR0 MASTER CONTROL SERIAL CLOCK GENERATOR SS 79/173 1 ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) 11.4.3.1 Functional Description A basic example of interconnections between a single master and a single slave is illustrated in Figure 49. The MOSI pins are connected together and the MISO pins are connected together. In this way data is transferred serially between master and slave (most significant bit first). The communication is always initiated by the master. When the master device transmits data to a slave device via MOSI pin, the slave device responds by sending data to the master device via the MISO pin. This implies full duplex communication with both data out and data in synchronized with the same clock signal (which is provided by the master device via the SCK pin). To use a single data line, the MISO and MOSI pins must be connected at each node (in this case only simplex communication is possible). Four possible data/clock timing relationships may be chosen (see Figure 52 on page 83) but master and slave must be programmed with the same timing mode. Figure 49. Single Master/ Single Slave Application SLAVE MASTER MSBit LSBit 8-bit SHIFT REGISTER SPI CLOCK GENERATOR MSBit MISO MISO MOSI MOSI SCK SS LSBit 8-bit SHIFT REGISTER SCK +5V SS Not used if SS is managed by software 80/173 1 ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) 11.4.3.2 Slave Select Management As an alternative to using the SS pin to control the Slave Select signal, the application can choose to manage the Slave Select signal by software. This is configured by the SSM bit in the SPICSR register (see Figure 51). In software management, the external SS pin is free for other application uses and the internal SS signal level is driven by writing to the SSI bit in the SPICSR register. In Master mode: – SS internal must be held high continuously In Slave Mode: There are two cases depending on the data/clock timing relationship (see Figure 50): If CPHA = 1 (data latched on second clock edge): – SS internal must be held low during the entire transmission. This implies that in single slave applications the SS pin either can be tied to VSS, or made free for standard I/O by managing the SS function by software (SSM = 1 and SSI = 0 in the in the SPICSR register) If CPHA = 0 (data latched on first clock edge): – SS internal must be held low during byte transmission and pulled high between each byte to allow the slave to write to the shift register. If SS is not pulled high, a Write Collision error will occur when the slave writes to the shift register (see Section 11.4.5.3). Figure 50. Generic SS Timing Diagram MOSI/MISO Byte 1 Byte 2 Byte 3 Master SS Slave SS (if CPHA = 0) Slave SS (if CPHA = 1) Figure 51. Hardware/Software Slave Select Management SSM bit SSI bit 1 SS external pin 0 SS internal 81/173 1 ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) 11.4.3.3 Master Mode Operation In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register). Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0). How to operate the SPI in master mode To operate the SPI in master mode, perform the following steps in order: 1. Write to the SPICR register: – Select the clock frequency by configuring the SPR[2:0] bits. – Select the clock polarity and clock phase by configuring the CPOL and CPHA bits. Figure 52 shows the four possible configurations. Note: The slave must have the same CPOL and CPHA settings as the master. 2. Write to the SPICSR register: – Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high for the complete byte transmit sequence. 3. Write to the SPICR register: – Set the MSTR and SPE bits Note: MSTR and SPE bits remain set only if SS is high). Important note: if the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not taken into account. The transmit sequence begins when software writes a byte in the SPIDR register. 11.4.3.4 Master Mode Transmit Sequence When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first. When data transfer is complete: – The SPIF bit is set by hardware. – An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared. Clearing the SPIF bit is performed by the following software sequence: 1. An access to the SPICSR register while the SPIF bit is set 2. A read to the SPIDR register 82/173 1 Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. 11.4.3.5 Slave Mode Operation In slave mode, the serial clock is received on the SCK pin from the master device. To operate the SPI in slave mode: 1. Write to the SPICSR register to perform the following actions: – Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see Figure 52). Note: The slave must have the same CPOL and CPHA settings as the master. – Manage the SS pin as described in Section 11.4.3.2 and Figure 50. If CPHA = 1 SS must be held low continuously. If CPHA = 0 SS must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register. 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions. 11.4.3.6 Slave Mode Transmit Sequence When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first. The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin. When data transfer is complete: – The SPIF bit is set by hardware. – An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared. Clearing the SPIF bit is performed by the following software sequence: 1. An access to the SPICSR register while the SPIF bit is set 2. A write or a read to the SPIDR register Notes: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. The SPIF bit can be cleared during a second transmission; however, it must be cleared before the second SPIF bit in order to prevent an Overrun condition (see Section 11.4.5.2). ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) 11.4.4 Clock Phase and Clock Polarity Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits (See Figure 52). Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0). The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data capture clock edge. Figure 52 shows an SPI transfer with the four combinations of the CPHA and CPOL bits. The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the MISO pin and the MOSI pin are directly connected between the master and the slave device. Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit. Figure 52. Data Clock Timing Diagram CPHA = 1 SCK (CPOL = 1) SCK (CPOL = 0) MISO (from master) MOSI (from slave) MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit SS (to slave) CAPTURE STROBE CPHA = 0 SCK (CPOL = 1) SCK (CPOL = 0) MISO (from master) MOSI (from slave) MSBit MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit SS (to slave) CAPTURE STROBE Note: This figure should not be used as a replacement for parametric information. Refer to the Electrical Characteristics chapter. 83/173 1 ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) 11.4.5 Error Flags 11.4.5.1 Master Mode Fault (MODF) Master mode fault occurs when the master device’s SS pin is pulled low. When a Master mode fault occurs: – The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set. – The SPE bit is reset. This blocks all output from the device and disables the SPI peripheral. – The MSTR bit is reset, thus forcing the device into slave mode. Clearing the MODF bit is done through a software sequence: 1. A read access to the SPICSR register while the MODF bit is set. 2. A write to the SPICR register. Notes: To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their original state during or after this clearing sequence. Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set except in the MODF bit clearing sequence. In a slave device, the MODF bit can not be set, but in a multimaster configuration the device can be in slave mode with the MODF bit set. The MODF bit indicates that there might have been a multimaster conflict and allows software to handle this using an interrupt routine and either perform a reset or return to an application default state. 11.4.5.2 Overrun Condition (OVR) An overrun condition occurs when the master device has sent a data byte and the slave device has not cleared the SPIF bit issued from the previously transmitted byte. When an Overrun occurs: – The OVR bit is set and an interrupt request is generated if the SPIE bit is set. In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read to the SPIDR register returns this byte. All other bytes are lost. The OVR bit is cleared by reading the SPICSR register. 11.4.5.3 Write Collision Error (WCOL) A write collision occurs when the software tries to write to the SPIDR register while a data transfer is taking place with an external device. When this happens, the transfer continues uninterrupted and the software write will be unsuccessful. Write collisions can occur both in master and slave mode. See also Section 11.4.3.2 Slave Select Management. Note: A "read collision" will never occur since the received data byte is placed in a buffer in which access is always synchronous with the CPU operation. The WCOL bit in the SPICSR register is set if a write collision occurs. No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only). Clearing the WCOL bit is done through a software sequence (see Figure 53). Figure 53. Clearing the WCOL Bit (Write Collision Flag) Software Sequence Clearing sequence after SPIF = 1 (end of a data byte transfer) 1st Step Read SPICSR 2nd Step Read SPIDR RESULT SPIF = 0 WCOL = 0 Clearing sequence before SPIF = 1 (during a data byte transfer) 1st Step Read SPICSR RESULT 2nd Step 84/173 1 Read SPIDR WCOL = 0 Note: Writing to the SPIDR register instead of reading it does not reset the WCOL bit. ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) 11.4.5.4 Single Master and Multimaster Configurations There are two types of SPI systems: – Single Master System – Multimaster System Single Master System A typical single master system may be configured using a device as the master and four devices as slaves (see Figure 54). The master device selects the individual slave devices by using four pins of a parallel port to control the four SS pins of the slave devices. The SS pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices. Note: To prevent a bus conflict on the MISO line, the master allows only one active slave device during a transmission. For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register. Other transmission security methods can use ports for handshake lines or data bytes with command fields. Multimaster System A multimaster system may also be configured by the user. Transfer of master control could be implemented using a handshake method through the I/O ports or by an exchange of code messages through the serial peripheral interface system. The multimaster system is principally handled by the MSTR bit in the SPICR register and the MODF bit in the SPICSR register. Figure 54. Single Master / Multiple Slave Configuration SS SCK Slave Device MOSI MISO SS SS SCK Slave Device MOSI MISO SS SCK Slave Device SCK Slave Device MOSI MOSI MISO MISO SCK Master Device 5V Ports MOSI MISO SS 85/173 1 ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) 11.4.6 Low Power Modes Mode WAIT HALT Description No effect on SPI. SPI interrupt events cause the device to exit from WAIT mode. SPI registers are frozen. In HALT mode, the SPI is inactive. SPI operation resumes when the device is woken up by an interrupt with “exit from HALT mode” capability. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetching). If several data are received before the wakeup event, then an overrun error is generated. This error can be detected after the fetch of the interrupt routine that woke up the Device. 11.4.6.1 Using the SPI to wake up the device from Halt mode In slave configuration, the SPI is able to wake up the device from HALT mode through a SPIF interrupt. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetch). If multiple data transfers have been performed before software clears the SPIF bit, then the OVR bit is set by hardware. Note: When waking up from HALT mode, if the SPI remains in Slave mode, it is recommended to perform an extra communications cycle to bring 86/173 1 the SPI from HALT mode state to normal state. If the SPI exits from Slave mode, it returns to normal state immediately. Caution: The SPI can wake up the device from HALT mode only if the Slave Select signal (external SS pin or the SSI bit in the SPICSR register) is low when the device enters HALT mode. So, if Slave selection is configured as external (see Section 11.4.3.2), make sure the master drives a low level on the SS pin when the slave enters HALT mode. 11.4.7 Interrupts Interrupt Event SPI End of Transfer Event Master Mode Fault Event Overrun Error Event Flag Enable Control Bit Exit from Wait SPIF MODF Exit from Halt Yes SPIE Yes No OVR Note: The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction). ST7LITE3xF2 11.4.8 Register Description SPI CONTROL REGISTER (SPICR) Read/Write Reset Value: 0000 xxxx (0xh) 7 SPIE 0 SPE SPR2 MSTR CPOL CPHA SPR1 SPR0 Bit 7 = SPIE Serial Peripheral Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An SPI interrupt is generated whenever an End of Transfer event, Master Mode Fault or Overrun error occurs (SPIF = 1, MODF = 1 or OVR = 1 in the SPICSR register) Bit 6 = SPE Serial Peripheral Output Enable This bit is set and cleared by software. It is also cleared by hardware when, in master mode, SS = 0 (see Section 11.4.5.1 Master Mode Fault (MODF)). The SPE bit is cleared by reset, so the SPI peripheral is not initially connected to the external pins. 0: I/O pins free for general purpose I/O 1: SPI I/O pin alternate functions enabled Bit 5 = SPR2 Divider Enable This bit is set and cleared by software and is cleared by reset. It is used with the SPR[1:0] bits to set the baud rate. Refer to Table 18 SPI Master Mode SCK Frequency. 0: Divider by 2 enabled 1: Divider by 2 disabled Note: This bit has no effect in slave mode. Bit 3 = CPOL Clock Polarity This bit is set and cleared by software. This bit determines the idle state of the serial Clock. The CPOL bit affects both the master and slave modes. 0: SCK pin has a low level idle state 1: SCK pin has a high level idle state Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit. Bit 2 = CPHA Clock Phase This bit is set and cleared by software. 0: The first clock transition is the first data capture edge. 1: The second clock transition is the first capture edge. Note: The slave must have the same CPOL and CPHA settings as the master. Bits 1:0 = SPR[1:0] Serial Clock Frequency These bits are set and cleared by software. Used with the SPR2 bit, they select the baud rate of the SPI serial clock SCK output by the SPI in master mode. Note: These 2 bits have no effect in slave mode. Table 18. SPI Master Mode SCK Frequency Serial Clock SPR2 fCPU/4 1 fCPU/8 fCPU/16 fCPU/32 fCPU/64 Bit 4 = MSTR Master Mode This bit is set and cleared by software. It is also cleared by hardware when, in master mode, SS = 0 (see Section 11.4.5.1 Master Mode Fault (MODF)). 0: Slave mode 1: Master mode. The function of the SCK pin changes from an input to an output and the functions of the MISO and MOSI pins are reversed. fCPU/128 0 SPR1 0 0 1 1 0 SPR0 1 0 1 87/173 1 ST7LITE3xF2 SERIAL PERIPHERAL INTERFACE (cont’d) SPI CONTROL/STATUS REGISTER (SPICSR) Read/Write (some bits Read Only) Reset Value: 0000 0000 (00h) 7 SPIF 0 WCOL OVR MODF - SOD SSM SSI Bit 7 = SPIF Serial Peripheral Data Transfer Flag (Read only) This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE = 1 in the SPICR register. It is cleared by a software sequence (an access to the SPICSR register followed by a write or a read to the SPIDR register). 0: Data transfer is in progress or the flag has been cleared. 1: Data transfer between the device and an external device has been completed. Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. Bit 6 = WCOL Write Collision status (Read only) This bit is set by hardware when a write to the SPIDR register is done during a transmit sequence. It is cleared by a software sequence (see Figure 53). 0: No write collision occurred 1: A write collision has been detected Bit 5 = OVR SPI Overrun error (Read only) This bit is set by hardware when the byte currently being received in the shift register is ready to be transferred into the SPIDR register while SPIF = 1 (See Section 11.4.5.2). An interrupt is generated if SPIE = 1 in the SPICR register. The OVR bit is cleared by software reading the SPICSR register. 0: No overrun error 1: Overrun error detected Bit 4 = MODF Mode Fault flag (Read only) This bit is set by hardware when the SS pin is pulled low in master mode (see Section 11.4.5.1 Master Mode Fault (MODF)). An SPI interrupt can be generated if SPIE = 1 in the SPICR register. This bit is cleared by a software sequence (An access to the SPICSR register while MODF = 1 followed by a write to the SPICR register). 0: No master mode fault detected 1: A fault in master mode has been detected Bit 3 = Reserved, must be kept cleared. 88/173 1 Bit 2 = SOD SPI Output Disable This bit is set and cleared by software. When set, it disables the alternate function of the SPI output (MOSI in master mode / MISO in slave mode) 0: SPI output enabled (if SPE = 1) 1: SPI output disabled Bit 1 = SSM SS Management This bit is set and cleared by software. When set, it disables the alternate function of the SPI SS pin and uses the SSI bit value instead. See Section 11.4.3.2 Slave Select Management. 0: Hardware management (SS managed by external pin) 1: Software management (internal SS signal controlled by SSI bit. External SS pin free for general-purpose I/O) Bit 0 = SSI SS Internal Mode This bit is set and cleared by software. It acts as a ‘chip select’ by controlling the level of the SS slave select signal when the SSM bit is set. 0: Slave selected 1: Slave deselected SPI DATA I/O REGISTER (SPIDR) Read/Write Reset Value: Undefined 7 D7 0 D6 D5 D4 D3 D2 D1 D0 The SPIDR register is used to transmit and receive data on the serial bus. In a master device, a write to this register will initiate transmission/reception of another byte. Notes: During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read. While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. Warning: A write to the SPIDR register places data directly into the shift register for transmission. A read to the SPIDR register returns the value located in the buffer and not the content of the shift register (see Figure 48). ST7LITE3xF2 Table 19. SPI Register Map and Reset Values Address Register Label 7 6 5 4 3 2 1 0 0031h SPIDR Reset Value MSB x x x x x x x LSB x 0032h SPICR Reset Value SPIE 0 SPE 0 SPR2 0 MSTR 0 CPOL x CPHA x SPR1 x SPR0 x 0033h SPICSR Reset Value SPIF 0 WCOL 0 OVR 0 MODF 0 0 SOD 0 SSM 0 SSI 0 (Hex.) 89/173 1 ST7LITE3xF2 11.5 LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER/SLAVE) 11.5.1 Introduction The Serial Communications Interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems. The LIN-dedicated features support the LIN (Local Interconnect Network) protocol for both master and slave nodes. This chapter is divided into SCI Mode and LIN mode sections. For information on general SCI communications, refer to the SCI mode section. For LIN applications, refer to both the SCI mode and LIN mode sections. 11.5.2 SCI Features ■ Full duplex, asynchronous communications ■ NRZ standard format (Mark/Space) ■ Independently programmable transmit and receive baud rates up to 500K baud ■ Programmable data word length (8 or 9 bits) ■ Receive buffer full, Transmit buffer empty and End of Transmission flags ■ 2 receiver wake-up modes: – Address bit (MSB) – Idle line ■ Muting function for multiprocessor configurations ■ Separate enable bits for Transmitter and Receiver ■ Overrun, Noise and Frame error detection 90/173 1 6 interrupt sources – Transmit data register empty – Transmission complete – Receive data register full – Idle line received – Overrun error – Parity interrupt ■ Parity control: – Transmits parity bit – Checks parity of received data byte ■ Reduced power consumption mode 11.5.3 LIN Features – LIN Master – 13-bit LIN Synch Break generation – LIN Slave – Automatic Header Handling – Automatic baud rate resynchronization based on recognition and measurement of the LIN Synch Field (for LIN slave nodes) – Automatic baud rate adjustment (at CPU frequency precision) – 11-bit LIN Synch Break detection capability – LIN Parity check on the LIN Identifier Field (only in reception) – LIN Error management – LIN Header Timeout – Hot plugging support ■ ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (cont’d) 11.5.4 General Description – A conventional type for commonly-used baud rates The interface is externally connected to another device by two pins: – An extended type with a prescaler offering a very wide range of baud rates even with non-standard – TDO: Transmit Data Output. When the transmitoscillator frequencies ter is disabled, the output pin returns to its I/O port configuration. When the transmitter is ena– A LIN baud rate generator with automatic resynbled and nothing is to be transmitted, the TDO chronization pin is at high level. – RDI: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. Through these pins, serial data is transmitted and received as characters comprising: – An Idle Line prior to transmission or reception – A start bit – A data word (8 or 9 bits) least significant bit first – A Stop bit indicating that the character is complete This interface uses three types of baud rate generator: 91/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) Figure 55. SCI Block Diagram (in Conventional Baud Rate Generator Mode) Write Read (DATA REGISTER) SCIDR Received Data Register (RDR) Transmit Data Register (TDR) TDO Receive Shift Register Transmit Shift Register RDI SCICR1 R8 TRANSMIT WAKE UP CONTROL UNIT T8 SCID M WAKE PCE PS PIE RECEIVER CLOCK RECEIVER CONTROL SCISR SCICR2 TIE TCIE RIE ILIE TE RE RWU SBK OR/ TDRE TC RDRF IDLE LHE NF FE SCI INTERRUPT CONTROL TRANSMITTER CLOCK TRANSMITTER RATE fCPU CONTROL /16 /PR SCIBRR SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0 RECEIVER RATE CONTROL CONVENTIONAL BAUD RATE GENERATOR 92/173 1 PE ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) 11.5.5.1 Serial Data Format 11.5.5 SCI Mode - Functional Description Word length may be selected as being either 8 or 9 Conventional Baud Rate Generator Mode bits by programming the M bit in the SCICR1 regThe block diagram of the Serial Control Interface ister (see Figure 56). in conventional baud rate generator mode is shown in Figure 55. The TDO pin is in low state during the start bit. It uses four registers: The TDO pin is in high state during the stop bit. – 2 control registers (SCICR1 and SCICR2) An Idle character is interpreted as a continuous logic high level for 10 (or 11) full bit times. – A status register (SCISR) A Break character is a character with a sufficient – A baud rate register (SCIBRR) number of low level bits to break the normal data Extended Prescaler Mode format followed by an extra “1” bit to acknowledge the start bit. Two additional prescalers are available in extended prescaler mode. They are shown in Figure 57. – An extended prescaler receiver register (SCIERPR) – An extended prescaler transmitter register (SCIETPR) Figure 56. Word Length Programming 9-bit Word length (M bit is set) Possible Parity Bit Data Character Start