0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STA369BWSTR

STA369BWSTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    FSOP36_EP

  • 描述:

    IC AUDIO SYS DGTL 2.1CH PWRSSO36

  • 数据手册
  • 价格&库存
STA369BWSTR 数据手册
STA369BWS 2.1-channel 40-watt high-efficiency digital audio system Sound Terminal® Datasheet - production data  Audio presets: – 15 preset crossover filters – 5 preset anti-clipping modes – Preset night-time listening mode  Individual channel soft/hard mute  Independent channel volume and DSP bypass  I2S input data interface PowerSSO-36 with exposed pad down (EPD)  Input and output channel mapping  Automatic invalid input-detect mute  Up to 8 user-programmable biquads/channel Features  Wide-range supply voltage, 4.5 V to 21.5 V  Three power output configurations: – 2 channels of ternary PWM (2 x 20 W into 8  at 18 V) + PWM output – 2 channels of ternary PWM (2 x 20 W into 8  at 18 V) + ternary stereo line-out – 2.1 channels of binary PWM (left, right, LFE) (2 x 9 W into 4 +1 x 20 W into 8  at 18 V)  Three coefficients banks for EQ presets storing with fast recall via I2C interface  Extended filter dynamics +4/-4 for better sound shaping and easier filter implementation  Bass/treble tones and de-emphasis control  Selectable high-pass filter for DC blocking  Advanced AM interference frequency switching and noise suppression modes  F3X™ advanced PWM modulation scheme for carrier suppression (headphone or line output)  FFX with 100-dB SNR and dynamic range  Selectable high- or low-bandwidth noise-shaping topologies  Scalable FFX modulation index (up to 100%)  Selectable clock input ratio  Selectable 32- to 192-kHz input sample rates  96-kHz internal processing sample rate with quantization error noise shaping for very low cut-off frequency filters  I2C control with selectable device address  Digital gain/attenuation +48 dB to -80 dB with 0.125-dB/step resolution  Soft volume update with programmable ratio  Individual channel and master gain/attenuation  Two independent DRCs configurable as a dual-band anti-clipper (B2DRC) or as independent limiters/compressors with optional global DRC capability  Thermal overload and short-circuit protection embedded  Video apps: 576 x fS input mode supported  PCB manufacturing short-circuit protection technology Table 1. Device summary  EQ-DRC for DRC based on filtered signals Order code Package Packaging  Dedicated LFE processing for bass boosting with 0.125-dB/step resolution STA369BWS PowerSSO-36 EPD Tube September 2014 This is information on a product in full production. STA369BWSTR PowerSSO-36 EPD Tape and reel DocID016861 Rev 7 1/92 www.st.com Contents STA369BWS Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 4 2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 14 3.5 Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 15 3.6 Power on/off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.0.1 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.0.2 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.0.3 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4 6.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4.1 2/92 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID016861 Rev 7 STA369BWS 7 Contents 6.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.1 7.2 7.3 Configuration registers (addr 0x00 to 0x05) . . . . . . . . . . . . . . . . . . . . . . . 27 7.1.1 Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.1.2 Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.1.3 Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.1.4 Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.1.5 Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.1.6 Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 46 7.2.1 Mute/line output configuration register (addr 0x06) . . . . . . . . . . . . . . . . 47 7.2.2 Master volume register (addr 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.3 Channel 1 volume (addr 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.4 Channel 2 volume (addr 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.5 Channel 3 / line output volume (addr 0x0A) . . . . . . . . . . . . . . . . . . . . . 48 Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 49 7.3.1 Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.3.2 Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.4 Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 51 7.5 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.6 Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 53 7.7 7.6.1 Limiter 1 attack/release rate (addr 0x12) . . . . . . . . . . . . . . . . . . . . . . . . 53 7.6.2 Limiter 1 attack/release threshold (addr 0x13) . . . . . . . . . . . . . . . . . . . 53 7.6.3 Limiter 2 attack/release rate (addr 0x14) . . . . . . . . . . . . . . . . . . . . . . . . 54 7.6.4 Limiter 2 attack/release threshold (addr 0x15) . . . . . . . . . . . . . . . . . . . 54 7.6.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.6.6 Limiter 1 extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . . 58 7.6.7 Limiter 1 extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . . 59 7.6.8 Limiter 2 extended attack threshold (addr 0x34) . . . . . . . . . . . . . . . . . . 59 7.6.9 Limiter 2 extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . . 59 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 59 7.7.1 Coefficient address register (addr 0x16) . . . . . . . . . . . . . . . . . . . . . . . . 59 7.7.2 Coefficient b1 data register bits (addr 0x17 - 0x19) . . . . . . . . . . . . . . . . 59 DocID016861 Rev 7 3/92 92 Contents 8 STA369BWS Coefficient b2 data register bits (addr 0x1A - 0x1C) . . . . . . . . . . . . . . . 60 7.7.4 Coefficient a1 data register bits (addr 0x1D - 0x1F) . . . . . . . . . . . . . . . 60 7.7.5 Coefficient a2 data register bits (addr 0x20 - 0x22) . . . . . . . . . . . . . . . . 60 7.7.6 Coefficient b0 data register bits (addr 0x23 - 0x25) . . . . . . . . . . . . . . . . 61 7.7.7 Coefficient read/write control register (addr 0x26) . . . . . . . . . . . . . . . . . 61 7.7.8 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.8 Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 66 7.9 Distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . . . . . . . . 66 7.10 Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 66 7.11 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.12 EQ coefficients and DRC configuration register (addr 0x31) . . . . . . . . . . 68 7.13 Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . . 69 7.13.1 Dual-band DRC (B2DRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.13.2 EQ DRC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.14 Soft volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . . . . . 72 7.15 DRC RMS filter coefficients (addr 0x39-0x3E) . . . . . . . . . . . . . . . . . . . . . 73 7.16 Extra volume resolution configuration registers (addr 0x3F) . . . . . . . . . . 74 7.17 Short-circuit protection mode registers SHOK (addr 0x46) . . . . . . . . . . . 75 7.18 Quantization error noise correction (addr 0x48) . . . . . . . . . . . . . . . . . . . . 76 7.19 Extended coefficient range up to +4/-4 (addr 0x49, 0x4A) . . . . . . . . . . . . 77 7.20 Miscellaneous registers (addr 0x4B, 0x4C) . . . . . . . . . . . . . . . . . . . . . . . 78 7.20.1 MISC1 (addr 0x4B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.20.2 MISC2 (addr 0x4C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.21 Global DRC after B2DRC (GDRC) bit (addr 0x4D, bit D0) . . . . . . . . . . . . 81 7.22 Bad PWM detection registers (addr 0x4D, 0x4E, 0x4F) . . . . . . . . . . . . . . 82 7.23 Coefficient RAM CRC protection (addr 0x60-0x6C) . . . . . . . . . . . . . . . . . 82 7.23.1 BQCHKE registers (addr 0x60 - 0x62) . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.23.2 XCCHKE registers (addr 0x63 - 0x65) . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.23.3 BQCHKR registers (addr 0x66 - 0x68) . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.23.4 XCCHKR registers (addr 0x69 - 0x6B) . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.23.5 CHKCTRL register (addr 0x6C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.23.6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1 4/92 7.7.3 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DocID016861 Rev 7 STA369BWS Contents 8.2 PLL filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.3 Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 DocID016861 Rev 7 5/92 92 List of tables STA369BWS List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 6/92 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical specifications - digital section (Tamb = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Timing parameters for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 30 Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 30 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Overcurrent warning bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Postscale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Output configuration engine selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Binary output mode clock loss detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 LRCK double trigger protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 DocID016861 Rev 7 STA369BWS Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. List of tables IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Master volume offset as a function of MVOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Channel volume as a function of CxVOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 49 AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Bass management crossover frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Volume bypass register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 53 Limiter attack rate vs LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Limiter release rate vs LxR bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Limiter attack threshold vs LxAT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Limiter release threshold vs LxRT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Limiter attack threshold vs LxAT bits (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Limiter release threshold vs LxRT bits (DRC mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 RAM block for biquads, mixing, scaling, bass management. . . . . . . . . . . . . . . . . . . . . . . . 