STGAP1BS
Datasheet
Automotive galvanically isolated advanced single gate driver
Features
SO24W
Product status link
STGAP1BS
Product label
•
•
•
•
•
•
•
•
•
•
•
AEC-Q100 qualified
High voltage rail up to 1500 V
Driver current capability: 5 A sink/source current at 25 °C
dV/dt transient immunity ±50 V/ns in full temperature range
Overall input/output propagation delay: 100 ns
Separate sink and source for easy gate driving configuration
Negative gate drive ability
Active Miller clamp
Desaturation detection
SENSE input
VCE active clamping
•
•
•
•
•
•
•
•
•
•
Output 2-level turn-off
Diagnostic status output
UVLO and OVLO functions
Programmable input deglitch filter
Asynchronous stop command
Programmable deadtime, with violation error
SPI interface for parameters programming
Temperature warning and shutdown protection
Self-diagnostic routines for protection features
Full effective fault protection
Applications
•
•
•
•
•
•
•
600/1200 V inverters
Inverters for EV/HEV
EV charging stations
Industrial drives
UPS equipment
DC/DC converters
Solar inverters
Description
The STGAP1BS is a galvanically isolated single gate driver for N-channel MOSFETs
and IGBTs with advanced protection, configuration and diagnostic features. The
architecture of the STGAP1BS isolates the channel from the control and the low
voltage interface circuitry through true galvanic isolation.
The gate driver is characterized by 5 A capability, making the device also suitable for
high power inverter applications such as motor drivers in hybrid and electric vehicles
and in industrial drives. The output driver section provides a rail-to-rail output with the
possibility to use a negative gate driver supply.
DS11974 - Rev 4 - October 2021
For further information contact your local STMicroelectronics sales office.
www.st.com
STGAP1BS
The input to output propagation delay remains below 100 ns, providing high PWM
control accuracy.
Protection functions such as the Miller clamp, desaturation detection, dedicated
sense pin for overcurrent detection, output 2-level turn-off, VCE overvoltage
protection, UVLO and OVLO are included to easily design high reliability systems.
Open drain diagnostic outputs are included and detailed device conditions can be
monitored through the SPI.
Each function parameter can be programmed via the SPI, making the device very
flexible and allowing it to fit in a wide range of applications.
Separate sink and source outputs provide high flexibility and bill of material reduction
for external components.
DS11974 - Rev 4
page 2/59
STGAP1BS
Block diagram
1
Block diagram
Figure 1. Block diagram
DS11974 - Rev 4
page 3/59
STGAP1BS
Pin connection
2
Pin connection
Figure 2. Pin connection (top view)
GND
1
24
ASC
SDO
2
23
VL
SDI
3
22
CLAMP
CS
4
21
GOFF
GON
CK
5
20
VREG
6
19
VCECLAMP
VDD
7
18
DESAT
IN-/DIAG2
8
17
VH
IN+
9
16
SENSE
DIAG1
10
15
VREGISO
SD
11
14
VL
GND
12
13
GNDISO
Table 1. Pin description
DS11974 - Rev 4
Pin no.
Pin name
Type
Function
7
VDD
Power supply
Power supply for low voltage section and internal 3.3 V regulator
6
VREG
Power supply
Internal 3.3 V regulator output and supply pin
11
SD
Logic input
Shutdown input (active low)
9
IN+
Logic input
Gate command input
8
IN-/DIAG2
Logic input/open drain output
10
DIAG1
Open drain output
1, 12
GND
Ground
Low voltage section ground
4
CS
Logic input
SPI chip select (active low)
5
CK
Logic input
SPI clock
3
SDI
Logic input
SPI serial data input
2
SDO
Logic output
SPI serial data output
19
VCECLAMP
Analog input
VCE active clamping protection
18
DESAT
Analog input/output
15
VREGISO
Power supply
Internal regulator output pin for decoupling
17
VH
Power supply
Positive power supply for high voltage section
20
GON
Analog output
Gate source output
21
GOFF
Analog output
Gate sink output
22
CLAMP
Analog output
Miller clamp
14, 23
VL
Power supply
Negative power supply or ground for high voltage section
13
GNDISO
Ground
High voltage section (isolated) ground
16
SENSE
Analog input
Sense input for overcurrent protection
24
ASC
Analog input
Asynchronous stop command
Gate command input /open drain diagnostic output
Open drain diagnostic output
Desaturation protection
page 4/59
STGAP1BS
Electrical data
3
Electrical data
3.1
Absolute maximum ratings
Table 2. Absolute maximum ratings
Symbol
Test condition
Min.
Max.
Unit
Common mode transient immunity
VCM = 1500 V
-
50
V/ns
Low voltage section power supply voltage vs. GND
-
-0.30
6.50
V
VREG
Low voltage section internal regulator voltage vs.
GND
-
-0.30
3.60
V
VREGISO
High voltage section internal regulator voltage vs.
GNDISO
-
-0.30
3.60
V
Logic pins voltage vs. GND
-
-0.30
VDD + 0.30
V
VHL
Differential supply voltage (VH vs. VL)
-
-0.30
40
V
VH
Positive supply voltage (VH vs. GNDISO)
-
-0.30
40
V
Negative supply voltage (VL vs. GNDISO)
-
-15
0.30
V
VL - 0.30
VH + 0.30
V
dVISO/dt
VDD
VLOGIC
VL
VOUT
Parameter
Voltage on gate driver outputs (GON, GOFF, CLAMP
vs. VL)
VDESAT
Voltage on DESAT pin vs. GNDISO
-
-0.30
VH + 0.30
V
VSENSE
Voltage on SENSE pin vs. GNDISO
-
-2
(VH + 0.30, 20)min
V
-
VL - 0.30
VH + 0.30
V
-0.30
VH + 0.30
V
-
20
mA
VCECLAMP Voltage on VCECLAMP pin vs. VL
3.2
VASC
Voltage on ASC pin vs. GNDISO
-
IDIAGx
Open drain DC output current
VDIAGx < 0.8 V
VDIAGx
Open drain output voltage
-
-0.30
6.50
V
TJ
Junction temperature
-
-40
150
°C
TS
Storage temperature
-
-50
150
°C
TA
Ambient temperature
-
-40
125
°C
PDin
Power dissipation input chip
-
-
65
mW
PDout
Power dissipation output chip
-
-
(TJ,max - TA)/Rth(JA) PDin
W
dH/dt
Magnetic field immunity
-
-
100
A/(m·s)
ESD
Human body model
-
2
kV
Thermal data
Table 3. Thermal data
Symbol
Rth(JA)
Parameter
Thermal resistance junction to ambient(1)
Value
Unit
65
°C/W
1. The STGAP1BS mounted on the EVALSTGAP1BS rev 2.0 board (two-layer FR4 PCB).
DS11974 - Rev 4
page 5/59
STGAP1BS
Recommended operating conditions
3.3
Recommended operating conditions
Table 4. Recommended operating conditions
Symbol
Pin
VH
17
Parameter
Test condition
Min.
Max.
Unit
-
4.50(1)
36
V
V
Positive supply voltage (VH vs. GNDISO)
Negative supply voltage (VL vs. GNDISO)
-
GNDISO - 10
GNDISO(2)
-
Differential supply voltage (VH vs. VL)
-
-
36
V
VDD
7
Low voltage section power supply voltage vs.
GND
-
4.50
5.50
V
VREG
6
Low voltage section internal regulator voltage
vs. GND
VL
14, 23
VHL
VLOGIC
2, 3, 4, 5, 8, 9,
Logic pins voltage vs. GND
11
(3)
3.3 ±5%
V
-
-
(VDD, 5)min
V
-
GNDISO
(VH, 15)min
V
ASC
24
ASC pin voltage
VDESATth
18
Desaturation protection threshold
DESAT enabled
-
VH - 1.50
V
fSW
-
Maximum switching frequency(4)
-
-
150
kHz
1. When UVLO is enabled, this value is VHon,max
2. When UVLO is enabled, this value is VLon,min
3. When VDD is connected to the VREG pin (refer to Section 6 ).
4. Actual limit depends on power dissipation constraints.
DS11974 - Rev 4
page 6/59
STGAP1BS
Electrical characteristics
4
Electrical characteristics
4.1
AC operation
Table 5. AC operation electrical characteristics
(Tj = -40 to 125 °C, VDD = 5 V; VH = 15 V, VL = GNDISO)
Symbol
Pin
tdeglitch
Parameter
Input deglitch time
8, 9, 11
tINmin
Min.
Typ. Max. Unit
INfilter = '11'
50
70
90
ns
INfilter = '01'
100
160
220
ns
INfilter = '10'
420
500
580
ns
-
-
20
ns
Minimum propagated input
pulse
INfilter = '00' and (2LTO_EN = '1' or
2LTOtime = 0x0)
tDon
8, 9, 11, 20
Input to output propagation
delay ON
Deglitch filter and 2LTO disabled
90
100
130
ns
tDoff
8, 9, 11, 21
Input to output propagation
delay OFF
Deglitch filter and 2LTO disabled
90
100
130
ns
tr
20
GON rise time
VL = 0 V;
CL = 2 nF, 10% ÷ 90%
-
-
25
ns
tf
21
GOFF rise time
VL = 0V
CL = 2 nF, 90% ÷ 10%
-
-
25
ns
PWD
8, 9, 11, 20, 21
Pulse width distortion |tDon tDoff|
tIN > 100 ns
Deglitch filter and 2LTO disabled
-
4
10
ns
DTset = '01'
205
250
295
DTset = '10'
650
800
945
DTset = '11'
985 1200 1415
DT
trelease
4.2
Test condition
8, 9, 20, 21
11
Deadtime
Minimum flag release time
SD = '0', SD_FLAG = '1'
-
-
105
ns
μs
DC operation
Table 6. DC operation electrical characteristics
(Tj = -40 to 125 °C, VDD = 5 V; VH = 15 V, VL = GNDISO)
Symbol
Pin
Parameter
Test condition
Min.
Typ.
Max.
Unit
Logic inputs/output
Vol
2
Voh
IINh
8, 9
IINl
ISDh
11
ISDl
SDO logic “0” output voltage
I = 4 mA
-
-
0.15
V
SDO logic “1” output voltage
I = 4 mA
4.85
-
-
V
INx logic “1” input bias current
VIN = 5 V (pin 8 used as IN-)
55
85
145
μA
INx logic “0” input bias current
VIN = 0 V (pin 8 used as IN-)
-
-
0.10
μA
SD logic “1” input bias current
VSD = 5 V
55
85
145
μA
SD logic “0” input bias current
VSD = 0 V
-
-
0.10
μA
Rin_pd
8, 9, 11
Input pull-down resistors
VIN = 5 V (pin 8 used as IN-)
35
60
85
kΩ
Rin_pu
4
CS input pull-up resistor
CS = GND
35
55
80
kΩ
DS11974 - Rev 4
page 7/59
STGAP1BS
DC operation
Symbol
Vil
Vih
Pin
3, 4, 5, 8,
9, 11
Parameter
Test condition
Min.
Typ.
Max.
