0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STA680Q

STA680Q

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP144_20X20MM

  • 描述:

    IC RX HD RADIO BASE-BAND 144LQFP

  • 数据手册
  • 价格&库存
STA680Q 数据手册
STA680 Automotive HD Radio™ baseband receiver Datasheet - production data  Optional Serial Flash memory SPI interface for application code storage  IIS serial audio interface with programmable sample rate converter LFBGA168  Primary and secondary serial interfaces for host micro communication based on industry standard IIC and SPI '!0'03 '!0'03 TFBGA289  Several General purpose IOs  One Internal clock oscillator and two internal PLLs Features  External clock input  AEC-Q100 qualified  IBOC (in-band on-channel) digital audio broadcast signal decoding for AM/FM hybrid and all-digital modes  Dual-channel HD 1.5 for background scanning and data services  HD codec (HDC) audio decompression  Metadata support for HD Radio reception  MPS (main program service), SPS (supplemental program service) and PAD (program associated data) data decoding  1.2 V core supply; 3.3 V I/O supply Description The STA680 is an HD-radio base-band processor for car-radio applications. The STA680 functionality includes audio decompression and data processing, while multiple interfaces ensure flexible integration into the system. The STA680 takes full advantage of HD 1.5 Radio benefits including CD-like audio quality from HD Radio FM broadcasts and FM-like audio quality using HD Radio AM, while program associated data or traffic information is received from the second channel.  Advanced HD Radio feature support: – Apple ID3 tag – Multicasting – Electronic program guide (EPG) – Real-time traffic STA680 supports FM/AM analog/digital AAA algorithm by mean of specific FW.  Automatic Audio Alignment (AAA) algorithm support  Variable input base-band data-rate I2S-like interface supporting 650, 675, 744.1875, 912 kS/s data rates  Secondary RF base-band interface for dual tuner applications  Glueless interface to Synchronous SDRAM addressing up to 512 Mbit of SDRAM in x16 configuration March 2019 This is information on a product in full production. Table 1. Device summary Order code Package(1) Packing STA680 LFBGA 168 balls (12x12x1.4 mm) Tray STA680TR STA680D STA680DTR TFBGA 289 balls (15x15x1.2 mm) Tape & Reel Tray Tape & Reel 1. ECOPACK® compliant. DS5877 Rev 13 1/48 www.st.com Contents STA680 Contents 1 2 3 4 5 2/48 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Ball-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 LFBGA description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 TFBGA description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Ball-out list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.4 I/Os supply groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1 Receiver system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 HD Radio processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Dual channel HD 1.5 Radio processing . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Overview of main functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Adjacent channel filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.2 HiFi2 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.3 Vectra core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.4 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.5 Hardware accelerator (VITERBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operation and general remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Clock schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Power on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power supply ramp-up phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Oscillator setting time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Normal operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Digital I/O and memory interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 Interfaces: LFBGA vs. TFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Base-band I2S interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Base-band I2S interface frequency diversity . . . . . . . . . . . . . . . . . . . . . . 30 5.4 Audio interface (AIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DS5877 Rev 13 STA680 Contents 5.5 5.6 5.4.1 Output serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4.2 Input serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4.3 Audio sample rate converter (ASRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Serial peripheral interfaces (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.5.1 Host micro serial peripheral interface (SPI1) . . . . . . . . . . . . . . . . . . . . . 34 5.5.2 Flash serial peripheral interface (SPI2) . . . . . . . . . . . . . . . . . . . . . . . . . 34 I2C interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.6.1 5.7 6 7 8 Host micro I2C interface (I2C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 SDRAM interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.1 LFBGA168 (12x12x1.4 mm) package information . . . . . . . . . . . . . . . . . . 42 7.2 TFBGA289 (15x15x1.2 mm) package information . . . . . . . . . . . . . . . . . . 44 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DS5877 Rev 13 3/48 3 List of tables STA680 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. 4/48 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ball-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Reference clock configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Power on timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Interface list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Baseband interfaces pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 BBI timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 AIF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Serial audio interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SPI interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Host micro SPI pin list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Flash SPI pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Host and auxiliary I2C interface pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C1 interface device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 SDRAM Interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 SDRAM interface timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 LFBGA168 (12x12x1.4 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 TFBGA289 (15x15x1.2 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DS5877 Rev 13 STA680 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 LFBGA ball-out (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 TFBGA ball-out (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 System block diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Functional block diagram for HD Radio demodulating and decoding . . . . . . . . . . . . . . . . . 