UM2777
User manual
How to use the STEVAL-STWINKT1B SensorTile Wireless Industrial Node for
condition monitoring and predictive maintenance applications
Introduction
The STWIN SensorTile wireless industrial node (STEVAL-STWINKT1B) is a development kit and reference design that
simplifies prototyping and testing of advanced industrial IoT applications such as condition monitoring and predictive
maintenance.
It is the updated version of STEVAL-STWINKIT1, now including STSAFE-A110 populated, BlueNRG-M2SA module and
IMP23ABSU MEMS microphone.
The kit features a core system board with a range of embedded industrial-grade sensors and an ultra-low-power microcontroller
for vibration analysis of 9-DoF motion sensing data across a wide range of vibration frequencies, including very high frequency
audio and ultrasound spectra, and high precision local temperature and environmental monitoring.
The development kit is complemented with a rich set of software packages and optimized firmware libraries, as well as a cloud
dashboard application, all provided to help speed up design cycles for end-to-end solutions.
The kit supports Bluetooth® low energy wireless connectivity through an on-board module, and Wi-Fi connectivity through
a special plugin expansion board (STEVAL-STWINWFV1). Wired connectivity is also supported via an on-board RS485
transceiver. The core system board also includes an STMod+ connector for compatible, low cost, small form factor daughter
boards associated with the STM32 family, such as the LTE Cell pack.
Apart from the core system board, the kit is provided complete with a 480 mAh Li-Po battery, an STLINK-V3MINI debugger and
a plastic box.
Figure 1. STEVAL-STWINKT1B SensorTile Wireless Industrial Node
UM2777 - Rev 3 - June 2021
For further information contact your local STMicroelectronics sales office.
www.st.com
UM2777
STWIN kit components
1
STWIN kit components
The SensorTile Wireless Industrial Node (STWIN) is packaged with the components shown below.
Figure 2. STWIN Core System board top and bottom
Figure 3. Protective plastic case
Figure 4. 480mAh 3.7V Li-Po Battery
UM2777 - Rev 3
page 2/45
UM2777
STWIN kit components
Figure 5. STLink-V3Mini Debugger/Programmer for STM32
Figure 6. Programming cable
UM2777 - Rev 3
page 3/45
UM2777
Functional blocks
2
Functional blocks
Figure 7. STEVAL-STWINKT1B functional block diagram
Sensing
LDK130
Low Noise LDO
Processing
ST1PS01EJR
STBC02
step-down switching
regulator
Li-Ion linerar battery
charger
USART2
STR485LV
RS485 Interface
6-Axis IMU
HTS221
STSAFE
I2C2
* not mounted
20-pin STMOD+
connector
SPIx, I2S,
USARTx,...
STM32L4R9ZIJ6
Microcontroller
Ultra Low Power
Cortex M4F@120MHz
I2C2
Humidity and
Temperature Sensor
LPS22HH
IIS2MDC
3D Magnetometer
TS922EIJT
Low noise, low
distortion OpAmp
12-pin female sensor
connector
STTS751
Temperature Sensor
Pressure Sensor
ADC1
40-pin Flex
connector
Analog
3D Accelerometer
Bluetooth® low energy
Application Processor Module
Secure Element*
Power Mng.
IIS2DH
Vibrometer
ISM330DHCX
SPI2
BlueNRG-M2SA
Connectivity
IIS3DWB
SPI3
DFSDM1
IMP23ABSU
Analog Microphone
IMP34DT05
Digital Microphone
12-pin male
connector
Secure
ESDALC6V1-1U2
Single Line ESD
protection
2.1
USBLC6-2P6
USB ESD protection
32 kHz
16 MHz
Crystal
Crystal
Enanced
SWD
Connector
EMIF06-MSD02N16
Auxiliary
Connector
EMI filter and ESD
protection
UART5
I2C2
ADC3
GPIO
Sensing
The core system board offers a comprehensive range of sensors specifically designed to support and enable the
Industry 4.0 applications.
Figure 8. STEVAL-STWINKT1B functional block diagram of sensing elements and STM32L4R9ZIJ6
SPI3
IIS3DWB
IIS2DH
Vibrometer
3D Accelerometer
ISM330DHCX
Sensing
6-Axis IMU
HTS221
STM32L4R9ZIJ6
Microcontroller
Ultra Low Power
Cortex M4F@120MHz
I2C2
Humidity and
Temperature Sensor
STTS751
Temperature Sensor
LPS22HH
IIS2MDC
Pressure Sensor
3D Magnetometer
Analog
ADC1
TS922EIJT
Low noise, low
distortion OpAmp
DFSDM1
IMP23ABSU
Analog Microphone
IMP34DT05
Digital Microphone
UM2777 - Rev 3
page 4/45
UM2777
Sensing
The motion sensors communicate with the STM32L4R9ZIJ6 microcontroller via SPI in order to accommodate the
high data rates, while the magnetometer and environmental sensors communicate via I2C.
The suitably filtered signal from the IMP23ABSU analog microphone is amplified by a TS922 low noise op-amp
and then sampled by the internal 12-bit ADC in the MCU, while the signal from digital microphone is directly
managed by the digital filter for Sigma-Delta modulators (DFSDM) interface in the MCU.
Figure 9. Core system board sensor locations
U2: HTS221 relative humidity and temperature sensor
U3: LPS22HH digital absolute pressure sensor
U6: STTS751 low-voltage digital local temperature sensor
U8: TS922 rail-to-rail, high output current, dual operational amplifier
U9: ISM330DHCX 3D acc. + 3D gyro iNEMO IMU with machine learning core
U11: IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor
U12: IIS2DH ultra-low-power high performance MEMS motion sensor
U13: IIS2MDC ultra-low-power 3-axis magnetometer
M1: IMP23ABSU analog MEMS microphone
M2: IMP34DT05 industrial grade digital MEMS microphone
2.1.1
HTS221 humidity and temperature sensor
The HTS221 is an ultra-compact relative humidity and temperature sensor with a sensing element and a mixed
signal ASIC to provide measurement information through digital serial interfaces.
The sensing element consists of a polymer dielectric planar capacitor structure capable of detecting relative
humidity variations and is manufactured using a dedicated ST process.
The HTS221 is available in a small top-holed cap land grid array (HLGA) package guaranteed to operate over a
temperature range from -40 °C to +120 °C.
RELATED LINKS
Visit the product web page for the HTS221 relative humidity and temperature sensor
2.1.2
LPS22HH MEMS pressure sensor
The LPS22HH is an ultra-compact piezoresistive absolute pressure sensor which functions as a digital output
barometer. The device consists of a sensing element and an IC interface which communicates through I²C, MIPI
I3CSM or SPI from the sensing element to the application.
The sensing element, which detects absolute pressure, consists of a suspended membrane manufactured using a
dedicated process developed by ST.
The LPS22HH is available in a full-mold, holed LGA package (HLGA). It is guaranteed to operate over a
temperature range extending from -40 °C to +85 °C.
UM2777 - Rev 3
page 5/45
UM2777
Sensing
RELATED LINKS
Visit the product web page for the LPS22HH MEMS pressure sensor
2.1.3
STTS751 digital temperature sensor
The STTS751 is a digital temperature sensor which communicates over a 2-wire SMBus 2.0 compatible bus.
The temperature is measured with a user-configurable resolution between 9 and 12 bits. At 9 bits, the smallest
step size is 0.5 °C, and at 12 bits, it is 0.0625 °C. At the default resolution (10 bits, 0.25 °C/LSB), the nominal
conversion time is 21 milliseconds.
Up to eight devices can share the same 2-wire SMBus without ambiguity, allowing a single application to monitor
multiple temperature zones.
RELATED LINKS
Visit the product web page for the STTS751 digital temperature sensor
2.1.4
TS922 rail-to-rail, high output current, dual operational amplifier
The TS922 is a rail-to-rail dual BiCMOS operational amplifier optimized and fully specified for 3 V and 5 V
operation. The very low noise, low distortion, low offset, and high output current capability render this device
highly suitable for high quality, low voltage, or battery operated audio systems.
RELATED LINKS
Visit the product web page for the TS922 rail-to-rail, high output current, dual operational amplifier
2.1.5
ISM330DHCX iNEMO IMU 3D Acc + 3D Gyro
The ISM330DHCX is a system-in-package featuring a high-performance 3D digital accelerometer and +3D digital
gyroscope tailored for Industry 4.0 applications.
The sensing elements of the accelerometer and of the gyroscope are implemented on the same silicon die, which
ensures superior stability and robustness.
Several embedded features such as programmable FSM, FIFO, sensor hub, event decoding and interrupts allow
the implementation of smart and complex sensor nodes able to deliver high performance at very low power.
RELATED LINKS
Visit the product web page for the ISM330DHCX iNEMO IMU 3D Acc + 3D Gyro
2.1.6
IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor
The IIS3DWB is a system-in-package featuring a 3-axis digital accelerometer with low noise over an ultra-wide
and flat frequency range. The wide bandwidth, low noise, very stable and repeatable sensitivity, together with
the capability of operating over an extended temperature range (up to +105 °C), render the device particularly
suitable for vibration monitoring in industrial applications.
The high performance delivered at low power consumption, together with the digital output and embedded digital
features like FIFO and interrupts are of primary importance in battery-operated industrial wireless sensor nodes.
RELATED LINKS
Visit the product web page for the IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor
2.1.7
IIS2DH ultra-low power 3-axis high-performance accelerometer
The IIS2DH is an ultra-low-power high-performance three-axis linear accelerometer with digital I2C/SPI serial
interface standard output.
