0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STEVAL-STLKT01V1

STEVAL-STLKT01V1

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    SENSORTILE DEV KIT

  • 数据手册
  • 价格&库存
STEVAL-STLKT01V1 数据手册
UM2101 User manual Getting started with the STEVAL-STLKT01V1 SensorTile integrated development platform Introduction The STEVAL-STLKT01V1 development kit for the STEVAL-STLCS01V1 SensorTile board is a highly integrated development platform with a broad range of functions aimed at improving system design cycles and accelerating the delivery of results. The tiny SensorTile core system board (13.5 x 13.5 mm) embeds high-accuracy and very-low-power inertial sensors, a barometric pressure sensor and a digital MEMS top-port microphone. The onboard 80-MHz MCU features a dedicated hardware microphone interface and ultra-low-power support. The wireless network processor provides Bluetooth Smart connectivity and the integrated balun maximizes RF performance for minimum size and design effort. The kit includes a cradle expansion board for software and system architecture design support and a compact cradle host featuring a battery charger and SD card interface for on-field testing and data acquisition; both boards come complete with SWD programming interfaces. It contains FCC ID: S9NSTILE01 and module IC 8976C-STILE01 certified with PMN: STEVAL-STLKT01V1; HVIN: STEVALSTLCS01V1; HMN: STEVAL-STLCX01V1; FVIN: bluenrg_7_1_e_Mode_2-32MHz-XO32K_4M.img. Figure 1. SensorTile functional block diagram The FP-SNS-ALLMEMS1 firmware provides a complete framework to build wearable applications. The STBLESensor application based on the BlueST-SDK protocol allows data streaming and a serial console over BLE controls the configuration parameters for the connected boards. It is recommended to upgrade the SensorTile firmware to the latest available version on www.st.com. UM2101 - Rev 5 - March 2019 For further information contact your local STMicroelectronics sales office. www.st.com UM2101 Getting started 1 Getting started 1.1 Overview The STEVAL-STLKT01V1 development kit includes everything you need to remotely sense and measure motion, environmental and acoustic parameters. It is designed to support the prototyping phases of new projects and can be used in the contexts below. An evaluation system • Evaluate high accuracy and very low power ST sensors in an optimized system architecture • Field-test data fusion and embedded signal processing algorithms • Deploy data collection campaigns to support custom algorithm development Reference design • Compact solution for high-accuracy, low-power motion, environmental and audio sensor data in compact form-factor designs • Complete hardware and software examples form the starting point for new designs with: – hardware: schematics, Gerber, BoM, 3D CAD – software: from basic examples (STSW-STLKT01) to complete function packs (FP-SNS-ALLMEMS1, FP-AUD-BVLINK1) Embedded software development kit • Source code project examples based on the STM32Cube architecture • Fully compatible with the Open.Software embedded processing libraries, and supported by the STM32 ODE • Host board implements the Arduino UNO R3 expansion connector to enable bridging to well-known development ecosystems such as STM32 ODE and Arduino Fast prototyping tool • Plug or solder onto your prototype motherboard to instantly add its embedded sensing and communication functions to your design • Use the 3D CAD files to integrate the SensorTile in your mechanical design 1.2 Package components Inside the STEVAL-STLKT01V1 package, you will find all the components needed to experience the demo on this optimized platform and to start developing you application UM2101 - Rev 5 page 2/36 UM2101 Initial setup with pre-loaded demo Figure 2. SensorTile kit blister 1.3 Initial setup with pre-loaded demo The easiest thing to do after unpacking is to run the preloaded software using the SensorTile board together with the cradle expansion (STLCX01V1). Step 1. Take the SensorTile and plug it on the cradle expansion through the dedicated connector. Take care to match the orientation shown below. Figure 3. Orientation of SensorTile and cradle expansion connectors UM2101 - Rev 5 page 3/36 UM2101 System requirements Figure 4. SensorTile mounted on cradle expansion Step 2. Step 3. Note: 1.4 Connect a USB type A to mini-B USB cable to turn ON the board for the first time, verify that the J2 jumper is in position 2-3 (power supply from USB). If everything works fine then you’ll see the SensorTile LED blinking approximately every 2 seconds. The board is now ready to connect to the STBLESensor app: available on official stores for Android or iOS. To exploit the newest features, upgrade the default firmware version to the new version of the FP-SNSALLMEMS1 function pack. System requirements As the STEVAL-STLKT01V1 is already programmed with FP-SNS-ALLMEMS1 firmware, to run