Bit Bit0 Bit2 Bit1 Bit3 Bit4 Bit5 Bit6 Start Bit Break Character Extra ’1’ Possible Parity Bit Data Character Bit0 Bit8 Next Stop Start Bit Bit Idle Line 8-bit Word length (M bit is reset) Start Bit Bit7 Next Data Character Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Start Bit Next Data Character Stop Bit Next Start Bit Idle Line Start Bit Break Character Extra Start Bit ’1’ 93/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) 11.5.5.2 Transmitter When no transmission is taking place, a write instruction to the SCIDR register places the data diThe transmitter can send data words of either 8 or rectly in the shift register, the data transmission 9 bits depending on the M bit status. When the M starts, and the TDRE bit is immediately set. bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 When a character transmission is complete (after register. the stop bit) the TC bit is set and an interrupt is generated if the TCIE is set and the I[1:0] bits are Character Transmission cleared in the CCR register. During an SCI transmission, data shifts out least Clearing the TC bit is performed by the following significant bit first on the TDO pin. In this mode, software sequence: the SCIDR register consists of a buffer (TDR) be1. An access to the SCISR register tween the internal bus and the transmit shift regis2. A write to the SCIDR register ter (see Figure 55). Note: The TDRE and TC bits are cleared by the Procedure same software sequence. – Select the M bit to define the word length. Break Characters – Select the desired baud rate using the SCIBRR Setting the SBK bit loads the shift register with a and the SCIETPR registers. break character. The break character length de– Set the TE bit to send a preamble of 10 (M = 0) pends on the M bit (see Figure 56). or 11 (M = 1) consecutive ones (Idle Line) as first As long as the SBK bit is set, the SCI sends break transmission. characters to the TDO pin. After clearing this bit by – Access the SCISR register and write the data to software, the SCI inserts a logic 1 bit at the end of send in the SCIDR register (this sequence clears the last break character to guarantee the recognithe TDRE bit). Repeat this sequence for each tion of the start bit of the next character. data to be transmitted. Idle Line Clearing the TDRE bit is always performed by the Setting the TE bit drives the SCI to send a preamfollowing software sequence: ble of 10 (M = 0) or 11 (M = 1) consecutive ‘1’s 1. An access to the SCISR register (idle line) before the first character. 2. A write to the SCIDR register In this case, clearing and then setting the TE bit The TDRE bit is set by hardware and it indicates: during a transmission sends a preamble (idle line) – The TDR register is empty. after the current word. Note that the preamble duration (10 or 11 consecutive ‘1’s depending on the – The data transfer is beginning. M bit) does not take into account the stop bit of the – The next data can be written in the SCIDR regisprevious character. ter without overwriting the previous data. Note: Resetting and setting the TE bit causes the This flag generates an interrupt if the TIE bit is set data in the TDR register to be lost. Therefore the and the I[|1:0] bits are cleared in the CCR register. best time to toggle the TE bit is when the TDRE bit When a transmission is taking place, a write inis set, that is, before writing the next byte in the struction to the SCIDR register stores the data in SCIDR. the TDR register and which is copied in the shift register at the end of the current transmission. 94/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) 11.5.5.3 Receiver – The OR bit is set. The SCI can receive data words of either 8 or 9 – The RDR content will not be lost. bits. When the M bit is set, word length is 9 bits – The shift register will be overwritten. and the MSB is stored in the R8 bit in the SCICR1 – An interrupt is generated if the RIE bit is set and register. the I[|1:0] bits are cleared in the CCR register. Character reception The OR bit is reset by an access to the SCISR regDuring a SCI reception, data shifts in least signifiister followed by a SCIDR register read operation. cant bit first through the RDI pin. In this mode, the Noise Error SCIDR register consists or a buffer (RDR) between the internal bus and the received shift regisOversampling techniques are used for data recovter (see Figure 55). ery by discriminating between valid incoming data and noise. Procedure When noise is detected in a character: – Select the M bit to define the word length. – The NF bit is set at the rising edge of the RDRF – Select the desired baud rate using the SCIBRR bit. and the SCIERPR registers. – Data is transferred from the Shift register to the – Set the RE bit, this enables the receiver which SCIDR register. begins searching for a start bit. – No interrupt is generated. However this bit rises When a character is received: at the same time as the RDRF bit which itself – The RDRF bit is set. It indicates that the content generates an interrupt. of the shift register is transferred to the RDR. The NF bit is reset by a SCISR register read oper– An interrupt is generated if the RIE bit is set and ation followed by a SCIDR register read operation. the I[1:0] bits are cleared in the CCR register. Framing Error – The error flags can be set if a frame error, noise A framing error is detected when: or an overrun error has been detected during reception. – The stop bit is not recognized on reception at the expected time, following either a desynchronizaClearing the RDRF bit is performed by the following tion or excessive noise. software sequence done by: – A break is received. 1. An access to the SCISR register When the framing error is detected: 2. A read to the SCIDR register. – the FE bit is set by hardware The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun – Data is transferred from the Shift register to the error. SCIDR register. Idle Line – No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself When an idle line is detected, there is the same generates an interrupt. procedure as a data received character plus an interrupt if the ILIE bit is set and the I[|1:0] bits are The FE bit is reset by a SCISR register read opercleared in the CCR register. ation followed by a SCIDR register read operation. Overrun Error Break Character An overrun error occurs when a character is re– When a break character is received, the SCI ceived when RDRF has not been reset. Data can handles it as a framing error. To differentiate a not be transferred from the shift register to the break character from a framing error, it is necesTDR register as long as the RDRF bit is not sary to read the SCIDR. If the received value is cleared. 00h, it is a break character. Otherwise it is a framing error. When an overrun error occurs: 95/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) 11.5.5.4 Conventional Baud Rate Generation 11.5.5.5 Extended Baud Rate Generation The baud rates for the receiver and transmitter (Rx The extended prescaler option gives a very fine and Tx) are set independently and calculated as tuning on the baud rate, using a 255 value prescalfollows: er, whereas the conventional Baud Rate Generator retains industry standard software compatibilifCPU fCPU ty. Rx = Tx = The extended baud rate generator block diagram (16*PR)*RR (16*PR)*TR is described in Figure 57. with: The output clock rate sent to the transmitter or to PR = 1, 3, 4 or 13 (see SCP[1:0] bits) the receiver will be the output from the 16 divider divided by a factor ranging from 1 to 255 set in the TR = 1, 2, 4, 8, 16, 32, 64,128 SCIERPR or the SCIETPR register. (see SCT[2:0] bits) Note: The extended prescaler is activated by setRR = 1, 2, 4, 8, 16, 32, 64,128 ting the SCIETPR or SCIERPR register to a value (see SCR[2:0] bits) other than zero. The baud rates are calculated as follows: All these bits are in the SCIBRR register. Example: If fCPU is 8 MHz (normal mode) and if fCPU fCPU PR = 13 and TR = RR = 1, the transmit and reRx = Tx = ceive baud rates are 38400 baud. 16*ERPR*(PR*RR) 16*ETPR*(PR*TR) Note: The baud rate registers MUST NOT be changed while the transmitter or the receiver is enwith: abled. ETPR = 1, ..., 255 (see SCIETPR register) ERPR = 1, ..., 255 (see SCIERPR register) 96/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) Figure 57. SCI Baud Rate and Extended Prescaler Block Diagram TRANSMITTER CLOCK EXTENDED PRESCALER TRANSMITTER RATE CONTROL SCIETPR EXTENDED TRANSMITTER PRESCALER REGISTER SCIERPR EXTENDED RECEIVER PRESCALER REGISTER RECEIVER CLOCK EXTENDED PRESCALER RECEIVER RATE CONTROL EXTENDED PRESCALER fCPU TRANSMITTER RATE CONTROL /16 /PR SCIBRR SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0 RECEIVER RATE CONTROL CONVENTIONAL BAUD RATE GENERATOR 97/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) 11.5.5.6 Receiver Muting and Wake-up Feature ceived an address character (most significant bit = ’1’), the receivers are waken up. The receivers In multiprocessor configurations it is often desirawhich are not addressed set RWU bit to enter in ble that only the intended message recipient mute mode. Consequently, they will not treat the should actively receive the full message contents, next characters constituting the next part of the thus reducing redundant SCI service overhead for message. all non-addressed receivers. 11.5.5.7 Parity Control The non-addressed devices may be placed in sleep mode by means of the muting function. Hardware byte Parity control (generation of parity bit in transmission and parity checking in recepSetting the RWU bit by software puts the SCI in tion) can be enabled by setting the PCE bit in the sleep mode: SCICR1 register. Depending on the character forAll the reception status bits can not be set. mat defined by the M bit, the possible SCI character formats are as listed in Table 20. All the receive interrupts are inhibited. Note: In case of wake-up by an address mark, the A muted receiver may be woken up in one of the MSB bit of the data is taken into account and not following ways: the parity bit – by Idle Line detection if the WAKE bit is reset, – by Address Mark detection if the WAKE bit is set. Idle Line Detection Receiver wakes up by Idle Line detection when the Receive line has recognized an Idle Line. Then the RWU bit is reset by hardware but the IDLE bit is not set. This feature is useful in a multiprocessor system when the first characters of the message determine the address and when each message ends by an idle line: As soon as the line becomes idle, every receivers is waken up and analyse the first characters of the message which indicates the addressed receiver. The receivers which are not addressed set RWU bit to enter in mute mode. Consequently, they will not treat the next characters constituting the next part of the message. At the end of the message, an idle line is sent by the transmitter: this wakes up every receivers which are ready to analyse the addressing characters of the new message. In such a system, the inter-characters space must be smaller than the idle time. Address Mark Detection Receiver wakes up by Address Mark detection when it received a “1” as the most significant bit of a word, thus indicating that the message is an address. The reception of this particular word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the receiver to receive this word normally and to use it as an address word. This feature is useful in a multiprocessor system when the most significant bit of each character (except for the break character) is reserved for Address Detection. As soon as the receivers re- 98/173 1 Table 20. Character Formats M bit 0 1 PCE bit 0 1 0 1 Character format | SB | 8 bit data | STB | | SB | 7-bit data | PB | STB | | SB | 9-bit data | STB | | SB | 8-bit data | PB | STB | Legend: SB = Start Bit, STB = Stop Bit, PB = Parity Bit Even parity: The parity bit is calculated to obtain an even number of “1s” inside the character made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. Example: data = 00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit = 0). Odd parity: The parity bit is calculated to obtain an odd number of “1s” inside the character made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. Example: data = 00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit = 1). Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit. Reception mode: If the PCE bit is set then the interface checks if the received data byte has an even number of “1s” if even parity is selected (PS = 0) or an odd number of “1s” if odd parity is selected (PS = 1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PCIE is set in the SCICR1 register. ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) 11.5.6 Low Power Modes 11.5.7 Interrupts Mode WAIT HALT Description No effect on SCI. SCI interrupts cause the device to exit from Wait mode. SCI registers are frozen. In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited. Interrupt Event Enable Exit Event Control from Flag Bit Wait Transmit Data Register TDRE Empty Transmission ComTC plete Received Data Ready RDRF to be Read Overrun Error or LIN OR/ Synch Error Detected LHE Idle Line Detected IDLE Parity Error PE LIN Header Detection LHDF Exit from Halt TIE TCIE RIE Yes No ILIE PIE LHIE The SCI interrupt events are connected to the same interrupt vector (see Interrupts chapter). These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction). 99/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) 11.5.8 SCI Mode Register Description STATUS REGISTER (SCISR) Bit 3 = OR Overrun error Read Only The OR bit is set by hardware when the word curReset Value: 1100 0000 (C0h) rently being received in the shift register is ready to be transferred into the RDR register whereas 7 0 RDRF is still set. An interrupt is generated if RIE = 1 in the SCICR2 register. It is cleared by a 1) 1) 1) 1) TDRE TC RDRF IDLE OR NF FE PE software sequence (an access to the SCISR register followed by a read to the SCIDR register). 0: No Overrun error Bit 7 = TDRE Transmit data register empty 1: Overrun error detected This bit is set by hardware when the content of the TDR register has been transferred into the shift Note: When this bit is set, RDR register contents register. An interrupt is generated if the TIE = 1 in will not be lost but the shift register will be overwritthe SCICR2 register. It is cleared by a software seten. quence (an access to the SCISR register followed by a write to the SCIDR register). 0: Data is not transferred to the shift register Bit 2 = NF Character Noise flag 1: Data is transferred to the shift register This bit is set by hardware when noise is detected on a received character. It is cleared by a software sequence (an access to the SCISR register folBit 6 = TC Transmission complete lowed by a read to the SCIDR register). This bit is set by hardware when transmission of a 0: No noise character containing Data is complete. An inter1: Noise is detected rupt is generated if TCIE = 1 in the SCICR2 regisNote: This bit does not generate interrupt as it apter. It is cleared by a software sequence (an acpears at the same time as the RDRF bit which itcess to the SCISR register followed by a write to self generates an interrupt. the SCIDR register). 0: Transmission is not complete 1: Transmission is complete Bit 1 = FE Framing error Note: TC is not set after the transmission of a PreThis bit is set by hardware when a desynchronizaamble or a Break. tion, excessive noise or a break character is detected. It is cleared by a software sequence (an access to the SCISR register followed by a read to Bit 5 = RDRF Received data ready flag the SCIDR register). This bit is set by hardware when the content of the 0: No Framing error RDR register has been transferred to the SCIDR 1: Framing error or break character detected register. An interrupt is generated if RIE = 1 in the Note: This bit does not generate an interrupt as it SCICR2 register. It is cleared by a software seappears at the same time as the RDRF bit which itquence (an access to the SCISR register followed self generates an interrupt. If the word currently by a read to the SCIDR register). being transferred causes both a frame error and 0: Data is not received an overrun error, it will be transferred and only the 1: Received data is ready to be read OR bit will be set. Bit 4 = IDLE Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the ILIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register). 0: No Idle Line is detected 1: Idle Line is detected Note: The IDLE bit will not be set again until the RDRF bit has been set itself (that is, a new idle line occurs). 100/173 1 Bit 0 = PE Parity error This bit is set by hardware when a byte parity error occurs (if the PCE bit is set) in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register. 0: No parity error 1: Parity error detected ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) CONTROL REGISTER 1 (SCICR1) Read/Write Bit 3 = WAKE Wake-Up method Reset Value: x000 0000 (x0h) This bit determines the SCI Wake-Up method, it is set or cleared by software. 7 0 0: Idle Line 1: Address Mark R8 T8 SCID M WAKE PCE1) PS PIE Note: If the LINE bit is set, the WAKE bit is deactivated and replaced by the LHDM bit. 1) This bit has a different function in LIN mode, please refer to the LIN mode register description. Bit 7 = R8 Receive data bit 8 This bit is used to store the 9th bit of the received word when M = 1. Bit 6 = T8 Transmit data bit 8 This bit is used to store the 9th bit of the transmitted word when M = 1. Bit 5 = SCID Disabled for low power consumption When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption.This bit is set and cleared by software. 0: SCI enabled 1: SCI prescaler and outputs disabled Bit 4 = M Word length This bit determines the word length. It is set or cleared by software. 0: 1 Start bit, 8 Data bits, 1 Stop bit 1: 1 Start bit, 9 Data bits, 1 Stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception). Bit 2 = PCE Parity control enable This bit is set and cleared by software. It selects the hardware parity control (generation and detection for byte parity, detection only for LIN parity). 0: Parity control disabled 1: Parity control enabled Bit 1 = PS Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity will be selected after the current byte. 0: Even parity 1: Odd parity Bit 0 = PIE Parity interrupt enable This bit enables the interrupt capability of the hardware parity control when a parity error is detected (PE bit set). The parity error involved can be a byte parity error (if bit PCE is set and bit LPE is reset) or a LIN parity error (if bit PCE is set and bit LPE is set). 0: Parity error interrupt disabled 1: Parity error interrupt enabled 101/173 1 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) CONTROL REGISTER 2 (SCICR2) 1: Receiver is enabled and begins searching for a Read/Write start bit Reset Value: 0000 0000 (00h) Bit 1 = RWU Receiver wake-up 7 0 This bit determines if the SCI is in mute mode or not. It is set and cleared by software and can be TIE TCIE RIE ILIE TE RE RWU1) SBK1) cleared by hardware when a wake-up sequence is recognized. 1) 0: Receiver in active mode This bit has a different function in LIN mode, please 1: Receiver in mute mode refer to the LIN mode register description. Notes: Bit 7 = TIE Transmitter interrupt enable This bit is set and cleared by software. – Before selecting Mute mode (by setting the RWU 0: Interrupt is inhibited bit) the SCI must first receive a data byte, other1: In SCI interrupt is generated whenever wise it cannot function in Mute mode with wakeTDRE = 1 in the SCISR register up by Idle line detection. – In Address Mark Detection Wake-Up configuraBit 6 = TCIE Transmission complete interrupt enation (WAKE bit = 1) the RWU bit cannot be modble ified by software while the RDRF bit is set. This bit is set and cleared by software. 0: Interrupt is inhibited Bit 0 = SBK Send break 1: An SCI interrupt is generated whenever TC = 1 This bit set is used to send break characters. It is in the SCISR register set and cleared by software. 0: No break character is transmitted Bit 5 = RIE Receiver interrupt enable 1: Break characters are transmitted This bit is set and cleared by software. Note: If the SBK bit is set to “1” and then to “0”, the 0: Interrupt is inhibited transmitter will send a BREAK word at the end of 1: An SCI interrupt is generated whenever OR = 1 the current word. or RDRF = 1 in the SCISR register Bit 4 = ILIE Idle line interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR register. Bit 3 = TE Transmitter enable This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled 1: Transmitter is enabled Notes: – During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble (idle line) after the current word. – When TE is set there is a 1 bit-time delay before the transmission starts. Bit 2 = RE Receiver enable This bit enables the receiver. It is set and cleared by software. 0: Receiver is disabled in the SCISR register 102/173 DATA REGISTER (SCIDR) Read/Write Reset Value: Undefined Contains the Received or Transmitted data character, depending on whether it is read from or written to. 7 DR7 0 DR6 DR5 DR4 DR3 DR2 DR1 DR0 The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR). The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 55). The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 55). ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) BAUD RATE REGISTER (SCIBRR) TR dividing factor Read/Write 1 Reset Value: 0000 0000 (00h) 2 7 0 SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0 4 SCT2 0 0 1 8 16 Note: When LIN slave mode is disabled, the SCIBRR register controls the conventional baud rate generator. Bits 7:6 = SCP[1:0] First SCI Prescaler These 2 prescaling bits allow several standard clock division ranges: PR Prescaling factor 1 3 4 13 SCP1 0 1 SCP0 0 1 0 1 Bits 5:3 = SCT[2:0] SCI Transmitter rate divisor These 3 bits, in conjunction with the SCP1 and SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode. 32 64 SCT1 0 1 1 128 SCT0 0 1 0 1 0 1 0 1 Bits 2:0 = SCR[2:0] SCI Receiver rate divider These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode. RR dividing factor SCR2 1 2 4 0 0 1 8 16 32 64 128 SCR1 0 1 1 SCR0 0 1 0 1 0 1 0 1 103/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d) EXTENDED RECEIVE PRESCALER DIVISION EXTENDED TRANSMIT PRESCALER DIVISION REGISTER (SCIERPR) REGISTER (SCIETPR) Read/Write Read/Write Reset Value: 0000 0000 (00h) Reset Value:0000 0000 (00h) 7 0 ERPR ERPR ERPR ERPR ERPR ERPR ERPR ERPR 7 6 5 4 3 2 1 0 Bits 7:0 = ERPR[7:0] 8-bit Extended Receive Prescaler Register The extended Baud Rate Generator is activated when a value other than 00h is stored in this register. The clock frequency from the 16 divider (see Figure 57) is divided by the binary factor set in the SCIERPR register (in the range 1 to 255). The extended baud rate generator is not active after a reset. 104/173 7 ETPR 7 0 ETPR 6 ETPR 5 ETPR 4 ETPR 3 ETPR 2 ETPR ETPR 1 0 Bits 7:0 = ETPR[7:0] 8-bit Extended Transmit Prescaler Register The extended Baud Rate Generator is activated when a value other than 00h is stored in this register. The clock frequency from the 16 divider (see Figure 57) is divided by the binary factor set in the SCIETPR register (in the range 1 to 255). The extended baud rate generator is not active after a reset. Note: In LIN slave mode, the Conventional and Extended Baud Rate Generators are disabled. ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) 11.5.9 LIN Mode - Functional Description. Slave The block diagram of the Serial Control Interface, Set the LSLV bit in the SCICR3 register to enter in LIN slave mode is shown in Figure 59. LIN slave mode. In this case, setting the SBK bit will have no effect. It uses six registers: In LIN Slave mode the LIN baud rate generator is – 3 control registers: SCICR1, SCICR2 and selected instead of the Conventional or Extended SCICR3 Prescaler. The LIN baud rate generator is com– 2 status registers: the SCISR register and the mon to the transmitter and the receiver. LHLR register mapped at the SCIERPR address Then the baud rate can be programmed using – A baud rate register: LPR mapped at the SCILPR and LPRF registers. BRR address and an associated fraction register Note: It is mandatory to set the LIN configuration LPFR mapped at the SCIETPR address first before programming LPR and LPRF, because The bits dedicated to LIN are located in the the LIN configuration uses a different baud rate SCICR3. Refer to the register descriptions in Secgenerator from the standard one. tion 11.5.10for the definitions of each bit. 11.5.9.1 Entering LIN Mode 11.5.9.2 LIN Transmission To use the LINSCI in LIN mode the following conIn LIN mode the same procedure as in SCI mode figuration must be set in SCICR3 register: has to be applied for a LIN transmission. – Clear the M bit to configure 8-bit word length. To transmit the LIN Header the proceed as fol– Set the LINE bit. lows: Master – First set the SBK bit in the SCICR2 register to start transmitting a 13-bit LIN Synch Break To enter master mode the LSLV bit must be reset In this case, setting the SBK bit will send 13 low – reset the SBK bit bits. – Load the LIN Synch Field (0x55) in the SCIDR Then the baud rate can programmed using the register to request Synch Field transmission SCIBRR, SCIERPR and SCIETPR registers. – Wait until the SCIDR is empty (TDRE bit set in In LIN master mode, the Conventional and / or Exthe SCISR register) tended Prescaler define the baud rate (as in stand– Load the LIN message Identifier in the SCIDR ard SCI mode) register to request Identifier transmission. 105/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) Figure 58. LIN Characters 8-bit Word length (M bit is reset) Next Data Character Data Character Next Start Start Stop Bit Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit Start Bit Idle Line LIN Synch Field LIN Synch Break = 13 low bits LIN Synch Field Next Start Start Stop Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit Bit Measurement for baud rate autosynchronization 106/173 Extra Start ‘1’ Bit ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) Figure 59. SCI Block Diagram in LIN Slave Mode Write Read (DATA REGISTER) SCIDR Received Data Register (RDR) Transmit Data Register (TDR) TDO Receive Shift Register Transmit Shift Register RDI SCICR1 R8 TRANSMIT WAKE UP CONTROL UNIT T8 SCID M WAKE PCE PS PIE RECEIVER CONTROL RECEIVER CLOCK SCISR SCICR2 TIE TCIE RIE ILIE TE RE RWU SBK OR/ TDRE TC RDRF IDLE LHE NF FE PE SCI INTERRUPT CONTROL TRANSMITTER CLOCK fCPU SCICR3 LIN SLAVE BAUD RATE AUTO SYNCHRONIZATION UNIT LDUM LINE LSLV LASE LHDM LHIE LHDF LSF SCIBRR LPR7 LPR0 CONVENTIONAL BAUD RATE GENERATOR + EXTENDED PRESCALER fCPU / LDIV /16 0 1 LIN SLAVE BAUD RATE GENERATOR 107/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) 11.5.9.3 LIN Reception Note: In LIN mode the reception of a byte is the same as In LIN slave mode, the FE bit detects all frame erin SCI mode but the LINSCI has features for hanror which does not correspond to a break. dling the LIN Header automatically (identifier deIdentifier Detection (LHDM = 1): tection) or semiautomatically (Synch Break detecThis case is the same as the previous one except tion) depending on the LIN Header detection that the LHDF and the RDRF flags are set only afmode. The detection mode is selected by the ter the entire header has been received (this is LHDM bit in the SCICR3. true whether automatic resynchronization is enaAdditionally, an automatic resynchronization feabled or not). This indicates that the LIN Identifier is ture can be activated to compensate for any clock available in the SCIDR register. deviation, for more details please refer to Section Notes: 11.5.9.5 LIN Baud Rate. During LIN Synch Field measurement, the SCI LIN Header Handling by a Slave state machine is switched off: No characters are Depending on the LIN Header detection method transferred to the data register. the LINSCI will signal the detection of a LIN HeadLIN Slave parity er after the LIN Synch Break or after the Identifier has been successfully received. In LIN Slave mode (LINE and LSLV bits are set) LIN parity checking can be enabled by setting the Note: PCE bit. It is recommended to combine the Header detecIn this case, the parity bits of the LIN Identifier tion function with Mute mode. Putting the LINSCI Field are checked. The identifier character is recin Mute mode allows the detection of Headers only ognized as the third received character after a and prevents the reception of any other characbreak character (included): ters. This mode can be used to wait for the next Header parity bits without being interrupted by the data bytes of the current message in case this message is not relevant for the application. Synch Break Detection (LHDM = 0): When a LIN Synch Break is received: LIN Synch LIN Synch Identifier – The RDRF bit in the SCISR register is set. It inField Break Field dicates that the content of the shift register is transferred to the SCIDR register, a value of 0x00 is expected for a Break. The bits involved are the two MSB positions (7th and 8th bits if M = 0; 8th and 9th bits if M = 0) of – The LHDF flag in the SCICR3 register indicates the identifier character. The check is performed as that a LIN Synch Break Field has been detected. specified by the LIN specification: – An interrupt is generated if the LHIE bit in the SCICR3 register is set and the I[1:0] bits are cleared in the CCR register. parity bits stop bit start bit – Then the LIN Synch Field is received and measidentifier bits ured. ID0 ID1 ID2 ID3 ID4 ID5 P0 P1 – If automatic resynchronization is enabled (LASE bit = 1), the LIN Synch Field is not transIdentifier Field ferred to the shift register: There is no need to clear the RDRF bit. P0 = ID0 ⊕ ID1 ⊕ ID2 ⊕ ID4 M=0 – If automatic resynchronization is disabled (LAP1 = ID1 ⊕ ID3 ⊕ ID4 ⊕ ID5 SE bit = 0), the LIN Synch Field is received as a normal character and transferred to the SCIDR register and RDRF is set. 108/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) 11.5.9.4 LIN Error Detection edge of the Synch Field. Let us refer to this period deviation as D: LIN Header Error Flag If the LHE flag is set, it means that: The LIN Header Error Flag indicates that an invalid LIN Header has been detected. D > 15.625% When a LIN Header Error occurs: If LHE flag is not set, it means that: – The LHE flag is set D < 16.40625% – An interrupt is generated if the RIE bit is set and If 15.625% ≤ D < 16.40625%, then the flag can the I[1:0] bits are cleared in the CCR register. be either set or reset depending on the dephasing between the signal on the RDI line and the If autosynchronization is enabled (LASE bit = 1), CPU clock. this can mean that the LIN Synch Field is corrupted, and that the SCI is in a blocked state (LSF bit is – The second check is based on the measurement set). The only way to recover is to reset the LSF bit of each bit time between both edges of the Synch and then to clear the LHE bit. Field: this checks that each of these bit times is large enough compared to the bit time of the cur– The LHE bit is reset by an access to the SCISR rent baud rate. register followed by a read of the SCIDR register. When LHE is set due to this error then the SCI LHE/OVR Error Conditions goes into a blocked state (LSF bit is set). When Auto Resynchronization is disabled (LASE LIN Header Time-out Error bit = 0), the LHE flag detects: When the LIN Identifier Field Detection Method is – That the received LIN Synch Field is not equal to used (by configuring LHDM to 1) or when LIN 55h. auto-resynchronization is enabled (LASE bit = 1), – That an overrun occurred (as in standard SCI the LINSCI automatically monitors the mode) THEADER_MAX condition given by the LIN protocol. – Furthermore, if LHDM is set it also detects that a If the entire Header (up to and including the STOP LIN Header Reception Timeout occurred (only if bit of the LIN Identifier Field) is not received within LHDM is set). the maximum time limit of 57 bit times then a LIN Header Error is signalled and the LHE bit is set in When the LIN auto-resynchronization is enabled the SCISR register. (LASE bit = 1), the LHE flag detects: – That the deviation error on the Synch Field is outside the LIN specification which allows up to +/-15.5% of period deviation between the slave and master oscillators. – A LIN Header Reception Timeout occurred. If THEADER > THEADER_MAX then the LHE flag is set. Refer to Figure 60. (only if LHDM is set to 1) – An overflow during the Synch Field Measurement, which leads to an overflow of the divider registers. If LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set). – That an overrun occurred on Fields other than the Synch Field (as in standard SCI mode) Deviation Error on the Synch Field The deviation error is checking by comparing the current baud rate (relative to the slave oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks are performed in parallel: – The first check is based on a measurement between the first falling edge and the last falling Figure 60. LIN Header Reception Timeout LIN Synch Break LIN Synch Field Identifier Field THEADER The time-out counter is enabled at each break detection. It is stopped in the following conditions: - A LIN Identifier Field has been received - An LHE error occurred (other than a timeout error). - A software reset of LSF bit (transition from high to low) occurred during the analysis of the LIN Synch Field or If LHE bit is set due to this error during the LIN Synchr Field (if LASE bit = 1) then the SCI goes into a blocked state (LSF bit is set). 