0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STGAP1BSTR

STGAP1BSTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    IC GATE DVR ISO 2.5KV 1CH 24SOIC

  • 数据手册
  • 价格&库存
STGAP1BSTR 数据手册
STGAP1BS Datasheet Automotive galvanically isolated advanced single gate driver Features SO24W Product status link STGAP1BS Product label • • • • • • • • • • • AEC-Q100 qualified High voltage rail up to 1500 V Driver current capability: 5 A sink/source current at 25 °C dV/dt transient immunity ±50 V/ns in full temperature range Overall input/output propagation delay: 100 ns Separate sink and source for easy gate driving configuration Negative gate drive ability Active Miller clamp Desaturation detection SENSE input VCE active clamping • • • • • • • • • • Output 2-level turn-off Diagnostic status output UVLO and OVLO functions Programmable input deglitch filter Asynchronous stop command Programmable deadtime, with violation error SPI interface for parameters programming Temperature warning and shutdown protection Self-diagnostic routines for protection features Full effective fault protection Applications • • • • • • • 600/1200 V inverters Inverters for EV/HEV EV charging stations Industrial drives UPS equipment DC/DC converters Solar inverters Description The STGAP1BS is a galvanically isolated single gate driver for N-channel MOSFETs and IGBTs with advanced protection, configuration and diagnostic features. The architecture of the STGAP1BS isolates the channel from the control and the low voltage interface circuitry through true galvanic isolation. The gate driver is characterized by 5 A capability, making the device also suitable for high power inverter applications such as motor drivers in hybrid and electric vehicles and in industrial drives. The output driver section provides a rail-to-rail output with the possibility to use a negative gate driver supply. DS11974 - Rev 4 - October 2021 For further information contact your local STMicroelectronics sales office. www.st.com STGAP1BS The input to output propagation delay remains below 100 ns, providing high PWM control accuracy. Protection functions such as the Miller clamp, desaturation detection, dedicated sense pin for overcurrent detection, output 2-level turn-off, VCE overvoltage protection, UVLO and OVLO are included to easily design high reliability systems. Open drain diagnostic outputs are included and detailed device conditions can be monitored through the SPI. Each function parameter can be programmed via the SPI, making the device very flexible and allowing it to fit in a wide range of applications. Separate sink and source outputs provide high flexibility and bill of material reduction for external components. DS11974 - Rev 4 page 2/59 STGAP1BS Block diagram 1 Block diagram Figure 1. Block diagram DS11974 - Rev 4 page 3/59 STGAP1BS Pin connection 2 Pin connection Figure 2. Pin connection (top view) GND 1 24 ASC SDO 2 23 VL SDI 3 22 CLAMP CS 4 21 GOFF GON CK 5 20 VREG 6 19 VCECLAMP VDD 7 18 DESAT IN-/DIAG2 8 17 VH IN+ 9 16 SENSE DIAG1 10 15 VREGISO SD 11 14 VL GND 12 13 GNDISO Table 1. Pin description DS11974 - Rev 4 Pin no. Pin name Type Function 7 VDD Power supply Power supply for low voltage section and internal 3.3 V regulator 6 VREG Power supply Internal 3.3 V regulator output and supply pin 11 SD Logic input Shutdown input (active low) 9 IN+ Logic input Gate command input 8 IN-/DIAG2 Logic input/open drain output 10 DIAG1 Open drain output 1, 12 GND Ground Low voltage section ground 4 CS Logic input SPI chip select (active low) 5 CK Logic input SPI clock 3 SDI Logic input SPI serial data input 2 SDO Logic output SPI serial data output 19 VCECLAMP Analog input VCE active clamping protection 18 DESAT Analog input/output 15 VREGISO Power supply Internal regulator output pin for decoupling 17 VH Power supply Positive power supply for high voltage section 20 GON Analog output Gate source output 21 GOFF Analog output Gate sink output 22 CLAMP Analog output Miller clamp 14, 23 VL Power supply Negative power supply or ground for high voltage section 13 GNDISO Ground High voltage section (isolated) ground 16 SENSE Analog input Sense input for overcurrent protection 24 ASC Analog input Asynchronous stop command Gate command input /open drain diagnostic output Open drain diagnostic output Desaturation protection page 4/59 STGAP1BS Electrical data 3 Electrical data 3.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Test condition Min. Max. Unit Common mode transient immunity VCM = 1500 V - 50 V/ns Low voltage section power supply voltage vs. GND - -0.30 6.50 V VREG Low voltage section internal regulator voltage vs. GND - -0.30 3.60 V VREGISO High voltage section internal regulator voltage vs. GNDISO - -0.30 3.60 V Logic pins voltage vs. GND - -0.30 VDD + 0.30 V VHL Differential supply voltage (VH vs. VL) - -0.30 40 V VH Positive supply voltage (VH vs. GNDISO) - -0.30 40 V Negative supply voltage (VL vs. GNDISO) - -15 0.30 V VL - 0.30 VH + 0.30 V dVISO/dt VDD VLOGIC VL VOUT Parameter Voltage on gate driver outputs (GON, GOFF, CLAMP vs. VL) VDESAT Voltage on DESAT pin vs. GNDISO - -0.30 VH + 0.30 V VSENSE Voltage on SENSE pin vs. GNDISO - -2 (VH + 0.30, 20)min V - VL - 0.30 VH + 0.30 V -0.30 VH + 0.30 V - 20 mA VCECLAMP Voltage on VCECLAMP pin vs. VL 3.2 VASC Voltage on ASC pin vs. GNDISO - IDIAGx Open drain DC output current VDIAGx < 0.8 V VDIAGx Open drain output voltage - -0.30 6.50 V TJ Junction temperature - -40 150 °C TS Storage temperature - -50 150 °C TA Ambient temperature - -40 125 °C PDin Power dissipation input chip - - 65 mW PDout Power dissipation output chip - - (TJ,max - TA)/Rth(JA) PDin W dH/dt Magnetic field immunity - - 100 A/(m·s) ESD Human body model - 2 kV Thermal data Table 3. Thermal data Symbol Rth(JA) Parameter Thermal resistance junction to ambient(1) Value Unit 65 °C/W 1. The STGAP1BS mounted on the EVALSTGAP1BS rev 2.0 board (two-layer FR4 PCB). DS11974 - Rev 4 page 5/59 STGAP1BS Recommended operating conditions 3.3 Recommended operating conditions Table 4. Recommended operating conditions Symbol Pin VH 17 Parameter Test condition Min. Max. Unit - 4.50(1) 36 V V Positive supply voltage (VH vs. GNDISO) Negative supply voltage (VL vs. GNDISO) - GNDISO - 10 GNDISO(2) - Differential supply voltage (VH vs. VL) - - 36 V VDD 7 Low voltage section power supply voltage vs. GND - 4.50 5.50 V VREG 6 Low voltage section internal regulator voltage vs. GND VL 14, 23 VHL VLOGIC 2, 3, 4, 5, 8, 9, Logic pins voltage vs. GND 11 (3) 3.3 ±5% V - - (VDD, 5)min V - GNDISO (VH, 15)min V ASC 24 ASC pin voltage VDESATth 18 Desaturation protection threshold DESAT enabled - VH - 1.50 V fSW - Maximum switching frequency(4) - - 150 kHz 1. When UVLO is enabled, this value is VHon,max 2. When UVLO is enabled, this value is VLon,min 3. When VDD is connected to the VREG pin (refer to Section 6 ). 4. Actual limit depends on power dissipation constraints. DS11974 - Rev 4 page 6/59 STGAP1BS Electrical characteristics 4 Electrical characteristics 4.1 AC operation Table 5. AC operation electrical characteristics (Tj = -40 to 125 °C, VDD = 5 V; VH = 15 V, VL = GNDISO) Symbol Pin tdeglitch Parameter Input deglitch time 8, 9, 11 tINmin Min. Typ. Max. Unit INfilter = '11' 50 70 90 ns INfilter = '01' 100 160 220 ns INfilter = '10' 420 500 580 ns - - 20 ns Minimum propagated input pulse INfilter = '00' and (2LTO_EN = '1' or 2LTOtime = 0x0) tDon 8, 9, 11, 20 Input to output propagation delay ON Deglitch filter and 2LTO disabled 90 100 130 ns tDoff 8, 9, 11, 21 Input to output propagation delay OFF Deglitch filter and 2LTO disabled 90 100 130 ns tr 20 GON rise time VL = 0 V; CL = 2 nF, 10% ÷ 90% - - 25 ns tf 21 GOFF rise time VL = 0V CL = 2 nF, 90% ÷ 10% - - 25 ns PWD 8, 9, 11, 20, 21 Pulse width distortion |tDon tDoff| tIN > 100 ns Deglitch filter and 2LTO disabled - 4 10 ns DTset = '01' 205 250 295 DTset = '10' 650 800 945 DTset = '11' 985 1200 1415 DT trelease 4.2 Test condition 8, 9, 20, 21 11 Deadtime Minimum flag release time SD = '0', SD_FLAG = '1' - - 105 ns μs DC operation Table 6. DC operation electrical characteristics (Tj = -40 to 125 °C, VDD = 5 V; VH = 15 V, VL = GNDISO) Symbol Pin Parameter Test condition Min. Typ. Max. Unit Logic inputs/output Vol 2 Voh IINh 8, 9 IINl ISDh 11 ISDl SDO logic “0” output voltage I = 4 mA - - 0.15 V SDO logic “1” output voltage I = 4 mA 4.85 - - V INx logic “1” input bias current VIN = 5 V (pin 8 used as IN-) 55 85 145 μA INx logic “0” input bias current VIN = 0 V (pin 8 used as IN-) - - 0.10 μA SD logic “1” input bias current VSD = 5 V 55 85 145 μA SD logic “0” input bias current VSD = 0 V - - 0.10 μA Rin_pd 8, 9, 11 Input pull-down resistors VIN = 5 V (pin 8 used as IN-) 35 60 85 kΩ Rin_pu 4 CS input pull-up resistor CS = GND 35 55 80 kΩ DS11974 - Rev 4 page 7/59 STGAP1BS DC operation Symbol Vil Vih Pin 3, 4, 5, 8, 9, 11 Parameter Test condition Min. Typ. Max. Unit Low logic level voltage - 0.29 · VDD 0.33 · VDD 0.37 · VDD V High logic level voltage - 0.62 · VDD 0.66 · VDD 0.79 · VDD V 5 A Driver buffer section IGON 20 IGOFF 21 Source short-circuit current Sink short-circuit current Tpulse < 5 µs, DC = 1% Tj = 25 °C Tj = -40 - +125 °C 2.50(1) Tpulse < 5 µs, DC = 1% Tj = 25 °C Tj = -40 - +125 °C 2.50(1) 7 5 A 6 VGOFFL 21 GOFF output low level voltage IGOFF = 0.1 A IGOFF = 1 A VL + 0.03 VL + 0.50 VL + 0.09 VL + 1 VL + 0.15 VL + 1.80 V VGONH 20 GON output high level voltage IGON = 0.1 A IGON = 1 A VH - 0.18 VH - 2.10 VH - 0.10 VH - 1.30 VH - 0.05 VH - 0.50 V SafeClp 20, 21, 22 GOFF active clamp IGOFF = 0.2 A; VH floating; GON = GOFF = CLAMP - - 3 V 0.1 V < VREG < 3.0 V - 60 120 VREG < 0.1 V - 15 35 Supply voltage IREG 6 VREG short-circuit current (see Section 7.3 ) mA VDDon VDD UVLO turn-on threshold - 3.95 4.10 4.30 V VDDoff VDD UVLO turn-off threshold - 3.65 3.80 4 V VDD UVLO hysteresis - 0.15 - - V VDD OVLO turn-on threshold - 5.30 5.50 5.90 V OVVDDoff VDD OVLO turn-off threshold - 5.40 5.70 6.10 V OVVDDhys VDD OVLO hysteresis - 100 200 300 mV VDD = 5 V; SD = 5 V; INx = GND; f = 0 Hz 5.20 6.50 7.50 mA VDD = 5 V; SD = 5 V; fSW = fSW,max 6.00 8.50 9.50 mA VHONth = '01' 9.40 10 10.50 VHONth = '10' 11.30 12 12.60 VHONth = '11' 13.15 14 14.70 VHONth = '01' 8.45 9 9.45 VHONth = '10' 10.35 11 11.55 VHONth = '11' 12.25 13 13.65 0.70 1 1.30 VLONth = '01' -3.15 -3 -2.80 VLONth = '10' -5.25 -5 -4.70 VLONth = '11' -7.35 -7 -6.55 VLONth = '01' -2.15 -2 -1.90 VLONth = '10' -4.25 -4 -3.80 VDDhys 7 OVVDDon IQDD 7 VHon VDD quiescent supply current VH UVLO turn-on threshold 17 VHoff VH UVLO turn-off threshold VHhyst VH UVLO hysteresis VLon VL UVLO turn-on threshold 14, 23 VLoff DS11974 - Rev 4 VL UVLO turn-off threshold - V V V V V page 8/59 STGAP1BS DC operation Symbol Parameter Test condition Min. Typ. Max. Unit VL UVLO turn-off threshold VLONth = '11' -6.35 -6 -5.70 V VL UVLO hysteresis - 0.70 1 1.20 V VH OVLO turn-off threshold OVLO_EN = '1' 17.80 19 20 V VH OVLO turn-on threshold OVLO_EN = '1' 16.90 18 18.90 V OVVHhys VH OVLO hysteresis OVLO_EN = '1' 0.60 1 1.30 V OVVLoff VL OVLO turn-off threshold OVLO_EN = '1' -10.50 -10 -9.40 V VL OVLO turn-on threshold OVLO_EN = '1' -9.45 -9 -8.55 V VL OVLO hysteresis OVLO_EN = '1' 0.70 1 1.30 V 5 6.70 7.50 mA 300 420 550 µA DESATth = '000'; 2.60 3 3.10 DESATth = '001' 3.60 4 4.20 DESATth = '010' 4.60 5 5.30 DESATth = '011' 5.50 6 6.30 DESATth = '100' 6.50 7 7.40 DESATth = '101' 7.40 8 8.40 DESATth = '110' 8.30 9 9.40 DESATth = '111' 9.30 10 10.50 DESATth = '100'(2) 10 20 30 DESATcur = '00'; VDESAT = 0 V 220 250 265 DESATcur = '01'; VDESAT = 0 V 440 500 525 