the demo, you only need: • a smartphone or tablet with minimum Android™ 4.4 or iOS™ 8.0 operating systems and minimum BLE technology 4.0 • a USB type A to mini-B USB cable for power supply (connected to a PC, AC adapter or any other source) To start designing your own project, you will need: • a Windows™ PC (ver. 7 or higher) with an IAR, KEIL or AC6 firmware development environment • a USB type A to Micro USB male cable to connect the STEVAL-STLKT01V1 to the PC for power supply • an STM32 Nucleo board with ST-LINK V2.1 in-circuit debugger/programmer (preferred) or other compatible device • the ST-LINK Utility for firmware download (latest embedded software version on www.st.com) UM2101 - Rev 5 page 4/36 UM2101 STEVAL-STLCS01V1 hardware description 2 STEVAL-STLCS01V1 hardware description The STEVAL-STLCS01V1 (SensorTile) is a highly integrated reference design that can be plugged into formfactor prototypes, adding sensing and connectivity capabilities to new designs through a smart hub solution. It can also easily support development of monitoring and tracking applications as standalone sensor nodes connected to iOS™/Android™ smartphone applications. The SensorTile occupies a very small 13.5x13.5 mm square outline, with all the electronic components on the top side and small connector on the bottom side to plug it onto the cradle expansion board. The connector pinout is repeated on 18 PCB pads that render the SensorTile a solderable system on module as well. The figure below and following two tables provide the main board component and pinout details. Figure 5. STEVAL-STLCS01V1 main components and pinout Table 1. STEVAL-STLCS01V1 main components Reference UM2101 - Rev 5 Device Description A MP34DT05-A MEMS audio sensor digital microphone B LD39115J18R 150 mA low quiescent current low noise LDO 1.8 V C STM32L476 MCU ARM Cortex-M4 32-bit microcontroller D LSM6DSM iNEMO inertial module: low-power 3D accelerometer and 3D gyroscope E LSM303AGR Ultra-compact high-performance eCompass module: ultra-low power 3D accelerometer and 3D magnetometer F LPS22HB MEMS nano pressure sensor: 260-1260 hPa absolute digital output barometer G BlueNRG-MS Bluetooth low energy network processor H BALF-NRG-02D3 50 Ω balun with integrated harmonic filter page 5/36 UM2101 Power supply Table 2. STEVAL-STLCS01V1 pinout Pin name Main functions (1) Board pin CONN pin MCU pin 1 2 MIC_CLK PC2 DFSDM1_CKOUT, ADC 2 4 VDD_OUT VDD/VBAT 1.8V from onboard LDO 3 6 VIN / Power supply for LDO [2 V-5.5 V] 4 8 VDDUSB 5 10 GND VSS Ground 6 12 RXD/USB_DP PD2/PA12 USART5 RX or USB_OTG_FS DP (2) 7 14 TXD/USB_DM PC12/PA11 USART5 TX or USB_OTG_FS DM 1 8 16 SAI_CLK PG9 (3) SAI2_SCK_A, SPI3_SCK 9 15 SAI_FS PG10(3) SAI2_FS_A, SPI3_MISO 10 13 SAI_MCLK PG11(3) SAI2_MCLK_A, SPI3_MOSI 11 11 SAI_SD PG12(3) SAI2_SD_A, SPI3_NSS 12 9 GPIO2 PB8/PB9/PC1 DFSDM_DATIN6, I2C3_SDA 13 7 GPIO3 PC0 DFSDM_DATIN4, I2C3_SCL 14 5 NRST NRST STM32 Reset 15 3 SWD_CLK SWD Programming interface clock 16 1 SWD_IO SWD Programming interface IO 17 / GND Ground 18 / GND Ground VDDIO2 VDDUSB Power supply for USB peripheral and VDDIO2 [1.8 V-3.3 V] 1. Refer to STM32L476 Datasheet on www.st.com for the complete set of functions of each pin 2. USB_OTG_FS Peripheral is functional for VDDUSB ≥ 3V 3. Logic level of this pins is referred to VDDIO2 2.1 Power supply The SensorTile board has the following input supply pins: 1. VIN is the input for the onboard voltage regulator generating 1.8 V (150 mA max). 2. VDDUSB is an input for the STM32L4 VDDUSB and VDDIO2 pins (to use the STM32L4 USB OTG peripheral, VDDUSB must be ≥ 3 V) VDD is an output for 1.8 V. If the USB peripheral and other 3.3 V signals are not needed for a particular application, you can connect VDD to VDDUSB so that one power supply can power the whole system. This connection can be done externally (e.g., SB8 on STLCX01V1) or by soldering a 0 Ω resistor on R2 (bottom layer). UM2101 - Rev 5 page 6/36 UM2101 Differences among the STEVAL-STLCS01V1 generations Figure 6. STEVAL-STLCS01V1 power supply block diagram Figure 7. STEVAL-STLCS01V1 component placement (top side) 2.2 Differences among the STEVAL-STLCS01V1 generations There are two slightly different generations of SensorTile (STEVAL-STLCS01V1). To distinguish among the two, you need to observe the Balun package (U4): • if the package is black (opaque), it is "First generation" UM2101 - Rev 5 page 7/36 UM2101 Differences among the STEVAL-STLCS01V1 generations Figure 8. SensorTile first generation • if the package is transparent, it is "Second generation" Figure 9. SensorTile second generation The difference among the two generations is in the part numbers used for U4 and U11: First generation: U4 →BALF-NRG-01D3, U11→MP34DT04 • • Second generation: U4 →BALF-NRG-02D3, U11→ MP34DT05-A UM2101 - Rev 5 page 8/36 UM2101 STLCX01V1 hardware description 3 STLCX01V1 hardware description The SensorTile cradle expansion