21 Clock generation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Power on timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Crystal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 BBI waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Serial audio interface waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SPI interface timings diagrams and waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Timing diagrams and waveform for the two I2C interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 35 Timing diagrams and waveform for the SDRAM interface . . . . . . . . . . . . . . . . . . . . . . . . . 37 LFBGA168 (12x12x1.4 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 TFBGA289 (15x15x1.2 mm) package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 DS5877 Rev 13 5/48 5 Block diagram and pin description STA680 1 Block diagram and pin description 1.1 Block diagram Figure 1. Functional block diagram 6'5$0 &RUH6\VWHP 67$ 67$' 5)7XQHU HJ7'$ %% %% 6'5$0,QWHUIDFH 9HFWUD/;7HQVLOLFD '63 %DVH%DQG,QWHUIDFH 7XQHU $XGLR,QWHUIDFH +L)L7HQVLOLFD&RUH 273 $+%%XV 9LWHUEL $+%$3%%ULGJH '0$ %RXQGDU\6FDQ -7$* ,6 $XGLR,QWHUIDFH 3HULSKHUDO%XV ,2 &RQWURO,QWHUIDFH &ORFN*HQ8QLW /'2 63,)ODVK &U\VWDO2VFLOODWRU 3HULSKHUDO 3// 63,,&,QWHUIDFH *3,2 6\VWHP 3// 0+] 6HULDO)ODVK %RRWDEOH 0LFURFRQWUROOHU '!0'03 1.2 Ball-out description The STA680 is available in two different packages. It comes in a 12x12 mm LFBGA with 168 balls with 0.8 mm pitch and in 15x15 mm TFBGA with 289 balls with 0.8 mm pitch. TFBGA289 package option offers ball-to-ball compatibility with STA660 DAB/DRM digital decoder. 6/48 DS5877 Rev 13 STA680 1.2.1 Block diagram and pin description LFBGA description Figure 2 presents the ball-out of the STA680 for the LFBGA package option. Different colors have been used for I/O signals from different interfaces according to Table 2 reported in Section 1.2.3. Figure 2. LFBGA ball-out (top view)  !           '0)/ ""?"#+ ""?) '.$?'%.?)/ ))#?3$! 30)?-)3/ 30)?3#+ 2%3%4?. 48$?'0)/ 243?'0)/ 6$$?'%.?)/ 4%34-/$% #43?'0)/ 6$$?'%.?)/ " '0)/ ""?1 ",%.$ ""?73 '.$?'%.?)/ ""?1 ))#?3#, 30)?-/3) 30)?33?. 28$?'0)/ # ""?73 ""?) !$!4 ))#?3$! '0)/ ))#?3#, ))#?$! 30)?-/3) 30)?-)3/ 30)?3#+ 4$) ""?"#+ ))#?$! 6$$ 6$$ 30)?33?. '0)/ $ 6$$?'%.?)/ 6$$?'%.?)/ % !5$)/?).? !"#+ 30$)& !$!4 6$$?0,,?$)' & !5$)/?).? !$!4 !5$)/?).? !73 '.$?0,,? $)' '.$?0,,? $)' ' !73 !$!4 ( '.$?'%.?)/ '.$?'%.?)/  3$2?! 4234?. 4#+ 3$2?! 3$2?! 4$/ 4-3 3$2?! 3$2?! 6$$ -/$%/0?&3( 3$2?"! 3$2?"! 6$$ -/$%/0?'%. 3$2?2!3?. 3$2?#3?. '.$ '.$ '.$ $!#8 '.$ '.$ '.$ '.$ 3$2?#!3?. !"#+ '.$ '.$ '.$ '.$ 3$2?! 3$2?! '.$?2!-?)/ '.$ '.$ '.$ '.$ 6$$ 6$$ 3$2?! 3$2?! 6$$ 6$$ 3$2?! 3$2?! 3$2?! 3$2?! '.$?0,,? '.$?0,,? !.! !.! 6$$?/3# '.$?/3# + /3#?/54 #,+?). 6$$ 6$$?2%'6 , /3#?). '.$?/3# 6$$ 6$$?2%'6 6$$?&3(?)/ '.$?&3(?)/ - 6$$?0,,? !.! 6$$?0,,? 30)?33?. 30)?33?. !.! 6$$?2%'6 6$$?2%'6 30)?-/3) 30)?3#+ 30)?33?. 30)?-)3/ 0  '.$ * .  30)?33?. 2&5 6$$?2!-?)/ '.$?2!-?)/'.$?2!-?)/ '.$?2!-?)/ ?6 ?6 3$2?$ 3$2?$ 3$2?7%?. 6$$?2!-?)/ 6$$?2!-?)/ 6$$?2!-?)/ '.$?2!-?)/ '.$?2!-?)/ 3$2?$1- 3$2?#,+? 2!-6 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?&%%$? #,+ 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?$ 3$2?#+% 3$2?$1- #OLORLEGEND "ALL UNUSED "ALL NOTPRESENT *4!' INTERFACE 5!24'0)/ INTERFACE -EMORYCARD (OSTMICRO INTERFACE PROCESSORINTERFACE &LASH INTERFACE "ASEBANDINPUT INTERFACE !UDIO)NPUT INTERFACE !UDIO/UTPUT INTERFACE 3$2!INTERFACE '!0'03 DS5877 Rev 13 7/48 47 Block diagram and pin description 1.2.2 STA680 TFBGA description Figure 3 presents the ball-out of the STA680 for the TFBGA package option. Different colors have been used for I/O signals from different interfaces according to Table 2 reported in Section 1.2.3. Figure 3. TFBGA ball-out (top view)   $   &/.B,1 *1'    63,B66 B1 & ' 63,B 6&. 63, B0,62 63, B026, 63, *1'B5$0 B66B1 B,2B9 9''B 9''B5$0 5(*9 B,2B9 - %%B4 %%B:6 . %%B%&. %%B, / %%B:6 0 %%B, 1 %%B4 ,,&B6&/ *1'B26& 9''B26& 8 %%B%&. 9'' ,,&B'$ 9'' 966,2 9'' 9'',2 966,2 9'' 7'2 9'',2 *1' *1' *1' 9'',2 9'',2 9'' *1' *1' *1' 966,2 9'',2 706 9'',2 *1' *1' *1' 9'' 5/ 9'' 966,2 9'',2 9'' 9'',2 9'' $%&. $:6 6'5B)((' B&/.  6'5B$ 6'5B$ %/(1' 6'5B$ 6'5B$ 6'5B$ ,,&B6'$ 6'5B$ 6'5B$ 6'5B$ 6'5B$ 6'5B$ 6'5B$ 6'5B$ 8/48 $XGLR2XWSXW LQWHUIDFH  6'5B&/. B5$09 $8',2B,1 B$%&. $'$7 '$&; 5' 9''B 5(*9 $8',2B 63,B6&. ,1B$'$7 ,,&B6'$ ,,&B6&/ ,,&B'$ 63,B026, 5. 63,B66 B1 63,B6&. 63,B0,62 *3,2 *3,2 *3,2 6'5B' 6'5B' 6'5B' 6'5B' 02'(23 6'5B&6B1 B)6+ 6'5B&$6B1 6'5B' 6'5B' 6'5B' 6'5B' 6'5B%$ 6'5B:(B1 6'5B' 6'5B' 6'5B' 6'5B' 6'5B'40 6'5B'40 6'5B5$6B1 6'5B' 6'5B' 6'5B' 6'5B' 6'5B&.( 6'5B%$ 966,2 $8',2B,1 B$:6 63, B026, *3,2 63,B66B1 63,B0,62 9'' *$3*36 &RORUOHJHQG )ODVK LQWHUIDFH  *1' $'$7 6'5B$ 9'' 5' 26&B287 02'(23 B*(1 63',) 5  7(6702'( 5(6(7B1 966,2 7567B1 5/ 3 7 7',  7;'B*3,2 576B*3,2 9'',2 7&.  &76B*3,2 63, B66B1 * +  5;'B*3,2 5% 26&B,1 63, B66B1  $'$7 ( )  9''B3// 9''B3// B',* B$1$ *1'B3// *1'B3// B$1$ B',* %  0HPRU\FDUG LQWHUIDFH $XGLR,QSXW +RVWPLFUR LQWHUIDFH SURFHVVRULQWHUIDFH -7$* LQWHUIDFH DS5877 Rev 13 %DVVEDQGLQSXW LQWHUIDFH 6'5$0 LQWHUIDFH %DOO XQXVHG %DOO 5HVHUYHG STA680 1.2.3 Block diagram and pin description Ball-out list The Table 2 describes the primary function and behavior of the STA680 pins. Table 2. Ball-out description LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group C13 TESTMODE I Pull-down 3.3 V Generic IO Factory test mode enable supply Description Test A13 Standard 1149.1 JTAG interface B14 J6 TRST_N I Pull-up 3.3 V Generic IO JTAG active-low test reset supply C12 H5 TCK I Pull-down 3.3 V Generic IO JTAG test clock supply D12 K6 TMS I Pull-up 3.3 V Generic IO JTAG test mode state supply C11 J5 TDI I Pull-up 3.3 V Generic IO JTAG test data in supply D11 H6 TDO O - 3.3 V Generic IO JTAG test data out supply GPIO & UART interfaces A11 A12 RTS_GPIO0 I/O Pull-up 3.3 V Generic UART ready to send / GPIO IO bit 0 supply B11 C11 CTS_GPIO1 I/O Pull-up 3.3 V Generic UART clear to send / GPIO IO bit 1 supply A10 A11 TXD_GPIO2 I/O Pull-up 3.3 V Generic UART transmit data / GPIO IO bit 2 supply B10 B11 RXD_GPIO3 I/O Pull-up 3.3 V Generic UART receive data / GPIO IO bit 3 supply D10 M15 GPIO4 I/O Pull-up 3.3 V Generic IO GPIO bit 4 supply B1 M14 GPIO5 I/O Pull-up 3.3 V Generic IO GPIO bit 5 supply A2 N16 GPIO6 I/O Pull-up 3.3 V Generic IO GPIO bit 6 supply DS5877 Rev 13 9/48 47 Block diagram and pin description STA680 Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group C5 N15 GPIO7 I/O Pull-up 3.3 V Generic IO GPIO bit 7 supply C14 RESET_N I Pull-up 3.3 V Generic IO Device active-low reset supply Description Reset A9 Host microprocessor interfaces B9 K16 SPI1_SS0_N I Pull-up 3.3 V Generic SPI interface 1 active-low IO slave select supply A8 L13 SPI1_SCK I Pull-up 3.3 V Generic IO SPI interface 1 serial clock supply B8 K14 SPI1_MOSI I Pull-up 3.3 V Generic SPI interface 1 serial data IO master out/slave in supply A7 L14 SPI1_MISO O Pull-up 3.3 V Generic SPI interface 1 serial data IO master in/slave out supply B7 N4 IIC1_SCL I/O Pull-up 3.3 V Generic IIC interface 1 serial clock IO line supply A6 T4 IIC1_SDA I/O Pull-up 3.3 V Generic IIC interface 1 serial data IO line supply C7 F12 IIC1_DA I/O Pull-up 3.3 V Generic IIC interface 1 data IO acknowledged supply C6 F14 IIC2_SCL I/O Pull-up 3.3 V Generic IO Reserved supply C4 F13 IIC2_SDA I/O Pull-up 3.3 V Generic IO Reserved supply D4 F15 IIC2_DA I/O Pull-up 3.3 V Generic IO Reserved supply 10/48 DS5877 Rev 13 STA680 Block diagram and pin description Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group Description IIS tuner interfaces C2 K4 BB1_I I Pull-down 3.3 V Primary