DESATcur = '10'; VDESAT = 0 V 660 750 800 DESATcur = '11'; VDESAT = 0 V 885 1000 1050 VDESAT = 8 V 50 70 90 mA 160 250 340 ns 80 150 220 ns SENSEth = '000' 88 100 112 SENSEth = '001' 110 125 140 SENSEth = '010' 135 150 165 SENSEth = '011' 158 175 192 VLoff VLhys Pin 14, 23 OVVHoff OVVHon OVVLon 17 14, 23 OVVLhyst IQH 17 VH quiescent supply current SD = 5 V; IN+ = 5 V; IN- = GND IQL 14, 23 VL quiescent supply current VL = -5 V; SD = 5 V; IN+ = IN- = GND Desaturation protection VDESATth tDESfilter Desaturation threshold 18 IDESAT DESAT pin deglitch filter DESAT blanking charge current DESAT blanking discharge current IDESoff DESAT protection fixed blanking time tBLK 18 tDESAT DESAT protection intervention time V ns μA VDESAT = VDESAth to GOFF 90% CLOAD = 10 nF 2LTO disabled SENSE overcurrent function VSENSEth DS11974 - Rev 4 16 SENSE protection threshold mV page 9/59 STGAP1BS DC operation Symbol Pin VSENSEth Parameter SENSE protection threshold 16 SENSE protection intervention time tSENSE Test condition Min. Typ. Max. SENSEth = '100' 185 200 215 SENSEth = '101' 235 250 268 SENSEth = '110' 285 300 315 SENSEth = '111' 380 400 420 - 95 120 2LTOth = '0000' 6.65 7.00 7.35 2LTOth = '0001' 7.12 7.50 7.88 2LTOth = '0010' 7.60 8.00 8.40 2LTOth = '0011' 8.07 8.50 8.93 2LTOth = '0100' 8.55 9.00 9.45 2LTOth = '0101' 9.02 9.50 9.98 2LTOth = '0110' 9.50 10.00 10.50 2LTOth = '0111' 9.97 10.50 11.03 2LTOth = '1000' 10.45 11.00 11.55 2LTOth = '1001' 10.92 11.50 12.08 2LTOth = '1010' 11.40 12.00 12.60 2LTOth = '1011' 11.87 12.50 13.13 2LTOth = '1100' 12.35 13.00 13.65 2LTOth = '1101' 12.82 13.50 14.18 2LTOth = '1110' 13.30 14.00 14.70 2LTOth = '1111' 13.77 14.50 15.23 2LTOtime = '0001' 0.64 0.75 0.89 2LTOtime = '0010' 0.89 1.00 1.15 2LTOtime = '0011' 1.36 1.50 1.65 2LTOtime = '0100' 1.83 2.00 2.18 2LTOtime = '0101' 2.30 2.50 2.70 2LTOtime = '0110' 2.77 3.00 3.23 2LTOtime = '0111' 3.25 3.50 3.75 2LTOtime = '1000' 3.47 3.75 4.03 2LTOtime = '1001' 3.71 4.00 4.29 2LTOtime = '1010' 3.94 4.25 4.56 2LTOtime = '1011' 4.18 4.50 4.82 2LTOtime = '1100' 4.42 4.75 5.08 2LTOtime = '1101' 4.66 5.00 5.34 2LTOtime = '1110' 4.90 5.25 5.63 2LTOtime = '1111' 5.12 5.50 5.95 SENSEth = '111' 0→1 V step on VSENSE to GOFF 90%; CLOAD = 10 nF 2LTO disabled Unit mV ns 2-level turn-off function V2LTOth t2LTOtime DS11974 - Rev 4 21 21 2LTO threshold 2LTO time V μs page 10/59 STGAP1BS DC operation Symbol Pin Parameter Test condition Min. Typ. Max. Unit - 5 - μs Diagnostic outputs tDIAG1,2 IDIAG1 8, 10 IDIAG2 RDIAG1,2 Fault event to DIAGx Low delay Fault event to DIAGx 90% DIAG1 low level sink current VDIAG1 = 0.4 V 10 18 30 mA DIAG2 low level sink current VDIAG2 = 0.4 V 10 18 30 mA 300 550 800 kΩ 1.70 2 2.30 V DIAGx pull-down resistor Clamp Miller function VCLAMPth ICLAMP 22 VCLAMP_L CLAMP voltage threshold CLAMP vs. GNDISO Clamp short-circuit current Tpulse < 5 µs, DC = 1% Tj = 25 °C Tj = -40 ÷ +125 °C ICLAMP = 1 A Clamp low level output voltage 5 2.50(1) A 6 VL + 0.50 VL + 1 VL + 1.80 V VCE active clamping protection VVCECLth 19 VVCECLhy st tVCECLoff 19 tVCECL VCE clamping threshold - VL + 1.20 VL + 1.60 VL + 2 V VCE clamping threshold hysteresis - 0.30 0.50 0.60 V - 2 2.30 2.60 μs - - 20 - ns VCE clamping time-out VCE clamping intervention time(2) ASC function VASCl Low logic level voltage - 0.80 1.10 1.40 V VASCh High logic level voltage - 1.80 2.20 2.40 V IASCh ASC logic “1” input bias current VASC = 5 V 55 100 145 μA ASC logic “0” input bias current VASC = 0 V - - 0.10 μA RASC ASC pull-down resistors VASC = 5 V 35 50 70 kΩ tASC ASC intervention time VASC = 5 V 100 - 250 ns 24 IASCl Functionality checks Gate path check time (GON/ GOFF)(3) - - - 30 μs 20 Gate path check voltage (GON) - 0.7 x VH 0.76 x VH 0.84 x VH V tRchk 16 SENSE resistor check time - - - 15 μs IGOFFchk 21 GOFF path check current - -420 -350 -280 μA 8 10 12 μA tGchk 20, 21 VGchk ISENSERc hk 16 tSENSEchk SENSE resistor check current VSENSE < 1 V SENSE comparator check time - - - 15 μs 18 DESAT comparator check time - - - 15 μs TWN - Warning temperature(2) - 125 - - °C TSD - Shutdown temperature(2) - 155 - - °C Thys - Temperature hysteresis(2) - - 20 - °C tDESATchk Overtemperature protection DS11974 - Rev 4 page 11/59 STGAP1BS DC operation Symbol Pin Parameter Test condition Min. Typ. Max. Unit Standby ISTBY_VD 7 VDD standby current VDD = 5 V 0.40 0.80 1 mA tsleep - Standby time SD = '0', measured from CS rise 500 700 900 ns tawake - Logic wake-up time(2) SD = '1' 5 - - μs 5 - - MH z - - 25 ns D SPI (characterization data, not tested in production) tCKmax trCK tfCK Maximum SPI clock frequency 5 thCK tlCK SPI clock rise and fall time CL = 30 pF SPI clock high and low time - 75 - - ns tsetCS CS setup time - 350 - - ns tholCS CS hold time - 10 - - ns Local register read 800 - - ns Remote register read 30 - - Start configuration 22 - - Stop configuration 5 - - Reset status register 50 - - - - Any other command 700 - - ns 4 tdesCS tsetSDI tholSDI CS deselect 3 tenSDO tdisSDO tvSDO 2 tholSDO time(4) μs SDI setup time - 25 - - ns SDI hold time - 20 - - ns SDO enable time - - - 38 ns SDO disable time - - - 47 ns SDO valid time - - - 57 ns SDO hold time - 37 - - ns tSDLCSL 4, 11 SD falling to CS falling - 350 - - ns tCSHSDH 4, 11 CS rising to SD rising - 350 - - ns 1. Guaranteed by correlation. 2. Characterization data, not tested in production. 3. The actual waiting time depends on the gate charge size. 4. See Table 22 and Section 9.1.3 . DS11974 - Rev 4 page 12/59 STGAP1BS Isolation 5 Isolation Table 7. Isolation and safety-related specifications Parameter Symbol Value Unit Clearance (minimum external air gap) Creepage (minimum external tracking) Comparative tracking index (tracking resistance) Conditions CLR 8 mm Measured from input terminals to output terminals, shortest distance through air CPG 8 mm Measured from input terminals to output terminals, shortest distance path along body CTI ≥ 400 - DIN IEC 112/VDE 0303 Part 1 - II - Material group (DIN VDE 0110, 1/89, Table 1) Isolation group Table 8. IEC 60747-5-2 isolation characteristics Parameter Symbol Test conditions - - Characteristic Unit Installation classification (EN 60664-1, Table 1(1)) I - IV For rated mains voltage ≤ 150 V rms For rated mains voltage ≤ 300 V rms - I - III I - II For rated mains voltage ≤ 600 V rms Pollution degree (EN 60664-1) Maximum working isolation voltage - - 2 - VIORM - 1500 VPEAK 2400 VPEAK 2815 VPEAK Method a, type test VPR = VIORM × 1.6, tm = 10 s Input to output test voltage as per IEC 60747-5-2 VPR Partial discharge < 5 pC Method b1, 100 % production test VPR = VIORM × 1.875, tm = 1 s Partial discharge < 5 pC Transient overvoltage as per IEC 60747-5-2 (highest allowable overvoltage) VIOTM tini = 60 s; type test 4000 VPEAK Maximum surge isolation voltage VIOSM Type test 4000 VPEAK VIO = 500 V at TS; type test >109 Ω RIO Isolation resistance 1. For three-phase systems the values in the table refer to the line-to-neutral voltage. Table 9. UL 1577 isolation voltage ratings Description Isolation withstand voltage, 1 min. (type test) Isolation withstand test, 1 sec. (100% production) DS11974 - Rev 4 Symbol Characteristic Unit VISO 2500\3536 Vrms\VPEAK VISOtest 3000\4245 Vrms\VPEAK page 13/59 STGAP1BS Logic supply management 6 Logic supply management 6.1 Low voltage section voltage regulator The device integrates in the low voltage section a linear voltage regulator that can be used to obtain the 3.3 V logic core supply voltage from an external 5 V supply voltage. If an external 3.3 V supply voltage is available, the VDD and VREG must be shorted as shown in Figure 3. The logic IOs are referred to the VDD voltage (see Table 6 for details). Figure 3. Low voltage section 3.3 V voltage regulator VDD from +5 V power supply VDD from +3.3 V power supply +5V +3.3V VDD VDD 100 nF LDO Reg LDO Reg VREG VREG 4.7 µF 100 nF 4.7 µF 100 nF Undervoltage protection is available on the VDD supply pin (disabled by default). When the VDD voltage goes below the VDDoff threshold the device and its outputs goes in “safe state” (see Section 6.3 ) and the UVLOD status flag is forced low. Once the protection is triggered, the UVLOD flag is latched and the device remains in “safe state” until the UVLOD flag is not released. See Section 7.11 for indication on how the failure flags can be released. This protection can be enabled writing the UVLOD_EN bit of the CFG1 register (disabled by default). Overvoltage protection is available on the VDD supply pin. When the VDD voltage goes over the OVVDDoff threshold, the device and its outputs go in “safe state” and the OVLOD status flag is set. The device remains in “safe state” and the OVLOD flag is latched, see Section 7.11 for indication on how the failure flags can be released. DS11974 - Rev 4 page 14/59 STGAP1BS High voltage section voltage regulator 6.2 High voltage section voltage regulator The device integrates in the high voltage section a linear voltage regulator that generates the 3.3 V logic core supply voltage from an external supply voltage connected to the VH pin. Figure 4. High voltage section 3.3 V voltage regulator VH VH 100 nF LDO Reg VREGISO 4.7 µF 100 nF If the voltage at the VREGISO pin goes below the minimum operating threshold which causes the logic reset, the REGERRR bit in the STATUS2 register is set high. 6.3 Power-up, power-down and “safe state” The following conditions define the device's “safe state”: • GOFF = ON state • GON = high impedance • CLAMP = ON state (if CLAMP < 'GNDISO + VCLAMPth') • DESAT = GNDISO (internal switch on and current generator off) Such conditions are guaranteed at power-up of the isolated side (also for VH < VHon and VL > VLon) and during the whole device power-down phase (also for VH < VHoff and VL > VLoff), whatever the value of the input pins. The device integrates a structure which clamps the driver output to a voltage smaller than SafeClp when the VH voltage is not high enough to actively turn the GOFF N-channel MOSFET on. If the VH positive supply pin is floating the GOFF pin is clamped to a voltage smaller than SafeClp. After power-up of the isolated side the REGERRR status flag is latched and the device is forced in “safe state”. See Section 7.11 for indication on how the failure flags can be released. After power-up of the low voltage side the REGERRL and UVLOD status flags are latched and the device is forced in “safe state”. See Section 7.11 for indication on how the failure flags can be released. The UVLOH flag is also forced high at the power-up of the low voltage side, but its value is set to zero as soon as the isolated side power-up is completed. 