0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STA510A13TR

STA510A13TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    PowerBFSOP36

  • 描述:

    ICQUADHALFBRIDGEAMPPWRSO36

  • 数据手册
  • 价格&库存
STA510A13TR 数据手册
STA510A 44 V, 5.5 A, quad power half-bridge Datasheet - production data Description The STA510A is a monolithic, quad, half-bridge stage in multipower BCD technology. The device can be used as dual-bridge or reconfigured, by connecting the CONFIG pin to the VDD pin, as single-bridge with double current capability, or as half-bridge (binary mode) with half current capability. • Minimum input/output pulse width distortion The device is particularly designed to make the output stage of a stereo all-digital high-efficiency (DDX) amplifier, which employs a pulse-width modulator driver. The STA510A is capable of delivering an output power of 50 W into 3 Ω loads with THD = 10% and VCC = 36 V. In single BTL configuration the device can deliver 200 W into a 3 Ω load with THD = 10% and VCC = 36 V. • 150 mΩ RDS(on) complementary DMOS output stage The input pins have a threshold proportional to VL pin voltage. 3RZHU 62SDFNDJH ZLWKH[SRVHGSDGXS Features • Multipower BCD technology • CMOS compatible logic inputs • Thermal protection • Thermal warning output • Undervoltage protection • Short-circuit protection Table 1. Device summary Order code Operating temp. range Package Packing STA510A13TR 0 ° to 70 °C PowerSO-36 (slug up) Tape and reel October 2020 This is information on a product in full production. DocID11077 Rev 4 1/21 www.st.com Contents STA510A Contents 1 Audio application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 5 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Technical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.1 Logic interface and decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.2 Protection circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Power outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.4 Parallel output / high current operation . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.5 Output filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.6 Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 6 2/21 PowerSO-36 exposed pad up package information . . . . . . . . . . . . . . . . . 16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 DocID11077 Rev 4 STA510A 1 Audio application circuit Audio application circuit Figure 1. TAudio application circuit (dual BTL) 9&& 9&&$ ,1$ 9 5 .  9/  &21),*  3:5'1 3:5'1  5 . )$8/7   0  0 3URWHFWLRQ ORJLF 7+:$51 ,1% 0 7+:$51  ,1%  9''  9''  966  966    75,67$7( & Q) & Q) ,1$ 9&&6,* & Q) 9&&6,* *1'$  9&&% ,1$ ,1$ *1'5(* *1'&/($1 ,1% ,1% *1'68% 5HJXODWRUV  *1'%  9&&$  0   0 0 & Q) 287$  *1'$  9&&%  5  Ÿ & Q) /—+ & Q) & S) 5  & Q)  5  & Q) & Q) & Q) / —+ 287$    287% 287% 0   & Q) & S) 5  & Q)     287$  &  —) /—+ 287$ 0 & Q) & —) 5 5   287% & Q) 287% / —+ & Q) & Q) & Q) Ÿ *1'% '$8% DocID11077 Rev 4 3/21 21 Pin description 2 STA510A Pin description Figure 2. Pin connections (top view) VCCSign 36 1 GND-SUB VCCSign 35 2 OUT2B VSS 34 3 OUT2B VSS 33 4 VCC2B IN2B 32 5 GND2B IN2A 31 6 GND2A IN1B 30 7 VCC2A IN1A 29 8 OUT2A TH_WAR 28 9 OUT2A FAULT 27 10 OUT1B TRI-STATE 26 11 OUT1B PWRDN 25 12 VCC1B CONFIG 24 13 GND1B VL 23 14 GND1A VDD 22 15 VCC1A VDD 21 16 OUT1A GND-Reg 20 17 OUT1A GND-Clean 19 18 N.C. Table 2. Pin list 4/21 Pin Name Description 1 GND-SUB 2, 3 OUT2B Output half-bridge 2B 4 Vcc2B Positive supply 5 GND2B Negative supply 