baseband interface Generic serial I data or Primary IO baseband interface I/Q supply multiplexed data B2 J3 BB1_Q I Pull-down 3.3 V Primary baseband interface Generic serial Q data (not used in IO case of Primary data supply multiplexed on BB1_I) C1 J4 BB1_WS I Pull-down 3.3 V Generic Primary baseband interface IO word strobe supply D3 K3 BB1_BCK I Pull-down 3.3 V Generic Primary baseband interface IO bit clock supply 3.3 V Secondary baseband Generic interface serial I data or Secondary baseband IO supply interface I/Q multiplexed data A4 M3 BB2_I I Pull-down B6 N3 BB2_Q I Pull-down 3.3 V Secondary baseband Generic interface serial Q data (not IO used in case of Secondary supply data multiplexed on BB2_I) B4 L3 BB2_WS I Pull-down 3.3 V Generic Secondary baseband IO interface word strobe supply A3 T1 BB2_BCK I Pull-down 3.3 V Generic Secondary baseband IO interface bit clock supply IIS audio input interface F2 D17 AUDIO_IN_AWS I/O Pull-up 3.3 V Generic Digital audio input word IO strobe supply E1 C17 AUDIO_IN_ ABCK I/O Pull-up 3.3 V Generic IO Digital audio input clock supply F1 E16 AUDIO_IN_ ADAT I Pull-down 3.3 V Generic Digital audio input serial IO data supply AWS I/O Pull-up 3.3 V Generic Digital audio output word IO strobe supply Audio output interfaces G1 M11 DS5877 Rev 13 11/48 47 Block diagram and pin description STA680 Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group H3 M10 ABCK I/O Pull-up 3.3 V Generic IO Digital audio output clock supply G2 N11 ADAT O - 3.3 V Generic Digital audio output serial IO data supply C3 A10 ADAT2 O - 3.3 V Generic IO Reserved supply Description E3 D13 ADAT3 O - 3.3 V Reserved. Reference clock Generic configuration pin, works in IO input mode till RESET_N supply release E2 P5 SPDIF O - 3.3 V Generic IO Reserved supply 3.3 V Digital audio blend output. Generic Reference clock configuration pin, works in IO supply input mode till RESET_N release B3 G3 R4 D14 BLEND O - DAC256X O - 3.3 V Digital audio output oversampling clock. Generic Reference clock IO configuration pin, works in supply input mode till RESET_N release Generic IO Reference digital clock supply Clock & oscillator K2 A4 CLK_IN I - 3.3 V L1 E8 OSC_IN ana - 1.8 V Osc supply 28,224MHz crystal in or digital clock input K1 E9 OSC_OUT ana - 1.8 V Osc supply Crystal output SPI Flash interface P4 C5 SPI2_MISO I Pull-up 3.3 V Flash IO supply SPI interface 2 serial data master in/slave out N3 D4 SPI2_MOSI O Pull-up 3.3 V Flash IO supply SPI interface 2 serial data master out/slave in P3 D5 SPI2_SS0_N O Pull-up 3.3 V Flash IO supply SPI interface 2 active-low slave select 0 12/48 DS5877 Rev 13 STA680 Block diagram and pin description Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group M3 F4 SPI2_SS1_N O Pull-up 3.3 V Flash IO supply Reserved M4 F5 SPI2_SS2_N O Pull-up 3.3 V Flash IO supply Reserved M5 C3 SPI2_SS3_N O Pull-up 3.3 V Flash IO supply Reserved N4 C4 SPI2_SCK O Pull-up 3.3 V Flash IO supply SPI interface 2 serial clock Description SPI SD/MMC interface C9 P17 SPI3_MISO I Pull-up 3.3 V Generic IO Reserved supply C8 D15 SPI3_MOSI O Pull-up 3.3 V Generic IO Reserved supply D9 N17 SPI3_SS_N O Pull-up 3.3 V Generic IO Reserved supply C10 E17 SPI3_SCK O Pull-up 3.3 V Generic IO Reserved supply SDRAM interface P5 M12 SDR_FEED_ CLK I - 3.3 V SDRAM Feedback clock from IO SDRAM interface supply N5 P10 SDR_CLK_ RAM3V3 O - 3.3 V SDRAM Clock to SDRAM for 3.3 V IO interface supply N9 R15 SDR_D0 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 0 supply P9 U15 SDR_D1 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 1 supply N10 T15 SDR_D2 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 2 supply P10 P14 SDR_D3 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 3 supply DS5877 Rev 13 13/48 47 Block diagram and pin description STA680 Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type N11 P15 SDR_D4 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 4 supply P11 T14 SDR_D5 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 5 supply N12 R14 SDR_D6 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 6 supply P12 U14 SDR_D7 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 7 supply P8 P12 SDR_D8 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 8 supply N8 T12 SDR_D9 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 9 supply M8 R12 SDR_D10 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 10 supply P7 U12 SDR_D11 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 11 supply N7 U13 SDR_D12 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 12 supply M7 R13 SDR_D13 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 13 supply P6 P13 SDR_D14 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 14 supply N6 T13 SDR_D15 I/O - 3.3 V SDRAM SDRAM bidirectional data IO bit 15 supply N13 U10 SDR_DQM0 O - 3.3 V SDRAM Low-byte data input/output IO mask supply M13 U9 SDR_DQM1 O - 3.3 V SDRAM High-byte data input/output IO mask supply G13 T11 SDR_WE_N O - 3.3 V SDRAM IO Active-low write enable supply 14/48 Pull-up Supply Electrical /down(1) group DS5877 Rev 13 Description STA680 Block diagram and pin description Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group G12 R11 SDR_CAS_N O - 3.3 V SDRAM Active-low column address IO strobe supply F13 U11 SDR_RAS_N O - 3.3 V SDRAM Active-low row address IO strobe supply M14 P9 SDR_CKE O - 3.3 V SDRAM IO Clock enable supply F14 R10 SDR_CS_N O - 3.3 V SDRAM IO Active-low chip select supply E13 T10 SDR_BA0 O - 3.3 V SDRAM IO Bank select address 0 supply E14 T9 SDR_BA1 O - 3.3 V SDRAM IO Bank select address 1 supply D14 R6 SDR_A0 O - 3.3 V SDRAM IO Address bit 0 to SDRAM supply C13 T6 SDR_A1 O - 3.3 V SDRAM IO Address bit 1 to SDRAM supply C14 U5 SDR_A2 O - 3.3 V SDRAM IO Address bit 2 to SDRAM supply B13 P6 SDR_A3 O - 3.3 V SDRAM IO Address bit 3 to SDRAM supply H12 U7 SDR_A4 O - 3.3 V SDRAM IO Address bit 4 to SDRAM supply H13 T7 SDR_A5 O - 3.3 V SDRAM IO Address bit 5 to SDRAM supply J14 R7 SDR_A6 O - 3.3 V SDRAM IO Address bit 6 to SDRAM supply J13 P7 SDR_A7 O - 3.3 V SDRAM IO Address bit 7 to SDRAM supply K14 P8 SDR_A8 O - 3.3 V SDRAM IO Address bit 8 to SDRAM supply DS5877 Rev 13 Description 15/48 47 Block diagram and pin description STA680 Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group K13 U8 SDR_A9 O - 3.3 V SDRAM IO Address bit 10 to SDRAM supply D13 U6 SDR_A10 O - 3.3 V SDRAM IO Address bit 10 to SDRAM supply L14 T8 SDR_A11 O - 3.3 V SDRAM IO Address bit 11 to SDRAM supply L13 R8 SDR_A12 O - 3.3 V SDRAM IO Address bit 12 to SDRAM supply I Pull-up 3.3 V SDRAM Define the operating voltage IO of the "Generic I/O" supply supply group. Value is 3.3V. I Pull-up 3.3 V SDRAM Define the operating voltage IO of the "Generic I/O" supply supply group. Value is 3.3V. Description Supplies F12 M4 E12 R9 MODEOP_GEN MODEOP_FSH D5, D6, E11, F11, G7, G9, F11, G12, J7, K11, J11, L7,L10, L12, U1, J12, K3, U17 K11, K12, L3 VDD n/a - 1.2 V Core supply Power supply for core logic F6, F7, F8, F9, G6, G7, A1,A17, H8, H9, G8, G9, H10, J8, J9, J10, H6, H7, K8, K9, K10, H8, H9, J6, J7, J8, J9 GND n/a - - Core supply Ground for core logic Generic IO Generic I/Os ground supply A5, B5, H1, H2 - GND_GEN_IO n/a - - A12, B12, D1, D2 - VDD_GEN_IO n/a - 3.3 V L6 - GND_FSH_IO n/a - - Flash IO supply