109/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) If LHE bit is set due to this error during Fields other LIN Header Length than LIN Synch Field or if LASE bit is reset then Even if no timeout occurs on the LIN Header, it is the current received Header is discarded and the possible to have access to the effective LIN headSCI searches for a new Break Field. er Length (THEADER) through the LHL register. This allows monitoring at software level the Note on LIN Header Time-out Limit TFRAME_MAX condition given by the LIN protocol. According to the LIN specification, the maximum This feature is only available when LHDM bit = 1 length of a LIN Header which does not cause a or when LASE bit = 1. timeout is equal to 1.4 * (34 + 1) = 49 TBIT_MASTER. Mute Mode and Errors TBIT_MASTER refers to the master baud rate. In mute mode when LHDM bit = 1, if an LHE error occurs during the analysis of the LIN Synch Field When checking this timeout, the slave node is deor if a LIN Header Time-out occurs then the LHE synchronized for the reception of the LIN Break bit is set but it does not wake up from mute mode. and Synch fields. Consequently, a margin must be In this case, the current header analysis is discardallowed, taking into account the worst case: This ed. If needed, the software has to reset LSF bit. occurs when the LIN identifier lasts exactly 10 Then the SCI searches for a new LIN header. TBIT_MASTER periods. In this case, the LIN Break and Synch fields last 49 - 10 = 39TBIT_MASTER peIn mute mode, if a framing error occurs on a data riods. (which is not a break), it is discarded and the FE bit Assuming the slave measures these first 39 bits is not set. with a desynchronized clock of 15.5%. This leads When LHDM bit = 1, any LIN header which reto a maximum allowed Header Length of: spects the following conditions causes a wake-up from mute mode: 39 x (1/0.845) TBIT_MASTER + 10TBIT_MASTER = 56.15 TBIT_SLAVE - A valid LIN Break Field (at least 11 dominant bits followed by a recessive bit) A margin is provided so that the time-out occurs when the header length is greater than 57 - A valid LIN Synch Field (without deviation error) TBIT_SLAVE periods. If it is less than or equal to 57 - A LIN Identifier Field without framing error. Note TBIT_SLAVE periods, then no timeout occurs. that a LIN parity error on the LIN Identifier Field does not prevent wake-up from mute mode. - No LIN Header Time-out should occur during Header reception. Figure 61. LIN Synch Field Measurement TCPU = CPU period TBR = Baud Rate period TBR = 16.LP.TCPU SM = Synch Measurement Register (15 bits) TBR LIN Synch Field LIN Synch Break Extra ‘1’ Start Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Stop Bit Next Start Bit Measurement = 8.TBR = SM.TCPU LPR(n+1) LPR(n) LPR = TBR / (16.TCPU) = Rounding (SM / 128) 110/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) 11.5.9.5 LIN Baud Rate mitter are both set to the same value, depending on the LIN Slave baud rate generator: Baud rate programming is done by writing a value in the LPR prescaler or performing an automatic resynchronization as described below. fCPU Automatic Resynchronization Tx = Rx = (16*LDIV) To automatically adjust the baud rate based on measurement of the LIN Synch Field: with: – Write the nominal LIN Prescaler value (usually LDIV is an unsigned fixed point number. The mandepending on the nominal baud rate) in the tissa is coded on 8 bits in the LPR register and the LPFR / LPR registers. fraction is coded on 4 bits in the LPFR register. – Set the LASE bit to enable the Auto SynchroniIf LASE bit = 1 then LDIV is automatically updated zation Unit. at the end of each LIN Synch Field. When Auto Synchronization is enabled, after each Three registers are used internally to manage the LIN Synch Break, the time duration between five auto-update of the LIN divider (LDIV): falling edges on RDI is sampled on fCPU and the - LDIV_NOM (nominal value written by software at result of this measurement is stored in an internal LPR/LPFR addresses) 15-bit register called SM (not user accessible) (see Figure 61). Then the LDIV value (and its as- LDIV_MEAS (results of the Field Synch meassociated LPFR and LPR registers) are automatiurement) cally updated at the end of the fifth falling edge. - LDIV (used to generate the local baud rate) During LIN Synch field measurement, the SCI The control and interactions of these registers, exstate machine is stopped and no data is transplained in Figure 62 and Figure 63, depend on the ferred to the data register. LDUM bit setting (LIN Divider Update Method). 11.5.9.6 LIN Slave Baud Rate Generation Note: In LIN mode, transmission and reception are drivAs explained in Figure 62 and Figure 63, LDIV can en by the LIN baud rate generator be updated by two concurrent actions: a transfer Note: LIN Master mode uses the Extended or from LDIV_MEAS at the end of the LIN Sync Field Conventional prescaler register to generate the and a transfer from LDIV_NOM due to a software baud rate. write of LPR. If both operations occur at the same If LINE bit = 1 and LSLV bit = 1 then the Conventime, the transfer from LDIV_NOM has priority. tional and Extended Baud Rate Generators are disabled: the baud rate for the receiver and trans- 111/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) Figure 62. LDIV Read / Write Operations When LDUM = 0 Write LPR Write LPFR MANT(7:0) FRAC(3:0) LDIV_NOM LIN Sync Field Measurement Write LPR MANT(7:0) FRAC(3:0) LDIV_MEAS Update at end of Synch Field Baud Rate Generation MANT(7:0) FRAC(3:0) LDIV Read LPR Read LPFR Figure 63. LDIV Read / Write Operations When LDUM = 1 Write LPR Write LPFR MANT(7:0) FRAC(3:0) LDIV_NOM LIN Sync Field Measurement RDRF = 1 MANT(7:0) FRAC(3:0) LDIV_MEAS Update at end of Synch Field MANT(7:0) FRAC(3:0) LDIV Read LPR 112/173 Read LPFR Baud Rate Generation ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) 11.5.9.7 LINSCI Clock Tolerance Consequently, the clock frequency should not vary more than 6/16 (37.5%) within one bit. LINSCI Clock Tolerance when unsynchronized The sampling clock is resynchronized at each start When LIN slaves are unsynchronized (meaning no bit, so that when receiving 10 bits (one start bit, 1 characters have been transmitted for a relatively data byte, 1 stop bit), the clock deviation should long time), the maximum tolerated deviation of the not exceed 3.75%. LINSCI clock is +/-15%. 11.5.9.8 Clock Deviation Causes If the deviation is within this range then the LIN Synch Break is detected properly when a new reThe causes which contribute to the total deviation ception occurs. are: This is made possible by the fact that masters – DTRA: Deviation due to transmitter error. Note: The transmitter can be either a master send 13 low bits for the LIN Synch Break, which or a slave (in case of a slave listening to the can be interpreted as 11 low bits (13 bits -15% = response of another slave). 11.05) by a “fast” slave and then considered as a LIN Synch Break. According to the LIN specifica– DMEAS: Error due to the LIN Synch measuretion, a LIN Synch Break is valid when its duration ment performed by the receiver. is greater than tSBRKTS = 10. This means that the – DQUANT: Error due to the baud rate quantizaLIN Synch Break must last at least 11 low bits. tion of the receiver. Note: If the period desynchronization of the slave – DREC: Deviation of the local oscillator of the is +15% (slave too slow), the character “00h” receiver: This deviation can occur during the which represents a sequence of 9 low bits must reception of one complete LIN message asnot be interpreted as a break character (9 bits + suming that the deviation has been compen15% = 10.35). Consequently, a valid LIN Synch sated at the beginning of the message. break must last at least 11 low bits. – D TCL: Deviation due to the transmission line LINSCI Clock Tolerance when Synchronized (generally due to the transceivers) When synchronization has been performed, folAll the deviations of the system should be added lowing reception of a LIN Synch Break, the LINSand compared to the LINSCI clock tolerance: CI, in LIN mode, has the same clock deviation tolDTRA + DMEAS +DQUANT + DREC + DTCL < 3.75% erance as in SCI mode, which is explained below: During reception, each bit is oversampled 16 times. The mean of the 8th, 9th and 10th samples is considered as the bit value. Figure 64.Bit Sampling in Reception Mode RDI LINE sampled values Sample clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 6/16 7/16 7/16 One bit time 113/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) 11.5.9.9 Error due to LIN Synch measurement Consequently, at a given CPU frequency, the maximum possible nominal baud rate (LPRMIN) The LIN Synch Field is measured over eight bit should be chosen with respect to the maximum toltimes. erated deviation given by the equation: This measurement is performed using a counter DTRA + 2 / (128*LDIVMIN) + 1 / (2*16*LDIVMIN) clocked by the CPU clock. The edge detections + DREC + DTCL < 3.75% are performed using the CPU clock cycle. This leads to a precision of 2 CPU clock cycles for the measurement which lasts 16*8*LDIV clock cyExample: cles. A nominal baud rate of 20Kbits/s at TCPU = 125ns Consequently, this error (DMEAS) is equal to: (8 MHz) leads to LDIVNOM = 25d. 2 / (128*LDIVMIN). LDIVMIN = 25 - 0.15*25 = 21.25 LDIVMIN corresponds to the minimum LIN prescalDMEAS = 2 / (128*LDIVMIN) * 100 = 0.00073% er content, leading to the maximum baud rate, takD QUANT = 1 / (2*16*LDIVMIN) * 100 = 0.0015% ing into account the maximum deviation of +/-15%. 11.5.9.10 Error due to Baud Rate Quantization The baud rate can be adjusted in steps of 1 / (16 * LDIV). The worst case occurs when the “real” baud rate is in the middle of the step. This leads to a quantization error (DQUANT) equal to 1 / (2*16*LDIVMIN). 11.5.9.11 Impact of Clock Deviation on Maximum Baud Rate The choice of the nominal baud rate (LDIVNOM) will influence both the quantization error (DQUANT) and the measurement error (DMEAS). The worst case occurs for LDIVMIN. 114/173 LIN Slave systems For LIN Slave systems (the LINE and LSLV bits are set), receivers wake up by LIN Synch Break or LIN Identifier detection (depending on the LHDM bit). Hot Plugging Feature for LIN Slave Nodes In LIN Slave Mute Mode (the LINE, LSLV and RWU bits are set) it is possible to hot plug to a network during an ongoing communication flow. In this case the SCI monitors the bus on the RDI line until 11 consecutive dominant bits have been detected and discards all the other bits received. ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) 11.5.10 LIN Mode Register Description framing error is detected (if the stop bit is dominant (0) and at least one of the other bits is recessive STATUS REGISTER (SCISR) (1). It is not set when a break occurs, the LHDF bit Read Only is used instead as a break flag (if the LHDM Reset Value: 1100 0000 (C0h) bit = 0). It is cleared by a software sequence (an access to the SCISR register followed by a read to 7 0 the SCIDR register). 0: No Framing error TDRE TC RDRF IDLE LHE NF FE PE 1: Framing error detected Bits 7:4 = Same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description. Bit 3 = LHE LIN Header Error. During LIN Header this bit signals three error types: – The LIN Synch Field is corrupted and the SCI is blocked in LIN Synch State (LSF bit = 1). – A timeout occurred during LIN Header reception – An overrun error was detected on one of the header field (see OR bit description in Section 11.5.8 SCI Mode Register Description). An interrupt is generated if RIE = 1 in the SCICR2 register. If blocked in the LIN Synch State, the LSF bit must first be reset (to exit LIN Synch Field state and then to be able to clear LHE flag). Then it is cleared by the following software sequence: An access to the SCISR register followed by a read to the SCIDR register. 0: No LIN Header error 1: LIN Header error detected Note: Apart from the LIN Header this bit signals an Overrun Error as in SCI mode (see description in Section 11.5.8 SCI Mode Register Description). Bit 2 = NF Noise flag In LIN Master mode (LINE bit = 1 and LSLV bit = 0), this bit has the same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description. In LIN Slave mode (LINE bit = 1 and LSLV bit = 1) this bit has no meaning. Bit 0 = PE Parity error. This bit is set by hardware when a LIN parity error occurs (if the PCE bit is set) in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register. 0: No LIN parity error 1: LIN Parity error detected CONTROL REGISTER 1 (SCICR1) Read/Write Reset Value: x000 0000 (x0h) 7 R8 0 T8 SCID M WAKE PCE PS PIE Bits 7:3 = Same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description. Bit 2 = PCE Parity control enable. This bit is set and cleared by software. It selects the hardware parity control for LIN identifier parity check. 