6.4 Standby function The device can be put in standby mode to reduce the power consumption on VDD via the SPI command “Sleep” (refer to Section 9.1.5 ). The proper sequence is: 1. Pull-down the SD pin: the driver section will be put in “safe state” 2. Send a Sleep command 3. After a tsleep time, the device can be considered in sleep mode. To exit from the sleep mode, it is necessary to set the SD high for at least tawake while keeping IN+ low. After a tawake time the device can accept new commands and the REGERRR bit is set to indicate that the device needs to be reprogrammed. If the SD pin is raised while tsleep is still not expired, the device returns to the operation mode within a tawake time. DS11974 - Rev 4 page 15/59 STGAP1BS Functional description 7 Functional description 7.1 Inputs and outputs The device is controlled through following logic inputs: • SD: active low shutdown input • IN+: driver input • CS: active low chip select (SPI) • SDI: serial data input (SPI) • CK: serial clock (SPI) And following logic outputs: • SDO: serial logic output (SPI) • DIAG1: diagnostic signal (open drain) And following IO pin: • IN-/DIAG2: driver input or diagnostic open drain output. Logic input thresholds and output ranges vary according to VDD voltage. In particular, the device is designed to work with VDD supply voltages of 5 V or 3.3 V. The operation of the driver IOs can be programmed through DIAG_EN bits as described in Table 10. Table 10. Inputs true table (device NOT in “safe state”) Bit in CFG1 register Input pins Output pins DIAG_EN SD IN+ IN- GON GOFF X 0 X X OFF ON 0 1 0 0 OFF ON 0 1 0 1 OFF ON 0 1 1 0 ON OFF 0 1 1 1 OFF ON OFF ON ON OFF (1) 1 1 0 X 1 1 1 X (1) 1. The IN-/DIAG2 pin is used as the open drain output for diagnostic signaling (refer to Section 7.11 A deglitch filter is applied to device inputs (SD, IN+, IN-). Each input pulse, positive and negative, shorter than the programmed tdeglitch value is neglected by internal logic. Deglitch time can be programmed as listed in Table 30. When the deglitch filter is disabled (INfilter = '00') and the 2-level turn-off function is disabled (2LTOtime = 0x0) or enabled only after a fault event (2LTO_EN = '1'), a minimum input pulse tINmin is required to change the device output status. The minimum input pulse timing filters out both positive and negative pulses at the IN+, IN- and SD pins. 7.2 Deadtime and interlocking When single gate drivers are used in half-bridge configuration, they usually do not allow preventing cross conduction in case of wrong input signals coming from the controller device. This limitation is due to the fact that each driver does not have the possibility to know the status of the input signal of the other companion driver in the same leg. Thanks to the availability of two input pins with opposite polarity the STGAP1BS allows implementing hardware interlocking that prevents cross conduction even in case of wrong input signals generated by the control unit. This functionality can be achieved by implementing the connection shown in Figure 5 and by configuring the IN-/DIAG2 pin as input (which is its default configuration). DS11974 - Rev 4 page 16/59 STGAP1BS Deadtime and interlocking Figure 5. HW cross conduction prevention in half-bridge configuration with two single gate drivers IN+ IN- μC STGAP1BS HS HIN LIN IN+ IN- STGAP1BS LS When such configuration is used, it is also possible to enable the STGAP1BS programmable deadtime feature, which guarantees that at least a DT time passes between the turn-off of one driver's output and the turn-on of the other driver. The deadtime value DT can be programmed through the SPI interface as shown in Table 29. If the deadtime feature is enabled, a counter is started when the input status changes from < IN- = '1' and IN+ = '0' > to a different combination, which means that the other driver in the same leg is at the beginning of a turn-off (refer to Figure 6). Once the counter is started it keeps counting regardless of any input variation until a DT time has passed, and during this time the driver prevents the turn-on of its output even if the controller tries to force the turn-on (inputs set to < IN- = '0' and IN+ = '1' >). Once the programmed DT counter is expired, the driver immediately turns the output on as soon as a turn-on command is present at the input pins, and no extra delay is added. Figure 6. Transitions causing the DT generation IN- = 1 IN+ = 0 IN- = 0 paired Driver ON IN- = 0 IN+ = 1 ALL OFF IN+ = 0 IN- = 1 IN+ = 1 this Driver ON ALL OFF Transitions causing the DT generation Some examples of the device behavior when the deadtime feature is enabled are shown from Figure 7 to Figure 10. DS11974 - Rev 4 page 17/59 STGAP1BS Hardware RESET Figure 7. Synchronous control signal edges INSYNCHRONOUS CONTROL SIGNALS EDGES; DEAD TIME IN+ GON-GOFF DT DT Figure 8. Control edges signal overlapped, example 1 INCONTROL SIGNALS EDGES OVERLAPPED; DEAD TIME IN+ GON-GOFF DT DT DT Figure 9. Control edges signal overlapped, example 2 IN- CONTROL SIGNALS EDGES NOT OVERLAPPED, BUT INSIDE THE DEAD TIME: DEAD TIME IN+ GON-GOFF DT DT Figure 10. Control edges signal not overlapped and outside DT (direct control) IN- CONTROL SIGNALS EDGES NOT OVERLAPPED, OUTSIDE THE DEAD TIME: DIRECT DRIVING IN+ GON-GOFF DT DT When the deadtime function is enabled, the STGAP1BS returns a “deadtime violation” fault when the control unit tries to turn on any of the drivers in one leg during the counting of the programmed DT time. If such event occurs the DT_ERR flag is set high and latched. 7.3 Hardware RESET The device can be reset by forcing the VREG pin to ground through an external switch. The internal regulator is designed to stand this condition. The maximum current required to force the VREG pin to ground is indicated by the parameter IREG. 7.4 Power supply UVLO and OVLO Undervoltage protection is available on both VH and VL supply pins. The turn-on threshold can be programmed through the SPI writing the CFG4 register. A fixed 1 V hysteresis will set the respective turn-off threshold. Both UVLO protections can be independently disabled by setting the proper value in the CFG4 register. DS11974 - Rev 4 page 18/59 STGAP1BS Thermal warning and shutdown protection When VH voltage goes below the VHoff threshold, the output buffer goes in “safe state” and the UVLOH status flag is forced high. If the UVLOlatch bit in the CFG4 register is set low (default), the UVLOH status flag is released when VH voltage reaches the VHon threshold and the device returns to normal operation. Otherwise, the UVLOH flag is latched and the device remains in “safe state” until the VH voltage reaches the VHon threshold and the flag is released. See Section 7.11 for indication on how the failure flags can be released. When VL voltage goes over the VLoff threshold, the output buffer goes in “safe state” and the UVLOL status flag is forced high. If the UVLOlatch bit in the CFG4 register is set low (default), the UVLOL status flag is released when VL voltage goes below the VLon threshold and the device returns to normal operation. Otherwise. the UVLOL flag is latched and the device remains in “safe state” until the VL voltage goes below the VLon threshold and the flag is released. See Section 7.11 for indication on how the failure flags can be released. Overvoltage protection is available on both VH and VL supply pins. Both OVLO protections can be disabled by setting the proper value in the CFG4 register. When the VH voltage goes over the OVVHoff threshold, the output buffer goes in “safe state” and the OVLOH status flag is forced high. The OVLOH flag is latched and the device remains in “safe state” until VH voltage goes below the overvoltage threshold and the flag is released. See Section 7.11 for indication on how the failure flags can be released. When VL voltage goes over the OVVLoff threshold, the output buffer goes in “safe state” and the OVLOL status flag is forced high. The OVLOL flag is latched and the device remains in “safe state” until VH voltage goes below the overvoltage threshold and the flag is released. See Section 7.11 for indication on how the failure flags can be released. 7.5 Thermal warning and shutdown protection The device provides a thermal warning and a thermal shutdown protection. When junction temperature reaches the TWN temperature threshold the TWN flag in the STATUS1 register is forced high. The TWN flag is released as soon as the junction temperature is lower than TWN - Thys. When junction temperature reaches the TSD temperature threshold, the device is forced in “safe state” and the TSD flag in the STATUS1 register is forced high. The device operation is restored and the TSD flag is released as soon as the junction temperature is lower than TSD - Thys. 7.6 Desaturation protection This feature allows implementing an overload protection for the IGBT. The DESAT pin monitors the VCE voltage of the IGBT while it is on, and if the protection threshold is reached, the IGBT is turned off. DS11974 - Rev 4 page 19/59 STGAP1BS Desaturation protection Figure 11. Example of desaturation protection connection IC DESATcurr (programmable) + DESAT DESATth Cblank (programmable) I S O L A T I O N LOGIC Discharge switch VH GON Rg_on GOFF VL GNDISO When the IGBT is off (GOFF output is activated) the DESAT pin is kept low internally and the external blanking capacitor connected to the DESAT pin is discharged (the internal current generator is fully switched off and the switch between DESAT and GNDISO pins is turned on). When the GON output is activated the switch between DESAT and GNDISO pins is turned off and an internal programmable current generator (IDESAT) starts charging the external blanking capacitor after a fixed blanking time tBLK. If a desaturation event occurs the VCE voltage increases and the voltage at the DESAT pin reaches the desaturation threshold VDESATth: the DESAT comparator output is set, the device is forced in “safe state” and the DESAT flag is forced high and latched. The DESAT comparator is not active when the external IGBT is off or after desaturation detection (see Figure 12). Both the VDESATth threshold and the IDESAT blanking current are programmable through the SPI. DS11974 - Rev 4 page 20/59 STGAP1BS VCE active clamping protection Figure 12. DESAT protection timing diagram IN+ Comparator Disabled Comparator Enabled Comparator Disabled t DESAT VH level GON-GOFF VL level V DESATth DESAT Blanking time t BLK t DIAGx DiagX A deglitch filter is applied to the DESAT pin. Each pulse exceeding the VDESATth for a time shorter than tDESfilter value shall not trigger the protection. 7.7 VCE active clamping protection This protection is used to actively clamp the drain/collector overvoltage spikes during the MOSFET/IGBT turn-off. This feature allows using low turn-off resistor values leading lower turn-off losses, thus increasing efficiency, while limiting the maximum turn-off spike on the collector (or drain) within safe limits. The direct feedback of the collector voltage to the device can for example be made via an element with avalanche characteristics such as a TVS. If the VCE voltage exceeds the breakdown voltage of the TVS, the VVCECLth threshold voltage on the VCECLAMP is reached and the IC actively slows down the power switch turn-off to keep a safe condition. The active limiting of the driver's turn-off current strongly reduces the current flowing through the TVS, thus preventing it from operating in overstressing conditions. DS11974 - Rev 4 page 21/59 STGAP1BS SENSE overcurrent protection Figure 13. Example of VCE active clamping protection connection VCECLAMP VH VLVLVL GON Floating Section Control Logic GOFF Level Shifter CLAMP VL GNDISO + CLAMPth When the VCECLAMP is activated during the turn-off phase a watchdog timer starts inside the driver. This timer allows the VCECLAMP pin to act on the driver's output status for a tVCECLoff time maximum. After that time has expired, the driver continues the normal turn- off ignoring the VCECLAMP pin status. This assures that the protection is only acting to clamp inductive VCE spikes during the turn-off. The timer is reset and the VCECLAMP protection is enabled again at the beginning of the following turn-off sequence. Figure 14. VCECLAMP timing diagram GON\GOFF VCECLAMP VCEcounter stopped ready counting stopped ready t VCECLof The VCECLAMP pin is masked and has no effect on the driver's outputs status when the external MOSFET/IGBT is on. The VCE active clamping protection can be disabled connecting the VCECLAMP pin to VL. 7.8 SENSE overcurrent protection This function is suitable in applications in which it is possible to measure the load current through the use of a shunt resistor, or in applications that use IGBTs with the current sense pin available. The load current (or a fraction of it in case SenseFETs are used) is converted to voltage by an external shunt resistor and is fed to the SENSE pin (comparator input). DS11974 - Rev 4 page 22/59 STGAP1BS Miller clamp function When an overcurrent event occurs the sense voltage reaches the VSENSEth threshold, the device is forced in “safe state” and the SENSE status flag is forced high and latched. The VSENSEth threshold is programmable through the SPI (refer to Section 9.2.2 ). Figure 15. Example of SENSE overcurrent protection connection IC VH GON Rg_on GOFF I S O L A T I O N LOGIC VL SENSE Rsense Vref (programmable) GNDISO 7.9 Miller clamp function The Miller clamp function allows the control of the Miller current during the power stage switching in half-bridge configurations. When the external power transistor is in the OFF state, the driver operates to avoid the induced turn-on phenomenon that may occur when the other switch in the same leg is being turned on, due to the Cgc capacitance. During the turn-off period the gate of the external switch is monitored through the CLAMP pin. The CLAMP switch is activated when gate voltage goes below the voltage threshold VCLAMPth, thus creating a low impedance path between the switch gate and the VL pin. This function can be disabled setting low the CLAMP_EN bit in the CFG5 register (high by default). 