STA120
DIGITAL AUDIO INTERFACE RECEIVER
■
■
■
■
■
MONOLITHIC CMOS RECEIVER
3.3V SUPPLY VOLTAGE
LOW-JITTER, ON-CHIP CLOCK RECOVERY
256xFs OUTPUT CLOCK PROVIDED
SUPPORTS: AES/EBU, IEC 958, S/PDIF, &
EIAJ CP-340/1201 PROFESSIONAL AND
CONSUMER FORMATS
EXTENSIVE ERROR REPORTING REPEAT
LAST SAMPLE ON ERROR OPTION
SO28
ORDERING NUMBER: STA120D
tion signals and de-multiplexes the audio and digital data. Differential or single ended inputs can be
decoded.
DESCRIPTION
The STA120 is a monolithic CMOS device that receives and decodes audio data according to the
AES/EBU, IEC 958, S/PDIF, & EIAJ CP-340/1201
interface standards.
The STA120 de-multiplexes the channel, user and
validity data directly to serial output pins with dedicated output pins for the most important channel
status bits.
The STA120 recovers the clock and synchronizaBLOCK DIAGRAM
VD+
DGND
7
8
VA+
FILT
22
AGND MCK
20
21
M3
19
M1
M2
17
18
M0
24
23
26
RXP
RXN
10
CLOCK & DATA
RECOVERY
RS422
Receiver
12
AUDIO
SERIAL PORT
9
11
DE MUX
1
14
REGISTERS
MUX
13
CS12/FCK
December 2002
28
MUX
16
SEL
6
5
4
3
2
27
C0/E0 Ca/E1 Cb/E2 Cc/F0 Cd/F1 Ce/F2
25
ERF
SDATA
SCK
FSYNC
C
U
VREF
15
CBL
D97AU613A
1/15
STA120
ABSOLUTE MAXIMUM RATINGS
Symbol
VD+, VA+
VIN
Parameter
Power Supply Voltage
Input Voltage ( excluding pins 9, 10)
Value
Unit
4
V
-0.3 to VD+ +0.3
V
Tamb
Ambient Operating Temperature (power applied)
-30 to +85
°C
Tstg
Storage Temperature
-40 to 150
°C
PIN CONNECTIONS (Top view)
C
1
28
VERF
Cd/F1
2
27
Ce/F2
Cc/F0
3
26
SDATA
Cb/E2
4
25
ERF
Ca/E1
5
24
M1
C0/E0
6
23
M0
VD+
7
22
VA+
DGND
8
21
AGND
RXP
9
20
FILT
RXN
10
19
MCK
FSYNC
11
18
M2
SCK
12
17
M3
CS12/FCK
13
16
SEL
U
14
15
CBL
D97AU609A
PINS DESCRIPTION
N.
Name
Description
Power Supply
7
VD+
8
DGND
Digital Ground.Ground for the digital section.
21
AGND
Analog Ground.Ground for the analog section. AGND should be connected to same ground as
DGND.
22
VA+
Positive Digital Power.Positive supply for the digital section. Nominally 3.3V.
Positive Analog Power.Positive supply for the analog section. Nominally 3.3V.
Audio Output Interface
11
FSYNC
Frame Sync.Delineates the serial data and may indicate the particular channel, left or right and
may be an input or output. The format is based on M0, M1, M2 and M3 pins.
12
SCK
Serial Clock.Serial clock for SDATA pin which can be configured (via the M0, M1, M2 and M3
pins) as an input or output and can sample data on the rising or falling edge. As an output, SCK
will generate 32 clocks for every audio sample. As an input, 32 SCK periods per audio sample
must be provided in all normal modes.
17, 18,
23, 24
M2, M3,
M1, M0
Serial Port Mode Selects.Selects the format of Fsync and the sample edge of SCK with respect
to SDATA.
26
SDATA
2/15
Serial Data. Audio data serial output pin.
STA120
PINS DESCRIPTION (continued)
N.
Name
Description
Control Pins
1
C
Channel Status Output. Received channel status bit serial output port. FSYNC may be used to
latch this bit externally. Except in I2S modes when this pin is updated at the active edge off
Fsync.