63 Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 EQ RAM select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Anti clipping and DRC preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Anti-clipping selection for AMGC[3:2] = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Bit PS48DB description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bit XAR1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bit XAR2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bit BQ5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Bit BQ6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Bit BQ7 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Bit SVUPE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Bit SVDWE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Bits CxVR description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Bits VRESEN and VRESTG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Coefficients extended range configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 F3X bits configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 External amplifier enabler configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 PNDLSL bits configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 DocID016861 Rev 7 7/92 92 List figures STA369BWS List figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. 8/92 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power-on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power-off sequence for pop-free turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timing diagram for SAI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Left and right processing, section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Left and right processing, section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 B2DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 EQDRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Application circuit for 2 or 2.1-channel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Application circuit for mono BTL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Output configuration for stereo BTL mode (RL = 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DocID016861 Rev 7 STA369BWS 1 Description Description The STA369BWS is an integrated solution of digital audio processing, digital amplifier controls and power output stage to create a high-power single-chip FFX digital amplifier with high-quality and high-efficiency. Three channels of FFX processing are provided. The FFX processor implements the ternary, binary and binary differential processing capabilities of the full FFX processor. The STA369BWS is part of the Sound Terminal® family that provides full digital audio streaming to the speakers and offers cost effectiveness, low power dissipation and sound enrichment. The power section consists of four independent half-bridges. These can be configured via digital control to operate in different modes. For example, 2.1 channels can be provided by two half-bridges and a single full-bridge, supplying up to 2 x 9 W + 1 x 20 W of output power or two channels can be provided by two full-bridges, supplying up to 2 x 20 W of output power. The IC can also be configured as 2.1 channels with 2 x 20 W supplied by the device plus a drive for an external FFX power amplifier, such as STA533WF or STA515W. One other option is to configure the IC as having one channel output that can be provided by parallel BTL to obtain 1 x 40 W of output power. In this configuration the CONFIG pin must be connected to VDD. Also provided in the STA369BWS are a full assortment of digital processing features. This includes up to 8 programmable biquads (EQ) per channel. Special digital signal processing techniques are available to manage low-frequency quantization noise in filters with very low cut-off frequencies. The coefficient range -4 to +4 allows easy high-shelf filter usage and better sound shaping. Available presets enable a time-to-market advantage by substantially reducing the amount of software development needed for functions such as audio preset volume loudness, preset volume curves and preset EQ settings. There are also new advanced AM radio interference reduction modes. Dual-band DRC dynamically equalizes the system to provide linear frequency speaker response regardless of output power level. This feature separates the audio frequency band into two sub-bands independently processed to provide better sound clarity and to avoid speaker saturation. The serial audio data input interface accepts all possible formats, including the popular I2S format. The high-quality conversion from PCM audio to FFX PWM switching provides over 100 dB of SNR and of dynamic range. The new F3X™ modulation is capable of digitally filtering the PWM carrier to simplify external filtering requirements, AM interference and EMI. F3X™ is implemented in the auxiliary output of STA369BWS and it is specifically designed for application where a simple op-amp can be used to drive an auxiliary headphone line. DocID016861 Rev 7 9/92 92 Description STA369BWS Figure 1. Block diagram I2C Protection current/thermal I2S interface Volume control Channel 1A Power control Logic Channel 1B FFX Channel 2A Regulators Channel 2B PLL Bias Digital DSP 10/92 Power DocID016861 Rev 7 STA369BWS Pin connections 2 Pin connections 2.1 Connection diagram Figure 2. Pin connection PowerSSO-36 (top view) 2.2 GND_SUB 1 36 VDD_DIG SA 2 35 GND_DIG TEST_MODE 3 34 SCL VSS 4 33 SDA VCC_REG 5 32 INT_LINE OUT2B 6 31 RESET GND2 7 30 SDI VCC2 8 29 LRCKI OUT2A 9 28 BICKI OUT1B 10 27 XTI VCC1 11 26 GND_PLL GND1 12 25 FILTER_PLL OUT1A 13 24 VDD_PLL GND_REG 14 23 PWRDN VDD 15 22 GND_DIG CONFIG 16 21 VDD_DIG OUT3B / FFX3B 17 20 TWARN / OUT4A OUT3A / FFX3A 18 19 EAPD / OUT4B EP, exposed pad (device ground) Pin description Table 2. Pin description Pin Type Name Description 1 GND GND_SUB Substrate ground 2 I SA I2C select address (pull-down) 3 I TEST_MODE This pin must be connected to ground (pull-down) 4 I/O VSS Internal reference at VCC - 3.3 V 5 I/O VCC_REG Internal VCC reference 6 O OUT2B Output half-bridge channel 2B 7 GND GND2 Power negative supply 8 Power VCC2 Power positive supply 9 O OUT2A Output half-bridge channel 2A 10 O OUT1B Output half-bridge channel 1B DocID016861 Rev 7 11/92 92 Pin connections STA369BWS Table 2. Pin description (continued) Pin 12/92 Type Name Description 11 Power VCC1 Power positive supply 12 GND GND1 Power negative supply 13 O OUT1A Output half-bridge channel 1A 14 GND GND_REG Internal ground reference 15 Power VDD Internal 3.3 V reference voltage 16 I CONFIG Parallel mode command 17 O OUT3B / FFX3B PWM out channel 3B / external bridge driver 18 O OUT3A / FFX3A PWM out channel 3A / external bridge driver 19 O EAPD / OUT4B Power down for external bridge / PWM out channel 4B 20 I/O TWARN / OUT4A Thermal warning from external bridge (pull-up when input) / PWM out channel 4A 21 Power VDD_DIG Digital supply voltage 22 GND GND_DIG Digital ground 23 I PWRDN Power down (pull-up) 24 Power VDD_PLL Positive supply for PLL 25 I FILTER_PLL Connection to PLL filter 26 GND GND_PLL Negative supply for PLL 27 I XTI PLL input clock 28 I BICKI I2S serial clock 29 I LRCKI I2S left/right clock 30 I SDI I2S serial data channels 1 and 2 31 I RESET Reset (pull-up) 32 O INT_LINE Fault interrupt 33 I/O SDA I2C serial data 34 I SCL I2C serial clock 35 GND GND_DIG Digital ground 36 Power VDD_DIG Digital supply voltage - - EP Exposed pad for PCB heatsink, to be connected to GND DocID016861 Rev 7 STA369BWS Electrical specifications 3 Electrical specifications 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Typ Max Unit VCC Power supply voltage (pins VCCx) -0.3 - 24 V VDD Digital supply voltage (pins VDD_DIG) -0.3 - 4.0 V VDD PLL supply voltage (pin VDD_PLL) -0.3 - 4.0 V Top Operating junction temperature -20 - 150 °C Tstg Storage temperature -40 - 150 °C Warning: 3.2 Min Stresses beyond those listed in Table 3 above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “Recommended operating conditions” are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, power supplies with nominal values rated within the recommended operating conditions, may experience some rising beyond the maximum operating conditions for a short time when no or very low current is sinked (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum ratings are not exceeded. Thermal data Table 4. Thermal data Symbol Parameter Min Typ Max Unit Rth j-case Thermal resistance junction-case (thermal pad) - - 1.5 °C/W Tth-sdj Thermal shut-down junction temperature - 150 - °C Tth-w Thermal warning temperature - 130 - °C Tth-sdh Thermal shut-down hysteresis - 20 - °C - 24 - °C/W Rth j-amb Thermal resistance junction-ambient (1) 1. See Chapter 9: Package thermal characteristics on page 88 for details. DocID016861 Rev 7 13/92 92 Electrical specifications 3.3 STA369BWS Recommended operating conditions Table 5. Recommended operating condition Symbol 3.4 Parameter Min Typ Max Unit VCC Power supply voltage (VCCxA, VCCxB) 4.5 - 21.5 V VDD_DIG Digital supply voltage 2.7 3.3 3.6 V VDD_PLL PLL supply voltage 2.7 3.3 3.6 V Tamb Ambient temperature -20 - 70 °C Electrical specifications for the digital section Table 6. Electrical specifications - digital section (Tamb = 25 °C) Symbol 14/92 Parameter Conditions Min Typ Max Unit Iil Low level input current without pull-up/down device Vi = 0 V - - 1 μA Iih High level input current without pull-up/down device Vi = VDD_DIG = 3.6 V - - 1 μA Vil Low level input voltage - - - Vih High level input voltage - Vol Low level output voltage Iol = 2 mA Voh High level output voltage Ioh = 2 mA Rpu Equivalent pull-up/down resistance - DocID016861 Rev 7 0.8 * VDD_DIG - 0.8 * VDD_DIG - 0.2 * VDD_DIG 0.4 * VDD_DIG V V V - - V 50 - k STA369BWS 3.5 Electrical specifications Electrical specifications for the power section The specifications given in this section are valid for the operating conditions: VCC = 18 V, f = 1 kHz, fsw = 384 kHz, Tamb = 25 °C and RL = 8 , unless otherwise specified. Table 7. Electrical specifications - power section Symbol Parameter Conditions Output power BTL Po Output power SE Min Typ Max THD = 1% - 16 - THD = 10% - 20 - THD = 1%,RL= 4  - 7 - THD = 10%,RL= 4  - 9 - Unit W W RdsON Power P-channel or N-channel MOSFET ld = 0.75 A - - 250 m gP Power P-channel RdsON matching ld = 0.75 A - 100 - % gN Power N-channel RdsON matching ld = 0.75 A - 100 - % Idss Power P-channel/N-channel leakage VCC = 20 V - - 1 A tr Rise time - - 10 ns tf Fall time Resistive load, see Figure 3 below - - 10 ns Supply current from VCC in power down PWRDN = 0 - 0.3 - A Supply current from VCC in operation PWRDN = 1 - 15 - mA IVDD Supply current FFX processing Internal clock = 49.152 MHz - 55 - mA ILIM Overcurrent limit (1) 2.5 3.0 - A ISCP Short -circuit protection RL = 0  3.0 3.6 - A VUVP Undervoltage protection - - - 4.3 V tmin Output minimum pulse width No load 20 40 60 ns DR Dynamic range - - 100 - dB Signal to noise ratio, ternary mode A-Weighted - 100 - dB Signal to noise ratio binary mode - - 90 - dB Total harmonic distortion + noise FFX stereo mode, Po = 1 W f = 1 kHz - 0.2 - % Crosstalk FFX stereo mode, OUT1A  FFX1B -> OUT1B  FFX2A -> OUT2A  FFX2B -> OUT2B  FFX3A -> OUT3A  FFX3B -> OUT3B  FFX4A -> OUT4A  FFX4B -> OUT4B Default modulation:  FFX1A/1B configured as ternary  FFX2A/2B configured as ternary  FFX3A/3B configured as lineout ternary  FFX4A/4B configured as lineout ternary On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this configuration, volume control or EQ have no effect on channels 3 and 4. In this configuration the PWM slot phase is the following as shown in Figure 16. Figure 16. 