Unit
Low logic level voltage
-
0.29 · VDD 0.33 · VDD 0.37 · VDD
V
High logic level voltage
-
0.62 · VDD 0.66 · VDD 0.79 · VDD
V
5
A
Driver buffer section
IGON
20
IGOFF
21
Source short-circuit current
Sink short-circuit current
Tpulse < 5 µs, DC = 1%
Tj = 25 °C
Tj = -40 - +125 °C
2.50(1)
Tpulse < 5 µs, DC = 1%
Tj = 25 °C
Tj = -40 - +125 °C
2.50(1)
7
5
A
6
VGOFFL
21
GOFF output low level voltage
IGOFF = 0.1 A
IGOFF = 1 A
VL + 0.03
VL + 0.50
VL + 0.09
VL + 1
VL + 0.15
VL + 1.80
V
VGONH
20
GON output high level voltage
IGON = 0.1 A
IGON = 1 A
VH - 0.18
VH - 2.10
VH - 0.10
VH - 1.30
VH - 0.05
VH - 0.50
V
SafeClp
20, 21, 22
GOFF active clamp
IGOFF = 0.2 A;
VH floating;
GON = GOFF = CLAMP
-
-
3
V
0.1 V < VREG < 3.0 V
-
60
120
VREG < 0.1 V
-
15
35
Supply voltage
IREG
6
VREG short-circuit current
(see Section 7.3 )
mA
VDDon
VDD UVLO turn-on threshold
-
3.95
4.10
4.30
V
VDDoff
VDD UVLO turn-off threshold
-
3.65
3.80
4
V
VDD UVLO hysteresis
-
0.15
-
-
V
VDD OVLO turn-on threshold
-
5.30
5.50
5.90
V
OVVDDoff
VDD OVLO turn-off threshold
-
5.40
5.70
6.10
V
OVVDDhys
VDD OVLO hysteresis
-
100
200
300
mV
VDD = 5 V;
SD = 5 V; INx = GND;
f = 0 Hz
5.20
6.50
7.50
mA
VDD = 5 V;
SD = 5 V;
fSW = fSW,max
6.00
8.50
9.50
mA
VHONth = '01'
9.40
10
10.50
VHONth = '10'
11.30
12
12.60
VHONth = '11'
13.15
14
14.70
VHONth = '01'
8.45
9
9.45
VHONth = '10'
10.35
11
11.55
VHONth = '11'
12.25
13
13.65
0.70
1
1.30
VLONth = '01'
-3.15
-3
-2.80
VLONth = '10'
-5.25
-5
-4.70
VLONth = '11'
-7.35
-7
-6.55
VLONth = '01'
-2.15
-2
-1.90
VLONth = '10'
-4.25
-4
-3.80
VDDhys
7
OVVDDon
IQDD
7
VHon
VDD quiescent supply current
VH UVLO turn-on threshold
17
VHoff
VH UVLO turn-off threshold
VHhyst
VH UVLO hysteresis
VLon
VL UVLO turn-on threshold
14, 23
VLoff
DS11974 - Rev 4
VL UVLO turn-off threshold
-
V
V
V
V
V
page 8/59
STGAP1BS
DC operation
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
VL UVLO turn-off threshold
VLONth = '11'
-6.35
-6
-5.70
V
VL UVLO hysteresis
-
0.70
1
1.20
V
VH OVLO turn-off threshold
OVLO_EN = '1'
17.80
19
20
V
VH OVLO turn-on threshold
OVLO_EN = '1'
16.90
18
18.90
V
OVVHhys
VH OVLO hysteresis
OVLO_EN = '1'
0.60
1
1.30
V
OVVLoff
VL OVLO turn-off threshold
OVLO_EN = '1'
-10.50
-10
-9.40
V
VL OVLO turn-on threshold
OVLO_EN = '1'
-9.45
-9
-8.55
V
VL OVLO hysteresis
OVLO_EN = '1'
0.70
1
1.30
V
5
6.70
7.50
mA
300
420
550
µA
DESATth = '000';
2.60
3
3.10
DESATth = '001'
3.60
4
4.20
DESATth = '010'
4.60
5
5.30
DESATth = '011'
5.50
6
6.30
DESATth = '100'
6.50
7
7.40
DESATth = '101'
7.40
8
8.40
DESATth = '110'
8.30
9
9.40
DESATth = '111'
9.30
10
10.50
DESATth = '100'(2)
10
20
30
DESATcur = '00';
VDESAT = 0 V
220
250
265
DESATcur = '01';
VDESAT = 0 V
440
500
525
DESATcur = '10';
VDESAT = 0 V
660
750
800
DESATcur = '11';
VDESAT = 0 V
885
1000
1050
VDESAT = 8 V
50
70
90
mA
160
250
340
ns
80
150
220
ns
SENSEth = '000'
88
100
112
SENSEth = '001'
110
125
140
SENSEth = '010'
135
150
165
SENSEth = '011'
158
175
192
VLoff
VLhys
Pin
14, 23
OVVHoff
OVVHon
OVVLon
17
14, 23
OVVLhyst
IQH
17
VH quiescent supply current
SD = 5 V;
IN+ = 5 V; IN- = GND
IQL
14, 23
VL quiescent supply current
VL = -5 V;
SD = 5 V;
IN+ = IN- = GND
Desaturation protection
VDESATth
tDESfilter
Desaturation threshold
18
IDESAT
DESAT pin deglitch filter
DESAT blanking charge current
DESAT blanking discharge
current
IDESoff
DESAT protection fixed blanking
time
tBLK
18
tDESAT
DESAT protection intervention
time
V
ns
μA
VDESAT = VDESAth to GOFF 90%
CLOAD = 10 nF
2LTO disabled
SENSE overcurrent function
VSENSEth
DS11974 - Rev 4
16
SENSE protection threshold
mV
page 9/59
STGAP1BS
DC operation
Symbol
Pin
VSENSEth
Parameter
SENSE protection threshold
16
SENSE protection intervention
time
tSENSE
Test condition
Min.
Typ.
Max.
SENSEth = '100'
185
200
215
SENSEth = '101'
235
250
268
SENSEth = '110'
285
300
315
SENSEth = '111'
380
400
420
-
95
120
2LTOth = '0000'
6.65
7.00
7.35
2LTOth = '0001'
7.12
7.50
7.88
2LTOth = '0010'
7.60
8.00
8.40
2LTOth = '0011'
8.07
8.50
8.93
2LTOth = '0100'
8.55
9.00
9.45
2LTOth = '0101'
9.02
9.50
9.98
2LTOth = '0110'
9.50
10.00
10.50
2LTOth = '0111'
9.97
10.50
11.03
2LTOth = '1000'
10.45
11.00
11.55
2LTOth = '1001'
10.92
11.50
12.08
2LTOth = '1010'
11.40
12.00
12.60
2LTOth = '1011'
11.87
12.50
13.13
2LTOth = '1100'
12.35
13.00
13.65
2LTOth = '1101'
12.82
13.50
14.18
2LTOth = '1110'
13.30
14.00
14.70
2LTOth = '1111'
13.77
14.50
15.23
2LTOtime = '0001'
0.64
0.75
0.89
2LTOtime = '0010'
0.89
1.00
1.15
2LTOtime = '0011'
1.36
1.50
1.65
2LTOtime = '0100'
1.83
2.00
2.18
2LTOtime = '0101'
2.30
2.50
2.70
2LTOtime = '0110'
2.77
3.00
3.23
2LTOtime = '0111'
3.25
3.50
3.75
2LTOtime = '1000'
3.47
3.75
4.03
2LTOtime = '1001'
3.71
4.00
4.29
2LTOtime = '1010'
3.94
4.25
4.56
2LTOtime = '1011'
4.18
4.50
4.82
2LTOtime = '1100'
4.42
4.75
5.08
2LTOtime = '1101'
4.66
5.00
5.34
2LTOtime = '1110'
4.90
5.25
5.63
2LTOtime = '1111'
5.12
5.50
5.95
SENSEth = '111'
0→1 V step on VSENSE to GOFF
90%;
CLOAD = 10 nF
2LTO disabled
Unit
mV
ns
2-level turn-off function
V2LTOth
t2LTOtime
DS11974 - Rev 4
21
21
2LTO threshold
2LTO time
V
μs
page 10/59
STGAP1BS
DC operation
Symbol
Pin
Parameter
Test condition
Min.
Typ.
Max.
Unit
-
5
-
μs
Diagnostic outputs
tDIAG1,2
IDIAG1
8, 10
IDIAG2
RDIAG1,2
Fault event to DIAGx Low delay
Fault event to DIAGx 90%
DIAG1 low level sink current
VDIAG1 = 0.4 V
10
18
30
mA
DIAG2 low level sink current
VDIAG2 = 0.4 V
10
18
30
mA
300
550
800
kΩ
1.70
2
2.30
V
DIAGx pull-down resistor
Clamp Miller function
VCLAMPth
ICLAMP
22
VCLAMP_L
CLAMP voltage threshold
CLAMP vs. GNDISO
Clamp short-circuit current
Tpulse < 5 µs, DC = 1%
Tj = 25 °C
Tj = -40 ÷ +125 °C
ICLAMP = 1 A
Clamp low level output voltage
5
2.50(1)
A
6
VL + 0.50
VL + 1
VL + 1.80
V
VCE active clamping protection
VVCECLth
19
VVCECLhy
st
tVCECLoff
19
tVCECL
VCE clamping threshold
-
VL + 1.20
VL + 1.60
VL + 2
V
VCE clamping threshold
hysteresis
-
0.30
0.50
0.60
V
-
2
2.30
2.60
μs
-
-
20
-
ns
VCE clamping time-out
VCE clamping intervention
time(2)
ASC function
VASCl
Low logic level voltage
-
0.80
1.10
1.40
V
VASCh
High logic level voltage
-
1.80
2.20
2.40
V
IASCh
ASC logic “1” input bias current
VASC = 5 V
55
100
145
μA
ASC logic “0” input bias current
VASC = 0 V
-
-
0.10
μA
RASC
ASC pull-down resistors
VASC = 5 V
35
50
70
kΩ
tASC
ASC intervention time
VASC = 5 V
100
-
250
ns
24
IASCl
Functionality checks
Gate path check time (GON/
GOFF)(3)
-
-
-
30
μs
20
Gate path check voltage (GON)
-
0.7 x VH
0.76 x VH
0.84 x VH
V
tRchk
16
SENSE resistor check time
-
-
-
15
μs
IGOFFchk
21
GOFF path check current
-
-420
-350
-280
μA
8
10
12
μA
tGchk
20, 21
VGchk
ISENSERc
hk
16
tSENSEchk
SENSE resistor check current
VSENSE < 1 V
SENSE comparator check time
-
-
-
15
μs
18
DESAT comparator check time
-
-
-
15
μs
TWN
-
Warning
temperature(2)
-
125
-
-
°C
TSD
-
Shutdown temperature(2)
-
155
-
-
°C
Thys
-
Temperature hysteresis(2)
-
-
20
-
°C
tDESATchk
Overtemperature protection
DS11974 - Rev 4
page 11/59
STGAP1BS
DC operation
Symbol
Pin
Parameter
Test condition
Min.
Typ.
Max.
Unit
Standby
ISTBY_VD
7
VDD standby current
VDD = 5 V
0.40
0.80
1
mA
tsleep
-
Standby time
SD = '0',
measured from CS rise
500
700
900
ns
tawake
-
Logic wake-up time(2)
SD = '1'
5
-
-
μs
5
-
-
MH
z
-
-
25
ns
D
SPI (characterization data, not tested in production)
tCKmax
trCK tfCK
Maximum SPI clock frequency
5
thCK tlCK
SPI clock rise and fall time
CL = 30 pF
SPI clock high and low time
-
75
-
-
ns
tsetCS
CS setup time
-
350
-
-
ns
tholCS
CS hold time
-
10
-
-
ns
Local register read
800
-
-
ns
Remote register read
30
-
-
Start configuration
22
-
-
Stop configuration
5
-
-
Reset status register
50
-
-
-
-
Any other command
700
-
-
ns
4
tdesCS
tsetSDI
tholSDI
CS deselect
3
tenSDO
tdisSDO
tvSDO
2
tholSDO
time(4)
μs
SDI setup time
-
25
-
-
ns
SDI hold time
-
20
-
-
ns
SDO enable time
-
-
-
38
ns
SDO disable time
-
-
-
47
ns
SDO valid time
-
-
-
57
ns
SDO hold time
-
37
-
-
ns
tSDLCSL
4, 11
SD falling to CS falling
-
350
-
-
ns
tCSHSDH
4, 11
CS rising to SD rising
-
350
-
-
ns
1. Guaranteed by correlation.
2. Characterization data, not tested in production.
3. The actual waiting time depends on the gate charge size.
4. See Table 22 and Section 9.1.3 .
DS11974 - Rev 4
page 12/59
STGAP1BS
Isolation
5
Isolation
Table 7. Isolation and safety-related specifications
Parameter
Symbol Value Unit
Clearance
(minimum external air gap)
Creepage
(minimum external tracking)
Comparative tracking index (tracking
resistance)
Conditions
CLR
8
mm
Measured from input terminals to output terminals, shortest
distance through air
CPG
8
mm
Measured from input terminals to output terminals, shortest
distance path along body
CTI
≥ 400
-
DIN IEC 112/VDE 0303 Part 1
-
II
-
Material group (DIN VDE 0110, 1/89, Table 1)
Isolation group
Table 8. IEC 60747-5-2 isolation characteristics
Parameter
Symbol
Test conditions
-
-
Characteristic
Unit
Installation classification (EN 60664-1, Table 1(1))
I - IV
For rated mains voltage ≤ 150 V rms
For rated mains voltage ≤ 300 V rms
-
I - III
I - II
For rated mains voltage ≤ 600 V rms
Pollution degree (EN 60664-1)
Maximum working isolation voltage
-
-
2
-
VIORM
-
1500
VPEAK
2400
VPEAK
2815
VPEAK
Method a, type test
VPR = VIORM × 1.6, tm = 10 s
Input to output test voltage as per IEC 60747-5-2
VPR
Partial discharge < 5 pC
Method b1, 100 % production test
VPR = VIORM × 1.875, tm = 1 s
Partial discharge < 5 pC
Transient overvoltage as per IEC 60747-5-2 (highest
allowable overvoltage)
VIOTM
tini = 60 s; type test
4000
VPEAK
Maximum surge isolation voltage
VIOSM
Type test
4000
VPEAK
VIO = 500 V at TS; type test
>109
Ω
RIO
Isolation resistance
1. For three-phase systems the values in the table refer to the line-to-neutral voltage.
Table 9. UL 1577 isolation voltage ratings
Description
Isolation withstand voltage, 1 min. (type test)
Isolation withstand test, 1 sec. (100% production)
DS11974 - Rev 4
Symbol
Characteristic
Unit
VISO
2500\3536
Vrms\VPEAK
VISOtest
3000\4245
Vrms\VPEAK
page 13/59
STGAP1BS
Logic supply management
6
Logic supply management
6.1
Low voltage section voltage regulator
The device integrates in the low voltage section a linear voltage regulator that can be used to obtain the 3.3 V
logic core supply voltage from an external 5 V supply voltage. If an external 3.3 V supply voltage is available,
the VDD and VREG must be shorted as shown in Figure 3. The logic IOs are referred to the VDD voltage (see
Table 6 for details).