0: Parity control disabled 1: Parity control enabled When a parity error occurs, the PE bit in the SCISR register is set. Bit 1 = Reserved Bit 0 = Same function as in SCI mode; please refer to Section 11.5.8 SCI Mode Register Description. Bit 1 = FE Framing error. In LIN slave mode, this bit is set only when a real 115/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) CONTROL REGISTER 2 (SCICR2) 1: LDIV is updated at the next received character Read/Write (when RDRF = 1) after a write to the LPR regisReset Value: 0000 0000 (00h) ter Notes: 7 0 - If no write to LPR is performed between the setting of LDUM bit and the reception of the next TIE TCIE RIE ILIE TE RE RWU SBK character, LDIV will be updated with the old value. - After LDUM has been set, it is possible to reset Bits 7:2 Same function as in SCI mode; please rethe LDUM bit by software. In this case, LDIV can fer to Section 11.5.8 SCI Mode Register Descripbe modified by writing into LPR / LPFR registers. tion. Bit 1 = RWU Receiver wake-up. This bit determines if the SCI is in mute mode or not. It is set and cleared by software and can be cleared by hardware when a wake-up sequence is recognized. 0: Receiver in active mode 1: Receiver in mute mode Notes: – Mute mode is recommended for detecting only the Header and avoiding the reception of any other characters. For more details, please refer to Section 11.5.9.3 LIN Reception. – In LIN slave mode, when RDRF is set, the software can not set or clear the RWU bit. Bit 0 = SBK Send break. This bit set is used to send break characters. It is set and cleared by software. 0: No break character is transmitted 1: Break characters are transmitted Note: If the SBK bit is set to “1” and then to “0”, the transmitter will send a BREAK word at the end of the current word. CONTROL REGISTER 3 (SCICR3) Read/Write Reset Value: 0000 0000 (00h) 7 LDUM LINE LINE LSLV Meaning 0 x LIN mode disabled 0 LIN Master Mode 1 LIN Slave Mode 1 The LIN Master configuration enables: The capability to send LIN Synch Breaks (13 low bits) using the SBK bit in the SCICR2 register. The LIN Slave configuration enables: – The LIN Slave Baud Rate generator. The LIN Divider (LDIV) is then represented by the LPR and LPFR registers. The LPR and LPFR registers are read/write accessible at the address of the SCIBRR register and the address of the SCIETPR register – Management of LIN Headers. – LIN Synch Break detection (11-bit dominant). – LIN Wake-Up method (see LHDM bit) instead of the normal SCI Wake-Up method. – Inhibition of Break transmission capability (SBK has no effect) – LIN Parity Checking (in conjunction with the PCE bit) 0 LSLV LASE LHDM LHIE LHDF LSF Bit 7 = LDUM LIN Divider Update Method. This bit is set and cleared by software and is also cleared by hardware (when RDRF = 1). It is only used in LIN Slave mode. It determines how the LIN Divider can be updated by software. 0: LDIV is updated as soon as LPR is written (if no Auto Synchronization update occurs at the same time). 116/173 Bits 6:5 = LINE, LSLV LIN Mode Enable Bits. These bits configure the LIN mode: Bit 4 = LASE LIN Auto Synch Enable. This bit enables the Auto Synch Unit (ASU). It is set and cleared by software. It is only usable in LIN Slave mode. 0: Auto Synch Unit disabled 1: Auto Synch Unit enabled. Bit 3 = LHDM LIN Header Detection Method This bit is set and cleared by software. It is only usable in LIN Slave mode. It enables the Header Detection Method. In addition if the RWU bit in the ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) SCICR2 register is set, the LHDM bit selects the Figure 65. LSF Bit Set and Clear Wake-Up method (replacing the WAKE bit). 11 dominant bits parity bits 0: LIN Synch Break Detection Method 1: LIN Identifier Field Detection Method Bit 2 = LHIE LIN Header Interrupt Enable This bit is set and cleared by software. It is only usable in LIN Slave mode. 0: LIN Header Interrupt is inhibited. 1: An SCI interrupt is generated whenever LHDF = 1. Bit 1 = LHDF LIN Header Detection Flag This bit is set by hardware when a LIN Header is detected and cleared by a software sequence (an access to the SCISR register followed by a read of the SCICR3 register). It is only usable in LIN Slave mode. 0: No LIN Header detected. 1: LIN Header detected. Notes: The header detection method depends on the LHDM bit: – If LHDM = 0, a header is detected as a LIN Synch Break. – If LHDM = 1, a header is detected as a LIN Identifier, meaning that a LIN Synch Break Field + a LIN Synch Field + a LIN Identifier Field have been consecutively received. Bit 0 = LSF LIN Synch Field State This bit indicates that the LIN Synch Field is being analyzed. It is only used in LIN Slave mode. In Auto Synchronization Mode (LASE bit = 1), when the SCI is in the LIN Synch Field State it waits or counts the falling edges on the RDI line. It is set by hardware as soon as a LIN Synch Break is detected and cleared by hardware when the LIN Synch Field analysis is finished (see Figure 65). This bit can also be cleared by software to exit LIN Synch State and return to idle mode. 0: The current character is not the LIN Synch Field 1: LIN Synch Field State (LIN Synch Field undergoing analysis) LSF bit LIN Synch Break LIN Synch Field Identifier Field LIN DIVIDER REGISTERS LDIV is coded using the two registers LPR and LPFR. In LIN Slave mode, the LPR register is accessible at the address of the SCIBRR register and the LPFR register is accessible at the address of the SCIETPR register. LIN PRESCALER REGISTER (LPR) Read/Write Reset Value: 0000 0000 (00h) 7 0 LPR7 LPR6 LPR5 LPR4 LPR3 LPR2 LPR1 LPR0 LPR[7:0] LIN Prescaler (mantissa of LDIV) These 8 bits define the value of the mantissa of the LIN Divider (LDIV): LPR[7:0] Rounded Mantissa (LDIV) 00h SCI clock disabled 01h 1 ... ... FEh 254 FFh 255 Caution: LPR and LPFR registers have different meanings when reading or writing to them. Consequently bit manipulation instructions (BRES or BSET) should never be used to modify the LPR[7:0] bits, or the LPFR[3:0] bits. 117/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) LIN PRESCALER FRACTION REGISTER will effectively update LDIV and so the clock gen(LPFR) eration. Read/Write 2. In LIN Slave mode, if the LPR[7:0] register is Reset Value: 0000 0000 (00h) equal to 00h, the transceiver and receiver input clocks are switched off. 7 0 0 0 0 0 LPFR 3 LPFR 2 LPFR 1 LPFR 0 Bits 7:4 = Reserved. Bits 3:0 = LPFR[3:0] Fraction of LDIV These 4 bits define the fraction of the LIN Divider (LDIV): LPFR[3:0] Fraction (LDIV) 0h 0 1h 1/16 ... ... Eh 14/16 Fh 15/16 1. When initializing LDIV, the LPFR register must be written first. Then, the write to the LPR register 118/173 Examples of LDIV coding: Example 1: LPR = 27d and LPFR = 12d This leads to: Mantissa (LDIV) = 27d Fraction (LDIV) = 12/16 = 0.75d Therefore LDIV = 27.75d Example 2: LDIV = 25.62d This leads to: LPFR = rounded(16*0.62d) = rounded(9.92d) = 10d = Ah LPR = mantissa (25.620d) = 25d = 1Bh Example 3: LDIV = 25.99d This leads to: LPFR = rounded(16*0.99d) = rounded(15.84d) = 16d ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d) LIN HEADER LENGTH REGISTER (LHLR) LHL[1:0] Read Only 0h Reset Value: 0000 0000 (00h). 7 0 LHL7 LHL6 LHL5 LHL4 LHL3 LHL2 LHL1 LHL0 Note: In LIN Slave mode when LASE = 1 or LHDM = 1, the LHLR register is accessible at the address of the SCIERPR register. Otherwise this register is always read as 00h. Bits 7:0 = LHL[7:0] LIN Header Length. This is a read-only register, which is updated by hardware if one of the following conditions occurs: - After each break detection, it is loaded with “FFh”. - If a timeout occurs on THEADER, it is loaded with 00h. - After every successful LIN Header reception (at the same time than the setting of LHDF bit), it is loaded with a value (LHL) which gives access to the number of bit times of the LIN header length (THEADER). The coding of this value is explained below: LHL Coding: THEADER_MAX = 57 LHL(7:2) represents the mantissa of (57 - THEADER) LHL(1:0) represents the fraction (57 - THEADER) LHL[7:2] Mantissa (57 - THEADER) Mantissa (THEADER) 0h 0 57 1h 1 56 ... ... ... 39h 56 1 3Ah 57 0 3Bh 58 Never Occurs ... ... ... 3Eh 62 Never Occurs 3Fh 63 Initial value Fraction (57 - THEADER) 0 1h 1/4 2h 1/2 3h 3/4 Example of LHL coding: Example 1: LHL = 33h = 001100 11b LHL(7:3) = 1100b = 12d LHL(1:0) = 11b = 3d This leads to: Mantissa (57 - THEADER) = 12d Fraction (57 - THEADER) = 3/4 = 0.75 Therefore: (57 - THEADER) = 12.75d and THEADER = 44.25d Example 2: 57 - THEADER = 36.21d LHL(1:0) = rounded(4*0.21d) = 1d LHL(7:2) = Mantissa (36.21d) = 36d = 24h Therefore LHL(7:0) = 10010001 = 91h Example 3: 57 - THEADER = 36.90d LHL(1:0) = rounded(4*0.90d) = 4d The carry must be propagated to the matissa: LHL(7:2) = Mantissa (36.90d) + 1 = 37d = Therefore LHL(7:0) = 10110000 = A0h 119/173 ST7LITE3xF2 LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master/Slave) (Cont’d) Table 21. LINSCI1 Register Map and Reset Values Addr. (Hex.) Register Name 7 6 5 4 3 2 1 0 40 SCISR Reset Value TDRE 1 TC 1 RDRF 0 IDLE 0 OR/LHE 0 NF 0 FE 0 PE 0 41 SCIDR Reset Value DR7 - DR6 - DR5 - DR4 - DR3 - DR2 - DR1 - DR0 - 42 SCIBRR LPR (LIN Slave Mode) Reset Value SCP1 LPR7 0 SCP0 LPR6 0 SCT2 LPR5 0 SCT1 LPR4 0 SCT0 LPR3 0 SCR2 LPR2 0 SCR1 LPR1 0 SCR0 LPR0 0 43 SCICR1 Reset Value R8 x T8 0 SCID 0 M 0 WAKE 0 PCE 0 PS 0 PIE 0 44 SCICR2 Reset Value TIE 0 TCIE 0 RIE 0 ILIE 0 TE 0 RE 0 RWU 0 SBK 0 45 SCICR3 Reset Value NP 0 LINE 0 LSLV 0 LASE 0 LHDM 0 LHIE 0 LHDF 0 LSF 0 46 SCIERPR LHLR (LIN Slave Mode) Reset Value ERPR7 LHL7 0 ERPR6 LHL6 0 ERPR5 LHL5 0 ERPR4 LHL4 0 ERPR3 LHL3 0 ERPR2 LHL2 0 ERPR1 LHL1 0 ERPR0 LHL0 0 47 SCITPR LPFR (LIN Slave Mode) Reset Value ETPR7 LDUM 0 ETPR6 0 0 ETPR5 0 0 ETPR4 0 0 ETPR3 LPFR3 0 ETPR2 LPFR2 0 ETPR1 LPFR1 0 ETPR0 LPFR0 0 120/173 ST7LITE3xF2 11.6 10-BIT A/D CONVERTER (ADC) 11.6.1 Introduction The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 7 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 7 different sources. The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register. Data register (DR) which contains the results Conversion complete status flag ■ On/off bit (to reduce consumption) The block diagram is shown in Figure 66. ■ ■ 11.6.3 Functional Description 11.6.3.1 Analog Power Supply VDDA and VSSA are the high and low level reference voltage pins. In some devices (refer to device pin out description) they are internally connected to the VDD and VSS pins. Conversion accuracy may therefore be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines. 11.6.2 Main Features ■ 10-bit conversion ■ Up to 7 channels with multiplexed input ■ Linear successive approximation Figure 66. ADC Block Diagram fCPU DIV 4 DIV 2 1 fADC 0 0 1 EOC SPEED ADON SLOW bit 0 0 CH2 CH1 ADCCSR CH0 3 AIN0 HOLD CONTROL RADC AIN1 ANALOG TO DIGITAL ANALOG MUX CONVERTER CADC AINx ADCDRH D9 D8 ADCDRL D7 D6 0 D5 0 D4 0 D3 0 D2 SLOW 0 D1 D0 121/173 ST7LITE3xF2 10-BIT A/D CONVERTER (ADC) (Cont’d) 11.6.3.2 Digital A/D Conversion Result The conversion is monotonic, meaning that the result never decreases if the analog input does not and never increases if the analog input does not. If the input voltage (VAIN) is greater than VDDA (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication). If the input voltage (VAIN) is lower than VSSA (lowlevel voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h. The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and ADCDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section. RAIN is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the alloted time. 11.6.3.3 A/D Conversion The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the «I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input. In the ADCCSR register: – Select the CS[2:0] bits to assign the analog channel to convert. ADC Conversion mode In the ADCCSR register: Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel. When a conversion is complete: – The EOC bit is set by hardware. – The result is in the ADCDR registers. A read to the ADCDRH or a write to any bit of the ADCCSR register resets the EOC bit. 122/173 To read the 10 bits, perform the following steps: 1. Poll EOC bit 2. Read ADCDRL 3. Read ADCDRH. This clears EOC automatically. To read only 8 bits, perform the following steps: 1. Poll EOC bit 2. Read ADCDRH. This clears EOC automatically. 