STGAP2S
Datasheet
Galvanically isolated 4 A single gate driver
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
High voltage rail up to 1700 V
Driver current capability: 4 A sink/source @25°C
dV/dt transient immunity ±100 V/ns in full temperature range
Overall input-output propagation delay: 75 ns
Separate sink and source option for easy gate driving configuration
4 A Miller CLAMP dedicated pin option
UVLO function
Gate driving voltage up to 26 V
3.3 V, 5 V TTL/CMOS inputs with hysteresis
Temperature shut-down protection
Standby function
Narrow body SO8
UL 1577 recognized
Application
Product status link
STGAP2S
Product label
•
•
•
•
•
•
•
•
•
Motor driver for home appliances, factory automation, industrial drives and fans.
600/1200 V inverters
Battery chargers
Induction heating
Welding
UPS
Power supply units
DC-DC converters
Power Factor Correction
Description
The STGAP2S is a single gate driver which provides galvanic isolation between the
gate driving channel and the low voltage control and interface circuitry.
The gate driver is characterized by 4 A capability and rail-to-rail outputs, making the
device also suitable for mid and high power applications such as power conversion
and motor driver inverters in industrial applications. The device is available in
two different configurations. The configuration with separated output pins allows
to independently optimize turn-on and turn-off by using dedicated gate resistors.
The configuration featuring single output pin and Miller CLAMP function prevents
gate spikes during fast commutations in half-bridge topologies. Both configurations
provide high flexibility and bill of material reduction for external components.
The device integrates UVLO and thermal shutdown protection functions to facilitate
the design of highly reliable systems. Dual input pins allow the selection of signal
polarity control and implementation of HW interlocking protection to avoid crossconduction in case of controller malfunction. The input to output propagation delay
is less than 75 ns, which delivers high PWM control accuracy. A standby mode is
available to reduce idle power consumption.
DS12541 - Rev 3 - July 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
STGAP2S
Block diagram
1
Block diagram
Figure 1. Block diagram - separated outputs option
VH
VDD
IN+
IN-
Control
Logic
I
S
O
L
A
T
I
O
N
GND
UVLO
VH
Floating
Section
Control
Logic
Level
Shifter
GON
GOFF
GNDISO
Floating ground
Figure 2. Block diagram - single output and Miller clamp option
VH
VDD
IN+
IN-
GND
DS12541 - Rev 3
Control
Logic
I
S
O
L
A
T
I
O
N
UVLO
VH
Floating
Section
Control
Logic
Level
Shifter
GOUT
CLAMP
GNDISO
Floating ground A
+
VCLAMPth
page 2/23
STGAP2S
Pin description and connection diagram
2
Pin description and connection diagram
Figure 3. Pin connection (top view), separated outputs option
VDD
1
8
GNDISO
IN+
2
7
GOFF
IN-
3
6
GON
GND
4
5
VH
Figure 4. Pin connection (top view), single output and Miller clamp option
VDD
1
8
GNDISO
IN+
2
7
CLAMP
IN-
3
6
GOUT
GND
4
5
VH
Table 1. Pin description
Pin no.
DS12541 - Rev 3
Pin name
Type
1
VDD
Power supply
2
2
IN+
Logic input
Driver logic input, active high.
3
3
IN-
Logic input
Driver logic input, active low
4
4
GND
Power supply
Driver logic ground.
5
5
VH
Power supply
Gate driving positive voltage supply.
-
6
GOUT
Analog output
Sink/source output.
-
7
CLAMP
Analog output
Active Miller clamp.
6
-
GON
Analog output
Source output.
7
-
GOFF
Analog output
Sink output.
8
8
GNDISO
Power supply
Gate driving Isolated ground.
Figure 3
Figure 4
1
Function
Driver logic supply voltage.
page 3/23
STGAP2S
Electrical data
3
Electrical data
3.1
Absolute maximum ratings
Table 2. Absolute maximum ratings
Test condition
Min.
Max.
