0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STEVAL-STWINKT1B

STEVAL-STWINKT1B

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    STWIN SENSORTILE WIRELESS IND

  • 数据手册
  • 价格&库存
STEVAL-STWINKT1B 数据手册
UM2777 User manual How to use the STEVAL-STWINKT1B SensorTile Wireless Industrial Node for condition monitoring and predictive maintenance applications Introduction The STWIN SensorTile wireless industrial node (STEVAL-STWINKT1B) is a development kit and reference design that simplifies prototyping and testing of advanced industrial IoT applications such as condition monitoring and predictive maintenance. It is the updated version of STEVAL-STWINKIT1, now including STSAFE-A110 populated, BlueNRG-M2SA module and IMP23ABSU MEMS microphone. The kit features a core system board with a range of embedded industrial-grade sensors and an ultra-low-power microcontroller for vibration analysis of 9-DoF motion sensing data across a wide range of vibration frequencies, including very high frequency audio and ultrasound spectra, and high precision local temperature and environmental monitoring. The development kit is complemented with a rich set of software packages and optimized firmware libraries, as well as a cloud dashboard application, all provided to help speed up design cycles for end-to-end solutions. The kit supports Bluetooth® low energy wireless connectivity through an on-board module, and Wi-Fi connectivity through a special plugin expansion board (STEVAL-STWINWFV1). Wired connectivity is also supported via an on-board RS485 transceiver. The core system board also includes an STMod+ connector for compatible, low cost, small form factor daughter boards associated with the STM32 family, such as the LTE Cell pack. Apart from the core system board, the kit is provided complete with a 480 mAh Li-Po battery, an STLINK-V3MINI debugger and a plastic box. Figure 1. STEVAL-STWINKT1B SensorTile Wireless Industrial Node UM2777 - Rev 3 - June 2021 For further information contact your local STMicroelectronics sales office. www.st.com UM2777 STWIN kit components 1 STWIN kit components The SensorTile Wireless Industrial Node (STWIN) is packaged with the components shown below. Figure 2. STWIN Core System board top and bottom Figure 3. Protective plastic case Figure 4. 480mAh 3.7V Li-Po Battery UM2777 - Rev 3 page 2/45 UM2777 STWIN kit components Figure 5. STLink-V3Mini Debugger/Programmer for STM32 Figure 6. Programming cable UM2777 - Rev 3 page 3/45 UM2777 Functional blocks 2 Functional blocks Figure 7. STEVAL-STWINKT1B functional block diagram Sensing LDK130 Low Noise LDO Processing ST1PS01EJR STBC02 step-down switching regulator Li-Ion linerar battery charger USART2 STR485LV RS485 Interface 6-Axis IMU HTS221 STSAFE I2C2 * not mounted 20-pin STMOD+ connector SPIx, I2S, USARTx,... STM32L4R9ZIJ6 Microcontroller Ultra Low Power Cortex M4F@120MHz I2C2 Humidity and Temperature Sensor LPS22HH IIS2MDC 3D Magnetometer TS922EIJT Low noise, low distortion OpAmp 12-pin female sensor connector STTS751 Temperature Sensor Pressure Sensor ADC1 40-pin Flex connector Analog 3D Accelerometer Bluetooth® low energy Application Processor Module Secure Element* Power Mng. IIS2DH Vibrometer ISM330DHCX SPI2 BlueNRG-M2SA Connectivity IIS3DWB SPI3 DFSDM1 IMP23ABSU Analog Microphone IMP34DT05 Digital Microphone 12-pin male connector Secure ESDALC6V1-1U2 Single Line ESD protection 2.1 USBLC6-2P6 USB ESD protection 32 kHz 16 MHz Crystal Crystal Enanced SWD Connector EMIF06-MSD02N16 Auxiliary Connector EMI filter and ESD protection UART5 I2C2 ADC3 GPIO Sensing The core system board offers a comprehensive range of sensors specifically designed to support and enable the Industry 4.0 applications. Figure 8. STEVAL-STWINKT1B functional block diagram of sensing elements and STM32L4R9ZIJ6 SPI3 IIS3DWB IIS2DH Vibrometer 3D Accelerometer ISM330DHCX Sensing 6-Axis IMU HTS221 STM32L4R9ZIJ6 Microcontroller Ultra Low Power Cortex M4F@120MHz I2C2 Humidity and Temperature Sensor STTS751 Temperature Sensor LPS22HH IIS2MDC Pressure Sensor 3D Magnetometer Analog ADC1 TS922EIJT Low noise, low distortion OpAmp DFSDM1 IMP23ABSU Analog Microphone IMP34DT05 Digital Microphone UM2777 - Rev 3 page 4/45 UM2777 Sensing The motion sensors communicate with the STM32L4R9ZIJ6 microcontroller via SPI in order to accommodate the high data rates, while the magnetometer and environmental sensors communicate via I2C. The suitably filtered signal from the IMP23ABSU analog microphone is amplified by a TS922 low noise op-amp and then sampled by the internal 12-bit ADC in the MCU, while the signal from digital microphone is directly managed by the digital filter for Sigma-Delta modulators (DFSDM) interface in the MCU. Figure 9. Core system board sensor locations U2: HTS221 relative humidity and temperature sensor U3: LPS22HH digital absolute pressure sensor U6: STTS751 low-voltage digital local temperature sensor U8: TS922 rail-to-rail, high output current, dual operational amplifier U9: ISM330DHCX 3D acc. + 3D gyro iNEMO IMU with machine learning core U11: IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor U12: IIS2DH ultra-low-power high performance MEMS motion sensor U13: IIS2MDC ultra-low-power 3-axis magnetometer M1: IMP23ABSU analog MEMS microphone M2: IMP34DT05 industrial grade digital MEMS microphone 2.1.1 HTS221 humidity and temperature sensor The HTS221 is an ultra-compact relative humidity and temperature sensor with a sensing element and a mixed signal ASIC to provide measurement information through digital serial interfaces. The sensing element consists of a polymer dielectric planar capacitor structure capable of detecting relative humidity variations and is manufactured using a dedicated ST process. The HTS221 is available in a small top-holed cap land grid array (HLGA) package guaranteed to operate over a temperature range from -40 °C to +120 °C. RELATED LINKS Visit the product web page for the HTS221 relative humidity and temperature sensor 2.1.2 LPS22HH MEMS pressure sensor The LPS22HH is an ultra-compact piezoresistive absolute pressure sensor which functions as a digital output barometer. The device consists of a sensing element and an IC interface which communicates through I²C, MIPI I3CSM or SPI from the sensing element to the application. The sensing element, which detects absolute pressure, consists of a suspended membrane manufactured using a dedicated process developed by ST. The LPS22HH is available in a full-mold, holed LGA package (HLGA). It is guaranteed to operate over a temperature range extending from -40 °C to +85 °C. UM2777 - Rev 3 page 5/45 UM2777 Sensing RELATED LINKS Visit the product web page for the LPS22HH MEMS pressure sensor 2.1.3 STTS751 digital temperature sensor The STTS751 is a digital temperature sensor which communicates over a 2-wire SMBus 2.0 compatible bus. The temperature is measured with a user-configurable resolution between 9 and 12 bits. At 9 bits, the smallest step size is 0.5 °C, and at 12 bits, it is 0.0625 °C. At the default resolution (10 bits, 0.25 °C/LSB), the nominal conversion time is 21 milliseconds. Up to eight devices can share the same 2-wire SMBus without ambiguity, allowing a single application to monitor multiple temperature zones. RELATED LINKS Visit the product web page for the STTS751 digital temperature sensor 2.1.4 TS922 rail-to-rail, high output current, dual operational amplifier The TS922 is a rail-to-rail dual BiCMOS operational amplifier optimized and fully specified for 3 V and 5 