2.0 channels (OCFG = 00) PWM slots DocID016861 Rev 7 41/92 92 Register description STA369BWS 2.1 channels, two half-bridges + one full-bridge (OCFG = 01) Mapping:  FFX1A -> OUT1A  FFX2A -> OUT1B  FFX3A -> OUT2A  FFX3B -> OUT2B  FFX1A -> OUT3A  FFX1B -> OUT3B  FFX2A -> OUT4A  FFX2B -> OUT4B Modulation:  FFX1A/1B configured as binary  FFX2A/2B configured as binary  FFX3A/3B configured as binary  FFX4A/4B configured as binary In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4 channels the channel 1 and channel 2 PWM are replicated. In this configuration the PWM slot phase is the following as shown in Figure 17. Figure 17. 2.1 channels (OCFG = 01) PWM slots 42/92 DocID016861 Rev 7 STA369BWS Register description 2.1 channels, two full-bridges + one external full-bridge (OCFG = 10) Mapping:  FFX1A -> OUT1A  FFX1B -> OUT1B  FFX2A -> OUT2A  FFX2B -> OUT2B  FFX3A -> OUT3A  FFX3B -> OUT3B  EAPD -> OUT4A  TWARN -> OUT4B Default modulation:  FFX1A/1B configured as ternary  FFX2A/2B configured as ternary  FFX3A/3B configured as ternary  FFX4A/4B is not used In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the external bridge control signals are muxed. In this configuration the PWM slot phase is the following as shown in Figure 18. Figure 18. 2.1 channels (OCFG = 10) PWM slots DocID016861 Rev 7 43/92 92 Register description STA369BWS 1 channel mono-parallel (OCFG = 11) Mapping: FFX1A -> OUT3A FFX1B -> OUT3B FFX2A -> OUT4A FFX2B -> OUT4B FFX3A -> OUT1A/OUT1B FFX3B -> OUT2A/OUT2B In this configuration, the CONFIG pin must be connected to the VDD pin. 44/92 DocID016861 Rev 7 STA369BWS Register description Invalid input detect mute enable Table 45. Invalid input detect mute enable Bit 2 R/W R/W RST 1 Name Description 0: disables the automatic invalid input detect mute 1: enables the automatic invalid input detect mute IDE Setting the IDE bit enables this function, which looks at the input I2S data and automatically mutes if the signals are perceived as invalid. Binary output mode clock loss detection Table 46. Binary output mode clock loss detection Bit 3 R/W R/W RST 1 Name Description 0: binary output mode clock loss detection disabled 1: binary output mode clock loss detection enable BCLE Detects loss of input MCLK in binary mode and will output 50% duty cycle. LRCK double trigger protection Table 47. LRCK double trigger protection Bit 4 R/W R/W RST 1 Name Description 0: LRCLK double trigger protection disabled 1: LRCLK double trigger protection enabled LDTE LDTE, when enabled, prevents double trigger of LRCLK on instable I2S input. Auto EAPD on clock loss Table 48. Auto EAPD on clock loss Bit 5 R/W R/W RST 0 Name Description 0: auto EAPD on clock loss not enabled 1: auto EAPD on clock loss ECLE When active, issues a power device power down signal (EAPD) on clock loss detection. IC power down Table 49. IC power down Bit 6 R/W R/W RST 1 Name PWDN Description 0: IC power down low-power condition 1: IC normal operation DocID016861 Rev 7 45/92 92 Register description STA369BWS The PWDN register is used to place the IC in a low-power state. When PWDN is written as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted to power down the power-stage, then the master clock to all internal hardware expect the I2C block is gated. This places the IC in a very low power consumption state. External amplifier power down Table 50. External amplifier power down Bit 7 R/W R/W RST 0 Name EAPD Description 0: external power stage power down active 1: normal operation The EAPD register directly disables/enables the internal power circuitry. When EAPD = 0, the internal power section is placed in a low-power state (disabled). This register also controls the FFX4B / EAPD output pin when OCFG = 10. 7.2 Volume control registers (addr 0x06 - 0x0A) The volume structure of the STA369BWS consists of individual volume registers for each channel and a master volume register that provides an offset to each channels volume setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to -80 dB. As an example if C3VOL = 0x00 or +48 dB and MVOL = 0x18 or -12 dB, then the total gain for channel 3 = +36 dB. The channel mutes provide a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (approximately 96 kHz). A “hard (instantaneous) mute” can be obtained by programming a value of 0xFF (255) in any channel volume register. When volume offsets are provided via the master volume register any channel whose total volume is less than -80 dB is muted. All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E (addr 0x04) on page 35) on a per channel basis as this creates the smoothest possible volume transitions. When ZCE = 0, volume updates occur immediately. 46/92 DocID016861 Rev 7 STA369BWS 7.2.1 Register description Mute/line output configuration register (addr 0x06) D7 D6 D5 D4 D3 D2 D1 D0 LOC1 LOC0 Reserved Reserved C3M C2M C1M Reserved 0 0 0 0 0 0 0 0 Table 51. Line output configuration LOC[1:0] Line output configuration 00 Line output fixed - no volume, no EQ 01 Line output variable - channel 3 volume effects line output, no EQ 10 Line output variable with EQ - channel 3 volume effects line output Line output is only active when OCFG = 00. In this case LOC determines the line output configuration. The source of the line output is always the channel 1 and 2 inputs. 7.2.2 Master volume register (addr 0x07) D7 D6 D5 D4 D3 D2 D1 D0 MVOL7 MVOL6 MVOL5 MVOL4 MVOL3 MVOL2 MVOL1 MVOL0 1 1 1 1 1 1 1 1 Table 52. Master volume offset as a function of MVOL[7:0] MVOL[7:0] 7.2.3 7.2.4 Volume offset from channel value 00000000 (0x00) 0 dB 00000001 (0x01) -0.5 dB 00000010 (0x02) -1 dB … … 01001100 (0x4C) -38 dB … … 11111110 (0xFE) -127.5 dB 11111111 (0xFF) Default mute, not to be used during operation Channel 1 volume (addr 0x08) D7 D6 D5 D4 D3 D2 D1 D0 C1VOL7 C1VOL6 C1VOL5 C1VOL4 C1VOL3 C1VOL2 C1VOL1 C1VOL0 0 1 1 0 0 0 0 0 Channel 2 volume (addr 0x09) D7 D6 D5 D4 D3 D2 D1 D0 C2VOL7 C2VOL6 C2VOL5 C2VOL4 C2VOL3 C2VOL2 C2VOL1 C2VOL0 0 1 1 0 0 0 0 0 DocID016861 Rev 7 47/92 92 Register description 7.2.5 STA369BWS Channel 3 / line output volume (addr 0x0A) D7 D6 D5 D4 D3 D2 D1 D0 C3VOL7 C3VOL6 C3VOL5 C3VOL4 C3VOL3 C3VOL2 C3VOL1 C3VOL0 0 1 1 0 0 0 0 0 Table 53. Channel volume as a function of CxVOL[7:0] CxVOL[7:0] 48/92 Volume 00000000 (0x00) +48 dB 00000001 (0x01) +47.5 dB 00000010 (0x02) +47 dB … … 01011111 (0x5F) +0.5 dB 01100000 (0x60) 0 dB 01100001 (0x61) -0.5 dB … … 11010111 (0xD7) -59.5 dB 11011000 (0xD8) -60 dB 11011001 (0xD9) -61 dB 11011010 (0xDA) -62 dB … … 11101100 (0xEC) -80 dB 11101101 (0xED) Hard channel mute … … 11111111 (0xFF) Hard channel mute DocID016861 Rev 7 STA369BWS Register description 7.3 Audio preset registers (addr 0x0B and 0x0C) 7.3.1 Audio preset register 1 (addr 0x0B) D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved AMGC[1] AMGC[0] Reserved Reserved Reserved Reserved 1 0 0 0 0 0 0 0 Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured to properly fit application specific configurations. AMGC[3:2] is defined in EQ coefficients and DRC configuration register (addr 0x31) on page 68. The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2]. When this value is 00 then bits AMGC[1:0] are defined below in Table 54. Table 54. Audio preset gain compression/limiters selection for AMGC[3:2] = 00 AMGC[1:0] 7.3.2 Mode 00 User programmable GC 01 AC no clipping 2.1 10 AC limited clipping (10%) 2.1 11 DRC night-time listening mode 2.1 Audio preset register 2 (addr 0x0C) D7 D6 D5 D4 D3 D2 D1 D0 XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME 0 0 0 0 0 0 0 0 AM interference frequency switching Table 55. AM interference frequency switching bits Bit 0 R/W R/W RST 0 Name AMAME Description Audio preset AM enable 0: switching frequency determined by PWMS setting 1: switching frequency determined by AMAM settings Table 56. Audio preset AM switching frequency selection AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs 000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz 001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz 010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz 011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz 100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz DocID016861 Rev 7 49/92 92 Register description STA369BWS Table 56. Audio preset AM switching frequency selection (continued) AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs 101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz 110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz Bass management crossover Table 57. Bass management crossover Bit R/W RST Name 4 R/W 0 XO0 5 R/W 0 XO1 6 R/W 0 XO2 7 R/W 0 XO3 Description Selects the bass-management crossover frequency. A 1st-order hign-pass filter (channels 1 and 2) or a 2nd-order low-pass filter (channel 3) at the selected frequency is performed. Table 58. Bass management crossover frequency XO[3:0] 50/92 Crossover frequency 0000 User-defined (Section 7.7.8 on page 61) 0001 80 Hz 0010 100 Hz 0011 120 Hz 0100 140 Hz 0101 160 Hz 0110 180 Hz 0111 200 Hz 1000 220 Hz 1001 240 Hz 1010 260 Hz 1011 280 Hz 1100 300 Hz 1101 320 Hz 1110 340 Hz 1111 360 Hz DocID016861 Rev 7 STA369BWS 7.4 Register description Channel configuration registers (addr 0x0E - 0x10) D7 D6 D5 D4 D3 D2 D1 D0 C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VPB C1EQBP C1TCB 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VPB C2EQBP C2TCB 0 1 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB Reserved Reserved 1 0 0 0 0 0 0 0 Tone control bypass Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2. Table 59. Tone control bypass CxTCB Mode 0 Perform tone control on channel x - normal