is an easy-to-use companion board for SensorTile and the SensorTile cradle boards included in the SensorTile Kit. The SensorTile board does not need to be soldered onto the cradle expansion board, but can be plugged onto the dedicated connector (see Figure 3. Orientation of SensorTile and cradle expansion connectors and Figure 4. SensorTile mounted on cradle expansion. Apart from being a standalone host for the SensorTile board, the cradle expansion board can be connected to an STM32 Nucleo or other expansion board via the Arduino UNO R3 connectors to easily expand functionality. Figure 10. STLCX01V1 main components Table 3. STLCX01V1 main components Reference 3.1 Device Description A SensorTile connector and footprint To plug or solder the SensorTile board B Arduino UNO R3 UNO R3 connector For STM32 Nucleo board compatibility C ST2378ETTR 8-bit dual supply 1.71 V to 5.5 V level translator D micro-USB connector, USBLC6-2P6 (U1), LDK120M-R (U4) micro USB power supply /communication port and 3.3 V voltage regulation E Audio DAC, phono jack 16-Bit, low-power stereo audio DAC and 3.5 mm stereo phono jack F SWD connector, Reset button 5-pin SWD connector for programming debugging and board reset button Power supply The power is either supplied by the host PC via USB or by an external source through the Arduino UNO R3 connector (CN6.5). Jumper J2 selects the power source for the onboard 3.3 V regulator (U4) and the SensorTile VIN pin: UM2101 - Rev 5 page 9/36 UM2101 USB device • • position 1-2: 5 V external position 2-3: 5 V via USB (default) The 3.3 V output of the regulator can be routed to the Arduino UNO R3 connector to power on other external components by soldering SB18 (default OFF). The VDDUSB pin of the SensorTile can be connected to two different power sources: • 3.3 V – SB9 (default ON) • 1.8 V (SensorTile VDD) – SB8 (default OFF) 3.2 USB device The USB connector on the board can be used to supply power and for communication (USB_OTG_FS). To use the USB peripheral, use the following solder bridge configuration: • SB10, SB11, SB20 and SB21 OFF (disconnect the signals from U5) • SB9 ON (supply 3.3 V to the USB peripheral of the STM32 MCU) 3.3 Audio DAC The PCM1774 is a low-power stereo DAC designed for portable digital audio applications, and can be driven by the SensorTile to play any kind of Audio stream. A dedicated 3.5 mm audio jack makes it easy to connect headphones or active loudspeakers. In order to use the onboard audio DAC (U3), the SAI (serial audio interface) and I²C signals must be routed to the component using the following configuration: • SB12, SB13, SB14, SB15, SB16 and SB17 OFF (disconnect the signals from Arduino UNO R3 connector) • SB2, SB3, SB4, SB5, SB6, SB7 ON (connect the signals to the DAC) 3.4 Solder bridge details Table 4. STLCX01V1 solder bridge details Solder Bridge SensorTile signal SB1 Reset SB2 (1) GPIO3 DAC control – I2C SCL (pull-up) SB3(1) GPIO2 DAC control – I2C SDA (pull-up) SB4(1) SAI_SD DAC Audio – I2S_SD SB5(1) SAI_SCK DAC Audio – I2S_SCK SB6(1) SAI_FS DAC Audio – I2S_WS SB7(1) SAI_MCLK DAC Audio – I2S_MCLK SB8 VDDUSB VDD – 1.8V from SensorTile SB9(1) VDDUSB 3V3 from regulator SB10 RXD-USB_DP Level Translator - UART_RX CN9.2 SB11 RXD-USB_DP Level Translator - UART_TX CN9.1 SB12 SAI_SD SPI_CS CN5.3 SB13 SAI_MCLK SPI_MOSI CN5.4 SB14 SAI_FS SPI_MISO CN5.5 SB15 SAI_SCK SPI_SCK CN5.6 SB16(1) GPIO3 CN5.10 SB17(1) GPIO2 CN5.9 SB18 MIC_CLK SB19 UM2101 - Rev 5 Onboard signal Arduino signal CN8.2 Level Translator - MIC_CLK_3V3 CN9.5 3V3 – 3V3_Nucleo CN6.2 CN6.3 page 10/36 UM2101 Solder bridge details Solder Bridge SensorTile signal Onboard signal Arduino signal SB20 TXD-USB_DM Level Translator - UART_RX CN9.2 SB21 TXD-USB_DM Level Translator - UART_TX CN9.1 SB22 GPIO2 Level Translator - GPIO2_3V3 CN9.6 SB23 GPIO3 Level Translator – GPIO3_3V3 CN9.7 1. Closed by default. Figure 11. STLCX01V1 component placement (top side) UM2101 - Rev 5 page 11/36 UM2101 STLCR01V1 hardware description 4 STLCR01V1 hardware description The SensorTile cradle is a small companion board for SensorTile, geared at the development of form factor prototypes. You need to solder the SensorTile board to this board to render the system robust. The small cradle is ideal for applications requiring small, standalone, battery-powered sensor nodes. Figure 12. STLCR01V1 cradle main components Table 5. STLCR01V1 main components Reference Device Description A SensorTile footprint To solder the SensorTile board B HTS221 Capacitive digital sensor for relative humidity and temperature C STBC08PMR, STC3115, LDK120MR, USBLC6-2P6 800 mA standalone linear Li-Ion battery charger with thermal regulation, Gas gauge IC, 200 mA low quiescent current very low noise LDO, very low capacitance ESD protection D Power on/off switch E SWD connector 5-pin SWD connector for programming and debugging F Micro USB connector, 3-pin battery connector Micro