UM2101
User manual
Getting started with the STEVAL-STLKT01V1 SensorTile integrated development
platform
Introduction
The STEVAL-STLKT01V1 development kit for the STEVAL-STLCS01V1 SensorTile board is a highly integrated development
platform with a broad range of functions aimed at improving system design cycles and accelerating the delivery of results.
The tiny SensorTile core system board (13.5 x 13.5 mm) embeds high-accuracy and very-low-power inertial sensors, a
barometric pressure sensor and a digital MEMS top-port microphone. The onboard 80-MHz MCU features a dedicated
hardware microphone interface and ultra-low-power support. The wireless network processor provides Bluetooth Smart
connectivity and the integrated balun maximizes RF performance for minimum size and design effort.
The kit includes a cradle expansion board for software and system architecture design support and a compact cradle host
featuring a battery charger and SD card interface for on-field testing and data acquisition; both boards come complete with SWD
programming interfaces.
It contains FCC ID: S9NSTILE01 and module IC 8976C-STILE01 certified with PMN: STEVAL-STLKT01V1; HVIN: STEVALSTLCS01V1; HMN: STEVAL-STLCX01V1; FVIN: bluenrg_7_1_e_Mode_2-32MHz-XO32K_4M.img.
Figure 1. SensorTile functional block diagram
The FP-SNS-ALLMEMS1 firmware provides a complete framework to build wearable applications. The STBLESensor
application based on the BlueST-SDK protocol allows data streaming and a serial console over BLE controls the configuration
parameters for the connected boards.
It is recommended to upgrade the SensorTile firmware to the latest available version on www.st.com.
UM2101 - Rev 5 - March 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
UM2101
Getting started
1
Getting started
1.1
Overview
The STEVAL-STLKT01V1 development kit includes everything you need to remotely sense and measure motion,
environmental and acoustic parameters. It is designed to support the prototyping phases of new projects and can
be used in the contexts below.
An evaluation system
•
Evaluate high accuracy and very low power ST sensors in an optimized system architecture
•
Field-test data fusion and embedded signal processing algorithms
•
Deploy data collection campaigns to support custom algorithm development
Reference design
•
Compact solution for high-accuracy, low-power motion, environmental and audio sensor data in compact
form-factor designs
•
Complete hardware and software examples form the starting point for new designs with:
–
hardware: schematics, Gerber, BoM, 3D CAD
–
software: from basic examples (STSW-STLKT01) to complete function packs (FP-SNS-ALLMEMS1,
FP-AUD-BVLINK1)
Embedded software development kit
•
Source code project examples based on the STM32Cube architecture
•
Fully compatible with the Open.Software embedded processing libraries, and supported by the STM32 ODE
•
Host board implements the Arduino UNO R3 expansion connector to enable bridging to well-known
development ecosystems such as STM32 ODE and Arduino
Fast prototyping tool
•
Plug or solder onto your prototype motherboard to instantly add its embedded sensing and communication
functions to your design
•
Use the 3D CAD files to integrate the SensorTile in your mechanical design
1.2
Package components
Inside the STEVAL-STLKT01V1 package, you will find all the components needed to experience the demo on this
optimized platform and to start developing you application
UM2101 - Rev 5
page 2/36
UM2101
Initial setup with pre-loaded demo
Figure 2. SensorTile kit blister
1.3
Initial setup with pre-loaded demo
The easiest thing to do after unpacking is to run the preloaded software using the SensorTile board together with
the cradle expansion (STLCX01V1).
Step 1.
Take the SensorTile and plug it on the cradle expansion through the dedicated connector. Take care to
match the orientation shown below.
Figure 3. Orientation of SensorTile and cradle expansion connectors
UM2101 - Rev 5
page 3/36
UM2101
System requirements
Figure 4. SensorTile mounted on cradle expansion
Step 2.
Step 3.
Note:
1.4
Connect a USB type A to mini-B USB cable to turn ON the board for the first time, verify that the J2
jumper is in position 2-3 (power supply from USB). If everything works fine then you’ll see the
SensorTile LED blinking approximately every 2 seconds.
The board is now ready to connect to the STBLESensor app: available on official stores for Android or
iOS.
To exploit the newest features, upgrade the default firmware version to the new version of the FP-SNSALLMEMS1 function pack.
System requirements
As the STEVAL-STLKT01V1 is already programmed with FP-SNS-ALLMEMS1 firmware, to run the demo, you
only need:
•
a smartphone or tablet with minimum Android™ 4.4 or iOS™ 8.0 operating systems and minimum BLE
technology 4.0
•
a USB type A to mini-B USB cable for power supply (connected to a PC, AC adapter or any other source)
To start designing your own project, you will need:
•
a Windows™ PC (ver. 7 or higher) with an IAR, KEIL or AC6 firmware development environment
•
a USB type A to Micro USB male cable to connect the STEVAL-STLKT01V1 to the PC for power supply
•
an STM32 Nucleo board with ST-LINK V2.1 in-circuit debugger/programmer (preferred) or other compatible
device
•
the ST-LINK Utility for firmware download (latest embedded software version on www.st.com)
UM2101 - Rev 5
page 4/36
UM2101
STEVAL-STLCS01V1 hardware description
2
STEVAL-STLCS01V1 hardware description
The STEVAL-STLCS01V1 (SensorTile) is a highly integrated reference design that can be plugged into formfactor prototypes, adding sensing and connectivity capabilities to new designs through a smart hub solution. It can
also easily support development of monitoring and tracking applications as standalone sensor nodes connected
to iOS™/Android™ smartphone applications.
The SensorTile occupies a very small 13.5x13.5 mm square outline, with all the electronic components on the top
side and small connector on the bottom side to plug it onto the cradle expansion board. The connector pinout is
repeated on 18 PCB pads that render the SensorTile a solderable system on module as well.
The figure below and following two tables provide the main board component and pinout details.