operation 1 Bypass tone control on channel x EQ bypass EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis, bass, treble in any combination) are bypassed for that channel. Table 60. EQ bypass CxEQBP Mode 0 Perform EQ on channel x - normal operation 1 Bypass EQ on channel x Volume bypass Each channel contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects the volume setting, the master volume setting has no effect on that channel. Table 61. Volume bypass register CxVBP Mode 0 Normal volume operations 1 Volume is by-passed DocID016861 Rev 7 51/92 92 Register description STA369BWS Binary output enable registers Each individual channel output can be set to output a binary PWM stream. In this mode output A of a channel is considered the positive output and output B is negative inverse. Table 62. Binary output enable registers CxBO Mode 0 FFX output operation 1 Binary output Limiter select Limiter selection can be made on a per-channel basis according to the channel limiter select bits. CxLS bits are not considered in case of Dual Band DRC (Section 7.13.1), EQ DRC (Section 7.13.2) or GDRC (Section 7.21) usage. . Table 63. Channel limiter mapping as a function of CxLS bits CxLS[1:0] Channel limiter mapping 00 Channel has limiting disabled 01 Channel is mapped to limiter #1 10 Channel is mapped to limiter #2 Output mapping Output mapping can be performed on a per channel basis according to the CxOM channel output mapping bits. Each input into the output configuration engine can receive data from any of the three processing channel outputs. . Table 64. Channel output mapping as a function of CxOM bits CxOM[1:0] 52/92 Channel x output source from 00 Channel1 01 Channel 2 10 Channel 3 DocID016861 Rev 7 STA369BWS 7.5 Register description Tone control register (addr 0x11) D7 D6 D5 D4 D3 D2 D1 D0 TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0 1 1 1 0 1 1 1 Tone control Table 65. Tone control boost/cut as a function of BTC and TTC bits BTC[3:0]/TTC[3:0] Boost/Cut 0000 -12 dB 0001 -12 dB 0010 -10 dB … … 0101 -4 dB 0110 -2 dB 0111 0 dB 1000 +2 dB 1001 +4 dB … … 1100 +10 dB 1101 +12 dB 1110 +12 dB 1111 +12 dB 7.6 Dynamic control registers (addr 0x12 - 0x15) 7.6.1 Limiter 1 attack/release rate (addr 0x12) 7.6.2 D7 D6 D5 D4 D3 D2 D1 D0 L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0 1 1 0 1 0 1 0 Limiter 1 attack/release threshold (addr 0x13) D7 D6 D5 D4 D3 D2 D1 D0 L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0 1 1 0 1 0 0 1 DocID016861 Rev 7 53/92 92 Register description 7.6.3 7.6.4 7.6.5 STA369BWS Limiter 2 attack/release rate (addr 0x14) D7 D6 D5 D4 D3 D2 D1 D0 L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0 1 1 0 1 0 1 0 Limiter 2 attack/release threshold (addr 0x15) D7 D6 D5 D4 D3 D2 D1 D0 L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0 1 1 0 1 0 0 1 Description The STA369BWS includes two independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode or to actively reduce the dynamic range for a better listening environment such as a night-time listening mode which is often needed for DVDs. The two modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 35. Each channel can be mapped to either limiter or not mapped, meaning that channel will clip when 0 dBFS is exceeded. Each limiter looks at the present value of each channel that is mapped to it, selects the maximum absolute value of all these channels, performs the limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels in unison. Figure 19. Basic limiter and volume flow diagram The limiter attack thresholds are determined by the LxAT registers if EATHx[7] bits are set to 0 else the thresholds are determined by EATHx[6:0]. It is recommended in anti-clipping mode to set this to 0 dBfs, which corresponds to the maximum unclipped output power of a FFX amplifier. Since gain can be added digitally within the STA369BWS it is possible to exceed 0 dBfs or any other LxAT setting, when this occurs, the limiter, when active, automatically starts reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. Gain reduction occurs on a peak-detect algorithm. Setting EATHx[7] bits to 1 selects the anti-clipping mode. The limiter release thresholds are determined by the LxRT registers if ERTHx[7] bits are set to 0 else the thresholds are determined by ERTHx[6:0]. Settings to 1 ERTHx[7] bits the anti-clipping mode is selected automatically. The release of limiter, when the gain is again increased, is dependent on a RMS-detect algorithm. The output of the volume/limiter block is passed through a RMS filter. The output of this filter is compared to the release threshold, determined by the Release Threshold register. When the RMS filter output falls below the 54/92 DocID016861 Rev 7 STA369BWS Register description release threshold, the gain is again increased at a rate dependent upon the Release Rate register. The gain can never be increased past its set value and, therefore, the release only occurs if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range, this is helpful as over limiting can reduce the dynamic range to virtually zero and cause program material to sound “lifeless”. In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode, the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold. Table 66. Limiter attack rate vs LxA bits LxA[3:0] Attack Rate dB/ms 0000 3.1584 0001 2.7072 0010 2.2560 0011 1.8048 0100 1.3536 0101 0.9024 0110 0.4512 0111 0.2256 1000 0.1504 1001 0.1123 1010 0.0902 1011 0.0752 1100 0.0645 1101 0.0564 1110 0.0501 1111 0.0451 Fast Slow DocID016861 Rev 7 55/92 92 Register description STA369BWS Table 67. Limiter release rate vs LxR bits LxR[3:0] Release Rate dB/ms 0000 0.5116 0001 0.1370 0010 0.0744 0011 0.0499 0100 0.0360 0101 0.0299 0110 0.0264 0111 0.0208 1000 0.0198 1001 0.0172 1010 0.0147 1011 0.0137 1100 0.0134 1101 0.0117 1110 0.0110 1111 0.0104 Fast Slow Anti-clipping mode Table 68. Limiter attack threshold vs LxAT bits (AC mode) LxAT[3:0] 56/92 AC (dB relative to fs) 0000 -12 0001 -10 0010 -8 0011 -6 0100 -4 0101 -2 0110 0 0111 +2 1000 +3 1001 +4 1010 +5 1011 +6 1100 +7 1101 +8 DocID016861 Rev 7 STA369BWS Register description Table 68. Limiter attack threshold vs LxAT bits (AC mode) (continued) LxAT[3:0] AC (dB relative to fs) 1110 +9 1111 +10 Table 69. Limiter release threshold vs LxRT bits (AC mode) LxRT[3:0] AC (dB relative to fs) 0000 - 0001 -29 0010 -20 0011 -16 0100 -14 0101 -12 0110 -10 0111 -8 1000 -7 1001 -6 1010 -5 1011 -4 1100 -3 1101 -2 1110 -1 1111 -0 Dynamic range compression mode Table 70. Limiter attack threshold vs LxAT bits (DRC mode) LxAT[3:0] DRC (dB relative to Volume) 0000 -31 0001 -29 0010 -27 0011 -25 0100 -23 0101 -21 0110 -19 0111 -17 1000 -16 DocID016861 Rev 7 57/92 92 Register description STA369BWS Table 70. Limiter attack threshold vs LxAT bits (DRC mode) (continued) LxAT[3:0] DRC (dB relative to Volume) 1001 -15 1010 -14 1011 -13 1100 -12 1101 -10 1110 -7 1111 -4 Table 71. Limiter release threshold vs LxRT bits (DRC mode) LxRT[3:0] 7.6.6 DRC (db relative to Volume + LxAT) 0000 - 0001 -38 0010 -36 0011 -33 0100 -31 0101 -30 0110 -28 0111 -26 1000 -24 1001 -22 1010 -20 1011 -18 1100 -15 1101 -12 1110 -9 1111 -6 Limiter 1 extended attack threshold (addr 0x32) D7 D6 D5 D4 D3 D2 D1 D0 EATHEN1 EATH1[6] EATH1[5] EATH1[4] EATH1[3] EATH1[2] EATH1[1] EATH1[0] 0 0 1 1 0 0 0 0 The extended attack threshold value is determined as follows: attack threshold = -12 + EATH1 / 4 58/92 DocID016861 Rev 7 STA369BWS 7.6.7 Register description Limiter 1 extended release threshold (addr 0x33) D7 D6 D5 D4 D3 D2 D1 D0 ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0] 0 0 1 1 0 0 0 0 The extended release threshold value is determined as follows: release threshold = -12 + ERTH1 / 4 7.6.8 Limiter 2 extended attack threshold (addr 0x34) D7 D6 D5 D4 D3 D2 D1 D0 EATHEN2 EATH2[6] EATH2[5] EATH2[4] EATH2[3] EATH2[2] EATH2[1] EATH2[0] 0 0 1 1 0 0 0 0 The extended attack threshold value is determined as follows: attack threshold = -12 + EATH2 / 4 7.6.9 Limiter 2 extended release threshold (addr 0x35) D7 D6 D5 D4 D3 D2 D1 D0 ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0] 0 0 1 1 0 0 0 0 The extended release threshold value is determined as follows: release threshold = -12 + ERTH2 / 4 Note: Attack/release threshold step is 0.125 dB in the range -12 dB and 0 dB. 7.7 User-defined coefficient control registers (addr 0x16 - 0x26) 7.7.1 Coefficient address register (addr 0x16) 7.7.2 D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0 0 0 0 0 0 0 0 Coefficient b1 data register bits (addr 0x17 - 0x19) D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0 0 0 0 0 0 0 0 DocID016861 Rev 7 59/92 92 Register description 7.7.3 7.7.4 7.7.5 60/92 STA369BWS D7 D6 D5 D4 D3 D2 D1 D0 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0 0 0 0 0 0 0 0 Coefficient b2 data register bits (addr 0x1A - 0x1C) D7 D6 D5 D4 D3 D2 D1 D0 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0 0 0 0 0 0 0 0 Coefficient a1 data register bits (addr 0x1D - 0x1F) D7 D6 D5 D4 D3 D2 D1 D0 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0 0 0 0 0 0 0 0 0 Coefficient a2 data register bits (addr 0x20 - 0x22) D7 D6 D5 D4 D3 D2 D1 D0 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0 0 0 0 0 0 0 0 0 DocID016861 Rev 7 STA369BWS 7.7.6 7.7.7 Register description Coefficient b0 data register bits (addr 0x23 - 0x25) D7 D6 D5 D4 D3 D2 D1 D0 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0 0 0 0 0 0 0 0 Coefficient read/write control register (addr 0x26) D7 7.7.8 D6 D3 D2 D1 D0 Reserved D5 D4 RA R1 WA W1 0 0 0 0 0 Description Coefficients for user-defined EQ, mixing, scaling, and bass management are handled internally in the STA369BWS via RAM. Access to this RAM is available to the user via an I2C register interface. A collection of I2C registers are dedicated to this function. One contains a coefficient base address, five sets of three store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the write/read of the coefficient(s) to/from RAM. Three different RAM banks are embedded in STA369BWS. The three banks are managed in paging mode using EQCFG register bits. They can be used to store different EQ settings. For speaker frequency compensation, a sampling frequency independent EQ must be implemented. Computing three different coefficients set for 32 kHz, 44.1kHz, 48 kHz and downloading them into the three RAM banks, it is possible to select the suitable RAM block depending from the incoming frequency with a simple I2C write operation on register 0x31. For example, in case of different input sources (different sampling rates), the three different sets of coefficients can be downloaded once at the start up, and during the normal play it is possible to switch among the three RAM blocks allowing a faster operation, without any additional download from the microcontroller. To write the coefficients in a particular RAM bank, this bank must be selected first writing bit 0 and bit 1 in register 0x31. Then the write procedure below can be used. Note that as soon as a RAM bank is selected, the EQ settings are automatically switched to the coefficients stored in the active RAM block. Note: The read write operation on RAM coefficients works only if RLCKI (pin29) is switching and stable (ref. Table 8, tLRJT timing) and PLL must be locked (ref bit D7 reg 0x2D). DocID016861 Rev 7 61/92 92 Register description STA369BWS Reading a coefficient from RAM 1. 