STA559BW
5 V, 2 A, 2.1 channel high-efficiency digital audio system
Sound Terminal®
Datasheet - production data
Dynamic range compression or anti-clipping
modes
Audio presets:
– 15 preset crossover filters
– 5 preset anti-clipping modes
– Preset night-time listening mode
Individual channel soft/hard mute
PowerSSO-36
Independent channel volume and DSP bypass
with exposed pad down (EPD)
2-channel I²S input data interface
Input and output channel mapping
Automatic invalid-input detect Mute
Features
Automatic zero-detect mute
Wide-range supply voltage, 4.5 V to 16 V
Up to 4 user-programmable biquads/channel
Three power output configurations:
– 2 channels of ternary PWM (2 x 3 W into
4 at 5 V) + PWM output
– 2 channels of ternary PWM (2 x 3 W into
4 at 5 V) + ternary stereo line-out
– 2.1 channels of binary PWM (left, right,
LFE) (2 x 0.7 W + 1 x 3 W into 4 at 5 V)
(2 x 1.4 W + 1 x 6 W into 2 at 5 V)
Three coefficients banks for EQ presets storing
with fast recall via I²C interface
Bass/treble tones and de-emphasis control
Selectable high-pass filter for DC blocking
Advanced AM interference frequency
switching and noise suppression modes
FFX with 100-dB SNR and dynamic range
Selectable high- or low-bandwidth
noise-shaping topologies
Selectable 32- to 192-kHz input sample rates
Selectable clock input ratio
I²C control with selectable device address
Thermal overload and short-circuit protection
embedded
Digital gain/attenuation +48 dB to -80 dB with
0.5-dB/step resolution
Video apps: 576 x fS input mode supported
Soft volume update
Individual channel and master gain/attenuation
Two independent limiters/compressors
Table 1. Device summary
Order code
Package
Packaging
STA559BW13TR
PowerSSO-36 EPD
Tape and reel
December 2018
This is information on a product in full production.
DocID18190 Rev 3
1/67
www.st.com
Contents
STA559BW
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
2.1
Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 12
3.5
Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 13
3.6
Power on/off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
I²C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1
2/67
5.1.1
Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.2
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.3
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.4
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4
6
Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2
Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.1
Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.2
Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.3
Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.4
Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID18190 Rev 3
STA559BW
Contents
6.1
6.2
6.3
Configuration registers (addr 0x00 to 0x05) . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1
Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2
Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.3
Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.4
Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.5
Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.6
Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 40
6.2.1
Mute/line output configuration register (addr 0x06) . . . . . . . . . . . . . . . . 41
6.2.2
Master volume register (addr 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3
Channel 1 volume (addr 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.4
Channel 2 volume (addr 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.5
Channel 3 / line output volume (addr 0x0A) . . . . . . . . . . . . . . . . . . . . . 42
Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 43
6.3.1
Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.2
Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4
Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 45
6.5
Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6
Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 47
6.7
6.6.1
Limiter 1 attack/release rate (addr 0x12) . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6.2
Limiter 1 attack/release threshold (addr 0x13) . . . . . . . . . . . . . . . . . . . 47
6.6.3
Limiter 2 attack/release rate (addr 0x14) . . . . . . . . . . . . . . . . . . . . . . . . 48
6.6.4
Limiter 2 attack/release threshold (addr 0x15) . . . . . . . . . . . . . . . . . . . 48
6.6.5
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 52
6.7.1
Coefficient address register (addr 0x16) . . . . . . . . . . . . . . . . . . . . . . . . 52
6.7.2
Coefficient b1 data register bits (addr 0x17 - 0x19) . . . . . . . . . . . . . . . . 53
6.7.3
Coefficient b2 data register bits (addr 0x1A - 0x1C) . . . . . . . . . . . . . . . 53
6.7.4
Coefficient a1 data register bits (addr 0x1D - 0x1F) . . . . . . . . . . . . . . . 53
6.7.5
Coefficient a2 data register bits (addr 0x20 - 0x22) . . . . . . . . . . . . . . . . 53
6.7.6
Coefficient b0 data register bits (addr 0x23 - 0x25) . . . . . . . . . . . . . . . . 54
6.7.7
Coefficient read/write control register (addr 0x26) . . . . . . . . . . . . . . . . . 54
6.7.8
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.8
Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 59
6.9
Distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . . . . . . . . 59
6.10
Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 59
DocID18190 Rev 3
3/67
67
Contents
STA559BW
6.11
7
Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1
Applications schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2
PLL filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3
Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4/67
DocID18190 Rev 3
STA559BW
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power-on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power-off sequence for pop-free turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Left and right processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Output configuration for stereo BTL mode (RL = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
DocID18190 Rev 3
5/67
67
List of tables
STA559BW
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/67
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Support serial audio input formats for MSB-first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Supported serial audio input formats for LSB-first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Overcurrent warning bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Postscale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Output configuration engine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DocID18190 Rev 3
STA559BW
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
List of tables
External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Master volume offset as a function of MVOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Channel volume as a function of CxVOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 43
AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Volume bypass register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 47
Limiter attack rate vs LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Limiter release rate vs LxR bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Limiter attack threshold vs LxAT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Limiter release threshold vs LxRT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Limiter attack threshold vs LxAT bits (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Limiter release threshold vs LxRT bits (DRC mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
RAM block for biquads, mixing, scaling, bass management. . . . . . . . . . . . . . . . . . . . . . . . 56
PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
DocID18190 Rev 3
7/67
67
Description
1
STA559BW
Description
The STA559BW is an integrated solution of digital audio processing, digital amplifier
controls and power output stage to create a high-power single-chip FFX digital amplifier with
high-quality and high-efficiency. Three channels of FFX processing are provided. The FFX
processor implements the ternary, binary and binary differential processing capabilities of
the full FFX processor.
The STA559BW is part of the Sound Terminal® family that provides full digital audio
streaming to the speakers and offers cost effectiveness, low power dissipation and sound
enrichment.
The power section consists of four independent half-bridges. These can be configured via
digital control to operate in different modes.
For example, 2.1 channels can be provided by two half bridges and a single full bridge,
supplying up to 2 x 1.4 W + 1 x 6 W of output power or two channels can be provided by two
full-bridges, supplying up to 2 x 3 W of output power.
The IC can also be configured as 2.1 channels with 2 x 20 W supplied by the device plus a
drive for an external FFX power amplifier, such as STA533WF or STA515W.