Uni
t
Logic supply voltage vs. GND
-
-0.3
6.5
V
Logic pins voltage vs. GND
-
-0.3
6.5
V
Positive supply voltage (VH vs. GNDISO)
-
-0.3
28
V
Voltage ongate driver outputs (GON, GOFF, CLAMP vs. GNDISO)
-
- 0.3
VH +0.3
V
DC or peak
-1700
+1700
V
Symbol
VDD
VLOGIC
VH
VOUT
VISO-OP
3.2
Parameter
Input to output isolation voltage (GND vs. GNDISO)
TJ
Junction temperature
-
-40
150
°C
TS
Storage temperature
-
-50
150
°C
PDin
Power dissipation input chip
TA = 25 °C
-
21
mW
PDout
Power dissipation output chip
TA = 25 °C
-
850
mW
ESD
HBM (human body model)
-
2
kV
Thermal data
Table 3. Thermal data
Symbol
Rth(JA)
3.3
Parameter
Thermal resistance junction to ambient
Package
Value
Unit
SO-8
123
°C/W
Recommended operating conditions
Table 4. Recommended operating conditions
Symbol
Parameter
Test conditions
Min.
Max.
Unit
VDD
Logic supply voltage vs. GND
-
3.1
5.5
V
VLOGIC
Logic pins voltage vs. GND
-
0
5.5
V
VH
Positive supply voltage (VH vs. GNDISO)
-
9.6
26
V
FSW
Maximum switching frequency(1)
-
-
1
MHz
tOUT
Output pulse width (GOUT, GON-GOFF)
-
100
-
ns
TJ
Operating junction temperature
-
-40
125
°C
1. Actual limit depends on power dissipation and TJ.
DS12541 - Rev 3
page 4/23
STGAP2S
Electrical characteristics
4
Electrical characteristics
Table 5. Electrical characteristics
(TJ = 25 °C, VH = 15 V, VDD = 5 V, unless otherwise specified)
Symbol
Pin
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Dynamic characteristics
tDon
IN+, IN-
Input to output propagation
delay ON
-
50
75
90
ns
tDoff
IN+, IN-
Input to output propagation
delay OFF
-
50
75
90
ns
tr
-
Rise time
CL =4.7 nF, 10% ÷ 90%
-
30
-
ns
tf
-
Fall time
CL =4.7 nF, 90% ÷ 10%
-
30
-
ns
PWD
-
Pulse width distortion
|tDon -tDoff|
-
-
-
20
ns
Inputs deglitch filter
-
-
20
40
ns
VCM = 1500 V, see
Figure 13
100
-
-
V/ns
tdeglitch
IN+, IN-
CMTI(1)
-
Common-mode transient
immunity,
|dVISO/dt|
VHon
-
VH UVLO turn-on threshold
-
8.6
9.1
9.6
V
VHoff
-
VH UVLO turn-off threshold
-
7.9
8.4
8.9
V
VHhyst
-
VH UVLO hysteresis
-
0.60
0.75
0.95
V
IQHU
-
VH undervoltage quiescent
supply current
VH =7 V
-
1.3
1.8
mA
IQH
-
VH quiescent supply current
-
-
1.3
1.8
mA
IQHSBY
-
Standby VH quiescent supply
current
Standby mode
-
400
550
µA
SafeClp
-
GOFF active clamp
IGOFF =0.2 A;
VH floating
-
2
2.3
V
IQDD
-
VDD quiescent supply current
-
-
1
1.3
mA
IQDDSBY
-
Standby VDD quiescent
supply current
Standby mode
-
40
65
µA
Vil
IN+, IN-
Low level logic threshold
voltage
-
0.29 ·VDD 1/3 · VDD 0.37 · VDD
V
Vih
IN+, IN-
High level logic threshold
voltage
-
0.62 ·VDD 2/3 · VDD 0.70 · VDD
V
IINh
IN+, IN-
INx logic “1” input bias current
INx = 5 V
IINl
IN+, IN-
INx logic “0” input bias current
INx = GND
Rpd
IN+, IN-
Inputs pull-down resistors
Supply voltage
Logic inputs
33
50
77
µA
-
-
1
µA
INx = 5 V
65
100
150
kΩ
TJ =25 °C
-
4
-
TJ =-40 ÷ +125 °C(1)
3
-
5
VH -0.15
VH -0.125
-
Driver buffer section
DS12541 - Rev 3
IGON
-
Source short-circuit current
VGONH
-
Source output high level
voltage
IGON =100 mA
A
V
page 5/23
STGAP2S
Electrical characteristics
Symbol
Pin
Parameter
Test conditions
Min.
Typ.
Max.