2
Cd
Channel Status Output Bits.These pin are dual Function with the "C" bits selected when SEL is
high. Channel status information is displayed for the channel selected by CS12. C0, which is
channel status bit 0, defines professional (C0 = 0) or consumer (C0 = 1) mode and further
controls the definition of the Ca-Ce pins. These pins are updated with the rising edge of CBL.
F1
Frequency reporting Bits.Encoder sample frequency information that is enabled by bringing SEL
low. A proper clock on FCK must be input for at least two thirds of a channel status block for
these pins to be valid. They are updated three times per block, starting at the block boundary.
Cc
Channel Status Output Bits.These pin are dual Function with the "C" bits selected when SEL is
high. Channel status information is displayed for the channel selected by CS12. C0, which is
channel status bit 0, defines professional (C0 = 0) or consumer (C0 = 1) mode and further
controls the definition of the Ca-Ce pins. These pins are updated with the rising edge of CBL.
F0
Frequency reporting Bits.Encoded sample frequency information that is enabled by bringing SEL
low. A proper clock on FCK must be input for at least two thirds of a channel status block for
these pins to be valid. They are updated three times per block, starting at the block boundary.
Cb
Channel Status Output Bits.These pin are dual Function with the "C" bits selected when SEL is
high. Channel status information is displayed for the channel selected by CS12. C0, which is
channel status bit 0, defines professional (C0 = 0) or consumer (C0 = 1) mode and further
controls the definition of the Ca-Ce pins. These pins are updated with the rising edge of CBL.
E2
Error Condition.Encoded error information that is enabled by bringing SEL low. The error codes
are prioritized and latched so that the error code displayed is the highest level of error since the
last clearing of the error pins. Clearing is accomplished by bringing SEL high for more than 8
MCK cycles.
5
Ca
Channel Status Output Bits.These pin are dual Function with the "C" bits selected when SEL is
high. Channel status information is displayed for the channel selected by CS12. C0, which is
channel status bit 0, defines professional (C0 = 0) or consumer (C0 = 1) mode and further
controls the definition of the Ca-Ce pins. These pins are updated with the rising edge of CBL.
5
E2
Error Condition.Encoded error information that is enabled by bringing SEL low. The error codes
are prioritized and latched so that the error code displayed is the highest level of error since the
last clearing of the error pins. Clearing is accomplished by bringing SEL high for more than 8
MCK cycles.
6
C0
Channel Status Output Bits.These pin are dual Function with the "C" bits selected when SEL is
high. Channel status information is displayed for the channel selected by CS12. C0, which is
channel status bit 0, defines professional (C0 = 0) or consumer (C0 = 1) mode and further
controls the definition of the Ca-Ce pins. These pins are updated with the rising edge of CBL.
E0
Error Condition.Encoded error information that is enabled by bringing SEL low. The error codes
are prioritized and latched so that the error code displayed is the highest level of error since the
last clearing of the error pins. Clearing is accomplished by bringing SEL high for more than 8
MCK cycles.
CS12
Channel Select.This pin is also dual function and is selected by bringing SEL high. CS12 selects
sub-frame1 (when low) or sub-frame2 (when high) to be displayed by channel status pins C0 an
Ca through Ce.
FCK
Frequency Clock.Frequency Clock input that is enabled by bringing SEL low. FCK is compared to
the received clock frequency with the value displayed on F2 through F0. Nominal input value is
6.144MHz.
14
U
User Bit.Received user bit serial output port, FSYNC may be used to latch this bit externally.
Except in I2S modes when this pin is updated at the active edge off Fsync.
15
CBL
Channel Status Block Start.The channel status block output is high for the first four bytes of
channel status and low for the last 20 bytes.
3
4
13
3/15
STA120
PINS DESCRIPTION (continued)
N.
Name
Description
16
SEL
Select.Control pin that selects either channel status information (SEL = 1) or error and frequency
information (SEL = 0) to be displayed on six (C0, Ca Cb, Cc, Cd, Ce) pins.