USB battery charging supply /communication port and connector for Li-Ion battery power supply G Micro-SD card socket Solder the SensorTile board onto the cradle board as shown in the figure below. UM2101 - Rev 5 page 12/36 UM2101 Power supply Figure 13. SensorTile soldered onto cradle board 4.1 Power supply The main board power supply is the 100 mAh lithium-Ion polymer battery attached to the appropriate connector on the PCB. Figure 14. Battery connection and power switch The battery can be recharged via USB connected to a PC or any micro-USB battery charger. A red LED indicates the charging status: • steady ON: the USB plug is correctly connected and the board is charging • steady OFF: charging complete • blinking: battery not present UM2101 - Rev 5 page 13/36 UM2101 SensorTile and cradle assembly in form factor case The onboard STBC08 battery charger IC is configured by default with a maximum charging current of 50 mA. It is possible to modify this current by changing the R5 resistor value. Equation 1: The default 20 kΩ value for R5 hence gives: 1V Icℎrg = ∙ 1000 R5 1V ∙ 1000 = 50mA 20K (1) (2) During normal usage, the battery needs to be connected to the board for proper operation. When the battery is plugged, the board is turned ON via the SW1 switch. This switch enables LDK120 3V3 voltage regulator pin, which powers all board components. 4.2 SensorTile and cradle assembly in form factor case Refer to the following image for the orientation of the soldered SensorTile and cradle boards in the dedicated form factor case. Figure 15. SensorTile and cradle in plastic case UM2101 - Rev 5 page 14/36 UM2101 SensorTile and cradle assembly in form factor case Figure 16. STEVAL-STLCR01V1 component placement (top side) UM2101 - Rev 5 page 15/36 UM2101 SensorTile and cradle assembly in form factor case Figure 17. STEVAL-STLCR01V1 component placement (bottom side) UM2101 - Rev 5 page 16/36 UM2101 SensorTile programming interface 5 SensorTile programming interface To program the board, connect an external ST-LINK to the SWD connector on the cradle; a 5-pin flat cable is provided in the SensorTile Kit package. The easiest way to obtain an ST-LINK device is to get an STM32 Nucleo board, which bundles an ST-LINK V2.1 debugger and programmer. Ensure that CN2 jumpers are OFF and connect your STM32 Nucleo board to the SensorTile cradle via the cable provided, paying attention to the polarity of the connectors. Pin 1 is identified by: • a small circle on the PCB silkscreen – STM32 Nucleo board and SensorTile cradle expansion • the square shape of the soldering pad – connector on the SensorTile cradle. Figure 18. STM32 Nucleo board, cradle and cradle expansion SWD connectors Figure 19. SWD connections with 5-pin flat cable UM2101 - Rev 5 page 17/36 UM2101 Sensors and Bluetooth low energy connectivity 6 Sensors and Bluetooth low energy connectivity 6.1 LSM6DSM The LSM6DSM is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 0.65 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer. The LSM6DSM supports main OS requirements, offering real, virtual and batch sensors with 4 Kbytes for dynamic data batching. ST’s family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element. The LSM6DSM has a full-scale acceleration range of ±2/±4/±8/±16 g and an angular rate range of ±125/±245/±500/±1000/±2000 dps. The LSM6DSM fully supports EIS and OIS applications as the module includes a dedicated configurable signal processing path for OIS and auxiliary SPI configurable for both gyroscope and accelerometer. High robustness to mechanical shock makes the LSM6DSM the preferred choice of system designers for the creation and manufacturing of reliable products. 6.2 LSM303AGR The LSM303AGR is an ultra-low-power high-performance system-in-package featuring a 3D digital linear acceleration sensor and a 3D digital magnetic sensor. The device has linear acceleration full scales of ±2g/±4g/±8g/±16g and a magnetic field dynamic range of ±50 gauss. The LSM303AGR includes an I²C serial bus interface that supports standard, fast mode, fast mode plus, and high-speed (100 kHz, 400 kHz, 1 MHz, and 3.4 MHz) and an SPI serial standard interface. The system can be configured to generate an interrupt signal for free-fall, motion detection and magnetic field detection. The magnetic and accelerometer blocks can be enabled or put into power-down mode separately. 6.3 LPS22HB The LPS22HB is an ultra-compact piezoresistive absolute pressure sensor which functions as a digital output barometer. The device comprises a sensing element and an IC interface which communicates through I²C or SPI from the sensing element to the application. The sensing element, which detects absolute pressure, consists of a suspended membrane manufactured using a dedicated process developed by ST. The LPS22HB is available in a full-mold, holed LGA package (HLGA). It is guaranteed to operate over a temperature range extending from -40 °C to +85 °C. The package is holed to allow external pressure to reach the sensing element. LPS22HB is factory calibrated but a residual offset could be introduced by the soldering process. This offset can be removed with a one-point calibration.