Figure 5. STEVAL-STLCS01V1 main components and pinout
Table 1. STEVAL-STLCS01V1 main components
Reference
UM2101 - Rev 5
Device
Description
A
MP34DT05-A
MEMS audio sensor digital microphone
B
LD39115J18R
150 mA low quiescent current low noise LDO 1.8 V
C
STM32L476 MCU ARM Cortex-M4 32-bit microcontroller
D
LSM6DSM
iNEMO inertial module: low-power 3D accelerometer and 3D gyroscope
E
LSM303AGR
Ultra-compact high-performance eCompass module: ultra-low power 3D accelerometer and
3D magnetometer
F
LPS22HB
MEMS nano pressure sensor: 260-1260 hPa absolute digital output barometer
G
BlueNRG-MS
Bluetooth low energy network processor
H
BALF-NRG-02D3
50 Ω balun with integrated harmonic filter
page 5/36
UM2101
Power supply
Table 2. STEVAL-STLCS01V1 pinout
Pin name
Main functions (1)
Board pin
CONN pin
MCU pin
1
2
MIC_CLK
PC2
DFSDM1_CKOUT, ADC
2
4
VDD_OUT
VDD/VBAT
1.8V from onboard LDO
3
6
VIN
/
Power supply for LDO [2 V-5.5 V]
4
8
VDDUSB
5
10
GND
VSS
Ground
6
12
RXD/USB_DP
PD2/PA12
USART5 RX or USB_OTG_FS DP (2)
7
14
TXD/USB_DM
PC12/PA11
USART5 TX or USB_OTG_FS DM 1
8
16
SAI_CLK
PG9 (3)
SAI2_SCK_A, SPI3_SCK
9
15
SAI_FS
PG10(3)
SAI2_FS_A, SPI3_MISO
10
13
SAI_MCLK
PG11(3)
SAI2_MCLK_A, SPI3_MOSI
11
11
SAI_SD
PG12(3)
SAI2_SD_A, SPI3_NSS
12
9
GPIO2
PB8/PB9/PC1
DFSDM_DATIN6, I2C3_SDA
13
7
GPIO3
PC0
DFSDM_DATIN4, I2C3_SCL
14
5
NRST
NRST
STM32 Reset
15
3
SWD_CLK
SWD Programming interface clock
16
1
SWD_IO
SWD Programming interface IO
17
/
GND
Ground
18
/
GND
Ground
VDDIO2
VDDUSB
Power supply for USB peripheral and VDDIO2 [1.8 V-3.3 V]
1. Refer to STM32L476 Datasheet on www.st.com for the complete set of functions of each pin
2. USB_OTG_FS Peripheral is functional for VDDUSB ≥ 3V
3. Logic level of this pins is referred to VDDIO2
2.1
Power supply
The SensorTile board has the following input supply pins:
1.
VIN is the input for the onboard voltage regulator generating 1.8 V (150 mA max).
2.
VDDUSB is an input for the STM32L4 VDDUSB and VDDIO2 pins (to use the STM32L4 USB OTG
peripheral, VDDUSB must be ≥ 3 V)
VDD is an output for 1.8 V.
If the USB peripheral and other 3.3 V signals are not needed for a particular application, you can connect VDD to
VDDUSB so that one power supply can power the whole system. This connection can be done externally (e.g.,
SB8 on STLCX01V1) or by soldering a 0 Ω resistor on R2 (bottom layer).
UM2101 - Rev 5
page 6/36
UM2101
Differences among the STEVAL-STLCS01V1 generations
Figure 6. STEVAL-STLCS01V1 power supply block diagram
Figure 7. STEVAL-STLCS01V1 component placement (top side)
2.2
Differences among the STEVAL-STLCS01V1 generations
There are two slightly different generations of SensorTile (STEVAL-STLCS01V1).
To distinguish among the two, you need to observe the Balun package (U4):
•
if the package is black (opaque), it is "First generation"
UM2101 - Rev 5
page 7/36
UM2101
Differences among the STEVAL-STLCS01V1 generations
Figure 8. SensorTile first generation
•
if the package is transparent, it is "Second generation"
Figure 9. SensorTile second generation
The difference among the two generations is in the part numbers used for U4 and U11:
First generation: U4 →BALF-NRG-01D3, U11→MP34DT04
•
•
Second generation: U4 →BALF-NRG-02D3, U11→ MP34DT05-A
UM2101 - Rev 5
page 8/36
UM2101
STLCX01V1 hardware description
3
STLCX01V1 hardware description
The SensorTile cradle expansion is an easy-to-use companion board for SensorTile and the SensorTile cradle
boards included in the SensorTile Kit. The SensorTile board does not need to be soldered onto the cradle
expansion board, but can be plugged onto the dedicated connector (see Figure 3. Orientation of SensorTile and
cradle expansion connectors and Figure 4. SensorTile mounted on cradle expansion.
Apart from being a standalone host for the SensorTile board, the cradle expansion board can be connected to an
STM32 Nucleo or other expansion board via the Arduino UNO R3 connectors to easily expand functionality.
Figure 10. STLCX01V1 main components
Table 3. STLCX01V1 main components
Reference
3.1
Device
Description
A
SensorTile connector and footprint
To plug or solder the SensorTile board
B
Arduino UNO R3 UNO R3 connector
For STM32 Nucleo board compatibility
C
ST2378ETTR
8-bit dual supply 1.71 V to 5.5 V level translator
D
micro-USB connector, USBLC6-2P6
(U1), LDK120M-R (U4)
micro USB power supply /communication port and 3.3 V voltage
regulation
E
Audio DAC, phono jack
16-Bit, low-power stereo audio DAC and 3.5 mm stereo phono jack
F
SWD connector, Reset button
5-pin SWD connector for programming debugging and board reset
button
Power supply
The power is either supplied by the host PC via USB or by an external source through the Arduino UNO R3
connector (CN6.5).
Jumper J2 selects the power source for the onboard 3.3 V regulator (U4) and the SensorTile VIN pin:
UM2101 - Rev 5
page 9/36
UM2101
USB device
•
•
position 1-2: 5 V external
position 2-3: 5 V via USB (default)
The 3.3 V output of the regulator can be routed to the Arduino UNO R3 connector to power on other external
components by soldering SB18 (default OFF).
The VDDUSB pin of the SensorTile can be connected to two different power sources:
•
3.3 V – SB9 (default ON)
•
1.8 V (SensorTile VDD) – SB8 (default OFF)
3.2
USB device
The USB connector on the board can be used to supply power and for communication (USB_OTG_FS).