Unit
IGON =100 mA
-
1.125
1.5
Ω
TJ =25 °C
-
4
-
TJ =-40 ÷ +125 °C(1)
3
-
5
RGON
-
Source RDS_ON
IGOFF
-
Sink short-circuit current
VGOFFL
-
Sink output low level voltage
IGOFF =100 mA
-
96
120
mV
RGOFF
-
Sink RDS_ON
IGOFF =100 mA
-
0.96
1.2
Ω
1.3
2
2.6
V
A
A
Miller Clampfunction (STGAP2SC only)
VCLAMPth
-
ICLAMP
-
CLAMP voltage threshold
VCLAMP vs. GNDISO
CLAMP short-circuit current
VCLAMP =15 V
TJ =25 °C
-
4
-
TJ =-40 ÷ +125 °C(1)
2
-
5
-
VCLAMP_L
-
CLAMP low level output
voltage
ICLAMP =100 mA
-
96
115
mV
RCLAMP
-
CLAMP RDS_ON
ICLAMP =100 mA
-
0.96
1.15
Ω
Overtemperature protection
TSD
-
Shutdown temperature
-
170
-
-
°C
Thys
-
Temperature hysteresis
-
-
20
-
°C
tSTBY
-
Standby time
See Section 5.3
200
280
500
µs
tWUP
-
Wake-up time
See Section 5.3
10
20
35
µs
tawake
-
Wake-up delay
See Section 5.3
90
140
200
µs
tstbyfilt
-
Standby filter
See Section 5.3
200
280
800
ns
Standby
1. Characterization data, not tested in production.
Table 6. Isolation related package specifications
Parameter
Clearance
(Minimum External Air Gap )
Creepage (*)
(Minimum External Tracking)
Comparative Tracking Index
(Tracking Resistance)
Isolation Group
DS12541 - Rev 3
Symbol
Value
Unit
CLR
4
mm
Measured from input terminals to output terminals,
shortest distance through air
CPG
4
mm
Measured from input terminals to output terminals,
shortest distance path along body
CTI
≥ 400
V
II
Conditions
DIN IEC 112/VDE 0303 Part 1
Material Group (DIN VDE 0110, 1/89, Table 1)
page 6/23
STGAP2S
Electrical characteristics
Table 7. Isolation characteristics
Parameter
Symbol
Test conditions
Characteristic
Unit
2720
VPEAK
3200
VPEAK
Method a, Type test
VPR = 2720, tm = 10 s
Input to Output test voltage
VPR
In accordance with VDE 0884-11
Partial discharge < 5 pC
Method b1, 100 % Production test
VPR = 3200, tm = 1 s
Partial discharge < 5 pC
Transient Overvoltage
(Highest Allowable Overvoltage)
Maximum Surge Test Voltage
VIOTM
tini = 60 s, Type test
4800
VPEAK
VIOSM
Type test
4800
VPEAK
VIO = 500 V, Type test
>109
Ω
RIO
Isolation Resistance
Table 8. UL 1577 isolation voltage ratings
Description
Isolation Withstand Voltage, 1 min (Type test)
Isolation Voltage, 1 sec (100% production)
Symbol
Characteristic
Unit
VISO
2828/4000
Vrms/ PEAK
VISOtest
3394/4800
Vrms/ PEAK
Recognized under the UL 1577 Component Recognition Program - file number E362869.
DS12541 - Rev 3
page 7/23
STGAP2S
Functional description
5
Functional description
5.1
Gate driving power supply and UVLO
The STGAP2S is a flexible and compact gate driver with 4 A output current and rail-to-rail outputs. The device
allows implementation of either unipolar or bipolar gate driving.
Figure 5. Power supply configuration for unipolar and bipolar gate driving
Unipolar gate driving
VDD
Bipolar gate driving
VDD
VDD
VDD
1uF
100nF
1uF
VH
IN+
IN-
GND
I
S
O
L
A
T
I
O
N
100nF
1uF
+
VH
100nF
VH
IN+
GON
GOFF
GNDISO
IN-
GND
I
S
O
L
A
T
I
O
N
100nF
1uF
+
VH
GON
GOFF
1uF
+
VL
GNDISO
Undervoltage protection is available on VH supply pin. A fixed hysteresis sets the turn-off threshold, thus avoiding
intermittent operation.
When VH voltage goes below the VHoff threshold, the output buffer goes in “safe state”. When VH voltage
reaches the VHon threshold, the device returns to normal operation and sets the output according to actual input
pins status.
The VDD and VH supply pins must be properly filtered with local bypass capacitors. The use of capacitors with
different values in parallel provides both local storage for impulsive current supply and high-frequency filtering.