7.10 2-level turn-off function If an overcurrent event happens, a large voltage overshoot exceeding VCE absolute ratings may occur across the power switch during the turn-off, due to the parasitic stray inductances. The 2-level turn-off function (2LTO) allows the reduction of the stressing overvoltage experienced by the power component in overcurrent condition by switching off the external power in two phases. In the first phase, the GOFF voltage is actively forced to a programmable value V2LTOth; after a programmable delay t2LTOtime the GOFF is forced to VL to complete the gate turn-off. This allows to slow down the critical part of the turn-off transient, that may induce the overvoltage spikes. The voltage level V2LTOth and duration t2LTOtime of the intermediate off-level are programmable through the SPI. It is possible to program when this feature takes place, refer to the following paragraphs. DS11974 - Rev 4 page 23/59 STGAP1BS 2-level turn-off function 7.10.1 2-level turn-off function - Always The 2LTO is performed at each turn-off transition (2LTO_EN = '0'). When 2LTO is used, at each transition the minimum on or off pulse width is determined by 2LTO time. Some sample waveforms are given in Figure 16 and Figure 17, where INAND represents the condition: < IN+ = 'H' and IN- = 'L' >. If a turn-on pulse is shorter than t2LTOtime it shall be ignored; turn-on pulses longer than t2LTOtime will determine a delay in the turn-on equal to t2LTOtime (see Figure 16). Figure 16. Example of short turn-on pulses when 2LTO occurs at each cycle ONtime ONtime INAND t Doff t Doff ONtime t 2LTOtime GON-GOFF t 2LTOtime t 2LTOtime ONtime t 2LTOtime t 2LTOtime t Don ON-time < t 2LTOtime ON-time < t 2LTOtime t 2LTOtime t Don ON-time > t 2LTOtime ON-time > t 2LTOtime When a turn-off pulse is detected the turn-off procedure starts immediately by forcing the V2LTOth voltage on the GOFF pin. If the duration of the turn-off pulse is shorter than t2LTOtime the turn-off sequence is aborted by setting GOFF in high impedance and turning GON on again (see Figure 17). Figure 17. Example of short turn-off pulse when 2LTO occurs at each cycle INAND GON-GOFF t Dof t 2LTOtime OFF-time > t2LTOtime t Dof t Don t 2LTOtime OFF-time < t 2LTOtime t Dof t 2LTOtime OFF-time > t 2LTOtime When the 2LTO is used at each cycle, any event that forces the device to enter in “safe state” generates a driver switch off performing a 2LTO sequence. 7.10.2 2-level turn-off function - Fault The 2LTO is performed only after a desaturation or overcurrent event (2LTO_EN = '1'). In such cases the device enters in “safe state” until the failure flag is released. See Section 7.11 for indication on how the failure flags can be released. This configuration overrides some drawbacks of using the 2LTO at each turn-off, such as the minimum pulse width equal to t2LTOtime and the turn-on delay needed to avoid duty cycle distortion. With this configuration the turn-off is only slowed down in case of desaturation or overcurrent events. DS11974 - Rev 4 page 24/59 STGAP1BS Failure management Figure 18. Example of operation with 2LTO in “Fault” mode INAND VDESATth DESAT GON-GOFF t Dof t Dof 7.10.3 t Don t Don t DESAT t 2LTOtime 2-level turn-off function - Never The 2LTO function is disabled (2LTOtime = 0x0). In this case a standard turn-off sequence is used (directly lowering the gate voltage from VH to VL) also in case of desaturation or sense overcurrent events. 7.11 Failure management The device provides advanced diagnostic through open drain outputs (DIAG1/DIAG2) and internal status registers. The DIAG2 output shares the same pin of the IN- input (see Figure 1); the diagnostic signal through the pin is enabled through the DIAG_EN bit as described in Section 7.1 . Status registers (STATUS1, STATUS2 and STATUS3) provide failures and status information as listed in respective paragraphs. DIAG1 and DIAG2 pins can be programmed through the dedicated registers (DIAG1CFG and DIAG2CFG) to signal one or more failure conditions. The output value is the result of the NOR of the selected status bits: if one of the selected bits is high, the output is forced low. Some of the failure conditions reported by the status registers are latched, i.e.: the flag is kept high even if the triggering condition is expired. Different methods can be used to clear the failure flags contained in the status registers: • Using the ResetStatus command The SD must be set low before giving this command and must remain low until the end of the command’s execution time. This is the recommended method, because guarantees that status registers are only cleared by direct intervention of the MCU. All flags in the StatusRegisters are released after a tdesCS time following the rise of the SPI CS. • • Forcing low the SD pin for at least trelease All the flags are released at the rising edge of the SD. This mode is enabled at device’s power-on, but it can be disabled by setting the SD_FLAG configuration bit low during the configuration phase, and by doing this any possibility to clear a FLAG without direct intervention of the MCU is prevented. Even if the SD_FLAG is set high, status registers are not cleared after the rising edge of the SD if a configuration sequence is executed (StartConfig, StopConfig). This is done to avoid clearing errors that may have been generated during the configuration procedure. Using HW reset (see Section 7.3 ) In this case the device behaves as after power-up sequence. In any of the above cases, if the failure condition is still present, the respective flag is not released. Selected failures force the device in “safe state”; the device remains in this state until the relative status flags are released. Refer to Table 49, Table 51 and Table 53 for details. The possibility to clear status registers by setting the SD low allows operating the device also without using the SPI interface. In order to avoid an unintended clear of fault conditions it is recommended to disable this functionality by setting the SD_FLAG = '0'. DS11974 - Rev 4 page 25/59 STGAP1BS Asynchronous stop command 7.12 Asynchronous stop command The ASC pin allows to turn-on the GON output acting directly on the isolated driver logic and regardless of the status of the input pins IN+, IN- and SD. This pin is active high. The status of this pin is mirrored in the ASC bit present in the STATUS2 register. The power supply of the isolated section must be present (VH > VHon). In case UVLO on VH is not enabled, ASC function works for VH values within the recommended operating values. This function works even if the VDD voltage is not available or is in UVLO condition. The priority of such command is lower than that of DESAT and SENSE pins, so the ASC command is ignored in case of a desaturation or overcurrent fault. After such events the gate can be turned on again with a low-to-high transition of the ASC pin, or by clearing the fault condition (see Section 7.11 ). 7.13 Watchdog and echo The isolated side provides a watchdog function in order to identify when it is no more able to communicate with the LV side. In this case the driver is automatically forced in “safe state” and the REGERRR flag is set. When the LV side is in the standby mode, turned off or in hardware reset condition, the isolated side watchdog is still operative and the REGERRR flag is set. The low voltage side provides a watchdog function in order to identify when it is no more able to communicate with the isolated side. In this case the REGERRL flag is set and the device is forced in “safe state”. An echo function is implemented in order to check that input commands toward the gate are correctly propagated to the driver's output. In case something should prevent the correct propagation of the command, the driver is able to detect this condition and will start a new communication (echo) in order to set the desired output state. This process has typical duration of 4 μs. 7.14 Security check functions The device allows verifying the gate and sense resistor connections and the functionality of SENSE and DESAT. This can be achieved through the following security checks: • Logic inputs to isolated driver path • GON to gate path • GOFF to gate path • SENSE comparator • SENSE resistor • DESAT comparator The check modes are enabled through a dedicated configuration register TEST1 (refer to Section 9.2.9 ) and thus require entering in configuration mode. Only one check mode at a time must be enabled. At the end of security check procedure, the TEST1 register must be set to 0x00 before running the device in normal mode. It is recommended to clear the status register with the ResetStatus command before and after each check. To prevent the SD from clearing the STATUS flags, set the SD_FLAG = '0' as described in Section 7.11 . 7.14.1 Logic inputs to isolated driver path The purpose of this security check is to verify the path integrity including the input buffer. The check uses bit #[0] of the STATUS2 register, which contains information about the gate status request that the gate driver stage received from the logic inputs and reported. Please note that this value may differ from the actual GON and GOFF status, for example if some condition is forcing the device in “safe state”. To perform this test, the following procedure has to be followed: • Set SD = high, IN- = low and IN+ = low • Set IN+ = high • Wait at least tGchk DS11974 - Rev 4 page 26/59 STGAP1BS Security check functions • • Read GATE bit in the STATUS2 register – GATE = '1' → OK – GATE = '0' → FAIL Set IN+ = low During all the duration of the check the logic inputs have to follow the levels indicated by the procedure and must not be otherwise modified. Please note that when IN+ is set high during the check, the gate may be forced high (GON turned on). The user test routine has to take into account this behavior. 