27
Ce
Channel Status Output Bits.These pin are dual Function with the "C" bits selected when SEL is
high. Channel status information is displayed for the channel selected by CS12. C0, which is
channel status bit 0, defines professional (C0 = 0) or consumer (C0 = 1) mode and further
controls the definition of the Ca-Ce pins. These pins are updated with the rising edge of CBL.
F2
Frequency reporting Bits.Encoded sample frequency information that is enabled by bringing SEL
low. A proper clock on FCK must be input for at least two thirds of a channel status block for
these pins to be valid. They are updated three times per block, starting at the block boundary.
VERF
Validity + Error Flag. A logical OR'ing of the validity bit from the received data and the error flag.
May be used by interpolation filters to interpolate through errors.
28
Receiver Interface
9
RXP
Line Receiver. (RS422 compatible)
10
RXN
Line Receiver. (RS422 compatible)
Phase Locked Loop
19
MCK
Master Clock.Low Jitter clock output of 256 times the received sample frequency.
20
FILT
Filter.An external 330 Ohm resistor and 0.47µF capacitor in parallel with a 15nF capacitor is
required from FILT pin to analog ground.
25
ERF
Error Flag,Signals that an error has occurred while receiving the audio sample currently being
read from the serial port. Three errors cause ERF to go high: a parity or biphase coding violation
during the current sample, or an out of lock PLL receiver.
DIGITAL CHARACTERISTICS (Tamb = 25°C; VD+, VA+ = 3.3V ±10%)
Symbol
VD+,VA+
Parameter
Test Condition
Min.
Typ.
Max.
Unit
3.3
3.6
V
Power supply voltage Range
3.0
VIH
High-Level Input Voltage
2.0
VIL
Low-Level Input Voltage
VOH
High-Level Output Voltage
I O = 200µA
VOL
Low-Level Output Voltage
IO = 3.2mA
+0.8
VDD-1.0
Iin
Input Leakage Current
Input Sample Frequency
(Note 1)
25
MCK
Master Clock frequency
(Note 1)
6.4
MCK Duty Cycle
Idd_ST
Idd_DYN
1.0
MCK Clock Jitter
256xFS
(high time/cycle time)
10
µA
kHz
25
MHz
ps RMS
50
Dynamic Idd
V
96
300
Static Idd (MCK = 0)
V
V
0.4
FS
tj
V
%
0.1
1
mA
6
15
mA
Note 1: FS is defined as the incoming audio sample frequency per channel.
SWITCHING CHARACTERISTICS - SERIAL PORTS (Tamb = 25°C; VD+, VA+ = 3.3V ±10%)
Symbol
fsck
Parameter
SCK Frequency
Test Condition
(Note 2)
Min.
Typ.
OWRx32
Max.
Unit
Hz
Note 2: The output word rate, OWR, refers to the frequency at which an audio sample is output from the part. (A stereo pair is two audio
samples). Therefore, in Master mode, there are always 32 SCK periods in one audio sample. In Slave mode 32 SCK periods must
be provided in most serial port formats.
4/15
STA120
Figure 1. Circuit Diagram
3.3V
ANALOG
0.1µF
AGND
RXP
RECEIVER
CIRCUIT
(See Appendix A)
RXN
CS12/FCK
CHANNEL STATUS
and/or
ERROR/FREQUENCY
REPORTING
SEL
ERF
C/E-F bits
FILT
330Ω
0.47µF
3.3V
DIGITAL
0.1µF
VA+
21
VD+
22
7
19
9
28
12
10
13
26
STA120
11
16
25
1
6
14
20
15
MCK
VERF
SCK
SDATA
AUDIO
DATA
PROCESSOR
FSYNC
C
U
CBL
µCONTROLLER
or
LOGIC
8
15nF
DGND
D97AU611
GENERAL DESCRIPTION
The STA120 is a monolithic CMOS circuit that receives and decodes audio and digital data according to
the AES/EBU, IEC 958, S/PDIF, and EIAJ CP-340/1201 interface standards.
It contains a RS422 line receiver and Phase-Locked Loops (PLL) that recovers the clock and synchronization signals and de-multiplexes the audio and digital data. The STA120 de-multiplexes the channel status, user and validity information directly to serial output pins with dedicated pins for the most important
channel status bits.