V operation. The very low noise, low distortion, low offset, and high output current capability render this device highly suitable for high quality, low voltage, or battery operated audio systems. RELATED LINKS Visit the product web page for the TS922 rail-to-rail, high output current, dual operational amplifier 2.1.5 ISM330DHCX iNEMO IMU 3D Acc + 3D Gyro The ISM330DHCX is a system-in-package featuring a high-performance 3D digital accelerometer and +3D digital gyroscope tailored for Industry 4.0 applications. The sensing elements of the accelerometer and of the gyroscope are implemented on the same silicon die, which ensures superior stability and robustness. Several embedded features such as programmable FSM, FIFO, sensor hub, event decoding and interrupts allow the implementation of smart and complex sensor nodes able to deliver high performance at very low power. RELATED LINKS Visit the product web page for the ISM330DHCX iNEMO IMU 3D Acc + 3D Gyro 2.1.6 IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor The IIS3DWB is a system-in-package featuring a 3-axis digital accelerometer with low noise over an ultra-wide and flat frequency range. The wide bandwidth, low noise, very stable and repeatable sensitivity, together with the capability of operating over an extended temperature range (up to +105 °C), render the device particularly suitable for vibration monitoring in industrial applications. The high performance delivered at low power consumption, together with the digital output and embedded digital features like FIFO and interrupts are of primary importance in battery-operated industrial wireless sensor nodes. RELATED LINKS Visit the product web page for the IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor 2.1.7 IIS2DH ultra-low power 3-axis high-performance accelerometer The IIS2DH is an ultra-low-power high-performance three-axis linear accelerometer with digital I2C/SPI serial interface standard output. The device may be configured to generate interrupt signals from two independent inertial wake-up/free-fall events, as well as from the position of the device itself. UM2777 - Rev 3 page 6/45 UM2777 Processing and connectivity RELATED LINKS Visit the product web page for the IIS2DH ultra-low power 3-axis high-performance accelerometer 2.1.8 IIS2MDC 3-axis magnetometer The IIS2MDC is a high-accuracy, ultra-low-power 3-axis digital magnetic sensor. It has a magnetic field dynamic range up to ±50 gauss, and includes an I²C serial bus interface that supports 100 kHz, 400 kHz, 1 MHz, and 3.4 MHz rates and an SPI serial standard interface. The device can be configured to generate an interrupt signal from magnetic field detection. RELATED LINKS Visit the product web page for the IIS2MDC 3-axis magnetometer 2.1.9 IMP23ABSU analog MEMS microphone with extended frequency response up to 80 kHz for ultrasound applications The IMP23ABSU is a compact, low-power microphone based on a capacitive sensing element and an IC interface. The sensing element can detect acoustic waves and is manufactured using a special silicon micro-machining process to produce audio sensors. The IMP23ABSU has an acoustic overload point of 130 dBSPL with a typical 64 dB signal-to-noise ratio. The IMP23ABSU sensitivity is -38 dBV ±1 dB at 94 dBSPL, 1 kHz. The IMP23ABSU is available in a package compliant with re-flow soldering and is guaranteed to operate over an extended temperature range (-40 to +85 °C). RELATED LINKS Visit the product web page for the IMP23ABSU analog MEMS microphone 2.1.10 IMP34DT05 digital MEMS microphone The IMP34DT05 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface; the device features 64 dB signal-to-noise ratio and -26 dBFS ±3 dB sensitivity. The IC interface includes a dedicated circuit able to provide a digital signal externally in PDM format. RELATED LINKS Visit the product web page for the IMP34DT05 digital MEMS microphone 2.2 Processing and connectivity The STWIN core system board features several wired and wireless connectivity options and the STM32L4R9ZI ultra-low-power microcontroller, which is part of the STM32L4+ series MCUs based on the high-performance Arm Cortex-M4 32-bit RISC core, operating at up to 120 MHz and equipped with 640 Kb SRAM and 2 MB Flash memory. UM2777 - Rev 3 page 7/45 UM2777 Processing and connectivity Figure 10. Main connectivity components and the STM32L4R9ZI processing unit STR485LV RS485 Interface BlueNRG-M2SA Bluetooth low energy Application Processor Module STEVAL-STWINWFV1 12-pin male com. connector STSAFE USART2 Processing SPI2 SPI1 STM32L4R9ZIJ6 Microcontroller Ultra Low Power Cortex M4F@120MHz Connectivity I2C2 Secure Element* Secure 32 kHz Crystal 16 MHz Crystal Each connectivity component is connected to an independent bus on the STM32L4R9ZI MCU, so they can all be configured individually. UM2777 - Rev 3 page 8/45 UM2777 Processing and connectivity Figure 11. MCU and connectivity element locations U4: STM32L4R9ZI Cortex-M4F 120MHz 640Kb RAM U5: BlueNRG-M2SA Very low power application processor module for Bluetooth® low energy v5.0 U7: STSAFE-A110 authentication and brand protection secure solution U17: STG3692 high bandwidth quad SPDT switch U19: STR485 3.3V RS485 up to 20Mbps USB: Micro-USB connector (power supply + data) X1: 16MHz crystal oscillator X2: 32.768 kHz crystal oscillator J2: STDC14 programming connector for STLINK-V3 J1: RS485 interface header connector CN3: Connectivity expansion connector (for STEVAL-STWINWFV1) CN4: Audio/sensor expansion connector SD: microSD card socket 2.2.1 STM32L4R9ZI Cortex-M4F 120MHz 640Kb RAM The STM32L4R9ZI devices is an ultra-low-power microcontroller (STM32L4+ Series MCU) based on the highperformance Arm Cortex-M4 32-bit RISC core, which operates at a frequency of up to 120 MHz. The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all the Arm singleprecision data-processing instructions and all the data types. The Cortex-M4 core also implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) which enhances application security. These devices embed high-speed memories (2 Mbytes of Flash memory and 640 Kbytes of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), two OctoSPI Flash memory interfaces and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. The MCU embeds several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and a firewall. These devices offer a fast 12-bit ADC (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers for motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM). In addition, up to 24 capacitive sensing channels are available. They also feature standard and advanced communication interfaces such as: • Four I2Cs • Three SPIs • Three USARTs, two UARTs and one low-power UART • Two SAIs • One SDMMC UM2777 - Rev 3 page 9/45 UM2777 Processing and connectivity • • • • One CAN One USB OTG full-speed Camera interface DMA2D controller The device operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V for VDD power supply when using internal LDO regulator and a 1.05 to 1.32 V V DD12 power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design of low-power applications. Some independent power supplies are supported, such as an analog independent supply input for ADC, DAC, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, which can be supplied independently down to 1.08 V. A VBAT input allows backup of the RTC and the registers. Dedicated VDD12 power supplies can be used to bypass the internal LDO regulator when connected to an external SMPS. RELATED LINKS Visit