2. 3. 4. 5. 6. Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of address to I2C register 0x16. Write 1 to R1 bit in I2C address 0x26. Read top 8-bits of coefficient in I2C address 0x17. Read middle 8-bits of coefficient in I2C address 0x18. Read bottom 8-bits of coefficient in I2C address 0x19. Reading a set of coefficients from RAM 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of address to I2C register 0x16. Write 1 to RA bit in I2C address 0x26. Read top 8-bits of coefficient in I2C address 0x17. Read middle 8-bits of coefficient in I2C address 0x18. Read bottom 8-bits of coefficient in I2C address 0x19. Read top 8-bits of coefficient b2 in I2C address 0x1A. Read middle 8-bits of coefficient b2 in I2C address 0x1B. Read bottom 8-bits of coefficient b2 in I2C address 0x1C. Read top 8-bits of coefficient a1 in I2C address 0x1D. Read middle 8-bits of coefficient a1 in I2C address 0x1E. Read bottom 8-bits of coefficient a1 in I2C address 0x1F. Read top 8-bits of coefficient a2 in I2C address 0x20. Read middle 8-bits of coefficient a2 in I2C address 0x21. Read bottom 8-bits of coefficient a2 in I2C address 0x22. Read top 8-bits of coefficient b0 in I2C address 0x23. Read middle 8-bits of coefficient b0 in I2C address 0x24. Read bottom 8-bits of coefficient b0 in I2C address 0x25. Writing a single coefficient to RAM 1. 2. 3. 4. 5. 6. 62/92 Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of address to I2C register 0x16. Write top 8-bits of coefficient in I2C address 0x17. Write middle 8-bits of coefficient in I2C address 0x18. Write bottom 8-bits of coefficient in I2C address 0x19. Write 1 to W1 bit in I2C address 0x26. DocID016861 Rev 7 STA369BWS Register description Writing a set of coefficients to RAM 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Select the RAM block with register 0x31 bit1, bit0. Write 6-bits of starting address to I2C register 0x16. Write top 8-bits of coefficient b1 in I2C address 0x17. Write middle 8-bits of coefficient b1 in I2C address 0x18. Write bottom 8-bits of coefficient b1 in I2C address 0x19. Write top 8-bits of coefficient b2 in I2C address 0x1A. Write middle 8-bits of coefficient b2 in I2C address 0x1B. Write bottom 8-bits of coefficient b2 in I2C address 0x1C. Write top 8-bits of coefficient a1 in I2C address 0x1D. Write middle 8-bits of coefficient a1 in I2C address 0x1E. Write bottom 8-bits of coefficient a1 in I2C address 0x1F. Write top 8-bits of coefficient a2 in I2C address 0x20. Write middle 8-bits of coefficient a2 in I2C address 0x21. Write bottom 8-bits of coefficient a2 in I2C address 0x22. Write top 8-bits of coefficient b0 in I2C address 0x23. Write middle 8-bits of coefficient b0 in I2C address 0x24. Write bottom 8-bits of coefficient b0 in I2C address 0x25. Write 1 to WA bit in I2C address 0x26. The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the STA369BWS generates the RAM addresses as offsets from this base value to write the complete set of coefficient data. Table 72. RAM block for biquads, mixing, scaling, bass management Index (Decimal) Index (Hex) Description Coefficient Default 0 0x00 C1H10(b1/2) 0x000000 1 0x01 C1H11(b2) 0x000000 2 0x02 C1H12(a1/2) 0x000000 3 0x03 C1H13(a2) 0x000000 4 0x04 C1H14(b0/2) 0x400000 5 0x05 Channel 1 - Biquad 2 C1H20 0x000000 … … … … … 19 0x13 Channel 1 - Biquad 4 C1H44 0x400000 20 0x14 C2H10 0x000000 21 0x15 C2H11 0x000000 … … … … … 39 0x27 Channel 2 - Biquad 4 C2H44 0x400000 Channel 1 - Biquad 1 Channel 2 - Biquad 1 DocID016861 Rev 7 63/92 92 Register description STA369BWS Table 72. RAM block for biquads, mixing, scaling, bass management (continued) Index (Decimal) Index (Hex) 40 0x28 41 0x29 42 0x2A 43 0x2B 44 Description Coefficient Default C12H0(b1/2) 0x000000 C12H1(b2) 0x000000 C12H2(a1/2) 0x000000 C12H3(a2) 0x000000 0x2C C12H4(b0/2) 0x400000 45 0x2D C3H0(b1/2) 0x000000 46 0x2E C3H1(b2) 0x000000 47 0x2F C3H2(a1/2) 0x000000 48 0x30 C3H3(a2) 0x000000 49 0x31 C3H4(b0/2) 0x400000 50 0x32 Channel 1 - Prescale C1PreS 0x7FFFFF 51 0x33 Channel 2 - Prescale C2PreS 0x7FFFFF 52 0x34 Channel 1 - Postscale C1PstS 0x7FFFFF 53 0x35 Channel 2 - Postscale C2PstS 0x7FFFFF 54 0x36 Channel 3 - Postscale C3PstS 0x7FFFFF 55 0x37 TWARN/OC - Limit TWOCL 0x5A9DF7 56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF 57 0x39 Channel 1 - Mix 2 C1MX2 0x000000 58 0x3A Channel 2 - Mix 1 C2MX1 0x000000 59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF 60 0x3C Channel 3 - Mix 1 C3MX1 0x400000 61 0x3D Channel 3 - Mix 2 C3MX2 0x400000 62 0x3E Unused 63 0x3F Unused Channel 1/2 - Biquad 5 or 8 for XO = 000 High-pass 2nd order filter for XO 000 Channel 3 - Biquad for XO = 000 Low-pass 2nd order filter for XO 000 User-defined EQ The STA369BWS can be programmed for four EQ filters (biquads) per each of the two input channels. The biquads use the following equation: Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2] = b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2] where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999998808). 64/92 DocID016861 Rev 7 STA369BWS Register description Coefficients stored in the user defined coefficient RAM are referenced in the following manner: CxHy0 = b1 / 2 CxHy1 = b2 CxHy2 = -a1 / 2 CxHy3 = -a2 CxHy4 = b0 / 2 where x represents the channel and the y the biquad number. For example, C2H41 is the b2 coefficient in the fourth biquad for channel 2. Crossover and biquad #8 Additionally, the STA369BWS can be programmed for a high-pass filter (processing channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass management crossover when the XO setting is 000 (user-defined). Both of these filters when defined by the user (rather than using the preset crossover filters) are second order filters that use the biquad equation given above. They are loaded into the C12H0-4 and C3Hy0-4 areas of RAM noted in Table 72, addresses 0x28 to 0x31. By default, all user-defined filters are pass-through where all coefficients are set to 0, except the b0/2 coefficient which is set to 0x400000 (representing 0.5) Prescale The STA369BWS provides a multiplication for each input channel for the purpose of scaling the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiplier is loaded into RAM. All channels can use the channel-1 prescale factor by setting the Biquad link bit. By default, all prescale factors (RAM addresses 0x32 to 0x33) are set to 0x7FFFFF. Postscale The STA369BWS provides one additional multiplication after the last interpolation stage and the distortion compensation on each channel. This postscaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiplier is loaded into RAM. This postscale factor can be used in conjunction with an ADC equipped micro-controller to perform power-supply error correction. All channels can use the channel-1 postscale factor by setting the postscale link bit. By default, all postscale factors (RAM addresses 0x34 to 0x36) are set to 0x7FFFFF. When line output is being used, channel-3 postscale affects both channels 3 and 4. Thermal warning and overcurrent adjustment (TWOCL) The STA369BWS provides a simple mechanism for reacting to overcurrent or thermal warning detection in the power block. When the warning occurs, the TWOCL value is used to provide output attenuation clipping on all channels. The amount of attenuation to be applied in this situation can be adjusted by modifying the overcurrent and thermal warning limiting value (RAM addr 0x37). By default, the overcurrent postscale adjustment factor is set to 0x5A9DF7 (that is, -3 dB). Once the limiting is applied it remains until the device is either reset or according to the TWRB and OCRB settings. DocID016861 Rev 7 65/92 92 Register description 7.8 STA369BWS Variable max power correction registers (addr 0x27 - 0x28) D7 D6 D5 D4 D3 D2 D1 D0 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8 0 0 0 1 1 0 1 0 D7 D6 D5 D4 D3 D2 D1 D0 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 1 1 0 0 0 0 0 0 MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1. 7.9 Distortion compensation registers (addr 0x29 - 0x2A) D7 D6 D5 D4 D3 D2 D1 D0 DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8 1 1 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0 0 0 1 1 0 0 1 1 DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient is used in place of the default coefficient when DCCV = 1. 7.10 Fault detect recovery constant registers (addr 0x2B - 0x2C) D7 D6 D5 D4 D3 D2 D1 D0 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0 0 0 0 0 1 1 0 0 FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted, the TRISTATE output is immediately asserted low and held low for the time period specified by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The default value of 0x000C gives approximately 0.1 ms. Note: 66/92 0x0000 is a reserved value for these registers. DocID016861 Rev 7 STA369BWS 7.11 Register description Device status register (addr 0x2D) D7 D6 D5 D4 D3 D2 D1 D0 PLLUL FAULT UVFAULT Reserved OCFAULT OCWARN TFAULT TWARN This read-only register provides fault and thermal-warning status information from the power control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked. Table 73. Status register bits Bit R/W RST Name Description 0: PLL locked 7 R - PLLUL 6 R - FAULT 0: fault detected on power bridge 1: normal operation 5 R - UVFAULT 0: VCCxX internally detected < undervoltage threshold 4 R - Reserved - 3 R - OCFAULT 0: overcurrent fault detected 2 R - OCWARN 0: overcurrent warning 1 R - TFAULT 0: thermal fault, junction temperature over limit 0 R - TWARN 0: thermal warning, junction temperature is close to the fault condition 1: PLL not locked DocID016861 Rev 7 67/92 92 Register description 7.12 STA369BWS EQ coefficients and DRC configuration register (addr 0x31) D7 D6 D5 D4 D3 D2 D1 D0 XOB Reserved Reserved AMGC[3] AMGC[2] Reserved SEL[1] SEL[0] 0 0 0 0 0 0 0 0 EQ RAM Table 74. EQ RAM select SEL[1:0] EQ RAM bank selected 00 / 11 Bank 0 activated 01 Bank 1 activated 10 Bank 2 activated DRC / Anti clipping Bits AMGC[3:2] change the behavior of the bits AMGC[1:0] as given in Table 75 below. Table 75. Anti clipping and DRC preset AMGC[3:2] Anti clipping and DRC preset selected 00 DRC / Anti-clipping behavior is described in Table 54 on page 49 (default) 01 DRC / Anti-clipping behavior is described Table 76 on page 68 10 / 11 Reserved Anticlipping when AMGC[3:2] = 01 Table 76. Anti-clipping selection for AMGC[3:2] = 01 AMGC[1:0] Mode 00 AC0, stereo anticlipping 0dB limiter 01 AC1, stereo anticlipping +1.25 dB limiter 10 AC2, stereo anticlipping +2 dB limiter 11 Reserved do not use AC0, AC1, AC2 settings are designed for the loudspeaker protection function, limiting at the minimum any audio artefacts introduced by typical anti-clipping / DRC algorithms. More detailed information is available in the applications notes “Configurable output power rate using STA335BW” and “STA335BWS vs STA335BW”. XOB This bit can be used to bypass the crossover filters. Logic 1 means that the function is not active. In this case, high pass crossover filter works as a pass-through on the data path (b0 = 1, all the other coefficients at logic 0) while the low-pass filter is configured to have zero signal on channel-3 data processing (all the coefficients are at logic 0). 