Line Receiver
The line receiver can decode differential as well as single ended inputs. The receiver consits of a differential input Schmitt trigger with 50mV of hysteresis. The hysteresis prevents noisy signals from corrupting
the phase detector. Appendix A contains more information on how to configure the line receivers for differential and single ended signals.
Clocks and Jitter Attenuation
The primary function of this chip is to recover audio data and low jitter clocks from a digital audio transmission line. The clocks that can be generated are MCK (256xFS), SCK (64xFS), and FSYNC (FS or
2xFS). MCK is the output of the voltage controlled oscillator which is a component of the PLL. The PLL
consists of phase and frequency detectors, a second-order loop filter, and a voltage controlled oscillator.
All components of the PLL are on chip with the exception of a resistor and capacitors used in the loop filter.
This filter is connected between the FILT pin and AGND. The closed-loop transfer function, which specifies the PLL's jitter attenuation characteristics, is shown in Figure 2.
The loop will begin to attenuate jitter at approximately 25kHz with another pole at 80kHz and will have
50dB of attenuation by 1MHz. Since most data jitter introduced by the transmission line is high in frequency, it will be strongly attenuated.
Multiple frequency detectors are used to minimize the time it takes the PLL to lock to the incoming data
stream and to prevent false lock conditions. When the PLL is not locked to the incoming data stream, the
5/15
STA120
frequency detectors pull the VCO frequency within
the lock range of the PLL. When no digital audio
data is present, the VCO frequency is pulled to its
minimum value.
Figure 2. Jitter Attenuator Characteristics.
configurable serial port that supports 14 formats.
The channel status and user data have their own
serial pins and the validity flag is OR'ed with the
ERF flag to provide a single pin, VERF, indicating
that the audio output may not be valid. This pin
may be used by interpolation filters that provide error correction.
D97AU612
(dB)
Audio Serial Port
The audio serial port is used primarily to output audio data and consists of three pins: SCK, FSYNC
and SDATA. These pins are configured via four
control pins: M0, M1,M2,and M3.M3 selects between eight normal serial formats (M3 = 0), and six
special formats (M3 = 1).
25
50
Normal Modes (M3 = 0)
75
100
1
10
100
1000
(KHz)
As a master, SCK is always MCK divided by four,
producing a frequency of 64 x FS. In the STA120,
FSYNC is always generated from the incoming
data stream. When FSYNC is generated from the
data its edges are extracted at times when intersymbol interference is at a minimum. This provides a sample frequency clock that is as
spectrally pure as the digital audio source clock for
moderate length transmission lines.
STA120 DESCRIPTION
The STA120 does not need a microprocessor to
handle the non-audio data (although a micro may
be used with the C and U serial ports). Instead,
dedicated pins are available for the most important
channel status bits. The STA120 is a monolithic
CMOS circuits that receives and decodes digital
audio data which was encoded according to the
digital audio interface standards. It contains a
clock and data recovery utilizing an on-chip phaselocked loop. The output data is output through a
6/15
When M3 is low, the normal serial port formats
shown in Figure 3 are selected using M2, M1 and
M0. These formats are also listed in Table 1
wherein the first word part the format number (OutIn) indicates whether FSYNC and SCK are outputs
from the STA120 or are inputs.
The next word (L/R-WSYNC) indicates whether
FSYNC indicates the particular channel or just delineates each word. If an error occurs (ERF=1)
while using one of these formats, the previous valid audio data for that channel will be output.
If the STA120 is not locked, the last sample is repeated at the output. In some modes FSYNC and
SCK are outputs and in others they are inputs. In
Table 3, LSBJ is short for LSB justified where the
LSB is justified to the end of the audio frame and
the MSB varies with word length. As outputs the
STA120 generates 32 SCK periods per audio
sample (64 per stereo sample) and, as inputs, 32
SCK periods must be provided per audio sample.
When FSYNC and SCK are inputs, one stereo
sample is double buffered. For those modes which
output 24 bits of audio data, the auxiliary bits will
be included. If the auxiliary bits are not used for
audio data, they must be masked off.