The best filtering is obtained by using low-ESR SMT ceramic capacitors, which are therefore recommended. A
100 nF ceramic capacitor must be placed as close as possible to each supply pin, and a second bypass capacitor
with value in the range between 1 µF and 10 µF should be placed close to it.
5.2
Power up, power down and 'safe state'
The following conditions define the “safe state”:
•
GOFF = ON state
•
GON = high impedance
•
CLAMP = ON state (for STGAP2SC)
Such conditions are maintained at power up of the isolated side (VH < VHon) and during whole device power
down phase (VH < VHoff), regardless of the value of the input pins.
The device integrates a structure which clamps the driver output to a voltage not higher than SafeClp when VH
voltage is not high enough to actively turn the internal GOFF MOSFET on. If VH positive supply pin is floating or
not supplied the GOFF pin is therefore clamped to a voltage smaller than SafeClp.
If the supply voltage VDD of the control section of the device is not supplied, the output is put in safestate, and
remains in such condition until the VDD voltage returns within operative conditions.
After power-up of both isolated and low voltage side the device output state depends on the input pins' status.
DS12541 - Rev 3
page 8/23
STGAP2S
Control inputs
5.3
Control inputs
The device is controlled through the IN+ and IN- logic inputs, in accordance to the truth table
described in Table 9.
Table 9. Inputs truth table (applicable when device is not in UVLO or “safe state”)
Input pins
Output pins
IN+
IN-
GON
GOFF
L
L
OFF
ON
H
L
ON
OFF
L
H
OFF
ON
H
H
OFF
ON
Adeglitch filter allow the input pins to ignore signals with duration shorter than tdeglitch, so preventing noise spikes
possibly present in the application from generating unwanted commutations.
5.4
Miller clamp function
The Miller clamp function allows the control of the Miller current during the power stage switching in half-bridge
configurations. When the external power transistor is in the OFF state, the driver operates to avoid the induced
turn-on phenomenon that may occur when the other switch in the same leg is being turned on, due to the CGD
capacitance.
During the turn-off period the gate of the external switch is monitored through the CLAMP pin. The CLAMP switch
is activated when gate voltage goes below the voltage threshold. VCLAMPth, thus creating a low impedance path
between the switch gate and the GNDISO pin.
5.5
Watchdog
The isolated HV side has a watchdog function in order to identify when it is not able to communicate with LV side,
for example because the VDD of the LV side is not supplied. In this case the output of the driver is forced in “safe
state” until communication link is properly established again.
5.6
Thermal shutdown protection
The device provides a thermal shutdown protection. When junction temperature reaches the TSD temperature
threshold, the device is forced in “safe state”. The device operation is restored as soon as the junction
temperature is lower than TSD - Thys.
DS12541 - Rev 3
page 9/23
STGAP2S
Standby function
5.7
Standby function
Inorder to reduce the power consumption of both control interface and gate driving sides the device can be put in
standby mode. In standby mode the quiescent current from VDD and VH supply pins is reduced to IQDDSBY and
IQHSBY respectively, and the output remains in 'safe state' (the output is actively forced low).
The way to enter standby is to keep both IN+ and IN- high (“standby” value) for a time longer than tSTBY. During
standby the inputs can change from the “stand-by” value.