L5 - VDD_FSH_IO n/a - 3.3 V Flash IO supply 16/48 DS5877 Rev 13 Generic IO Generic I/Os power supply supply Ground for Flash Interface I/Os Power supply for Flash Inteface I/Os STA680 Block diagram and pin description Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type Pull-up Supply Electrical /down(1) group H14, L11, L12, M11, M12 - GND_RAM_IO n/a - - G14, M9, M10 - VDD_RAM_IO n/a - 3.3 V - F9, G10, H7, H11, K7, L9, L11, H12, J12 VDDIO n/a - 3.3 V I/O supply Generic I/Os power supply - G6, G8, G11, J11, L8, P11 VSSIO n/a - - I/O supply Generic I/Os ground F3, F4 B6 GND_PLL_DIG n/a - - PLL digital supply Ground for PLL digital part E4 A6 VDD_PLL_DIG n/a - 1.2 V PLL digital supply J4 B5 GND_PLL0_ ANA n/a - - PLL Ground for PLL0 analog analog part supply J3 - GND_PLL1_ ANA n/a - - PLL Ground for PLL1 analog analog part supply M2 A5 VDD_PLL0_ ANA n/a - 1.8 V PLL Power supply for PLL0 analog analog part supply M1 - VDD_PLL1_ ANA n/a - 1.8 V PLL Power supply for PLL1 analog analog part supply J2, L2 D8 GND_OSC n/a - - Osc supply J1 D9 VDD_OSC n/a - 1.8 V Osc supply Power supply for oscillator K4, L4 E14 VDD_REG3V3 n/a - 3.3 V LDO supply Voltage regulator input power supply @ 3.3 V N1, N2 C6 VDD_REG1V8 n/a - 1.8 V LDO supply Voltage regulator output power supply @ 1.8 V L9 C7 VDD_RAM_IO _1V8 n/a - 1.8 V n/a Reserved - connect to 1.8 V supply L10 D6 GND_RAM_IO _1V8 n/a - - n/a Reserved - Connect to ground - RFU n/a - n/a n/a Reserved for future use - do not connect Description SDRAM Ground for SDRAM IO Interface I/Os supply SDRAM Power supply for SDRAM IO Interface I/Os supply Power supply for PLL digital part Ground for oscillator core core Others M6 DS5877 Rev 13 17/48 47 Block diagram and pin description STA680 Table 2. Ball-out description (continued) LFBGA Ball # TFBGA Ball # Signal name Type B7, D10, E13, K12, L5, L6 RB7, RD10, RE13, RK12, RL5, RL6 n/a Pull-up Supply Electrical /down(1) group Description Reserved - - n/a n/a Reserved n/a Unused balls have to be left unconnected or connected to GND. Unused balls can be shorted together but they cannot be connected to any supply or other signal trace on the application PCB. Unused A2, A3, A7, A8, A9, A13, A14, A15, A16, B1, B2, B3, B4, B8, B9, B10, B12, B13, B14, B15, B16, B17, C1, C2, C8, C9, C10, C12, C15, C16,D1, D2, D3, D7, D11, D12, D16,E1, E2, E3, E4, E5, E6, E7, E10, E11, E12, E15, F1, F2, F3, F6, F7, F8, F10, F16, F17, G1, G2, G3, G4, G5, G13, G14, G15, A1, A14, G16, G17, H1, N14, P1, H2, H3, H4, P2, P13, H13, H14, H15, P14 H16, H17,J1, J2, J13, J14, J15, J16, J17, K1, K2, K5, K13, K15, K17, L1, L2, L4, L15, L16, L17, M1, M2, M5, M6, M7, M8, M9, M13, M16, M17, N1, N2, N5, N6, N7, N8, N9, N10, N12, N13, N14, P1, P2, P3, P4, P16, R1, R2, R3, R5, R16, R17, T2, T3, T5, T16, T17, U2, U3, U4, U16 Unused n/a - n/a 1. Each input pin has a pull-up/down resistor to its default value. Unless otherwise specified, signal balls not used in application can be left unconnected after verifying that the impedance value of the pull-up/down resistor (see Table 20) is sufficient to guarantee noise immunity in user application environment. 18/48 DS5877 Rev 13 STA680 1.2.4 Block diagram and pin description I/Os supply groups The STA680 I/O signals can be grouped into three different supply domains, as shown in (see Table 2):  Generic IO supply  Flash IO supply  SDRAM IO supply group In the LFBGA and TFBGA packages the three supply groups operate at 3.3 V. DS5877 Rev 13 19/48 47 General description 2 STA680 General description The STA680 is a system-on-chip designed for demodulating and decoding HD Radio signals. The STA680 is the base-band signal processor needed by an HD Radio receiver: it includes the OFDM demodulator, error correction, audio and data decoding of the digital channel. Figure 4. System block diagrams )/$6+ RSWLRQDO 6'5$0 ,4 $0)0 ,4 7'$ )0 EOHQG +'DXGLR ,6 67$67$' 70 +'5DGLRSURFHVVRU /5 2SWLRQDO&U\VWDO 0+] 63,,& +RVW —& )/$6+ RSWLRQDO 6'5$0 , $0)0 4 7'$ , $0)0 67$67$' 70 +'5DGLRSURFHVVRU 2SWLRQDO&U\VWDO 0+] 4 7'$ EOHQG +'DXGLR ,6 /5 63,,& +RVW —& *$3*36 20/48 DS5877 Rev 13 STA680 General description The architecture of STA680 consists of a mixed hardware/software implementation. Computation-intensive functional blocks are implemented using custom logic. Software implementation is more efficient for functional blocks where flexibility is needed. 2.1 Receiver system overview Such flexibility enables the STA680 to support both the HD 1.0 single-channel, and HD 1.5 double-channel applications, as shown in Figure 4. Figure 5 shows the internal simplified block diagram of the STA680. The STA680 receives the digital base-band signal from the digital tuner (e.g. TDA7786 or TDA7707) and extracts the HD-encoded audio and data services as shown in Figure 5. STA680 is compatible with conventional base-band radio reception tuners (e.g. TDA7786 or TDA7707). Figure 5. Functional block diagram for HD Radio demodulating and decoding "LENDINGSIGNAL 32# "") "LENDING ,OGIC 3OURCE$ECODER 32# "") #HANNEL$ECODER 3ECONDARY "" $IGITAL /&$$EMOD 03+1!$EMOD $EINTERLEAVER AND #ONVOLUTIONAL $ECODING $%-58 ($# $ECODER $ATA 0ROCESSING $!4! 3AMPLE2ATE#ONVERTERAND3ERIAL)NTERFACES -AIN"" )3 30) )# '!0'03 2.2 HD Radio processing The STA680 HD Radio decoder performs the processing of the IBOC signal. The native internal processing data rate is 744.1875 kS/s for FM and 46.51171875 kS/s for AM. The input I2S base-band interface accepts several input sample rates thanks to the availability of a reconfigurable sample rate converter.The supported rates are: 650 kS/s, 675 kS/s, 744.1875 kS/s and 912 kS/s. The STA680 is responsible for the detection, acquisition and demodulation of the IBOC signal. This processing is mainly performed inside the Vectra DSP core. The demodulated signal is then passed to the Hi-Fi processor for decoding and handling of data services. The digital 44.1 kHz decompressed audio is streamed out by means of the Digital Audio Interface. The STA680 requires a 4Mwords x16bits external SDRAM (with up to 32Mword x16bits supported) for data storage in order to process the HD Radio stream DS5877 Rev 13 21/48 47 General description 2.3 STA680 Dual channel HD 1.5 Radio processing The STA680 is capable of simultaneously demodulating two different HD Radio streams. This feature enables the device to decode the main HD Radio audio stream in parallel with the data service broadcasted by a different radio channel (for instance this feature allows to continue receiving traffic information provided by one radio station while listening to music from a different station). An example of implementation of the dual stream HD Radio processing is shown in Figure 4. 2.4 Overview of main functional blocks 2.4.1 Adjacent channel filter This module performs digital filtering of the IBOC channel. It receives the complex baseband I/Q IBOC signal input from the tuner and pre-conditions the signal for subsequent modem processing. 