STA120
Table 1. Normal Audio Port Modes (M3 = 0)
M2
M1
M0
Format
0
0
0
0 - Out, L/R, 16-24 Bits
0
0
1
1 - In, L/R, 16-24 Bits
0
1
0
2 - Out, L/R, I2S Compatible
0
1
1
3 - In, L/R, I2S Compatible
1
0
0
4 - Out, WSYNC, 16-24 Bits
1
0
1
5 - Out, L/R, 16 Bits LSBJ
1
1
0
6 - Out, L/R, 18 Bits LSBJ
1
1
1
7 - Out, L/R, MSB Last
Special Modes (M3 = 1)
When M3 is high, the special audio modes described in Table 2 are selected via M2, M1, and M0. In formats 8, 9, and 10, SCK, FSYNC, and SDATA are the same as in formats 0, 1, and 2 respectively; however,
the recovered data is output as is even if ERF is high, indicating an error. (In modes 0-2 the previous valid
sample is output).
When out of lock invalid data are sent to the output and the ERF pin goes high.
Format 11 is similar to format 0 except that SCK is an input and FSYNC is an output.
In this mode FSYNC and SDATA are synchronized to the incoming SCK, This mode may be useful when
writing data to storage.
Table 2. Special Audio Port Modes (M3 = 1)
M2
M1
M0
Format
0
0
0
8 - Format 0 - No repeat on error
0
0
1
9 - Format 1 - No repeat on error
0
1
0
10 - Format 2 - No repeat on error
0
1
1
11 - Format 0 - Async. SCK input
1
0
0
12 - Received NRZ Data
1
0
1
13 - Received Bi-phase Data
1
1
0
14 - Reserved
1
1
1
15 - STA120 Reset
Format 12 is similar to format 7 except that SDATA is the entire data word received from the transmission
line including the C, U, V, and P bits, with zeros in place of the preamble. In format 13 SDATA contains
the entire biphase encoded data from the transmission line including the preamble, and SCK is twice the
normal frequency.
The normal two frame delay of data from input to output is reduced to only a few bit periods in formats 12
and 13. However, the C, U, V bits and error codes follow their normal pathways and therefore follow the
output data by nearly two frames. Figure 4.... illustrates formats 12 and 13. Format 14 is reserved and not
presently used, and format 15 causes the STA120 to go into a reset state. While in reset all outputs will
be inactive except MCK. The STA120 incorporates a Power-on Reset to avoid a Reset at power-up.
C, U, VERF, ERF, and CBL Serial Outputs
The C and U bits and CBL are output one SCK period prior to the active edge of FSYNC in all serial port
formats except 2, 3 and 10 (I2S modes). The active edge of FSYNC may be used to latch C, U, and CBL
externally. In formats 2, 3 and 10, the C and U bits and CBL are updated with the active edge of FSYNC.
The validity + error flag (VERF) and the error flag (ERF) are always updated at the active edge of FSYNC.
7/15
STA120
This timing is illustrated in Figure 5.
The C output contains the channel status bits with CBL rising indicating the start of a new channel status
block. CBL is high for the first four bytes of channel status (32 frames or 64 samples) and low for the last
20 bytes of channel status (160 frames or 320 samples).
The U output contains the User Channel data. The V bit is OR'ed with the ERF flag and output on the
VERF pin. This indicates that the audio sample may be in error and can be used by interpolation filters to
interpolate through the error.
ERF being high indicates a serious error occurred on the transmission line. There are three errors that
cause ERF to go high: a parity error or biphase coding violation during that sample, or an out of lock PLL
receiver. Timing for the above pins is illustrated in Figure 5.
Multifunction Pins
There are seven multifunction pins which contain either error and received frequency information, or channel status information, selectable by SEL.