The device may be configured to generate interrupt signals from two independent inertial wake-up/free-fall events,
as well as from the position of the device itself.
UM2777 - Rev 3
page 6/45
UM2777
Processing and connectivity
RELATED LINKS
Visit the product web page for the IIS2DH ultra-low power 3-axis high-performance accelerometer
2.1.8
IIS2MDC 3-axis magnetometer
The IIS2MDC is a high-accuracy, ultra-low-power 3-axis digital magnetic sensor. It has a magnetic field dynamic
range up to ±50 gauss, and includes an I²C serial bus interface that supports 100 kHz, 400 kHz, 1 MHz, and
3.4 MHz rates and an SPI serial standard interface.
The device can be configured to generate an interrupt signal from magnetic field detection.
RELATED LINKS
Visit the product web page for the IIS2MDC 3-axis magnetometer
2.1.9
IMP23ABSU analog MEMS microphone with extended frequency response up to 80 kHz for
ultrasound applications
The IMP23ABSU is a compact, low-power microphone based on a capacitive sensing element and an IC
interface.
The sensing element can detect acoustic waves and is manufactured using a special silicon micro-machining
process to produce audio sensors.
The IMP23ABSU has an acoustic overload point of 130 dBSPL with a typical 64 dB signal-to-noise ratio.
The IMP23ABSU sensitivity is -38 dBV ±1 dB at 94 dBSPL, 1 kHz.
The IMP23ABSU is available in a package compliant with re-flow soldering and is guaranteed to operate over an
extended temperature range (-40 to +85 °C).
RELATED LINKS
Visit the product web page for the IMP23ABSU analog MEMS microphone
2.1.10
IMP34DT05 digital MEMS microphone
The IMP34DT05 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive
sensing element and an IC interface; the device features 64 dB signal-to-noise ratio and -26 dBFS ±3 dB
sensitivity.
The IC interface includes a dedicated circuit able to provide a digital signal externally in PDM format.
RELATED LINKS
Visit the product web page for the IMP34DT05 digital MEMS microphone
2.2
Processing and connectivity
The STWIN core system board features several wired and wireless connectivity options and the STM32L4R9ZI
ultra-low-power microcontroller, which is part of the STM32L4+ series MCUs based on the high-performance Arm
Cortex-M4 32-bit RISC core, operating at up to 120 MHz and equipped with 640 Kb SRAM and 2 MB Flash
memory.
UM2777 - Rev 3
page 7/45
UM2777
Processing and connectivity
Figure 10. Main connectivity components and the STM32L4R9ZI processing unit
STR485LV
RS485 Interface
BlueNRG-M2SA
Bluetooth low energy
Application Processor Module
STEVAL-STWINWFV1
12-pin male com.
connector
STSAFE
USART2
Processing
SPI2
SPI1
STM32L4R9ZIJ6
Microcontroller
Ultra Low Power
Cortex M4F@120MHz
Connectivity
I2C2
Secure Element*
Secure
32 kHz
Crystal
16 MHz
Crystal
Each connectivity component is connected to an independent bus on the STM32L4R9ZI MCU, so they can all be
configured individually.
UM2777 - Rev 3
page 8/45
UM2777
Processing and connectivity
Figure 11. MCU and connectivity element locations
U4: STM32L4R9ZI Cortex-M4F 120MHz 640Kb RAM
U5: BlueNRG-M2SA Very low power application processor module for Bluetooth® low energy v5.0
U7: STSAFE-A110 authentication and brand protection secure solution
U17: STG3692 high bandwidth quad SPDT switch
U19: STR485 3.3V RS485 up to 20Mbps
USB: Micro-USB connector (power supply + data)
X1: 16MHz crystal oscillator
X2: 32.768 kHz crystal oscillator
J2: STDC14 programming connector for STLINK-V3
J1: RS485 interface header connector
CN3: Connectivity expansion connector (for STEVAL-STWINWFV1)
CN4: Audio/sensor expansion connector
SD: microSD card socket
2.2.1
STM32L4R9ZI Cortex-M4F 120MHz 640Kb RAM
The STM32L4R9ZI devices is an ultra-low-power microcontroller (STM32L4+ Series MCU) based on the highperformance Arm Cortex-M4 32-bit RISC core, which operates at a frequency of up to 120 MHz.
The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all the Arm singleprecision data-processing instructions and all the data types. The Cortex-M4 core also implements a full set of
DSP (digital signal processing) instructions and a memory protection unit (MPU) which enhances application
security.
These devices embed high-speed memories (2 Mbytes of Flash memory and 640 Kbytes of SRAM), a flexible
external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), two
OctoSPI Flash memory interfaces and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The MCU embeds several protection mechanisms for embedded Flash memory and SRAM: readout protection,
write protection, proprietary code readout protection and a firewall.
These devices offer a fast 12-bit ADC (5 Msps), two comparators, two operational amplifiers, two DAC channels,
an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers
for motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four
digital filters for external sigma delta modulators (DFSDM). In addition, up to 24 capacitive sensing channels are
available.
They also feature standard and advanced communication interfaces such as:
•
Four I2Cs
•
Three SPIs
•
Three USARTs, two UARTs and one low-power UART
•
Two SAIs
•
One SDMMC
UM2777 - Rev 3
page 9/45
UM2777
Processing and connectivity
•
•
•
•
One CAN
One USB OTG full-speed
Camera interface
DMA2D controller
The device operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature
ranges from a 1.71 to 3.6 V for VDD power supply when using internal LDO regulator and a 1.05 to 1.32 V V DD12
power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design
of low-power applications.
Some independent power supplies are supported, such as an analog independent supply input for ADC, DAC,
OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, which can be supplied
independently down to 1.08 V. A VBAT input allows backup of the RTC and the registers. Dedicated VDD12 power
supplies can be used to bypass the internal LDO regulator when connected to an external SMPS.
RELATED LINKS
Visit the product web page for the STM32L4R9ZI micrcontroller
2.2.2
BlueNRG-M2 very low power application processor module for Bluetooth® low energy v5.0
The BlueNRG-M2 is a Bluetooth® low energy system-on-chip application processor certified module compliant
with BT specifications v5.0 and BQE qualified. The module simultaneously supports multiple roles and can act at
the same time as Bluetooth master and slave device.
The BlueNRG-M2 is based on the BlueNRG-2 system-on-chip and provides a complete RF platform in a tiny
form factor, integrating radio, embedded antenna and high frequency oscillators to offer a certified solution that
optimizes the final application time-to-market.
The BlueNRG-M2 can be directly powered by a pair of AAA batteries or any power source from 1.7 to 3.6 V.
RELATED LINKS
Visit the product web page for the BlueNRG-M2SA application module for Bluetooth® low energy v5.0 wireless technology
2.2.3
STEVAL-STWINWFV1 Wi-Fi expansion (not included in the kit) for the SensorTile wireless
industrial node (STWIN) kit
The STEVAL-STWINWFV1 expansion board (sold separately) adds 2.4 GHz Wi-Fi connectivity to the SensorTile
Wireless Industrial Node (STWIN) kit.
Through the CN3 connectivity expansion connector, the STEVAL-STWINWFV1 can be plugged into the STWIN
core system board.
It is based on the ISM43362-M3G-L44-E Wi-Fi module and its main features are:
•
802.11 b/g/n compatible
•
based on Broadcom MAC/Baseband/Radio device
•
fully contained TCP/IP stack
•
host interface: SPI up to 25 MHz
The RF power emitted is +9 dBm (limited by firmware).
The module operating band is 2400 MHz ~ 2483.5 MHz (2.4 GHz ISM Band).
RELATED LINKS
Visit the product web page for further details on the STEVAL-STWINWFV1
2.2.4
STR485LV 3.3V RS485 up to 20Mbps
The STR485 is a low power differential line transceiver for RS485 data transmission standard applications in
half-duplex mode. Data and enable signals are compatible with 1.8 V or 3.3 V supplies.
UM2777 - Rev 3
page 10/45
UM2777
Power management
Two speeds are selectable via the SLR pin: fast data rate up to 20 Mbps or slow data rate up to 250 kbps for
extended cables.
Excessive power dissipation caused by bus contention or faults is prevented by a thermal shutdown circuit that
forces the driver outputs into a high impedance state. The receiver has a fail-safe feature that guarantees a high
output state when the inputs are left open, shorted or idle.
RELATED LINKS
Visit the product web page for the STR485LV 3.3V RS485 up to 20Mbps
2.2.5
USB connector
The Micro-USB connector on the board can be used for both power supply and data transfer (USB Device only).
Different examples of USB class implementation can be found in STSW-STWINKT01 software package.
2.2.6
STSAFE-A110 authentication, state-of-the-art security for peripherals and IoT devices
The STSAFE-A110 is a highly secure solution that acts as a secure element providing authentication and secure
data management services to a local or remote host. It consists of a full turnkey solution with a secure operating
system running on the latest generation of secure microcontrollers.
The STSAFE-A110 can be integrated in IoT devices, smart-home, smart-city and industrial applications,
consumer electronics devices, consumables and accessories.
RELATED LINKS
Visit the product web page for the STSAFE-A110 authentication, state-of-the-art security for peripherals and IoT devices
2.2.7
microSD card socket
On the bottom side of the STWIN core system board is a microSD Card socket that is accessible even when
the board is mounted in the plastic box. The card is accessed through a 4-bit wide SDIO port for maximum
performance.
A couple of firmware examples involving high speed data logging on the SD card are available in the STSWSTWINKT01 software package.