2.4.2 HiFi2 core The HiFi2 is a signal processing engine specifically designed to provide high quality 24-bit audio processing. The HiFi2 uses the Tensilica Xtensa LX engine with additional useful hardware capabilities such as:  Specialized instructions for 24-bit Audio MAC & stream coding  Dual MAC (each supports 24 x 24 and 32 x 16 bit format)  Huffman Encode / Decode and truncate functions  Two way Single-Instruction-Multiple-Data arithmetic and logic operations 2.4.3 Vectra core The Vectra LX is an on-chip, powerful, 32-bit RISC engine optimized for DSP with VLIW capabilities. The Vectra LX includes eight MAC units, sixteen 160-bit vector operation registers, and a number of SIMD arithmetic instructions. Custom instructions in the Vectra are tailored to DSP applications such as filters and FFTs. The Vectra processor has been further configured with specific instructions for efficient performance on the HD Radio application. 2.4.4 DMA A ten-channel DMA controller is attached to the AHB bus to allow the Vectra and HiFi2 processor cores to efficiently move large data-blocks. 2.4.5 Hardware accelerator (VITERBI) The complex convolutional Viterbi hardware accelerator supports both K constants of 7 and 9, for IBOC digital FM and AM processing respectively. 22/48 DS5877 Rev 13 STA680 Operation and general remarks 3 Operation and general remarks 3.1 Clock schemes The STA680 needs an external clock source to drive the internal Phase Locked Loops (PLLs) that generate the clocks needed by the DSP cores and their peripherals. The STA680 accepts several external reference clock sources, as listed below:  The reference clock can be supplied through the use of an external crystal or as a digital signal coming from an external IC.  The reference clock can have different frequencies and different input pins can be used. The selection of the clock input mode is performed during the power-on phase of the device by latching the value of the pins ADAT3, BLEND and DAC256X on the rising edge of the RESET_N signal (see Section 3.2); these values shall be selected according to Table 3. Table 3. Reference clock configuration [ADAT3, BLEND, DAC256X] Clock type [0,0,0] (1) Crystal OSC_IN [0,0,1] Digital OSC_IN or CLK_IN (2) Digital OSC_IN or CLK_IN (2) 36.48 OSC_IN or CLK_IN (2) 2.9184 [0,1,0] [0,1,1] Digital Clock frequency (MHz) Input pin 28.224 23.3472 (3) 10.4 10.8 [1,0,0] Digital BB1_BCK [1,0,1] Digital BB1_BCK(3) 1. Default setting. 2. When using OSC_IN pin to input the reference clock the CLK_IN pin must be connected to ground and vice versa. 3. When using BB1_BCK to input the reference clock it is suggested to connect the OSC_IN to ground and to tie the CLK_IN pin to high value (3.3 V). DS5877 Rev 13 23/48 47 Operation and general remarks STA680 Figure 6 shows a simplified version of the internal clock generation unit. Figure 6. Clock generation unit 37APPLICATION CONTROLLED FULL HALFFREQUENCY WITHDUTYCYCLE $)6 #ORE#LOCK 0,, ""?"#+ !5$)/?).?!"#+ #,+?). /3#?). /3#?/54 CLOCKTO3$2!UPTO-(Z COREINNORMALDRIVESUPPLY UPTO-(Z COREINOVERDRIVESUPPLY CLOCKTO#ORES UPTO-(Z )NTERNAL /SCILLATOR #,+?3%, 0ERIPHERAL #LOCK0,, CLOCKTO0ERIPHERALS UPTO-(Z INTEGERMULTIPLEOFK(Z AUDIOSAMPLINGRATE 0,,3ETTINGS /3#?%. %NCODER $!#8 ",%.$ !$!4 '!0'03 Clock generation unit Some remarks on the clock input pin follow:  OSC_IN is always a 1.8 V input pin;  CLK_IN, BB1_BCK are 3.3 V;  When the clock is fed through the CLK_IN pin, the OSC_IN pin must be connected to ground (and vice versa);  The BB1_BCK pin is the bit clock of the digital interface to the baseband Tuner. When this pin is selected as input for the reference clock, the selected clock frequency must be chosen compatibly with the Primary baseband Interface settings (see Section 5.2): – 10.4 MHz = 16 * 650 kHz  BBI set to 650 Ksample/s – 10.8 MHz = 16 * 675 kHz  BBI set to 675 Ksample/s;  When the device reference clock comes from BB1_BCK it is suggested to connect the OSC_IN to ground and to tie the CLK_IN pin to its high value (3.3 V). 24/48 DS5877 Rev 13 STA680 3.2 Operation and general remarks Power on This chapter describes the power-on procedure for the cold start (i.e. when the device is not supplied before being turned on). Figure 7 and Table 4 show the timing for the cold start power up sequence. Boot pins are latched at startup. Their default value is logic 0, in case logic 1 is needed a 6K2 pull-up resistor should be connected on the corresponding boot line. After reset release, the boot selection lines become outputs. Figure 7. Power on timing 3500,96 3500,96 4$#6  3500,96 /3#?). 4/3# /3#?/54 ""?"#+ !5$)/?).?!"#+ #,+?).  4234 2%3%4?. !$!4",%.$ $!#8 CLOCKCONFIGURATION DEFAULTNODRIVEONLINES  CRYSTAL-(ZSELECTED ASCLOCKSOURCE 4#&' 3 DONTCARE 4#&' ( STABLEDATA HIGHIMPEDANCE 'ENERATED#LOCKS PRIMARYBOOT -IN -(Z -AX -(Z SECONDARYBOOT -(Z FUNCTIONALMODE -(Z '!0'03 1. In case the Reference Clock is fed through BB1_BCK or CLK_IN the Power On timing diagram is the same as Figure 7 where OSC_OUT is substituted by the external supplied stable reference clock. Table 4. Power on timing parameters Symbol Parameter Min Max Same ramp-up time for 3.3 V and 1.2 V supply Unit Tramp-up External supply ramp-up time TDC1V8 DC1V8 regulator start-up time - 1 ms Oscillator start-up time - 400 μs Reset release time 2 - ms TOSC (1) TRST - TCFG,S Setup time for clock configuration 0.1 - μs TCFG,H Hold time for clock configuration 10 - ns 1. The oscillator start-up time depends on the crystal connected to the internal oscillator. The given value is estimated for a crystal with characteristic shown in Figure 8. Figure 8. Crystal characteristics #O #) #M 2M ,M #) %QUIVALENTCIRCUITOFAQUARTZCRYSTAL DS5877 Rev 13 -ODEL 2M ,M #M #/ #I#)#) 6ALUE /HM M( F& P& P&P& P&PARASITIC '!0'03 25/48 47 Power supply ramp-up phase 4 STA680 Power supply ramp-up phase The external power supply circuit on the board has to ensure that all the power supplies are ramped up to their specified levels. The ramp up phase of each power domain should start at the same time. The RESET_N pin must be kept low from the beginning. For normal applications, the TESTMODE pin (Factory test mode enable) must be connected to ground. 4.1 Oscillator setting time Once the power supply has reached the operating level, the internal voltage regulator gets functional after TDC1V8 = 1ms (see Table 4) and starts supplying the 1.8 V voltage to internal IPs such as PLLs and Crystal Oscillator. The PLL is powered up but not yet functional since the internal logic keeps it in bypass mode until a stable clock is available and STA680 has entered the secondary boot phase. As shown in Figure 7, if an external crystal is connected to the internal oscillator this will output a correct waveform after TOSC = 400 μs (seeTable 4). Alternatively, if no crystal is used, a digital clock must be supplied according to the instructions detailed in Section 3.1. In this case the Power On timing diagram is the same as Figure 7 where OSC_OUT is substituted by the external supplied stable reference clock (alternatively BB1_BCK or CLK_IN). The RESET_N pin must be kept low for an additional TRST = 2 ms both when using a crystal and when using an external reference clock. As described in Section 3.1 the internal clock configuration is defined by the status of the pins ADAT3, BLEND and DAC256X; this is latched on the rising edge of the RESET_N signal. The voltage of the three pins must be stable from at least TCFG = 0.1 μs before the rising edge of the RESET_N signal. 