Also provided in the STA559BW are a full assortment of digital processing features. This
includes up to four programmable biquads (EQ) per channel. Available presets enable a
time-to-market advantage by substantially reducing the amount of software development
needed for functions such as audio preset volume loudness, preset volume curves and
preset EQ settings. There are also new advanced AM radio interference reduction modes.
Figure 1. Block diagram
I²C
Protection
current/thermal
I²S
interface
Volume
control
Channel
1A
Logic
Power
control
Channel
1B
FFX
Channel
2A
Regulators
Channel
2B
PLL
Bias
Digital DSP
8/67
Power
DocID18190 Rev 3
STA559BW
Pin connections
2
Pin connections
2.1
Connection diagram
Figure 2. Pin connection PowerSSO-36 (top view)
GND_SUB
1
36
VDD_DIG
SA
2
35
GND_DIG
TEST_MODE
3
34
SCL
VSS
4
33
SDA
VCC_REG
5
32
INT_LINE
OUT2B
6
31
RESET
GND2
7
30
SDI
VCC2
8
29
LRCKI
OUT2A
9
28
BICKI
OUT1B
10
27
XTI
VCC1
11
26
GND_PLL
GND1
12
25
FILTER_PLL
OUT1A
13
24
VDD_PLL
GND_REG
14
23
PWRDN
VDD
15
22
GND_DIG
CONFIG
16
21
VDD_DIG
OUT3B / FFX3B
17
20
TWARN / OUT4A
OUT3A / FFX3A
18
19
EAPD / OUT4B
EP, exposed pad
(device ground)
D05AU1638
2.2
Pin description
Table 2. Pin description
Pin
Type
Name
Description
1
GND
GND_SUB
Substrate ground
2
I
SA
I²C select address (pull-down)
3
I
TEST_MODE
This pin must be connected to ground (pull-down)
4
I/O
VSS
Internal reference at VCC - 3.3 V
5
I/O
VCC_REG
Internal VCC reference
6
O
OUT2B
Output half-bridge channel 2B
7
GND
GND2
Power negative supply
8
Power
VCC2
Power positive supply
9
O
OUT2A
Output half-bridge channel 2A
10
O
OUT1B
Output half-bridge channel 1B
DocID18190 Rev 3
9/67
67
Pin connections
STA559BW
Table 2. Pin description (continued)
Pin
10/67
Type
Name
Description
11
Power
VCC1
Power positive supply
12
GND
GND1
Power negative supply
13
O
OUT1A
Output half-bridge channel 1A
14
GND
GND_REG
Internal ground reference
15
Power
VDD
Internal 3.3 V reference voltage
16
I
CONFIG
Parallel mode command
17
O
OUT3B / FFX3B
PWM out channel 3B / external bridge driver
18
O
OUT3A / FFX3A
PWM out channel 3A / external bridge driver
19
O
EAPD / OUT4B
Power down for external bridge / PWM out channel 4B
20
I/O
TWARN / OUT4A
Thermal warning from external bridge (pull-up when input)
/ PWM out channel 4A
21
Power
VDD_DIG
Digital supply voltage
22
GND
GND_DIG
Digital ground
23
I
PWRDN
Power down (pull-up)
24
Power
VDD_PLL
Positive supply for PLL
25
I
FILTER_PLL
Connection to PLL filter
26
GND
GND_PLL
Negative supply for PLL
27
I
XTI
PLL input clock
28
I
BICKI
I²S serial clock
29
I
LRCKI
I²S left/right clock
30
I
SDI
I²S serial data channels 1 and 2
31
I
RESET
Reset (pull-up)
32
O
INT_LINE
Fault interrupt
33
I/O
SDA
I²C serial data
34
I
SCL
I²CI²C serial clock
35
GND
GND_DIG
Digital ground
36
Power
VDD_DIG
Digital supply voltage
-
-
EP
Exposed pad for PCB heatsink, to be connected to GND
DocID18190 Rev 3
STA559BW
Electrical specifications
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3. Absolute maximum ratings
Symbol
Parameter
Typ
Max
Unit
VCC
Power supply voltage (pins VCCx)
-0.3
-
24
V
VDD
Digital supply voltage (pins VDD_DIG)
-0.3
-
4.0
V
VDD
PLL supply voltage (pin VDD_PLL)
-0.3
-
4.0
V
Top
Operating junction temperature
-20
-
150
°C
Tstg
Storage temperature
-40
-
150
°C
Warning:
3.2
Min
Stresses beyond those listed in Table 3 above may cause
permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any
other conditions beyond those indicated under
“Recommended operating conditions” are not implied.
Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability. In the real
application, power supplies with nominal values rated within
the recommended operating conditions, may experience
some rising beyond the maximum operating conditions for a
short time when no or very low current is sinked (amplifier in
mute state). In this case the reliability of the device is
guaranteed, provided that the absolute maximum ratings are
not exceeded.
Thermal data
Table 4. Thermal data
Parameter
Min
Typ
Max
Unit
Rth j-case
Thermal resistance junction-case (thermal pad)
-
-
1.5
°C/W
Tth-sdj
Thermal shut-down junction temperature
-
150
-
°C
Tth-w
Thermal warning temperature
-
130
-
°C
Tth-sdh
Thermal shut-down hysteresis
-
20
-
°C
-
24
-
°C/W
Rth j-amb
Thermal resistance junction-ambient
(1)
1. See Chapter 8: Package thermal characteristics on page 63 for details.
DocID18190 Rev 3
11/67
67
Electrical specifications
3.3
STA559BW
Recommended operating conditions
Table 5. Recommended operating condition
Symbol
3.4
Parameter
Min
Typ
Max
Unit
VCC
Power supply voltage (VCCxA, VCCxB)
4.5
-
16.0
V
VDD_DIG
Digital supply voltage
2.7
3.3
3.6
V
VDD_PLL
PLL supply voltage
2.7
3.3
3.6
V
Tamb
Ambient temperature
-20
-
70
°C
Electrical specifications for the digital section
The specifications given in this section are valid for Tamb = 25 °C unless otherwise specified.