6 GND2A Negative supply 7 Vcc2A Positive supply 8, 9 OUT2A Output half-bridge 2A 10, 11 OUT1B Output half-bridge 1B 12 Vcc1B Positive supply 13 GND1B Negative supply 14 GND1A Negative supply 15 Vcc1A Positive supply 16, 17 OUT1A Output half-bridge 1A 18 NC Substrate ground Not connected DocID11077 Rev 4 STA510A Pin description Table 2. Pin list (continued) Pin Name Description 19 GND-clean Logical ground 20 GND-Reg Ground for regulator VDD 21, 22 VDD 5-V regulator referred to ground 23 VL High logical state setting voltage CONFIG Configuration 0: normal operation 1: single BTL (mono) mode, join the pins OUT1A to OUT1B and OUT2A to OUT2B (if IN1A is joined to IN1B and IN2A to IN2B) 25 PWRDN Standby (power down): 0: low power consumption mode 1: normal operation 26 TRI-STATE 27 FAULT(1) Fault advisor: 0: fault detected (short circuit or thermal) 1: normal operation 28 TH-WAR Thermal warning advisor: 0: junction temperature = 130 °C 1: normal operation 29 IN1A Input of half-bridge 1A 30 IN1B Input of half-bridge 1B 31 IN2A Input of half-bridge 2A 32 IN2B Input of half-bridge 2B 33, 34 VSS 5-V regulator referred to +VCC 35, 36 VCCSIGN - EP 24 High impedance control: 0: all power amplifiers in high-impedance state 1: normal operation Signal positive supply Exposed pad up 1. The pin is open collector. To have a high logic value it needs to be pulled up by a resistor. DocID11077 Rev 4 5/21 21 Electrical specifications STA510A 3 Electrical specifications 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC DC supply voltage (pin 4, 7, 12, 15) 44 V Vmax Maximum voltage on pins 23 to 32 5.5 V Ptot Power dissipation (Tcase = 70 °C) 21 W Top Operating temperature range 90 °C -40 to 150 °C Tstg, Tj 3.2 Storage and junction temperature Recommended operating conditions Table 4. Recommended operating conditions(1) Symbol Parameter Min. Vcc DC supply voltage 10 VL Input logic reference 2.7 Tamb Ambient temperature 0 Typ. 3.3 Max. Unit 39.0 V 5.0 V 70 °C 1. Performance not guaranteed beyond recommended operating conditions. 3.3 Thermal data The power dissipated within the device depends primarily on the supply voltage, load impedance and output modulation level. The PowerSO36 package of the STA510A includes an exposed pad or slug on the top of the device to provide a direct thermal path from the die to the heatsink. Table 5. Thermal data Symbol Tj-case Parameter Thermal resistance junction to case (thermal pad) Min. Typ. Max. Unit 1 2.5 °C/W TjSD Thermal shut-down junction temperature 150 °C Twarn Thermal warning temperature 130 °C thSD Thermal shutdown hysteresis 25 °C 6/21 DocID11077 Rev 4 STA510A 3.4 Electrical specifications Electrical specifications The results in Table 6 below are given for the conditions: VL = 3.3 V, VCC = 36 V, RL = 8 Ω, fsw= 384 kHz and Tamb = 25 °C unless otherwise specified. See also Figure 3. Table 6. Electrical specifications Symbol RdsON Parameter Conditions Power P-channel/N-channel MOSFET RDS(on) Min. Id = 1 A Typ. Max. Unit 150 200 mΩ 100 μA Idss Power P-channel/N-channel leakage current gN Power P-channel RDS(on) matching Id = 1 A 95 % gP Power N-channel RDS(on) matching Id = 1 A 95 % Dt_s Low current deadtime (static) See test circuit Figure 3 Dt_d High current deadtime (dynamic) td ON td OFF 10 20 ns L = 22 µH, C = 470 nF, RL = 8 Ω, Id = 3 A, see test circuit Figure 5 50 ns Turn-on delay time Resistive load, VCC = 30 V 100 ns Turn-off delay time Resistive load, VCC = 30 V 100 ns tr Rise time Resistive load, as Figure 3 