To use the USB peripheral, use the following solder bridge configuration:
•
SB10, SB11, SB20 and SB21 OFF (disconnect the signals from U5)
•
SB9 ON (supply 3.3 V to the USB peripheral of the STM32 MCU)
3.3
Audio DAC
The PCM1774 is a low-power stereo DAC designed for portable digital audio applications, and can be driven by
the SensorTile to play any kind of Audio stream. A dedicated 3.5 mm audio jack makes it easy to connect
headphones or active loudspeakers.
In order to use the onboard audio DAC (U3), the SAI (serial audio interface) and I²C signals must be routed to the
component using the following configuration:
•
SB12, SB13, SB14, SB15, SB16 and SB17 OFF (disconnect the signals from Arduino UNO R3 connector)
•
SB2, SB3, SB4, SB5, SB6, SB7 ON (connect the signals to the DAC)
3.4
Solder bridge details
Table 4. STLCX01V1 solder bridge details
Solder Bridge
SensorTile signal
SB1
Reset
SB2 (1)
GPIO3
DAC control – I2C SCL (pull-up)
SB3(1)
GPIO2
DAC control – I2C SDA (pull-up)
SB4(1)
SAI_SD
DAC Audio – I2S_SD
SB5(1)
SAI_SCK
DAC Audio – I2S_SCK
SB6(1)
SAI_FS
DAC Audio – I2S_WS
SB7(1)
SAI_MCLK
DAC Audio – I2S_MCLK
SB8
VDDUSB
VDD – 1.8V from SensorTile
SB9(1)
VDDUSB
3V3 from regulator
SB10
RXD-USB_DP
Level Translator - UART_RX
CN9.2
SB11
RXD-USB_DP
Level Translator - UART_TX
CN9.1
SB12
SAI_SD
SPI_CS
CN5.3
SB13
SAI_MCLK
SPI_MOSI
CN5.4
SB14
SAI_FS
SPI_MISO
CN5.5
SB15
SAI_SCK
SPI_SCK
CN5.6
SB16(1)
GPIO3
CN5.10
SB17(1)
GPIO2
CN5.9
SB18
MIC_CLK
SB19
UM2101 - Rev 5
Onboard signal
Arduino signal
CN8.2
Level Translator - MIC_CLK_3V3
CN9.5
3V3 – 3V3_Nucleo
CN6.2 CN6.3
page 10/36
UM2101
Solder bridge details
Solder Bridge
SensorTile signal
Onboard signal
Arduino signal
SB20
TXD-USB_DM
Level Translator - UART_RX
CN9.2
SB21
TXD-USB_DM
Level Translator - UART_TX
CN9.1
SB22
GPIO2
Level Translator - GPIO2_3V3
CN9.6
SB23
GPIO3
Level Translator – GPIO3_3V3
CN9.7
1. Closed by default.
Figure 11. STLCX01V1 component placement (top side)
UM2101 - Rev 5
page 11/36
UM2101
STLCR01V1 hardware description
4
STLCR01V1 hardware description
The SensorTile cradle is a small companion board for SensorTile, geared at the development of form factor
prototypes. You need to solder the SensorTile board to this board to render the system robust.
The small cradle is ideal for applications requiring small, standalone, battery-powered sensor nodes.
Figure 12. STLCR01V1 cradle main components
Table 5. STLCR01V1 main components
Reference
Device
Description
A
SensorTile footprint
To solder the SensorTile board
B
HTS221
Capacitive digital sensor for relative humidity and temperature
C
STBC08PMR, STC3115, LDK120MR, USBLC6-2P6
800 mA standalone linear Li-Ion battery charger with thermal regulation,
Gas gauge IC, 200 mA low quiescent current very low noise LDO, very
low capacitance ESD protection
D
Power on/off switch
E
SWD connector
5-pin SWD connector for programming and debugging
F
Micro USB connector, 3-pin battery
connector
Micro USB battery charging supply /communication port and connector
for Li-Ion battery power supply
G
Micro-SD card socket
Solder the SensorTile board onto the cradle board as shown in the figure below.
UM2101 - Rev 5
page 12/36
UM2101
Power supply
Figure 13. SensorTile soldered onto cradle board
4.1
Power supply
The main board power supply is the 100 mAh lithium-Ion polymer battery attached to the appropriate connector
on the PCB.
Figure 14. Battery connection and power switch
The battery can be recharged via USB connected to a PC or any micro-USB battery charger.
A red LED indicates the charging status:
•
steady ON: the USB plug is correctly connected and the board is charging
•
steady OFF: charging complete
•
blinking: battery not present
UM2101 - Rev 5
page 13/36
UM2101
SensorTile and cradle assembly in form factor case
The onboard STBC08 battery charger IC is configured by default with a maximum charging current of 50 mA. It is
possible to modify this current by changing the R5 resistor value.
Equation 1:
The default 20 kΩ value for R5 hence gives:
1V
Icℎrg =
∙ 1000
R5
1V
∙ 1000 = 50mA
20K
(1)
(2)
During normal usage, the battery needs to be connected to the board for proper operation. When the battery is
plugged, the board is turned ON via the SW1 switch. This switch enables LDK120 3V3 voltage regulator pin,
which powers all board components.
4.2
SensorTile and cradle assembly in form factor case
Refer to the following image for the orientation of the soldered SensorTile and cradle boards in the dedicated form
factor case.
Figure 15. SensorTile and cradle in plastic case
UM2101 - Rev 5
page 14/36
UM2101
SensorTile and cradle assembly in form factor case
Figure 16. STEVAL-STLCR01V1 component placement (top side)
UM2101 - Rev 5
page 15/36
UM2101
SensorTile and cradle assembly in form factor case
Figure 17. STEVAL-STLCR01V1 component placement (bottom side)
UM2101 - Rev 5
page 16/36
UM2101
SensorTile programming interface
5
SensorTile programming interface
To program the board, connect an external ST-LINK to the SWD connector on the cradle; a 5-pin flat cable is
provided in the SensorTile Kit package.
The easiest way to obtain an ST-LINK device is to get an STM32 Nucleo board, which bundles an ST-LINK V2.1
debugger and programmer.