2.2.8
Clock sources
There are two external clock sources on the STWIN core system board:
•
X1: 16 MHz high speed external (HSE) oscillator for the MCU.
•
X2: 32.768 kHz low speed external (LSE) oscillator for the RTC embedded in the MCU.
2.3
Power management
The STWIN core system board includes a range of power management features that enable very low power
consumption in final applications.
The main supply is through a lithium ion polymer battery (3.7 V, 480 mAh) and the integrated battery charger
(STBC02) with Vin [4.8 -5.5 V].
UM2777 - Rev 3
page 11/45
UM2777
Power management
Figure 12. Power and protection components
ESDALC6V1-1U2
Single Line ESD
protection
LDK130
Low Noise LDO
ST1PS01EJR
step-down
switching regulator
STBC02
Li-Ion linerar
battery charger
STM32L4R9ZIJ6
Microcontroller
Ultra Low Power
Cortex M4F@120MHz
USBLC6-2P6
USB ESD protection
EMIF06-MSD02N16
EMI filter and ESD
protection
Figure 13. Power and protection component locations
U1: EMIF06-MSD02N16 6-line EMI filter and ESD protection for T-Flash and microSD card interfaces
U10: LDK130 300 mA very low noise LDO
U14, U16: ST1PS01 400 mA Synchronous step-down converter
U15: STBC02 Li-Ion linear battery charger
U18: USBLC6-2 low capacitance ESD protection for USB
D1, D2, D3: Single-line low capacitance Transil for ESD protection
D4: Power Schottky rectifier (1A)
BATT: Battery connector
J4: Battery pins
J5: 5V Ext power supply connector
J6, J7, J9, J10: Current monitoring SMD jumper
PWR: Power button
UM2777 - Rev 3
page 12/45
UM2777
Power management
2.3.1
Battery connectors
The battery supply voltage (VBAT) may be provided by connecting the 480 mA LiPo battery included in the
STWIN kit to the dedicated battery connector, or by supplying an external voltage through the J4 connector.
Figure 14. Battery and J4 connectors for VBAT supply
GND
BAT_NTC
VBAT
1 VBAT
2 GND
3 2 1
2.3.2
Power supply
The STWIN core system board can receive power from different sources:
V_USB: through micro USB connector [5 V]
•
•
Vin: through J5 connector [4.8-5.5 V]. The current on this port needs to be limited to 2 A
•
VBAT: lithium ion polymer battery (3.7 V, 480 mAh), STBC02 battery charger integrated in the board
The battery is always optional. The STBC02 battery charger automatically checks the available power inputs and
selects one to power the system. When the battery is connected as well as one of the other sources, the STBC02
automatically charges the battery.
When battery-powered, the equipment is intended to work properly with an operating temperature of 35°C.
Without the battery, the equipment is intended to work properly with an operating temperature of 45°C.
Figure 15. Power circuits
STWIN core system board
USB
V_USB
SYS (5V or VBAT)
5V
J5
VBAT
STBC02
Battery
Charger
5V
µSDCard
RS485
VEXT
CN2
DCDC_1
STM32L4+
Sensors
Bluetooth
low energy
3V3_Ext
CN1
U16
3V3 DCDC
SYS
U14
3V3 DCDC
U10
2.7 LDO
DCDC_2
CN3 (Wi-Fi)
STSAFE
Analog Mic
OpAmp
CN2
(AMicArray)
J3
UM2777 - Rev 3
page 13/45
UM2777
Power management
2.3.3
Power ON/OFF procedure
If the STWIN core system board is not powered via battery, then the board will turn on and off when you connect
and disconnect an external supply, respectively.
Follow the steps below to power the board on and off when it is powered by a LiPo battery.
2.3.4
Step 1.
Push the PWR button for about a second to power the board on.
Power on is managed by the STBC02 battery charger WAKE-UP hardware feature.
Step 2.
Push the PWR button again to turn the board off.
In the application code examples provided with the software, the microcontroller detects the push
action and activates the battery charger SHUTDOWN command to switch the power supply off.
Power consumption evaluation
There are several test points and jumpers on the STWIN core system board available to monitor the electrical
performance of running applications. In particular, there are four jumpers for monitoring the current consumption
in each of the four main power supply domains on the board.
The best way to evaluate general power consumption is to remove both the battery and the USB cable and
provide 5 V directly on the J5 connector.
Figure 16. Power monitoring points
J6: Sensor current monitoring
J4: Battery supply
J7: STM32 digital power supply current monitoring
J9: BlueNRG-M2SA Bluetooth® low energy module current monitoring
J10: STEVAL-STWINWFV1 (Wi-Fi expansion) and STSAFE-A110 current monitoring
TP1, TP2: GND
TP3: DCDC_1 (3.3V)
UM2777 - Rev 3
page 14/45
UM2777
Buttons, LEDs and connectors
2.4
Buttons, LEDs and connectors
Figure 17. Buttons, LEDs and connectors
USR: User button
PWR: connected to the STBC02 for integrated WAKE-UP function and the STM32L4R9ZI MCU as generic USR button
RESET: connected to STM32 MCU reset pin (BLACK)
LED_C: Red LED connected to STBC02 and used for battery status feedback
LED1: Green LED connected to STM32
LED2: Orange LED connected to STM32
CN1: 40-pin flex general purpose expansion
CN2: STMod+ connector
CN3: 12-pin male connectivity expansion connector, suitable for the STEVAL-STWINWFV1 expansion board
CN4: 12-pin female sensor expansion connector, suitable for the STEVAL-STWINMAV1 analog microphone array expansion
board
Batt
2.4.1
Flex expansion connector
Figure 18. CN1 Flex connector top view
40
1
This is a general purpose expansion connector.
Table 1. CN1 pin descriptions
Pin No.
UM2777 - Rev 3
Description
STM32 pin
Default Signal
1
USART3_CTS
PB13
-
2
STMOD2
PD8/ PC3
USART3_TX/ SPI2_MOSI
3
STMOD3
PD9/ PD3
USART3_RX/ SPI2_MISO
4
STMOD4
PD1/ PB1
SPI2_CLK/ USART3_RTS
5
GND
-
-
6
VEXT
-
-
page 15/45
UM2777
Buttons, LEDs and connectors
Pin No.
Description
STM32 pin
Default Signal
7
I2C4_SCL
PD12
-
8
SPI2_MOSI_p2
PB15
-
9
SPI2_MISO_p2
PC2
-
10
I2C4_SDA
PD13
-
11
PC5/WKUP5
PC5
12
EX_RESET
PD11
-
13
EX_ADC
PA5
-
14
EX_PWM
PA15
-
15
VEXT
-
-
16
GND
-
-
17
PG12
PG12
EX_CN (ex tint)
18
PG10
PG10
TIM
19
PG9
PG9
TIM
20
PB14
PB14
TIM, DSFDMD2
21
PA9
PA9
-
22
PA10
PA10
-
23
PB11
PB11
DSI_TE,TIM,LPUART_TX
24
PC13
PC13
TAMP, WKUP
25
PB9
PB9
26
PB8
PB8
27
PE9
PE9
28
3V3_Ext
-
29
DSI_D1_N
-
30
DSI_D1_P
-
31
GND
-
32
DSI_D0_N
-
33
DSI_D0_P
-
34
SYS
-
35
DSI_CLK_N
-
36
DSI_CLK_P
-
37
3V3_Ext
-
38
PA0
PA0
ADC_IN5
39
PA1
PA1
ADC_IN6
40
SYS
WKUP5
SAI2
CAN, TIM, DSFDM,I2C1
TIM, DSFDMCLK
STM32 Display Serial Interface (DSI) Host
STM32 Display Serial Interface (DSI) Host
STM32 Display Serial Interface (DSI) Host
-
-
-
RELATED LINKS
View the vendor documentation on handling FH34SRJ series connectors
UM2777 - Rev 3
page 16/45
UM2777
Buttons, LEDs and connectors
2.4.2
STMod+ connector
Figure 19. STMod+ connector top views
Daughterboard
Host board
Male connector
Female connector
10
20
20
10
9
19
19
9
8
18
18
8
7
17
17
7
6
16
16
6
5
15
15
5
4
14
14
4
3
13
13
3
2
12
12
2
1
11
11
1
PCB
Edge
Border
PCB
Edge
Border
2.77 mm
7.62 mm
Table 2. STMod+ connector pin assignments and descriptions
Function(1) of the primary host mapped
STMod+ Pin number
1 SPIx_NSS(2) / UARTy_CTS
Description
Output / Input
2
SPIx_MOSIp(3)
/ UARTy_TX Output / Output
Output / Output
3
SPIx_MISOp(4)
/ UARTy_RX Input / Input
Input / Input
4 SPIx_SCK / UARTy_RTS Output / Output
Output / Output
5 GND Ground Reference
Ground reference
6 +5 V Power Supply(5)
Power supply
7 I2Cz_SCL Input / Output
Input / Output
8 SPIx_MOSIs(3) Output
Output
9 SPIx_MISOs(4) Input / Output
Input / Output
10 I2Cz_SDA Input / Output
Input / Output
11 INT(6) Input
Input
12 RESET Output
Output
13 ADC Input
Input
14 PWM Output
15 +5 V Power
Supply(5)
16 GND Ground Reference
Output
Power supply
Ground reference
17
GPIO(7)
Output / Input
18
GPIO(7)
Output / Input
19
GPIO(7)
Output / Input
20 GPIO(7)
Output / Input
1. If two functions are provided on a STMod+ connector pin, you can connect two different I/O ports from STM32: the firmware
manages the conflicts that may arise. MOSIs means used in Serial Daisy Chained-SPI mode and MOSIp means used in
Parallel SPI mode. More alternate functions may be available from STM32, refer to the User manual of the host board and
the corresponding STM32 datasheet available on www.st.com.