68/92 DocID016861 Rev 7 STA369BWS 7.13 Register description Extended configuration register (addr 0x36) D7 D6 D5 D4 D3 D2 D1 D0 MDRC[1] MDRC[0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7 0 0 0 0 0 0 0 0 Extended configuration register provides access to B2DRC and biquad 5, 6 and 7. 7.13.1 Dual-band DRC (B2DRC) STA369BWS device provide a dual-band DRC (B2DRC) on the left and right channels data path, as depicted in Figure 20. Dual-band DRC is activated by setting MDRC[1:0] = 1x. Figure 20. B2DRC scheme The low frequency information (LFE) is extracted from left and right channels, removing the high frequencies using a programmable biquad filter, and then computing the difference with the original signal. Limiter 1 (DRC1) is then used to control left/right high frequency components amplitude while limiter 2 (DRC2) is used to control the low frequency components (see Chapter 7.6). The cut-off frequency of the high pass filters can be user defined, XO[3:0] = 0, or selected from the predefined values. DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE channels amplitude (see Chapter 7.6) as well as their volume control. To be noted that, in this configuration, the dedicated channel 3 volume control can be actually acted as a bass boost enhancer as well (0.5 dB/step resolution). The processed LFE channel is then recombined with the L and R channels in order to reconstruct the 2.0 output signal. Sub-band decomposition The sub-band decomposition for B2DRC can be configured specifying the cutoff frequency. The cut off frequency can be programmed in two ways, using XO bits in register 0x0C, or using “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31). DocID016861 Rev 7 69/92 92 Register description STA369BWS For the user programmable mode, use the formulae below to compute the high pass filters: b0 = (1 + alpha) / 2 a0 = 1 b1 = -(1 + alpha) / 2 a1 = -alpha b2 = 0 a2 = 0 where alpha = (1-sin(0)) / cos(0), and 0 is the cut-off frequency. A first-order filter is suggested to guarantee that for every 0 the corresponding low-pass filter obtained as difference (as shown in Figure 20) has a symmetric (relative to HP filter) frequency response, and the corresponding recombination after the DRC has low ripple. Second-order filters can be used as well, but in this case the filter shape must be carefully chosen to provide good low pass response and minimum ripple recombination. For secondorder is not possible to give a closed formula to get the best coefficients, but empirical adjustment should be done. DRC settings The DRC blocks used by B2DRC are the same as those described in Chapter 7.6. B2DRC configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are configured by registers 0x12 and 0x14. Band downmixing The low-frequency band is down-mixed to the left and right channels at the B2DRC output. Channel volume can be used to weight the bands recombination to fine tune the overall frequency response. 7.13.2 EQ DRC mode Setting MDRC = 01, it is possible to add a programmable biquad (the XO biquad at RAM addresses 0x28 to 0x2C is used for this purpose) to the Limiter/compressor measure path (side chain). Using EQDRC the peak detector input can be shaped in frequency using the programmable biquad. For example, if a bass boost of +2 dB is applied (using a low-shelf filter, for instance), the effect is that the EQDRC out will limit bass frequencies to 2 dB below the selected attack threshold. Generally speaking, if the biquad boosts frequency f with an amount of X dB, the level of a compressed sine wave at the output is TH - X, where TH is the selected attack threshold. Note: 70/92 EQDRC works only if the biquad frequency response magnitude is >= 0 dB for every frequency. DocID016861 Rev 7 STA369BWS Register description Figure 21. EQDRC scheme Extended postscale range Table 77. Bit PS48DB description PS48DB Mode 0 Postscale value is applied as defined in coefficient RAM 1 Postscale value is applied with +48-dB offset with respect to the coefficient RAM value Postscale is an attenuation by default. When PS48DB is set to 1, a 48-dB offset is applied to the configured word, so postscale can act as a gain too. Extended attack rate The attack rate shown in Table 66 can be extended to provide up to 8 dB/ms attack rate on both limiters. Table 78. Bit XAR1 description XAR1 Mode 0 Limiter1 attack rate is configured using Table 66 1 Limiter1 attack rate is 8 dB/ms Table 79. Bit XAR2 description XAR2 Mode 0 Limiter2 attack rate is configured using Table 66 1 Limiter2 attack rate is 8 dB/ms Extended biquad selector De-emphasis filter as well as bass and treble controls can be configured as user defined filters when equalization coefficients link is activated (BQL = 1) and the corresponding BQx bit is set to 1. DocID016861 Rev 7 71/92 92 Register description STA369BWS Table 80. Bit BQ5 description BQ5 Mode 0 Preset de-emphasis filter selected 1 User defined biquad 5 coefficients are selected Table 81. Bit BQ6 description BQ6 Mode 0 Preset bass filter selected as per Table 65 1 User defined biquad 6 coefficients are selected Table 82. Bit BQ7 description BQ7 Mode 0 Preset treble filter selected as per Table 65 1 User defined biquad 7 coefficients are selected When filters from 5th to 7th are configured as user-programmable, the corresponding coefficients are stored respectively in addresses 0x14-0x18 (BQ5), 0x19-0x1D (BQ6) and 0x1E-0x22 (BQ7) as in Table 72. Note: BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for BQ6 and BQ7). 7.14 Soft volume configuration registers (addr 0x37 - 0x38) D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved SVDWE SVDW4] SVDW[3] SVDW[2] SVDW[1] SVDW[0] 0 0 0 0 0 0 0 0 Soft volume update has a fixed rate by default. Using register 0x37 and 0x38 it is possible to override the default behavior allowing different volume change rates. It is also possible to independently define the fade-in (volume is increased) and fade-out (volume is decreased) rates according to the desired behavior. Table 83. Bit SVUPE description SVUPE 72/92 Mode 0 When volume is increased, use the default rate 1 When volume is increased, use the rates defined by SVUP[4:0] DocID016861 Rev 7 STA369BWS Register description When SVUPE = 1 the fade-in rate is defined by the SVUP[4:0] bits according to the formula: Fade-in rate = 48 / (N + 1) dB/ms where N is the SVUP[4:0] value. Table 84. Bit SVDWE description SVDWE Mode 0 When volume is decreased, use the default rate 1 When volume is decreased, use the rates defined by SVDW[4:0] When SVDWE = 1 the fade-out rate is defined by the SVDW[4:0] bits according to the formula: Fade-in rate = 48 / (N + 1) dB/ms where N is the SVDW[4:0] value. Note: For fade-out rates greater than 6 dB/ms it is suggested to disable CPWMEN bit (Miscellaneous registers (addr 0x4B, 0x4C) on page 78) and ZCE bit (Configuration register E (addr 0x04) on page 35) in order to avoid any audible pop noise. 7.15 DRC RMS filter coefficients (addr 0x39-0x3E) D7 D6 D5 D4 D3 D2 D1 D0 R_C0[23] R_C0[22] R_C0[21] R_C0[20] R_C0[19] R_C0[18] R_C0[17] R_C0[16] 0 0 0 0 0 0 0 1 D7 D6 D5 D4 D3 D2 D1 D0 R_C0[15] R_C0[14] R_C0[13] R_C0[12] R_C0[11] R_C0[10] R_C0[9] R_C0[8] 1 1 1 0 1 1 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R_C0[7] R_C0[6] R_C0[5] R_C0[4] R_C0[3] R_C0[2] R_C0[1] R_C0[0] 1 1 1 1 1 1 1 1 D7 D6 D5 D4 D3 D2 D1 D0 R_C1[23] R_C1[22] R_C1[21] R_C1[20] R_C1[19] R_C1[18] R_C1[17] R_C1[16] 0 1 1 1 1 1 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R_C1[15] R_C1[14] R_C1[13] R_C1[12] R_C1[11] R_C1[10] R_C1[9] R_C1[8] 1 1 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 R_C1[7] R_C1[6] R_C1[5] R_C1[4] R_C1[3] R_C1[2] R_C1[1] R_C1[0] 0 0 1 0 0 1 1 0 Signal level detection in DRC algorithm is computed using the following formula: y(t) = c0 * abs(x(t)) + c1 * y(t-1) where x(t) represents the audio signal applied to the limiter, and y(t) the measured level. DocID016861 Rev 7 73/92 92 Register description 7.16 STA369BWS Extra volume resolution configuration registers (addr 0x3F) D7 D6 D5 D4 D3 D2 D1 D0 VRESEN VRESTG C3VR[1] C3VR[0] C2VR[1] C2VR[0] C1VR[1] C1VR[0] 0 0 0 0 0 0 0 0 Extra volume resolution allows fine volume tuning in steps of 0.125 dB. The feature is enabled when VRESEN = 1, as depicted in Figure 22. The overall channel volume in this case is CxVol + CxVR (in dB). Figure 22. Extra resolution volume scheme If VRESEN = 0 the channel volume is defined only by CxVol registers. Fine tuning steps can be set according to the following table for channels 1, 2, 3: Table 85. Bits CxVR description CxVR[1:0] Mode 00 0 dB 01 -0.125 dB 10 -0.25 dB 11 -0.375 dB Two different behaviors can be configured by VRESTG bit. If VRESTG = 0 the CxVR contribution is applied immediately after the corresponding I2C bits are written. If VRESTG = 1 the CxVR bits are effective on channel volume only after the corresponding CxVol register or master volume register is written (even to the previous values). 