Ensure that CN2 jumpers are OFF and connect your STM32 Nucleo board to the SensorTile cradle via the cable
provided, paying attention to the polarity of the connectors. Pin 1 is identified by:
•
a small circle on the PCB silkscreen – STM32 Nucleo board and SensorTile cradle expansion
•
the square shape of the soldering pad – connector on the SensorTile cradle.
Figure 18. STM32 Nucleo board, cradle and cradle expansion SWD connectors
Figure 19. SWD connections with 5-pin flat cable
UM2101 - Rev 5
page 17/36
UM2101
Sensors and Bluetooth low energy connectivity
6
Sensors and Bluetooth low energy connectivity
6.1
LSM6DSM
The LSM6DSM is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope
performing at 0.65 mA in high-performance mode and enabling always-on low-power features for an optimal
motion experience for the consumer. The LSM6DSM supports main OS requirements, offering real, virtual and
batch sensors with 4 Kbytes for dynamic data batching.
ST’s family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for
the production of micromachined accelerometers and gyroscopes. The various sensing elements are
manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS
technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the
sensing element.
The LSM6DSM has a full-scale acceleration range of ±2/±4/±8/±16 g and an angular rate range of
±125/±245/±500/±1000/±2000 dps. The LSM6DSM fully supports EIS and OIS applications as the module
includes a dedicated configurable signal processing path for OIS and auxiliary SPI configurable for both
gyroscope and accelerometer.
High robustness to mechanical shock makes the LSM6DSM the preferred choice of system designers for the
creation and manufacturing of reliable products.
6.2
LSM303AGR
The LSM303AGR is an ultra-low-power high-performance system-in-package featuring a 3D digital linear
acceleration sensor and a 3D digital magnetic sensor. The device has linear acceleration full scales of
±2g/±4g/±8g/±16g and a magnetic field dynamic range of ±50 gauss.
The LSM303AGR includes an I²C serial bus interface that supports standard, fast mode, fast mode plus, and
high-speed (100 kHz, 400 kHz, 1 MHz, and 3.4 MHz) and an SPI serial standard interface. The system can be
configured to generate an interrupt signal for free-fall, motion detection and magnetic field detection.
The magnetic and accelerometer blocks can be enabled or put into power-down mode separately.
6.3
LPS22HB
The LPS22HB is an ultra-compact piezoresistive absolute pressure sensor which functions as a digital output
barometer. The device comprises a sensing element and an IC interface which communicates through I²C or SPI
from the sensing element to the application.
The sensing element, which detects absolute pressure, consists of a suspended membrane manufactured using a
dedicated process developed by ST.
The LPS22HB is available in a full-mold, holed LGA package (HLGA). It is guaranteed to operate over a
temperature range extending from -40 °C to +85 °C. The package is holed to allow external pressure to reach the
sensing element.
LPS22HB is factory calibrated but a residual offset could be introduced by the soldering process. This offset can
be removed with a one-point calibration.(For further details, refer to application note AN4833, "Measuring
pressure data from ST's LPS22HB digital pressure sensor", on www.st.com.)
6.4
MP34DT05-A
The MP34DT05-A is an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a
capacitive sensing element and an IC interface.
The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon
micromachining process dedicated to producing audio sensors.
The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide
a digital signal externally in PDM format.
The MP34DT05-A is a low-distortion digital microphone with a 64 dB signal-to-noise ratio and –26 dBFS ±3 dB
sensitivity.
UM2101 - Rev 5
page 18/36
UM2101
BLUENRG-MS
6.5
BLUENRG-MS
The BlueNRG-MS is a very low power Bluetooth low energy (BLE) single-mode network processor, compliant with
Bluetooth specification v4.1. The BlueNRG-MS supports multiple roles simultaneously and can act at the same
time as Bluetooth smart sensor and hub device.
The Bluetooth Low Energy stack runs on the embedded ARM Cortex-M0 core. The stack is stored on the on-chip
non-volatile Flash memory and can be easily upgraded via SPI.
The device comes pre-programmed with a production-ready stack image(Its version could change at any time
without notice). A different or more up-to-date stack image can be downloaded from the ST website and
programmed on the device through the ST provided software tools.
The BlueNRG-MS allows applications to meet the tight advisable peak current requirements imposed by standard
coin cell batteries.
The maximum peak current is only 10 mA at 1 dBm output power. Ultra low-power sleep modes and very short
transition times between operating modes allow very low average current consumption, resulting in longer battery
life.
The BlueNRG-MS offers the option of interfacing with external microcontrollers via SPI transport layer.
6.6
BALF-NRG-02D3
This device is an ultra-miniature balun which integrates matching network and harmonics filter.
Matching impedance has been customized for the BlueNRG transceiver.
The BALF-NRG-02D3 uses STMicroelectronics IPD technology on non-conductive glass substrate which
optimizes RF performance.
UM2101 - Rev 5
page 19/36
UM2101
Bill of materials
7
Bill of materials
Table 6. STEVAL-STLCS01V1 bill of materials
UM2101 - Rev 5
Item
Q.ty
Ref.
1
1
U1
2
1
U2
3
1
4
1
Value
Description
Order code
Manufacturer
ARM CortexM4 32b MCU
STM32L476JGY6TR
Microcontrolle
r
ST
low quiescent
current low
noise LDO
LD39115J18R
ST
U9
Ultra-low
Power Acc +
Magn
LSM303AGRTR
ST
U10
Low-Power
Acceleromete LSM6DSMTR
r + Gyroscope
ST
BlueNRG-MSCSP
ST
150 mA, 1.8 V
5
1
U6
Bluetooth
Low-Energy
Chip V4.1 MS
6
1
U13
Low-power
pressure
sensor
LPS22HBTR
ST
7
1
U11
MEMS audio
sensor digital
microphone
MP34DT05-A
ST
8
1
U4
Bluetooth
Low-Energy
Balun chip
BALF-NRG-02D3
ST
9
1
X2
CRYSTAL
32MHZ 8PF
SMD
CX2016DB32000D0FLJC
C
AVX
10
1
X1
32.7680kHz,
20ppm, 4pF, 60kΩ
Crystal
ABS06-107-32.768KHZ-T
Abracon
11
2
C2, C20
4pF 25V
CAP CER
NP0 0201
CBR02C409B3GAC
Kemet
12
2
C12, C17
15pF 25V
CAP 0201
NP0
02013A150JAT2A
AVX
13
1
FT1
10pF 25V
CAP CER
NP0 0201
250R05L100GV4T
Johanson
Technology
14
1
R2
0Ω
Resistor SMD
Any
R0402
15
1
FT2
16
1
MT
0.40pF 25V
CAP CER
NP0 0201
250R05L0R4AV4T
Johanson
Technology
17
2
C32, C34
2.2µF 6.3V
CAP
CERAMIC
X5R, 0201
02016D225MAT2A
AVX
18
1
C9
0.22µF 6.3V
CAP CER
X7S 0201
C0603X7S0J224K030BC
TDK
Any
page 20/36
UM2101
Bill of materials
Item
Q.ty
Ref.