2. Instead of SPIx_NSS, a GPIO can be used as SPI Chip Select.
3. Pins 2 and 8 are the same SPIx_MOSI signals, but they must come from two different I/O ports.
UM2777 - Rev 3
page 17/45
UM2777
Buttons, LEDs and connectors
4. Pins 3 and 9 are the same SPIx_MISO signals, but they must come from two different I/O ports.
5. Power Supply is Output or Input, depending on host / daughterboard configuration.
6. INT is an interrupt line.
7. GPIO ports with many alternate functions (like UART, I²C, SPI and analog inputs/outputs) are privileged to offer optimum
flexibility.
RELATED LINKS
Read TN1238: STMod+ interface specification available on the ST website for more information
2.4.3
Connectivity expansion connector
Figure 20. CN3 connectivity connector top view
a6
a1
b6
b1
This connector is suitable for the STEVAL-STWINWFV1 Wi-Fi expansion board.
Table 3. CN3 pin descriptions
Pin
2.4.4
Description
a1
GND
a2
CS/USART3_CTS
a3
STM32 pin
-
Pin
Default Signal
STM32 pin
b1
WIFI_DRDY
PE11
PB13
b2
WIFI_WAKEUP
PD7
SPI1_CLK/USART3_RTS
PB1
b3
WIFI_BOOT0
PF12
a4
SPI1_MISO/USART3_RX
PD9
b4
WIFI_RST
PC6
a5
SPI1_MOSI/USART3_TX
PD8
b5
I2C3_SDA
PG8
a6
3V3 Output (VDD_WIFI)
b6
I2C3_SCL
PG9
-
Sensor expansion connector
Figure 21. CN4 sensor connector top view
a1
a6
b1
b6
This connector is suitable for the STEVAL-STWINMAV1 analog microphone expansion board.
UM2777 - Rev 3
page 18/45
UM2777
Protective plastic box
Table 4. CN4 pin descriptions
Pin
2.5
Description
STM32 pin
Pin
Default Signal
STM32 pin
a1
5V/Batt Output
-
b1
DFSDM1_D7
PB10
a2
3V3 Output
-
b2
DFSDM1_CKOUT
PE9
a3
SAI1_FS_A - DFSDM_D3
b3
I2C2_SCL
PF1
a4
GND
b4
I2C2_SDA
PF0
a5
SAI1_SD_A/ SAI1_SD_B/DFSDM_D2
b5
SAI1_SCK_A
PE5
a6
GND
b6
SAI1_MCLK_A/DFSDM_D5
PE2
PE4
PE6
-
Protective plastic box
The plastic case is designed to protect and hold the STWIN core system board and the LiPo battery together.
The case can also house two magnets (not included in the STEVAL-STWINKT1B kit), allowing you to stick the
wireless industrial node on appropriate metallic areas in the monitored equipment.
RELATED LINKS
The system was tested with the following 25x8x3mm magnets
2.6
STLINK-V3MINI debugger and programmer for STM32
The STLINK-V3MINI is a standalone debugging and programming mini probe for STM32 microcontrollers, with
JTAG/SWD interfaces for communication with any STM32 microcontroller located on an application board.
It provides a Virtual COM port interface for host PCs to communication with target MCUs via UART.
The STLINK-V3MINI is supplied with an STDC14 to STDC14 flat cable.
Figure 22. STLINK-V3MINI and STDC14 cable
UM2777 - Rev 3
page 19/45
UM2777
How to program the board
3
How to program the board
3.1
How to program STWIN with STLINK-V3MINI
Follow the procedure below to program the STWIN core system board.
Step 1.
Connect the STWIN core system board to the STLINK-V3MINI programmer using the 14-pin flat cable.
The programmer and the cable are included in the STEVAL-STWINKT1B hardware kit.
Step 2.
Connect both the boards to a PC using micro USB cables.
Figure 23. STLINK-V3MINI connected to STWIN core system board
Step 3.
3.2
Download the firmware onto the core system board; you can either:
–
download one of the sample application binaries provided using STM32CubeProgrammer or
ST-LINK Utility
–
recompile one of the projects with your preferred IDE (EWARM, Keil, STM32CubeIDE)
How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer
"USB mode"
The STEVAL-STWINKT1B can also be reprogrammed via USB using the STM32CubeProgrammer "USB mode".
To enter "Firmware upgrade" mode you must follow the procedure below:
UM2777 - Rev 3
Step 1.
Unplug the STWIN core system board.
Step 2.
Press the USR button.
Step 3.
While keeping the button pressed, connect the USB cable to the PC.
Now the board is in DFU mode.
page 20/45
UM2777
How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer "USB mode"
Step 4.
You can upgrade the firmware by following the steps below:
Step 4a. Open STM32CubeProgrammer.
Step 4b. Select [USB] on the top-right corner.
Figure 24. STM32CubeProgrammer - USB mode selection
Step 4c. Click on [Connect].
UM2777 - Rev 3
page 21/45
UM2777
How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer "USB mode"
Figure 25. STM32CubeProgrammer - connection
Step 4d. Go to the [Erasing & Programming] tab.
Step 4e. Search for the new .bin or .hex binary file to be flashed into the board.
Step 4f.
Click on [Start Programming].
Figure 26. STM32CubeProgrammer - programming
UM2777 - Rev 3
page 22/45
UM2777
STWIN assembly steps
4
STWIN assembly steps
To assemble your SensorTile Wireless Industrial Node, you need the following components:
STWIN core system board
•
•
4x M3 bolts and nuts
•
Plastic box (2 parts)
•
Battery
•
2x Magnets (optional - not included in the kit):
–
RS Stock No. 177-4040 Brand Eclipse Mfr Part No.N859
Figure 27. Exploded cad drawing of STWIN node components
UM2777 - Rev 3
page 23/45
UM2777
STWIN assembly steps
Step 1.
(Optional) Insert the magnets in the rectangular recesses in the bottom of the main case.
Figure 28. Optional magnets inserted in main case
Step 2.
Slide the U-shaped bracket into the main case.
This will secure the magnets if they are present.
Step 3.
Insert the STWIN core system board with the correct orientation.
Figure 29. Core system board inserted in main case
UM2777 - Rev 3
page 24/45
UM2777
STWIN assembly steps
Step 4.
Fasten the core system board to the case using the nuts and bolts provided with the kit.
Figure 30. Core system board fastened with bolts
UM2777 - Rev 3
page 25/45
UM2777
How to run the HSDatalog application
5
How to run the HSDatalog application
The HSDatalog (High-Speed Datalog) application is part of the FP-SNS-DATALOG1 STM32ODE function pack.
It allows you to save data from any combination of sensors and microphones configured up to their maximum
sampling rate. Sensor data are stored on a micro SD Card, SDHC (Secure Digital High Capacity) formatted with
the FAT32 file system, or can be streamed to a PC via USB.
At startup, the application tries to load the device configuration from the SD card (if any) and then goes to Idle
state, waiting for the start command either via USB, push button or Bluetooth® low energy.
Figure 31. HSDatalog data flow
NO SD Card or
not found
JSON config
POWER ON
SDCard inserted and
JSON config found
LOAD CUSTOM
CONFIG
IDLE
USER Button or
Bluetooth low energy
BLE Command
LOG TO
SDCARD
USB cmd
STOP
USB cmd
START
LOG VIA USB
Together with HSDatalog application, inside the Utilities folder, MATLAB and Python scripts are available to
automatically read and plot the data saved by the application.
The script has been successfully tested with MATLAB v2019a and Python 3.7.
The 'ReadSensorDataApp.mlapp' MATLAB app is also available, developed and tested using the App Designer
tool available in MATLAB v2019a.
UM2777 - Rev 3
page 26/45
UM2777
How to run the HSDatalog application
Figure 32. Folder structure in the SD card
The script performs the following actions:
•
Reads and decodes the JSON file
•
Reads the raw data and uses the information from the JSON to translate them into readable data (data +
timestamp)
•
Plots the data
Note:
UM2777 - Rev 3
The handling of JSON scripts requires MATLAB v2019a or above.
page 27/45
UM2777 - Rev 3
6
Schematic diagrams
Figure 33. STEVAL-STWINKT1B schematic (1 of 7)
V_USB
U18
USBLC6-2P6
VBUS
3
1
OTG_FS_DM
OTG_FS_DP
2
D3
D4
D2
D1
USB-MICRO
1
2
3
4
5
4
6
C27
GND
3.3V DC-DC
EXT 5V
V_USB
5
USB
V_USB
5V
D4
2
SYS
J5
1
ST1PS01EJR
A3
B2
1
2
C22
100nF
SH2
SH1
A1
C1
22uF
CON2
D2
D1
D0
L1
2.2uH
SB23
0R
C24
E1
PGOOD
GND
DCDC_1
3V3 400mA.