7.14.2 GON to gate path check The purpose of this security check is to verify the path integrity including the driver's GON output, the GON (turn-on) gate resistor, the power switch gate and the CLAMP pin (see Figure 19). To perform this test, the following procedure has to be followed: • Set SD = low • Send StartConfig command • • Set GONCHK = '1' Send StopConfig command • Wait at least tGchk • Read TSD flag – TSD = '0' → OK (VCLAMP > VGchk) – TSD = '1' → FAIL (VCLAMP < VGchk) Please note that during all the time the check is enabled the gate will be forced high (GON turned on) regardless the SD pin level. The user test routine has to take into account this behavior. In any case, when GONCHK = '1', the protections SENSE and DESAT, if enabled, will continue to operate protecting the power switch regardless the SD pin. 7.14.3 GOFF to gate path check The purpose of this security check is to verify the path integrity, including the driver's GOFF output, the GOFF (turn-off) gate resistor, the power switch gate, and the CLAMP pin (see Figure 19). To perform this test, the following procedure has to be followed: • Set SD = low • Send StartConfig command • • Set GOFFCHK = '1' Send StopConfig command • Wait at least tGchk + tGATE_GOFFchk • Read DESAT flag – DESAT = '0' → OK (VCLAMP < VCLAMPth) – DESAT = '1' → FAIL (VCLAMP > VCLAMPth) During the check, a small current IGOFFchk will be sourced from the CLAMP pin while GOFF is on, keeping the gate low through the turn-off gate resistor. To ensure the check result, some applicative conditions have to be verified: • The bleeding resistor, sometimes present between the gate and source in the power switch, shall be higher than 8.2 kΩ. • During the test, the power switch gate shall have the time to be charged up to VCLAMPth by IGOFFchk. In case no bleeding resistor is present, this time can be roughly computed as: tGATE_GOFFchk ≈ CGATE * (VCLAMPth - VL) / IGOFFchk If a bleeding resistor is present or an additional push-pull circuit has been added, the time has to be computed with the adequate corrective factors. If the check fails due to the lack of the GOFF resistor, the power switch gate will gradually rise up to VH with no protections of SENSE nor DESAT. The user test routine shall consider this behavior. DS11974 - Rev 4 page 27/59 STGAP1BS Security check functions Figure 19. Gate paths check circuitry SD VH Control Logic CS CK SDI SDO 7.14.4 I S O L A T I O N GON Floating Section Control Logic GOFF Level Shifter CLAMP VL + VH VCLAMPth test control IGOFFchk SPI Floating ground GNDISO SENSE comparator check The purpose of this security check is to verify the functionality of the sense comparator. To enable this check, it is necessary to set SNSCHK = '1' and SENSE_EN = '1'. When this check is enabled the switch in series to the SENSE pin is open (see Figure 20); a SENSE fault (STATUS1 register) should be reported within tSENSEchk, otherwise the SENSE comparator operation is compromised. • VSENSEcomp > VSENSEth → comparator OK → SENSE = '1' • VSENSEcomp < VSENSEth → comparator FAIL → SENSE = '0' The SENSE fault generated by this test is latched and shall be cleared accordingly. DS11974 - Rev 4 page 28/59 STGAP1BS Security check functions Figure 20. SENSE comparator and resistor check circuitry VH GON SD Control Logic I S O L A T I O N Floating Section Control Logic CLAMP VL VH ISENSERchk testcontrol + SDI SDO 7.14.5 SENSE SENSEcomp testcontrol VSENSEth CS CK GOFF Level Shifter RSENSE Rtest SPI Floating ground GNDISO SENSE resistor check The purpose of this security check is to verify the connection between the device and the sense shunt resistor and to verify the optional sense resistor filter network is not open. To perform this test, the following procedure has to be followed: • Set SD = low • Send StartConfig command • • • Set SENSE_EN = '1' Set RCHK= '1' Send StopConfig command • Wait tRchk + tSENSERchk • Read SENSE flag – SENSE = '0' → OK (VSENSE < VSENSEth) – SENSE = '1' → FAIL (VSENSE > VSENSEth) During the check a small current ISENSERchk is sourced from the SENSE pin (see Figure 20). If the sense resistor is not present or floating, SENSE pin voltage will rise and once VSENSEth is exceeded, a SENSE fault will be reported in the STATUS1 register within tRchk. To ensure the check result, the following condition has to be verified: • The SENSE flag read has to be delayed of tSENSERchk, which is the time the customer filtering network takes to reach VSENSEth by the ISENSERchk current. 7.14.6 DESAT comparator check The purpose of this security check is to verify the functionality of the desaturation comparator. To perform this test, the following procedure has to be followed: • Set SD = low • Send StartConfig command DS11974 - Rev 4 page 29/59 STGAP1BS Register corruption protection • • • Set DESAT_EN = '1' Set DESCHK = '1' Send StopConfig command • • • • Set SD = high Wait 3 μs Apply at the inputs a gate turn on pulse longer than 500 ns Read DESAT flag – DESAT = '1' → OK (VDESATcomp > VDESATth) – DESAT = '0' → FAIL (VDESATcomp < VDESATth) During this test GON is first turned on and then turned off as soon the test succeeds. In case the test should fail, the output remains on as long as the input signal remains high. At the end of the check the DESAT fault remains set (it is latched), and it has to be cleared. Figure 21. DESAT comparator check circuitry VH SD test control IDESAT IN+ IN- Control Logic CS CK SDI SDO 7.15 I S O L A T I O N + DESAT 1k testcontrol C blank VDESATth VH GON Floating Section Control Logic GOFF Level Shifter CLAMP VL SPI Floating ground GNDISO Register corruption protection All the configuration registers are protected against content corruption. If the value of a local register is changed without a proper command is received (WriteReg or GlobalReset), the REGERRL flag is set high and the device is forced in “safe state”. If the value of a remote register is changed without a proper command is received (WriteReg or GlobalReset), the REGERRR flag is set high and the device is forced in “safe state”. DS11974 - Rev 4 page 30/59 STGAP1BS SPI interface 8 SPI interface The IC communicates with an external MCU through a 16-bit SPI. This interface is used to set the device parameters and for advanced diagnostic. SPI commands are executed after the rising edge of the CS, and adequate wait time must be respected before a new command is started by setting the CS low again. Refer to the tdesCS parameter in Table 6 for required wait time after each command. The SPI I/O pins are: • CS: chip select (active low) • CK: serial clock • SDI: serial data input (MOSI) • SDO: serial data output (MISO). The interface is compliant with the SPI standard CPHA = 1 and CPOL = 0 (serial data is sampled on CK falling edge and it is updated on CK rising edge, at the CS falling edge the CK signal must be low) as shown in Figure 22. Figure 22. SPI timings SD (Not required for NOP and read operations) tSDLCSL tCSHSDH CS tdesCS tsetCS CK tenSDO tfCK tsetSDI tlCK trCK thCK tholCS tholSDI N-1 MSB SDI HiZ MSB LSB tvSDO tholSDO SDO N-2 tdisSDO N-1 N-2 LSB MSB The SPI interface can work up to 5 Mbps and provides the daisy chain feature. In order to guarantee a safe operation and robustness to electrical noise, the number of rising edges within a CS negative pulse must be multiple of 16, otherwise the communication cycle is ignored and a communication failure is indicated forcing high the SPI_ERR flag. Any number of the STGAP1BS can be connected in daisy chain, and only 4 lines for the SPI and one for the SD are required in order to guarantee access to status and configuration registers of each device. An example of daisy chain configuration is shown in Figure 23. In case that several STGAP1BS devices are connected in the SPI link, each of them can be configured in a different way by simply writing the desired data in each configuration and diagnostic register. This allows for example differentiating the configuration for high-side and low-side drivers. DS11974 - Rev 4 page 31/59 STGAP1BS CRC protection Figure 23. SPI daisy chain connection example SD SD I S O L A T I O N CS CK SDI SDO Device N Device 2 Device 1 CS CK SDI SDO SD I S O L A T I O N I S O L A T I O N CS CK SDI SDO SD μC MOSI CS CK MISO In case a bootstrap capacitor and a diode are used to generate the VH supply voltage for the high-side drivers, it is recommended to have one dedicated SD line for all of the high- side drivers and another dedicated SD line for all of the low-side drivers. An example of such topology is shown in Figure 24. Figure 24. SPI daisy chain connection example when bootstrap technique is used for high-side drivers VH_HS2 VH_HS1 VH VH SD CS CK SDI SDO SD SD_HS MOSI μC 8.1 CS CS CK MISO SD_LS CK SDI SDO I S O L A T I O N I S O L A T I O N SD CS Cboot _HS1 CK SDI VL SDO GNDISO I S O L A T I O N Cboot _HS2 VL GNDISO VH_LS VH_LS VH VH SD CS CK SDI VL GNDISO GNDisoGNDiso SDO I S O L A T I O N VL GNDISO CRC protection All the command and data bytes have to be followed by a CRC code. If the CRC_SPI bit is set high, this code is used to check the data byte is correct, otherwise the CRC byte is ignored. In this case the CRC byte must be transmitted by the host, but its value is unimportant. A failure on the CRC check causes the respective data byte is ignored and the SPI_ERR flag is set high. The polynomial generator of the CRC code is X8 + X2 + X + 1 corresponding to the block diagram in Figure 25. DS11974 - Rev 4 page 32/59 STGAP1BS CRC protection Figure 25. Block diagram of the CRC generator Message (from MSb to LSb) X7 X6 X5 X4 X3 X2 X1 X0 The host must transmit to the device the inverted CRC code computed using the following procedure: • Initialize CRC to all 1 • Start the calculation from the most significant bit of the message • Invert the CRC result In case of a WriteReg command, the CRC of the data byte (i.e.: the new register value) must be calculated initializing the computation system to the CRC of the command byte (i.e., the CRC is calculated on a 16-bit message composed by the command + data byte). This way a data byte cannot be accepted as a command byte and vice-versa. Some examples are listed in Table 11. The device always transmits a response byte followed by a CRC computed using the same polynomial generator (X8 + X2 + X + 1). The CRC byte transmitted by the device is not inverted. If no response is required, the word returned by the device has no meaning and it should be discarded. Some examples are listed in Table 12. Table 11. CRC byte examples (from host to device) Command Command byte Command CRC Data byte Data CRC StopConfig 0x3A 0xAA N.A. N.A. WriteReg(CFG1, 0x20) 0x8C 0xA1 0x20 0x82 WriteReg(CFG5, 0x06) 0x99 0xCA 0x06 0x66 ResetStatus 0xD0 0x32 N.A. N.A. ReadReg(CFG3) 0xBE 0x3F N.A. N.A. Table 12. CRC byte examples (from device to host) DS11974 - Rev 4 Data byte Data CRC 0x00 0xF3 0xEA 0x6B 0xF5 0x36 0x2A 0x25 page 33/59 STGAP1BS Programming manual 9 Programming manual 9.1 SPI commands Table 13. SPI commands Command mnemonic 9.1.1 Command value Action Notes StartConfig 0 0 1 0 1 0 1 0 Device configuration start Enter CFG mode SD low only StopConfig 0 0 1 1 1 0 1 0 Device configuration/check completed Leave CFG mode SD low only NOP 0 0 0 0 0 0 0 0 No operation - WriteReg 1 0 0 A A A A A Write AAAAA register CFG mode only ReadReg 1 0 1 A A A A A Read AAAAA register - ResetStatus 1 1 0 1 0 0 0 0 Reset all the status registers SD low only GlobalReset 1 1 1 0 1 0 1 0 Global reset CFG mode only Sleep 1 1 1 1 0 1 0 1 Device enters in standby mode SD low only StartConfig and StopConfig commands Table 