Table 6. Electrical specifications - digital section
Symbol
12/67
Parameter
Conditions
Min
Typ
Max
Unit
Iil
Low level input current without
pull-up/down device
Vi = 0 V
-
-
1
µA
Iih
High level input current without
pull-up/down device
Vi = VDD_DIG
= 3.6 V
-
-
1
µA
Vil
Low level input voltage
-
-
-
Vih
High level input voltage
-
Vol
Low level output voltage
Iol = 2 mA
Voh
High level output voltage
Ioh = 2 mA
Rpu
Equivalent pull-up/down
resistance
-
DocID18190 Rev 3
0.8 *
VDD_DIG
-
0.8 *
VDD_DIG
-
0.2 *
VDD_DIG
0.4 *
VDD_DIG
V
V
V
-
-
V
50
-
k
STA559BW
3.5
Electrical specifications
Electrical specifications for the power section
The specifications given in this section are valid for the operating conditions: VCC = 5 V,
f = 1 kHz, fsw = 384 kHz, Tamb = 25 °C and RL = 4 , unless otherwise specified.
Table 7. Electrical specifications - power section
Symbol
Parameter
Conditions
Output power BTL
Po
Output power SE
Min
Typ
Max
THD = 1%RL= 2
-
4.2
-
THD = 10%RL= 2
-
5.3
-
THD = 1%,RL= 2
-
1
-
THD = 10%,RL= 2 -
1.3
-
Unit
W
W
RdsON
Power P-channel or N-channel MOSFET
ld = 0.75 A
-
-
250
m
gP
Power P-channel RdsON matching
ld = 0.75 A
-
100
-
%
gN
Power N-channel RdsON matching
ld = 0.75 A
-
100
-
%
Idss
Power P-channel/N-channel leakage
Vcc=9V
-
-
1
A
tr
Rise time
-
-
10
ns
tf
Fall time
Resistive load,
see Figure 3 below
-
-
10
ns
Supply current from VCC in power down
PWRDN = 0
-
0.3
-
A
Supply current from VCC in operation
PWRDN = 1
-
15
-
mA
IVDD
Supply current FFX processing
Internal clock =
49.152 MHz
-
55
-
mA
ILIM
Overcurrent limit
(1)
2.2
3.0
-
A
ISCP
Short -circuit protection
RL = 0
2.7
3.6
-
A
VUVP
Undervoltage protection
-
-
-
4.3
V
tmin
Output minimum pulse width
No load
20
40
60
ns
DR
Dynamic range
-
-
100
-
dB
Signal to noise ratio, ternary mode
A-Weighted
-
100
-
dB
Signal to noise ratio binary mode
-
-
90
-
dB
Total harmonic distortion + noise
FFX stereo mode,
Po = 1 W
f = 1 kHz
-
0.2
-
%
Crosstalk
FFX stereo mode,
OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
FFX4A -> OUT4A
FFX4B -> OUT4B
Default modulation:
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as lineout ternary
FFX4A/4B configured as lineout ternary
On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On
channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this
configuration, volume control or EQ have no effect on channels 3 and 4.
In this configuration the PWM slot phase is the following as shown in Figure 14.
Figure 14. 2.0 channels (OCFG = 00) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
36/67
DocID18190 Rev 3
STA559BW
Register description
2.1 channels, two half-bridges + one full-bridge (OCFG = 01)
Mapping:
FFX1A -> OUT1A
FFX2A -> OUT1B
FFX3A -> OUT2A
FFX3B -> OUT2B
FFX1A -> OUT3A
FFX1B -> OUT3B
FFX2A -> OUT4A
FFX2B -> OUT4B
Modulation:
FFX1A/1B configured as binary
FFX2A/2B configured as binary
FFX3A/3B configured as binary
FFX4A/4B configured as binary
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4
channels the channel 1 and channel 2 PWM are replicated.
In this configuration the PWM slot phase is the following as shown in Figure 15.
Figure 15. 2.1 channels (OCFG = 01) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
DocID18190 Rev 3
37/67
67
Register description
STA559BW
2.1 channels, two full-bridges + one external full-bridge (OCFG = 10)
Mapping:
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
EAPD -> OUT4A
TWARN -> OUT4B
Default modulation:
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as ternary
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the
external bridge control signals are muxed.
In this configuration the PWM slot phase is the following as shown in Figure 16.
Figure 16. 2.1 channels (OCFG = 10) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
38/67
DocID18190 Rev 3
STA559BW
Register description
Invalid input detect mute enable
Table 44. Invalid input detect mute enable
Bit
2
R/W
R/W
RST
1
Name
Description
0: disables the automatic invalid input detect mute
1: enables the automatic invalid input detect mute
IDE
Setting the IDE bit enables this function, which looks at the input I²S data and automatically
mutes if the signals are perceived as invalid.
Binary output mode clock loss detection
Table 45. Binary output mode clock loss detection
Bit
3
R/W
R/W
RST
1
Name
Description
0: binary output mode clock loss detection disabled
1: binary output mode clock loss detection enable
BCLE
Detects loss of input MCLK in binary mode and will output 50% duty cycle.
LRCK double trigger protection
Table 46. LRCK double trigger protection
Bit
4
R/W
R/W
RST
1
Name
Description
0: LRCLK double trigger protection disabled
1: LRCLK double trigger protection enabled
LDTE
LDTE, when enabled, prevents double trigger of LRCLK on instable I²S input.
Auto EAPD on clock loss
Table 47. Auto EAPD on clock loss
Bit
5
R/W
R/W
RST
0
Name
Description
0: auto EAPD on clock loss not enabled
1: auto EAPD on clock loss
ECLE
When active, issues a power device power down signal (EAPD) on clock loss detection.
IC power down
Table 48. IC power down
Bit
6
R/W
R/W
RST
1
Name
PWDN
Description
0: IC power down low-power condition
1: IC normal operation
DocID18190 Rev 3
39/67
67
Register description
STA559BW
The PWDN register is used to place the IC in a low-power state. When PWDN is written
as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted
to power down the power-stage, then the master clock to all internal hardware expect the
I²C block is gated. This places the IC in a very low power consumption state.
External amplifier power down
Table 49. External amplifier power down
Bit
7
R/W
R/W
RST
0
Name
EAPD
Description
0: external power stage power down active
1: normal operation
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed in a low-power state (disabled). This
register also controls the FFX4B / EAPD output pin when OCFG = 10.
6.2
Volume control registers (addr 0x06 - 0x0A)
The volume structure of the STA559BW consists of individual volume registers for each
channel and a master volume register that provides an offset to each channels volume
setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB
to -80 dB.
As an example if C3VOL = 0x00 or +48 dB and MVOL = 0x18 or -12 dB, then the total gain
for channel 3 = +36 dB.
The channel mutes provide a “soft mute” with the volume ramping down to mute in
4096 samples from the maximum volume setting at the internal processing rate
(approximately 96 kHz).