Value
Description
19
1
C30
150nF, 10V
CAP, MLCC,
X5R, 0201
C0603X5R1A154K030BB
TDK
20
2
C14, C31
100pF 25V
CAP CER
NP0 0201
250R05L101JV4T
Johanson
Technology
21
1
ANT1
2.4GHZ
ANTENNA
SMD
ANT016008LCS2442MA1
TDK
22
9
CAP CER
X5R 0201
GRM033R60J104KE19D
Murata
23
1
24
9
25
1
LED
26
1
CONN
27
1
28
1
C4, C5, C10,
C11, C13, C18, 0.1µF 6.3V ±10%
C29, C33, C43
R1
560 Ω
Order code
Manufacturer
Resistor SMD Any
C1, C3, C6, C7,
C8, C15, C16, 1µF 6.3V
C19, C44
CAP CER
X5R 0201
CL03A105KQ3CSNC
Samsung
605 nm, 2 V, 10
mA, 50 mcd
LED, Low
Power,
Orange
KPG-0603SEC-TT
KINGBRIGHT
0.4mm
Connector
Board-toBoard
BM10NB(0.8)-16DS-0.4V(
51)
Hirose
L1
3.9nH 400mA 300
MΩ
FIXED IND
LQP03TN3N9B02D
Murata
SWD Cable
2.54mm, L=15cm
5 pin ribbon
cable
Any
Table 7. STLCX01V1 bill of materials
UM2101 - Rev 5
Item
Q.ty
Ref.
Value
1
1
CN2
BM10JC-16DP-0.4V(53
)
BM10JC-16DP-0.4V(53)
Hirose
2
1
CN5
HEADER 10
SSQ-110-03-L-S
Samtec
3
2
CN6,CN9
HEADER 8
SSQ-108-03-L-S
Samtec
4
1
CN8
HEADER 6
SSQ-106-03-L-S
Samtec
5
5
X7R
Any
6
2
Tantal
Any
7
4
Tantal
Any
8
2
C15,C16
X5R
Any
9
1
J1
PHONOJACK STEREO 35RASMT4BHNTRX
10
1
J2
Header M 3x1
Any
11
4
J3,J4,J5,J6
PCB Hole
Any
12
1
RESET
SYS_MODE
PTS820 J20M SMTR LFS
13
1
R1
47kΩ ±1%
Any
14
1
R2
147kΩ±1%
Any
C1,C5,C10,C
100nF
13,C14
C4,C6
47uF, 6.3V
C8,C9,C11,C 4.7uF, >6.3V,
12
=1/16W
Any
16
1
SD
17
1
18
NC
Manufacturer
Molex
Any
Micro-SD
DM3D-SF
Hirose
SWD
CON5
Any
1
SW1
PWR
SSAJ120100
Alps Electric
Co.
19
1
USB
USB-MICRO
USB3075-30-A
GCT
20
1
U1
USBLC6-2P6
USBLC6-2P6
ST
21
1
U2
STBC08PMR
STBC08PMR
ST
22
1
U3
LDK120M-R
LDK120M-R
ST
page 22/36
UM2101
Bill of materials
UM2101 - Rev 5
Item
Q.ty
Ref.
Value
23
1
U4
STC3115IQT
STC3115IQT
ST
24
1
U5
HTS221
HTS221
ST
25
1
Battery
26
1
Plastic Box
27
2
M2-Nut
28
1
29
1
3.7V
100mAh
Description
Order code
LiPO-501225 3pin
LiPO-501225
connector
Plastic Box
Any
HEX shape
HEX Nut M2 steel
Any
M2-Screw
Pan head Phillips
10mm M2 Pan
head Phillips steel
Any
M2-Screw
Pan head Phillips
12mm M2 Pan
head Phillips steel
Any
Manufacturer
Himax
electronics
page 23/36
UM2101
Schematic diagrams
8
Schematic diagrams
Figure 20. STEVAL-STLCS01V1 schematic diagram (1 of 2)
1
4p
GND
GND
GND
VDD
VDD
Decoupling Capacitors
BLUE_RST
GND
OSC32_OUT
OSC32_IN
TXD-USB_DM
SAI_MCLK
SAI_SD
C20
4p
R1
SAI_SD
SPI_SDA
GPIO3
GPIO2
MIC_CLK
INT2
INT2
INT2
NRST
GPIO2
GPIO2
C2
KPG-0603SEC-TT
ABS06-107-32.768KHZ-T
INT2
INT2
INT2
C1
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D7
D8
D9
E1
E2
E3
RXD-USB_DP
GPIO6
OSC32_OUT
OSC32_IN
GND
VDD
VDD
STM32L476JGY6
PA12
PA13
PC11
PG11
PG12
PB4
PB5
PC15
PC14
PA11
PA10
PC10
BOOT0
PH1
PH0
PC9
PA8
PA9
VDD
U1
G9
G8
G7
G6
G5
G4
G3
G2
G1
F9
F8
F7
F3
F2
F1
E9
E8
E7
VSSA
VREF+
PC3
PA2
PA4
PA1
PB11
PB14
PB15
PC0
PC1
PC2
PC6
PC8
PC7
NRST
PB9
PB8
VDD
VDDUSB
MIC_DATA
VDDUSB
PA15
PD2
PG9
PG14
PB3
PB7
VSS1
VDD
VSS2
PA14
PC12
PG10
PG13
VDDIO2
PB6
PC13
VBAT
VDDUSB
GND
VDD
GND
GPIO5
TXD-USB_DM
SAI_FS
A1
A2
A3
A4
A5
A6
A7
A8
A9
B1
B2
B3
B4
B5
B6
B7
B8
B9
X1
VDD
RXD-USB_DP
SAI_SCK
Crystal
VDD
VDDUSB
LED
LED
SPI_CLK
CS_AG
CS_P
BLUE_SCK
BLUE_MISO
BLUE_MOSI
VSS4
VDD3
PC4
PC5
PB0
PB1
PB2
VSS3
VDD2
VDDA
PA0
PA3
PA5
PA6
PA7
PB10
PB13
PB12
J9
J8
J7
J6
J5
J4
J3
J2
J1
H9
H8
H7
H6
H5
H4
H3
H2