4.2 Boot sequence Once the RESET_N signal has been released and the power up sequence correctly executed, the STA680 enters the boot procedure, which consists of two phases: 1. device setup 2. application authentication and download. During the first phase, the STA680 executes the on-chip primary boot code contained in the Boot ROM. The primary boot synchronizes the internal cores, initializes the SPI and IIC interfaces and automatically selects the secondary boot code source by looking for a pre-defined pattern into UART1, ,Flash (SPI2), IIC1. 26/48 DS5877 Rev 13 STA680 Power supply ramp-up phase Once the source of the secondary boot code has been identified, the STA680 executes the following steps: 1. code authentication 2. SDRAM initialization 3. secondary boot code download to SDRAM. In order to decrease the boot time during the secondary phase, the STA680 performs the setup of the PLLs and sets the internal clock frequency to 28.224 MHz (see Figure 7). Subsequently it downloads and validates the application code either from the external Flash memory or from the host microcontroller. This ends the boot procedure. 4.3 Normal operation mode After the execution of the boot code, the device enters the normal operation mode by jumping to the main program loop. DS5877 Rev 13 27/48 47 Digital I/O and memory interfaces STA680 5 Digital I/O and memory interfaces 5.1 Interfaces: LFBGA vs. TFBGA STA680 supported interfaces are listed in Table 5 (a). Table 5. Interface list Interface name Direction LFBGA TFBGA Baseband interface 1 I √ √ Baseband interface 2 (data only) I √ √ I2S audio input I √ √ O √ √ 2 I S audio output 2C primary interface (Micro) I/O √ √ 2C secondary Interface I/O √ √ SPI micro interface I/O √ √ SPI Flash interface (double chip select) I/O √ √ SPI Flash interface extension (up to 4 chip select) I/O √ √ SDRAM interface I/O √ √ UART interface I/O √ √ 4 GPIO lines I/O √ √ JTAG test interface (boundary scan only) I/O √ √ I I a. STA680 firmware determines actual feature availability. Refer to the STA680 firmware Release Notes. 28/48 DS5877 Rev 13 STA680 5.2 Digital I/O and memory interfaces Base-band I2S interface The STA680 has two digital Base-Band Interfaces (BBI1 and BBI2). The tuner receives the analog signal from the antenna, samples it, performs down conversion and channel selection, and transmits the digital base-band stream to the STA680 by means of BB1 and BB2. Each BB interface consists of maximum four wires: up to two serial data lines I/Q (or one single data lines where I and Q data are multiplexed), one bit clock line and one frame clock line. The serial data is always transmitted with the MSB first and a 16-bit word length. The complex base-band signal needs to be at zero IF. Most common data rates are supported by using the internal base-band sample rate converter. The allowed base-band interface data rates are:  650 kS/s,  675 kS/s,  744.1875 kS/s  912 kS/s. Table 6. describes the pin functionality of both BBI1 and BBI2. Table 6. Baseband interfaces pin list Pin name Designation Type BB1_WS Primary baseband interface word strobe I BB1_BCK Primary baseband interface bit clock I BB1_I Primary baseband interface serial I data (or Primary baseband data I/Q multiplexed) I BB1_Q Primary baseband interface serial Q data I BB2_WS Secondary baseband interface word strobe I BB2_BCK Secondary baseband interface bit clock I BB2_I Secondary baseband interface serial I data (or Secondary baseband data I/Q multiplexed) I BB2_Q Secondary baseband interface serial Q data I The base-band interface supports the modes shown in Figure 9 Timing information for the protocols shown in Figure 9 is detailed in Table 7. DS5877 Rev 13 29/48 47 Digital I/O and memory interfaces STA680 Figure 9. BBI waveforms and timings &WS 3AMPLE.)AND1 ""X?73 3AMPLE. )AND1 &BCK MUX "X?"#+ 4S ""X?) ""X?1 ) ) 4H ) ) )   ) ) 1 1 1 1 1   1 1 ) ) ) ) )   ) ) ) ) ) 1 1 1 1 1 1 1 1   1 1 1 1 1 ) ) ) 3PLIT-ODE &WS 3AMPLE.) ""X?73 3AMPLE.1 &BCK MUX "X?"#+ 4S ""X?) ) ) 4H ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -ULTIPLEXER-ODE &WS 3AMPLE.) ""X?73 3AMPLE.1 &BCK AFE "X?"#+ 4S ""X?) ) ) 4H ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1 1 1 1 1   1 1 1 1 1 !&%-ODE '!0'03 Table 7. BBI timing values Symbol Fws 5.3 Parameter Word Strobe Working Rate 650 675 744.1875 Unit 912 kHz Fbck,split Bit clock in SPLIT mode 16 x Fws kHz Fbck,mux Bit clock in MUX mode 32 x Fws kHz Fbck,afe Bit clock in AFE mode 32 x Fws kHz Th Data hold time 4 ns Ts Data setup time 8 ns Base-band I2S interface frequency diversity When the STA680 is paired with the TDA7786 or any tuner of ST STAR family it can benefit from the supported base-band interface frequency diversity that allows to improve the EMI robustness of the system. The frequency diversity technique allows the base-band data-rate to be varied at run-time depending on the frequency of the tuned station, thus moving the intrinsic radiation of the BBI digital lines away from the signal of interest. 30/48 DS5877 Rev 13 STA680 5.4 Digital I/O and memory interfaces Audio interface (AIF) The STA680 uses a stereo I2S interface for sending the decoded digital audio back to the tuner, where the blending with the legacy AM/FM demodulated audio occurs. The receivers and transmitters can be used either in master mode, running with the STA680 internal audio frequency of 44.1 kHz or in slave mode running with a frequency determined by the external device. In slave mode, the internal Audio Sample Rate Converter (ASRC, see Chapter 5.4.3) adapts the external data rate (from 44.1 to 48 kSps) to the internal one. Table 8. AIF pin list Pin name Type Drive Digital audio input word strobe O 4mA AUDIO_IN_ABCK Digital audio input bit clock O 4mA AUDIO_IN_ADAT Digital audio input serial data I - AUDIO_IN_AWS AWS Digital audio output word strobe I/O 4mA ABCK Digital audio output clock I/O 4mA ADAT Digital audio output serial data O 4mA Digital audio output oversampling clock (256 x Fs) O 4mA Digital audio output blend output O 4mA DAC256X BLEND 5.4.1 Designation Output serial audio interface (SAI) The output serial audio interface is used to send the decoded audio from the HD Radio Decoder to an external IC (e.g. TDA7786 or TDA7707). The output SAI is an I2S interface which provides audio samples in stereo at a 44.1 kS/s data rate in master mode. In slave mode, other sample rates (from 44.1 to 48 kS/s) are supported by means of the internal ASRC (see Section 5.4.3). The output SAI interface is composed by three lines: one data line and two clock lines. The output SAI supports a 32x or 64x bit clock with 16-bit precision audio data. The 32x clock mode has no bit padding. The 64x clock mode adds 16-bits zero padding at the end of the 16-bit audio data. Figure 10 shows timing diagrams for the supported modes. An oversampled audio master-clock is also available for directly interfacing the STA680 to an external DAC. Table 8 shows the timing values for the output SAI interface. DS5877 Rev 13 31/48 47 Digital I/O and memory interfaces STA680 Figure 10. Serial audio interface waveforms and timings &AWS $ZV ,%&4 2)'(4 )DEFN $%&. $'$7 $ $ $ ' ' $ $ $ $ $ $ $ ' $ $ $ $ $ ' ' $ $ ' $ $ $ $ $  $ $ ' '    $ $ ;0RGH ELWGDWD &AWS ,%&4 $ZV 2)'(4 )DEFN $%&. 