Figure 3. Low voltage section 3.3 V voltage regulator
VDD from +5 V power supply
VDD from +3.3 V power supply
+5V
+3.3V
VDD
VDD
100 nF
LDO
Reg
LDO
Reg
VREG
VREG
4.7 µF
100 nF
4.7 µF
100 nF
Undervoltage protection is available on the VDD supply pin (disabled by default).
When the VDD voltage goes below the VDDoff threshold the device and its outputs goes in “safe state” (see
Section 6.3 ) and the UVLOD status flag is forced low. Once the protection is triggered, the UVLOD flag is
latched and the device remains in “safe state” until the UVLOD flag is not released. See Section 7.11 for
indication on how the failure flags can be released.
This protection can be enabled writing the UVLOD_EN bit of the CFG1 register (disabled by default).
Overvoltage protection is available on the VDD supply pin.
When the VDD voltage goes over the OVVDDoff threshold, the device and its outputs go in “safe state”
and the OVLOD status flag is set. The device remains in “safe state” and the OVLOD flag is latched, see
Section 7.11 for indication on how the failure flags can be released.
DS11974 - Rev 4
page 14/59
STGAP1BS
High voltage section voltage regulator
6.2
High voltage section voltage regulator
The device integrates in the high voltage section a linear voltage regulator that generates the 3.3 V logic core
supply voltage from an external supply voltage connected to the VH pin.
Figure 4. High voltage section 3.3 V voltage regulator
VH
VH
100 nF
LDO
Reg
VREGISO
4.7 µF
100 nF
If the voltage at the VREGISO pin goes below the minimum operating threshold which causes the logic reset, the
REGERRR bit in the STATUS2 register is set high.
6.3
Power-up, power-down and “safe state”
The following conditions define the device's “safe state”:
•
GOFF = ON state
•
GON = high impedance
•
CLAMP = ON state (if CLAMP < 'GNDISO + VCLAMPth')
•
DESAT = GNDISO (internal switch on and current generator off)
Such conditions are guaranteed at power-up of the isolated side (also for VH < VHon and VL > VLon) and during
the whole device power-down phase (also for VH < VHoff and VL > VLoff), whatever the value of the input pins.
The device integrates a structure which clamps the driver output to a voltage smaller than SafeClp when the VH
voltage is not high enough to actively turn the GOFF N-channel MOSFET on.
If the VH positive supply pin is floating the GOFF pin is clamped to a voltage smaller than SafeClp.
After power-up of the isolated side the REGERRR status flag is latched and the device is forced in “safe state”.
See Section 7.11 for indication on how the failure flags can be released.
After power-up of the low voltage side the REGERRL and UVLOD status flags are latched and the device is
forced in “safe state”. See Section 7.11 for indication on how the failure flags can be released.
The UVLOH flag is also forced high at the power-up of the low voltage side, but its value is set to zero as soon as
the isolated side power-up is completed.
6.4
Standby function
The device can be put in standby mode to reduce the power consumption on VDD via the SPI command “Sleep”
(refer to Section 9.1.5 ).
The proper sequence is:
1.
Pull-down the SD pin: the driver section will be put in “safe state”
2.
Send a Sleep command
3.
After a tsleep time, the device can be considered in sleep mode.
To exit from the sleep mode, it is necessary to set the SD high for at least tawake while keeping IN+ low.
After a tawake time the device can accept new commands and the REGERRR bit is set to indicate that the device
needs to be reprogrammed.
If the SD pin is raised while tsleep is still not expired, the device returns to the operation mode within a tawake time.
DS11974 - Rev 4
page 15/59
STGAP1BS
Functional description
7
Functional description
7.1
Inputs and outputs
The device is controlled through following logic inputs:
•
SD: active low shutdown input
•
IN+: driver input
•
CS: active low chip select (SPI)
•
SDI: serial data input (SPI)
•
CK: serial clock (SPI)
And following logic outputs:
•
SDO: serial logic output (SPI)
•
DIAG1: diagnostic signal (open drain)
And following IO pin:
•
IN-/DIAG2: driver input or diagnostic open drain output.
Logic input thresholds and output ranges vary according to VDD voltage. In particular, the device is designed to
work with VDD supply voltages of 5 V or 3.3 V.
The operation of the driver IOs can be programmed through DIAG_EN bits as described in Table 10.
Table 10. Inputs true table (device NOT in “safe state”)
Bit in CFG1 register
Input pins
Output pins
DIAG_EN
SD
IN+
IN-
GON
GOFF
X
0
X
X
OFF
ON
0
1
0
0
OFF
ON
0
1
0
1
OFF
ON
0
1
1
0
ON
OFF
0
1
1
1
OFF
ON
OFF
ON
ON
OFF
(1)
1
1
0
X
1
1
1
X (1)
1. The IN-/DIAG2 pin is used as the open drain output for diagnostic signaling (refer to Section 7.11
A deglitch filter is applied to device inputs (SD, IN+, IN-). Each input pulse, positive and negative, shorter than the
programmed tdeglitch value is neglected by internal logic. Deglitch time can be programmed as listed in Table 30.
When the deglitch filter is disabled (INfilter = '00') and the 2-level turn-off function is disabled (2LTOtime = 0x0) or
enabled only after a fault event (2LTO_EN = '1'), a minimum input pulse tINmin is required to change the device
output status. The minimum input pulse timing filters out both positive and negative pulses at the IN+, IN- and SD
pins.
7.2
Deadtime and interlocking
When single gate drivers are used in half-bridge configuration, they usually do not allow preventing cross
conduction in case of wrong input signals coming from the controller device. This limitation is due to the fact
that each driver does not have the possibility to know the status of the input signal of the other companion
driver in the same leg. Thanks to the availability of two input pins with opposite polarity the STGAP1BS allows
implementing hardware interlocking that prevents cross conduction even in case of wrong input signals generated
by the control unit. This functionality can be achieved by implementing the connection shown in Figure 5 and by
configuring the IN-/DIAG2 pin as input (which is its default configuration).
DS11974 - Rev 4
page 16/59
STGAP1BS
Deadtime and interlocking
Figure 5. HW cross conduction prevention in half-bridge configuration with two single gate drivers
IN+
IN-
μC
STGAP1BS HS
HIN
LIN
IN+
IN-
STGAP1BS LS
When such configuration is used, it is also possible to enable the STGAP1BS programmable deadtime feature,
which guarantees that at least a DT time passes between the turn-off of one driver's output and the turn-on of the
other driver. The deadtime value DT can be programmed through the SPI interface as shown in Table 29.
If the deadtime feature is enabled, a counter is started when the input status changes from < IN- = '1' and IN+ =
'0' > to a different combination, which means that the other driver in the same leg is at the beginning of a turn-off
(refer to Figure 6).
Once the counter is started it keeps counting regardless of any input variation until a DT time has passed, and
during this time the driver prevents the turn-on of its output even if the controller tries to force the turn-on (inputs
set to < IN- = '0' and IN+ = '1' >).
Once the programmed DT counter is expired, the driver immediately turns the output on as soon as a turn-on
command is present at the input pins, and no extra delay is added.
Figure 6. Transitions causing the DT generation
IN- = 1
IN+ = 0
IN- = 0
paired
Driver ON
IN- = 0
IN+ = 1
ALL OFF IN+ = 0
IN- = 1
IN+ = 1
this
Driver ON
ALL OFF
Transitions causing the DT generation
Some examples of the device behavior when the deadtime feature is enabled are shown from Figure 7 to
Figure 10.
DS11974 - Rev 4
page 17/59
STGAP1BS
Hardware RESET
Figure 7. Synchronous control signal edges
INSYNCHRONOUS
CONTROL SIGNALS EDGES;
DEAD TIME
IN+
GON-GOFF
DT
DT
Figure 8. Control edges signal overlapped, example 1
INCONTROL SIGNALS EDGES
OVERLAPPED;
DEAD TIME
IN+
GON-GOFF
DT
DT
DT
Figure 9. Control edges signal overlapped, example 2
IN-
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
BUT INSIDE THE DEAD TIME:
DEAD TIME
IN+
GON-GOFF
DT
DT
Figure 10. Control edges signal not overlapped and outside DT (direct control)
IN-
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
OUTSIDE THE DEAD TIME:
DIRECT DRIVING
IN+
GON-GOFF
DT
DT
When the deadtime function is enabled, the STGAP1BS returns a “deadtime violation” fault when the control unit
tries to turn on any of the drivers in one leg during the counting of the programmed DT time. If such event occurs
the DT_ERR flag is set high and latched.
7.3
Hardware RESET
The device can be reset by forcing the VREG pin to ground through an external switch. The internal regulator is
designed to stand this condition.
The maximum current required to force the VREG pin to ground is indicated by the parameter IREG.
7.4
Power supply UVLO and OVLO
Undervoltage protection is available on both VH and VL supply pins.
The turn-on threshold can be programmed through the SPI writing the CFG4 register. A fixed 1 V hysteresis will
set the respective turn-off threshold.
Both UVLO protections can be independently disabled by setting the proper value in the CFG4 register.
DS11974 - Rev 4
page 18/59
STGAP1BS
Thermal warning and shutdown protection
When VH voltage goes below the VHoff threshold, the output buffer goes in “safe state” and the UVLOH status
flag is forced high. If the UVLOlatch bit in the CFG4 register is set low (default), the UVLOH status flag is released
when VH voltage reaches the VHon threshold and the device returns to normal operation.
Otherwise, the UVLOH flag is latched and the device remains in “safe state” until the VH voltage reaches the
VHon threshold and the flag is released. See Section 7.11 for indication on how the failure flags can be
released.
When VL voltage goes over the VLoff threshold, the output buffer goes in “safe state” and the UVLOL status flag is
forced high. If the UVLOlatch bit in the CFG4 register is set low (default), the UVLOL status flag is released when
VL voltage goes below the VLon threshold and the device returns to normal operation.
Otherwise. the UVLOL flag is latched and the device remains in “safe state” until the VL voltage goes below the
VLon threshold and the flag is released. See Section 7.11 for indication on how the failure flags can be released.
Overvoltage protection is available on both VH and VL supply pins. Both OVLO protections can be disabled by
setting the proper value in the CFG4 register.
When the VH voltage goes over the OVVHoff threshold, the output buffer goes in “safe state” and the OVLOH
status flag is forced high. The OVLOH flag is latched and the device remains in “safe state” until VH voltage goes
below the overvoltage threshold and the flag is released. See Section 7.11 for indication on how the failure flags
can be released.