74/92 DocID016861 Rev 7 STA369BWS Register description Table 86. Bits VRESEN and VRESTG description VRESEN 7.17 VRESTG Mode 0 0 Extra volume resolution disabled 0 1 Extra volume resolution disabled 1 0 Fine volume tuning enabled and applied immediately 1 1 Fine volume tuning enabled and applied when master or channel volume is updated Short-circuit protection mode registers SHOK (addr 0x46) D7 D6 D5 D4 D3 D2 D1 D0 GND1A GND1B GND2A GND2B VCC1A VCC1B VCC2A VCC2B 1 1 1 1 1 1 1 1 The following power-bridge pins short-circuit protection are implemented in Root part number 1:  OUTxx vs GNDx  OUTxx vs VCCx The protection is enabled when register MISC2 (address 0x4C) bit SHEN is set to 1. The protection checks the short circuit when EAPD bit is toggled from 0 to 1 (that is, the power bridge is switched on), and only if it passes the test (no short) will the power bridge leave the 3-state condition. Register 0x46 (read-only register) gives more information about the detected short type. GNDxx equal to 0 means that OUTxx is shorted to ground, while the same value on VCCxx means that OUTxx is shorted to VCC. To be noted that once the check is performed, and the tristate released, the short-circuit protection is not active again until the next EAPD 0 -> 1 toggling. It means that shorts happening during normal operation are not detected. The content of register 0x46 is meaningful only after EAPD bit is set to 1 at least once. The short-circuit protection implemented is effective only in BTL configuration, and it must not be activated (that is, SHEN must be 0) in single-ended applications. DocID016861 Rev 7 75/92 92 Register description STA369BWS Figure 23. Short-circuit detection timing diagram (no short detected) In Figure 23 the short protection timing diagram is shown. The time information is expressed in clock cycles, where the clock frequency is defined as in section . The grey colour is used for SHOK bits to indicate that the bits keep the status of the previous EAPD 0 -> 1 toggling. NB that after reset this state is meaningless until an EAPD transition has occurred. Ground related SHOK bits are updated as soon as the GND test is completed, while VCC bits are updated after the VCC test is completed. Both GND and VCC tests are always run (if SHEN bit active and EAPD toggled to 1), and only if both test are successful (no short) will the bridge outputs leave the 3-state (indicated in dotted lines in the figure). If one of the two tests (or both) fail, the power bridge outputs are kept in 3-state until the procedure is restarted with a new EAPD toggling. In this figure EAPD is bit 7 of register 0x05. 7.18 Quantization error noise correction (addr 0x48) D7 D6 D5 D4 D3 D2 D1 D0 NSHXEN NSHB7EN NSHB6EN NSHB5EN NSHB4EN NSHB3EN NSHB2EN NSHB1EN 0 0 0 0 0 0 0 0 A special feature inside the digital processing block is available. In case of poles positioned at very low frequencies, biquads filters, can generate some audible quantization noise or unwanted DC level. In order to avoid such kind of effect a quantization noise shaping capability can be used. The filter structure including this special feature, relative to each biquad is shown in Figure 24. To maintain a back compatibility with all the previous Sound Terminal® products the feature is not activated by default. It can be enabled independently for each biquad using I2C 76/92 DocID016861 Rev 7 STA369BWS Register description registers. D7 bit, when set, is responsible to activate this function on the crossover filter while the other bits address any specific biquads as per previous table. Channels 1 and 2 share the same settings. Bit D7 is effective also for channel 3 if the relative OCFG is used. Figure 24. Biquad filter structure with quantization-error noise shaping 7.19 Extended coefficient range up to +4/-4 (addr 0x49, 0x4A) D7 D6 D5 D4 D3 D2 D1 D0 CXTB4[1] CXTB4[0] CXTB3[1] CXTB3[0] CXTB2[1] CXTB2[0] CXTB1[1] CXTB1[0] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 Reserved Reserved CXTB7[1] CXTB7[0] CXTB6[1] CXTB6[0] CXTB5[1] CXTB5[0] 0 0 0 0 0 0 0 0 Biquads from 1 to 7 have the possibility to extend the coefficient range from +1/-1 to +4/-4. This allows the realization of high shelf filters that may require a coefficients dynamic greater than 1 (absolute value). Three ranges are available, +1/-1, +2/-2, +4/-4. To maintain a back compatibility with all the previous Sound Terminal® products, the extended range is not activated by default. Each biquad has its independent setting as per the table below: Table 87. Coefficients extended range configuration CEXT_Bx[1:0] Coefficient range 00 +1/-1 01 +2/-2 10 +4/-4 11 Reserved In this case the user can decide, for each filter stage, the correct coefficients range. Note that for a given biquad the same range is applied to left and right (channel 1 and channel 2). Crossover biquads do not have this feature and maintain the +1/-1 range unchanged. DocID016861 Rev 7 77/92 92 Register description STA369BWS 7.20 Miscellaneous registers (addr 0x4B, 0x4C) 7.20.1 MISC1 (addr 0x4B) D7 D6 D5 D4 D3 D2 D1 D0 RPDNEN NSHHPEN BRIDGOFF F3XEN[1] F3XEN[0] CPWMEN Reserved BOOST 0 0 0 0 0 1 0 0 Rate powerdown enable (RPDNEN) bit In Root part number 1, by default, powerdown pin and I2C powerdown act on mute commands to perform the fadeout. This default can be changed so that the fadeout can be started using master volume. RPDNEN bit, when set, activates this feature. Noise shaping on DC-cut filter enable (NSHHPEN) bit Following what described in Section 7.18, this bit, when set, enables the noise shaping technique on DC-cut filter. Channels 1 and 2 share the same settings. Bridge immediate off (BRIDGOFF) bit A fadeout procedure is started in Root part number 1, once PWDN function is enabled and after 13 million clock cycles (PLL internal frequency) the bridge is put in powerdown (Tristate mode). There is also the possibility to change this behavior so that the power bridge is switched off immediately after PWDN pin is tied to ground, without, therefore waiting for the 13 million clock cycles. BRIDGOFF bit, when set, activates this function. Obviously, the immediate powerdown generates a pop noise at the output, hence this procedure must be used only in cases where pop noise is not relevant in the application. Note that this feature works only for hardware PWDN assertion and not for a power down applied through I2C interface. Refer to Section : Power down delay selector (PNDLSL[2:0]) bits on page 81 when it is necessary to program a different number of clock cycles. F3X™ mode activation (F3X) bits F3X™ technology allows the PWM carrier to be suppressed for the auxiliary outputs. When activated, pins 17, 18, 19 and 20 are the channel outputs that can be connected as per figure Figure 25 below. This circuit suppresses the PWM carrier fundamental and its harmonics by low-pass filtering the stereo signal. Typical resistor and capacitor values are given for filtering the PWM signal. Note: 78/92 F3X mode works only with binary modulation. See Section : Binary output enable registers on page 52 for how to select this configuration. DocID016861 Rev 7 STA369BWS Register description Figure 25. External active filter with connection for F3X output The two register bits work as per the following table. Table 88. F3X bits configuration F3X[1] F3X[0] Description 0 0 No F3X applied 0 1 F3X applied 1 0 Reserved 1 1 Reserved Channel PWM enable (CPWMEN) bit This bit, when set, activates a mute output when the volume reaches a value lower than -76 dBFS. Output power boosting (BOOST) bit The bit, when enabled, allows the maximum PWM modulation index to be increased from the default value to 100%. In this case the maximum unclipped output power can be increased accordingly. Note that this feature does not add any gain to the signal, but just extends the maximum unclipped level of Root part number 1. DocID016861 Rev 7 79/92 92 Register description 7.20.2 STA369BWS MISC2 (addr 0x4C) D7 D6 D5 D4 D3 D2 D1 D0 LPDP LPD LPDE PNDLSL[2] PNDLSL[1] PNDLSL[0] Reserved SHEN 0 0 0 0 0 0 0 0 External amplifier hardware pin enable (LPDP, LPD LPDE) bits Pin 32 (INT_LINE), described in Table 2, normally indicates a fault condition. However, using the following register settings, pin 32 can be reconfigured as the hardware pin enabler for an external headphone or line amplifier. In particular LPDE bit, when set, activates this function. Accordingly, LPD is exported to pin 32 and in case of power down assertion pin 32 is tied to LPDP. LPDP bit, when set, negates the value programmed as LPD value. This is summarized in the following table. Table 89. External amplifier enabler configuration bits LPDP LPD LPDE Pin 32 output x x 0 INT_LINE 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 Figure 26. Alternate function for INT_LINE pin Power bridge fault 0 0 0 Y INT_LINE 1 LPD “is the device in powerdown?” 80/92 1 N LPDE LPDP DocID016861 Rev 7 STA369BWS Register description Power down delay selector (PNDLSL[2:0]) bits As per register MISC1 (addr 0x4B) on page 78, the assertion of PWDN activates a counter that, by default, after 13 million clock cycles, puts the power bridge in tristate mode independently from the fade out time. Using these registers it is possible to program this counter as per the table below. Table 90. PNDLSL bits configuration PNDLSL[2] PNDLSL[1] PNDLSL[0] Fade-out time 0 0 0 Default time (13 x 106 PLL clock cycles) 0 0 1 Default time divided by 2 0 1 0 Default time divided by 4 0 1 1 Default time divided by 8 1 0 0 Default time divided by 16 1 0 1 Default time divided by 32 1 1 0 Default time divided by 64 1 1 1 Default time divided by 128 Short-circuit check enable (SHEN) bit This bit, when enabled, activates the short-circuit checks before any power bridge activation (EAPD bit 0 -> 1). See Section 7.17 on page 75 for more details. 