E3
C3
VOUT
SW
VIN
EN
10uF
U16
Battery management
SB17
DCDC_1
SB12
NC
0R
3V3_SD_485
DCDC_1
C5
D5
F3
E4
E3
E2
F2
F1
A4
D4
C3
D3
R16
20K
100mA
10mA
LDO
SYS1
SYS2
CHG
CEN
SW1_I
SW1_OA
SW1_OB
RESET_NOW
RST_PENDING
nRESET
SW_SEL
SW2_I
SW2_OA
SW2_OB
NC
NC2
BATMS
NTC
C20 1uF
F4
1
LED_C
C_EN
A1
B2
C2
C1
R20
100k
R14
100k
WAKEUP
R19
22uF
D1
D0
GND
VOUT
SW
PGOOD
DCDC_2
3V3 400 mA
E3
C3
L2
2.2uH
R15
E1
1M
C23
10uF
U14
PGOOD
SW_SEL
2.7 V Analog LDO
NC (10k )
0R
DCDC_1
C26
D2
D2
2
TP7
BATMS
BAT_NTC R13
B3
A2
A5
B5
A1
C1
C18
VIN
EN
Red
SW_SEL
C4
D1
R12
100k
R22
2k
CHRG
E1
B1
ST1PS01EJR
A3
B2
DCDC_2_EN
VBat
BATSNS
BATSNSFV
BAT1
BAT2
ISET
IPRE
A3
B4
R17
2k
IN1
IN2
NC
DCDC_1
BUTTON_PWR
U10
6
4
4.7uF
IN
EN
C12
1uF
STBC02AJR
2V7A
LDK130PU-R
OUT
ADJ
1
3
R10
R11
C15
1uF
47.5K
20K
2
5
3V3_Ext
DCDC_2
E5
F5
3V3 150mA. SB22
GND
AGND
SYS
C25 10uF
U15
DCDC_1
GND
NC
5V
C21 10uF
SYS
3V3_LDO
BATMS
VBat
VBat
BUTTON_PWR
BATT
J4
1
2
R21
0R
1
4
2
3
Battery monitor
(4.2 V -> 3 V)
BAT_NTC
1
3
2
1
D1
ESDALC6V1-1U2
TP2
1
uC_ADC_BATT
TH
DCDC_1
TP3
1
1
TH
TH
R23
100K
VBat
2
Battery Connector
TP1
R18
56K
PWR
STRIP254P-M-2
UM2777
Schematic diagrams
page 28/45
UM2777 - Rev 3
Figure 34. STEVAL-STWINKT1B schematic (2 of 7)
VEXT
DCDC_1
3V3_Ext
SYS
USART3_CTS
DCDC_1
STG3692
2
SYS
VEXT
15
1
4
6
SPI2_CLK
USART3_RTS
7
9
12
14
5V
VCC
3S1
3S2
4S1
4S2
U17
D1
D2
3-4SEL
D3
D4
GND
3
1-2SEL
16
5
STMOD2
STMOD3
10
3-4SEL
8
13
STMOD4
VEXT
STMOD2
STMOD3
STMOD4
I2C4_SCL
SPI2_MOSI_p2
SPI2_MISO_p2
I2C4_SDA
STMod+ interface
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
I2C4_SCL
SPI2_MOSI_p2
SPI2_MISO_p2
I2C4_SDA
PC5/WKUP5
EX_RESET
EX_ADC
EX_PWM
STMOD2
STMOD3
STMOD4
WKUP5
11
J3
1
2
3
USART3_CTS
1-2SEL
1S1
1S2
2S1
2S2
NC
USART3_TX
SPI2_MOSI
USART3_RX
SPI2_MISO
17
C60
100nF
PC5/WKUP5
EX_RESET
EX_ADC
EX_PWM
PB14
PG9
PG10
PG12
PG12
PG10
SAI2
PG9
PB14
PA9
USART1
PA10
PB11
PC13
PB9
CAN, TIM, DSFDM,I2C1
PB8
PE9
EX_CN
TIM
TIM
TIM,DSFDMD2
DSI_TE,TIM,LPUART_TX
TAMP, WKUP
TIM, DSFDMCLK
DSI_D1_N
DSI_D1_P
DSI_D0_N
DSI_D0_P
DSI_CLK_N
DSI_CLK_P
PA0
PA1
ADC_IN5
ADC_IN6
CN1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
CN2
FH34SRJ-40S-0.5SH(99)
UM2777
Schematic diagrams
page 29/45
3V3_Sensors
DCDC_1
C57
100nF
3V3_Sensors
11
10
9
8
SPI3_MISO
1
2
3
4
INT2_DHC
INT1_ADWB
14
13
12
IIS3DWB
SDA
SCL
CS
SDO_Aux
OCS_Aux
INT2
VDD
U11
SDO/SA0
SDx
SCx
INT1
SDO_Aux
OCS_Aux
INT2
VDD
VDDIO
GND1
GND2
14
13
12
SDO/SA0
SDx
SCx
INT1
3V3_Sensors
TP4
TP5
TP6
TP8
TP9
3V3_Sensors
11
10
9
8
3V3_Sensors
SPI3_CLK
SPI3_MOSI
SPI3_MISO
I2C2_SCL
I2C2_SDA
INT2_ADWB
3V3_Sensors
I2C Addr: 1001000b
3V3_Sensors
5
6
7
INT1_DHC
SDA
SCL
CS
1
2
3
4
3V3_Sensors
3
STTS751
U6
SCL
SDA
VDD
C8
100nF
6-Axis
Acc + Gyro
Vibrometer
5
3V3_Sensors
10
1
100nF
C59
C58
INT2_DH
100nF 10uF
C37
VDDIO
VDD
GND2
INT
10
9
8
7
SPI3_CLK
CS_DH
INT_M
SPI3_MISO
SPI3_MOSI
1
2
3
4
11
12
INT2
INT1
NC2
NC1
SCL
NC3
CS
SDA/I/O
4.7uF
IIS2DH
SCL/SPC
CS
SDO/SA0
SDA/I/O
VDDIO
VDD
GND3
GND2
C40
100nF
10
9
8
7
5
6
Accelerometer
3V3_Sensors
I2C2_SCL
I2C2_SDA
2
4
5
6
7
I2C Addr: 1011101b
Pressure
3V3_Sensors
1
6
C31
U2HTS221
VDD
CS
SCL
SDA
2
4
I2C2_SCL
I2C2_SDA
I2C Addr: 1011111b
100nF
C19
0.22uF
Magnetometer
U3
LPS22HH
3V3_Sensors
5
6
I2C2_SDA
1
2
3
4
C1
GND
I2C2_SCL
U12
3V3_Sensors
U13IIS2MDC
RES
GND
12
11
I2C Addr: 0011110b
3V3_Sensors
I2C2_SMBA
INT_STT
SCL/SPC
VDD
VDD_IO SDA/SDI/SDO
SDO/SA0
CS
INT_DRDY
GND1
GND2
C13
8
9
100nF 10uF
R5
7.5k
Temperature
3V3_Sensors
C11
I2C2_SCL R4
I2C2_SDA 7.5k
1
6
2
4
EV
Therm
GND
3V3_Sensors
C14
2
Sensors and digital mic current monitoring
ISM330DHCX
VDDIO
GND1
GND2
SPI3_MISO
U9
C17
100nF
100nF
CS_ADWB
SPI3_CLK
SPI3_MOSI
5
6
7
3V3_Sensors
C56
100nF
3V3_Sensors
J6
1
3
CS_DHC
SPI3_CLK
SPI3_MOSI
C16
RES
UM2777 - Rev 3
Figure 35. STEVAL-STWINKT1B schematic (3 of 7)
3V3_Sensors
5
GND
DRDY
3
INT_HTS
Humidity & Temperature
UM2777
Schematic diagrams
page 30/45
2
4
6
8
10
12
14
LED1
LED2
SWDIO
SWDCLK
R34
1k
R35
560R
RESET
USART2_TX
VDD_uC
2V7A
M5
J5
H5
B6
A5
B5
D5
C5
B4
A3
L9
K9
L10
M11
K10
J9
CHRG
USART3_RTS
INT2_ADWB
SPI3_CLK
SPI3_MISO
SPI3_MOSI
DFSDM1_DATIN5
EXTI_LINES
EXTI0 --> USR Button
EXTI1 --> BLE
EXTI2 --> INT2_DH or INT2_ADWB
EXTI3 --> BLE_TEST9
EXTI4 --> INT2_DHC
EXTI5 --> WKUP_INT
EXTI6 --> HTS
EXTI7 --> PGOOD
EXTI8 --> INT1_DLC
EXTI9 --> Mag
EXTI10 --> PWR_BTN
EXTI11 --> WiFi
EXTI12 --> EX_CN
EXTI13 --> TAMP,WKUP Ext
EXTI14 --> INT1_ADWB
EXTI15 --> INT_STT
PB8
PB9
DFSDM1_D7
PB11
SD_DETECT
USART3_CTS
PB14
SPI2_MOSI_p2
H3
J2
H4
J3
L5
K5
D12
E9
E10
C12
C9
A9
D9
E4
D1
D2
ADC1_IN1
ADC1_IN2
SPI2_MISO_p2
SPI2_MOSI
uC_ADC_BATT
PC5/WKUP5
WIFI_RST
SDMMC_D0
SDMMC_D1
SDMMC_D2
SDMMC_D3
SDMMC_CK
RTC_TAMP1
PC13
OSC32_IN
OSC32_OUT
SPI2_CLK
SDMMC_CMD
SPI2_MISO
USART2_RTS
USART2_TX
USART2_RX
WIFI_WAKEUP
USART3_TX
USART3_RX
BUTTON_PWR
EX_RESET
I2C4_SCL
I2C4_SDA
CS_DH
STM32L4R9ZIJ6
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
PD8
PD9
PD10
PD11
PD12
PD13
PD14
PD15
PG0
PG1
PG2
PG3
PG4
PG5
PG6
PG7
PG8
PG9
PG10
PG12
PG13
PH0-OSC_IN
PH1-OSC_OUT
PH3-BOOT0
DSIHOST_D1P
DSIHOST_D1N
DSIHOST_D0P
DSIHOST_D0N
DSIHOST_CKP
DSIHOST_CKN
NRST
BOOT0-PE0
LED1
SAI1_MCLK_A
BLE_TEST9
SAI1_FS_A/DFSDM_D3
SAI1_SCK_A
SAI1_SD_A
SAI1_SD_B
INT1_DHC
BLE_TEST8
WIFI_DRDY
PE12
DCDC_2_EN
INT1_ADWB
INT_STT
E3
E2
E1
E5
F3
F4
F2
F5
F1
G4
G3
K6
G5
J6