the product web page for the STM32L4R9ZI micrcontroller 2.2.2 BlueNRG-M2 very low power application processor module for Bluetooth® low energy v5.0 The BlueNRG-M2 is a Bluetooth® low energy system-on-chip application processor certified module compliant with BT specifications v5.0 and BQE qualified. The module simultaneously supports multiple roles and can act at the same time as Bluetooth master and slave device. The BlueNRG-M2 is based on the BlueNRG-2 system-on-chip and provides a complete RF platform in a tiny form factor, integrating radio, embedded antenna and high frequency oscillators to offer a certified solution that optimizes the final application time-to-market. The BlueNRG-M2 can be directly powered by a pair of AAA batteries or any power source from 1.7 to 3.6 V. RELATED LINKS Visit the product web page for the BlueNRG-M2SA application module for Bluetooth® low energy v5.0 wireless technology 2.2.3 STEVAL-STWINWFV1 Wi-Fi expansion (not included in the kit) for the SensorTile wireless industrial node (STWIN) kit The STEVAL-STWINWFV1 expansion board (sold separately) adds 2.4 GHz Wi-Fi connectivity to the SensorTile Wireless Industrial Node (STWIN) kit. Through the CN3 connectivity expansion connector, the STEVAL-STWINWFV1 can be plugged into the STWIN core system board. It is based on the ISM43362-M3G-L44-E Wi-Fi module and its main features are: • 802.11 b/g/n compatible • based on Broadcom MAC/Baseband/Radio device • fully contained TCP/IP stack • host interface: SPI up to 25 MHz The RF power emitted is +9 dBm (limited by firmware). The module operating band is 2400 MHz ~ 2483.5 MHz (2.4 GHz ISM Band). RELATED LINKS Visit the product web page for further details on the STEVAL-STWINWFV1 2.2.4 STR485LV 3.3V RS485 up to 20Mbps The STR485 is a low power differential line transceiver for RS485 data transmission standard applications in half-duplex mode. Data and enable signals are compatible with 1.8 V or 3.3 V supplies. UM2777 - Rev 3 page 10/45 UM2777 Power management Two speeds are selectable via the SLR pin: fast data rate up to 20 Mbps or slow data rate up to 250 kbps for extended cables. Excessive power dissipation caused by bus contention or faults is prevented by a thermal shutdown circuit that forces the driver outputs into a high impedance state. The receiver has a fail-safe feature that guarantees a high output state when the inputs are left open, shorted or idle. RELATED LINKS Visit the product web page for the STR485LV 3.3V RS485 up to 20Mbps 2.2.5 USB connector The Micro-USB connector on the board can be used for both power supply and data transfer (USB Device only). Different examples of USB class implementation can be found in STSW-STWINKT01 software package. 2.2.6 STSAFE-A110 authentication, state-of-the-art security for peripherals and IoT devices The STSAFE-A110 is a highly secure solution that acts as a secure element providing authentication and secure data management services to a local or remote host. It consists of a full turnkey solution with a secure operating system running on the latest generation of secure microcontrollers. The STSAFE-A110 can be integrated in IoT devices, smart-home, smart-city and industrial applications, consumer electronics devices, consumables and accessories. RELATED LINKS Visit the product web page for the STSAFE-A110 authentication, state-of-the-art security for peripherals and IoT devices 2.2.7 microSD card socket On the bottom side of the STWIN core system board is a microSD Card socket that is accessible even when the board is mounted in the plastic box. The card is accessed through a 4-bit wide SDIO port for maximum performance. A couple of firmware examples involving high speed data logging on the SD card are available in the STSWSTWINKT01 software package. 2.2.8 Clock sources There are two external clock sources on the STWIN core system board: • X1: 16 MHz high speed external (HSE) oscillator for the MCU. • X2: 32.768 kHz low speed external (LSE) oscillator for the RTC embedded in the MCU. 2.3 Power management The STWIN core system board includes a range of power management features that enable very low power consumption in final applications. The main supply is through a lithium ion polymer battery (3.7 V, 480 mAh) and the integrated battery charger (STBC02) with Vin [4.8 -5.5 V]. UM2777 - Rev 3 page 11/45 UM2777 Power management Figure 12. Power and protection components ESDALC6V1-1U2 Single Line ESD protection LDK130 Low Noise LDO ST1PS01EJR step-down switching regulator STBC02 Li-Ion linerar battery charger STM32L4R9ZIJ6 Microcontroller Ultra Low Power Cortex M4F@120MHz USBLC6-2P6 USB ESD protection EMIF06-MSD02N16 EMI filter and ESD protection Figure 13. Power and protection component locations U1: EMIF06-MSD02N16 6-line EMI filter and ESD protection for T-Flash and microSD card interfaces U10: LDK130 300 mA very low noise LDO U14, U16: ST1PS01 400 mA Synchronous step-down converter U15: STBC02 Li-Ion linear battery charger U18: USBLC6-2 low capacitance ESD protection for USB D1, D2, D3: Single-line low capacitance Transil for ESD protection D4: Power Schottky rectifier (1A) BATT: Battery connector J4: Battery pins J5: 5V Ext power supply connector J6, J7, J9, J10: Current monitoring SMD jumper PWR: Power button UM2777 - Rev 3 page 12/45 UM2777 Power management 2.3.1 Battery connectors The battery supply voltage (VBAT) may be provided by connecting the 480 mA LiPo battery included in the STWIN kit to the dedicated battery connector, or by supplying an external voltage through the J4 connector. Figure 14. Battery and J4 connectors for VBAT supply GND BAT_NTC VBAT 1 VBAT 2 GND 3 2 1 2.3.2 Power supply The STWIN core system board can receive power from different sources: V_USB: through micro USB connector [5 V] • • Vin: through J5 connector [4.8-5.5 V]. The current on this port needs to be limited to 2 A • VBAT: lithium ion polymer battery (3.7 V, 480 mAh), STBC02 battery charger integrated in the board The battery is always optional. The STBC02 battery charger automatically checks the available power inputs and selects one to power the system. When the battery is connected as well as one of the other sources, the STBC02 automatically charges the battery. When battery-powered, the equipment is intended to work properly with an operating temperature of 35°C. Without the battery, the equipment is intended to work properly with an operating temperature of 45°C. Figure 15. Power circuits STWIN core system board USB V_USB SYS (5V or VBAT) 5V J5 VBAT STBC02 Battery Charger 5V µSDCard RS485 VEXT CN2 DCDC_1 STM32L4+ Sensors Bluetooth low energy 3V3_Ext CN1 U16 3V3 DCDC SYS U14 3V3 DCDC U10 2.7 LDO DCDC_2 CN3 (Wi-Fi) STSAFE Analog Mic OpAmp CN2 (AMicArray) J3 UM2777 - Rev 3 page 13/45 UM2777 Power management 2.3.3 Power ON/OFF procedure If the STWIN core system board is not powered via battery, then the board will turn on and off when you connect and disconnect an external supply, respectively. Follow the steps below to power the board on and off when it is powered by a LiPo battery. 