(For further details, refer to application note AN4833, "Measuring pressure data from ST's LPS22HB digital pressure sensor", on www.st.com.) 6.4 MP34DT05-A The MP34DT05-A is an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to producing audio sensors. The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format. The MP34DT05-A is a low-distortion digital microphone with a 64 dB signal-to-noise ratio and –26 dBFS ±3 dB sensitivity. UM2101 - Rev 5 page 18/36 UM2101 BLUENRG-MS 6.5 BLUENRG-MS The BlueNRG-MS is a very low power Bluetooth low energy (BLE) single-mode network processor, compliant with Bluetooth specification v4.1. The BlueNRG-MS supports multiple roles simultaneously and can act at the same time as Bluetooth smart sensor and hub device. The Bluetooth Low Energy stack runs on the embedded ARM Cortex-M0 core. The stack is stored on the on-chip non-volatile Flash memory and can be easily upgraded via SPI. The device comes pre-programmed with a production-ready stack image(Its version could change at any time without notice). A different or more up-to-date stack image can be downloaded from the ST website and programmed on the device through the ST provided software tools. The BlueNRG-MS allows applications to meet the tight advisable peak current requirements imposed by standard coin cell batteries. The maximum peak current is only 10 mA at 1 dBm output power. Ultra low-power sleep modes and very short transition times between operating modes allow very low average current consumption, resulting in longer battery life. The BlueNRG-MS offers the option of interfacing with external microcontrollers via SPI transport layer. 6.6 BALF-NRG-02D3 This device is an ultra-miniature balun which integrates matching network and harmonics filter. Matching impedance has been customized for the BlueNRG transceiver. The BALF-NRG-02D3 uses STMicroelectronics IPD technology on non-conductive glass substrate which optimizes RF performance. UM2101 - Rev 5 page 19/36 UM2101 Bill of materials 7 Bill of materials Table 6. STEVAL-STLCS01V1 bill of materials UM2101 - Rev 5 Item Q.ty Ref. 1 1 U1 2 1 U2 3 1 4 1 Value Description Order code Manufacturer ARM CortexM4 32b MCU STM32L476JGY6TR Microcontrolle r ST low quiescent current low noise LDO LD39115J18R ST U9 Ultra-low Power Acc + Magn LSM303AGRTR ST U10 Low-Power Acceleromete LSM6DSMTR r + Gyroscope ST BlueNRG-MSCSP ST 150 mA, 1.8 V 5 1 U6 Bluetooth Low-Energy Chip V4.1 MS 6 1 U13 Low-power pressure sensor LPS22HBTR ST 7 1 U11 MEMS audio sensor digital microphone MP34DT05-A ST 8 1 U4 Bluetooth Low-Energy Balun chip BALF-NRG-02D3 ST 9 1 X2 CRYSTAL 32MHZ 8PF SMD CX2016DB32000D0FLJC C AVX 10 1 X1 32.7680kHz, 20ppm, 4pF, 60kΩ Crystal ABS06-107-32.768KHZ-T Abracon 11 2 C2, C20 4pF 25V CAP CER NP0 0201 CBR02C409B3GAC Kemet 12 2 C12, C17 15pF 25V CAP 0201 NP0 02013A150JAT2A AVX 13 1 FT1 10pF 25V CAP CER NP0 0201 250R05L100GV4T Johanson Technology 14 1 R2 0Ω Resistor SMD Any R0402 15 1 FT2 16 1 MT 0.40pF 25V CAP CER NP0 0201 250R05L0R4AV4T Johanson Technology 17 2 C32, C34 2.2µF 6.3V CAP CERAMIC X5R, 0201 02016D225MAT2A AVX 18 1 C9 0.22µF 6.3V CAP CER X7S 0201 C0603X7S0J224K030BC TDK Any page 20/36 UM2101 Bill of materials Item Q.ty Ref. Value Description 19 1 C30 150nF, 10V CAP, MLCC, X5R, 0201 C0603X5R1A154K030BB TDK 20 2 C14, C31 100pF 25V CAP CER NP0 0201 250R05L101JV4T Johanson Technology 21 1 ANT1 2.4GHZ ANTENNA SMD ANT016008LCS2442MA1 TDK 22 9 CAP CER X5R 0201 GRM033R60J104KE19D Murata 23 1 24 9 25 1 LED 26 1 CONN 27 1 28 1 C4, C5, C10, C11, C13, C18, 0.1µF 6.3V ±10% C29, C33, C43 R1 560 Ω Order code Manufacturer Resistor SMD Any C1, C3, C6, C7, C8, C15, C16, 1µF 6.3V C19, C44 CAP CER X5R 0201 CL03A105KQ3CSNC Samsung 605 nm, 2 V, 10 mA, 50 mcd LED, Low Power, Orange KPG-0603SEC-TT KINGBRIGHT 0.4mm Connector Board-toBoard BM10NB(0.8)-16DS-0.4V( 51) Hirose L1 3.9nH 400mA 300 MΩ FIXED IND LQP03TN3N9B02D Murata SWD Cable 2.54mm, L=15cm 5 pin ribbon cable Any Table 7. STLCX01V1 bill of materials UM2101 - Rev 5 Item Q.ty Ref. Value 1 1 CN2 BM10JC-16DP-0.4V(53 ) BM10JC-16DP-0.4V(53) Hirose 2 1 CN5 HEADER 10 SSQ-110-03-L-S Samtec 3 2 CN6,CN9 HEADER 8 SSQ-108-03-L-S Samtec 4 1 CN8 HEADER 6 SSQ-106-03-L-S Samtec 5 5 X7R Any 6 2 Tantal Any 7 4 Tantal Any 8 2 C15,C16 X5R Any 9 1 J1 PHONOJACK STEREO 35RASMT4BHNTRX 10 1 J2 Header M 3x1 Any 11 4 J3,J4,J5,J6 PCB Hole Any 12 1 RESET SYS_MODE PTS820 J20M SMTR LFS 13 1 R1 47kΩ ±1% Any 14 1 R2 147kΩ±1% Any C1,C5,C10,C 100nF 13,C14 C4,C6 47uF, 6.3V C8,C9,C11,C 4.7uF, >6.3V, 12 =1/16W Any 16 1 SD 17 1 18 NC Manufacturer Molex Any Micro-SD DM3D-SF Hirose SWD CON5 Any 1 SW1 PWR SSAJ120100 