H1
GND
VDD
CS_A
BLUE_IRQ
TEST1
CS_M
BLUE_CS
GND
VDD
VDD
Ultra-low-power DSP STM32L476xx Microcontroller
C8
C3
C1
C6
C4
C15
C5
1u
1u
1u
1u
100n
1u
100n
GND GND GND GND
GND
GND
GND
Moon Pin output
Hirose bottom connector (optional)
VDDUSB
VDD
VDD
VDD
VDD
Low-Drop Out Voltage Regulator
U2
VIN
B2
A2
IN
OUT
EN
GND
B1
A1
C7
LD39115J18
SWD_GND
SWD_IO
SWD_CLK
SWD_RST
LP_UART_RX, I2C3_SCL, ADC_IN1, DFSDM_DATIN4
LP_UART_TX, I2C3_SDA, ADC_IN2, DFSDM_CKIN4 (DFSDM_DATIN6)
SPI3_NSS, SAI2_SD_A
SPI3_MOSI, SAI2_MCLK_A
C10
C19
C16
100n
1u
1u
VDD
1u
GND
UM2101 - Rev 5
GND
GND
GND
CONN
0
USART RX or USB DP
USART TX or USB DM
SPI3_SCK, SAI2_SCK_A
SPI3_MISO, SAI2_FS_A
GND
GND
GPIO6
GPIO5
NRST
GPIO3
GPIO2
SAI_SD
SAI_MCLK
MIC_CLK
VDD
VIN
VDDUSB
GND
RXD-USB_DP
TXD-USB_DM
SAI_SCK
SAI_FS
R2
ADC_IN3, DFSDM_CKOUT
SWD_VDD
+5V supply
3.0V - 3.6V supply
GND
G1
GPIO6
GPIO5
NRST
GPIO3
GPIO2
SAI_SD
SAI_MCLK
SAI_FS
P1
P3
P5
P7
P9
P11
P13
P15
GND
G2
G1
G4
P1
P3
P5
P7
P9
P11
P13
P15
P2
P4
P6
P8
P10
P12
P14
P16
G2
G3
G4
GND
P2
P4
P6
P8
P10
P12
P14
P16
MIC_CLK
VDD
VIN
VDDUSB
GND
RXD-USB_DP
TXD-USB_DM
SAI_SCK
G3
GND
BM10NB(0.8)-16DS-0.4V(51)
GND
page 24/36
UM2101
Schematic diagrams
Figure 21. STEVAL-STLCS01V1 schematic diagram (2 of 2)
BlueNRG - Bluetooth low energy chip
P11
P12
Accelerometer + Magnetometer
INT2
INT1
U9
P1
P2
CS_M
SPI_SDA
P3
P4
SCL
CS_XL
VDD_IO
VDD
CS_MAG
SDA
GND2
DRDY
P10
P9
VDD
VDD
P8
P7
GND
C1
GND1
SPI_CLK
CS_A
P5
P6
LSM303AGR
GND
C9
220n
GND
Tuning
P14
P13
P12
SPI_SDA
SPI_CLK
CS_AG
Accelerometer + Gyroscope
INT2
VDD
C11
C18
100n
100n
VDD
GND
GND
P5
P6
P7
LSM6DS3H
Balun + chip antenna
VDD
P11
P10
P9
P8
GND
NC
OCS
INT2
VDD
GND
SDO
SDX
SCX
INT1
VDDIO
GND1
GND2
P1
P2
P3
P4
VDD
GND
GND
VDD
SDA
SCL
CS
U10
UM2101 - Rev 5
GND
P8
U11
P3
P4
GND
SPI_SDA
B1
VDD
GND1
GND
P9
Digital Microphone
P7
P6
SDO
INT/DRDY
CS
P5
VDD
VDD_IO
SCL
SDA
P1
P2
RES
VDD
SPI_CLK
GND2
U13
P10 VDD
Pressure Sensor
G1*4
VDD
LR
GND
CLK
CS_P
DOUT
GND
B2
GND
B3
MIC_CLK
B4
MIC_DATA
MP34DT04
LPS22HB
page 25/36
UM2101
Schematic diagrams
Figure 22. STLCX01V1 schematic diagram
SensorTile Connector
USB, SWD, Power
VDDUSB
V_USB
5
VBUS
3
1
TXD-USB_DM
RXD-USB_DP
2
USB-MICRO
C1
GND
VDD
1
2
3
4
5
4
6
D3
D4
D2
D1
VIN
V_USB
U1 USBLC6-2P6
MIC_CLK
SH2
SH1
100nF
5V
J2
VIN
V_USB
3V3
RXD-USB_DP
TXD-USB_DM
SAI_SCK
VDDUSB
VDD
1
2
3
BM10B(0.8)-16DP-0.4V(51)
CN2
G2
G1
2
4
6
8
10
12
14
16
1
3
5
7
9
11
13
15
G4
G3
SWDIO
SWDCLK
TILE_RESET
GPIO3
GPIO2
SAI_SD
SAI_MCLK
SAI_FS
SB8
SB9
SensorTile Footprint
VIN
3V3
U4 LDK120M-R
Max 200mA
3
EN
ADJ
5
4.7μF
VDD
4
SWDIO
TILE_RESET
VDD
R2
147K
R1
47K
4.7μF
18
17
16
15
14
13
12
11
10
1
2
3
4
5
6
7
8
9
MIC_CLK
C15
RXD-USB_DP
TXD-USB_DM
SAI_SCK
SAI_FS
SWDIO
SWDCLK
TILE_RESET
GPIO3
GPIO2
SAI_SD
SAI_MCLK
RESET
SWD
1
2
3
4
5
2
1
TILE_RESET
C14
100nF
4
5
6
3
SWDCLK
SensorTile
VIN
2
C16
OUT
IN
GND
1
VDDUSB
Fixing holes
On the corners
Hole: 2.2mm
Head: 4mm
+
1
+
1
J1
C4 47μF
+
C6 47μF
SB6
3
4
5
2
1
R30R
R40R
+
20
19
18
17
16
AIL
AIR
VCC
AGND
VCOM
VIO
VDD
DGND
SCKI
BCK
3V3
C12
4.7μF
15
H_L 14
H_R 13
VPA 12
PGND 11
LRCK
P
PAD
SAI_FS
1
3V3
PHONOJACK STEREO
6
7
8
9
10
SB3
SB2
SB4
MODE
ADR
SDA
SCL
DIN
3V3
C11
4.7μF
U3 PCM1774RGP
+
GPIO2
GPIO3
SAI_SD
1
2
3
4
5
1
C9 4.7μF
+