When VL voltage goes over the OVVLoff threshold, the output buffer goes in “safe state” and the OVLOL status
flag is forced high. The OVLOL flag is latched and the device remains in “safe state” until VH voltage goes below
the overvoltage threshold and the flag is released. See Section 7.11 for indication on how the failure flags can
be released.
7.5
Thermal warning and shutdown protection
The device provides a thermal warning and a thermal shutdown protection.
When junction temperature reaches the TWN temperature threshold the TWN flag in the STATUS1 register is
forced high. The TWN flag is released as soon as the junction temperature is lower than TWN - Thys.
When junction temperature reaches the TSD temperature threshold, the device is forced in “safe state” and the
TSD flag in the STATUS1 register is forced high. The device operation is restored and the TSD flag is released as
soon as the junction temperature is lower than TSD - Thys.
7.6
Desaturation protection
This feature allows implementing an overload protection for the IGBT. The DESAT pin monitors the VCE voltage of
the IGBT while it is on, and if the protection threshold is reached, the IGBT is turned off.
DS11974 - Rev 4
page 19/59
STGAP1BS
Desaturation protection
Figure 11. Example of desaturation protection connection
IC
DESATcurr
(programmable)
+
DESAT
DESATth
Cblank
(programmable)
I
S
O
L
A
T
I
O
N
LOGIC
Discharge
switch
VH
GON
Rg_on
GOFF
VL
GNDISO
When the IGBT is off (GOFF output is activated) the DESAT pin is kept low internally and the external blanking
capacitor connected to the DESAT pin is discharged (the internal current generator is fully switched off and the
switch between DESAT and GNDISO pins is turned on).
When the GON output is activated the switch between DESAT and GNDISO pins is turned off and an internal
programmable current generator (IDESAT) starts charging the external blanking capacitor after a fixed blanking
time tBLK.
If a desaturation event occurs the VCE voltage increases and the voltage at the DESAT pin reaches the
desaturation threshold VDESATth: the DESAT comparator output is set, the device is forced in “safe state” and
the DESAT flag is forced high and latched.
The DESAT comparator is not active when the external IGBT is off or after desaturation detection (see Figure 12).
Both the VDESATth threshold and the IDESAT blanking current are programmable through the SPI.
DS11974 - Rev 4
page 20/59
STGAP1BS
VCE active clamping protection
Figure 12. DESAT protection timing diagram
IN+
Comparator Disabled
Comparator Enabled
Comparator Disabled
t DESAT
VH level
GON-GOFF
VL level
V
DESATth
DESAT
Blanking time
t BLK
t DIAGx
DiagX
A deglitch filter is applied to the DESAT pin. Each pulse exceeding the VDESATth for a time shorter than tDESfilter
value shall not trigger the protection.
7.7
VCE active clamping protection
This protection is used to actively clamp the drain/collector overvoltage spikes during the MOSFET/IGBT turn-off.
This feature allows using low turn-off resistor values leading lower turn-off losses, thus increasing efficiency, while
limiting the maximum turn-off spike on the collector (or drain) within safe limits.
The direct feedback of the collector voltage to the device can for example be made via an element with avalanche
characteristics such as a TVS. If the VCE voltage exceeds the breakdown voltage of the TVS, the VVCECLth
threshold voltage on the VCECLAMP is reached and the IC actively slows down the power switch turn-off to keep
a safe condition.
The active limiting of the driver's turn-off current strongly reduces the current flowing through the TVS, thus
preventing it from operating in overstressing conditions.
DS11974 - Rev 4
page 21/59
STGAP1BS
SENSE overcurrent protection
Figure 13. Example of VCE active clamping protection connection
VCECLAMP
VH
VLVLVL
GON
Floating
Section
Control
Logic
GOFF
Level
Shifter
CLAMP
VL
GNDISO
+
CLAMPth
When the VCECLAMP is activated during the turn-off phase a watchdog timer starts inside the driver. This timer
allows the VCECLAMP pin to act on the driver's output status for a tVCECLoff time maximum. After that time
has expired, the driver continues the normal turn- off ignoring the VCECLAMP pin status. This assures that the
protection is only acting to clamp inductive VCE spikes during the turn-off.
The timer is reset and the VCECLAMP protection is enabled again at the beginning of the following turn-off
sequence.
Figure 14. VCECLAMP timing diagram
GON\GOFF
VCECLAMP
VCEcounter
stopped
ready
counting
stopped
ready
t VCECLof
The VCECLAMP pin is masked and has no effect on the driver's outputs status when the external MOSFET/IGBT
is on.
The VCE active clamping protection can be disabled connecting the VCECLAMP pin to VL.
7.8
SENSE overcurrent protection
This function is suitable in applications in which it is possible to measure the load current through the use of
a shunt resistor, or in applications that use IGBTs with the current sense pin available. The load current (or a
fraction of it in case SenseFETs are used) is converted to voltage by an external shunt resistor and is fed to the
SENSE pin (comparator input).
DS11974 - Rev 4
page 22/59
STGAP1BS
Miller clamp function
When an overcurrent event occurs the sense voltage reaches the VSENSEth threshold, the device is forced in “safe
state” and the SENSE status flag is forced high and latched.
The VSENSEth threshold is programmable through the SPI (refer to Section 9.2.2 ).
Figure 15. Example of SENSE overcurrent protection connection
IC
VH
GON
Rg_on
GOFF
I
S
O
L
A
T
I
O
N
LOGIC
VL
SENSE
Rsense
Vref
(programmable)
GNDISO
7.9
Miller clamp function
The Miller clamp function allows the control of the Miller current during the power stage switching in half-bridge
configurations. When the external power transistor is in the OFF state, the driver operates to avoid the induced
turn-on phenomenon that may occur when the other switch in the same leg is being turned on, due to the Cgc
capacitance.
During the turn-off period the gate of the external switch is monitored through the CLAMP pin.
The CLAMP switch is activated when gate voltage goes below the voltage threshold VCLAMPth, thus creating a low
impedance path between the switch gate and the VL pin.
This function can be disabled setting low the CLAMP_EN bit in the CFG5 register (high by default).
7.10
2-level turn-off function
If an overcurrent event happens, a large voltage overshoot exceeding VCE absolute ratings may occur across the
power switch during the turn-off, due to the parasitic stray inductances.
The 2-level turn-off function (2LTO) allows the reduction of the stressing overvoltage experienced by the power
component in overcurrent condition by switching off the external power in two phases.
In the first phase, the GOFF voltage is actively forced to a programmable value V2LTOth; after a programmable
delay t2LTOtime the GOFF is forced to VL to complete the gate turn-off.
This allows to slow down the critical part of the turn-off transient, that may induce the overvoltage spikes.
The voltage level V2LTOth and duration t2LTOtime of the intermediate off-level are programmable through the SPI.
It is possible to program when this feature takes place, refer to the following paragraphs.
DS11974 - Rev 4
page 23/59
STGAP1BS
2-level turn-off function
7.10.1
2-level turn-off function - Always
The 2LTO is performed at each turn-off transition (2LTO_EN = '0').
When 2LTO is used, at each transition the minimum on or off pulse width is determined by 2LTO time. Some
sample waveforms are given in Figure 16 and Figure 17, where INAND represents the condition: < IN+ = 'H' and
IN- = 'L' >.
If a turn-on pulse is shorter than t2LTOtime it shall be ignored; turn-on pulses longer than t2LTOtime will determine a
delay in the turn-on equal to t2LTOtime (see Figure 16).
Figure 16. Example of short turn-on pulses when 2LTO occurs at each cycle
ONtime
ONtime
INAND
t Doff
t Doff
ONtime
t 2LTOtime
GON-GOFF
t 2LTOtime
t 2LTOtime
ONtime
t 2LTOtime
t 2LTOtime
t Don
ON-time < t 2LTOtime
ON-time < t 2LTOtime
t 2LTOtime
t Don
ON-time > t 2LTOtime
ON-time > t 2LTOtime
When a turn-off pulse is detected the turn-off procedure starts immediately by forcing the V2LTOth voltage on the
GOFF pin. If the duration of the turn-off pulse is shorter than t2LTOtime the turn-off sequence is aborted by setting
GOFF in high impedance and turning GON on again (see Figure 17).
Figure 17. Example of short turn-off pulse when 2LTO occurs at each cycle
INAND
GON-GOFF
t Dof
t 2LTOtime
OFF-time > t2LTOtime
t Dof
t Don
t 2LTOtime
OFF-time < t 2LTOtime
t Dof
t 2LTOtime
OFF-time > t 2LTOtime
When the 2LTO is used at each cycle, any event that forces the device to enter in “safe state” generates a driver
switch off performing a 2LTO sequence.
7.10.2
2-level turn-off function - Fault
The 2LTO is performed only after a desaturation or overcurrent event (2LTO_EN = '1'). In such cases the device
enters in “safe state” until the failure flag is released. See Section 7.11 for indication on how the failure flags can
be released.
This configuration overrides some drawbacks of using the 2LTO at each turn-off, such as the minimum pulse
width equal to t2LTOtime and the turn-on delay needed to avoid duty cycle distortion.
With this configuration the turn-off is only slowed down in case of desaturation or overcurrent events.
DS11974 - Rev 4
page 24/59
STGAP1BS
Failure management
Figure 18. Example of operation with 2LTO in “Fault” mode
INAND
VDESATth
DESAT
GON-GOFF
t Dof
t Dof
7.10.3
t Don
t Don
t DESAT
t 2LTOtime
2-level turn-off function - Never
The 2LTO function is disabled (2LTOtime = 0x0). In this case a standard turn-off sequence is used (directly
lowering the gate voltage from VH to VL) also in case of desaturation or sense overcurrent events.
7.11
Failure management
The device provides advanced diagnostic through open drain outputs (DIAG1/DIAG2) and internal status
registers. The DIAG2 output shares the same pin of the IN- input (see Figure 1); the diagnostic signal through the
pin is enabled through the DIAG_EN bit as described in Section 7.1 .
Status registers (STATUS1, STATUS2 and STATUS3) provide failures and status information as listed in
respective paragraphs.
DIAG1 and DIAG2 pins can be programmed through the dedicated registers (DIAG1CFG and DIAG2CFG) to
signal one or more failure conditions. The output value is the result of the NOR of the selected status bits: if one
of the selected bits is high, the output is forced low.
Some of the failure conditions reported by the status registers are latched, i.e.: the flag is kept high even if the
triggering condition is expired.
Different methods can be used to clear the failure flags contained in the status registers:
•
Using the ResetStatus command
The SD must be set low before giving this command and must remain low until the end of the command’s
execution time.
This is the recommended method, because guarantees that status registers are only cleared by direct
intervention of the MCU.
All flags in the StatusRegisters are released after a tdesCS time following the rise of the SPI CS.
•
•
Forcing low the SD pin for at least trelease
All the flags are released at the rising edge of the SD. This mode is enabled at device’s power-on, but
it can be disabled by setting the SD_FLAG configuration bit low during the configuration phase, and by
doing this any possibility to clear a FLAG without direct intervention of the MCU is prevented. Even if the
SD_FLAG is set high, status registers are not cleared after the rising edge of the SD if a configuration
sequence is executed (StartConfig, StopConfig). This is done to avoid clearing errors that may have
been generated during the configuration procedure.
Using HW reset (see Section 7.3 )
In this case the device behaves as after power-up sequence.
In any of the above cases, if the failure condition is still present, the respective flag is not released.
Selected failures force the device in “safe state”; the device remains in this state until the relative status flags are
released. Refer to Table 49, Table 51 and Table 53 for details.
The possibility to clear status registers by setting the SD low allows operating the device also without using
the SPI interface. In order to avoid an unintended clear of fault conditions it is recommended to disable this
functionality by setting the SD_FLAG = '0'.
DS11974 - Rev 4
page 25/59
STGAP1BS
Asynchronous stop command
7.12
Asynchronous stop command
The ASC pin allows to turn-on the GON output acting directly on the isolated driver logic and regardless of the
status of the input pins IN+, IN- and SD. This pin is active high.
The status of this pin is mirrored in the ASC bit present in the STATUS2 register.
The power supply of the isolated section must be present (VH > VHon).
In case UVLO on VH is not enabled, ASC function works for VH values within the recommended operating
values.
This function works even if the VDD voltage is not available or is in UVLO condition.