Alps Electric Co. 19 1 USB USB-MICRO USB3075-30-A GCT 20 1 U1 USBLC6-2P6 USBLC6-2P6 ST 21 1 U2 STBC08PMR STBC08PMR ST 22 1 U3 LDK120M-R LDK120M-R ST page 22/36 UM2101 Bill of materials UM2101 - Rev 5 Item Q.ty Ref. Value 23 1 U4 STC3115IQT STC3115IQT ST 24 1 U5 HTS221 HTS221 ST 25 1 Battery 26 1 Plastic Box 27 2 M2-Nut 28 1 29 1 3.7V 100mAh Description Order code LiPO-501225 3pin LiPO-501225 connector Plastic Box Any HEX shape HEX Nut M2 steel Any M2-Screw Pan head Phillips 10mm M2 Pan head Phillips steel Any M2-Screw Pan head Phillips 12mm M2 Pan head Phillips steel Any Manufacturer Himax electronics page 23/36 UM2101 Schematic diagrams 8 Schematic diagrams Figure 20. STEVAL-STLCS01V1 schematic diagram (1 of 2) 1 4p GND GND GND VDD VDD Decoupling Capacitors BLUE_RST GND OSC32_OUT OSC32_IN TXD-USB_DM SAI_MCLK SAI_SD C20 4p R1 SAI_SD SPI_SDA GPIO3 GPIO2 MIC_CLK INT2 INT2 INT2 NRST GPIO2 GPIO2 C2 KPG-0603SEC-TT ABS06-107-32.768KHZ-T INT2 INT2 INT2 C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D7 D8 D9 E1 E2 E3 RXD-USB_DP GPIO6 OSC32_OUT OSC32_IN GND VDD VDD STM32L476JGY6 PA12 PA13 PC11 PG11 PG12 PB4 PB5 PC15 PC14 PA11 PA10 PC10 BOOT0 PH1 PH0 PC9 PA8 PA9 VDD U1 G9 G8 G7 G6 G5 G4 G3 G2 G1 F9 F8 F7 F3 F2 F1 E9 E8 E7 VSSA VREF+ PC3 PA2 PA4 PA1 PB11 PB14 PB15 PC0 PC1 PC2 PC6 PC8 PC7 NRST PB9 PB8 VDD VDDUSB MIC_DATA VDDUSB PA15 PD2 PG9 PG14 PB3 PB7 VSS1 VDD VSS2 PA14 PC12 PG10 PG13 VDDIO2 PB6 PC13 VBAT VDDUSB GND VDD GND GPIO5 TXD-USB_DM SAI_FS A1 A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3 B4 B5 B6 B7 B8 B9 X1 VDD RXD-USB_DP SAI_SCK Crystal VDD VDDUSB LED LED SPI_CLK CS_AG CS_P BLUE_SCK BLUE_MISO BLUE_MOSI VSS4 VDD3 PC4 PC5 PB0 PB1 PB2 VSS3 VDD2 VDDA PA0 PA3 PA5 PA6 PA7 PB10 PB13 PB12 J9 J8 J7 J6 J5 J4 J3 J2 J1 H9 H8 H7 H6 H5 H4 H3 H2 H1 GND VDD CS_A BLUE_IRQ TEST1 CS_M BLUE_CS GND VDD VDD Ultra-low-power DSP STM32L476xx Microcontroller C8 C3 C1 C6 C4 C15 C5 1u 1u 1u 1u 100n 1u 100n GND GND GND GND GND GND GND Moon Pin output Hirose bottom connector (optional) VDDUSB VDD VDD VDD VDD Low-Drop Out Voltage Regulator U2 VIN B2 A2 IN OUT EN GND B1 A1 C7 LD39115J18 SWD_GND SWD_IO SWD_CLK SWD_RST LP_UART_RX, I2C3_SCL, ADC_IN1, DFSDM_DATIN4 LP_UART_TX, I2C3_SDA, ADC_IN2, DFSDM_CKIN4 (DFSDM_DATIN6) SPI3_NSS, SAI2_SD_A SPI3_MOSI, SAI2_MCLK_A C10 C19 C16 100n 1u 1u VDD 1u GND UM2101 - Rev 5 GND GND GND CONN 0 USART RX or USB DP USART TX or USB DM SPI3_SCK, SAI2_SCK_A SPI3_MISO, SAI2_FS_A GND GND GPIO6 GPIO5 NRST GPIO3 GPIO2 SAI_SD SAI_MCLK MIC_CLK VDD VIN VDDUSB GND RXD-USB_DP TXD-USB_DM SAI_SCK SAI_FS R2 ADC_IN3, DFSDM_CKOUT SWD_VDD +5V supply 3.0V - 3.6V supply GND G1 GPIO6 GPIO5 NRST GPIO3 GPIO2 SAI_SD SAI_MCLK SAI_FS P1 P3 P5 P7 P9 P11 P13 P15 GND G2 G1 G4 P1 P3 P5 P7 P9 P11 P13 P15 P2 P4 P6 P8 P10 P12 P14 P16 G2 G3 G4 GND P2 P4 P6 P8 P10 P12 P14 P16 MIC_CLK VDD VIN VDDUSB GND RXD-USB_DP TXD-USB_DM SAI_SCK G3 GND BM10NB(0.8)-16DS-0.4V(51) GND page 24/36 UM2101 Schematic diagrams Figure 21. STEVAL-STLCS01V1 schematic diagram (2 of 2) BlueNRG - Bluetooth low energy chip P11 P12 Accelerometer + Magnetometer INT2 INT1 U9 P1 P2 CS_M SPI_SDA P3 P4 SCL CS_XL VDD_IO VDD CS_MAG SDA GND2 DRDY P10 P9 VDD VDD P8 P7 GND C1 GND1 SPI_CLK CS_A P5 P6 LSM303AGR GND C9 220n GND Tuning P14 P13 P12 SPI_SDA SPI_CLK CS_AG Accelerometer + Gyroscope INT2 VDD C11 C18 100n 100n VDD GND GND P5 P6 P7 LSM6DS3H Balun + chip antenna VDD P11 P10 P9 P8 GND NC OCS INT2 VDD GND SDO SDX SCX INT1 VDDIO GND1 GND2 P1 P2 P3 P4 VDD GND GND VDD SDA SCL CS U10 UM2101 - Rev 5 GND P8 U11 P3 P4 GND SPI_SDA B1 VDD GND1 GND P9 Digital Microphone P7 P6 SDO INT/DRDY CS P5 VDD VDD_IO SCL SDA P1 P2 RES VDD SPI_CLK GND2 U13 P10 VDD Pressure Sensor G1*4 VDD LR GND CLK CS_P DOUT GND B2 GND B3 MIC_CLK B4 MIC_DATA MP34DT04 LPS22HB page 25/36 UM2101 Schematic diagrams Figure 22. STLCX01V1 schematic diagram SensorTile Connector USB, SWD, Power VDDUSB V_USB 5 VBUS 3 1 TXD-USB_DM RXD-USB_DP 2 USB-MICRO C1 GND VDD 1 2 3 4 5 4 6 D3 D4 D2 D1 VIN V_USB U1 USBLC6-2P6 MIC_CLK SH2 SH1 100nF 5V J2 VIN V_USB 3V3 RXD-USB_DP TXD-USB_DM SAI_SCK VDDUSB VDD 1 2 3 BM10B(0.8)-16DP-0.4V(51) CN2 G2 G1 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15 G4 G3 SWDIO SWDCLK TILE_RESET GPIO3 GPIO2 SAI_SD SAI_MCLK SAI_FS SB8 SB9 SensorTile Footprint VIN 3V3 U4 LDK120M-R Max 200mA 3 EN ADJ 5 4.7μF VDD 4 SWDIO TILE_RESET VDD R2 147K R1 47K 4.7μF 18 17 16 15 14 13 12 11 10 1 2 3 4 5 6 7 8 9 MIC_CLK C15 RXD-USB_DP TXD-USB_DM SAI_SCK SAI_FS SWDIO SWDCLK TILE_RESET GPIO3 GPIO2 SAI_SD SAI_MCLK RESET SWD 1 2 3 4 5 2 1 TILE_RESET C14 100nF 4 5 6 3 SWDCLK SensorTile VIN 2 C16 OUT IN GND 1 VDDUSB Fixing holes On the corners Hole: 2.2mm Head: 4mm + 1 + 1 J1 C4 47μF + C6 47μF SB6 3 4 5 2 1 R30R R40R + 20 19 18 17 16 AIL AIR VCC AGND VCOM VIO VDD DGND SCKI BCK 3V3 C12 4.7μF 15 H_L 14 H_R 13 VPA 12 PGND 11 LRCK P PAD SAI_FS 1 3V3 PHONOJACK STEREO 6 7 8 9 10 SB3 SB2 SB4 MODE ADR SDA SCL DIN 3V3 C11 4.7μF U3 