14. StartConfig command synopsis Byte 1 2 To device 0010 1010 1101 1010(1) 1. The CRC byte of the command, if the CRC check is disabled this byte is ignored. Table 15. StopConfig command synopsis Byte 1 2 To device 0011 1010 1010 1010(1) 1. The CRC byte of the command, if the CRC check is disabled this byte is ignored. Device parameters are configured by writing configuration values in configuration registers (CFGx and DIAGxCFG), which is only possible by entering in configuration mode. To switch the device to the configuration mode the StartConfig command must be sent. This command is accepted when the SD line is low only. If the command has been correctly received and interpreted, the IC registers writing is enabled. The SD pin must be kept low during the whole configuration procedure, which is terminated by the StopConfig command. If the SD pin is raised during the configuration procedure the device immediately quits the configuration mode causing a fault error indicated by the REGERRL and REGERRR bits. In this case all the changes operated on device configuration are undone and the previous configuration is restored. At the end of the device setup, the StopConfig command has to be sent in order to quit the configuration mode and make all changes effective. Configuration sequence must be repeated every time the power supply on either side (VDD or VH) is removed and then restored. • VDD falling below critical value will result in the REGERRL flag being set in status registers after that the proper VDD level is restored. • VH falling below critical value will result in the REGERRR flag being set in status registers. DS11974 - Rev 4 page 34/59 STGAP1BS SPI commands After that all supply voltages are supplied and stable, the configuration process can be executed. The flow chart shown in Figure 26 is recommended for the configuration. In this way it will be possible to check that the desired configuration has been correctly stored in the device at the end of the configuration sequence. Figure 26. STGAP1BS recommended configuration flow Power ON VDD, VH,(VL) stabilization Set SD low Clear STATUS registers through “Reset Status” SPI command Reset status SD must be low with no glitch/bounces during this phase Read CFG1-2-3-4-5. DIAG1-2 through appropriate read masks N Y Read STATUS1-2-3 registers through appropriate read masks Read status Status OK N Y CONFIGURATION Set SD high End of inizialization 9.1.2 WriteReg command Table 16. WriteReg command synopsis Byte To device 100A 1 2 3 AAAA(1) CCCC(2) DDDD(3) CCCC DDDD 4 KKKK KKKK(4) 1. The command byte where AAAAA is the address of the target register. 2. The CRC byte of the command, if the CRC check is disabled this byte is ignored. 3. Data to be written into the target register. 4. The CRC byte of the command and data, if the CRC check is disabled this byte is ignored. The device register can be written through the WriteReg command when the device is set in the configuration mode only (refer to Section 9.1.1 ), otherwise the write command is ignored and the SPI_ERR flag is forced low. DS11974 - Rev 4 page 35/59 STGAP1BS SPI commands The WriteReg command is followed by the data to be written into the target register. The CRC code following the data is based on both command and data bytes. In this way, in case of communication error, a data byte cannot be decoded as a command and vice-versa (refer to Section 8.1 ). 9.1.3 ReadReg command Table 17. ReadReg command synopsis Byte 1 2 3(1) 4 To device 101A AAAA(2) CCCC CCCC(3) 0000 0000 CCCC CCCC(4) From device 0000 0000 0000 0000 DDDD DDDD(5) KKKK KKKK(6) 1. Proper time have to be waited in order to allow the device to prepare the data. 2. The command byte where AAAAA is the address of the target register. 3. The CRC byte of the command, if the CRC check is disabled this byte is ignored. 4. The CRC byte of the NOP command. 5. Data read from the target register. 6. The CRC byte of the data. All the registers of the device can be read anytime, and this requires two accesses (CS must be asserted LOW and HIGH twice). In the first access the SPI host issues the ReadReg command (including the register address) and the CRC of the first byte, which will be ignored if SPI CRC is not enabled. After the command is received and decoded by the device, the register value and the respective CRC code is prepared for the transmission. The CRC polynomial used by the device during the transmission is different from the one used by the host, but the CRC code is not inverted before transmission (refer to Section 8.1 ). The time required to obtain the reading result changes according to the side where the register is located. The reading of a local register (low voltage side) is available in 800 ns. The reading of a remote register (isolated side), if no communication error occurs between the two sides of the device, is available in 30 μs. After the read result is ready it is stored in the SPI output buffer, and the host MCU will receive it as soon as it will send a new SPI command. Any command can be used for this purpose, including a NOP or the ReadReg command for the next register to be read. Some status and configuration registers contain a reserved bit whose content is not predictable. In order to clearly identify the content of relevant information, the value read from each register should be masked with the appropriate masking code (see “Mask code” in Table 23). 9.1.4 ResetStatus and GlobalReset commands Table 18. ResetStatus command synopsis Byte 1 2 To device 1101 0000 0011 0010(1) 1. The CRC byte of the command, if the CRC check is disabled this byte is ignored. The ResetStatus command is a specific reset command which acts on all status registers releasing all the latched flags. The command is executed only when the SD input is low, otherwise the SPI_ERR flag is forced low. Table 19. GlobalReset command synopsis Byte 1 2 To device 1110 1010 1001 0100(1) 1. The CRC byte of the command, if the CRC check is disabled this byte is ignored. DS11974 - Rev 4 page 36/59 STGAP1BS Register and flag descriptions The GlobalReset command reset all the registers to the default and releases all the failure flag (if latched). It can be sent when the device is in the configuration mode only, otherwise the command is ignored and the SPI_ERR flag is forced low. 9.1.5 Sleep command Table 20. Sleep command synopsis Byte 1 2 To device 1111 0101 1100 1001(1) 1. The CRC byte of the command, if the CRC check is disabled this byte is ignored. The CRC byte of the command, if the CRC check is disabled this byte is ignored. The command forces the device to switch in standby mode within a tsleep period. The command is executed only when the SD pin in low, if the SD pin is high the command is ignored and the SPI_ERR flag is forced low. Refer to Section 6.4 for the description of the standby mode. 9.1.6 NOP command Table 21. NOP command synopsis Byte 1 2 To device 0000 0000 0000 1100(1) 1. The CRC byte of the command, if the CRC check is disabled this byte is ignored. The command does not modify the device status and does not generate any answer. 9.2 Register and flag descriptions All device features can be configured through a set of 8-bit long registers. There are three different types of registers: 1. Local registers are located on the low voltage side 2. Remote registers are located on the isolated side 3. Shared registers are located both on the low voltage and isolated side and the value of the two copies is kept synchronized. Table 22. Register map Name DS11974 - Rev 4 Side(1) Structure - - [7] [6] [5] [4] [3] [2] CFG1 L CRC_SPI UVLOD_EN SD_FLAG CFG2 R SENSEth CFG3 R CFG4 R - - CFG5 R - - - - STATUS1 L OVLOH OVLOL DESAT SENSE UVLOH UVLOL TSD TWN STATUS2 L - - - - - REGERRR ASC GATE STATUS3 L - - - DT_ERR SPI_ERR REGERRL OVLOD UVLOD TEST1 R - - - DESCHK SNSCHK RCHK DIAG_EN [1] DTset [0] INfilter DESATcur DESATth 2LTOth 2LTOtime OVLO_EN UVLOlatch VLONth VHONth 2LTO_EN CLAMP_EN DESAT_EN SENSE_EN GOFFCHK GONCHK page 37/59 STGAP1BS Register and flag descriptions Name Side(1) DIAG1CFG L DIAG1_7 DIAG1_6 DIAG1_5 DIAG1_4 DIAG1_3 DIAG1_2 DIAG1_1 DIAG1_0 DIAG2CFG L DIAG2_7 DIAG2_6 DIAG2_5 DIAG2_4 DIAG2_3 DIAG2_2 DIAG2_1 DIAG2_0 Structure 1. R: remote (isolated side), L: local (low voltage side). Table 23. Registers access Name 9.2.1 Address Mask code CFG1 0x0C 0xFF CFG2 0x1D 0xFF CFG3 0x1E 0xFF CFG4 0x1F 0x3F CFG5 0x19 0x0F STATUS1 0x02 0xFF STATUS2 0x01 0x07 STATUS3 0x0A 0x1F TEST1 0x11 0x1F DIAG1CFG 0x05 0xFF DIAG2CFG 0x06 0xFF CFG1 register (low voltage side) The CFG1 register has the structure of Table 24. Table 24. CFG1 register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - CRC_SPI UVLOD_EN SD_FLAG DIAG_EN DTset INfilter Default/reset 0 0 1 0 00 00 The CRC_SPI bit enables the CRC check on the SPI communication protocol. Table 25. CRC enable CRC_SPI SPI communication protocol CRC enable 0 Disabled 1 Enabled The UVLOD_EN bit enables the UVLO protection on VDD supply voltage. Table 26. VDD supply voltage UVLO enable DS11974 - Rev 4 UVLOD_EN Supply voltage UVLOD enable 0 Disabled 1 Enabled page 38/59 STGAP1BS Register and flag descriptions The SD_FLAG bit sets the SD pin functionality according to Table 27. When the reset of the failure flags through the SD pin is enabled, keeping low the SD pin for at least trelease causes all the latched flags of the status registers to be released at the next SD rising edge. Table 27. SD pin FAULT management SD_FLAG SD pin functionality 0 SD pin do not reset STATUS registers 1 SD pin reset STATUS registers The DIAG_EN bit sets if the IN-/DIAG2 pin works as the input or open drain output according to Table 28. Refer to Section 7.1 for details. Table 28. IN-/DIAG2 pin functionality DIAG_EN IN-/DIAG2 pin functionality 0 The IN-/DIAG2 pin work as input 1 The IN-/DIAG2 pin work as open drain output The DTset bits set the deadtime value. Table 29. Deadtime DTset [1 ... 0] Deadtime value [ns] - 0 0 Disabled 0 1 250 1 0 800 1 1 1200 The INfilter bits set the input deglitch time tdeglitch for the SD, IN- and IN+ pins. Table 30. Input deglitch time INfilter [1 ... 0] 9.2.2 Input deglitch time value [ns] 0 0 Disabled 0 1 160 1 0 500 1 1 70 CFG2 register (isolated side) The CFG2 register has the structure of Table 31. Table 31. CFG2 register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 - SENSEth DESATcur DESATth Default/reset 000 00 100 Bit 0 The SENSEth bits set the SENSE comparator threshold according to Table 32. Refer to Section 7.8 for details. DS11974 - Rev 4 page 39/59 STGAP1BS Register and flag descriptions Table 32. SENSE threshold SENSEth [2 ... 0] SENSE threshold value [mV] 0 0 0 100 0 0 1 125 0 1 0 150 0 1 1 175 1 0 0 200 1 0 1 250 1 1 0 300 1 1 1 400 The DESATcurr parameter sets the current sourced by the DESAT pin according to Table 33 and the DESATth parameter sets the DESAT comparator threshold according to Table 34. Refer to Section 7.6 for details. Table 33. DESAT current DESATcur [1 ... 0] DESAT current value [μA] 0 0 250 0 1 500 1 0 750 1 1 1000 Table 34. DESAT threshold DESATth [2 ... 0] 9.2.3 DESAT threshold value [V] 0 0 0 3 0 0 1 4 0 1 0 5 0 1 1 6 1 0 0 7 1 0 1 8 1 1 0 9 1 1 1 10 CFG3 register (isolated side) The CFG3 register has the structure of Table 35. Table 35. CFG3 register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 - 2LTOth 2LTOtime Default/reset 0000 0000 Bit 0 The 2LTOth parameter sets the voltage value which is actively forced during the 2-level turn- off sequence (refer to Section 7.10 for details). DS11974 - Rev 4 page 40/59 STGAP1BS Register and flag descriptions Table 36. 