25 ns tf Fall time Resistive load, as Figure 3 25 ns VL/2 + 300 mV V VIN-High High level input voltage VIN-Low Low level input voltage IIN-H High level input current Pin voltage = VL 1 μA IIN-L Low level input current Pin voltage = 0.3 V 1 μA VL= 3.3 V 35 μA VL/2 – 300 mV IPWRDN-H High level PWRDN pin input current VLow VHigh IVCC- Low logical state voltage (pins PWRDN, TRISTATE) High logical state voltage (pins PWRDN, TRISTATE) V VL = 2.7 V 0.70 VL= 3.3 V 0.80 VL= 5.0 V 0.85 V VL = 2.7 V 1.50 V VL = 3.3 V 1.7 V VL= 5.0 V 1.85 V Supply current from VCC in power down PWRDN = 0 IFAULT Output current pins FAULT -THWARN when FAULT CONDITIONS VPIN = 3.3 V 1 mA IVCC-hiz Supply current from VCC in tri-state VCC = 30 V, Pin TRI-STATE =0 22 mA PWRDN DocID11077 Rev 4 3 mA 7/21 21 Electrical specifications STA510A Table 6. Electrical specifications (continued) Symbol Parameter Conditions IVCC VCC = 30 V, input pulse width Supply current from VCC in operation duty cycle = 50%, switching frequency = 384 kHz, no LC both channel switching) filters; ISCP Short-circuit current limit VUV Undervoltage protection threshold tpw_min ESD 8/21 Min. 5.5 Output minimum pulse width No load ESD maximum withstanding voltage range, test condition CDF-AECQ100-002-”Human Body Model” DocID11077 Rev 4 Typ. Max. Unit 70 mA 6 A 7 V 25 40 ± 1500 ns V STA510A Electrical specifications Table 7. Logic truth table TRI-STATE INxA INxB Q1 Q2 Q3 Q4 Output mode 0 x x OFF OFF OFF OFF Hi-Z 1 0 0 OFF OFF ON ON DUMP 1 0 1 OFF ON ON OFF NEGATIVE 1 1 0 ON OFF OFF ON POSITIVE 1 1 1 ON ON OFF OFF Not used Figure 3. Test circuit for low current deadtime for single-ended applications OUTxY Vcc (3/4)Vcc Low current dead time = MAX(DTr,DTf) (1/2)Vcc (1/4)Vcc +Vcc t DTr Duty cycle = 50% DTf M58 OUTxY INxY R 8Ω M57 + - V67 = vdc = Vcc/2 gnd D03AU1458 Figure 4. Test circuit for high current deadtime for bridge applications High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B)) +VCC Duty cycle=A Duty cycle=B DTout(A) M58 DTin(A) Q1 Q2 OUTxA INxA Iout=4.5A M57 Q3 DTout(B) Rload=8Ω L67 22μ C69 470nF L68 22μ C71 470nF C70 470nF DTin(B) OUTxB INxB Iout=4.5A Q4 Duty cycle A and B: Fixed to have DC output current of 4.5A in the direction shown in figure DocID11077 Rev 4 M64 M63 D00AU1162 9/21 21 Electrical specifications STA510A Figure 5. Block diagram for high current dead time for bridge applications 9&& 4 ,1[$ 287[$ 4 4 287[% 4 *1' 10/21 ,1[% DocID11077 Rev 4 '$8 STA510A 4 Technical information Technical information The STA510A is a dual channel H-bridge that is able to deliver 100 W per channel (into RL = 6 Ω with THD = 10% and VCC = 36 V) of audio output power very efficiently. It operates in conjunction with a pulse-width modulator driver such as the STA321 or STA309A. The STA510A converts ternary-, phase-shift- or binary-controlled PWM signals into audio power at the load. It includes a logic interface, integrated bridge drivers, high efficiency MOSFET outputs and thermal and short-circuit protection circuitry. In differential mode (ternary, phase-shift or binary differential), two logic level signals per channel are used to control high-speed MOSFET switches to connect the speaker load to the input supply or to ground in a bridge configuration, according to the damped ternary modulation operation. In binary mode, both full bridge and half bridge modes are supported. The STA510A includes overcurrent and thermal protection as well as an undervoltage lockout with automatic recovery. A thermal