The priority of such command is lower than that of DESAT and SENSE pins, so the ASC command is ignored in
case of a desaturation or overcurrent fault. After such events the gate can be turned on again with a low-to-high
transition of the ASC pin, or by clearing the fault condition (see Section 7.11 ).
7.13
Watchdog and echo
The isolated side provides a watchdog function in order to identify when it is no more able to communicate with
the LV side. In this case the driver is automatically forced in “safe state” and the REGERRR flag is set.
When the LV side is in the standby mode, turned off or in hardware reset condition, the isolated side watchdog is
still operative and the REGERRR flag is set.
The low voltage side provides a watchdog function in order to identify when it is no more able to communicate
with the isolated side. In this case the REGERRL flag is set and the device is forced in “safe state”.
An echo function is implemented in order to check that input commands toward the gate are correctly propagated
to the driver's output. In case something should prevent the correct propagation of the command, the driver is
able to detect this condition and will start a new communication (echo) in order to set the desired output state.
This process has typical duration of 4 μs.
7.14
Security check functions
The device allows verifying the gate and sense resistor connections and the functionality of SENSE and DESAT.
This can be achieved through the following security checks:
•
Logic inputs to isolated driver path
•
GON to gate path
•
GOFF to gate path
•
SENSE comparator
•
SENSE resistor
•
DESAT comparator
The check modes are enabled through a dedicated configuration register TEST1 (refer to Section 9.2.9 ) and
thus require entering in configuration mode.
Only one check mode at a time must be enabled. At the end of security check procedure, the TEST1 register
must be set to 0x00 before running the device in normal mode.
It is recommended to clear the status register with the ResetStatus command before and after each check.
To prevent the SD from clearing the STATUS flags, set the SD_FLAG = '0' as described in Section 7.11 .
7.14.1
Logic inputs to isolated driver path
The purpose of this security check is to verify the path integrity including the input buffer.
The check uses bit #[0] of the STATUS2 register, which contains information about the gate status request that
the gate driver stage received from the logic inputs and reported. Please note that this value may differ from the
actual GON and GOFF status, for example if some condition is forcing the device in “safe state”.
To perform this test, the following procedure has to be followed:
•
Set SD = high, IN- = low and IN+ = low
•
Set IN+ = high
•
Wait at least tGchk
DS11974 - Rev 4
page 26/59
STGAP1BS
Security check functions
•
•
Read GATE bit in the STATUS2 register
–
GATE = '1' → OK
–
GATE = '0' → FAIL
Set IN+ = low
During all the duration of the check the logic inputs have to follow the levels indicated by the procedure and must
not be otherwise modified.
Please note that when IN+ is set high during the check, the gate may be forced high (GON turned on). The user
test routine has to take into account this behavior.
7.14.2
GON to gate path check
The purpose of this security check is to verify the path integrity including the driver's GON output, the GON
(turn-on) gate resistor, the power switch gate and the CLAMP pin (see Figure 19).
To perform this test, the following procedure has to be followed:
•
Set SD = low
•
Send StartConfig command
•
•
Set GONCHK = '1'
Send StopConfig command
•
Wait at least tGchk
•
Read TSD flag
–
TSD = '0' → OK (VCLAMP > VGchk)
–
TSD = '1' → FAIL (VCLAMP < VGchk)
Please note that during all the time the check is enabled the gate will be forced high (GON turned on) regardless
the SD pin level. The user test routine has to take into account this behavior.
In any case, when GONCHK = '1', the protections SENSE and DESAT, if enabled, will continue to operate
protecting the power switch regardless the SD pin.
7.14.3
GOFF to gate path check
The purpose of this security check is to verify the path integrity, including the driver's GOFF output, the GOFF
(turn-off) gate resistor, the power switch gate, and the CLAMP pin (see Figure 19).
To perform this test, the following procedure has to be followed:
•
Set SD = low
•
Send StartConfig command
•
•
Set GOFFCHK = '1'
Send StopConfig command
•
Wait at least tGchk + tGATE_GOFFchk
•
Read DESAT flag
–
DESAT = '0' → OK (VCLAMP < VCLAMPth)
–
DESAT = '1' → FAIL (VCLAMP > VCLAMPth)
During the check, a small current IGOFFchk will be sourced from the CLAMP pin while GOFF is on, keeping the
gate low through the turn-off gate resistor.
To ensure the check result, some applicative conditions have to be verified:
•
The bleeding resistor, sometimes present between the gate and source in the power switch, shall be higher
than 8.2 kΩ.
•
During the test, the power switch gate shall have the time to be charged up to VCLAMPth by IGOFFchk. In case
no bleeding resistor is present, this time can be roughly computed as:
tGATE_GOFFchk ≈ CGATE * (VCLAMPth - VL) / IGOFFchk
If a bleeding resistor is present or an additional push-pull circuit has been added, the time has to be
computed with the adequate corrective factors.
If the check fails due to the lack of the GOFF resistor, the power switch gate will gradually rise up to VH with no
protections of SENSE nor DESAT. The user test routine shall consider this behavior.
DS11974 - Rev 4
page 27/59
STGAP1BS
Security check functions
Figure 19. Gate paths check circuitry
SD
VH
Control
Logic
CS
CK
SDI
SDO
7.14.4
I
S
O
L
A
T
I
O
N
GON
Floating
Section
Control
Logic
GOFF
Level
Shifter
CLAMP
VL
+
VH
VCLAMPth
test control
IGOFFchk
SPI
Floating ground
GNDISO
SENSE comparator check
The purpose of this security check is to verify the functionality of the sense comparator.
To enable this check, it is necessary to set SNSCHK = '1' and SENSE_EN = '1'.
When this check is enabled the switch in series to the SENSE pin is open (see Figure 20); a SENSE
fault (STATUS1 register) should be reported within tSENSEchk, otherwise the SENSE comparator operation is
compromised.
•
VSENSEcomp > VSENSEth → comparator OK → SENSE = '1'
•
VSENSEcomp < VSENSEth → comparator FAIL → SENSE = '0'
The SENSE fault generated by this test is latched and shall be cleared accordingly.
DS11974 - Rev 4
page 28/59
STGAP1BS
Security check functions
Figure 20. SENSE comparator and resistor check circuitry
VH
GON
SD
Control
Logic
I
S
O
L
A
T
I
O
N
Floating
Section
Control
Logic
CLAMP
VL
VH
ISENSERchk
testcontrol
+
SDI
SDO
7.14.5
SENSE
SENSEcomp
testcontrol
VSENSEth
CS
CK
GOFF
Level
Shifter
RSENSE
Rtest
SPI
Floating ground
GNDISO
SENSE resistor check
The purpose of this security check is to verify the connection between the device and the sense shunt resistor
and to verify the optional sense resistor filter network is not open.
To perform this test, the following procedure has to be followed:
•
Set SD = low
•
Send StartConfig command
•
•
•
Set SENSE_EN = '1'
Set RCHK= '1'
Send StopConfig command
•
Wait tRchk + tSENSERchk
•
Read SENSE flag
–
SENSE = '0' → OK (VSENSE < VSENSEth)
–
SENSE = '1' → FAIL (VSENSE > VSENSEth)
During the check a small current ISENSERchk is sourced from the SENSE pin (see Figure 20). If the sense resistor
is not present or floating, SENSE pin voltage will rise and once VSENSEth is exceeded, a SENSE fault will be
reported in the STATUS1 register within tRchk.
To ensure the check result, the following condition has to be verified:
•
The SENSE flag read has to be delayed of tSENSERchk, which is the time the customer filtering network takes
to reach VSENSEth by the ISENSERchk current.
7.14.6
DESAT comparator check
The purpose of this security check is to verify the functionality of the desaturation comparator.
To perform this test, the following procedure has to be followed:
•
Set SD = low
•
Send StartConfig command
DS11974 - Rev 4
page 29/59
STGAP1BS
Register corruption protection
•
•
•
Set DESAT_EN = '1'
Set DESCHK = '1'
Send StopConfig command
•
•
•
•
Set SD = high
Wait 3 μs
Apply at the inputs a gate turn on pulse longer than 500 ns
Read DESAT flag
–
DESAT = '1' → OK (VDESATcomp > VDESATth)
–
DESAT = '0' → FAIL (VDESATcomp < VDESATth)
During this test GON is first turned on and then turned off as soon the test succeeds. In case the test should fail,
the output remains on as long as the input signal remains high.
At the end of the check the DESAT fault remains set (it is latched), and it has to be cleared.
Figure 21. DESAT comparator check circuitry
VH
SD
test control
IDESAT
IN+
IN-
Control
Logic
CS
CK
SDI
SDO
7.15
I
S
O
L
A
T
I
O
N
+
DESAT
1k
testcontrol
C blank
VDESATth
VH
GON
Floating
Section
Control
Logic
GOFF
Level
Shifter
CLAMP
VL
SPI
Floating ground
GNDISO
Register corruption protection
All the configuration registers are protected against content corruption.
If the value of a local register is changed without a proper command is received (WriteReg or GlobalReset),
the REGERRL flag is set high and the device is forced in “safe state”.
If the value of a remote register is changed without a proper command is received (WriteReg or GlobalReset),
the REGERRR flag is set high and the device is forced in “safe state”.
DS11974 - Rev 4
page 30/59
STGAP1BS
SPI interface
8
SPI interface
The IC communicates with an external MCU through a 16-bit SPI. This interface is used to set the device
parameters and for advanced diagnostic.
SPI commands are executed after the rising edge of the CS, and adequate wait time must be respected before a
new command is started by setting the CS low again. Refer to the tdesCS parameter in Table 6 for required wait
time after each command.
The SPI I/O pins are:
•
CS: chip select (active low)
•
CK: serial clock
•
SDI: serial data input (MOSI)
•
SDO: serial data output (MISO).
The interface is compliant with the SPI standard CPHA = 1 and CPOL = 0 (serial data is sampled on CK falling
edge and it is updated on CK rising edge, at the CS falling edge the CK signal must be low) as shown in
Figure 22.
Figure 22. SPI timings
SD
(Not required for
NOP and read
operations)
tSDLCSL
tCSHSDH
CS
tdesCS
tsetCS
CK
tenSDO
tfCK
tsetSDI
tlCK trCK thCK
tholCS
tholSDI
N-1
MSB
SDI
HiZ
MSB
LSB
tvSDO
tholSDO
SDO
N-2
tdisSDO
N-1
N-2
LSB
MSB
The SPI interface can work up to 5 Mbps and provides the daisy chain feature.
In order to guarantee a safe operation and robustness to electrical noise, the number of rising edges within a CS
negative pulse must be multiple of 16, otherwise the communication cycle is ignored and a communication failure
is indicated forcing high the SPI_ERR flag.
Any number of the STGAP1BS can be connected in daisy chain, and only 4 lines for the SPI and one for the
SD are required in order to guarantee access to status and configuration registers of each device. An example of
daisy chain configuration is shown in Figure 23.
In case that several STGAP1BS devices are connected in the SPI link, each of them can be configured in a
different way by simply writing the desired data in each configuration and diagnostic register. This allows for
example differentiating the configuration for high-side and low-side drivers.
DS11974 - Rev 4
page 31/59
STGAP1BS
CRC protection
Figure 23. SPI daisy chain connection example
SD
SD
I
S
O
L
A
T
I
O
N
CS
CK
SDI
SDO
Device N
Device 2
Device 1
CS
CK
SDI
SDO
SD
I
S
O
L
A
T
I
O
N
I
S
O
L
A
T
I
O
N
CS
CK
SDI
SDO
SD
μC
MOSI
CS
CK
MISO
In case a bootstrap capacitor and a diode are used to generate the VH supply voltage for the high-side drivers, it
is recommended to have one dedicated SD line for all of the high- side drivers and another dedicated SD line for
all of the low-side drivers. An example of such topology is shown in Figure 24.
Figure 24. SPI daisy chain connection example when bootstrap technique is used for high-side drivers
VH_HS2
VH_HS1
VH
VH
SD
CS
CK
SDI
SDO
SD
SD_HS
MOSI
μC
8.1
CS
CS
CK
MISO
SD_LS
CK
SDI
SDO
I
S
O
L
A
T
I
O
N
I
S
O
L
A
T
I
O
N
SD
CS
Cboot _HS1
CK
SDI
VL
SDO
GNDISO
I
S
O
L
A
T
I
O
N
Cboot _HS2
VL
GNDISO
VH_LS
VH_LS
VH
VH
SD
CS
CK
SDI
VL
GNDISO
GNDisoGNDiso
SDO
I
S
O
L
A
T
I
O
N
VL
GNDISO
CRC protection
All the command and data bytes have to be followed by a CRC code. If the CRC_SPI bit is set high, this code
is used to check the data byte is correct, otherwise the CRC byte is ignored. In this case the CRC byte must be
transmitted by the host, but its value is unimportant.