M7
H6
Close to
VDDUSB
C39
C36
100nF
1uF
VDD_uC
Close to VDD/VDDIO2
C35
C34
C38
C32
C47
C50
C45
C42
C41
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
4.7uF
WIFI_BOOT0
CS_DHC
3-4SEL
CHRG
1-2SEL
BLE_INT
SPI1_CLK
SPI1_MISO
SPI1_MOSI
BLE_SPI_CS
INT_HTS
I2C3_SCL
I2C3_SDA
PG9
PG10
D6
C6
PG12
OSC_IN
OSC_OUT
BOOT0-PE0
H11
H12
DSI_D1_P
DSI_D1_N
K11
K12
DSI_D0_P
DSI_D0_N
J11
J12
DSI_CLK_P
DSI_CLK_N
J1
VDD_uC
DFSDM1_CKOUT
PE9
I2C2_SDA
I2C2_SCL
I2C2_SMBA
CS_WIFI
INT2_DHC
CS_ADWB
SW_SEL
PGOOD
C_EN
INT_M
STSAFE_RESET
L7
M8
F12
F7
F10
F8
F9
E11
E8
F6
E6
H1
H2
A4
LED2
Orange
1
L12
B1
C11
A6
E12
K2
L1
VREF+
VDDA
VBAT
VDDUSB
VCAPDSI
PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7
PF8
PF9
PF10
PF11
PF12
PF13
PF14
PF15
A2
C4
C3
B3
D3
C2
D4
G6
K7
J7
L8
H7
M9
J8
M10
K8
2
STM32 Current monitoring
LED1
Green
PE0
PE1
PE2
PE3
PE4
PE5
PE6/WKUP3
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PC0
PC1
PC2
PC3
PC4
PC5/WKUP5
PC6
PC7
PC8
PC9
PC10
PC11
PC12
PC13/WKUP2
PC14-OSC32_IN
PC15-OSC32_OUT
C8
B8
D8
A8
C7
D7
B7
E7
H10
H9
H8
G11
G9
G10
G8
G7
LED2
VDDIO2_1
VDDIO2_2
A11
B2
G1
G12
L11
M2
M6
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PB9
PB10
PB11
PB12
PB13
PB14
PB15
2.2uF
VSSA/VREF-
EX_PWM
VSSDSI
SWDIO
SWDCLK
BLE_RST
PA9
PA10
OTG_FS_DM
OTG_FS_DP
VSS9
VSS8
VSS7
VSS6
VSS5
VSS4
VSS3
VSS2
VSS1
DAC1_OUT1
EX_ADC
PA0/WKUP1
PA1
PA2/WKUP4
PA3
PA4
PA5
PA6
PA7
PA8
PA9
PA10
PA11
PA12
PA13/SWDIO
PA14/SWCLK
PA15
VDD1
VDD2
VDD3
VDD4
VDD5
VDD6
VDD7
K3
L2
L3
M3
K4
L4
J4
M4
D11
D10
C10
B12
B11
B10
A10
B9
PA0
PA1
INT2_DH
VDD_uC
J7
1
STDC14
U4
DCDC_1
C7
2
USART2_RX
1
3
5
7
9
11
13
1
VDD_uC
2
UM2777 - Rev 3
Figure 36. STEVAL-STWINKT1B schematic (4 of 7)
J2
VDD_uC
R3
4.7k
R2
4.7k
R32
4.7k
Close to
VREF/VDDA
R33
4.7k
2V7A
I2C2_SCL
I2C2_SDA
I2C4_SCL
I2C4_SDA
C44
C48
C46
100nF
1uF
10nF
Differential pairs
100 OHM
6.8pF
C43
OSC_IN
1
RESET
X1
2
K1
J10
M12
M1
L6
G2
F11
C1
A12
A7
A1
C5
OSC32_IN
4
3
C49
5.6pF
SP1
X2
32.7680KHZ
AGND
RESET
1
USR/BOOT
4
BOOT0-PE0
D2
2
1
1
RESET
3
4
2
3
5.6pF
R1
10k
ESDALC6V1-1U2
100nF
2
2
6.8pF
OSC32_OUT
1
D3
C1
ESDALC6V1-1U2
C6
VDD_uC
USR
16MHz
OSC_OUT
UM2777
Schematic diagrams
page 31/45
UM2777 - Rev 3
Figure 37. STEVAL-STWINKT1B schematic (5 of 7)
3V3_Sensors
M2
CLK
LR
C2
100nF
2
C30
1uF
DOUT
4
AudioCoupon Connector
DFSDM1_DATIN5
SYS
GND
GND
GND
GND
DFSDM1_CKOUT
IMP34DT05
VDD
3
DCDC_1
a1
a2
a3
a4
a5
a6
5A
5B
5C
5D
1
SAI1_FS_A/DFSDM_D3
MREF
R28
10k
2V7A
MP23ABS1
VDD
DOUT
1
M1
R29160
GND1
GND2
GND3
5
C10
100nF
C52
1uF
SAI1_SD_A
SAI1_SD_B
DFSDM_D2
DFSDM_D5
DFSDM1_D7
DFSDM1_CKOUT
I2C2_SCL
I2C2_SDA
SAI1_SCK_A
SAI1_MCLK_A
PE12
M1P_FILT
C54
10nF
SD Card
2
3
4
C55
1uF
M1
HP Filter --> fc = 15.9 Hz
LP Filter --> fc = 99.4 KHz
DAC for mic bias
CN4
M55-6001242R
b1
b2
b3
b4
b5
b6
U1 EMIF06-MSD02N16
3V3_SD_485
SD_DETECT
2V7A
A2
2V7A
A1
M1P
OUT1
Vcc+IN1
C3
MREF_DIV
C2
C1
R8
1M
M1P_FILT
C3
C4
100nF
10uF
C9
10nF
R6100k
RS485
3V3_SD_485
USART2_TX
3V3_SD_485
VL
R
DE
RE
D
11
USART2_RX
USART2_RTS
EP
U19 STR485LV
1
2
3
4
5
VCC
B
A
SLR
GND
10
9
8
7
6
SD
R74.7k
MREF
3V3_SD_485
1
2
3
SB24 NC
R24 62
DETCB
DETCA
DETGNDA
DETGNDB
J1
R25 62
SB25 0R
DAT1
DAT0
GND
CLK
VDD
CMD
CD/DAT3
DAT2
8
7
6
5
4
3
2
1
ADC1_IN2
Vcc+
+IN2
B1
C51
100nF
OUT2
R9
1M
U8
TS922EIJT
16
15
14
13
12
11
10
9
GND
A3
SB110R
-IN1
MREF
ADC1_IN1
-IN2
B3
DAC1_OUT1
WP/CD
RDATA_VCC
RDAT3_GND
VCC
DAT2_In
DAT2_Ex
DAT3_In
DAT3_Ex
CMD_Ex
CMD_In
CLK_In
CLK_Ex
DAT0_In
DAT0_Ex
DAT1_In
DAT1_Ex
17
SB10NC
SDMMC_D2
SDMMC_D3
SDMMC_CMD
SDMMC_CK
SDMMC_D0
SDMMC_D1
1
2
3
4
5
6
7
8
C29
10nF
NC
10B
10A
9A
9B
SD_DETECT
Micro-SD
Card Removed --> CLOSE
Card Inserted --> OPEN
C28
100nF
UM2777
Schematic diagrams
page 32/45
UM2777 - Rev 3
Figure 38. STEVAL-STWINKT1B schematic (6 of 7)
U1
EMIF06-MSD02N16
3V3_SD_485
SD_DETECT
RDATA_VCC
WP/CD
RDAT3_GND
VCC
DAT2_In
DAT2_Ex
DAT3_Ex
DAT3_In
CMD_Ex
CMD_In
CLK_Ex
CLK_In
DAT0_Ex
DAT0_In
DAT1_Ex
DAT1_In
16
15
14
13
12
11
10
9
SD Card
C3
C4
100nF
10uF
SD
DAT1
DAT0
GND
CLK
VDD
CMD
CD/DAT3
DAT2
8
7
6
5
4
3
2
1
17
GND
SDMMC_D2
SDMMC_D3
SDMMC_CMD
SDMMC_CK
SDMMC_D0
SDMMC_D1
1
2
3
4
5
6
7
8
DETCB
DETCA
DETGNDA
DETGNDB
3V3_SD_485
3V3_SD_485
C28
100nF
EP
USART2_TX
VL
R
DE
RE
D
VCC
B
A
SLR
GND
10
9
8
7
6
11
1
2
3
4
5
USART2_RX
USART2_RTS
SB24
SB25
NC
0R
SD_DETECT
Micro-SD
3V3_SD_485
STR485LV
U19
10B
10A
9A
9B
R25
62
R24
62
J1
1
2
3
C29
10nF
Card Removed --> CLOSE
Card Inserted --> OPEN
NC
RS485
UM2777
Schematic diagrams
page 33/45
DCDC_1
Default ON
VDD_BLE
0R
0R
0R
SB3
SB2
SB1
SPI1_MOSI
SPI1_MISO
SPI1_CLK
BLE_SPI_MOSI
BLE_SPI_MISO
BLE_SPI_SCK
J8
NC
NC
NC
1
2
3
4
5
2
BLE
BLE Current monitoring
BLE_SWDCLK
BLE_RST
VDD_BLE
STRIP254P-M-5-90-SMD
U5
1
2
3
4
5
BLE_TEST8
BLE_TEST9
BLE_INT
Default OFF
ADC IN2
ADC IN1
DIO4/I2C_CLK
DIO5/I2C_SDA
VBLUE
Male Conn
SPI1_MOSI
SPI1_MISO
SPI1_CLK
CS_WIFI
SB21
SB20
SB19
SB18
0R
0R
0R
0R
USART3_TX
USART3_RX
USART3_RTS
USART3_CTS
SB16
SB15
SB14
SB13
NC
NC
NC
NC
Default OFF
CN3
a6
a5
a4
a3
a2
a1
b6
b5
b4
b3
b2
b1
I2C3_SCL
I2C3_SDA
WIFI_RST
WIFI_BOOT0
WIFI_WAKEUP
WIFI_DRDY
DIOA12
BT_RESET
DIO1/SPI_CS
DIO3/SPI_MOSI
DIO2/SPI_MISO
DIO0/SPI_CLK
BLE_SWDIO
BLE_SWDCLK
BLE_CS
SB8
SB7
SB9
BLE_INT
DCDC_2
M55-7001242R
WIFI
R31
4.7k
STSAFE_RESET
1
VDD_WIFI
2
Wi-Fi Current monitoring
C33
100nF
0R
NC
NC
BLE_SPI_CS
USART2_TX
USART2_RX