To exit stand-by, IN+ and IN- must be put in any combination different from the “standby” value for a time longer
than tstbyfilt , and then in the “standby” value for a time t such that tWUP tstbyfilt
t < tWUP
t > tSTBY
duration
too short
duration too long
“stand-by”
“stand-by”
tWUP < t < tSTBY
t = tawake
“stand-by”
Device status
ACTIVE
STAND-BY
ACTIVE
Output
ACTIVE
SAFE-STATE
ACTIVE
page 10/23
STGAP2S
Typical application diagram
6
Typical application diagram
Figure 7. Typical application diagram - separated outputs
VDD
HV_BUS
VDD
VH_HS
UVLO
VDD
IN+
R
C
IN-
VDD
R
Control
Logic
C
GND
HIN
MCU
VH
I
S
O
L
A
T
I
O
N
UVLO
VH
Floating
Section
Control
Logic
Level
Shifter
GON
GOFF
GND_HS
Floating ground
GNDISO
VDD
LIN
Load_ Phase
VDD
VH_LS
VH
UVLO
VDD
IN+
R
C
INR
Control
Logic
C
GND
I
S
O
L
A
T
I
O
N
UVLO
VH
Floating
Section
Control
Logic
Level
Shifter
GON
GOFF
GND_LS
GNDISO
Floating ground
GND_PWR
Figure 8. Typical application diagram - separated outputs and negative gate driving
VDD
HV_BUS
VDD
VH_HS
UVLO
VDD
IN+
R
C
IN-
VDD
R
Control
Logic
C
GND
VH
I
S
O
L
A
T
I
O
N
+
UVLO
VH
VH
Floating
Section
Control
Logic
Level
Shifter
GON
GOFF
VL_HS
Floating ground
GND_HS
GNDISO
VL
HIN
MCU
+
VDD
LIN
Load_ Phase
VDD
VH
VH_LS
UVLO
VDD
IN+
R
C
INR
C
GND
Control
Logic
I
S
O
L
A
T
I
O
N
+
UVLO
VH
VH
Floating
Section
Control
Logic
Level
Shifter
GON
GOFF
VL_LS
Floating ground
GNDISO
VL
DS12541 - Rev 3
+
GND_LS
GND_PWR
page 11/23
STGAP2S
Typical application diagram
Figure 9. Typical application diagram - Miller clamp
VDD
VH_HS
HV_BUS
VDD
VH
IN+
R
C
IN-
VDD
R
Control
Logic
C
I
S
O
L
A
T
I
O
N
GND
UVLO
VH
Floating
Section
Control
Logic
Level
Shifter
GOUT
CLAMP
GND_HS
Floating ground A
GNDISO
+
VCLAMPth
HIN
MCU
VDD
LIN
Load_ Phase
VH_LS
VDD
VH
IN+
R
C
INR
Control
Logic
C
I
S
O
L
A
T
I
O
N
GND
UVLO
VH
Floating
Section
Control
Logic
Level
Shifter
GOUT
CLAMP
GND_LS
Floating ground A
GNDISO
+
GND_PWR
VCLAMPth
Figure 10. Typical application diagram - Miller clamp and negative gate driving
VDD
HV_BUS
VDD
VH_HS
VH
IN+
R
C
IN-
VDD
R
Control
Logic
C
I
S
O
L
A
T
I
O
N
GND
UVLO
VH
+
Floating
Section
Control
Logic
VH
GOUT
Level
Shifter
CLAMP
VL_HS
Floating ground A
GND_HS
GNDISO
+
VCLAMPth
HIN
MCU
VL
+
VDD
LIN
Load_ Phase
VDD
VH_LS
VH
IN+
R
C
INR
C
GND
Control
Logic
I
S
O
L
A
T
I
O
N
UVLO
VH
+
Floating
Section
Control
Logic
Level
Shifter
CLAMP
VL_LS
Floating ground A
GNDISO
+
VCLAMPth
DS12541 - Rev 3
VH
GOUT
VL
+
GND_LS
GND_PWR
page 12/23
STGAP2S
Layout
7
Layout
7.1
Layout guidelines and considerations
Inorder to optimize the PCB layout, following considerations should be taken into account:
•
SMT ceramic capacitors (or different types of low-ESR and low-ESL capacitors) must be placed close to
each supply rail pins. A 100 nF capacitor must be placed between VDD and GND and between VH and
GNDISO, as close as possible to device pins, in order to filter high-frequency noise and spikes. In order to
provide local storage for pulsed current a second capacitor with value in the range between 1 µF and 10 µF
should also be placed close to the supply pins.
•
As a good practice it is suggested to add filtering capacitors close to logic inputs of the device (IN+, IN-), in
particular for fast switching or noisy applications.
•
The power transistors must be placed as close as possible to the gate driver, so to minimize the gate loop
area and inductance that might bring to noise or ringing.
•
To avoid degradation of the isolation between the primary and secondary side of the driver, there should not
be any trace or conductive area below the driver.
•
If the system has multiple layers, it is recommended to connect the VH and GNDISO pins to internal ground
or power planes through multiple vias of adequate size. These vias should be located close to the IC pins to
maximize thermal conductivity.
7.2
Layout example
Anexample of STGAP2SC Half-Bridge PCB layout with main signals highlighted by different colors is shown in
Figure 11 . It is recommended to follow this example for proper positioning and connection of filtering capacitors.