A “hard (instantaneous) mute” can be obtained by programming a value of 0xFF (255) in
any channel volume register. When volume offsets are provided via the master volume
register any channel whose total volume is less than -80 dB is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E
(addr 0x04) on page 30) on a per channel basis as this creates the smoothest possible
volume transitions. When ZCE = 0, volume updates occur immediately.
40/67
DocID18190 Rev 3
STA559BW
6.2.1
Register description
Mute/line output configuration register (addr 0x06)
D7
D6
D5
D4
D3
D2
D1
D0
LOC1
LOC0
Reserved
Reserved
C3M
C2M
C1M
Reserved
0
0
0
0
0
0
0
0
Table 50. Line output configuration
LOC[1:0]
Line output configuration
00
Line output fixed - no volume, no EQ
01
Line output variable - channel 3 volume effects line output, no EQ
10
Line output variable with EQ - channel 3 volume effects line output
Line output is only active when OCFG = 00. In this case LOC determines the line output
configuration. The source of the line output is always the channel 1 and 2 inputs.
6.2.2
Master volume register (addr 0x07)
D7
D6
D5
D4
D3
D2
D1
D0
MVOL7
MVOL6
MVOL5
MVOL4
MVOL3
MVOL2
MVOL1
MVOL0
1
1
1
1
1
1
1
1
Table 51. Master volume offset as a function of MVOL
MVOL[7:0]
6.2.3
6.2.4
Volume offset from channel value
00000000 (0x00)
0 dB
00000001 (0x01)
-0.5 dB
00000010 (0x02)
-1 dB
…
…
01001100 (0x4C)
-38 dB
…
…
11111110 (0xFE)
-127.5 dB
11111111 (0xFF)
Default mute, not to be used during operation
Channel 1 volume (addr 0x08)
D7
D6
D5
D4
D3
D2
D1
D0
C1VOL7
C1VOL6
C1VOL5
C1VOL4
C1VOL3
C1VOL2
C1VOL1
C1VOL0
0
1
1
0
0
0
0
0
Channel 2 volume (addr 0x09)
D7
D6
D5
D4
D3
D2
D1
D0
C2VOL7
C2VOL6
C2VOL5
C2VOL4
C2VOL3
C2VOL2
C2VOL1
C2VOL0
0
1
1
0
0
0
0
0
DocID18190 Rev 3
41/67
67
Register description
6.2.5
STA559BW
Channel 3 / line output volume (addr 0x0A)
D7
D6
D5
D4
D3
D2
D1
D0
C3VOL7
C3VOL6
C3VOL5
C3VOL4
C3VOL3
C3VOL2
C3VOL1
C3VOL0
0
1
1
0
0
0
0
0
Table 52. Channel volume as a function of CxVOL
CxVOL[7:0]
42/67
Volume
00000000 (0x00)
+48 dB
00000001 (0x01)
+47.5 dB
00000010 (0x02)
+47 dB
…
…
01011111 (0x5F)
+0.5 dB
01100000 (0x60)
0 dB
01100001 (0x61)
-0.5 dB
…
…
11010111 (0xD7)
-59.5 dB
11011000 (0xD8)
-60 dB
11011001 (0xD9)
-61 dB
11011010 (0xDA)
-62 dB
…
…
11101100 (0xEC)
-80 dB
11101101 (0xED)
Hard channel mute
…
…
11111111 (0xFF)
Hard channel mute
DocID18190 Rev 3
STA559BW
Register description
6.3
Audio preset registers (addr 0x0B and 0x0C)
6.3.1
Audio preset register 1 (addr 0x0B)
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
AMGC[1]
AMGC[0]
Reserved
Reserved
Reserved
Reserved
1
0
0
0
0
0
0
0
Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured
to properly fit application specific configurations.
The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2].
When this value is 00 then bits AMGC[1:0] are defined below in Table 53.
Table 53. Audio preset gain compression/limiters selection for AMGC[3:2] = 00
AMGC[1:0]
6.3.2
Mode
00
User programmable GC
01
AC no clipping 2.1
10
AC limited clipping (10%) 2.1
11
DRC night-time listening mode 2.1
Audio preset register 2 (addr 0x0C)
D7
D6
D5
D4
D3
D2
D1
D0
XO3
XO2
XO1
XO0
AMAM2
AMAM1
AMAM0
AMAME
0
0
0
0
0
0
0
0
AM interference frequency switching
Table 54. AM interference frequency switching bits
Bit
0
R/W
RST
R/W
0
Name
AMAME
Description
Audio preset AM enable
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM settings
Table 55. Audio preset AM switching frequency selection
AMAM[2:0]
48 kHz/96 kHz input fs
44.1 kHz/88.2 kHz input fs
000
0.535 MHz - 0.720 MHz
0.535 MHz - 0.670 MHz
001
0.721 MHz - 0.900 MHz
0.671 MHz - 0.800 MHz
010
0.901 MHz - 1.100 MHz
0.801 MHz - 1.000 MHz
011
1.101 MHz - 1.300 MHz
1.001 MHz - 1.180 MHz
100
1.301 MHz - 1.480 MHz
1.181 MHz - 1.340 MHz
101
1.481 MHz - 1.600 MHz
1.341 MHz - 1.500 MHz
110
1.601 MHz - 1.700 MHz
1.501 MHz - 1.700 MHz
DocID18190 Rev 3
43/67
67
Register description
STA559BW
Bass management crossover
Table 56. Bass management crossover
Bit
R/W
RST
Name
4
R/W
0
XO0
5
R/W
0
XO1
6
R/W
0
XO2
7
R/W
0
XO3
Description
Selects the bass-management crossover frequency.
A 1st-order hign-pass filter (channels 1 and 2) or a
2nd-order low-pass filter (channel 3) at the selected
frequency is performed.
Table 57. Bass management crossover frequency
XO[3:0]
44/67
Crossover frequency
0000
User-defined (Section 6.7.8 on page 54)
0001
80 Hz
0010
100 Hz
0011
120 Hz
0100
140 Hz
0101
160 Hz
0110
180 Hz
0111
200 Hz
1000
220 Hz
1001
240 Hz
1010
260 Hz
1011
280 Hz
1100
300 Hz
1101
320 Hz
1110
340 Hz
1111
360 Hz
DocID18190 Rev 3
STA559BW
6.4
Register description
Channel configuration registers (addr 0x0E - 0x10)
D7
D6
D5
D4
D3
D2
D1
D0
C1OM1
C1OM0
C1LS1
C1LS0
C1BO
C1VPB
C1EQBP
C1TCB
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2OM1
C2OM0
C2LS1
C2LS0
C2BO
C2VPB
C2EQBP
C2TCB
0
1
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C3OM1
C3OM0
C3LS1
C3LS0
C3BO
C3VPB
Reserved
Reserved
1
0
0
0
0
0
0
0
Tone control bypass
Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2.