2.3.4 Step 1. Push the PWR button for about a second to power the board on. Power on is managed by the STBC02 battery charger WAKE-UP hardware feature. Step 2. Push the PWR button again to turn the board off. In the application code examples provided with the software, the microcontroller detects the push action and activates the battery charger SHUTDOWN command to switch the power supply off. Power consumption evaluation There are several test points and jumpers on the STWIN core system board available to monitor the electrical performance of running applications. In particular, there are four jumpers for monitoring the current consumption in each of the four main power supply domains on the board. The best way to evaluate general power consumption is to remove both the battery and the USB cable and provide 5 V directly on the J5 connector. Figure 16. Power monitoring points J6: Sensor current monitoring J4: Battery supply J7: STM32 digital power supply current monitoring J9: BlueNRG-M2SA Bluetooth® low energy module current monitoring J10: STEVAL-STWINWFV1 (Wi-Fi expansion) and STSAFE-A110 current monitoring TP1, TP2: GND TP3: DCDC_1 (3.3V) UM2777 - Rev 3 page 14/45 UM2777 Buttons, LEDs and connectors 2.4 Buttons, LEDs and connectors Figure 17. Buttons, LEDs and connectors USR: User button PWR: connected to the STBC02 for integrated WAKE-UP function and the STM32L4R9ZI MCU as generic USR button RESET: connected to STM32 MCU reset pin (BLACK) LED_C: Red LED connected to STBC02 and used for battery status feedback LED1: Green LED connected to STM32 LED2: Orange LED connected to STM32 CN1: 40-pin flex general purpose expansion CN2: STMod+ connector CN3: 12-pin male connectivity expansion connector, suitable for the STEVAL-STWINWFV1 expansion board CN4: 12-pin female sensor expansion connector, suitable for the STEVAL-STWINMAV1 analog microphone array expansion board Batt 2.4.1 Flex expansion connector Figure 18. CN1 Flex connector top view 40 1 This is a general purpose expansion connector. Table 1. CN1 pin descriptions Pin No. UM2777 - Rev 3 Description STM32 pin Default Signal 1 USART3_CTS PB13 - 2 STMOD2 PD8/ PC3 USART3_TX/ SPI2_MOSI 3 STMOD3 PD9/ PD3 USART3_RX/ SPI2_MISO 4 STMOD4 PD1/ PB1 SPI2_CLK/ USART3_RTS 5 GND - - 6 VEXT - - page 15/45 UM2777 Buttons, LEDs and connectors Pin No. Description STM32 pin Default Signal 7 I2C4_SCL PD12 - 8 SPI2_MOSI_p2 PB15 - 9 SPI2_MISO_p2 PC2 - 10 I2C4_SDA PD13 - 11 PC5/WKUP5 PC5 12 EX_RESET PD11 - 13 EX_ADC PA5 - 14 EX_PWM PA15 - 15 VEXT - - 16 GND - - 17 PG12 PG12 EX_CN (ex tint) 18 PG10 PG10 TIM 19 PG9 PG9 TIM 20 PB14 PB14 TIM, DSFDMD2 21 PA9 PA9 - 22 PA10 PA10 - 23 PB11 PB11 DSI_TE,TIM,LPUART_TX 24 PC13 PC13 TAMP, WKUP 25 PB9 PB9 26 PB8 PB8 27 PE9 PE9 28 3V3_Ext - 29 DSI_D1_N - 30 DSI_D1_P - 31 GND - 32 DSI_D0_N - 33 DSI_D0_P - 34 SYS - 35 DSI_CLK_N - 36 DSI_CLK_P - 37 3V3_Ext - 38 PA0 PA0 ADC_IN5 39 PA1 PA1 ADC_IN6 40 SYS WKUP5 SAI2 CAN, TIM, DSFDM,I2C1 TIM, DSFDMCLK STM32 Display Serial Interface (DSI) Host STM32 Display Serial Interface (DSI) Host STM32 Display Serial Interface (DSI) Host - - - RELATED LINKS View the vendor documentation on handling FH34SRJ series connectors UM2777 - Rev 3 page 16/45 UM2777 Buttons, LEDs and connectors 2.4.2 STMod+ connector Figure 19. STMod+ connector top views Daughterboard Host board Male connector Female connector 10 20 20 10 9 19 19 9 8 18 18 8 7 17 17 7 6 16 16 6 5 15 15 5 4 14 14 4 3 13 13 3 2 12 12 2 1 11 11 1 PCB Edge Border PCB Edge Border 2.77 mm 7.62 mm Table 2. STMod+ connector pin assignments and descriptions Function(1) of the primary host mapped STMod+ Pin number 1 SPIx_NSS(2) / UARTy_CTS Description Output / Input 2 SPIx_MOSIp(3) / UARTy_TX Output / Output Output / Output 3 SPIx_MISOp(4) / UARTy_RX Input / Input Input / Input 4 SPIx_SCK / UARTy_RTS Output / Output Output / Output 5 GND Ground Reference Ground reference 6 +5 V Power Supply(5) Power supply 7 I2Cz_SCL Input / Output Input / Output 8 SPIx_MOSIs(3) Output Output 9 SPIx_MISOs(4) Input / Output Input / Output 10 I2Cz_SDA Input / Output Input / Output 11 INT(6) Input Input 12 RESET Output Output 13 ADC Input Input 14 PWM Output 15 +5 V Power Supply(5) 16 GND Ground Reference Output Power supply Ground reference 17 GPIO(7) Output / Input 18 GPIO(7) Output / Input 19 GPIO(7) Output / Input 20 GPIO(7) Output / Input 1. If two functions are provided on a STMod+ connector pin, you can connect two different I/O ports from STM32: the firmware manages the conflicts that may arise. MOSIs means used in Serial Daisy Chained-SPI mode and MOSIp means used in Parallel SPI mode. More alternate functions may be available from STM32, refer to the User manual of the host board and the corresponding STM32 datasheet available on www.st.com. 2. Instead of SPIx_NSS, a GPIO can be used as SPI Chip Select. 3. Pins 2 and 8 are the same SPIx_MOSI signals, but they must come from two different I/O ports. UM2777 - Rev 3 page 17/45 UM2777 Buttons, LEDs and connectors 4. Pins 3 and 9 are the same SPIx_MISO signals, but they must come from two different I/O ports. 5. Power Supply is Output or Input, depending on host / daughterboard configuration. 6. INT is an interrupt line. 7. GPIO ports with many alternate functions (like UART, I²C, SPI and analog inputs/outputs) are privileged to offer optimum flexibility. RELATED LINKS Read TN1238: STMod+ interface specification available on the ST website for more information 2.4.3 Connectivity expansion connector Figure 20. CN3 connectivity connector top view a6 a1 b6 b1 This connector is suitable for the STEVAL-STWINWFV1 Wi-Fi expansion board. Table 3. CN3 pin descriptions Pin 2.4.4 Description a1 GND a2 CS/USART3_CTS a3 STM32 pin - Pin Default Signal STM32 pin b1 WIFI_DRDY PE11 PB13 b2 WIFI_WAKEUP PD7 SPI1_CLK/USART3_RTS PB1 b3 WIFI_BOOT0 PF12 a4 SPI1_MISO/USART3_RX PD9 b4 WIFI_RST PC6 a5 SPI1_MOSI/USART3_TX PD8 b5 I2C3_SDA PG8 a6 3V3 Output (VDD_WIFI) b6 I2C3_SCL PG9 - Sensor expansion connector Figure 21. CN4 sensor connector top view a1 a6 b1 b6 This connector is suitable for the STEVAL-STWINMAV1 analog microphone expansion board. UM2777 - Rev 3 page 18/45 UM2777 Protective plastic box Table 4. CN4 pin descriptions Pin 2.5 Description STM32 pin Pin Default Signal STM32 pin a1 5V/Batt Output - b1 DFSDM1_D7 PB10 a2 3V3 Output - b2 DFSDM1_CKOUT PE9 a3 SAI1_FS_A - DFSDM_D3 b3 I2C2_SCL PF1 a4 GND b4 I2C2_SDA PF0 a5 SAI1_SD_A/ SAI1_SD_B/DFSDM_D2 b5 SAI1_SCK_A PE5 a6 GND b6 SAI1_MCLK_A/DFSDM_D5 PE2 PE4 PE6 - Protective plastic box The plastic case is designed to protect and hold the STWIN core system board and the LiPo battery together. The case can also house two magnets (not included in the STEVAL-STWINKT1B kit), allowing you to stick the wireless industrial node on appropriate metallic areas in the monitored equipment. RELATED LINKS The system was tested with the following 25x8x3mm magnets 2.6 STLINK-V3MINI debugger and programmer for STM32 The STLINK-V3MINI is a standalone debugging and programming mini probe for STM32 microcontrollers, with JTAG/SWD interfaces for communication with any STM32 microcontroller located on an application board. It provides a Virtual COM port interface for host PCs to communication with target MCUs via UART. The STLINK-V3MINI is supplied with an STDC14 to STDC14 flat cable. Figure 22. STLINK-V3MINI and STDC14 cable UM2777 - Rev 3 page 19/45 UM2777 How to program the board 3 How to program the board 3.1 How to program STWIN with STLINK-V3MINI Follow the procedure below to program the STWIN core system board. Step 1. Connect the STWIN core system board to the STLINK-V3MINI programmer using the 14-pin flat cable. The programmer and the cable are included in the STEVAL-STWINKT1B hardware kit. Step 2. Connect both the boards to a PC using micro USB cables. Figure 23. STLINK-V3MINI connected to STWIN core system board Step 3. 