3V3
C8 4.7μF
C5
SB5
SB7
SAI_SCK
SAI_MCLK
STM32 Nucleo
100nF
R6
R5
4K7
4K7
CN5
5V
3V3
10
9
8
7
6
5
4
3
2
1
CN6
3V3_Nucleo
1
2
3
4
5
6
7
8
SB19
SB1
1
2
3
4
5
6
TILE_RESET
8
7
6
5
4
3
2
1
I2C_SCL
I2C_SDA
SB16
SB17
SPI_SCK
SPI_MISO
SPI_MOSI
SPI_CS
SB15
SB14
SB13
SB12
SAI_SCK
SAI_FS
SAI_MCLK
SAI_SD
SB18
MIC_CLK_3V3
GPIO3
GPIO2
GPIO3_3V3
GPIO2_3V3
UART_TX
UART_RX
CN8
CN9
3V3
VDD
C13
C10
100nF
TXD-USB_DM
RXD-USB_DP
TXD-USB_DM
2
3
4
SB23
5
6
SB11
SB21
7
SB10
8
SB20
9
ST2378ETTR
L1
20
VCC
VL
RXD-USB_DP
SB22
MIC_CLK_3V3
CC1
L2
CC2
L3
CC3
L4
CC4
L5
CC5
CC6
L6
CC7
L7
L8
CC8
GND
GPIO2
GPIO3
19
GPIO2_3V3
18
17
GPIO3_3V3
MIC_CLK
16
15
UART_TX
14
13
UART_RX
12
OE
U5
1
100nF
UM2101 - Rev 5
11
10
VDD
page 26/36
UM2101
Schematic diagrams
Figure 23. STLCR01V1 schematic diagram
USB, SWD, Power switch
V_USB
U1 USBLC6-2P6
VBUS
3
1
RXD-USB_DM
RXD-USB_DP
D2
D1
2
D3
D4
5
USB-MICRO
1
2
3
4
5
4
6
C1
GND
V_USB
SH2
SH1
100nF
VDD
SWD
1
2
3
4
5
SWDCLK
SWDIO
RESET
3V3
2
R4
1K
1
SWDCLK
LED1
SensorTile footprint
3V3
VDD
1
2
3
4
5
6
7
8
9
MIC_CLK
RXD-USB_DP
RXD-USB_DM
SD_SCK
SD_MISO
18
17
16
15
14
13
12
11
10
Battery Charger
V_USB
U2
CHRG
C2
3
2
BAT
PROG
CHRG
PWR_ON
1
5
micro-SD card socket
3V3
VBat
C3
R5
20K
V_USB
R11
NC
VBat
SD_CS
SD_MOSI
SD_SCK
SD_MISO
C9
100nF
7
4
4.7μF
STBC08PMR
Vcc
PAD
GND
6
R10
0R
SWDIO
SWDCLK
RESET
I2C_SCL
I2C_SDA
SD_CS
SD_MOSI
4.7μF
R6
NC
R7
NC
SD
Battery Connector VBat
V_USB
1
2
3
CHRG
1
2
R3
2K
CHRG
BAT_NTC
DAT1
DAT0
GND
CLK
VDD
CMD
CD/DAT3
DAT2
8
7
6
5
4
3
2
1
VPROG = 1V
IBAT=(VPROG/RPROG)x1000
RPROG=1000*VPROG/IBAT
BATT
DETC
SW
U4
1
2
3
4
5
I2C_SDA
I2C_SCL
STC3115IQT
ALM
SDA
SCL
NC
GND
VIN
VCC
BATD/CD
RSTIO
CG
SWA
SWB
VBat
10
9
8
7
6
Micro-SD
C10
Bat-
1μF
R9
50 mΩ
R8
1K
BAT_NTC
VBat
3V3_EN
PWR
C7
4.7μF
UM2101 - Rev 5
HTS221 sensor
3V3
1
3
U3
LDK120M-R
IN
OUT
EN Max 200mA
ADJ
GND
SW1
2
VBat
VDD
5
4
R2
147K
1
6
C6
R1
47K
4.7μF
C8
100nF
5
U5
HTS221
VDD
CS
SCL
SDA
GND
DRDY
2
4
I2C_SCL
I2C_SDA
3
page 27/36
UM2101
Formal notices required by the U.S. Federal Communications Commission ("FCC")
9
Formal notices required by the U.S. Federal Communications
Commission ("FCC")
FCC NOTICE: This device complies with part 15 of the FCC Rules. Operation is subject to the following two
conditions: (1) This device may cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the manufacturer could void the user’s authority to operate
the equipment.
Additional warnings for FCC
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part
15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a
residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not
installed and used in accordance with the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a particular installation. If this equipment does
cause harmful interference to radio or television reception, which can be determined by turning the equipment off
and on, the user is encouraged to try to correct the interference's by one or more of the following measures:
•
Reorient or relocate the receiving antenna.
•
Increase the separation between the equipment and the receiver.
•
Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
•
Consult the dealer or an experienced radio/TV technician for help.