Table 58. Tone control bypass
CxTCB
Mode
0
Perform tone control on channel x - normal operation
1
Bypass tone control on channel x
EQ bypass
EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is
bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis,
bass, treble in any combination) are bypassed for that channel.
Table 59. EQ bypass
CxEQBP
Mode
0
Perform EQ on channel x - normal operation
1
Bypass EQ on channel x
Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting has no effect on that
channel.
Table 60. Volume bypass register
CxVBP
Mode
0
Normal volume operations
1
Volume is by-passed
DocID18190 Rev 3
45/67
67
Register description
STA559BW
Binary output enable registers
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel is considered the positive output and output B is negative inverse.
Table 61. Binary output enable registers
CxBO
Mode
0
FFX output operation
1
Binary output
Limiter select
Limiter selection can be made on a per-channel basis according to the channel limiter select
bits.
.
Table 62. Channel limiter mapping as a function of CxLS bits
CxLS[1:0]
Channel limiter mapping
00
Channel has limiting disabled
01
Channel is mapped to limiter #1
10
Channel is mapped to limiter #2
Output mapping
Output mapping can be performed on a per channel basis according to the CxOM channel
output mapping bits. Each input into the output configuration engine can receive data from
any of the three processing channel outputs.
.
Table 63. Channel output mapping as a function of CxOM bits
CxOM[1:0]
46/67
Channel x output source from
00
Channel1
01
Channel 2
10
Channel 3
DocID18190 Rev 3
STA559BW
6.5
Register description
Tone control register (addr 0x11)
D7
D6
D5
D4
D3
D2
D1
D0
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0
1
1
1
0
1
1
1
Tone control
Table 64. Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0]
Boost/Cut
0000
-12 dB
0001
-12 dB
0010
-10 dB
…
…
0101
-4 dB
0110
-2 dB
0111
0 dB
1000
+2 dB
1001
+4 dB
…
…
1100
+10 dB
1101
+12 dB
1110
+12 dB
1111
+12 dB
6.6
Dynamic control registers (addr 0x12 - 0x15)
6.6.1
Limiter 1 attack/release rate (addr 0x12)
6.6.2
D7
D6
D5
D4
D3
D2
D1
D0
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0
1
1
0
1
0
1
0
Limiter 1 attack/release threshold (addr 0x13)
D7
D6
D5
D4
D3
D2
D1
D0
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0
1
1
0
1
0
0
1
DocID18190 Rev 3
47/67
67
Register description
6.6.3
6.6.4
6.6.5
STA559BW
Limiter 2 attack/release rate (addr 0x14)
D7
D6
D5
D4
D3
D2
D1
D0
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0
1
1
0
1
0
1
0
Limiter 2 attack/release threshold (addr 0x15)
D7
D6
D5
D4
D3
D2
D1
D0
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0
1
1
0
1
0
0
1
Description
The STA559BW includes two independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anti-clipping mode or to actively reduce the dynamic range for a better listening
environment such as a night-time listening mode which is often needed for DVDs. The two
modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 30.
Each channel can be mapped to either limiter or not mapped, meaning that channel will clip
when 0 dBFS is exceeded. Each limiter looks at the present value of each channel that is
mapped to it, selects the maximum absolute value of all these channels, performs the
limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels
in unison.
Figure 17. Basic limiter and volume flow diagram
LIMITER
GAIN / VOLUME
INPUT
RMS
+
GAIN
ATTENUATION
SATURATION
OUTPUT
The limiter attack thresholds are determined by the LxAT registers.
It is recommended in anti-clipping mode to set this to 0 dBFS, which corresponds to the
maximum unclipped output power of a FFX amplifier. Since gain can be added digitally
within the STA559BW it is possible to exceed 0 dBFS or any other LxAT setting, when this
occurs, the limiter, when active, automatically starts reducing the gain. The rate at which the
gain is reduced when the attack threshold is exceeded is dependent upon the attack rate
register setting for that limiter. Gain reduction occurs on a peak-detect algorithm.
The limiter release thresholds are determined by the LxRT registers.
The release of limiter, when the gain is again increased, is dependent on a RMS-detect
algorithm. The output of the volume/limiter block is passed through a RMS filter. The output
of this filter is compared to the release threshold, determined by the Release Threshold
register. When the RMS filter output falls below the release threshold, the gain is again
increased at a rate dependent upon the Release Rate register. The gain can never be
increased past its set value and, therefore, the release only occurs if the limiter has already
48/67
DocID18190 Rev 3
STA559BW
Register description
reduced the gain. The release threshold value can be used to set what is effectively a
minimum dynamic range, this is helpful as over limiting can reduce the dynamic range to
virtually zero and cause program material to sound “lifeless”.
In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode,
the attack threshold is set relative to the maximum volume setting of the channels mapped
to that limiter and the release threshold is set relative to the maximum volume setting plus
the attack threshold.