4S $'$7 $ $ $  4H  $ $ $ $        $ $ $   $ $    ;0RGH ELWGDWD  *$3*36 Table 9. Serial audio interface timing values Symbol Faws 5.4.2 Parameter Working rate Word strobe 44.1 ±10 Hz 45.6 ±15 Hz Unit 48 ±15 Hz kHz Fabck,16 Bit clock for 16-bit data 32 x Faws MHz Fabck,32 Bit clock for 32-bit data 64 x Faws MHz Th Data hold time 5 ns Ts Data setup time 20 ns Input serial audio interface The input serial audio interface is used to receive the legacy AM/FM demodulated audio samples from an external AM/FM Tuner for AAA algorithm purpose. The input SAI is an I2S interface which accepts 16 bit audio samples in stereo at a 44.1 kS/s sample rate. For usage with AAA algorithm enabled SW the Input serial audio interface must be configured as master at 44.1 kS/s (in that case output SAI needs to be configured as slave). 5.4.3 Audio sample rate converter (ASRC) The STA680 embeds a stereo channel sample rate converter to be used in combination with either the output (one single data-line) or the input SAI. The ASRC has a Total Harmonic Distortion plus Noise (THD+N) level at 1 kHz smaller than -85 dB (0.0056%). The supported data rates are:  44.1 (± 10 Hz),  45.6 (± 15 Hz)  48 (± 15 Hz) 32/48 DS5877 Rev 13 STA680 5.5 Digital I/O and memory interfaces Serial peripheral interfaces (SPI) The STA680 provides three serial peripheral interfaces:  SPI1 is intended for communicating with the Host Microcontroller (slave);  SPI2 interfaces the STA680 to the external flash memory (master);  SPI3 - Reserved. Figure 11 shows the timing diagrams and waveform for the three SPI interfaces. Figure 11. SPI interface timings diagrams and waveforms 4SS 4SS 30)X?33?. 30)X?33?. )VFN )VFN 30)X?3#+CPOL 30)X?3#+CPOL 4S 30)X?-/3)-)3/ : $ $ $ 4S 4H ' $ ' $ $ : : 30)X?-/3)-)3/ $ $ 4H $ ' ' )VFN $ $ : $ $ : )VFN 30)X?3#+CPOL 30)X?3#+CPOL 4S 30)X?-/3)-)3/ $ : $ $ $ 4S 4H ' $ ' $ $ : : 30)X?-/3)-)3/ $ $ 4H $ ' ' $ 30)X?3#+CPHA 30)X?3#+CPHA '!0'03 Table 10 shows the timing values for the SPI interface used in application. Table 10. SPI interface timing values Working rate Symbol Parameter Unit Min. Max. 8/Fsck - ns Tss Chip select Fsck Serial bit clock, slave mode - 7056 kHz Fsck Serial bit clock, master mode - 28224 kHz Th Data hold time 7 - ns Ts Data setup time 15 - ns DS5877 Rev 13 33/48 47 Digital I/O and memory interfaces 5.5.1 STA680 Host micro serial peripheral interface (SPI1) SPI1 is used to interface the STA680 with a host processor interface. The communication with the host-microcontroller can alternatively be performed via I2C as described in Section 5.6.1. The Host Micro SPI is a slave only interface. For the relevant pin description see Table 11. Table 11. Host micro SPI pin list Pin name Designation Type Drive SPI1_MISO Host Micro SPI data master in/slave out O 4 mA(1) SPI1_MOSI Host Micro SPI data master out/slave in I - SPI1_SCK Host Micro SPI clock I - SPI1_SS_N Host Micro SPI active-low slave select 1 I - 1. 4 mA driving capability is guaranteed on a maximum capacitive load of 20 pF. 5.5.2 Flash serial peripheral interface (SPI2) SPI2 is typically used for connecting the STA680 to an external Flash memory where the boot code and configuration parameters could be stored. The minimum required capacity for this purpose is 1 Mbit. SPI2 is master-only. Up to 4 chip select lines are available on the STA680. For the relevant pin description see Table 12. Table 12. Flash SPI pin list Pin name Designation Drive SPI2_MISO Flash SPI data master in/slave out I - SPI2_MOSI Flash SPI data master out/slave in O 4 mA(1) SPI2_SCK Flash SPI clock O 4 mA(1) SPI2_SS_N Flash SPI active-low slave select 1 O 4 mA(1) SPI2_SS1_N Flash SPI active-low slave select 2 O 4 mA(1) SPI2_SS2_N Flash SPI active-low slave select 3 O 4 mA(1) SPI2_SS3_N Flash SPI active-low slave select 4 O 4 mA(1) 1. 4 mA driving capability is guaranteed on a maximum capacitive load of 20 pF. 34/48 Type DS5877 Rev 13 STA680 Digital I/O and memory interfaces I2C interfaces 5.6 The STA680 features two I2C interfaces. For the relevant pin description see Table 13. Table 13. Host and auxiliary I2C interface pin list Pin name Designation Type Drive I/O 4mA Host Micro I C interface serial data line I/O 4mA Host Micro I2C interface data acknowledged Host Micro I2C interface serial clock line IIC1_SCL 2 IIC1_SDA IIC1_DA IIC2_SCL I/O 4mA 2 I/O 4mA 2 I/O 4mA 2 I/O 4mA Auxiliary I C interface serial clock line IIC2_SDA Auxiliary I C interface serial data line IIC2_DA Auxiliary I C interface data acknowledged The data pin of the I2C interface is an open drain driver and it needs a resistive pull- up as required by Philips® I2C specification. Figure 12 shows timing diagrams and waveform for the two I2C interface. Figure 12. Timing diagrams and waveform for the two I2C interfaces 4H STA 4H STO "IT ))#X?3$! 4S DAT "ITN "IT 4HIGH 4H DAT ))#X?3#, 3TOP 3TART &SCL 4LOW '!0'03 In Table 14 the timing values for the I2C interfaces are reported. Table 14. I2C interface timing values Standard-mode Symbol Fast-mode Parameter Unit Min. Max. Min. Max. - 100 - 400 kHz Fscl SCL clock frequency Tlow Low period of SCL clock 4.7 - 1.3 - μs Thigh High period of SCL clock 4 - 0.6 - μs Th, dat Data hold time 5 - - - μs Ts, dat Data setup time 250 - 100 - μs Th, sta Hold time for start condition 4 - 0.6 - μs Ts, sto Setup time for stop condition 4 - 0.6 - μs DS5877 Rev 13 35/48 47 Digital I/O and memory interfaces 5.6.1 STA680 Host micro I2C interface (I2C1) I2C1 is used to connect the STA680 to the host microcontroller to transmit commands, diagnostic information, and data. The I2C1 interface is a standard bi-directional I2C interface. The I2C1 interface supports 7-bit addressing and 8-bit data. It can run in both standard mode (serial clock frequency up to 100 kHz) and fast mode (up to 400 kHz). The I2C device addresses are reported in Table 15. An additional control line called IIC1_DA is provided as an extension of the I2C standard. This line is used as a flag to show the host controller that data is available and it can be polled by the host micro in either master or slave modes. Table 15. I2C1 interface device address 5.7 I2C1 Primary address Secondary address Read Address 00101111b (0x2F) 00101101b (0x2D) Write Address 00101110b (0x2E) 00101100b (0x2C) SDRAM interface The SDRAM interface supports up to 32M x 16 SDRAM; both standard and mobile protocols are accepted. For the relevant pin description see Table 16. Table 16. SDRAM Interface pin description Pin Name Designation Type Drive SDR_D[0:15] SDRAM interface data bus I/O 4 mA SDR_A[0:12] SDRAM interface address bus O 4 mA SDR_BA[0:1] Bank address O 4 mA SDR_CAS_N Active-low column address strobe O 8 mA SDR_RAS_N Active-low row address strobe O 8 mA SDR_WE_N Active-low write enable O 8 mA SDR_CS_N Active-low chip select O 8 mA SDR_DQM0 low-byte data input/output mask O 4 mA SDR_DQM1 high-byte data input/output mask O 4 mA Clock enable O 4 mA Clock to SDRAM for 3.3 V interface O 8 mA Feedback clock from SDRAM I 8 mA SDR_CKE SDR_CLK_RAM3V3 SDR_FEED_CLK The minimum required SDRAM size for single channel application is 64 Mbit (a specific FW is needed) while for a dual channel application at least 128 Mbit are needed. Figure 13 shows the timing diagrams and waveform for the SDRAM interface. 36/48 DS5877 Rev 13 STA680 Digital I/O and memory interfaces Figure 13. Timing diagrams and waveform for the SDRAM interface 4CK 4CH 3$2?#,+?2!4CL 3$2?#,+?#3 3$2?2!3 3$2?