2LTOth 2LTOth [3 ... 0] 2LTO threshold value [V] 0 0 0 0 7.00 0 0 0 1 7.50 0 0 1 0 8.00 0 0 1 1 8.50 0 1 0 0 9.00 0 1 0 1 9.50 0 1 1 0 10.00 0 1 1 1 10.50 1 0 0 0 11.00 1 0 0 1 11.50 1 0 1 0 12.00 1 0 1 1 12.50 1 1 0 0 13.00 1 1 0 1 13.50 1 1 1 0 14.00 1 1 1 1 14.50 The 2LTOtime parameter sets the duration of the 2-level turn-off sequence (refer to Section 7.10 for details). If the 2LTOtime is set to zero, the 2-level turn-off feature is disabled. Table 37. 2-level turn-off time value 2LTOtime [3 ... 0] 9.2.4 2-level turn-off time value [μs] 0 0 0 0 Disabled 0 0 0 1 0.75 0 0 1 0 1.00 0 0 1 1 1.50 0 1 0 0 2.00 0 1 0 1 2.50 0 1 1 0 3.00 0 1 1 1 3.50 1 0 0 0 3.75 1 0 0 1 4.00 1 0 1 0 4.25 1 0 1 1 4.50 1 1 0 0 4.75 1 1 0 1 5.00 1 1 1 0 5.25 1 1 1 1 5.50 CFG4 register (isolated side) The CFG4 register has the structure of Table 38. DS11974 - Rev 4 page 41/59 STGAP1BS Register and flag descriptions Table 38. CFG4 register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - - OVLO_EN UVLOlatch VLONth VHONth Default/reset - - 0 0 00 00 The OVLO_EN bit enables the OVLO protection on the VH and VL power supply according to Table 39. Table 39. VH and VL supply voltages OVLO enable OVLO_EN OVLO supply voltage enable 0 Disabled 1 Enabled The UVLOlatch bit sets if the UVLO is latched or not (refer to Section 7.4 for details). Table 40. UVLO protection management UVLOlatch UVLO protection management 0 UVLO protection is not latched 1 UVLO protection is latched The VLONth bits set the UVLO threshold on the negative power supply according to Table 41. Setting the parameter to zero disables the UVLO protection of the VL supply. Table 41. VL negative supply voltage UVLO threshold VLONth [1 ... 0] Negative supply voltage UVLO threshold [V] 0 0 Disabled 0 1 -3 1 0 -5 1 1 -7 The VHONth bits set the UVLO threshold on the positive power supply according to Table 42. Setting the parameter to zero disables the UVLO protection of the VH supply. Table 42. VH positive supply voltage UVLO threshold VHONth [1 ... 0] 9.2.5 Positive supply voltage UVLO threshold [V] 0 0 Disabled 0 1 10 1 0 12 1 1 14 CFG5 register (isolated side) The CFG5 register has the structure of Table 43. DS11974 - Rev 4 page 42/59 STGAP1BS Register and flag descriptions Table 43. CFG5 register - Bit 7 Bit 6 - - - Default/reset - - Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - 2LTO_EN CLAMP_EN DESAT_EN SENSE_EN - - 0 1 1 0 The 2LTO_EN bit sets when the feature takes place according to Table 44. Refer to Section 7.10 for details. Table 44. 2LTO mode 2LTO_EN 2LTO mode 0 2LTO always active 1 2LTO active only after a fault event The 2LTOth bit sets the 2-level turn-off threshold according to Table 36 and the 2-level turn-off time according to Table 37. The SENSE_EN bit sets if the sense overcurrent function is enabled or not (refer to Section 7.8 for details). Table 45. SENSE comparator enabling SENSE_EN SENSE comparator status 0 SENSE comparator disabled 1 SENSE comparator enabled The DESAT_EN bit sets if the desaturation protection is enabled or not (refer to Section 7.6 Section 7.6 for details). Table 46. DESAT comparator enabling DESAT_EN DESAT comparator status 0 DESAT comparator disabled 1 DESAT comparator enabled Set the CLAMP_EN bit to enable the Miller clamp feature (refer to Section 7.9 for details). Table 47. Miller clamp feature enabling 9.2.6 CLAMP_EN Miller clamp feature status 0 Miller clamp feature disabled 1 Miller clamp feature enabled STATUS1 register (low voltage side) The STATUS1 is a read only register that reports some device failure flags. All flags are active high (the high value indicates a failure condition). The STATUS1 register has the structure of Table 48. DS11974 - Rev 4 page 43/59 STGAP1BS Register and flag descriptions Table 48. STATUS1 register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - OVLOH OVLOL DESAT SENSE UVLOH UVLOL TSD TWN Default(1) 0 0 0 0 1 0 0 0 Reset 0 0 0 0 0 0 0 0 1. Default value of the local copy of the register. The value will be updated according to the actual information from the isolated side. The default is forced at the device power-up, when the registers are reset all the flags are forced low (no failures). A description of the STATUS1 register bits is provided in Table 49. Table 49. STATUS1 register description Name Bit OVLOH 7 OVLOL 6 DESAT 5 SENSE 4 Fault VH overvoltage flag. It is forced high when VH is over OVVHoff threshold. VL overvoltage flag. It is forced high when VL is over OVVLoff threshold. Latched Force “safe state” Note Always Yes - Always Yes - Always Yes - Always Yes - Desaturation flag. It is forced high when DESAT pin voltage reaches VDESATth threshold. Sense flag. UVLOH 3 UVLOL 2 TSD 1 TWN 0 It is forced high when SENSE pin voltage reaches VSENSEth threshold. VH undervoltage flag. It is forced high when VH is below VHoff threshold. VL undervoltage flag. It is forced high when VL is over VLoff threshold. Yes If not latched (UVLOlatch low) UVLOH returns low when VH is over VHon threshold. When UVLOlatchis high only Yes If not latched (UVLOlatch low) UVLOL returns low when VL is below VLon threshold. No (hysteresis) Yes - No (hysteresis) No - When UVLOlatch is high only Thermal shutdown protection flag. It is forced high when overtemperature shutdown threshold is reached. Thermal warning flag. 9.2.7 It is forced high when overtemperature shutdown threshold is reached. STATUS2 register (low voltage side) The STATUS2 is a read only register. The STATUS2 register has the structure of Table 50. Table 50. STATUS2 register DS11974 - Rev 4 - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - - - - - REGERRR ASC GATE Default(1) x x x x x 1 0 0 page 44/59 STGAP1BS Register and flag descriptions - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset x x x x x 0 0 0 1. Default value of the local copy of the register. The value will be updated according to the actual information from the isolated side. The default is forced at the device power-up, when the registers are reset all the flags are forced low (no failures). A description of the STATUS2 register bits is provided in Table 51. Table 51. STATUS2 register description Name Bit Fault Latched Force “safe state” Note Always Yes - No No See details in Section 7.12 No No This bit is not indicated for real-time feedback of external gate status (Section 7.14 ) Register or communication error on isolated side. It is forced high when: REGERRR 2 • Programming procedure is not correctly performed. • Isolated interface communication fails. • An unexpected register value change occurs in one of the remote registers. It is also latched at power-up/reset and from Sleep state. ASC 1 GATE 0 ASC pin status. When ASC pin is high, the flag reports '1', otherwise it is '0'. Gate command flag. 9.2.8 Flag is '1' when the requested output status from logic inputs is “ON” and '0' when requested output status is “OFF”. STATUS3 register (low voltage side) The STATUS3 is a read only register. The STATUS3 register has the structure of Table 52. Table 52. STATUS3 register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - - - DT_ERR SPI_ERR REGERRL OVLOD UVLOD Default(1) x x x 0 0 1 0 1 Reset x x x 0 0 0 0 0 1. The default is forced at the device power-up, when the registers are reset all the flags are forced low (no failures). A description of the STATUS3 register bits is provided in Table 53. Table 53. STATUS3 register description DS11974 - Rev 4 Name Bit DT_ERR 4 SPI_ERR 3 Fault Deadtime error flag. This bit is forced high when a violation of internal DT is detected. SPI communication error flag. Latched Force “safe state” Always No Always No Note See details in Section 7.2 - page 45/59 STGAP1BS Register and flag descriptions Name Bit Fault Latched Force “safe state” Note Always Yes - Always Yes - Always Yes - It is forced high when the SPI communication fails cause: • Wrong CRC check. • Wrong number of CK rising edges. • Attempt to execute a not-allowed command. • Attempt to read, write or reset at a not- available address. Register or communication error on low voltage side. It is forced high when: REGERRL 2 • Programming procedure is not correctly performed. • Isolated interface communication fails. • An unexpected register value change occurs in one of the remote registers. It is latched at power-up/reset also. OVLOD 1 VDD overvoltage flag. It is forced high when VDD is over OVVDDoff threshold. VDD undervoltage flag. UVLOD 0 It is forced high when VDD is below VDDon threshold. It is latched at power-up/reset as well. 9.2.9 TEST1 register (isolated side) The TEST1 register has the structure of Table 54. Table 54. TEST1 register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - - - GOFFCHK GONCHK DESCHK SNSCHK RCHK Default/reset x x x 0 0 0 0 0 Setting an one check bit of the register enables the respective check mode. Table 55. Check mode 9.2.10 Bit Check mode RCHK SENSE resistor SNSCHK SENSE comparator DESCHK DESAT comparator GONCHK GON to gate path GOFFCHK GOFF to gate path DIAG1CFG and DIAG2CFG registers (low voltage side) The DIAG1CFG register has the structure of Table 56. Table 56. DIAG1CFG register DS11974 - Rev 4 - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - DIAG1_7 DIAG1_6 DIAG1_5 DIAG1_4 DIAG1_3 DIAG1_2 DIAG1_1 DIAG1_0 page 46/59 STGAP1BS Register and flag descriptions - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default/reset 1 1 0 1 1 0 1 0 The DIAG2CFG register has the structure of Table 57. Table 57. DIAG2CFG register - Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - DIAG2_7 DIAG2_6 DIAG2_5 DIAG2_4 DIAG2_3 DIAG2_2 DIAG2_1 DIAG2_0 Default/reset 0 0 0 0 0 0 0 0 If a bit in the DIAG1CFG register is high, the corresponding fault events turn on the open drain connected to the DIAG1 pin forcing the output low. If a bit in the DIAG2CFG register is high and the DIAG_EN bit is high, the corresponding fault events turn on the open drain connected to the DIAG2 pin forcing the output low. The relationship between the DIAG1CFG and DIAG2CFG register bits and failure events is described in Table 58. Table 58. Relation between DIAGxCFG bits and failure conditions DIAGxCFG bit DS11974 - Rev 4 Failure Status registers bit 0 Thermal warning TWN 1 Thermal shutdown TSD 2 ASC feedback ASC, DT_ERR 3 Desaturation and sense detection DESAT, SENSE 4 Overvoltage failure OVLOH, OVLOL 5 Undervoltage failure UVLOH, UVLOL 6 VDD power supply failure UVLOD, OVLOD 7 SPI communication error or register failure SPI_ERR, REGERRL, REGERRR page 47/59 DS11974 - Rev 4 P5V μC SDI SDO CK CS GND GND SD IN+ IN-/DIAG2 DIAG1 SDI SDO CK CS GND GND SD IN+ IN-/DIAG2 DIAG1 VREG VDD P5V P5V P5V P5V P5V VREG SPI Control Logic 3V3 Voltage Reg SPI Control Logic 3V3 Voltage Reg I S O L A T I O N I S O L A T I O N Floating Section Control Logic Floating ground UVLO VL UVLO VH Floating Section Control Logic Floating ground UVLO VL UVLO VH Level Shifter Level Shifter + + + + + + + + SENSEth CLAMPth 2LVTOth DESATth DESATcurr SENSEth CLAMPth 2LVTOth DESATth DESATcurr SENSE GNDISO VL CLAMP GOFF GON VH VREGISO DESAT SENSE GNDISO VL CLAMP GOFF GON VH VREGISO DESAT VL_LS 1k VL_HS 1k GND_LS VH_LS GND_HS VH_HS GND_PWR Load_Phase HV_BUS 10 VDD P5V Typical application diagram STGAP1BS Typical application diagram Figure 27. Typical application diagram in half-bridge configuration Refer to Figure 13 in the dedicated Section 7.7 for the connection of the VCECLAMP pin. page 48/59 STGAP1BS Package information 11 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 11.1 SO24W package information Figure 