A failure on the CRC check causes the respective data byte is ignored and the SPI_ERR flag is set high.
The polynomial generator of the CRC code is X8 + X2 + X + 1 corresponding to the block diagram in Figure 25.
DS11974 - Rev 4
page 32/59
STGAP1BS
CRC protection
Figure 25. Block diagram of the CRC generator
Message
(from MSb to LSb)
X7
X6
X5
X4
X3
X2
X1
X0
The host must transmit to the device the inverted CRC code computed using the following procedure:
•
Initialize CRC to all 1
•
Start the calculation from the most significant bit of the message
•
Invert the CRC result
In case of a WriteReg command, the CRC of the data byte (i.e.: the new register value) must be calculated
initializing the computation system to the CRC of the command byte (i.e., the CRC is calculated on a 16-bit
message composed by the command + data byte). This way a data byte cannot be accepted as a command byte
and vice-versa. Some examples are listed in Table 11.
The device always transmits a response byte followed by a CRC computed using the same polynomial generator
(X8 + X2 + X + 1). The CRC byte transmitted by the device is not inverted.
If no response is required, the word returned by the device has no meaning and it should be discarded. Some
examples are listed in Table 12.
Table 11. CRC byte examples (from host to device)
Command
Command byte
Command CRC
Data byte
Data CRC
StopConfig
0x3A
0xAA
N.A.
N.A.
WriteReg(CFG1, 0x20)
0x8C
0xA1
0x20
0x82
WriteReg(CFG5, 0x06)
0x99
0xCA
0x06
0x66
ResetStatus
0xD0
0x32
N.A.
N.A.
ReadReg(CFG3)
0xBE
0x3F
N.A.
N.A.
Table 12. CRC byte examples (from device to host)
DS11974 - Rev 4
Data byte
Data CRC
0x00
0xF3
0xEA
0x6B
0xF5
0x36
0x2A
0x25
page 33/59
STGAP1BS
Programming manual
9
Programming manual
9.1
SPI commands
Table 13. SPI commands
Command mnemonic
9.1.1
Command value
Action
Notes
StartConfig
0 0 1 0 1 0 1 0 Device configuration start
Enter CFG mode SD low only
StopConfig
0 0 1 1 1 0 1 0 Device configuration/check completed
Leave CFG mode SD low only
NOP
0 0 0 0 0 0 0 0 No operation
-
WriteReg
1 0 0 A A A A A Write AAAAA register
CFG mode only
ReadReg
1 0 1 A A A A A Read AAAAA register
-
ResetStatus
1 1 0 1 0 0 0 0 Reset all the status registers
SD low only
GlobalReset
1 1 1 0 1 0 1 0 Global reset
CFG mode only
Sleep
1 1 1 1 0 1 0 1 Device enters in standby mode
SD low only
StartConfig and StopConfig commands
Table 14. StartConfig command synopsis
Byte
1
2
To device
0010 1010
1101 1010(1)
1. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
Table 15. StopConfig command synopsis
Byte
1
2
To device
0011 1010
1010 1010(1)
1. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
Device parameters are configured by writing configuration values in configuration registers (CFGx and
DIAGxCFG), which is only possible by entering in configuration mode.
To switch the device to the configuration mode the StartConfig command must be sent. This command is
accepted when the SD line is low only. If the command has been correctly received and interpreted, the IC
registers writing is enabled.
The SD pin must be kept low during the whole configuration procedure, which is terminated by the StopConfig
command. If the SD pin is raised during the configuration procedure the device immediately quits the
configuration mode causing a fault error indicated by the REGERRL and REGERRR bits. In this case all the
changes operated on device configuration are undone and the previous configuration is restored.
At the end of the device setup, the StopConfig command has to be sent in order to quit the configuration mode
and make all changes effective.
Configuration sequence must be repeated every time the power supply on either side (VDD or VH) is removed
and then restored.
•
VDD falling below critical value will result in the REGERRL flag being set in status registers after that the
proper VDD level is restored.
•
VH falling below critical value will result in the REGERRR flag being set in status registers.
DS11974 - Rev 4
page 34/59
STGAP1BS
SPI commands
After that all supply voltages are supplied and stable, the configuration process can be executed. The flow chart
shown in Figure 26 is recommended for the configuration. In this way it will be possible to check that the desired
configuration has been correctly stored in the device at the end of the configuration sequence.
Figure 26. STGAP1BS recommended configuration flow
Power ON
VDD, VH,(VL) stabilization
Set SD low
Clear STATUS registers through
“Reset Status” SPI command
Reset status
SD must be low with no
glitch/bounces during this phase
Read CFG1-2-3-4-5. DIAG1-2
through appropriate read masks
N
Y
Read STATUS1-2-3 registers
through appropriate read masks
Read status
Status OK
N
Y
CONFIGURATION
Set SD high
End of
inizialization
9.1.2
WriteReg command
Table 16. WriteReg command synopsis
Byte
To device
100A
1
2
3
AAAA(1)
CCCC(2)
DDDD(3)
CCCC
DDDD
4
KKKK KKKK(4)
1. The command byte where AAAAA is the address of the target register.
2. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
3. Data to be written into the target register.
4. The CRC byte of the command and data, if the CRC check is disabled this byte is ignored.
The device register can be written through the WriteReg command when the device is set in the configuration
mode only (refer to Section 9.1.1 ), otherwise the write command is ignored and the SPI_ERR flag is forced low.
DS11974 - Rev 4
page 35/59
STGAP1BS
SPI commands
The WriteReg command is followed by the data to be written into the target register. The CRC code following the
data is based on both command and data bytes. In this way, in case of communication error, a data byte cannot
be decoded as a command and vice-versa (refer to Section 8.1 ).
9.1.3
ReadReg command
Table 17. ReadReg command synopsis
Byte
1
2
3(1)
4
To device
101A AAAA(2)
CCCC CCCC(3)
0000 0000
CCCC CCCC(4)
From device
0000 0000
0000 0000
DDDD DDDD(5)
KKKK KKKK(6)
1. Proper time have to be waited in order to allow the device to prepare the data.
2. The command byte where AAAAA is the address of the target register.
3. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
4. The CRC byte of the NOP command.
5. Data read from the target register.
6. The CRC byte of the data.
All the registers of the device can be read anytime, and this requires two accesses (CS must be asserted LOW
and HIGH twice). In the first access the SPI host issues the ReadReg command (including the register address)
and the CRC of the first byte, which will be ignored if SPI CRC is not enabled. After the command is received
and decoded by the device, the register value and the respective CRC code is prepared for the transmission. The
CRC polynomial used by the device during the transmission is different from the one used by the host, but the
CRC code is not inverted before transmission (refer to Section 8.1 ).
The time required to obtain the reading result changes according to the side where the register is located. The
reading of a local register (low voltage side) is available in 800 ns. The reading of a remote register (isolated
side), if no communication error occurs between the two sides of the device, is available in 30 μs.
After the read result is ready it is stored in the SPI output buffer, and the host MCU will receive it as soon as
it will send a new SPI command. Any command can be used for this purpose, including a NOP or the ReadReg
command for the next register to be read.
Some status and configuration registers contain a reserved bit whose content is not predictable. In order to
clearly identify the content of relevant information, the value read from each register should be masked with the
appropriate masking code (see “Mask code” in Table 23).
9.1.4
ResetStatus and GlobalReset commands
Table 18. ResetStatus command synopsis
Byte
1
2
To device
1101 0000
0011 0010(1)
1. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
The ResetStatus command is a specific reset command which acts on all status registers releasing all the
latched flags. The command is executed only when the SD input is low, otherwise the SPI_ERR flag is forced low.
Table 19. GlobalReset command synopsis
Byte
1
2
To device
1110 1010
1001 0100(1)
1. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
DS11974 - Rev 4
page 36/59
STGAP1BS
Register and flag descriptions
The GlobalReset command reset all the registers to the default and releases all the failure flag (if latched).
It can be sent when the device is in the configuration mode only, otherwise the command is ignored and the
SPI_ERR flag is forced low.
9.1.5
Sleep command
Table 20. Sleep command synopsis
Byte
1
2
To device
1111 0101
1100 1001(1)
1. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
The CRC byte of the command, if the CRC check is disabled this byte is ignored.
The command forces the device to switch in standby mode within a tsleep period. The command is executed only
when the SD pin in low, if the SD pin is high the command is ignored and the SPI_ERR flag is forced low.
Refer to Section 6.4 for the description of the standby mode.
9.1.6
NOP command
Table 21. NOP command synopsis
Byte
1
2
To device
0000 0000
0000 1100(1)
1. The CRC byte of the command, if the CRC check is disabled this byte is ignored.
The command does not modify the device status and does not generate any answer.
9.2
Register and flag descriptions
All device features can be configured through a set of 8-bit long registers. There are three different types of
registers:
1.
Local registers are located on the low voltage side
2.
Remote registers are located on the isolated side
3.
Shared registers are located both on the low voltage and isolated side and the value of the two copies is
kept synchronized.
Table 22. Register map
Name
DS11974 - Rev 4
Side(1)
Structure
-
-
[7]
[6]
[5]
[4]
[3]
[2]
CFG1
L
CRC_SPI UVLOD_EN SD_FLAG
CFG2
R
SENSEth
CFG3
R
CFG4
R
-
-
CFG5
R
-
-
-
-
STATUS1
L
OVLOH
OVLOL
DESAT
SENSE
UVLOH
UVLOL
TSD
TWN
STATUS2
L
-
-
-
-
-
REGERRR
ASC
GATE
STATUS3
L
-
-
-
DT_ERR
SPI_ERR
REGERRL
OVLOD
UVLOD
TEST1
R
-
-
-
DESCHK
SNSCHK
RCHK
DIAG_EN
[1]
DTset
[0]
INfilter
DESATcur
DESATth
2LTOth
2LTOtime
OVLO_EN UVLOlatch
VLONth
VHONth
2LTO_EN CLAMP_EN DESAT_EN SENSE_EN
GOFFCHK GONCHK
page 37/59
STGAP1BS
Register and flag descriptions
Name
Side(1)
DIAG1CFG
L
DIAG1_7
DIAG1_6
DIAG1_5
DIAG1_4
DIAG1_3
DIAG1_2
DIAG1_1
DIAG1_0
DIAG2CFG
L
DIAG2_7
DIAG2_6
DIAG2_5
DIAG2_4
DIAG2_3
DIAG2_2
DIAG2_1
DIAG2_0
Structure
1. R: remote (isolated side), L: local (low voltage side).
Table 23. Registers access
Name
9.2.1
Address
Mask code
CFG1
0x0C
0xFF
CFG2
0x1D
0xFF
CFG3
0x1E
0xFF
CFG4
0x1F
0x3F
CFG5
0x19
0x0F
STATUS1
0x02
0xFF
STATUS2
0x01
0x07
STATUS3
0x0A
0x1F
TEST1
0x11
0x1F
DIAG1CFG
0x05
0xFF
DIAG2CFG
0x06
0xFF
CFG1 register (low voltage side)
The CFG1 register has the structure of Table 24.
Table 24. CFG1 register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
CRC_SPI
UVLOD_EN
SD_FLAG
DIAG_EN
DTset
INfilter
Default/reset
0
0
1
0
00
00
The CRC_SPI bit enables the CRC check on the SPI communication protocol.
Table 25. CRC enable
CRC_SPI
SPI communication protocol CRC enable
0
Disabled
1
Enabled
The UVLOD_EN bit enables the UVLO protection on VDD supply voltage.
Table 26. VDD supply voltage UVLO enable
DS11974 - Rev 4
UVLOD_EN
Supply voltage UVLOD enable
0
Disabled
1
Enabled
page 38/59
STGAP1BS
Register and flag descriptions
The SD_FLAG bit sets the SD pin functionality according to Table 27. When the reset of the failure flags through
the SD pin is enabled, keeping low the SD pin for at least trelease causes all the latched flags of the status
registers to be released at the next SD rising edge.