#!3 3$2?7%?. #!3LATENCY 3$2?"! "!.+ "!.+ "!.+ "!.+ 2/7 #/, 2/7 #/, 4IS 3$2?! 4IH 4O H 4O S 3$2?$ $OUT $IN READ WRITE '!0'03 Table 17 reports the timing values for the SDRAM interface Table 17. SDRAM interface timing values Symbol Parameter Software application Condition Min. Max. 7.35 - 12.05 - Unit Tck SCL clock period Core in normal Full rate drive Half rate Tch CLK high level width - - 2.5 - ns Tcl CLK low level width - - 2.5 - ns Toh Data out hold time - - 0.9 - ns Tos Data out setup time - - 1.5 - ns Tis Data In setup time - - 0.8 - ns Tih Data In hold time - - 1.6 - ns Tt Transition time - - - 1.2 ns ns For power saving and reduced interference on the board, the SDRAM speed can be programmed to work at half speed with respect to the internal data processing:  Full Rate SW application: the SDRAM interface works at the same frequency as the internal data processing (HD 1.0 and HD 1.5 applications supported);  Half Rate SW application: the SDRAM interface works at half frequency with respect to the internal data processing (only available for HD 1.0 application upon specific request). DS5877 Rev 13 37/48 47 Electrical specifications STA680 6 Electrical specifications 6.1 Absolute maximum ratings Table 18. Absolute maximum rating Symbol Parameter VDD Test condition Min Max Units Core supply voltage - -0.30 1.47 V VDD_GEN_IO Generic IO supply voltage - -0.30 3.60 V VDD_FSH_IO Flash IO supply voltage - -0.30 3.60 V VDD_RAM_IO SDRAM IO supply voltage - -0.30 3.60 V Osc 1V8 supply voltage - -0.30 2.75 V VDD_PLL_ANA PLL analog supply voltage - -0.30 2.75 V VDD_PLL_DIG PLL digital supply voltage - -0.30 1.47 V VDD_SAF SAF core supply voltage - -0.30 1.47 V Vi Voltage on input pin - -0.50 VDDIO+0.5 V Vo Voltage on output pin - -0.50 VDDIO+0.5 V VDD_OSC VESD 6.2 ESD absolute minimum withstand voltage R = 1.5 kΩ; C = 1.5 pF Human Body Model, LFBGA package >|±1000| Charged device mode, LFBGA package >|±500| V Thermal data Table 19. Thermal data Symbol Parameter Test condition Value Unit 44 °C/W Thermal resistance junction-to-ambient BGA package, JEDEC 2s2p PCB, free air Tstg Storage temperature - -55 to 150 °C Tamb Operating ambient temperature - -40 to 85 °C Tj, max Maximum junction temperature - 125 °C Rth j-amb 38/48 DS5877 Rev 13 STA680 6.3 Electrical specifications Operating conditions Table 20. DC electrical characteristics Symbol Min. Typ. Max. Unit Core supply voltage Normal drive 1.14 1.2 1.26 V VDD_GEN_IO Generic IO supply voltage - 3.14 3.3 3.46 V VDD_FSH_IO Flash IO supply voltage - 3.14 3.3 3.46 V VDD_RAM_ IO SDRAM IO supply voltage - 3.14 3.3 3.46 V VDD_RAM_ IO_1V8(1) Supply for the SDRAM clock at 1.8V - 1.71 1.8 1.89 V VDD_OSC(1) Oscillator analog supply voltage - 1.71 1.8 1.89 V VDD_PLL_ ANA(1) PLL analog supply voltage - 1.71 1.8 1.89 V VDD_PLL_ DIG PLL digital supply voltage Normal drive 1.14 1.2 1.26 V VDD_SAF SAF supply voltage Normal drive 1.14 1.2 1.26 V VDD Parameter Test condition HD 1.0(2) I1V2 Current from 1.2 V supply HD 1.5(3) HD 1.0(2) I3V3 Current from 3.3 V supply HD 1.5(3) HD 1.0(2) Pd Power dissipation HD 1.5(3) Tamb= 25 °C VDD = 1.20 V - 90 - mA Tamb = 85 °C VDD = 1.26 V - - 149 mA Tamb = 25 °C VDD = 1.20 V - 110 - mA Tamb = 85 C VDD = 1.26 V - - 180 mA Tamb = 25° C VDD_IO(4)= 3.3 V - 32 - mA Tamb = 85 °C VDD_IO = 3.46 V - - 41 mA Tamb = 25 °C VDD_IO = 3.3 V - 50 - mA Tamb = 85 °C VDD_IO = 3.46 V - - 70 mA Tamb = 25 °C typical supply - 214 - mW Tamb = 85 °C max supply - - 330 mW Tamb = 25 °C typical supply - 297 - mW Tamb = 85 °C max supply - - 469 mW Iil Low level input leakage current(5) Vi = 0 V - - 1.9 μA Iih High level input leakage current(5) Vi = VDD_GEN_IO(6) - - 1.9 μA Ilpu High level input leakage current on pull up(7) Vi = VDD_GEN_IO(6) - - 2.9 μA DS5877 Rev 13 39/48 47 Electrical specifications STA680 Table 20. DC electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit - - 10 μA Ilpd Low level input leakage current on pull-down(8) Vi = 0 V Rpu Equivalent pull-up resistance(9) 3.3 V supply mode Vi = 0.1 V 52 - 180 kΩ Rpd Equivalent pulldown resistance(10) 3.3 V supply mode Vi = 3.5 V 52 - 180 kΩ Vil Low level input voltage 3.3 V supply mode -0.3 - 0.7 V Vih High level input voltage 3.3 V supply mode 2.0 - VDD_ GEN_IO +0.3 V Vhyst Input hysteresis voltage 3.3 V supply mode 50 - - mV Voh Output high voltage Ioh =XmA(11) VDD_G EN_IO – 0.4V - - V Vol Output low voltage Iol =XmA(11) - - 0.3 V Ilatchup Injection current Maximum operating junction temperature 100 - - mA Iil_ram Low level input leakage current(5) Vi = 0V - - 4 μA Iih_ram High level input leakage current(5) Vi = VDD_RAM_IO - - 4 μA Ilpu_ram High level input leakage current on pull up(7) Vi = VDD_RAM_IO - - 4 μA Ipu_ram Pull-up current Vi = 0.1V 40 - 150 μA Rpu_ram Equivalent pull-up resistance(9) Vi = 0.1V 23 - 87 kΩ Vil_ram Low level input voltage - 0.8 - - V Vih_ram High level input voltage - - - 2 V Vhyst_ram Schmitt trigger hysteresis - 300 - 800 mV Voh_ram High level output voltage Ioh = -XmA(11) VDD_R AM_IO -0.4 - - V Vol_ram Low level output voltage Iol =XmA(11) - - 0.3 V Idc 3V3 to 1V8 DC regulator output current - - - 100 mA 40/48 DS5877 Rev 13 STA680 Electrical specifications Table 20. DC electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit Output load for triple 3.3 V supply mode (for voltage pads both 4 mA and 8 mA) 60 MHz - - 30 pF 75 MHz - - 20 pF CL,3V3 Output load for 3.3 V 4 mA buffer pads 8 mA buffer 140 MHz - - 10 pF 140 MHz - - 20 pF CL, DC DC regulator output load(12) 2.2 - 4.7 μF CL - 1. DC operating voltage limits only apply for the case of external 1.8 V power supply. If connected to VDD_REG_1V8 supply pad, DC operating voltage limits are covered by manufacturing tests. 2. Current consumption and power dissipation measured for single channel software application (HD 1.0) running at 127 MHz on core and 65 MHz on SDRAM interface with FW version STA680-51001569-0D000003-C0004.000. 3. Current consumption and power dissipation measured for dual channel software application (HD 1.5) running at 127 MHz on core and 130 MHz on SDRAM interface with FW version STA680-51001569-0D000033-C0004.000. 4. VDD_IO generally refers to the supply of the VDD_GEN_IO, VDD_FSH_IO and VDD_RAM_IO groups. 5. Performed on all the input pins excluded the pull-down and pull-up ones. 6. VDD_GEN_IO may be VDD_FHS_IO or VDD_GEN_IO depending on interface considered. 7. Performed only on the Input pins with pull up. 8. Performed only on the Input pins with pull down. 9. Guaranteed by Ipu measurements. 10. Guaranteed by Ipd measurements. 11. XmA = 4mA for a BD4, 8 mA for BD8 pad type. 12. Dielectric = X7R ESRmax = 100 ohm, 2.2 μF ±5% or any above 3 μF±10% but less than 4.7 μF±10%.It is also recommended to distribute the 2.2 μF capacitance on the board by placing equivalent number of smaller capacitance value (for example, 470 nF) near each VDD_REG1V8 supply pad. DS5877 Rev 13 41/48 47 Package information 7 STA680 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 LFBGA168 (12x12x1.4 mm) package information Figure 14. LFBGA168 (12x12x1.4 mm) package outline 6($7,1* 3/$1( & % ( $ ( $ = $ H ' 3 1 0 / . + * ) ( ' & % $ ' = H  $&251(5,1'(;$5($ E %$//6 HHH 0 & $ % III 0 & $ $ GGG & %277209,(: B%B
STA680Q 价格&库存

很抱歉,暂时无法提供与“STA680Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货