3.2 Download the firmware onto the core system board; you can either: – download one of the sample application binaries provided using STM32CubeProgrammer or ST-LINK Utility – recompile one of the projects with your preferred IDE (EWARM, Keil, STM32CubeIDE) How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer "USB mode" The STEVAL-STWINKT1B can also be reprogrammed via USB using the STM32CubeProgrammer "USB mode". To enter "Firmware upgrade" mode you must follow the procedure below: UM2777 - Rev 3 Step 1. Unplug the STWIN core system board. Step 2. Press the USR button. Step 3. While keeping the button pressed, connect the USB cable to the PC. Now the board is in DFU mode. page 20/45 UM2777 How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer "USB mode" Step 4. You can upgrade the firmware by following the steps below: Step 4a. Open STM32CubeProgrammer. Step 4b. Select [USB] on the top-right corner. Figure 24. STM32CubeProgrammer - USB mode selection Step 4c. Click on [Connect]. UM2777 - Rev 3 page 21/45 UM2777 How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer "USB mode" Figure 25. STM32CubeProgrammer - connection Step 4d. Go to the [Erasing & Programming] tab. Step 4e. Search for the new .bin or .hex binary file to be flashed into the board. Step 4f. Click on [Start Programming]. Figure 26. STM32CubeProgrammer - programming UM2777 - Rev 3 page 22/45 UM2777 STWIN assembly steps 4 STWIN assembly steps To assemble your SensorTile Wireless Industrial Node, you need the following components: STWIN core system board • • 4x M3 bolts and nuts • Plastic box (2 parts) • Battery • 2x Magnets (optional - not included in the kit): – RS Stock No. 177-4040 Brand Eclipse Mfr Part No.N859 Figure 27. Exploded cad drawing of STWIN node components UM2777 - Rev 3 page 23/45 UM2777 STWIN assembly steps Step 1. (Optional) Insert the magnets in the rectangular recesses in the bottom of the main case. Figure 28. Optional magnets inserted in main case Step 2. Slide the U-shaped bracket into the main case. This will secure the magnets if they are present. Step 3. Insert the STWIN core system board with the correct orientation. Figure 29. Core system board inserted in main case UM2777 - Rev 3 page 24/45 UM2777 STWIN assembly steps Step 4. Fasten the core system board to the case using the nuts and bolts provided with the kit. Figure 30. Core system board fastened with bolts UM2777 - Rev 3 page 25/45 UM2777 How to run the HSDatalog application 5 How to run the HSDatalog application The HSDatalog (High-Speed Datalog) application is part of the FP-SNS-DATALOG1 STM32ODE function pack. It allows you to save data from any combination of sensors and microphones configured up to their maximum sampling rate. Sensor data are stored on a micro SD Card, SDHC (Secure Digital High Capacity) formatted with the FAT32 file system, or can be streamed to a PC via USB. At startup, the application tries to load the device configuration from the SD card (if any) and then goes to Idle state, waiting for the start command either via USB, push button or Bluetooth® low energy. Figure 31. HSDatalog data flow NO SD Card or not found JSON config POWER ON SDCard inserted and JSON config found LOAD CUSTOM CONFIG IDLE USER Button or Bluetooth low energy BLE Command LOG TO SDCARD USB cmd STOP USB cmd START LOG VIA USB Together with HSDatalog application, inside the Utilities folder, MATLAB and Python scripts are available to automatically read and plot the data saved by the application. The script has been successfully tested with MATLAB v2019a and Python 3.7. The 'ReadSensorDataApp.mlapp' MATLAB app is also available, developed and tested using the App Designer tool available in MATLAB v2019a. UM2777 - Rev 3 page 26/45 UM2777 How to run the HSDatalog application Figure 32. Folder structure in the SD card The script performs the following actions: • Reads and decodes the JSON file • Reads the raw data and uses the information from the JSON to translate them into readable data (data + timestamp) • Plots the data Note: UM2777 - Rev 3 The handling of JSON scripts requires MATLAB v2019a or above. page 27/45 UM2777 - Rev 3 6 Schematic diagrams Figure 33. STEVAL-STWINKT1B schematic (1 of 7) V_USB U18 USBLC6-2P6 VBUS 3 1 OTG_FS_DM OTG_FS_DP 2 D3 D4 D2 D1 USB-MICRO 1 2 3 4 5 4 6 C27 GND 3.3V DC-DC EXT 5V V_USB 5 USB V_USB 5V D4 2 SYS J5 1 ST1PS01EJR A3 B2 1 2 C22 100nF SH2 SH1 A1 C1 22uF CON2 D2 D1 D0 L1 2.2uH SB23 0R C24 E1 PGOOD GND DCDC_1 3V3 400mA. E3 C3 VOUT SW VIN EN 10uF U16 Battery management SB17 DCDC_1 SB12 NC 0R 3V3_SD_485 DCDC_1 C5 D5 F3 E4 E3 E2 F2 F1 A4 D4 C3 D3 R16 20K 100mA 10mA LDO SYS1 SYS2 CHG CEN SW1_I SW1_OA SW1_OB RESET_NOW RST_PENDING nRESET SW_SEL SW2_I SW2_OA SW2_OB NC NC2 BATMS NTC C20 1uF F4 1 LED_C C_EN A1 B2 C2 C1 R20 100k R14 100k WAKEUP R19 22uF D1 D0 GND VOUT SW PGOOD DCDC_2 3V3 400 mA E3 C3 L2 2.2uH R15 E1 1M C23 10uF U14 PGOOD SW_SEL 2.7 V Analog LDO NC (10k ) 0R DCDC_1 C26 D2 D2 2 TP7 BATMS BAT_NTC R13 B3 A2 A5 B5 A1 C1 C18 VIN EN Red SW_SEL C4 D1 R12 100k R22 2k CHRG E1 B1 ST1PS01EJR A3 B2 DCDC_2_EN VBat BATSNS BATSNSFV BAT1 BAT2 ISET IPRE A3 B4 R17 2k IN1 IN2 NC DCDC_1 BUTTON_PWR U10 6 4 4.7uF IN EN C12 1uF STBC02AJR 2V7A LDK130PU-R OUT ADJ 1 3 R10 R11 C15 1uF 47.5K 20K 2 5 3V3_Ext DCDC_2 E5 F5 3V3 150mA. SB22 GND AGND SYS C25 10uF U15 DCDC_1 GND NC 5V C21 10uF SYS 3V3_LDO BATMS VBat VBat BUTTON_PWR BATT J4 1 2 R21 0R 1 4 2 3 Battery monitor (4.2 V -> 3 V) BAT_NTC 1 3 2 1 D1 ESDALC6V1-1U2 TP2 1 uC_ADC_BATT TH DCDC_1 TP3 1 1 TH TH R23 100K VBat 2 Battery Connector TP1 R18 56K PWR STRIP254P-M-2 UM2777 Schematic diagrams page 28/45 UM2777 - Rev 3 Figure 34. STEVAL-STWINKT1B schematic (2 of 7) VEXT DCDC_1 3V3_Ext SYS USART3_CTS DCDC_1 STG3692 2 SYS VEXT 15 1 4 6 SPI2_CLK USART3_RTS 7 9 12 14 5V VCC 3S1 3S2 4S1 4S2 U17 D1 D2 3-4SEL D3 D4 GND 3 1-2SEL 16 5 STMOD2 STMOD3 10 3-4SEL 8 13 STMOD4 VEXT STMOD2 STMOD3 STMOD4 I2C4_SCL SPI2_MOSI_p2 SPI2_MISO_p2 I2C4_SDA STMod+ interface 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 I2C4_SCL SPI2_MOSI_p2 SPI2_MISO_p2 I2C4_SDA PC5/WKUP5 EX_RESET EX_ADC EX_PWM STMOD2 STMOD3 STMOD4 WKUP5 11 J3 1 2 3 USART3_CTS 1-2SEL 1S1 1S2 2S1 2S2 NC USART3_TX SPI2_MOSI USART3_RX SPI2_MISO 17 C60 100nF PC5/WKUP5 EX_RESET EX_ADC EX_PWM PB14 PG9 PG10 PG12 PG12 PG10 SAI2 PG9 PB14 PA9 USART1 PA10 PB11 PC13 PB9 CAN, TIM, DSFDM,I2C1 PB8 PE9 EX_CN TIM TIM TIM,DSFDMD2 DSI_TE,TIM,LPUART_TX TAMP, WKUP TIM, DSFDMCLK DSI_D1_N DSI_D1_P DSI_D0_N DSI_D0_P DSI_CLK_N DSI_CLK_P PA0 PA1 ADC_IN5 ADC_IN6 CN1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 CN2 FH34SRJ-40S-0.5SH(99) UM2777 Schematic diagrams page 29/45 3V3_Sensors DCDC_1 C57 100nF 3V3_Sensors 11 10 9 8 SPI3_MISO 1 2 3 4 INT2_DHC INT1_ADWB 14 13 12 IIS3DWB SDA SCL CS SDO_Aux OCS_Aux INT2 VDD U11 SDO/SA0 SDx SCx INT1 SDO_Aux OCS_Aux INT2 VDD VDDIO GND1 GND2 14 13 12 SDO/SA0 SDx SCx INT1 3V3_Sensors TP4 TP5 TP6 TP8 TP9 3V3_Sensors 11 10 9 8 3V3_Sensors SPI3_CLK SPI3_MOSI SPI3_MISO I2C2_SCL I2C2_SDA INT2_ADWB 3V3_Sensors I2C Addr: 1001000b 3V3_Sensors 5 6 7 INT1_DHC SDA SCL CS 1 2 3 4 3V3_Sensors 3 STTS751 U6 SCL SDA VDD C8 100nF 6-Axis Acc + Gyro Vibrometer 5 3V3_Sensors 10 1 100nF C59 C58 INT2_DH 100nF 10uF C37 VDDIO VDD GND2 INT 10 9 8 7 SPI3_CLK CS_DH INT_M SPI3_MISO SPI3_MOSI 1 2 3 4 11 12 INT2 INT1 NC2 NC1 SCL NC3 CS SDA/I/O 4.7uF IIS2DH SCL/SPC CS SDO/SA0 SDA/I/O VDDIO VDD GND3 GND2 C40 100nF 10 9 8 7 5 6 Accelerometer 3V3_Sensors I2C2_SCL I2C2_SDA 2 4 5 6 7 I2C Addr: 1011101b Pressure 3V3_Sensors 1 6 C31 U2HTS221 VDD CS SCL SDA 2 4 I2C2_SCL I2C2_SDA I2C Addr: 1011111b 100nF C19 0.22uF Magnetometer U3 LPS22HH 3V3_Sensors 5 6 I2C2_SDA 1 2 3 4 C1 GND I2C2_SCL U12 3V3_Sensors