Figure 3. Audio Serial Port Formats
FORMAT 0:
M2 M1 M0
FSYNC(out)
0 0 0
LEFT
RIGHT
SCK(out)
SDATA(out)
FORMAT 1:
0
MSB
FSYNC(in)
0
LSB
MSB
LEFT
LSB
MSB
LSB
MSB
RIGHT
1
SCK(in)
SDATA(out)
FORMAT 2:
0
MSB
FSYNC(out)
1
LSB
MSB
LEFT
RIGHT
0
SCK(out)
SDATA(out)
FORMAT 3:
0
MSB
FSYNC(in)
1
LSB
MSB
LEFT
LSB
MSB
LSB
MSB
RIGHT
1
SCK(in)
SDATA(out)
FORMAT 4:
1
MSB
FSYNC(out)
0
LSB
MSB
LEFT
RIGHT
0
SCK(out)
SDATA(out)
FORMAT 5:
1
FSYNC(out)
0
MSB
LSB
MSB
LEFT
LSB
MSB
RIGHT
1
SCK(out)
SDATA(out) LSB
LSB
MSB
MSB
16 Bits
FORMAT 6:
1
FSYNC(out)
1
LSB
16 Bits
LEFT
RIGHT
0
SCK(out)
SDATA(out) LSB
LSB
MSB
MSB
18 Bits
FORMAT 7:
1
FSYNC(out)
1
LSB
18 Bits
LEFT
RIGHT
1
SCK(out)
SDATA(out) MSB
LSB
MSB
LSB
MSB
D97AU610
8/15
STA120
Figure 4. Special Audio Port Formats 12 and 13
FSYNC(out)
LEFT
RIGHT
SCK(out)
SDATA(out)
AUX
LSB
FSYNC(out)
MSB
V
U
C
P
AUX
LSB
LEFT
MSB
V
U
C
P
RIGHT
SCK(out)
SDATA(out)
LSB
AUX
MSB
V
U
C
P
AUX
LSB
MSB
V
U
C
P
D98AU987
Error And Frequency Reporting
When SEL is low, error and received frequency information are selected.
The error information is encoded on pins E2, E1, and E0, and is decoded as shown in Table 3. When an
error occurs, the corresponding error code is latched.
Clearing is then accomplished by bringing SEL high for more than eight MCK cycles. The errors have a
priority associated with their error code, with validity having the lowest priority that occurred since the last
clearing will be selected.
Table 3. Error Decoding
E2
E1
E0
0
0
0
No Error
Error
0
0
1
Validity Bit High
0
1
0
Confidence flag
0
1
1
Slipped Sample
1
0
0
CRC Error (PRO only)
1
0
1
Parity Error
1
1
0
Bi-Phase Coding Error
1
1
1
No Lock
Figure 5. CBL Timing
CBL
C0
Ca-Ce
SDATA
RIGHT 191
LEFT 0
RIGHT 0
LEFT 1
RIGHT 31
LEFT 32
RIGHT 191
LEFT 0
FSYNC
ERF,
VERF
C, U
D98AU988
9/15
STA120
The validity flag indicates that the validity bit for a previous sample was high since the last clearing of the
error codes. The slipped sample error can only occur when FSYNC and SCK of the audio serial port are
inputs. In this case, if FSYNC is asynchronous to the received data rate, periodically a stereo sample will
be dropped or reread depending on whether the read rate is slower or faster than the received data rate .
When this occurs, the slipped sample error code will appear on the "E" pins.
The CRC error is updated at the beginning of a channel status block, and is only valid when the professional format of channel status data is received. This error is indicated when the STA120 calculated CRC
value does not match the CRC byte of the channel status block or when a block boundary changes (as in
removing samples while editing).
The parity error occurs when the incoming sub-frame does not have even parity as specified by the standards. The biphase coding error indicates a biphase coding violation occurred. The no lock error indicates
that the PLL is not locked onto the incoming data stream. Lock is achieved after receiving three frame preambles then one block preamble, and is lost after not receiving four consecutive frame preambles.
The receive frequency information is encoded on pins F2, F1 and F0, and is decoded as shown in Table
6. The on-chip frequency comparator compares the received clock frequency to an externally supplied
6.144MHz clock which is input on the FCK pin. The "F" pins. The clock on FCK must be valid for two thirds
of a block for the "F" pins to be accurate.