Table 65. Limiter attack rate vs LxA bits
LxA[3:0]
Attack Rate dB/ms
0000
3.1584
0001
2.7072
0010
2.2560
0011
1.8048
0100
1.3536
0101
0.9024
0110
0.4512
0111
0.2256
1000
0.1504
1001
0.1123
1010
0.0902
1011
0.0752
1100
0.0645
1101
0.0564
1110
0.0501
1111
0.0451
Fast
Slow
DocID18190 Rev 3
49/67
67
Register description
STA559BW
Table 66. Limiter release rate vs LxR bits
LxR[3:0]
Release Rate dB/ms
0000
0.5116
0001
0.1370
0010
0.0744
0011
0.0499
0100
0.0360
0101
0.0299
0110
0.0264
0111
0.0208
1000
0.0198
1001
0.0172
1010
0.0147
1011
0.0137
1100
0.0134
1101
0.0117
1110
0.0110
1111
0.0104
Fast
Slow
Anti-clipping mode
Table 67. Limiter attack threshold vs LxAT bits (AC mode)
LxAT[3:0]
50/67
AC (dB relative to fs)
0000
-12
0001
-10
0010
-8
0011
-6
0100
-4
0101
-2
0110
0
0111
+2
1000
+3
1001
+4
1010
+5
1011
+6
1100
+7
1101
+8
DocID18190 Rev 3
STA559BW
Register description
Table 67. Limiter attack threshold vs LxAT bits (AC mode) (continued)
LxAT[3:0]
AC (dB relative to fs)
1110
+9
1111
+10
Table 68. Limiter release threshold vs LxRT bits (AC mode)
LxRT[3:0]
AC (dB relative to fs)
0000
-
0001
-29
0010
-20
0011
-16
0100
-14
0101
-12
0110
-10
0111
-8
1000
-7
1001
-6
1010
-5
1011
-4
1100
-3
1101
-2
1110
-1
1111
0
Dynamic range compression mode
Table 69. Limiter attack threshold vs LxAT bits (DRC mode)
LxAT[3:0]
DRC (dB relative to Volume)
0000
-31
0001
-29
0010
-27
0011
-25
0100
-23
0101
-21
0110
-19
0111
-17
1000
-16
DocID18190 Rev 3
51/67
67
Register description
STA559BW
Table 69. Limiter attack threshold vs LxAT bits (DRC mode) (continued)
LxAT[3:0]
DRC (dB relative to Volume)
1001
-15
1010
-14
1011
-13
1100
-12
1101
-10
1110
-7
1111
-4
Table 70. Limiter release threshold vs LxRT bits (DRC mode)
LxRT[3:0]
DRC (db relative to Volume + LxAT)
0000
-
0001
-38
0010
-36
0011
-33
0100
-31
0101
-30
0110
-28
0111
-26
1000
-24
1001
-22
1010
-20
1011
-18
1100
-15
1101
-12
1110
-9
1111
-6
6.7
User-defined coefficient control registers (addr 0x16 - 0x26)
6.7.1
Coefficient address register (addr 0x16)
52/67
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
Reserved
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0
0
0
0
0
0
0
0
DocID18190 Rev 3
STA559BW
6.7.2
6.7.3
6.7.4
6.7.5
Register description
Coefficient b1 data register bits (addr 0x17 - 0x19)
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0
0
0
0
0
0
0
0
Coefficient b2 data register bits (addr 0x1A - 0x1C)
D7
D6
D5
D4
D3
D2
D1
D0
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0
0
0
0
0
0
0
0
Coefficient a1 data register bits (addr 0x1D - 0x1F)
D7
D6
D5
D4
D3
D2
D1
D0
C3B23
C3B22
C3B21
C3B20
C3B19
C3B18
C3B17
C3B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C3B7
C3B6
C3B5
C3B4
C3B3
C3B2
C3B1
C3B0
0
0
0
0
0
0
0
0
Coefficient a2 data register bits (addr 0x20 - 0x22)
D7
D6
D5
D4
D3
D2
D1
D0
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0
0
0
0
0
0
0
0
DocID18190 Rev 3
53/67
67
Register description
6.7.6
6.7.7
STA559BW
D7
D6
D5
D4
D3
D2
D1
D0
C4B15
C4B14
C4B13
C4B12
C4B11
C4B10
C4B9
C4B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C4B7
C4B6
C4B5
C4B4
C4B3
C4B2
C4B1
C4B0
0
0
0
0
0
0
0
0
Coefficient b0 data register bits (addr 0x23 - 0x25)
D7
D6
D5
D4
D3
D2
D1
D0
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0
0
0
0
0
0
0
0
Coefficient read/write control register (addr 0x26)
D7
6.7.8
D6
D3
D2
D1
D0
Reserved
D5
D4
RA
R1
WA
W1
0
0
0
0
0
Description
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled
internally in the STA559BW via RAM. Access to this RAM is available to the user via an I²C
register interface. A collection of I²C registers are dedicated to this function. One contains a
coefficient base address, five sets of three store the values of the 24-bit coefficients to be
written or that were read, and one contains bits used to control the write/read of the
coefficient(s) to/from RAM.
Note:
The read and write operation on RAM coefficients works only if LRCKI (pin 29) is switching.
Reading a coefficient from RAM
54/67
1.
Write 6-bits of address to I²C register 0x16.
2.
Write 1 to R1 bit in I²C address 0x26.
3.
Read top 8-bits of coefficient in I²C address 0x17.
4.
Read middle 8-bits of coefficient in I²C address 0x18.
5.
Read bottom 8-bits of coefficient in I²C address 0x19.
DocID18190 Rev 3
STA559BW
Register description
Reading a set of coefficients from RAM
1.
Write 6-bits of address to I²C register 0x16.
2.
Write 1 to RA bit in I²C address 0x26.
3.
Read top 8-bits of coefficient in I²C address 0x17.
4.
Read middle 8-bits of coefficient in I²C address 0x18.
5.
Read bottom 8-bits of coefficient in I²C address 0x19.
6.
Read top 8-bits of coefficient b2 in I²C address 0x1A.
7.
Read middle 8-bits of coefficient b2 in I²C address 0x1B.
8.
Read bottom 8-bits of coefficient b2 in I²C address 0x1C.
9.
Read top 8-bits of coefficient a1 in I²C address 0x1D.
10. Read middle 8-bits of coefficient a1 in I²C address 0x1E.
11. Read bottom 8-bits of coefficient a1 in I²C address 0x1F.
12. Read top 8-bits of coefficient a2 in I²C address 0x20.
13. Read middle 8-bits of coefficient a2 in I²C address 0x21.
14. Read bottom 8-bits of coefficient a2 in I²C address 0x22.
15. Read top 8-bits of coefficient b0 in I²C address 0x23.
16. Read middle 8-bits of coefficient b0 in I²C address 0x24.
17. Read bottom 8-bits of coefficient b0 in I²C address 0x25.
Writing a single coefficient to RAM
1.
Write 6-bits of address to I²C register 0x16.
2.
Write top 8-bits of coefficient in I²C address 0x17.
3.
Write middle 8-bits of coefficient in I²C address 0x18.
4.
Write bottom 8-bits of coefficient in I²C address 0x19.
5.
Write 1 to W1 bit in I²C address 0x26.
DocID18190 Rev 3
55/67
67
Register description
STA559BW
Writing a set of coefficients to RAM
1.
Write 6-bits of starting address to I²C register 0x16.
2.
Write top 8-bits of coefficient b1 in I²C address 0x17.
3.
Write middle 8-bits of coefficient b1 in I²C address 0x18.