Table 27. SD pin FAULT management
SD_FLAG
SD pin functionality
0
SD pin do not reset STATUS registers
1
SD pin reset STATUS registers
The DIAG_EN bit sets if the IN-/DIAG2 pin works as the input or open drain output according to Table 28. Refer to
Section 7.1 for details.
Table 28. IN-/DIAG2 pin functionality
DIAG_EN
IN-/DIAG2 pin functionality
0
The IN-/DIAG2 pin work as input
1
The IN-/DIAG2 pin work as open drain output
The DTset bits set the deadtime value.
Table 29. Deadtime
DTset [1 ... 0]
Deadtime value [ns]
-
0
0
Disabled
0
1
250
1
0
800
1
1
1200
The INfilter bits set the input deglitch time tdeglitch for the SD, IN- and IN+ pins.
Table 30. Input deglitch time
INfilter [1 ... 0]
9.2.2
Input deglitch time value [ns]
0
0
Disabled
0
1
160
1
0
500
1
1
70
CFG2 register (isolated side)
The CFG2 register has the structure of Table 31.
Table 31. CFG2 register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
-
SENSEth
DESATcur
DESATth
Default/reset
000
00
100
Bit 0
The SENSEth bits set the SENSE comparator threshold according to Table 32. Refer to Section 7.8 for details.
DS11974 - Rev 4
page 39/59
STGAP1BS
Register and flag descriptions
Table 32. SENSE threshold
SENSEth [2 ... 0]
SENSE threshold value [mV]
0
0
0
100
0
0
1
125
0
1
0
150
0
1
1
175
1
0
0
200
1
0
1
250
1
1
0
300
1
1
1
400
The DESATcurr parameter sets the current sourced by the DESAT pin according to Table 33 and the DESATth
parameter sets the DESAT comparator threshold according to Table 34. Refer to Section 7.6 for details.
Table 33. DESAT current
DESATcur [1 ... 0]
DESAT current value [μA]
0
0
250
0
1
500
1
0
750
1
1
1000
Table 34. DESAT threshold
DESATth [2 ... 0]
9.2.3
DESAT threshold value [V]
0
0
0
3
0
0
1
4
0
1
0
5
0
1
1
6
1
0
0
7
1
0
1
8
1
1
0
9
1
1
1
10
CFG3 register (isolated side)
The CFG3 register has the structure of Table 35.
Table 35. CFG3 register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
-
2LTOth
2LTOtime
Default/reset
0000
0000
Bit 0
The 2LTOth parameter sets the voltage value which is actively forced during the 2-level turn- off sequence (refer
to Section 7.10 for details).
DS11974 - Rev 4
page 40/59
STGAP1BS
Register and flag descriptions
Table 36. 2LTOth
2LTOth [3 ... 0]
2LTO threshold value [V]
0
0
0
0
7.00
0
0
0
1
7.50
0
0
1
0
8.00
0
0
1
1
8.50
0
1
0
0
9.00
0
1
0
1
9.50
0
1
1
0
10.00
0
1
1
1
10.50
1
0
0
0
11.00
1
0
0
1
11.50
1
0
1
0
12.00
1
0
1
1
12.50
1
1
0
0
13.00
1
1
0
1
13.50
1
1
1
0
14.00
1
1
1
1
14.50
The 2LTOtime parameter sets the duration of the 2-level turn-off sequence (refer to Section 7.10 for details). If
the 2LTOtime is set to zero, the 2-level turn-off feature is disabled.
Table 37. 2-level turn-off time value
2LTOtime [3 ... 0]
9.2.4
2-level turn-off time value [μs]
0
0
0
0
Disabled
0
0
0
1
0.75
0
0
1
0
1.00
0
0
1
1
1.50
0
1
0
0
2.00
0
1
0
1
2.50
0
1
1
0
3.00
0
1
1
1
3.50
1
0
0
0
3.75
1
0
0
1
4.00
1
0
1
0
4.25
1
0
1
1
4.50
1
1
0
0
4.75
1
1
0
1
5.00
1
1
1
0
5.25
1
1
1
1
5.50
CFG4 register (isolated side)
The CFG4 register has the structure of Table 38.
DS11974 - Rev 4
page 41/59
STGAP1BS
Register and flag descriptions
Table 38. CFG4 register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
OVLO_EN
UVLOlatch
VLONth
VHONth
Default/reset
-
-
0
0
00
00
The OVLO_EN bit enables the OVLO protection on the VH and VL power supply according to Table 39.
Table 39. VH and VL supply voltages OVLO enable
OVLO_EN
OVLO supply voltage enable
0
Disabled
1
Enabled
The UVLOlatch bit sets if the UVLO is latched or not (refer to Section 7.4 for details).
Table 40. UVLO protection management
UVLOlatch
UVLO protection management
0
UVLO protection is not latched
1
UVLO protection is latched
The VLONth bits set the UVLO threshold on the negative power supply according to Table 41.
Setting the parameter to zero disables the UVLO protection of the VL supply.
Table 41. VL negative supply voltage UVLO threshold
VLONth [1 ... 0]
Negative supply voltage UVLO threshold [V]
0
0
Disabled
0
1
-3
1
0
-5
1
1
-7
The VHONth bits set the UVLO threshold on the positive power supply according to Table 42.
Setting the parameter to zero disables the UVLO protection of the VH supply.
Table 42. VH positive supply voltage UVLO threshold
VHONth [1 ... 0]
9.2.5
Positive supply voltage UVLO threshold [V]
0
0
Disabled
0
1
10
1
0
12
1
1
14
CFG5 register (isolated side)
The CFG5 register has the structure of Table 43.
DS11974 - Rev 4
page 42/59
STGAP1BS
Register and flag descriptions
Table 43. CFG5 register
-
Bit 7
Bit 6
-
-
-
Default/reset
-
-
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
2LTO_EN
CLAMP_EN
DESAT_EN
SENSE_EN
-
-
0
1
1
0
The 2LTO_EN bit sets when the feature takes place according to Table 44. Refer to Section 7.10 for details.
Table 44. 2LTO mode
2LTO_EN
2LTO mode
0
2LTO always active
1
2LTO active only after a fault event
The 2LTOth bit sets the 2-level turn-off threshold according to Table 36 and the 2-level turn-off time according to
Table 37.
The SENSE_EN bit sets if the sense overcurrent function is enabled or not (refer to Section 7.8 for details).
Table 45. SENSE comparator enabling
SENSE_EN
SENSE comparator status
0
SENSE comparator disabled
1
SENSE comparator enabled
The DESAT_EN bit sets if the desaturation protection is enabled or not (refer to Section 7.6 Section 7.6 for
details).
Table 46. DESAT comparator enabling
DESAT_EN
DESAT comparator status
0
DESAT comparator disabled
1
DESAT comparator enabled
Set the CLAMP_EN bit to enable the Miller clamp feature (refer to Section 7.9
for details).
Table 47. Miller clamp feature enabling
9.2.6
CLAMP_EN
Miller clamp feature status
0
Miller clamp feature disabled
1
Miller clamp feature enabled
STATUS1 register (low voltage side)
The STATUS1 is a read only register that reports some device failure flags.
All flags are active high (the high value indicates a failure condition). The STATUS1 register has the structure of
Table 48.
DS11974 - Rev 4
page 43/59
STGAP1BS
Register and flag descriptions
Table 48. STATUS1 register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
OVLOH
OVLOL
DESAT
SENSE
UVLOH
UVLOL
TSD
TWN
Default(1)
0
0
0
0
1
0
0
0
Reset
0
0
0
0
0
0
0
0
1. Default value of the local copy of the register. The value will be updated according to the actual information from the isolated
side. The default is forced at the device power-up, when the registers are reset all the flags are forced low (no failures).
A description of the STATUS1 register bits is provided in Table 49.
Table 49. STATUS1 register description
Name
Bit
OVLOH
7
OVLOL
6
DESAT
5
SENSE
4
Fault
VH overvoltage flag.
It is forced high when VH is over OVVHoff threshold.
VL overvoltage flag.
It is forced high when VL is over OVVLoff threshold.
Latched
Force
“safe
state”
Note
Always
Yes
-
Always
Yes
-
Always
Yes
-
Always
Yes
-
Desaturation flag.
It is forced high when DESAT pin voltage reaches
VDESATth threshold.
Sense flag.
UVLOH
3
UVLOL
2
TSD
1
TWN
0
It is forced high when SENSE pin voltage reaches
VSENSEth threshold.
VH undervoltage flag.
It is forced high when VH is below VHoff threshold.
VL undervoltage flag.
It is forced high when VL is over VLoff threshold.
Yes
If not latched
(UVLOlatch low)
UVLOH returns low
when VH is over VHon
threshold.
When
UVLOlatchis high
only
Yes
If not latched
(UVLOlatch low)
UVLOL returns low
when VL is below VLon
threshold.
No (hysteresis)
Yes
-
No (hysteresis)
No
-
When UVLOlatch
is high only
Thermal shutdown protection flag.
It is forced high when overtemperature shutdown
threshold is reached.
Thermal warning flag.
9.2.7
It is forced high when overtemperature shutdown
threshold is reached.
STATUS2 register (low voltage side)
The STATUS2 is a read only register. The STATUS2 register has the structure of Table 50.
Table 50. STATUS2 register
DS11974 - Rev 4
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
-
-
REGERRR
ASC
GATE
Default(1)
x
x
x
x
x
1
0
0
page 44/59
STGAP1BS
Register and flag descriptions
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
x
x
x
x
x
0
0
0
1. Default value of the local copy of the register. The value will be updated according to the actual information from the isolated
side. The default is forced at the device power-up, when the registers are reset all the flags are forced low (no failures).
A description of the STATUS2 register bits is provided in Table 51.
Table 51. STATUS2 register description
Name
Bit
Fault
Latched
Force
“safe
state”
Note
Always
Yes
-
No
No
See details in
Section 7.12
No
No
This bit is not indicated
for real-time feedback
of external gate status
(Section 7.14 )
Register or communication error on isolated side. It is forced
high when:
REGERRR
2
•
Programming procedure is not correctly performed.
•
Isolated interface communication fails.
•
An unexpected register value change occurs in one of
the remote registers.
It is also latched at power-up/reset and from Sleep state.
ASC
1
GATE
0
ASC pin status.
When ASC pin is high, the flag reports '1', otherwise it is '0'.
Gate command flag.
9.2.8
Flag is '1' when the requested output status from logic inputs
is “ON” and '0' when requested output status is “OFF”.
STATUS3 register (low voltage side)
The STATUS3 is a read only register. The STATUS3 register has the structure of Table 52.
Table 52. STATUS3 register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
DT_ERR
SPI_ERR
REGERRL
OVLOD
UVLOD
Default(1)
x
x
x
0
0
1
0
1
Reset
x
x
x
0
0
0
0
0
1. The default is forced at the device power-up, when the registers are reset all the flags are forced low (no failures).
A description of the STATUS3 register bits is provided in Table 53.
Table 53. STATUS3 register description
DS11974 - Rev 4
Name
Bit
DT_ERR
4
SPI_ERR
3
Fault
Deadtime error flag.
This bit is forced high when a violation of internal DT is detected.
SPI communication error flag.
Latched
Force
“safe
state”
Always
No
Always
No
Note
See details in
Section 7.2
-
page 45/59
STGAP1BS
Register and flag descriptions
Name
Bit
Fault
Latched
Force
“safe
state”
Note
Always
Yes
-
Always
Yes
-
Always
Yes
-
It is forced high when the SPI communication fails cause:
•
Wrong CRC check.
•
Wrong number of CK rising edges.
•
Attempt to execute a not-allowed command.
•
Attempt to read, write or reset at a not- available address.
Register or communication error on low voltage side.
It is forced high when:
REGERRL
2
•
Programming procedure is not correctly performed.
•
Isolated interface communication fails.
•
An unexpected register value change occurs in one of the
remote registers.
It is latched at power-up/reset also.
OVLOD
1
VDD overvoltage flag.
It is forced high when VDD is over OVVDDoff threshold.
VDD undervoltage flag.
UVLOD
0
It is forced high when VDD is below VDDon threshold.
It is latched at power-up/reset as well.
9.2.9
TEST1 register (isolated side)
The TEST1 register has the structure of Table 54.