warning status is also provided. Figure 6. Block diagram of full-bridge DDX® or binary mode ,1/>@ ,15>@ 9/ 3:5'1 75,67$7( )$8/7 7+:$51 /RJLF LQWHUIDFH DQG GHFRGH 3URWHFWLRQ /HIW +EULGJH 5LJKW +EULGJH 2873/ 2871/ 28735 28715 5HJXODWRUV Figure 7. Block diagram of f binary half-bridge mode ,1/>@ ,15>@ 9/ 3:5'1 75,67$7( )$8/7 7+:$51 /RJLF LQWHUIDFH DQG GHFRGH /HIW$ òEULGJH 2873/ /HIW% òEULGJH 2871/ 3URWHFWLRQ 5LJKW$ òEULGJH 28735 5LJKW% òEULGJH 28715 5HJXODWRUV 4.1 Logic interface and decode The STA510A power outputs are controlled using one or two logic-level timing signals. In order to provide a proper logic interface, the VL input must operate at the same voltage as the DDX control logic supply. DocID11077 Rev 4 11/21 21 Technical information 4.2 STA510A Protection circuitry The STA510A includes protection circuitry for overcurrent and thermal overload conditions. A thermal warning pin (THWARN, pin 28, open drain MOSFET) is activated low when the IC temperature exceeds 130 °C, just in advance of thermal shutdown. When a fault condition is detected an internal fault signal immediately disables the output power MOSFETs, placing both H-bridges in a high-impedance state. At the same time the open-drain MOSFET of pin FAULT (pin 27) is switched on. There are two possible modes subsequent to activating a fault. 4.3 • Shutdown mode: with pins FAULT (with pull-up resistor) and TRISTATE separate, an activated fault disables the device, signalling a low at pin FAULT output. The device may subsequently be reset to normal operation by toggling pin TRISTATE from high to low to high using an external logic signal. • Automatic recovery mode: This is shown in the applications circuits below where pins FAULT and TRISTATE are connected together to a time-constant circuit (R59 and C58). An activated fault forces a reset on pin TRISTATE causing normal operation to resume following a delay determined by the time constant of the circuit. If the fault condition persists, the circuit operation repeats until the fault condition is cleared. An increase in the time constant of the circuit produces a longer recovery interval. Care must be taken in the overall system design not to exceed the protection thesholds under normal operation. Power outputs The STA510A power and output pins are duplicated to provide a low-impedance path for the device bridged outputs. All duplicate power, ground and output pins must be connected for proper operation. The PWRDN or TRISTATE pin should be used to set all power MOSFETs to the highimpedance state during power-up until the logic power supply, VL, has settled. 4.4 Parallel output / high current operation When using the DDX mode output, the STA510A outputs can be connected in parallel in order to increase the output current capability to a load. In this configuration the STA510A can provide up to 200 W into a 3-Ω load. This mode of operation is enabled with the pin CONFIG (pin 24) connected to pin VDD. The inputs are joined so that IN1A = IN1B, IN2A = IN2B and similarly the outputs OUT1A = OUT1B, OUT2A = OUT2B as shown in Figure 9. 4.5 Output filtering A passive 2nd-order filter is used on the STA510A power outputs to reconstruct the analog audio signal. System performance can be significantly affected by the output filter design and choice of passive components. A filter design for 6- or 8-Ω loads is shown in the application circuit of Figure 8, and for 4-Ω loads in Figure 9 and Figure 10. 