4.
Write bottom 8-bits of coefficient b1 in I²C address 0x19.
5.
Write top 8-bits of coefficient b2 in I²C address 0x1A.
6.
Write middle 8-bits of coefficient b2 in I²C address 0x1B.
7.
Write bottom 8-bits of coefficient b2 in I²C address 0x1C.
8.
Write top 8-bits of coefficient a1 in I²C address 0x1D.
9.
Write middle 8-bits of coefficient a1 in I²C address 0x1E.
10. Write bottom 8-bits of coefficient a1 in I²C address 0x1F.
11. Write top 8-bits of coefficient a2 in I²C address 0x20.
12. Write middle 8-bits of coefficient a2 in I²C address 0x21.
13. Write bottom 8-bits of coefficient a2 in I²C address 0x22.
14. Write top 8-bits of coefficient b0 in I²C address 0x23.
15. Write middle 8-bits of coefficient b0 in I²C address 0x24.
16. Write bottom 8-bits of coefficient b0 in I²C address 0x25.
17. Write 1 to WA bit in I²C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the
address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the
STA559BW generates the RAM addresses as offsets from this base value to write the
complete set of coefficient data.
Table 71. RAM block for biquads, mixing, scaling, bass management
Index
(Decimal)
Index (Hex)
Description
Coefficient
Default
0
0x00
C1H10(b1/2)
0x000000
1
0x01
C1H11(b2)
0x000000
2
0x02
C1H12(a1/2)
0x000000
3
0x03
C1H13(a2)
0x000000
4
0x04
C1H14(b0/2)
0x400000
5
0x05
Channel 1 - Biquad 2
C1H20
0x000000
…
…
…
…
…
19
0x13
Channel 1 - Biquad 4
C1H44
0x400000
20
0x14
C2H10
0x000000
C2H11
0x000000
Channel 1 - Biquad 1
Channel 2 - Biquad 1
56/67
21
0x15
…
…
…
…
…
39
0x27
Channel 2 - Biquad 4
C2H44
0x400000
DocID18190 Rev 3
STA559BW
Register description
Table 71. RAM block for biquads, mixing, scaling, bass management (continued)
Index
(Decimal)
Index (Hex)
40
0x28
41
0x29
42
0x2A
43
0x2B
44
Description
Coefficient
Default
C12H0(b1/2)
0x000000
C12H1(b2)
0x000000
C12H2(a1/2)
0x000000
C12H3(a2)
0x000000
0x2C
C12H4(b0/2)
0x400000
45
0x2D
C3H0(b1/2)
0x000000
46
0x2E
C3H1(b2)
0x000000
47
0x2F
C3H2(a1/2)
0x000000
48
0x30
C3H3(a2)
0x000000
49
0x31
C3H4(b0/2)
0x400000
50
0x32
Channel 1 - Prescale
C1PreS
0x7FFFFF
51
0x33
Channel 2 - Prescale
C2PreS
0x7FFFFF
52
0x34
Channel 1 - Postscale
C1PstS
0x7FFFFF
53
0x35
Channel 2 - Postscale
C2PstS
0x7FFFFF
54
0x36
Channel 3 - Postscale
C3PstS
0x7FFFFF
55
0x37
TWARN/OC - Limit
TWOCL
0x5A9DF7
56
0x38
Channel 1 - Mix 1
C1MX1
0x7FFFFF
57
0x39
Channel 1 - Mix 2
C1MX2
0x000000
58
0x3A
Channel 2 - Mix 1
C2MX1
0x000000
59
0x3B
Channel 2 - Mix 2
C2MX2
0x7FFFFF
60
0x3C
Channel 3 - Mix 1
C3MX1
0x400000
61
0x3D
Channel 3 - Mix 2
C3MX2
0x400000
62
0x3E
Unused
-
-
63
0x3F
Unused
-
-
Channel 1/2 - Biquad 5 or 8
for XO = 000
High-pass 2nd order filter
for XO 000
Channel 3 - Biquad
for XO = 000
Low-pass 2nd order filter
for XO 000
User-defined EQ
The STA559BW can be programmed for four EQ filters (biquads) per each of the two input
channels. The biquads use the following equation:
Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
= b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
DocID18190 Rev 3
57/67
67
Register description
STA559BW
Coefficients stored in the user defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1 / 2
CxHy1 = b2
CxHy2 = -a1 / 2
CxHy3 = -a2
CxHy4 = b0 / 2
where x represents the channel and the y the biquad number. For example, C2H41 is the b2
coefficient in the fourth biquad for channel 2.
Crossover and biquad #8
Additionally, the STA559BW can be programmed for a high-pass filter (processing
channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass
management crossover when the XO setting is 000 (user-defined). Both of these filters
when defined by the user (rather than using the preset crossover filters) are second order
filters that use the biquad equation given above. They are loaded into the C12H0-4 and
C3Hy0-4 areas of RAM noted in Table 71, addresses 0x28 to 0x31.
By default, all user-defined filters are pass-through where all coefficients are set to 0, except
the b0/2 coefficient which is set to 0x400000 (representing 0.5)
Prescale
The STA559BW provides a multiplication for each input channel for the purpose of scaling
the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor
for this multiplier is loaded into RAM. All channels can use the channel-1 prescale factor by
setting the Biquad link bit. By default, all prescale factors (RAM addresses 0x32 to 0x33) are
set to 0x7FFFFF.
Postscale
The STA559BW provides one additional multiplication after the last interpolation stage and
the distortion compensation on each channel. This postscaling is accomplished by using a
24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The
scale factor for this multiplier is loaded into RAM. This postscale factor can be used in
conjunction with an ADC equipped micro-controller to perform power-supply error
correction. All channels can use the channel-1 postscale factor by setting the postscale link
bit. By default, all postscale factors (RAM addresses 0x34 to 0x36) are set to 0x7FFFFF.
When line output is being used, channel-3 postscale affects both channels 3 and 4.
Thermal warning and overcurrent adjustment (TWOCL)
The STA559BW provides a simple mechanism for reacting to overcurrent or thermal
warning detection in the power block. When the warning occurs, the TWOCL value is used
to provide output attenuation clipping on all channels.
The amount of attenuation to be applied in this situation can be adjusted by modifying the
overcurrent and thermal warning limiting value (RAM addr 0x37). By default, the overcurrent
postscale adjustment factor is set to 0x5A9DF7 (that is, -3 dB). Once the limiting is applied it
remains until the device is either reset or according to the TWRB and OCRB settings.