Table 54. TEST1 register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
GOFFCHK
GONCHK
DESCHK
SNSCHK
RCHK
Default/reset
x
x
x
0
0
0
0
0
Setting an one check bit of the register enables the respective check mode.
Table 55. Check mode
9.2.10
Bit
Check mode
RCHK
SENSE resistor
SNSCHK
SENSE comparator
DESCHK
DESAT comparator
GONCHK
GON to gate path
GOFFCHK
GOFF to gate path
DIAG1CFG and DIAG2CFG registers (low voltage side)
The DIAG1CFG register has the structure of Table 56.
Table 56. DIAG1CFG register
DS11974 - Rev 4
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
DIAG1_7
DIAG1_6
DIAG1_5
DIAG1_4
DIAG1_3
DIAG1_2
DIAG1_1
DIAG1_0
page 46/59
STGAP1BS
Register and flag descriptions
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Default/reset
1
1
0
1
1
0
1
0
The DIAG2CFG register has the structure of Table 57.
Table 57. DIAG2CFG register
-
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
DIAG2_7
DIAG2_6
DIAG2_5
DIAG2_4
DIAG2_3
DIAG2_2
DIAG2_1
DIAG2_0
Default/reset
0
0
0
0
0
0
0
0
If a bit in the DIAG1CFG register is high, the corresponding fault events turn on the open drain connected to the
DIAG1 pin forcing the output low.
If a bit in the DIAG2CFG register is high and the DIAG_EN bit is high, the corresponding fault events turn on the
open drain connected to the DIAG2 pin forcing the output low.
The relationship between the DIAG1CFG and DIAG2CFG register bits and failure events is described in Table 58.
Table 58. Relation between DIAGxCFG bits and failure conditions
DIAGxCFG bit
DS11974 - Rev 4
Failure
Status registers bit
0
Thermal warning
TWN
1
Thermal shutdown
TSD
2
ASC feedback
ASC, DT_ERR
3
Desaturation and sense detection
DESAT, SENSE
4
Overvoltage failure
OVLOH, OVLOL
5
Undervoltage failure
UVLOH, UVLOL
6
VDD power supply failure
UVLOD, OVLOD
7
SPI communication error or register failure
SPI_ERR, REGERRL, REGERRR
page 47/59
DS11974 - Rev 4
P5V
μC
SDI
SDO
CK
CS
GND
GND
SD
IN+
IN-/DIAG2
DIAG1
SDI
SDO
CK
CS
GND
GND
SD
IN+
IN-/DIAG2
DIAG1
VREG
VDD
P5V
P5V
P5V
P5V
P5V
VREG
SPI
Control
Logic
3V3
Voltage Reg
SPI
Control
Logic
3V3
Voltage Reg
I
S
O
L
A
T
I
O
N
I
S
O
L
A
T
I
O
N
Floating
Section
Control
Logic
Floating ground
UVLO
VL
UVLO
VH
Floating
Section
Control
Logic
Floating ground
UVLO
VL
UVLO
VH
Level
Shifter
Level
Shifter
+
+
+
+
+
+
+
+
SENSEth
CLAMPth
2LVTOth
DESATth
DESATcurr
SENSEth
CLAMPth
2LVTOth
DESATth
DESATcurr
SENSE
GNDISO
VL
CLAMP
GOFF
GON
VH
VREGISO
DESAT
SENSE
GNDISO
VL
CLAMP
GOFF
GON
VH
VREGISO
DESAT
VL_LS
1k
VL_HS
1k
GND_LS
VH_LS
GND_HS
VH_HS
GND_PWR
Load_Phase
HV_BUS
10
VDD
P5V
Typical application diagram
STGAP1BS
Typical application diagram
Figure 27. Typical application diagram in half-bridge configuration
Refer to Figure 13 in the dedicated Section 7.7 for the connection of the VCECLAMP pin.
page 48/59
STGAP1BS
Package information
11
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
11.1
SO24W package information
Figure 28. SO24W package outline
D
hx45°
A
C
A1
B
PIN 1
IDENTIFIER
1
12
SEATING
PLANE
H
13
E
24
k
L
e
Table 59. SO24W package mechanical data
Symbol
Dimensions (mm)
Notes
Min.
Typ.
Max.
A
2.35
-
2.65
-
A1
0.10
-
0.30
-
B
0.33
-
0.51
-
C
0.23
-
0.32
-
D
15.20
-
15.60
(1)
E
7.40
-
7.60
-
e
-
1.27
-
-
H
10.00
-
10.65
-
h
0.25
-
0.75
-
L
0.40
-
1.27
-
K
0
-
8
Degrees
ddd
-
-
0.10
-
1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side.
DS11974 - Rev 4
page 49/59
STGAP1BS
SO24W package information
Figure 29. SO24W suggested land pattern
DS11974 - Rev 4
page 50/59
STGAP1BS
Ordering information
12
Ordering information
Table 60. Device summary
DS11974 - Rev 4
Order code
Package
Packing
STGAP1BS
SO24W
Tube
STGAP1BSTR
SO24W
Tape and reel
page 51/59
STGAP1BS
Revision history
Table 61. Document revision history
DS11974 - Rev 4
Date
Version
06-Oct-2021
4
Changes
Cover package updated
page 52/59
STGAP1BS
Contents
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
3
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
4
3.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5
Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
6
Logic supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
7
6.1
Low voltage section voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2
High voltage section voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3
Power-up, power-down and “safe state”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.4
Standby function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
7.1
Inputs and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2
Deadtime and interlocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.3
Hardware RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4
Power supply UVLO and OVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.5
Thermal warning and shutdown protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.6
Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.7
VCE active clamping protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.8
SENSE overcurrent protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.9
Miller clamp function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.10
2-level turn-off function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DS11974 - Rev 4
7.10.1
2-level turn-off function - Always . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.10.2
2-level turn-off function - Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.10.3
2-level turn-off function - Never . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
page 53/59
STGAP1BS
Contents
7.11
Failure management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.12
Asynchronous stop command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.13
Watchdog and echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.14
Security check functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.15
8
Logic inputs to isolated driver path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.14.2
GON to gate path check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.14.3
GOFF to gate path check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.14.4
SENSE comparator check. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.14.5
SENSE resistor check. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.14.6
DESAT comparator check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Register corruption protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SPI interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
8.1
9
7.14.1
CRC protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
9.1
9.2
DS11974 - Rev 4
SPI commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1.1
StartConfig and StopConfig commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1.2
WriteReg command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.1.3
ReadReg command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.1.4
ResetStatus and GlobalReset commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.1.5
Sleep command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1.6
NOP command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Register and flag descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2.1
CFG1 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.2
CFG2 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2.3
CFG3 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2.4
CFG4 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2.5
CFG5 register (isolated side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2.6
STATUS1 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2.7
STATUS2 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.2.8
STATUS3 register (low voltage side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2.9
TEST1 register (isolated side). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2.10
DIAG1CFG and DIAG2CFG registers (low voltage side). . . . . . . . . . . . . . . . . . . . . . . . . . 46
page 54/59
STGAP1BS
Contents
10
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
11
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
11.1
12
SO24W package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
DS11974 - Rev 4
page 55/59
STGAP1BS
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
DS11974 - Rev 4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low voltage section 3.3 V voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High voltage section 3.3 V voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HW cross conduction prevention in half-bridge configuration with two single gate drivers . . .
Transitions causing the DT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synchronous control signal edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control edges signal overlapped, example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control edges signal overlapped, example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control edges signal not overlapped and outside DT (direct control) . . . . . . . . . . . . . . . . .
Example of desaturation protection connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DESAT protection timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example of VCE active clamping protection connection . . . . . . . . . . . . . . . . . . . . . . . . . .
VCECLAMP timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example of SENSE overcurrent protection connection . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example of short turn-on pulses when 2LTO occurs at each cycle . . . . . . . . . . . . . . . . . . .
Example of short turn-off pulse when 2LTO occurs at each cycle. . . . . . . . . . . . . . . . . . . .
Example of operation with 2LTO in “Fault” mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate paths check circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE comparator and resistor check circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DESAT comparator check circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI daisy chain connection example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI daisy chain connection example when bootstrap technique is used for high-side drivers.
Block diagram of the CRC generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STGAP1BS recommended configuration flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical application diagram in half-bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . .
SO24W package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO24W suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
14
15
17
17
18
18
18
18
20
21
22
22
23
24
24
25
28
29
30
31
32
32
33
35
48
49
50
page 56/59
STGAP1BS
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Pin description. . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . .
Thermal data. . . . . . . . . . . . . . . . . . . . . . .
Recommended operating conditions. . . . . . .
AC operation electrical characteristics . . . . .
DC operation electrical characteristics . . . . .
Isolation and safety-related specifications . . .
IEC 60747-5-2 isolation characteristics . . . . .
UL 1577 isolation voltage ratings . . . . . . . . .
Inputs true table (device NOT in “safe state”) .
CRC byte examples (from host to device) . . .
CRC byte examples (from device to host) . . .
SPI commands . . . . . . . . . . . . . . . . . . . . .
StartConfig command synopsis . . . . . . . . . .
StopConfig command synopsis . . . . . . . . . .
WriteReg command synopsis . . . . . . . . . . .
ReadReg command synopsis . . . . . . . . . . .
ResetStatus command synopsis . . . . . . . . .
GlobalReset command synopsis . . . . . . . . .
Sleep command synopsis . . . . . . . . . . . . . .
NOP command synopsis. . . . . . . . . . . . . . .
Register map. . . . . . . . . . . . . . . . . . . . . . .
Registers access . . . . . . . . . . . . . . . . . . . .
CFG1 register . . . . . . . . . . . . . . . . . . . . . .
CRC enable . . . . . . . . . . . . . . . . . . . . . . .
VDD supply voltage UVLO enable . . . . . . . .
SD pin FAULT management . . . . . . . . . . . .
IN-/DIAG2 pin functionality . . . . . . . . . . . . .
Deadtime . . . . . . . . . . . . . . . . . . . . . . . . .
Input deglitch time . . . . . . . . . . . . . . . . . . .
CFG2 register . . . . . . . . . . . . . . . . . . . . . .
SENSE threshold. . . . . . . . . . . . . . . . . . . .
DESAT current . . . . . . . . . . . . . . . . . . . . .
DESAT threshold . . . . . . . . . . . . . . . . . . . .
CFG3 register . . . . . . . . . . . . . . . . . . . . . .
2LTOth . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-level turn-off time value . . . . . . . . . . . . . .
CFG4 register . . . . . . . . . . . . . . . . . . . . . .
VH and VL supply voltages OVLO enable . . .
UVLO protection management. . . . . . . . . . .
VL negative supply voltage UVLO threshold .
VH positive supply voltage UVLO threshold. .
CFG5 register . . . . . . . . . . . . . . . . . . . . . .
2LTO mode . . . . . . . . . . . . . . . . . . . . . . . .
SENSE comparator enabling . . . . . . . . . . . .
DESAT comparator enabling . . . . . . . . . . . .
Miller clamp feature enabling . . . . . . . . . . . .
STATUS1 register . . . . . . . . . . . . . . . . . . .
STATUS1 register description . . . . . . . . . . .
STATUS2 register . . . . . . . . . . . . . . . . . . .
STATUS2 register description . . . . . . . . . . .
STATUS3 register . . . . . . . . . . . . . . . . . . .
DS11974 - Rev 4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
. 5
. 5
. 6
. 7
. 7
13
13
13
16
33
33
34
34
34
35
36
36
36
37
37
37
38
38
38
38
39
39
39
39
39
40
40
40
40
41
41
42
42
42
42
42
43
43
43
43
43
44
44
44
45
45
page 57/59
STGAP1BS
List of tables
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
STATUS3 register description . . . . . . . . . . . . . . . . . . .
TEST1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Check mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIAG1CFG register . . . . . . . . . . . . . . . . . . . . . . . . . .
DIAG2CFG register . . . . . . . . . . . . . . . . . . . . . . . . . .
Relation between DIAGxCFG bits and failure conditions .
SO24W package mechanical data . . . . . . . . . . . . . . . .
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . . . .
DS11974 - Rev 4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
45
46
46
46
47
47
49
51
52
page 58/59
STGAP1BS
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS11974 - Rev 4
page 59/59