Table 4. Sample Frequency Decoding
F2
F1
F0
0
0
0
Out of Range
Error
0
0
1
48KHz ±4%
0
1
0
44.1KHz ±4%
0
1
1
32KHz ±4%
1
0
0
48KHz ±400ppm
1
0
1
44.1KHz ±400ppm
1
1
0
44.056KHz ±400ppm
1
1
1
32KHz ±400ppm
Channel Status Reporting
When SEL is high, channel status is displayed on C0, and Ca-Ce for the channel selected by CS12. If
CS12 is low, channel status for sub-frame1 is displayed, and if CS12 is high, channel status for subframe
2 is displayed. the contents of Ca-Ce depend upon the C0 professional/consumer bit. The information report is shown in Table 5.
Table 5. Channel Status Pins
10/15
Pin
Professional
Consumer
C0
0 (low)
1 (high)
Ca
C1
C1
Cb
EM0
C2
Cc
EM1
C3
Cd
C9
ORIG
Ce
CRCE
IGCAT
STA120
Professional Channel Status (C0 = 0)
When C0 is low, the received channel status block is encoded according to the professional / broadcast
format. The Ca through Ce pins are defined for some of the more important professional bits. As listed in
Table 5, Ca is the inverse of channel status bit1. Therefore, if the incoming channel status bit1. Therefore,
if the incoming channel status bit 1 is 1, Ca, defined as C1, will be 0. C1 indicates whether audio (C1 = 1)
or non-audio (C1 = 0) data is being received. Cb and Cc, defined as EM0 and EM1 respectively, indicate
emphasis and are encoded version of channel status bits 2, 3, and 4. The decoding is listed in Table 6.
Cd, defined as C9, is the inverse of channel status bit 9, which gives some indication of channel status bit
9, which gives some indication of channel mode. (Bit 9 is also defined as bit 1 of byte 1). When Ce, defined
as CRCE, is low, the STA120 calculated CRC value does not match the received CRC value. This signal
may be used to qualify Ca through Cd. If Ca through Ce are being displayed, Ce going low can indicate
not to update the display.
Table 6. Emphasis Encoding
EM1
EM0
C2
C3
C4
Emphasis
0
0
1
1
1
CCITT J.17 emphasis
0
1
1
1
0
50/15ms emphasis
1
0
1
0
0
No emphasis
1
1
0
0
0
Not indicated
Consumer Channel Status (C0 = 1)
When C0 is high, the received channel status block is encoded according to the consumer format. In this
case Ca through Ce are defined differently as shown in Table 5.
Ca is the inverse of channel status bit 1, C1, indicating audio (C1 = 1) or non-audio (C1 = 0). Cb is defined
as the inverse of channel status bit 2, C2, which indicates copy inhibit/copyright information Cc, defined
as C3, is the emphasis bit of channel status, with C3 low indicating the data has had pre-emphasis added.
The audio standards, in consumer mode, describe bit 15, L, as the generation status which indicates
whether the audio data is an original work or a copy (1st generation or higher). The definition of the Lbit is
reversed for three category codes: two broadcast codes, and laser-optical (CD's). Therefore, to interpret
the L bit properly, the category code must be decoded. The STA120 does this decoding internally and provides the ORIG signal that, when low, indicates that the audio data is original over all category codes.
SCMS
The consumer audio standards also mention a serial copy management system, SCMS, for dealing with
copy protection of copyrighted works. SCMS is designed to allow unlimited duplication of the original work,
but no duplication of any copies of the original. This system utilizes the channel status bit 2, Copy, and
channel status bit 15, L or generation status, along with the category codes. If the Copy bit is 0, copyright
protection is asserted over the material is an original or a duplication. (As mentioned in the previous paragraph, the definition of the L bit can be reversed based on the category codes.) There are two category
codes that get special attention: general and A/D converters without C or L bit information. For these two
categories the SCMS standard requires that equipment interfacing to these categories set the C bit to 0
(copyright protection asserted) and the L bit to 1 (original). To support this feature, Ce, in the consumer
mode, is defined as IGCAT (ignorant category) which is low for the "general" (0000000) and "A/D converter without copyright information" (01100xx) categories.