58/67
DocID18190 Rev 3
STA559BW
6.8
Register description
Variable max power correction registers (addr 0x27 - 0x28)
D7
D6
D5
D4
D3
D2
D1
D0
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0
0
0
1
1
0
1
0
D7
D6
D5
D4
D3
D2
D1
D0
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
1
1
0
0
0
0
0
0
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is
used in place of the default coefficient when MPCV = 1.
6.9
Distortion compensation registers (addr 0x29 - 0x2A)
D7
D6
D5
D4
D3
D2
D1
D0
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
1
1
1
1
0
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
0
0
1
1
0
0
1
1
DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient
is used in place of the default coefficient when DCCV = 1.
6.10
Fault detect recovery constant registers (addr 0x2B - 0x2C)
D7
D6
D5
D4
D3
D2
D1
D0
FDRC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0
0
0
0
1
1
0
0
FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted, the
TRISTATE output is immediately asserted low and held low for the time period specified by
this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x000C gives approximately 0.1 ms.
Note:
0x0000 is a reserved value for these registers.
DocID18190 Rev 3
59/67
67
Register description
6.11
STA559BW
Device status register (addr 0x2D)
D7
D6
D5
D4
D3
D2
D1
D0
PLLUL
FAULT
UVFAULT
Reserved
OCFAULT
OCWARN
TFAULT
TWARN
This read-only register provides fault and thermal-warning status information from the power
control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault
or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked.
60/67
DocID18190 Rev 3
STA559BW
Applications
7
Applications
7.1
Applications schematic
Figure 19 below shows the typical applications schematic for STA559BW. Special attention
has to be paid to the layout of the PCB. All the decoupling capacitors have to be placed as
close as possible to the device to limit spikes on all the supplies.
7.2
PLL filter circuit
It is recommended to use the above circuit and values for the PLL loop filter to achieve the
best performance from the device in general applications. Note that the ground of this filter
circuit has to be connected to the ground of the PLL without any resistive path. Concerning
the component values, it must be taken into account that the greater the filter bandwidth, the
less is the lock time but the higher is the PLL output jitter.
7.3
Typical output configuration
Figure 18 shows the typical output configuration used for BTL stereo mode. Please contact
STMicroelectronics for other recommended output configurations.
Figure 18. Output configuration for stereo BTL mode (RL = 8
22 µH
OUT1A
100 nF
100 nF
22R
6R2
470 nF
Left
100 nF
330 pF
6R2
100 nF
22 µH
OUT1B
22 µH
OUT2A
100 nF
100 nF
22R
6R2
470 nF
Right
100 nF
330 pF
6R2
100 nF
22 µH
OUT2B
DocID18190 Rev 3
61/67
67
Applications
62/67
Figure 19. Applications circuit
STA559BW
3V3
U4
1
C14
2
+
3
100µF 25V
C18
C21
1µF 25V
100nF
OUT2B
4
5
6
7
8
C23
DocID18190 Rev 3
C29
100nF
OUT2A
9
100nF
Vcc
OUT1B
10
11
12
C31
1µF 25V
OUT1A
C32
100nF
13
14
15
16
17
18
GND_SUB
SA
TEST_MODE
VSS
VCC_REG
OUT2B
VDD_DIG
GND_DIG
SCL
SDA
INT_LINE
RESET
GND2
SDI
VCC2
LRCKI
OUT2A
OUT1B
Vcc1
GND1
OUT1A
GND_REG
VDD
CONFIG
BICKI
XTI
GND_PLL
FILTER_PLL
VDD_PLL
PWRDN
GND_DIG
VDD_DIG
OUT3B / FFX3B
TWARN / OUT4A
OUT3A / FFX3A
EAPD / OUT4B
36
C13
35
100nF
34
33
32
SCL
R11
SDA
10K
INTL
31
30
29
28
27
RESET
BICKI
XTI
C30
25
100nF
24
R35
2R2
3V3
23
PWDN
22
C33
21
100nF
19
1nF
LRCKI
26
20
C22
DATA
R14
2K2
3V3
R36
0
C36
4.7nF
C35
680pF
STA559BW
STA559BW
STA559BW
8
Package thermal characteristics
Package thermal characteristics
Using a double-layer PCB the thermal resistance, junction to ambient, with 2 copper ground
areas of 3 x 3 cm2 and with 16 via holes is 24 °C/W in natural air convection.
The dissipated power within the device depends primarily on the supply voltage, load
impedance and output modulation level.
Thus, the maximum estimated dissipated power for the STA559BW is:
2 x 20 W @ 8 , 18 V
Pd max is approximately 4 W
2 x 9 W + 1 x 20 W @ 4 , 8 ,18 V
Pd max is approximately 5 W
Figure 20 shows the power derating curve for the PowerSSO-36 package on PCBs with
copper areas of 2 x 2 cm2 and 3 x 3 cm2.
Figure 20. PowerSSO-36 power derating curve
Pd (W)
8
7
Copper Area 3x3 cm
and via holes
6
5
STA559BW
STA339BW
PSSO36
PowerSSO-
4
3
Copper Area 2x2 cm
and via holes
2
1
0
0
20
40
60
80
100
120
140
160
Tamb ( °C)
DocID18190 Rev 3
63/67
67
Package mechanical data
9
STA559BW
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 21 shows the package outline and Table 72 gives the dimensions.
Table 72. PowerSSO-36 EPD dimensions
Dimensions in mm
Dimensions in inches
Symbol
64/67
Min.
Typ.
Max.
Min.
Typ.
Max.
A
2.15
-
2.47
0.085
-
0.097
A2
2.15
-
2.40
0.085
-
0.094
a1
0.00
-
0.10
0.00
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
0
-
8 degrees
L
0.60
-
1.00
0.024
-
0.039
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
6.50
-
7.10
0.256
-
0.280
DocID18190 Rev 3
h x 45°
STA559BW
Figure 21. PowerSSO-36 EPD outline drawing
DocID18190 Rev 3
Package mechanical data
65/67
Revision history
10
STA559BW
Revision history
Table 73. Document revision history
66/67
Date
Revision
Changes
17-Dec-2010
1
Initial release.
13-Feb-2014
2
Updated order code Table 1 on page 1.
21-Dec-2018
3
Updated order code Table 1 on page 1.
DocID18190 Rev 3
STA559BW
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved
DocID18190 Rev 3
67/67
67