7.21 Global DRC after B2DRC (GDRC) bit (addr 0x4D, bit D0) GDRC bit, when set, changes the architecture configuration of the dual band DRC. As a consequence, the block diagram, illustrated by the Figure 20: B2DRC scheme on page 69, becomes that shown in Figure 27 below. Figure 27. Global DRC after B2DRC The final effect is a global DRC after the dual band DRC. This architecture aims to limit the signal overshoot, generated by the different phases of the two processed data paths of the B2DRC architecture, that could happen between the two bands. Note: If GDRC is enabled, C3VR[0] and C3VR[1] must be set to 0 (default values). DocID016861 Rev 7 81/92 92 Register description 7.22 STA369BWS Bad PWM detection registers (addr 0x4D, 0x4E, 0x4F) D7 D6 D5 D4 D3 D2 D1 D0 BPTH[5] BPTH[4] BPTH[3] BPTH[2] BPTH[1] BPTH[0] Reserved GDRC 0 0 1 1 0 0 1 0 D7 D6 D5 D4 D3 D2 D1 D0 BP4B BP4A BP3B BP3A BP2B BP2A BP1B BP1A 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 BPTIM[7] BPTIM[6] BPTIM[5] BPTIM[4] BPTIM[3] BPTIM[2] BPTIM[1] BPTIM[0] 0 0 0 0 0 0 0 0 Root part number 1 implements a detection on PWM outputs which is able to verify if the output signal has no zero crossing in a configurable time window. This check is useful to detect the DC level in the PWM outputs. The checks are performed at logic level PWM so it is implemented inside the PWM modulator logic. In the case of ternary modulation, the detection threshold is computed as: TH = ((BPTH * 2 + 1) / 128) * 100% If the measured PWM duty cycle is detected greater or equal to TH for more than BPTIM PWM periods, the corresponding PWM bit is set in register 0x4E. In the case of binary modulation, there are two thresholds: TH1 = ((64 + BPTH) / 128) * 100% TH2 = ((64 - BPTH) / 128) * 100% In this case, if the measured PWM duty cycle is outside the TH1 to TH2 range for more than BPTIM PWM periods, the corresponding bit is set in register 0x4E. 7.23 Coefficient RAM CRC protection (addr 0x60-0x6C) 7.23.1 BQCHKE registers (addr 0x60 - 0x62) 82/92 D7 D6 D5 D4 D3 D2 D1 D0 BQCHKE[7] BQCHKE[6] BQCHKE[5] BQCHKE[4] BQCHKE[3] BQCHKE[2] BQCHKE[1] BQCHKE[0] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 BQCHKE[15] BQCHKE[14] BQCHKE[13] BQCHKE[12] BQCHKE[11] BQCHKE[10] BQCHKE[9] BQCHKE[8] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 BQCHKE[23] BQCHKE[22] BQCHKE[21] BQCHKE[20] BQCHKE[19] BQCHKE[18] BQCHKE[17] BQCHKE[16] 0 0 0 0 0 0 0 0 DocID016861 Rev 7 STA369BWS 7.23.2 7.23.3 7.23.4 7.23.5 Register description XCCHKE registers (addr 0x63 - 0x65) D7 D6 D5 D4 D3 D2 D1 D0 XCCHKE[7] XCCHKE[6] XCCHKE[5] XCCHKE[4] XCCHKE[3] XCCHKE[2] XCCHKE[1] XCCHKE[0] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 XCCHKE[15] XCCHKE[14] XCCHKE[13] XCCHKE[12] XCCHKE[11] XCCHKE[10] XCCHKE[9] XCCHKE[8] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 XCCHKE[23] XCCHKE[22] XCCHKE[21] XCCHKE[20] XCCHKE[19] XCCHKE[18] XCCHKE[17] XCCHKE[16] 0 0 0 0 0 0 0 0 BQCHKR registers (addr 0x66 - 0x68) D7 D6 D5 D4 D3 D2 D1 D0 BQCHKR[7] BQCHKR[6] BQCHKR[5] BQCHKR[4] BQCHKR[3] BQCHKR[2] BQCHKR[1] BQCHKR[0] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 BQCHKR[15] BQCHKR[14] BQCHKR[13] BQCHKR[12] BQCHKR[11] BQCHKR[10] BQCHKR[9] BQCHKR[8] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 BQCHKR[23] BQCHKR[22] BQCHKR[21] BQCHKR[20] BQCHKR[19] BQCHKR[18] BQCHKR[17] BQCHKR[16] 0 0 0 0 0 0 0 0 XCCHKR registers (addr 0x69 - 0x6B) D7 D6 D5 D4 D3 D2 D1 D0 XCCHKR[7] XCCHKR[6] XCCHKR[5] XCCHKR[4] XCCHKR[3] XCCHKR[2] XCCHKR[1] XCCHKR[0] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 XCCHKR[15] XCCHKR[14] XCCHKR[13] XCCHKR[12] XCCHKR[11] XCCHKR[10] XCCHKR[9] XCCHKR[8] 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 XCCHKR[23] XCCHKR[22] XCCHKR[21] XCCHKR[20] XCCHKR[19] XCCHKR[18] XCCHKR[17] XCCHKR[16] 0 0 0 0 0 0 0 0 CHKCTRL register (addr 0x6C) D7 D6 D5 D4 D3 D2 D1 D0 XCAUTO XCRES XCCMP XCGO BCAUTO BCRES BCCMP BCGO 0 1 0 0 0 1 0 0 DocID016861 Rev 7 83/92 92 Register description 7.23.6 STA369BWS Description Root part number 1 implements an automatic CRC computation for the Biquad and MDRC / XOver coefficient memory (Table 72). RAM memory cell contents from address 0x00 to 0x27 are bit XORed to obtain BQCHKE checksum, while cells from 0x28 to 0x31 are XORed to obtain the XCCHKE checksum. Both checksum (24-bit wide) are exported on I2C registers from 0x60 to 0x65. The checksum computation starts as soon as the BCGO (for biquad RAM bank) or the XCGO bits (for MDRC / XOver coefficients) are set to 1. The checksum is computed at the processing sample rate if IR bits equal to 01 or 10, otherwise the checksum is computed to half processing sample rate. When BCCMP or XCCMP are set to 1 the relative checksum (BQCHKE and XCCHKE) is continuously compared with BQCHKR and XCCHKR respectively. If the checksum match with its own reference value, the respective result bits (BCRES and XCRES) are set to 0. The compare bits have no effect if the respective GO bit is not set. In case of checksum errors (that is, the internally computed didn’t match the reference), an automatic device reset action can be activated. This function is enabled when BCAUTO or XCAUTO bits are set to ‘1’. The automatic reset bits have no effect if the respective compare bits are not set. The suggested procedure for Automatic reset activation is the following one: 1. Download coefficients set (RAM locations 0x00…0x27) 2. Download externally computed biquad checksum into registers BQCHKR 3. Enable checksum of biquad coefficients by setting BCGO bit. Checksum starts to be automatically computed by Root part number 1 and its value written in registers BQCHKE. 4. Enable checksum comparison by setting BCCMP bit. Internally computed checksum will start to be compared with the reference one and result will be exposed on the BCRES bit. Following operation will be executed on each audio frame: if (BQCHKE == BQCHKR) { BC_RES = 0; } // Checksum is ok, reset the error bit else { BC_RES = 1; } // Checksum error detected, set the error bit 5. 6. 7. Wait until the BCRES bit goes to 0, meaning checksum result bit has started to be updated and everything is ok. Time out for this operation (for example, >1 ms) indicates checksum failure, MCU will handle this event. Enable automatic reset of the device in case of checksum error by setting the BCAUTO bit. The BCRES bit will then be automatically checked by STA369BWS, on each audio frame, and reset event will be triggered in case of checksum mismatch. Periodically check BCRES status. A value of 1 indicates a checksum mismatch has occurred and, therefore, the device went through a reset cycle. The previous example is intended for biquad CRC bank calculations, but it can be easily extended to MDRC / XOver CRC computation. 84/92 DocID016861 Rev 7 Applications 8.1 Application schematics STA369BWS 8 Figure 28 and Figure 29 show the typical application schematics for stereo and mono configuration, respectively. Special attention has to be paid to the layout of the PCB. All the decoupling capacitors have to be placed as close as possible to the device to limit spikes on all the supplies. Figure 28. Application circuit for 2 or 2.1-channel configuration DocID016861 Rev 7 Applications 85/92 STA369BWS Figure 29. Application circuit for mono BTL configuration DocID016861 Rev 7 Applications 86/92 STA369BWS 8.2 Applications PLL filter circuit It is recommended to use the above circuit and values for the PLL loop filter to achieve the best performance from the device in general applications. Note that the ground of this filter circuit has to be connected to the ground of the PLL without any resistive path. Concerning the component values, it must be taken into account that the greater the filter bandwidth, the less is the lock time but the higher is the PLL output jitter. 8.3 Typical output configuration Figure 30 shows the typical output configuration used for BTL stereo mode. Please contact STMicroelectronics for other recommended output configurations. Figure 30. Output configuration for stereo BTL mode (RL = 8  DocID016861 Rev 7 87/92 92 Package thermal characteristics 9 STA369BWS Package thermal characteristics Using a double-layer PCB the thermal resistance, junction to ambient, with 2 copper ground areas of 3 x 3 cm2 and with 16 via holes is 24 °C/W in natural air convection. The dissipated power within the device depends primarily on the supply voltage, load impedance and output modulation level. Thus, the maximum estimated dissipated power for the STA369BWS is: 2 x 20 W @ 8, 18 V Pd max is approximately 4 W 2 x 9 W + 1 x 20 W @ 4 , 8 ,18 V Pd max is approximately 5 W Figure 31 shows the power derating curve for the PowerSSO-36 package on PCBs with copper areas of 2 x 2 cm2 and 3 x 3 cm2. Figure 31. PowerSSO-36 power derating curve STA369BWS PowerSSO- 88/92 DocID016861 Rev 7 STA369BWS 10 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 32 shows the package outline and Table 91 gives the dimensions. Table 91. PowerSSO-36 EPD dimensions Dimensions in mm Dimensions in inches Symbol Min Typ Max Min Typ Max A 2.15 - 2.47 0.085 - 0.097 A2 2.15 - 2.40 0.085 - 0.094 a1 0.00 - 0.10 0.00 - 0.004 b 0.18 - 0.36 0.007 - 0.014 c 0.23 - 0.32 0.009 - 0.013 D 10.10 - 10.50 0.398 - 0.413 E 7.40 - 7.60 0.291 - 0.299 e - 0.5 - - 0.020 - e3 - 8.5 - - 0.335 - F - 2.3 - - 0.091 - G - - 0.10 - - 0.004 H 10.10 - 10.50 0.398 - 0.413 h - - 0.40 - - 0.016 k 0 - 8 degrees 0 - 8 degrees L 0.60 - 1.00 0.024 - 0.039 M - 4.30 - - 0.169 - N - - 10 degrees - - 10 degrees O - 1.20 - - 0.047 - Q - 0.80 - - 0.031 - S - 2.90 - - 0.114 - T - 3.65 - - 0.144 - U - 1.00 - - 0.039 - X 4.10 - 4.70 0.161 - 0.185 Y 6.50 - 7.10 0.256 - 0.280 DocID016861 Rev 7 89/92 92 h x 45° STA369BWS Figure 32. PowerSSO-36 EPD outline drawing DocID016861 Rev 7 Package mechanical data 90/92 STA369BWS 11 Revision history Revision history Table 92. Document revision history Date Revision 11-Dec-2009 1 Initial release. 10-Feb-2010 2 Removed preliminary banner - datasheet now final 3 Added Rth j-amb typical value to Table 4 on page 13 Added Section 3.6: Power on/off sequence on page 17 Updated Biquad # in Figure 8 on page 20 Updated Section : Fault detect recovery bypass on page 29 Updated SV naming in Table 42 on page 37 Updated CxBO description in Table 62 on page 52 Updated Biquad # for C12Hx in Table 72 on page 63 Updated text in sections Crossover and biquad #8, Prescale and Section : Postscale on page 65. 4 Updated Figure 3: Test circuit on page 16 Clarified 2-dB value (by prefixing “+”) in Section 7.13.2: EQ DRC mode on page 70 Updated storage addresses for coefficients in Section : Extended biquad selector on page 71 25-Sep-2013 5 Added Section 4 on page 18 Modified Note:: The read write operation on RAM coefficients works only if RLCKI (pin29) is switching and stable (ref. Table 8, tLRJT timing) and PLL must be locked (ref bit D7 reg 0x2D). on page 61 Updated Company information appearing on last page of document 05-Nov-2013 6 Modified ILIM and ISCP Min. values in Table 7 on page 15 7 Updated Section 1: Description Added 1 channel mono-parallel (OCFG = 11) in Section 7.1.6: Configuration register F (addr 0x05) Updated Figure 28: Application circuit for 2 or 2.1 channel configuration and added Figure 29: Application circuit for mono BTL configuration 01-Mar-2010 04-Nov-2010 22-Sep-2014 Changes DocID016861 Rev 7 91/92 92 STA369BWS IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2014 STMicroelectronics – All rights reserved 92/92 DocID016861 Rev 7
STA369BWSTR 价格&库存

很抱歉,暂时无法提供与“STA369BWSTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货