U13IIS2MDC RES GND 12 11 I2C Addr: 0011110b 3V3_Sensors I2C2_SMBA INT_STT SCL/SPC VDD VDD_IO SDA/SDI/SDO SDO/SA0 CS INT_DRDY GND1 GND2 C13 8 9 100nF 10uF R5 7.5k Temperature 3V3_Sensors C11 I2C2_SCL R4 I2C2_SDA 7.5k 1 6 2 4 EV Therm GND 3V3_Sensors C14 2 Sensors and digital mic current monitoring ISM330DHCX VDDIO GND1 GND2 SPI3_MISO U9 C17 100nF 100nF CS_ADWB SPI3_CLK SPI3_MOSI 5 6 7 3V3_Sensors C56 100nF 3V3_Sensors J6 1 3 CS_DHC SPI3_CLK SPI3_MOSI C16 RES UM2777 - Rev 3 Figure 35. STEVAL-STWINKT1B schematic (3 of 7) 3V3_Sensors 5 GND DRDY 3 INT_HTS Humidity & Temperature UM2777 Schematic diagrams page 30/45 2 4 6 8 10 12 14 LED1 LED2 SWDIO SWDCLK R34 1k R35 560R RESET USART2_TX VDD_uC 2V7A M5 J5 H5 B6 A5 B5 D5 C5 B4 A3 L9 K9 L10 M11 K10 J9 CHRG USART3_RTS INT2_ADWB SPI3_CLK SPI3_MISO SPI3_MOSI DFSDM1_DATIN5 EXTI_LINES EXTI0 --> USR Button EXTI1 --> BLE EXTI2 --> INT2_DH or INT2_ADWB EXTI3 --> BLE_TEST9 EXTI4 --> INT2_DHC EXTI5 --> WKUP_INT EXTI6 --> HTS EXTI7 --> PGOOD EXTI8 --> INT1_DLC EXTI9 --> Mag EXTI10 --> PWR_BTN EXTI11 --> WiFi EXTI12 --> EX_CN EXTI13 --> TAMP,WKUP Ext EXTI14 --> INT1_ADWB EXTI15 --> INT_STT PB8 PB9 DFSDM1_D7 PB11 SD_DETECT USART3_CTS PB14 SPI2_MOSI_p2 H3 J2 H4 J3 L5 K5 D12 E9 E10 C12 C9 A9 D9 E4 D1 D2 ADC1_IN1 ADC1_IN2 SPI2_MISO_p2 SPI2_MOSI uC_ADC_BATT PC5/WKUP5 WIFI_RST SDMMC_D0 SDMMC_D1 SDMMC_D2 SDMMC_D3 SDMMC_CK RTC_TAMP1 PC13 OSC32_IN OSC32_OUT SPI2_CLK SDMMC_CMD SPI2_MISO USART2_RTS USART2_TX USART2_RX WIFI_WAKEUP USART3_TX USART3_RX BUTTON_PWR EX_RESET I2C4_SCL I2C4_SDA CS_DH STM32L4R9ZIJ6 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG12 PG13 PH0-OSC_IN PH1-OSC_OUT PH3-BOOT0 DSIHOST_D1P DSIHOST_D1N DSIHOST_D0P DSIHOST_D0N DSIHOST_CKP DSIHOST_CKN NRST BOOT0-PE0 LED1 SAI1_MCLK_A BLE_TEST9 SAI1_FS_A/DFSDM_D3 SAI1_SCK_A SAI1_SD_A SAI1_SD_B INT1_DHC BLE_TEST8 WIFI_DRDY PE12 DCDC_2_EN INT1_ADWB INT_STT E3 E2 E1 E5 F3 F4 F2 F5 F1 G4 G3 K6 G5 J6 M7 H6 Close to VDDUSB C39 C36 100nF 1uF VDD_uC Close to VDD/VDDIO2 C35 C34 C38 C32 C47 C50 C45 C42 C41 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 4.7uF WIFI_BOOT0 CS_DHC 3-4SEL CHRG 1-2SEL BLE_INT SPI1_CLK SPI1_MISO SPI1_MOSI BLE_SPI_CS INT_HTS I2C3_SCL I2C3_SDA PG9 PG10 D6 C6 PG12 OSC_IN OSC_OUT BOOT0-PE0 H11 H12 DSI_D1_P DSI_D1_N K11 K12 DSI_D0_P DSI_D0_N J11 J12 DSI_CLK_P DSI_CLK_N J1 VDD_uC DFSDM1_CKOUT PE9 I2C2_SDA I2C2_SCL I2C2_SMBA CS_WIFI INT2_DHC CS_ADWB SW_SEL PGOOD C_EN INT_M STSAFE_RESET L7 M8 F12 F7 F10 F8 F9 E11 E8 F6 E6 H1 H2 A4 LED2 Orange 1 L12 B1 C11 A6 E12 K2 L1 VREF+ VDDA VBAT VDDUSB VCAPDSI PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 A2 C4 C3 B3 D3 C2 D4 G6 K7 J7 L8 H7 M9 J8 M10 K8 2 STM32 Current monitoring LED1 Green PE0 PE1 PE2 PE3 PE4 PE5 PE6/WKUP3 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PC0 PC1 PC2 PC3 PC4 PC5/WKUP5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13/WKUP2 PC14-OSC32_IN PC15-OSC32_OUT C8 B8 D8 A8 C7 D7 B7 E7 H10 H9 H8 G11 G9 G10 G8 G7 LED2 VDDIO2_1 VDDIO2_2 A11 B2 G1 G12 L11 M2 M6 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 2.2uF VSSA/VREF- EX_PWM VSSDSI SWDIO SWDCLK BLE_RST PA9 PA10 OTG_FS_DM OTG_FS_DP VSS9 VSS8 VSS7 VSS6 VSS5 VSS4 VSS3 VSS2 VSS1 DAC1_OUT1 EX_ADC PA0/WKUP1 PA1 PA2/WKUP4 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13/SWDIO PA14/SWCLK PA15 VDD1 VDD2 VDD3 VDD4 VDD5 VDD6 VDD7 K3 L2 L3 M3 K4 L4 J4 M4 D11 D10 C10 B12 B11 B10 A10 B9 PA0 PA1 INT2_DH VDD_uC J7 1 STDC14 U4 DCDC_1 C7 2 USART2_RX 1 3 5 7 9 11 13 1 VDD_uC 2 UM2777 - Rev 3 Figure 36. STEVAL-STWINKT1B schematic (4 of 7) J2 VDD_uC R3 4.7k R2 4.7k R32 4.7k Close to VREF/VDDA R33 4.7k 2V7A I2C2_SCL I2C2_SDA I2C4_SCL I2C4_SDA C44 C48 C46 100nF 1uF 10nF Differential pairs 100 OHM 6.8pF C43 OSC_IN 1 RESET X1 2 K1 J10 M12 M1 L6 G2 F11 C1 A12 A7 A1 C5 OSC32_IN 4 3 C49 5.6pF SP1 X2 32.7680KHZ AGND RESET 1 USR/BOOT 4 BOOT0-PE0 D2 2 1 1 RESET 3 4 2 3 5.6pF R1 10k ESDALC6V1-1U2 100nF 2 2 6.8pF OSC32_OUT 1 D3 C1 ESDALC6V1-1U2 C6 VDD_uC USR 16MHz OSC_OUT UM2777 Schematic diagrams page 31/45 UM2777 - Rev 3 Figure 37. STEVAL-STWINKT1B schematic (5 of 7) 3V3_Sensors M2 CLK LR C2 100nF 2 C30 1uF DOUT 4 AudioCoupon Connector DFSDM1_DATIN5 SYS GND GND GND GND DFSDM1_CKOUT IMP34DT05 VDD 3 DCDC_1 a1 a2 a3 a4 a5 a6 5A 5B 5C 5D 1 SAI1_FS_A/DFSDM_D3 MREF R28 10k 2V7A MP23ABS1 VDD DOUT 1 M1 R29160 GND1 GND2 GND3 5 C10 100nF C52 1uF SAI1_SD_A SAI1_SD_B DFSDM_D2 DFSDM_D5 DFSDM1_D7 DFSDM1_CKOUT I2C2_SCL I2C2_SDA SAI1_SCK_A SAI1_MCLK_A PE12 M1P_FILT C54 10nF SD Card 2 3 4 C55 1uF M1 HP Filter --> fc = 15.9 Hz LP Filter --> fc = 99.4 KHz DAC for mic bias CN4 M55-6001242R b1 b2 b3 b4 b5 b6 U1 EMIF06-MSD02N16 3V3_SD_485 SD_DETECT 2V7A A2 2V7A A1 M1P OUT1 Vcc+IN1 C3 MREF_DIV C2 C1 R8 1M M1P_FILT C3 C4 100nF 10uF C9 10nF R6100k RS485 3V3_SD_485 USART2_TX 3V3_SD_485 VL R DE RE D 11 USART2_RX USART2_RTS EP U19 STR485LV 1 2 3 4 5 VCC B A SLR GND 10 9 8 7 6 SD R74.7k MREF 3V3_SD_485 1 2 3 SB24 NC R24 62 DETCB DETCA DETGNDA DETGNDB J1 R25 62 SB25 0R DAT1 DAT0 GND CLK VDD CMD CD/DAT3 DAT2 8 7 6 5 4 3 2 1 ADC1_IN2 Vcc+ +IN2 B1 C51 100nF OUT2 R9 1M U8 TS922EIJT 16 15 14 13 12 11 10 9 GND A3 SB110R -IN1 MREF ADC1_IN1 -IN2 B3 DAC1_OUT1 WP/CD RDATA_VCC RDAT3_GND VCC DAT2_In DAT2_Ex DAT3_In DAT3_Ex CMD_Ex CMD_In CLK_In CLK_Ex DAT0_In DAT0_Ex DAT1_In DAT1_Ex 17 SB10NC SDMMC_D2 SDMMC_D3 SDMMC_CMD SDMMC_CK SDMMC_D0 SDMMC_D1 1 2 3 4 5 6 7 8 C29 10nF NC 10B 10A 9A 9B SD_DETECT Micro-SD Card Removed --> CLOSE Card Inserted --> OPEN C28 100nF UM2777 Schematic diagrams page 32/45 UM2777 - Rev 3 Figure 38. STEVAL-STWINKT1B schematic (6 of 7) U1 EMIF06-MSD02N16 3V3_SD_485 SD_DETECT RDATA_VCC WP/CD RDAT3_GND VCC DAT2_In DAT2_Ex DAT3_Ex DAT3_In CMD_Ex CMD_In CLK_Ex CLK_In DAT0_Ex DAT0_In DAT1_Ex DAT1_In 16 15 14 13 12 11 10 9 SD Card C3 C4 100nF 10uF SD DAT1 DAT0 GND CLK VDD CMD CD/DAT3 DAT2 8 7 6 5 4 3 2 1 17 GND SDMMC_D2 SDMMC_D3 SDMMC_CMD SDMMC_CK SDMMC_D0 SDMMC_D1 1 2 3 4 5 6 7 8 DETCB DETCA DETGNDA DETGNDB 3V3_SD_485 3V3_SD_485 C28 100nF EP USART2_TX VL R DE RE D VCC B A SLR GND 10 9 8 7 6 11 1 2 3 4 5 USART2_RX USART2_RTS SB24 SB25 NC 0R SD_DETECT Micro-SD 3V3_SD_485 STR485LV U19 10B 10A 9A 9B R25 62 R24 62 J1 1 2 3 C29 10nF Card Removed --> CLOSE Card Inserted --> OPEN NC RS485 UM2777 Schematic diagrams page 33/45 DCDC_1 Default ON VDD_BLE 0R 0R 0R SB3 SB2 SB1 SPI1_MOSI SPI1_MISO SPI1_CLK BLE_SPI_MOSI BLE_SPI_MISO BLE_SPI_SCK J8 NC NC NC 1 2 3 4 5 2 BLE BLE Current monitoring BLE_SWDCLK BLE_RST VDD_BLE STRIP254P-M-5-90-SMD U5 1 2 3 4 5 BLE_TEST8 BLE_TEST9 BLE_INT Default OFF ADC IN2 ADC IN1 DIO4/I2C_CLK DIO5/I2C_SDA VBLUE Male Conn SPI1_MOSI SPI1_MISO SPI1_CLK CS_WIFI SB21 SB20 SB19 SB18 0R 0R 0R 0R USART3_TX USART3_RX USART3_RTS USART3_CTS SB16 SB15 SB14 SB13 NC NC NC NC Default OFF CN3 a6 a5 a4 a3 a2 a1 b6 b5 b4 b3 b2 b1 I2C3_SCL I2C3_SDA WIFI_RST WIFI_BOOT0 WIFI_WAKEUP WIFI_DRDY DIOA12 BT_RESET DIO1/SPI_CS DIO3/SPI_MOSI DIO2/SPI_MISO DIO0/SPI_CLK BLE_SWDIO BLE_SWDCLK BLE_CS SB8 SB7 SB9 BLE_INT DCDC_2 M55-7001242R WIFI R31 4.7k STSAFE_RESET 1 VDD_WIFI 2 Wi-Fi Current monitoring C33 100nF 0R NC NC BLE_SPI_CS USART2_TX USART2_RX STSAFE-A100 U7 DCDC_2 J10 BLE_RST BLE_CS BLE_SPI_MOSI BLE_SPI_MISO BLE_SPI_SCK R30 4.7k I2C3_SDA I2C3_SCL DCDC_2 20 19 18 17 16 15 6 7 8 9 10 11 12 13 14 Default ON R26 4.7k BlueNRG-M2SA DIO14/ANATEST0 DIO7/BOOT/UART_CTS GND DIO6/UART_RTS DIO8/UART_TXD DIO11/UART_RXD DIO9/TCK/SWTCK DIO10/TMS/SWTDI ANATEST1 R27 47k VDD_WIFI VDD_BLE BLE_SWDIO 23 22 21 SB6 SB5 SB4 SPI2_MOSI SPI2_MISO SPI2_CLK VDD_BLE J9 1 NC#23 NC#22 NC#21 UM2777 - Rev 3 Figure 39. STEVAL-STWINKT1B schematic (7 of 7) C53 