11/15
STA120
APPENDIX A: RS422 RECEIVER INFORMATION
The RS422 receivers on the STA120 is designed to receive both the professional and consumer interfaces, and meet all specifications listed in the digital audio standards. Figure 6 illustrates the internal schematic of the receiver portion of both chips. The receiver has a differential input. A Schmitt trigger is
incorporated to add hysteresis which prevents noisy signals from corrupting the phase detector.
Figure 6. RS422 Receiver Internal Circuit
1K
RXP
ix
K-ix
RXN
1K
D98AU983
Professional Interface
The digital audio specifications for professional use call for a balanced receiver, using XLR connectors,
with 110Ω ±20% impedance. (The XLR connector on the receiver should have female pins with a male
shell.) Since the receiver has a very high impedance, a 110Ω resistor should be placed across the receiver terminals to match the line impedance, as shown in figure 7, and, since the part has internal biasing,
no external biasing network is needed. If some isolation is desired without the use of transformers, a
0.01µF capacitor should be placed on the input of esch pin (RXP and RXN) as shown in Figure 8. However, if transformers are not used, high frequency energy could be coupled between transmitter and receiver causing degradation in analog performance.
Although transformers are not required by AES they are strongly recommended. The EBU requires transformers. Figure 7 and 8 show an optional DC blocking capacitor on the transmission line. A 0.1 to 0.47µF
ceramic capacitor may be used to block any DC voltage that is accidentally connected to the digital audio
receiver. The use of this capacitor is an issue of robustness s the digital audio transmission line does not
have a DC voltage component.
Figure 7. Professional Input Circuit
(*)See Text
XLR
110Ω
TWISTED
PAIR
RXP
110Ω
RXN
1
D98AU984A
Figure 8. Transformerless Professional Circuit
(*)See Text
XLR
110Ω
TWISTED
PAIR
110Ω
1
0.01µF
RXP
0.01µF
RXN
D98AU985A
12/15
STA120
Grounding the shield of the cables a tricky issue. In the configuration of systems, it is important to avoid
ground loops and DC current flowing down the shield of the cable that could results when boxes with different ground potentials are connected.
Generally, it is good practice to ground the shield to the chassis of the transmitting unit, and connect the
shield through a capacitor to chassis ground at the receiver. However, in some cases it is advantageous
to have the ground of two boxes help to the same potential, and the cable shield might be depended upon
to make that electrical connection.
Generally, it may be a good idea to provide the option of grounding or capacitively coupling to ground with
a "ground-lift" circuit.
Consumer Interface
In the case of the consumer interface, the standards call for an unbalanced circuit having a receiver impedance of 75Ω ±5%. The connector for the consumer interface is an RCA phono plug (fixed socket described in Table IV of IEC268-11). The receiver circuit for the consumer interface is shown in Figure 9.
Figure 9. Consumer Input Circuit
RCA Phono
100nF
RXP
75Ω
coax
75Ω
STA120
100nF
RXN
D02AU1387
TTL/CMOS Levels
The circuit shown in Figure 10 may be used when external RS422 receivers or TTL/CMOS logic drive the
STA120 receiver section.
Figure 10. TTL/CMOS Interface
100nF
100nF
RXP
RXN
STA120
D98AU986C
13/15
STA120
mm
DIM.
MIN.
TYP.
A
inch
MAX.
MIN.
TYP.
2.65
MAX.
0.104
a1
0.1
0.3
0.004
0.012
b
0.35
0.49
0.014
0.019
b1
0.23
0.32
0.009
0.013
C
0.5
c1
0.020
45° (typ.)
D
17.7
18.1
0.697
0.713
E
10
10.65
0.394
0.419
e
1.27
0.050
e3
16.51
0.65
F
7.4
7.6
0.291
0.299
L
0.4
1.27
0.016
0.050
S
14/15
OUTLINE AND
MECHANICAL DATA
8 ° (max.)
SO28
STA120
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
STMicroelectronics acknowledges the trademarks of all companies referred to in this document.
The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
15/15