Figure 11. Layer traces and copper
CVH1
RIN
CIN
CVH2
Q1
DBOOT
U1
RON
CG
DOFF
CIN
RIN
CVDD1
G1
ROFF
RBOOT
S1
G2
Q2
ROFF
RIN
CIN
DOFF
CIN
U2
CVH2
TOP
DS12541 - Rev 3
CG
CVH1
RIN
CVDD1
D1
D2
RON
S2
BOTTOM
page 13/23
STGAP2S
Testing and characterization information
8
Testing and characterization information
Figure 12. Timings definition
IN+
50%
50%
IN-
50%
tr
tf
90%
GON-GOFF
50%
tr
90%
10%
10%
t Doff
t Don
tf
90%
90%
10%
10%
t Doff
t Don
Figure 13. CMTI test circuit
VDD
+
VDD
+
S1
VH
IN+
-
IN-
I
S
O
L
A
T
I
O
N
GND
GON
Output V out
monitoring node
+
VH
GOFF
GNDISO
G1
DS12541 - Rev 3
page 14/23
STGAP2S
Package information
9
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
9.1
SO-8 package information
Figure 14. SO-8 package outline
DS12541 - Rev 3
page 15/23
STGAP2S
SO-8 package information
Table 10. SO-8 package mechanical data
Dim.
mm
Min.
Max.
A
1.35
1.75
A1
0.1
0.25
b
0.35
0.49
c
0.19
0.25
D
4.8
5
E1
3.8
3.9
4
E
5.8
6
6.2
e
DS12541 - Rev 3
Typ.
Notes
1.27 BSC
L
0.4
1.25
h
0.25
0.5
Ɵ
0
7
Ɵ1
2
12
aaa
0.25
bbb
0.25
ccc
0.1
page 16/23
STGAP2S
Suggested land pattern
10
Suggested land pattern
Figure 15. SO-8 suggested land pattern
0.6 (x8)
1.27
3.9
6.7
DS12541 - Rev 3
page 17/23
STGAP2S
Ordering information
11
Ordering information
Table 11. Device summary
DS12541 - Rev 3
Order code
Output configuration
Package marking
Package
Packaging
STGAP2SM
GON-GOFF
GAP2S2
SO-8
Tube
STGAP2SMTR
GON-GOFF
GAP2S2
SO-8
Tape and reel
STGAP2SCM
GOUT-CLAMP
GAP2SC2
SO-8
Tube
STGAP2SCMTR
GOUT-CLAMP
GAP2SC2
SO-8
Tape and reel
page 18/23
STGAP2S
Revision history
Table 12. Document revision history
DS12541 - Rev 3
Date
Version
06-Jun-2018
1
16-Jul-2021
2
25-Jul-2022
3
Changes
Initial release.
Updated Table 4, Table 5, Table 10 and Section 7
Added Table 6, Table 7 and Table 8
Updated Section 3.1 Absolute maximum ratings, added UL file certification
page 19/23
STGAP2S
Contents
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Pin description and connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
3.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1
Gate driving power supply and UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2
Power up, power down and 'safe state' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3
Control inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4
Miller clamp function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.5
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.6
Thermal shutdown protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.7
Standby function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
7
Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
7.1
Layout guidelines and considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2
Layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8
Testing and characterization information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
9
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
9.1
[Package name] package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10
Suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
11
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
DS12541 - Rev 3
page 20/23
STGAP2S
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isolation related package specifications . . . . . . . . . . . . . . . . . . . . . . .
Isolation characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UL 1577 isolation voltage ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inputs truth table (applicable when device is not in UVLO or “safe state”)
SO-8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS12541 - Rev 3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
. 4
. 4
. 5
. 6
. 7
. 7
. 9
16
18
19
page 21/23
STGAP2S
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
DS12541 - Rev 3
Block diagram - separated outputs option. . . . . . . . . . . . . . . . . . . . . . .
Block diagram - single output and Miller clamp option . . . . . . . . . . . . . .
Pin connection (top view), separated outputs option . . . . . . . . . . . . . . .
Pin connection (top view), single output and Miller clamp option . . . . . . .
Power supply configuration for unipolar and bipolar gate driving . . . . . . .
Standby state sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical application diagram - separated outputs . . . . . . . . . . . . . . . . . .
Typical application diagram - separated outputs and negative gate driving
Typical application diagram - Miller clamp . . . . . . . . . . . . . . . . . . . . . .
Typical application diagram - Miller clamp and negative gate driving . . . .
Layer traces and copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timings definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CMTI test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO-8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO-8 suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 2
. 3
. 3
. 8
10
11
11
12
12
13
14
14
15
17
page 22/23
STGAP2S
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS12541 - Rev 3
page 23/23