1 2 3 4 STSAFE-A110 RESET VCC NC#1 GND NC#3 SCL NC#2 SDA 8 7 6 5 I2C3_SCL I2C3_SDA 100nF SO8N TAMPER RTC_TAMP1 UM2777 Schematic diagrams page 34/45 UM2777 Bill of materials 7 Bill of materials Table 5. Bill of materials Item Q.ty Ref. 1 1 BATT 2 1 CN1 3 1 CN2 4 1 CN3 5 1 CN4 6 30 C1, C2, C3, C8, C10, C13, C14, C16, C17, C27, C28, C31, C32, C33, C34, C35, C38, C39, C40, C42, C44, C45, C47, C50, C51, C53, C56, C57, C59, C60 7 7 8 Part / Value Description Battery Connector Amass Manufacturer Order code Molex 78171-0003 Hirose FH34SRJ-40S-0.5SH(99) Samtec SQT-110-01-F-D-RA M55 series 12 pin connector, 1.27pitch Harwin M55-7001242R M55 series 12 pin connector - Female, 1.27pitch Harwin M55-6001242R 100nF, 16V, ±10% CAP CER X7R 0402, 0402 (1005 Metric) Murata Electronics North America GRM155R71C104KA88J C4, C11, C21, C23, C24, C25, C58 10µF, 10V, ±20% CAP CER X5R 0402, 0402 (1005 Metric) Samsung ElectroMechanics CL05A106MP8NUB8 America, Inc. 2 C5, C6 5.6pF, 10V, ±1% CAP CER C0G/NP0 0402, 0402 (1005 Metric) Yageo 9 1 C7 2.2µF, 10V, ±20% CAP CER X5R 0402, 0402 (1005 Metric) Wurth Electronics Wurth-885012105013 Inc. 10 4 C9, C29, C46, C54 10nF, 25V, ±10% CAP CER X7R 0402, 0402 (1005 Metric) AVX Corporation 04023C103KAT2A 11 8 C12, C15, C20, C30, C36, C48, C52, C55 1µF, 10V, ±10% CAP CER X5R 0402, 0402 (1005 Metric) Taiyo Yuden JMK105BJ105KV-F 12 2 C18, C22 22µF, 10V, ±20% CAP CER X5R 0603, 0603 (1608 Metric) Taiyo Yuden LMK107BBJ226MA-T 13 1 C19 0.22µF, 16V, ±10% CAP CER X7R 0402, 0402 (1005 Metric) Murata Electronics North America GRM155R71C224KA12D 14 3 C26, C37, C41 4.7µF, 10V, ±20% CAP CER X5R 0402, 0402 (1005 Metric) Murata Electronics North America GRM155R61A475MEAAD 15 2 C43, C49 6.8pF, 10V, ±5% CAP CER C0G/NP0 0402, 0402 (1005 Metric) Murata Electronics North America GRM0225C1E6R8CA03L 16 3 D1, D2, D3 Single-line low capacitance Transil™ for ESD protection, ST0201 ST ESDALC6V1-1U2 17 1 D4 Power Schottky rectifier, STmite ST STPS120M UM2777 - Rev 3 HEADER 10 1A CC0402BRNPO9BN5R6 page 35/45 UM2777 Bill of materials Item Q.ty Description Manufacturer Order code 18 1 J1 N.M. Stripline for RS485 (not mounted) - - 19 1 J2 STDC14 STDC14 - ARM MIPI10 Samtec compatible 20 1 J3 CON5_1 V_EXT selector - - 21 1 J4 STRIP254P-M-2 - - 22 1 J5 CON2 Morsettiera a 2 vie, passo 2.54mm - - 23 1 J6 0 OHM 1206 or 2.54 Jumper Sensors and digital mic current monitoring: RES SMD Yageo AF1206JR-070RL 24 1 J7 0 OHM 1206 or 2.54 Jumper STM32 Current monitoring: RES SMD Yageo AF1206JR-070RL 25 1 J8 N.M. STRIP254P-M-5-90SMD (not mounted) 26 1 J9 0 OHM 1206 or 2.54 Jumper Bluetooth® low energy current monitoring: RES SMD Yageo AF1206JR-070RL 27 1 J10 0 OHM 1206 or 2.54 Jumper Wi-Fi Current monitoring: RES SMD Yageo AF1206JR-070RL 28 1 LED_C Red LED, LED_0402 Vishay Semiconductor Opto Division VLMS1500-GS08 29 1 LED1 Green LED, LED_0402 Panasonic Electronic Components LNJ347W83RA 30 1 LED2 Orange LED, LED_0402 Panasonic Electronic Components LNJ847W86RA 31 2 L1, L2 2.2uH, ±20% Inductor, 2520 Wurth Wurth-74438323022 32 1 M1 1.3A MEMS audio sensor ST IMP23ABSU 33 1 M2 MEMS audio sensor ST IMP34DT05 34 2 USR, PWR 4.2x3.2x2.5mm, white SW PUSHBUTTONSPST-2 ALPS SKRPABE010 35 1 RESET 4.2x3.2x2.5mm, black SW PUSHBUTTONSPST-2 ALPS SKRPADE010 36 1 R1 10k, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-0710KL 37 8 R2, R3, R7, R26, R30, R31, R32, R33 4.7k, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) TE Connectivity Passive Product CRG0402F4K7 38 2 R4, R5 7.5k, 100ppm/C, 1/16W, ±5% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402JR-077K5L 39 4 R6, R12, R14, R20 100k, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) TE Connectivity Passive Product CRG0402F100K 40 3 R8, R9, R15 1M, 100ppm/C, ±1% RES SMD 0402, 0402 (1005 Metric) TE CONNECTIVITY CRG0402F1M0 41 1 R10 47.5K, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-0747K5L 42 2 R11, R16 20K, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-0720KL UM2777 - Rev 3 Ref. Part / Value FTSH-107-01-L-DV-K - - page 36/45 UM2777 Bill of materials Item Q.ty 43 1 R13 10k N.M., ±1% RES, SMD, 0402 (not mounted), 0402 (1005 Metric) TE CONNECTIVITY CRG0402F10K 44 2 R17, R22 2k, 100ppm/C, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RT0402FRE072KL 45 1 R18 56K, 100ppm/C, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-0756KL 46 2 R19, R21 0R RES SMD 0402, 0402 (1005 Metric) Vishay Dale CRCW04020000Z0ED 47 1 R23 100K, 100ppm/C, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-07100KL 48 2 R24, R25 62, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-0762RL 49 1 R27 47k, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Samsung ElectroMechanics RC1005F473CS America, Inc. 50 1 R28 10k, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-0710KL 51 1 R29 160, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) TE Connectivity Passive Product CRG0402F160R 52 1 R34 1k, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-071KL 53 1 R35 560R, 100ppm/C, 1/16W, ±1% RES SMD 0402, 0402 (1005 Metric) Yageo RC0402FR-07560RL 13 SB1, SB2, SB3, SB7, SB9, SB10, SB13, SB14, 0 OHM N.M. SB15, SB16, SB17, SB22, SB24 RES SMD 0402 (not mounted), 0402 (1005 Metric) Vishay Dale CRCW04020000Z0ED 55 12 SB4, SB5, SB6, SB8, SB11, SB12, SB18, SB19, SB20, SB21, SB23, SB25 RES SMD 0402, 0402 (1005 Metric) Vishay Dale CRCW04020000Z0ED 56 1 SD Micro-SD Wurth Electronics 693071010811 57 1 SP1 N.M. (not mounted) - - 58 7 TP4, TP5, TP6, TP7, TP8, TP9, TAMPER 1mm N.M. TEST POINT 1MM SMD PADSTASCK (not mounted) - - 59 1 TP1 60 2 TP2, TP3 61 1 USB USB Micro-B, USBMicro-B GCT USB3075-30-A 62 1 U1 6-line IPAD™, EMI filter and ESD protection ST EMIF06-MSD02N16 63 1 U2 Humidity, Temperature, HLGA-6L(2 x 2 x 0.9 ST mm) 54 UM2777 - Rev 3 Ref. Part / Value 0R Description Test Point Through Hole N.M. Manufacturer Keystone Electronics Test Point Through Hole (not mounted) Order code 5001 - - HTS221TR page 37/45 UM2777 Bill of materials Item Q.ty Ref. Part / Value Description Manufacturer Order code 64 1 U3 MEMS NANO PRESSURE SENSOR: ST 260-1, (2 x 2 x 0.73 mm) 65 1 U4 STM32L496, UFBGA144 ST STM32L4R9ZIJ6 ST BlueNRG-M2SA ST STTS751-0DP3F LPS22HHTR 66 1 U5 Very low power application processor module for Bluetooth® low energy v5.0 67 1 U6 Digital temperature sensor, UDFN-6L 68 1 U7 Secure element, SO8N ST STSAFE-A110 69 1 U8 OpAmp - excellent audio performance / low distortion (0.005%) ST TS922EIJT ST ISM330DHCX 70 1 U9 3D accelerometer and 3D gyroscope, LGA-14L (2.5 x 3 x 0.83 mm) 71 1 U10 300 mAvery low noise LDO, DFN6 ST LDK130PU-R 72 1 U11 Accelerometor Ultra Wide Bandwidth, LGA-14L (2.5 x 3 x 0.83 mm) ST IIS3DWB 73 1 U12 Accelerometor Ultralow-power, LGA-12 (2.0x2.0x1 mm) ST IIS2DHTR 74 1 U13 MEMS Magnetometer, (2.0x2.0x0.7) ST IIS2MDCTR 75 2 U14, U16 400mA step-down switching regulator, Flip-chip ST ST1PS01EJR 76 1 U15 Li-Ion Linear Battery Charger with LDO 3.3V, Flip Chip30 (2.59x2.25 mm) ST STBC02AJR 77 1 U17 Low voltage high bandwidth quad SPDT switch ST STG3692 78 1 U18 USB Protection ST USBLC6-2P6 79 1 U19 Low power transceiver for RS-485, DFN10 ST STR485LV 80 1 X1 16MHz 16.00MHz Crystal 8pF NDK NX3225GA-16MHZ-STD-CRG-1 81 1 X2 32.7680KHZ CRYSTAL 32.7680KHz NDK 6PF SMD NX3215SA-32.768K-STDMUA-14 82 1 STLINK-V3MINI STLINK-V3MINI 83 1 Programming Cable (Included in ST-LINK) - - 84 1 Plastic Box - - 85 1 UM2777 - Rev 3 480mAh Battery LiPo ST Himax LiPo-752535 page 38/45 UM2777 Bill of materials Item Q.ty 86 4 12mm M3 87 4 M3 UM2777 - Rev 3 Ref. Part / Value Description Manufacturer Order code Pan head phillips steel - - HEX Nut - steel - - page 39/45 UM2777 Revision history Table 6. Document revision history Date UM2777 - Rev 3 Version Changes 17-Nov-2020 1 11-Jan-2021 2 10-Jun-2021 3 Initial release. Updated Introduction. Minor text changes. Updated Section 2.1 Sensing, Section 2.2 Processing and connectivity, Section 2.3 Power management, Section 2.3.4 Power consumption evaluation and Section 2.4 Buttons, LEDs and connectors. page 40/45 UM2777 Contents Contents 1 STWIN kit components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Functional blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 2.2 2.3 2.4 Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 HTS221 humidity and temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 LPS22HH MEMS pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 STTS751 digital temperature sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4 TS922 rail-to-rail, high output current, dual operational amplifier. . . . . . . . . . . . . . . . . . . . . 