PCM1774RGP + GPIO2 GPIO3 SAI_SD 1 2 3 4 5 1 C9 4.7μF + 3V3 C8 4.7μF C5 SB5 SB7 SAI_SCK SAI_MCLK STM32 Nucleo 100nF R6 R5 4K7 4K7 CN5 5V 3V3 10 9 8 7 6 5 4 3 2 1 CN6 3V3_Nucleo 1 2 3 4 5 6 7 8 SB19 SB1 1 2 3 4 5 6 TILE_RESET 8 7 6 5 4 3 2 1 I2C_SCL I2C_SDA SB16 SB17 SPI_SCK SPI_MISO SPI_MOSI SPI_CS SB15 SB14 SB13 SB12 SAI_SCK SAI_FS SAI_MCLK SAI_SD SB18 MIC_CLK_3V3 GPIO3 GPIO2 GPIO3_3V3 GPIO2_3V3 UART_TX UART_RX CN8 CN9 3V3 VDD C13 C10 100nF TXD-USB_DM RXD-USB_DP TXD-USB_DM 2 3 4 SB23 5 6 SB11 SB21 7 SB10 8 SB20 9 ST2378ETTR L1 20 VCC VL RXD-USB_DP SB22 MIC_CLK_3V3 CC1 L2 CC2 L3 CC3 L4 CC4 L5 CC5 CC6 L6 CC7 L7 L8 CC8 GND GPIO2 GPIO3 19 GPIO2_3V3 18 17 GPIO3_3V3 MIC_CLK 16 15 UART_TX 14 13 UART_RX 12 OE U5 1 100nF UM2101 - Rev 5 11 10 VDD page 26/36 UM2101 Schematic diagrams Figure 23. STLCR01V1 schematic diagram USB, SWD, Power switch V_USB U1 USBLC6-2P6 VBUS 3 1 RXD-USB_DM RXD-USB_DP D2 D1 2 D3 D4 5 USB-MICRO 1 2 3 4 5 4 6 C1 GND V_USB SH2 SH1 100nF VDD SWD 1 2 3 4 5 SWDCLK SWDIO RESET 3V3 2 R4 1K 1 SWDCLK LED1 SensorTile footprint 3V3 VDD 1 2 3 4 5 6 7 8 9 MIC_CLK RXD-USB_DP RXD-USB_DM SD_SCK SD_MISO 18 17 16 15 14 13 12 11 10 Battery Charger V_USB U2 CHRG C2 3 2 BAT PROG CHRG PWR_ON 1 5 micro-SD card socket 3V3 VBat C3 R5 20K V_USB R11 NC VBat SD_CS SD_MOSI SD_SCK SD_MISO C9 100nF 7 4 4.7μF STBC08PMR Vcc PAD GND 6 R10 0R SWDIO SWDCLK RESET I2C_SCL I2C_SDA SD_CS SD_MOSI 4.7μF R6 NC R7 NC SD Battery Connector VBat V_USB 1 2 3 CHRG 1 2 R3 2K CHRG BAT_NTC DAT1 DAT0 GND CLK VDD CMD CD/DAT3 DAT2 8 7 6 5 4 3 2 1 VPROG = 1V IBAT=(VPROG/RPROG)x1000 RPROG=1000*VPROG/IBAT BATT DETC SW U4 1 2 3 4 5 I2C_SDA I2C_SCL STC3115IQT ALM SDA SCL NC GND VIN VCC BATD/CD RSTIO CG SWA SWB VBat 10 9 8 7 6 Micro-SD C10 Bat- 1μF R9 50 mΩ R8 1K BAT_NTC VBat 3V3_EN PWR C7 4.7μF UM2101 - Rev 5 HTS221 sensor 3V3 1 3 U3 LDK120M-R IN OUT EN Max 200mA ADJ GND SW1 2 VBat VDD 5 4 R2 147K 1 6 C6 R1 47K 4.7μF C8 100nF 5 U5 HTS221 VDD CS SCL SDA GND DRDY 2 4 I2C_SCL I2C_SDA 3 page 27/36 UM2101 Formal notices required by the U.S. Federal Communications Commission ("FCC") 9 Formal notices required by the U.S. Federal Communications Commission ("FCC") FCC NOTICE: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the user’s authority to operate the equipment. Additional warnings for FCC This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference's by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and the receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. UM2101 - Rev 5 page 28/36 UM2101 Formal product notice required by the Industry Canada ("IC") 10 Formal product notice required by the Industry Canada ("IC") Innovation, Science and Economic Development Canada Compliance - This device complies with Innovation, Science and Economic Development RSS standards. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the user’s authority to operate the equipment. Conformité à Innovation, Sciences et Développement Économique Canada - Cet appareil est conforme aux normes RSS d'Innovation, Science et Développement économique. L'utilisation est soumise aux deux conditions suivantes: (1) cet appareil ne doit pas causer d'interférences nuisibles, et (2) cet appareil doit accepter de recevoir tous les types d’interférence, y comprises les interférences susceptibles d'entraîner un fonctionnement indésirable. Les changements ou les modifications non expressément approuvés par le fabricant pourraient annuler le permis d'utiliser l'équipement. UM2101 - Rev 5 page 29/36 UM2101 TYPE certification 11 TYPE certification The module has been tested according to the following TYPE certification rules: • Type of specified radio equipment: – radio equipment according to the certification ordinance article 2-1-9 – sophisticated low power data communication system in a 2.4 GHz band • Class of emissions, assigned frequency and antenna power: – F1D, 2402 to 2480 MHz, channel separation 2 MHz/40 channels, 0.006 W • Certification number: – 006-000482 The design and manufacturing are certified on the basis of the Japan Radio Law 38-24. UM2101 - Rev 5 page 30/36 UM2101 Revision history Table 9. Document revision history Date Version Changes 17-Aug-2016 1 Initial release. 