UM2101 - Rev 5
page 28/36
UM2101
Formal product notice required by the Industry Canada ("IC")
10
Formal product notice required by the Industry Canada ("IC")
Innovation, Science and Economic Development Canada Compliance - This device complies with Innovation,
Science and Economic Development RSS standards. Operation is subject to the following two conditions: (1) this
device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation. Changes or modifications not expressly approved by the
manufacturer could void the user’s authority to operate the equipment.
Conformité à Innovation, Sciences et Développement Économique Canada - Cet appareil est conforme aux
normes RSS d'Innovation, Science et Développement économique. L'utilisation est soumise aux deux conditions
suivantes: (1) cet appareil ne doit pas causer d'interférences nuisibles, et (2) cet appareil doit accepter de
recevoir tous les types d’interférence, y comprises les interférences susceptibles d'entraîner un fonctionnement
indésirable. Les changements ou les modifications non expressément approuvés par le fabricant pourraient
annuler le permis d'utiliser l'équipement.
UM2101 - Rev 5
page 29/36
UM2101
TYPE certification
11
TYPE certification
The module has been tested according to the following TYPE certification rules:
•
Type of specified radio equipment:
–
radio equipment according to the certification ordinance article 2-1-9
–
sophisticated low power data communication system in a 2.4 GHz band
•
Class of emissions, assigned frequency and antenna power:
–
F1D, 2402 to 2480 MHz, channel separation 2 MHz/40 channels, 0.006 W
•
Certification number:
–
006-000482
The design and manufacturing are certified on the basis of the Japan Radio Law 38-24.
UM2101 - Rev 5
page 30/36
UM2101
Revision history
Table 9. Document revision history
Date
Version Changes
17-Aug-2016
1
Initial release.
28-Aug-2017
2
Updated Section "Introduction", Section 1.1: "Overview", Section 1.3: "Initial setup with pre-loaded
demo", Section 6.4: "MP34DT04", Section 6.5: "BLUENRG-MS" and Section 9: "Formal product
notice required by the Industry Canada ("IC")"
30-Oct-2017
3
Added Figure 7: "STEVAL-STLCS01V1 component placement (top side)", Figure 9: "STLCX01V1
component placement (top side)", Figure 14: "STEVAL-STLCR01V1 component placement (top
side)", Figure 15: "STEVAL-STLCR01V1 component placement (bottom side)" and Section 10:
"TYPE certification".
Updated Figure 21: "STLCR01V1 schematic diagram".
UM2101 - Rev 5
18-Jul-2018
4
07-Mar-2019
5
Added Section 2.2 Differences among the STEVAL-STLCS01V1 generations, Section 6.4
MP34DT05-A and Section 6.6 BALF-NRG-02D3.
Updated Figure 1. SensorTile functional block diagram and Figure 6. STEVAL-STLCS01V1 power
supply block diagram.
Added references to STBLESensor application.
page 31/36
UM2101
Contents
Contents
1
2
3
4
Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2
Package components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3
Initial setup with pre-loaded demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4
System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
STEVAL-STLCS01V1 hardware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Differences among the STEVAL-STLCS01V1 generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
STLCX01V1 hardware description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2
USB device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Audio DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4
Solder bridge details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
STLCR01V1 hardware description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4.1
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
SensorTile and cradle assembly in form factor case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
SensorTile programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
6
Sensors and Bluetooth low energy connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
6.1
LSM6DSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2
LSM303AGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3
LPS22HB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4
MP34DT05-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.5
BLUENRG-MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.6
BALF-NRG-02D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
8
Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
9
Formal notices required by the U.S. Federal Communications Commission ("FCC") .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
10
Formal product notice required by the Industry Canada ("IC") . . . . . . . . . . . . . . . . . . . . .29
UM2101 - Rev 5
page 32/36
UM2101
Contents
11
TYPE certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
UM2101 - Rev 5
page 33/36
UM2101
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
STEVAL-STLCS01V1 main components .
STEVAL-STLCS01V1 pinout . . . . . . . . .
STLCX01V1 main components . . . . . . .
STLCX01V1 solder bridge details. . . . . .
STLCR01V1 main components . . . . . . .
STEVAL-STLCS01V1 bill of materials. . .
STLCX01V1 bill of materials . . . . . . . . .
STLCR01V1 bill of materials . . . . . . . . .
Document revision history . . . . . . . . . . .
UM2101 - Rev 5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 5
. 6
. 9
10
12
20
21
22
31
page 34/36
UM2101
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
UM2101 - Rev 5
SensorTile functional block diagram . . . . . . . . . . . . . . . . . . . . . . .
SensorTile kit blister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Orientation of SensorTile and cradle expansion connectors . . . . . . .
SensorTile mounted on cradle expansion . . . . . . . . . . . . . . . . . . . .
STEVAL-STLCS01V1 main components and pinout . . . . . . . . . . . .
STEVAL-STLCS01V1 power supply block diagram . . . . . . . . . . . . .
STEVAL-STLCS01V1 component placement (top side) . . . . . . . . . .
SensorTile first generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SensorTile second generation . . . . . . . . . . . . . . . . . . . . . . . . . . .
STLCX01V1 main components . . . . . . . . . . . . . . . . . . . . . . . . . . .
STLCX01V1 component placement (top side). . . . . . . . . . . . . . . . .
STLCR01V1 cradle main components . . . . . . . . . . . . . . . . . . . . . .
SensorTile soldered onto cradle board. . . . . . . . . . . . . . . . . . . . . .
Battery connection and power switch. . . . . . . . . . . . . . . . . . . . . . .
SensorTile and cradle in plastic case . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STLCR01V1 component placement (top side) . . . . . . . . . .
STEVAL-STLCR01V1 component placement (bottom side) . . . . . . .
STM32 Nucleo board, cradle and cradle expansion SWD connectors
SWD connections with 5-pin flat cable . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STLCS01V1 schematic diagram (1 of 2) . . . . . . . . . . . . . .
STEVAL-STLCS01V1 schematic diagram (2 of 2) . . . . . . . . . . . . . .
STLCX01V1 schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . .
STLCR01V1 schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 3
. 3
. 4
. 5
. 7
. 7
. 8
. 8
. 9
11
12
13
13
14
15
16
17
17
24
25
26
27
page 35/36
UM2101
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
UM2101 - Rev 5
page 36/36