STSAFE-A100
U7
DCDC_2
J10
BLE_RST
BLE_CS
BLE_SPI_MOSI
BLE_SPI_MISO
BLE_SPI_SCK
R30
4.7k
I2C3_SDA
I2C3_SCL
DCDC_2
20
19
18
17
16
15
6
7
8
9
10
11
12
13
14
Default ON
R26
4.7k
BlueNRG-M2SA
DIO14/ANATEST0
DIO7/BOOT/UART_CTS
GND
DIO6/UART_RTS
DIO8/UART_TXD
DIO11/UART_RXD
DIO9/TCK/SWTCK
DIO10/TMS/SWTDI
ANATEST1
R27
47k
VDD_WIFI
VDD_BLE
BLE_SWDIO
23
22
21
SB6
SB5
SB4
SPI2_MOSI
SPI2_MISO
SPI2_CLK
VDD_BLE
J9
1
NC#23
NC#22
NC#21
UM2777 - Rev 3
Figure 39. STEVAL-STWINKT1B schematic (7 of 7)
C53
1
2
3
4
STSAFE-A110
RESET
VCC
NC#1
GND
NC#3
SCL
NC#2
SDA
8
7
6
5
I2C3_SCL
I2C3_SDA
100nF
SO8N
TAMPER
RTC_TAMP1
UM2777
Schematic diagrams
page 34/45
UM2777
Bill of materials
7
Bill of materials
Table 5. Bill of materials
Item
Q.ty
Ref.
1
1
BATT
2
1
CN1
3
1
CN2
4
1
CN3
5
1
CN4
6
30
C1, C2, C3, C8,
C10, C13, C14,
C16, C17, C27,
C28, C31, C32,
C33, C34, C35,
C38, C39, C40,
C42, C44, C45,
C47, C50, C51,
C53, C56, C57,
C59, C60
7
7
8
Part / Value
Description
Battery Connector
Amass
Manufacturer
Order code
Molex
78171-0003
Hirose
FH34SRJ-40S-0.5SH(99)
Samtec
SQT-110-01-F-D-RA
M55 series 12 pin
connector, 1.27pitch
Harwin
M55-7001242R
M55 series 12 pin
connector - Female,
1.27pitch
Harwin
M55-6001242R
100nF, 16V, ±10%
CAP CER X7R 0402,
0402 (1005 Metric)
Murata
Electronics North
America
GRM155R71C104KA88J
C4, C11, C21,
C23, C24, C25,
C58
10µF, 10V, ±20%
CAP CER X5R 0402,
0402 (1005 Metric)
Samsung ElectroMechanics
CL05A106MP8NUB8
America, Inc.
2
C5, C6
5.6pF, 10V, ±1%
CAP CER C0G/NP0
0402, 0402 (1005
Metric)
Yageo
9
1
C7
2.2µF, 10V, ±20%
CAP CER X5R 0402,
0402 (1005 Metric)
Wurth Electronics
Wurth-885012105013
Inc.
10
4
C9, C29, C46, C54 10nF, 25V, ±10%
CAP CER X7R 0402,
0402 (1005 Metric)
AVX Corporation
04023C103KAT2A
11
8
C12, C15, C20,
C30, C36, C48,
C52, C55
1µF, 10V, ±10%
CAP CER X5R 0402,
0402 (1005 Metric)
Taiyo Yuden
JMK105BJ105KV-F
12
2
C18, C22
22µF, 10V, ±20%
CAP CER X5R 0603,
0603 (1608 Metric)
Taiyo Yuden
LMK107BBJ226MA-T
13
1
C19
0.22µF, 16V, ±10%
CAP CER X7R 0402,
0402 (1005 Metric)
Murata
Electronics North
America
GRM155R71C224KA12D
14
3
C26, C37, C41
4.7µF, 10V, ±20%
CAP CER X5R 0402,
0402 (1005 Metric)
Murata
Electronics North
America
GRM155R61A475MEAAD
15
2
C43, C49
6.8pF, 10V, ±5%
CAP CER C0G/NP0
0402, 0402 (1005
Metric)
Murata
Electronics North
America
GRM0225C1E6R8CA03L
16
3
D1, D2, D3
Single-line low
capacitance Transil™
for ESD protection,
ST0201
ST
ESDALC6V1-1U2
17
1
D4
Power Schottky
rectifier, STmite
ST
STPS120M
UM2777 - Rev 3
HEADER 10
1A
CC0402BRNPO9BN5R6
page 35/45
UM2777
Bill of materials
Item
Q.ty
Description
Manufacturer
Order code
18
1
J1
N.M.
Stripline for RS485 (not
mounted)
-
-
19
1
J2
STDC14
STDC14 - ARM MIPI10
Samtec
compatible
20
1
J3
CON5_1
V_EXT selector
-
-
21
1
J4
STRIP254P-M-2
-
-
22
1
J5
CON2
Morsettiera a 2 vie,
passo 2.54mm
-
-
23
1
J6
0 OHM 1206 or
2.54 Jumper
Sensors and digital
mic current monitoring:
RES SMD
Yageo
AF1206JR-070RL
24
1
J7
0 OHM 1206 or
2.54 Jumper
STM32 Current
monitoring: RES SMD
Yageo
AF1206JR-070RL
25
1
J8
N.M.
STRIP254P-M-5-90SMD (not mounted)
26
1
J9
0 OHM 1206 or
2.54 Jumper
Bluetooth® low energy
current monitoring:
RES SMD
Yageo
AF1206JR-070RL
27
1
J10
0 OHM 1206 or
2.54 Jumper
Wi-Fi Current
monitoring: RES SMD
Yageo
AF1206JR-070RL
28
1
LED_C
Red
LED, LED_0402
Vishay
Semiconductor
Opto Division
VLMS1500-GS08
29
1
LED1
Green
LED, LED_0402
Panasonic
Electronic
Components
LNJ347W83RA
30
1
LED2
Orange
LED, LED_0402
Panasonic
Electronic
Components
LNJ847W86RA
31
2
L1, L2
2.2uH, ±20%
Inductor, 2520
Wurth
Wurth-74438323022
32
1
M1
1.3A
MEMS audio sensor
ST
IMP23ABSU
33
1
M2
MEMS audio sensor
ST
IMP34DT05
34
2
USR, PWR
4.2x3.2x2.5mm,
white
SW PUSHBUTTONSPST-2
ALPS
SKRPABE010
35
1
RESET
4.2x3.2x2.5mm,
black
SW PUSHBUTTONSPST-2
ALPS
SKRPADE010
36
1
R1
10k, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-0710KL
37
8
R2, R3, R7, R26,
R30, R31, R32,
R33
4.7k, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
TE Connectivity
Passive Product
CRG0402F4K7
38
2
R4, R5
7.5k, 100ppm/C,
1/16W, ±5%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402JR-077K5L
39
4
R6, R12, R14, R20
100k, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
TE Connectivity
Passive Product
CRG0402F100K
40
3
R8, R9, R15
1M, 100ppm/C,
±1%
RES SMD 0402, 0402
(1005 Metric)
TE
CONNECTIVITY
CRG0402F1M0
41
1
R10
47.5K, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-0747K5L
42
2
R11, R16
20K, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-0720KL
UM2777 - Rev 3
Ref.
Part / Value
FTSH-107-01-L-DV-K
-
-
page 36/45
UM2777
Bill of materials
Item
Q.ty
43
1
R13
10k N.M., ±1%
RES, SMD, 0402 (not
mounted), 0402 (1005
Metric)
TE
CONNECTIVITY
CRG0402F10K
44
2
R17, R22
2k, 100ppm/C,
±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RT0402FRE072KL
45
1
R18
56K, 100ppm/C,
±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-0756KL
46
2
R19, R21
0R
RES SMD 0402, 0402
(1005 Metric)
Vishay Dale
CRCW04020000Z0ED
47
1
R23
100K, 100ppm/C,
±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-07100KL
48
2
R24, R25
62, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-0762RL
49
1
R27
47k, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Samsung ElectroMechanics
RC1005F473CS
America, Inc.