11.6.3.4 Changing the conversion channel The application can change channels during conversion. When software modifies the CH[2:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel. 11.6.4 Low Power Modes The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed and between single shot conversions. Mode WAIT HALT Description No effect on A/D Converter A/D Converter disabled. After wakeup from Halt mode, the A/D Converter requires a stabilization time tSTAB (see Electrical Characteristics) before accurate conversions can be performed. 11.6.5 Interrupts None. ST7LITE3xF2 10-BIT A/D CONVERTER (ADC) (Cont’d) 11.6.6 Register Description DATA REGISTER HIGH (ADCDRH) Read Only Reset Value: 0000 0000 (00h) CONTROL/STATUS REGISTER (ADCCSR) Read/Write (Except bit 7 read only) Reset Value: 0000 0000 (00h) 7 EOC SPEED ADON 0 0 CH2 CH1 0 7 CH0 D9 Bit 7 = EOC End of Conversion This bit is set by hardware. It is cleared by hardware when software reads the ADCDRH register or writes to any bit of the ADCCSR register. 0: Conversion is not complete 1: Conversion complete Bit 6 = SPEED ADC clock selection This bit is set and cleared by software. It is used together with the SLOW bit to configure the ADC clock speed. Refer to the table in the SLOW bit description. 0 D8 D7 D6 D5 D4 D3 D2 Bit 7:0 = D[9:2] MSB of Analog Converted Value CONTROL AND DATA REGISTER LOW (ADCDRL) Read/Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 SLOW 0 D1 D0 Bit 5 = ADON A/D Converter on This bit is set and cleared by software. 0: A/D converter is switched off 1: A/D converter is switched on Bit 7:5 = Reserved. Forced by hardware to 0. Bit 4:3 = Reserved. Must be kept cleared. Bit 3 = SLOW Slow mode Bit 4 = Reserved. Forced by hardware to 0. Bit 2:0 = CH[2:0] Channel Selection These bits are set and cleared by software. They select the analog input to convert. Channel Pin* CH2 CH1 CH0 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 This bit is set and cleared by software. It is used together with the SPEED bit to configure the ADC clock speed as shown on the table below. fADC fCPU/2 fCPU fCPU/4 SLOW SPEED 0 0 1 0 1 x Bit 2 = Reserved. Forced by hardware to 0. Bit 1:0 = D[1:0] LSB of Analog Converted Value *The number of channels is device dependent. Refer to the device pinout description. 123/173 ST7LITE3xF2 Table 22. ADC Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 0034h ADCCSR Reset Value EOC 0 SPEED 0 ADON 0 0 0 0 0 CH2 0 CH1 0 CH0 0 0035h ADCDRH Reset Value D9 0 D8 0 D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 0036h ADCDRL Reset Value 0 0 0 0 0 0 0 0 SLOW 0 0 0 D1 0 D0 0 124/173 ST7LITE3xF2 12 INSTRUCTION SET 12.1 ST7 ADDRESSING MODES The ST7 Core features 17 different addressing modes which can be classified in seven main groups: Addressing Mode Example Inherent nop Immediate ld A,#$55 Direct ld A,$55 Indexed ld A,($55,X) Indirect ld A,([$55],X) Relative jrne loop Bit operation bset byte,#5 The ST7 Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two submodes called long and short: – Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles. – Short addressing mode is less powerful because it can generally only access page zero (0000h 00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP) The ST7 Assembler optimizes the use of long and short addressing modes. Table 23. ST7 Addressing Mode Overview Mode Syntax Pointer Address (Hex.) Destination/ Source Pointer Size (Hex.) Length (Bytes) Inherent nop +0 Immediate ld A,#$55 +1 Short Direct ld A,$10 00..FF +1 Long Direct ld A,$1000 0000..FFFF +2 No Offset Direct Indexed ld A,(X) 00..FF + 0 (with X register) + 1 (with Y register) Short Direct Indexed ld A,($10,X) 00..1FE +1 Long Direct Indexed Short Indirect ld A,($1000,X) 0000..FFFF ld A,[$10] 00..FF +2 00..FF byte +2 Long Indirect ld A,[$10.w] 0000..FFFF 00..FF word +2 Short Indirect Indexed ld A,([$10],X) 00..1FE 00..FF byte +2 Long Indirect Indexed ld A,([$10.w],X) 0000..FFFF 00..FF word +2 byte +2 1) +1 Relative Direct jrne loop PC-128/PC+127 Relative Indirect jrne [$10] PC-128/PC+1271) 00..FF Bit Direct bset $10,#7 00..FF Bit Indirect bset [$10],#7 00..FF Bit Direct btjt $10,#7,skip 00..FF Relative +1 00..FF byte +2 +2 Bit Indirect Relative btjt [$10],#7,skip 00..FF 00..FF byte +3 Note: 1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx. 125/173 ST7LITE3xF2 ST7 ADDRESSING MODES (cont’d) 12.1.1 Inherent All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation. Inherent Instruction Function NOP No operation TRAP S/W Interrupt WFI Wait For Interrupt (Low Power Mode) HALT Halt Oscillator (Lowest Power Mode) RET Subroutine Return IRET Interrupt Subroutine Return SIM Set Interrupt Mask RIM Reset Interrupt Mask SCF Set Carry Flag RCF Reset Carry Flag RSP Reset Stack Pointer LD Load CLR Clear PUSH/POP Push/Pop to/from the stack INC/DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement MUL Byte Multiplication SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles 12.1.2 Immediate Immediate instructions have 2 bytes, the first byte contains the opcode, the second byte contains the operand value. Immediate Instruction Function LD Load CP Compare BCP Bit Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Operations 126/173 12.1.3 Direct In Direct instructions, the operands are referenced by their memory address. The direct addressing mode consists of two submodes: Direct (Short) The address is a byte, thus requires only 1 byte after the opcode, but only allows 00 - FF addressing space. Direct (Long) The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode. 12.1.4 Indexed (No Offset, Short, Long) In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset. The indirect addressing mode consists of three submodes: Indexed (No Offset) There is no offset (no extra byte after the opcode), and allows 00 - FF addressing space. Indexed (Short) The offset is a byte, thus requires only 1 byte after the opcode and allows 00 - 1FE addressing space. Indexed (Long) The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode. 12.1.5 Indirect (Short, Long) The required data byte to do the operation is found by its memory address, located in memory (pointer). The pointer address follows the opcode. The indirect addressing mode consists of two submodes: Indirect (Short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode. Indirect (Long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. ST7LITE3xF2 ST7 ADDRESSING MODES (cont’d) 12.1.6 Indirect Indexed (Short, Long) This is a combination of indirect and short indexed addressing modes. The operand is referenced by its memory address, which is defined by the unsigned addition of an index register value (X or Y) with a pointer value located in memory. The pointer address follows the opcode. The indirect indexed addressing mode consists of two submodes: Indirect Indexed (Short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing space, and requires 1 byte after the opcode. Indirect Indexed (Long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. 12.1.7 Relative Mode (Direct, Indirect) This addressing mode is used to modify the PC register value by adding an 8-bit signed offset to it. Available Relative Direct/ Indirect Instructions Function JRxx Conditional Jump CALLR Call Relative The relative addressing mode consists of two submodes: Relative (Direct) The offset follows the opcode. Relative (Indirect) The offset is defined in memory, of which the address follows the opcode. Table 24. Instructions Supporting Direct, Indexed, Indirect and Indirect Indexed Addressing Modes Long and Short Instructions Function LD Load CP Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Addition/subtraction operations BCP Bit Compare Short Instructions Only Function CLR Clear INC, DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement BSET, BRES Bit Operations BTJT, BTJF Bit Test and Jump Operations SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles CALL, JP Call or Jump subroutine 127/173 ST7LITE3xF2 12.2 INSTRUCTION GROUPS The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may be subdivided into 13 main groups as illustrated in the following table: Load and Transfer LD CLR Stack operation PUSH POP Increment/Decrement INC DEC Compare and Tests CP TNZ BCP Logical operations AND OR XOR CPL NEG Bit Operation BSET BRES Conditional Bit Test and Branch BTJT BTJF Arithmetic operations ADC ADD SUB SBC MUL Shift and Rotates SLL SRL SRA RLC RRC SWAP SLA Unconditional Jump or Call JRA JRT JRF JP CALL CALLR NOP Conditional Branch JRxx Interruption management TRAP WFI HALT IRET Condition Code Flag modification SIM RIM SCF RCF Using a prebyte The instructions are described with 1 to 4 bytes. In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede. The whole instruction becomes: PC-2 End of previous instruction PC-1 Prebyte PC Opcode PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are: 128/173 RSP RET PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one. PIX 92 Replace an instruction using direct, direct bit or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode. PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one. 12.2.1 Illegal Opcode Reset In order to provide enhanced robustness to the device against unexpected behavior, a system of illegal opcode detection is implemented. If a code to be executed does not correspond to any opcode or prebyte value, a reset is generated. This, combined with the Watchdog, allows the detection and recovery from an unexpected fault or interference. Note: A valid prebyte associated with a valid opcode forming an unauthorized combination does not generate a reset. ST7LITE3xF2 INSTRUCTION GROUPS (cont’d) Mnemo Description Function/Example Dst Src H I N Z C ADC Add with Carry A=A+M+C A M H N Z C ADD Addition A=A+M A M H N Z C AND Logical And A=A.M A M N Z BCP Bit compare A, Memory tst (A . M) A M N Z BRES Bit Reset bres Byte, #3 M BSET Bit Set bset Byte, #3 M BTJF Jump if bit is false (0) btjf Byte, #3, Jmp1 M C BTJT Jump if bit is true (1) btjt Byte, #3, Jmp1 M C CALL Call subroutine CALLR Call subroutine relative CLR Clear CP Arithmetic Compare tst(Reg - M) reg CPL One Complement A = FFH-A DEC Decrement dec Y reg, M HALT Halt IRET Interrupt routine return Pop CC, A, X, PC INC Increment inc X JP Absolute Jump jp [TBL.w] JRA Jump relative always JRT Jump relative JRF Never jump JRIH Jump if ext. interrupt = 1 0 1 N Z C reg, M N Z 1 reg, M N Z N Z N Z M 0 H reg, M I C jrf * JRIL Jump if ext. interrupt = 0 JRH Jump if H = 1 H=1? JRNH Jump if H = 0 H=0? JRM Jump if I = 1 I=1? JRNM Jump if I = 0 I=0? JRMI Jump if N = 1 (minus) N=1? JRPL Jump if N = 0 (plus) N=0? JREQ Jump if Z = 1 (equal) Z=1? JRNE Jump if Z = 0 (not equal) Z=0? JRC Jump if C = 1 C=1? JRNC Jump if C = 0 C=0? JRULT Jump if C = 1 Unsigned < JRUGE Jump if C = 0 Jmp if unsigned >= JRUGT Jump if (C + Z = 0) Unsigned > 129/173 ST7LITE3xF2 INSTRUCTION GROUPS (cont’d) Mnemo Description Function/Example Dst Src JRULE Jump if (C + Z = 1) Unsigned
ST7FLITE39F2U6 价格&库存

很抱歉,暂时无法提供与“ST7FLITE39F2U6”相匹配的价格&库存,您可以联系我们找货

免费人工找货