12/21 DocID11077 Rev 4 STA510A 4.6 Technical information Application circuits Figure 8. Typical stereo full bridge configuration for up to 2x 100 W 9&& 9&&$ ,1$ 9  9/  &21),*  3:5'1 3:5'1  5 . )$8/7  5 .  0  0 3URWHFWLRQ ORJLF 7+:$51 0 7+:$51  ,1%  9''  9''  966  966  ,1%  & —)  75,67$7( & Q) & Q) ,1$ 287$ *1'$  9&&% & Q)   287% 5HJXODWRUV  *1'%  9&&$ 9&&6,* & Q) & Q) 9&&6,* ,1$   0  ,1$ *1'5(* *1'&/($1 ,1%   ,1%   0 *1'68% *1'$  9&&% 0  & Q)   5  Ÿ & Q) / —+ & Q) & S) 5  287$   287$  5  & Q) & Q) & Q) / —+ 287% 0 0 & Q) & Q) & S) 5  287$  &  —) /—+ & Q) & Q) & Q) 5 5   287% & Q) 287% / —+ Ÿ *1'% '$8% Figure 9. Typical single BTL configuration for up to 180 W 9/ 9 Q) *1'&/($1 *1'5(* . Q) ;5 7+:$51 Q3:5'1 . Q) ,1$         9''  9''  &21),*  7+:$51  3:5'1  )$8/7   75,67$7(      ,1$  ,1%   ,1$  ,1%  966  966  ,1% Q) ;5 Q) ;5 $GG 9&&6,* 9&&6,* *1'68%          1&  —+ 287$ 287$ 287% 287% 287$ 287$ Q) ),/0  Ÿ :  :  S) : 287% 287% Q) ;5 Q) ),/0 Q) ;5 Ÿ Q) ),/0  —+ 9&&$ 9&&% 9&&$ 9&&% 9 —) ;5  —) 9 Q) 9 —) ;5 *1'$ *1'% Q) *1'$ *1'% '$8 DocID11077 Rev 4 13/21 21 Technical information STA510A Figure 10. Typical quad half-bridge configuration for up to 4x 50 W 9&& 9&&$ ,1$ ,1$ 3:5'1 5 . 5 . )$8/7 & Q) 75,67$7(    0 3URWHFWLRQ ORJLF 0 7+:$51  ,1% & Q)   3:5'1  7+:$51  ,1%  9'' 9'' 966 966     / —+ 287$  287$ *1'$  9&&%  & —) 287%  287% 0 5HJXODWRUV   9&&6,* & Q) 9&&6,* ,1$ ,1$ *1'5(* *1'&/($1 ,1% ,1% *1'68% 0   0  9&&$ 287$   9&&%  & —) 287%  *1'% 5  & S) & Q) 5  & Q) & Q) 5  & Q) 5 . 5 . /—+ & S) 5 . 5 . & Q) 5  5 . 5 . /—+ '$8 Note: & Q) /—+ & S) 287% 0 5  & Q) 5  287$ *1'$   & Q) —)   & S)    5  *1'% 0 & Q) 5 . —)  9/ &21),* 9 0  & Q) 5  & Q) 5 . &  —) & —) & —) Ÿ &—) & —) Ÿ &—) & —) Ÿ &—) & —) Ÿ In the above three circuits a PWM modulator as driver is needed. The power estimations were made using the STA321+STA510A demo board. The peak power duration is for t ≤1 s. 14/21 DocID11077 Rev 4 STA510A 5 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID11077 Rev 4 15/21 21 Package information 5.1 STA510A PowerSO-36 exposed pad up package information Figure 11. PowerSO-36 exposed pad up package outline 16/21 DocID11077 Rev 4 STA510A Package information Figure 12. PowerSO-36 section A-A and B-B package outline DocID11077 Rev 4 17/21 21 Package information STA510A Table 8. PowerSO-36 package mechanical data mm Dim. Min. Typ. Max. Ɵ 0° - 8° Ɵ1 5° - 10° Ɵ2 0° - - A - - 3.41 A1 0.30 - -0.40 A2 3.10 3.14 3.18 A3 - 0.2 - A4 0.80 - 1.00 b 0.22 - 0.41 b1 0.22 - 0.38 c 0.23 - 0.32 c1 0.23 0.25 0.29 D 15.90 BSC D1 VARIATION D2 - 1.00 5.00 - D3 18/21 - e 0.65 BSC E 14.20 BSC E1 11.00 BSC E2 VARIATION E3 - - 2.90 h - - 1.10 L 0.80 - 1.10 L1 1.60 REF L2 0.35 BSC N 36 R 0.20 - - R1 0.20 - - s 0.25 - - DocID11077 Rev 4 STA510A Package information Table 9. Tolerance of form and position Symbol Databook aaa 0.10 bbb 0.30 ccc 0.075 ddd 0.25 eee 0.10 ggg 0.25 Note 1.2 Table 10. Variations Databook Symbol Opt. Min. Typ. Max. D1 9.40 - 9.80 E2 5.80 - 6.20 A DocID11077 Rev 4 19/21 21 Revision history 6 STA510A Revision history Table 11. Document revision history 20/21 Date Revision Changes 13-Oct-2004 1 Initial release. 11-Mar-2010 2 Updated description and applications circuits 15-Jan-2019 3 Removed the order code STA510A from the device summary table in cover page. 22-Oct2020 4 Updated cover image and package information. DocID11077 Rev 4 STA510A IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DocID11077 Rev 4 21/21 21
STA510A13TR 价格&库存

很抱歉,暂时无法提供与“STA510A13TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货