28. SO24W package outline D hx45° A C A1 B PIN 1 IDENTIFIER 1 12 SEATING PLANE H 13 E 24 k L e Table 59. SO24W package mechanical data Symbol Dimensions (mm) Notes Min. Typ. Max. A 2.35 - 2.65 - A1 0.10 - 0.30 - B 0.33 - 0.51 - C 0.23 - 0.32 - D 15.20 - 15.60 (1) E 7.40 - 7.60 - e - 1.27 - - H 10.00 - 10.65 - h 0.25 - 0.75 - L 0.40 - 1.27 - K 0 - 8 Degrees ddd - - 0.10 - 1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side. DS11974 - Rev 4 page 49/59 STGAP1BS SO24W package information Figure 29. SO24W suggested land pattern DS11974 - Rev 4 page 50/59 STGAP1BS Ordering information 12 Ordering information Table 60. Device summary DS11974 - Rev 4 Order code Package Packing STGAP1BS SO24W Tube STGAP1BSTR SO24W Tape and reel page 51/59 STGAP1BS Revision history Table 61. Document revision history DS11974 - Rev 4 Date Version 06-Oct-2021 4 Changes Cover package updated page 52/59 STGAP1BS Contents Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 3 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 4 3.1 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 6 Logic supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 7 6.1 Low voltage section voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 High voltage section voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 Power-up, power-down and “safe state”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.4 Standby function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 7.1 Inputs and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7.2 Deadtime and interlocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7.3 Hardware RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.4 Power supply UVLO and OVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.5 Thermal warning and shutdown protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.6 Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.7 VCE active clamping protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.8 SENSE overcurrent protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.9 Miller clamp function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.10 2-level turn-off function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DS11974 - Rev 4 7.10.1 2-level turn-off function - Always . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.10.2 2-level turn-off function - Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.10.3 2-level turn-off function - Never . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 page 53/59 STGAP1BS Contents 7.11 Failure management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.12 Asynchronous stop command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.13 Watchdog and echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.14 Security check functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.15 8 Logic inputs to isolated driver path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.14.2 GON to gate path check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.14.3 GOFF to gate path check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.14.4 SENSE comparator check. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.14.5 SENSE resistor check. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.14.6 DESAT comparator check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Register corruption protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SPI interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 8.1 9 7.14.1 CRC protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 9.1 9.2 DS11974 - Rev 4 SPI commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.1.1 StartConfig and StopConfig commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.1.2 WriteReg command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9.1.3 ReadReg command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.1.4 ResetStatus and GlobalReset commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.1.5 Sleep command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.1.6 NOP command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Register and flag descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.2.1 CFG1 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.2.2 CFG2 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.2.3 CFG3 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.2.4 CFG4 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.2.5 CFG5 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.2.6 STATUS1 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.2.7 STATUS2 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.2.8 STATUS3 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.9 TEST1 register (isolated side). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.2.10 DIAG1CFG and DIAG2CFG registers (low voltage side). . . . . . . . . . . . . . . . . . . . . . . . . . 46 page 54/59 STGAP1BS Contents 10 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 11 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 11.1 12 SO24W package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 DS11974 - Rev 4 page 55/59 STGAP1BS List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. DS11974 - Rev 4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low voltage section 3.3 V voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High voltage section 3.3 V voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HW cross conduction prevention in half-bridge configuration with two single gate drivers . . . Transitions causing the DT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous control signal edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control edges signal overlapped, example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control edges signal overlapped, example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control edges signal not overlapped and outside DT (direct control) . . . . . . . . . . . . . . . . . Example of desaturation protection connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DESAT protection timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example of VCE active clamping protection connection . . . . . . . . . . . . . . . . . . . . . . . . . . VCECLAMP timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example of SENSE overcurrent protection connection . . . . . . . . . . . . . . . . . . . . . . . . . . . Example of short turn-on pulses when 2LTO occurs at each cycle . . . . . . . . . . . . . . . . . . . Example of short turn-off pulse when 2LTO occurs at each cycle. . . . . . . . . . . . . . . . . . . . Example of operation with 2LTO in “Fault” mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate paths check circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE comparator and resistor check circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DESAT comparator check circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI daisy chain connection example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI daisy chain connection example when bootstrap technique is used for high-side drivers. Block diagram of the CRC generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STGAP1BS recommended configuration flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical application diagram in half-bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . SO24W package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO24W suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 14 15 17 17 18 18 18 18 20 21 22 22 23 24 24 25 28 29 30 31 32 32 33 35 48 49 50 page 56/59 STGAP1BS List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Pin description. . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . Thermal data. . . . . . . . . . . . . . . . . . . . . . . Recommended operating conditions. . . . . . . AC operation electrical characteristics . . . . . DC operation electrical characteristics . . . . . Isolation and safety-related specifications . . . IEC 60747-5-2 isolation characteristics . . . . . UL 1577 isolation voltage ratings . . . . . . . . . Inputs true table (device NOT in “safe state”) . CRC byte examples (from host to device) . . . CRC byte examples (from device to host) . . . SPI commands . . . . . . . . . . . . . . . . . . . . . StartConfig command synopsis . . . . . . . . . . StopConfig command synopsis . . . . . . . . . . WriteReg command synopsis . . . . . . . . . . . ReadReg command synopsis . . . . . . . . . . . ResetStatus command synopsis . . . . . . . . . GlobalReset command synopsis . . . . . . . . . Sleep command synopsis . . . . . . . . . . . . . . NOP command synopsis. . . . . . . . . . . . . . . Register map. . . . . . . . . . . . . . . . . . . . . . . Registers access . . . . . . . . . . . . . . . . . . . . CFG1 register . . . . . . . . . . . . . . . . . . . . . . CRC enable . . . . . . . . . . . . . . . . . . . . . . . VDD supply voltage UVLO enable . . . . . . . . SD pin FAULT management . . . . . . . . . . . . IN-/DIAG2 pin functionality . . . . . . . . . . . . . Deadtime . . . . . . . . . . . . . . . . . . . . . . . . . Input deglitch time . . . . . . . . . . . . . . . . . . . CFG2 register . . . . . . . . . . . . . . . . . . . . . . SENSE threshold. . . . . . . . . . . . . . . . . . . . DESAT current . . . . . . . . . . . . . . . . . . . . . DESAT threshold . . . . . . . . . . . . . . . . . . . . CFG3 register . . . . . . . . . . . . . . . . . . . . . . 2LTOth . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-level turn-off time value . . . . . . . . . . . . . . CFG4 register . . . . . . . . . . . . . . . . . . . . . . VH and VL supply voltages OVLO enable . . . UVLO protection management. . . . . . . . . . . VL negative supply voltage UVLO threshold . VH positive supply voltage UVLO threshold. . CFG5 register . . . . . . . . . . . . . . . . . . . . . . 2LTO mode . . . . . . . . . . . . . . . . . . . . . . . . SENSE comparator enabling . . . . . . . . . . . . DESAT comparator enabling . . . . . . . . . . . . Miller clamp feature enabling . . . . . . . . . . . . STATUS1 register . . . . . . . . . . . . . . . . . . . STATUS1 register description . . . . . . . . . . . STATUS2 register . . . . . . . . . . . . . . . . . . . STATUS2 register description . . . . . . . . . . . STATUS3 register . . . . . . . . . . . . . . . . . . . DS11974 - Rev 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 5 . 5 . 6 . 7 . 7 13 13 13 16 33 33 34 34 34 35 36 36 36 37 37 37 38 38 38 38 39 39 39 39 39 40 40 40 40 41 41 42 42 42 42 42 43 43 43 43 43 44 44 44 45 45 page 57/59 STGAP1BS List of tables Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. STATUS3 register description . . . . . . . . . . . . . . . . . . . TEST1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Check mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DIAG1CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . DIAG2CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . Relation between DIAGxCFG bits and failure conditions . SO24W package mechanical data . . . . . . . . . . . . . . . . Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . DS11974 - Rev 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 46 46 46 47 47 49 51 52 page 58/59 STGAP1BS IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS11974 - Rev 4 page 59/59
STGAP1BSTR 价格&库存

很抱歉,暂时无法提供与“STGAP1BSTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STGAP1BSTR
  •  国内价格
  • 1000+51.27041

库存:1000

STGAP1BSTR
  •  国内价格
  • 1+69.83687
  • 10+62.86027
  • 100+57.97969
  • 500+53.79778

库存:1000