6 2.1.5 ISM330DHCX iNEMO IMU 3D Acc + 3D Gyro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.6 IIS3DWB ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration sensor . . . 6 2.1.7 IIS2DH ultra-low power 3-axis high-performance accelerometer . . . . . . . . . . . . . . . . . . . . . 6 2.1.8 IIS2MDC 3-axis magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.9 IMP23ABSU analog MEMS microphone with extended frequency response up to 80 kHz for ultrasound applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.10 IMP34DT05 digital MEMS microphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Processing and connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 STM32L4R9ZI Cortex-M4F 120MHz 640Kb RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 BlueNRG-M2 very low power application processor module for Bluetooth® low energy v5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 STEVAL-STWINWFV1 Wi-Fi expansion (not included in the kit) for the SensorTile wireless industrial node (STWIN) kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 STR485LV 3.3V RS485 up to 20Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.5 USB connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.6 STSAFE-A110 authentication, state-of-the-art security for peripherals and IoT devices . . 11 2.2.7 microSD card socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.8 Clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Battery connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 Power ON/OFF procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.4 Power consumption evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Buttons, LEDs and connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 UM2777 - Rev 3 Flex expansion connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 page 41/45 UM2777 Contents 3 2.4.2 STMod+ connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Connectivity expansion connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.4 Sensor expansion connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Protective plastic box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 STLINK-V3MINI debugger and programmer for STM32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 How to program the board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 3.1 How to program STWIN with STLINK-V3MINI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 How to program STWIN without STLINK-V3MINI using STM32CubeProgrammer "USB mode" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 STWIN assembly steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 5 How to run the HSDatalog application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 6 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 7 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 UM2777 - Rev 3 page 42/45 UM2777 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. UM2777 - Rev 3 STEVAL-STWINKT1B SensorTile Wireless Industrial Node . . . . . . . . . . . . . . . . . . . . . . STWIN Core System board top and bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protective plastic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480mAh 3.7V Li-Po Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STLink-V3Mini Debugger/Programmer for STM32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B functional block diagram of sensing elements and STM32L4R9ZIJ6 Core system board sensor locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main connectivity components and the STM32L4R9ZI processing unit. . . . . . . . . . . . . . . MCU and connectivity element locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power and protection components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power and protection component locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Battery and J4 connectors for VBAT supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power monitoring points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buttons, LEDs and connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CN1 Flex connector top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STMod+ connector top views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CN3 connectivity connector top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CN4 sensor connector top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STLINK-V3MINI and STDC14 cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STLINK-V3MINI connected to STWIN core system board. . . . . . . . . . . . . . . . . . . . . . . . STM32CubeProgrammer - USB mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STM32CubeProgrammer - connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STM32CubeProgrammer - programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exploded cad drawing of STWIN node components . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional magnets inserted in main case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Core system board inserted in main case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Core system board fastened with bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HSDatalog data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Folder structure in the SD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B schematic (1 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B schematic (2 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B schematic (3 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B schematic (4 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B schematic (5 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B schematic (6 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-STWINKT1B schematic (7 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 . 2 . 2 . 3 . 3 . 4 . 4 . 5 . 8 . 9 12 12 13 13 14 15 15 17 18 18 19 20 21 22 22 23 24 24 25 26 27 28 29 30 31 32 33 34 page 43/45 UM2777 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. CN1 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . STMod+ connector pin assignments and descriptions. CN3 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . CN4 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . UM2777 - Rev 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 17 18 19 35 40 page 44/45 UM2777 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved UM2777 - Rev 3 page 45/45
STEVAL-STWINKT1B 价格&库存

很抱歉,暂时无法提供与“STEVAL-STWINKT1B”相匹配的价格&库存,您可以联系我们找货

免费人工找货