28-Aug-2017 2 Updated Section "Introduction", Section 1.1: "Overview", Section 1.3: "Initial setup with pre-loaded demo", Section 6.4: "MP34DT04", Section 6.5: "BLUENRG-MS" and Section 9: "Formal product notice required by the Industry Canada ("IC")" 30-Oct-2017 3 Added Figure 7: "STEVAL-STLCS01V1 component placement (top side)", Figure 9: "STLCX01V1 component placement (top side)", Figure 14: "STEVAL-STLCR01V1 component placement (top side)", Figure 15: "STEVAL-STLCR01V1 component placement (bottom side)" and Section 10: "TYPE certification". Updated Figure 21: "STLCR01V1 schematic diagram". UM2101 - Rev 5 18-Jul-2018 4 07-Mar-2019 5 Added Section 2.2 Differences among the STEVAL-STLCS01V1 generations, Section 6.4 MP34DT05-A and Section 6.6 BALF-NRG-02D3. Updated Figure 1. SensorTile functional block diagram and Figure 6. STEVAL-STLCS01V1 power supply block diagram. Added references to STBLESensor application. page 31/36 UM2101 Contents Contents 1 2 3 4 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Package components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Initial setup with pre-loaded demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 STEVAL-STLCS01V1 hardware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Differences among the STEVAL-STLCS01V1 generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 STLCX01V1 hardware description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 USB device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Audio DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 Solder bridge details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 STLCR01V1 hardware description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 4.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 SensorTile and cradle assembly in form factor case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 SensorTile programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 6 Sensors and Bluetooth low energy connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 6.1 LSM6DSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.2 LSM303AGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3 LPS22HB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.4 MP34DT05-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.5 BLUENRG-MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.6 BALF-NRG-02D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 8 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 9 Formal notices required by the U.S. Federal Communications Commission ("FCC") . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 10 Formal product notice required by the Industry Canada ("IC") . . . . . . . . . . . . . . . . . . . . .29 UM2101 - Rev 5 page 32/36 UM2101 Contents 11 TYPE certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 UM2101 - Rev 5 page 33/36 UM2101 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. STEVAL-STLCS01V1 main components . STEVAL-STLCS01V1 pinout . . . . . . . . . STLCX01V1 main components . . . . . . . STLCX01V1 solder bridge details. . . . . . STLCR01V1 main components . . . . . . . STEVAL-STLCS01V1 bill of materials. . . STLCX01V1 bill of materials . . . . . . . . . STLCR01V1 bill of materials . . . . . . . . . Document revision history . . . . . . . . . . . UM2101 - Rev 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 6 . 9 10 12 20 21 22 31 page 34/36 UM2101 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. UM2101 - Rev 5 SensorTile functional block diagram . . . . . . . . . . . . . . . . . . . . . . . SensorTile kit blister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orientation of SensorTile and cradle expansion connectors . . . . . . . SensorTile mounted on cradle expansion . . . . . . . . . . . . . . . . . . . . STEVAL-STLCS01V1 main components and pinout . . . . . . . . . . . . STEVAL-STLCS01V1 power supply block diagram . . . . . . . . . . . . . STEVAL-STLCS01V1 component placement (top side) . . . . . . . . . . SensorTile first generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SensorTile second generation . . . . . . . . . . . . . . . . . . . . . . . . . . . STLCX01V1 main components . . . . . . . . . . . . . . . . . . . . . . . . . . . STLCX01V1 component placement (top side). . . . . . . . . . . . . . . . . STLCR01V1 cradle main components . . . . . . . . . . . . . . . . . . . . . . SensorTile soldered onto cradle board. . . . . . . . . . . . . . . . . . . . . . Battery connection and power switch. . . . . . . . . . . . . . . . . . . . . . . SensorTile and cradle in plastic case . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STLCR01V1 component placement (top side) . . . . . . . . . . STEVAL-STLCR01V1 component placement (bottom side) . . . . . . . STM32 Nucleo board, cradle and cradle expansion SWD connectors SWD connections with 5-pin flat cable . . . . . . . . . . . . . . . . . . . . . . STEVAL-STLCS01V1 schematic diagram (1 of 2) . . . . . . . . . . . . . . STEVAL-STLCS01V1 schematic diagram (2 of 2) . . . . . . . . . . . . . . STLCX01V1 schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . STLCR01V1 schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 3 . 3 . 4 . 5 . 7 . 7 . 8 . 8 . 9 11 12 13 13 14 15 16 17 17 24 25 26 27 page 35/36 UM2101 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved UM2101 - Rev 5 page 36/36
STEVAL-STLKT01V1 价格&库存

很抱歉,暂时无法提供与“STEVAL-STLKT01V1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STEVAL-STLKT01V1
  •  国内价格 香港价格
  • 1+721.043331+89.76313
  • 3+710.645963+88.46875
  • 5+705.876535+87.87500
  • 15+695.6699415+86.60438
  • 25+686.7034025+85.48813

库存:159