50
1
R28
10k, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-0710KL
51
1
R29
160, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
TE Connectivity
Passive Product
CRG0402F160R
52
1
R34
1k, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-071KL
53
1
R35
560R, 100ppm/C,
1/16W, ±1%
RES SMD 0402, 0402
(1005 Metric)
Yageo
RC0402FR-07560RL
13
SB1, SB2, SB3,
SB7, SB9, SB10,
SB13, SB14,
0 OHM N.M.
SB15, SB16,
SB17, SB22, SB24
RES SMD 0402 (not
mounted), 0402 (1005
Metric)
Vishay Dale
CRCW04020000Z0ED
55
12
SB4, SB5, SB6,
SB8, SB11, SB12,
SB18, SB19,
SB20, SB21,
SB23, SB25
RES SMD 0402, 0402
(1005 Metric)
Vishay Dale
CRCW04020000Z0ED
56
1
SD
Micro-SD
Wurth Electronics 693071010811
57
1
SP1
N.M.
(not mounted)
-
-
58
7
TP4, TP5, TP6,
TP7, TP8, TP9,
TAMPER
1mm N.M.
TEST POINT 1MM
SMD PADSTASCK (not
mounted)
-
-
59
1
TP1
60
2
TP2, TP3
61
1
USB
USB Micro-B, USBMicro-B
GCT
USB3075-30-A
62
1
U1
6-line IPAD™, EMI
filter and ESD
protection
ST
EMIF06-MSD02N16
63
1
U2
Humidity, Temperature,
HLGA-6L(2 x 2 x 0.9
ST
mm)
54
UM2777 - Rev 3
Ref.
Part / Value
0R
Description
Test Point Through
Hole
N.M.
Manufacturer
Keystone
Electronics
Test Point Through
Hole (not mounted)
Order code
5001
-
-
HTS221TR
page 37/45
UM2777
Bill of materials
Item
Q.ty
Ref.
Part / Value
Description
Manufacturer
Order code
64
1
U3
MEMS NANO
PRESSURE SENSOR:
ST
260-1, (2 x 2 x 0.73
mm)
65
1
U4
STM32L496,
UFBGA144
ST
STM32L4R9ZIJ6
ST
BlueNRG-M2SA
ST
STTS751-0DP3F
LPS22HHTR
66
1
U5
Very low power
application processor
module for Bluetooth®
low energy v5.0
67
1
U6
Digital temperature
sensor, UDFN-6L
68
1
U7
Secure element, SO8N ST
STSAFE-A110
69
1
U8
OpAmp - excellent
audio performance /
low distortion (0.005%)
ST
TS922EIJT
ST
ISM330DHCX
70
1
U9
3D accelerometer
and 3D gyroscope,
LGA-14L (2.5 x 3 x
0.83 mm)
71
1
U10
300 mAvery low noise
LDO, DFN6
ST
LDK130PU-R
72
1
U11
Accelerometor Ultra
Wide Bandwidth,
LGA-14L (2.5 x 3 x
0.83 mm)
ST
IIS3DWB
73
1
U12
Accelerometor Ultralow-power, LGA-12
(2.0x2.0x1 mm)
ST
IIS2DHTR
74
1
U13
MEMS Magnetometer,
(2.0x2.0x0.7)
ST
IIS2MDCTR
75
2
U14, U16
400mA step-down
switching regulator,
Flip-chip
ST
ST1PS01EJR
76
1
U15
Li-Ion Linear Battery
Charger with LDO
3.3V, Flip Chip30
(2.59x2.25 mm)
ST
STBC02AJR
77
1
U17
Low voltage high
bandwidth quad SPDT
switch
ST
STG3692
78
1
U18
USB Protection
ST
USBLC6-2P6
79
1
U19
Low power transceiver
for RS-485, DFN10
ST
STR485LV
80
1
X1
16MHz
16.00MHz Crystal 8pF
NDK
NX3225GA-16MHZ-STD-CRG-1
81
1
X2
32.7680KHZ
CRYSTAL 32.7680KHz
NDK
6PF SMD
NX3215SA-32.768K-STDMUA-14
82
1
STLINK-V3MINI
STLINK-V3MINI
83
1
Programming Cable
(Included in ST-LINK)
-
-
84
1
Plastic Box
-
-
85
1
UM2777 - Rev 3
480mAh
Battery LiPo
ST
Himax
LiPo-752535
page 38/45
UM2777
Bill of materials
Item
Q.ty
86
4
12mm M3
87
4
M3
UM2777 - Rev 3
Ref.
Part / Value
Description
Manufacturer
Order code
Pan head phillips steel
-
-
HEX Nut - steel
-
-
page 39/45
UM2777
Revision history
Table 6. Document revision history
Date
UM2777 - Rev 3
Version Changes
17-Nov-2020
1
11-Jan-2021
2
10-Jun-2021
3
Initial release.
Updated Introduction.
Minor text changes.
Updated Section 2.1 Sensing, Section 2.2 Processing and connectivity, Section 2.3 Power
management, Section 2.3.4 Power consumption evaluation and Section 2.4 Buttons, LEDs and
connectors.
page 40/45
UM2777
Contents
Contents
1
STWIN kit components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Functional blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1
2.2
2.3
2.4
Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1
HTS221 humidity and temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2
LPS22HH MEMS pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3
STTS751 digital temperature sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4
TS922 rail-to-rail, high output current, dual operational amplifier. . . . . . . . . . . . . . . . . . . . . 6
2.1.5
ISM330DHCX iNEMO IMU 3D Acc + 3D Gyro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.6
IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor . . . 6
2.1.7
IIS2DH ultra-low power 3-axis high-performance accelerometer . . . . . . . . . . . . . . . . . . . . . 6
2.1.8
IIS2MDC 3-axis magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.9
IMP23ABSU analog MEMS microphone with extended frequency response up to 80 kHz for
ultrasound applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.10
IMP34DT05 digital MEMS microphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Processing and connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1
STM32L4R9ZI Cortex-M4F 120MHz 640Kb RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2
BlueNRG-M2 very low power application processor module for Bluetooth® low energy v5.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3
STEVAL-STWINWFV1 Wi-Fi expansion (not included in the kit) for the SensorTile wireless
industrial node (STWIN) kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4
STR485LV 3.3V RS485 up to 20Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5
USB connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6
STSAFE-A110 authentication, state-of-the-art security for peripherals and IoT devices . . 11
2.2.7
microSD card socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.8
Clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1
Battery connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3
Power ON/OFF procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4
Power consumption evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Buttons, LEDs and connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1
UM2777 - Rev 3
Flex expansion connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
page 41/45
UM2777
Contents
3
2.4.2
STMod+ connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3
Connectivity expansion connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4
Sensor expansion connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5
Protective plastic box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6
STLINK-V3MINI debugger and programmer for STM32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
How to program the board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.1
How to program STWIN with STLINK-V3MINI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2
How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer "USB
mode" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4
STWIN assembly steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
5
How to run the HSDatalog application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6
Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
7
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
UM2777 - Rev 3
page 42/45
UM2777
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
UM2777 - Rev 3
STEVAL-STWINKT1B SensorTile Wireless Industrial Node . . . . . . . . . . . . . . . . . . . . . .
STWIN Core System board top and bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protective plastic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
480mAh 3.7V Li-Po Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STLink-V3Mini Debugger/Programmer for STM32. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programming cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B functional block diagram of sensing elements and STM32L4R9ZIJ6
Core system board sensor locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main connectivity components and the STM32L4R9ZI processing unit. . . . . . . . . . . . . . .
MCU and connectivity element locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power and protection components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power and protection component locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery and J4 connectors for VBAT supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power monitoring points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buttons, LEDs and connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CN1 Flex connector top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STMod+ connector top views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CN3 connectivity connector top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CN4 sensor connector top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STLINK-V3MINI and STDC14 cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STLINK-V3MINI connected to STWIN core system board. . . . . . . . . . . . . . . . . . . . . . . .
STM32CubeProgrammer - USB mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STM32CubeProgrammer - connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STM32CubeProgrammer - programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exploded cad drawing of STWIN node components . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optional magnets inserted in main case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Core system board inserted in main case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Core system board fastened with bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HSDatalog data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Folder structure in the SD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B schematic (1 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B schematic (2 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B schematic (3 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B schematic (4 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B schematic (5 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B schematic (6 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEVAL-STWINKT1B schematic (7 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 2
. 2
. 2
. 3
. 3
. 4
. 4
. 5
. 8
. 9
12
12
13
13
14
15
15
17
18
18
19
20
21
22
22
23
24
24
25
26
27
28
29
30
31
32
33
34
page 43/45
UM2777
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
CN1 pin descriptions . . . . . . . . . . . . . . . . . . . . . . .
STMod+ connector pin assignments and descriptions.
CN3 pin descriptions . . . . . . . . . . . . . . . . . . . . . . .
CN4 pin descriptions . . . . . . . . . . . . . . . . . . . . . . .
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . .
UM2777 - Rev 3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
15
17
18
19
35
40
page 44/45
UM2777
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
UM2777 - Rev 3
page 45/45