STGIB15CH60TS-LZ
Datasheet
SLLIMM - 2nd series IPM, 3-phase inverter, 20 A, 600 V, short‑circuit rugged IGBT
Features
•
Marking area
SDIP2B-26L type L1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
IPM 20 A, 600 V, 3-phase IGBT inverter bridge including 2 control ICs for gate
driving and freewheeling diodes
3.3 V, 5 V TTL/CMOS inputs with hysteresis
Internal bootstrap diode
Undervoltage lockout of gate drivers
Smart shutdown function
Short-circuit protection
Shutdown input/fault output
Separate open emitter outputs
Built-in temperature sensor
Comparator for fault protection
Short-circuit rugged TFS IGBTs
Very fast, soft recovery diodes
85 kΩ NTC, UL 1434, CA 4 recognized
Fully isolated package
Isolation rating of 1600 Vrms/min
UL recognition: UL 1557, file E81734
Embedded TVS to enhance ESD protection
Applications
Product status link
STGIB15CH60TS-LZ
Product summary
Order code
STGIB15CH60TS-LZ
Marking
GIB15CH60TS-LZ
Package
SDIP2B-26L type L1
Packing
Tube
•
•
•
•
•
•
3-phase inverters for motor drives
Washing machines
Dryer
Pumps
Air conditioners
Sewing machines
Description
This second series of SLLIMM (small low-loss intelligent molded module) provides a
compact, high-performance AC motor drive in a simple, rugged design. It combines
new ST proprietary control ICs (one LS and one HS driver) with an improved shortcircuit rugged trench gate field-stop (TFS) IGBT, making it ideal for motor drives
operating up to 20 kHz in hard-switching circuitries.
DS13301 - Rev 2 - September 2021
For further information contact your local STMicroelectronics sales office.
www.st.com
STGIB15CH60TS-LZ
Internal schematic and pin description
1
Internal schematic and pin description
Figure 1. Internal schematic diagram and pin configuration
NC(1)
(26)T1
VbootU(2)
(25)T2
VbootV(3)
VbootW(4)
(24)P
HinU(5)
(23)U
HinV(6)
HinW(7)
(22)V
VccH(8)
(21)W
GND(9)
H-side
LinU(10)
LinV(11)
LinW(12)
VccL(13)
(20)NU
SD/OD(14)
(19)NV
Cin(15)
GND(16)
TSO(17)
(18)NW
L-side
GADG310320201209GT
DS13301 - Rev 2
page 2/24
STGIB15CH60TS-LZ
Internal schematic and pin description
Table 1. Pin description
Pin
DS13301 - Rev 2
Symbol
Description
1
NC
2
VBOOTu
Bootstrap voltage for U phase
3
VBOOTv
Bootstrap voltage for V phase
4
VBOOTw
Bootstrap voltage for W phase
5
HINu
High-side logic input for U phase
6
HINv
High-side logic input for V phase
7
HINw
High-side logic input for W phase
8
VCCH
High-side low voltage power supply
9
GND
Ground
10
LINu
Low-side logic input for U phase
11
LINv
Low-side logic input for V phase
12
LINw
Low-side logic input for W phase
13
VCCL
Low-side low voltage power supply
14
SD /OD
15
CIN
Comparator input
16
GND
Ground
17
TSO
Temperature sensor output
18
NW
Negative DC input for W phase
19
NV
Negative DC input for V phase
20
NU
Negative DC input for U phase
21
W
W phase output
22
V
V phase output
23
U
U phase output
24
P
Positive DC input
25
T2
NTC thermistor terminal 2
26
T1
NTC thermistor terminal 1
Shutdown logic input (active low) / open-drain (comparator output)
page 3/24
STGIB15CH60TS-LZ
Absolute maximum ratings
2
Absolute maximum ratings
TJ = 25 °C unless otherwise noted.
Table 2. Inverter part
Symbol
Value
Unit
Supply voltage applied between P -NU, -NV, -NW
450
V
Supply voltage (surge) applied between P -NU, -NV, -NW
500
V
Collector-emitter voltage each IGBT
600
V
Continuous collector current each IGBT (TC = 25 °C)
20
Continuous collector current each IGBT (TC = 80 °C)
15
±ICP
Peak collector current each IGBT (less than 1 ms)
40
A
PTOT
Total power dissipation at TC=25 °C each IGBT
81
W
5
μs
VPN
VPN(surge)
VCES
±IC
tscw
Parameter
Short circuit withstand time, VCE = 300 V, TJ = 125 °C, VCC = Vboot = 15 V,
VIN = 0 to 5 V
A
Table 3. Control part
Symbol
Min.
Max.
Unit
Supply voltage applied between VCCH-GND, VCCL-GND
- 0.3
20
V
VBOOT
Bootstrap voltage
- 0.3
619
V
VOUT
Output voltage applied between U, V, W and GND
VBOOT - 21
VBOOT + 0.3
V
VCIN
Comparator input voltage
- 0.3
20
V
VIN
Logic input voltage applied between HINx, LINx and GND
- 0.3
15
V
VSD/OD
Open-drain voltage
-0.3
7
V
ISD/OD
Open-drain sink current
10
mA
5.5
V
7
mA
VCC
Parameter
VTSO
Temperature sensor output voltage
ITSO
Temperature sensor output current
-0.3
Table 4. Total system
Symbol
VISO
DS13301 - Rev 2
Parameter
Isolation withstand voltage applied between each pin and heat sink plate
(AC voltage, t = 60 s)
Value
Unit
1600
Vrms
TJ
Power chips operating junction temperature range
-40 to 175
°C
TC
Module operation case temperature range
-40 to 125
°C
page 4/24
STGIB15CH60TS-LZ
Thermal data
2.1
Thermal data
Table 5. Thermal data
Symbol
RthJC
DS13301 - Rev 2
Parameter
Value
Thermal resistance, junction-to-case single IGBT
1.85
Thermal resistance, junction-to-case single diode
2.8
Unit
°C/W
page 5/24
STGIB15CH60TS-LZ
Electrical characteristics
3
Electrical characteristics
TJ = 25 °C unless otherwise specified.
3.1
Inverter part
Table 6. Static
Symbol
ICES
Parameter
Collector-cut off current
Test conditions
VCE = 600 V, VCC = Vboot = 15 V
VCC = Vboot = 15 V, VIN(1) = 0 to 5 V,
VCE(sat)
Collector-emitter saturation
voltage
IC = 15 A
VCC = Vboot = 15 V, VIN(1) = 0 to 5 V,
Typ.
-
1.55
Max.
Unit
100
µA
2.1
V
-
1.65
VIN = 0 V, IC = 15 A
-
1.54
VIN = 0 V, IC = 20 A
-
1.65
Min.
Typ.
Max.
Turn-on time
-
320
-
Cross-over time on
-
160
-
Turn-off time
-
510
-
-
102
-
-
290
-
IC = 20 A
VF
Min.
Diode forward voltage
2.15
V
V
1. Applied between HINx, LINx and GND for x = U, V, W.
Table 7. Inductive load switching time and energy
Symbol
ton(1)
tc(on)(1)
toff(1)
tc(off)(1)
trr
Parameter
Cross-over time off
Reverse recovery time
Test conditions
VDD = 300 V, VCC = Vboot = 15 V,
VIN
(2)
= 0 to 5 V, IC = 15 A
Eon
Turn-on switching energy
-
440
-
Eoff
Turn-off switching energy
-
213
-
Err
Reverse recovery energy
-
59
-
Turn-on time
-
338
-
Cross-over time on
-
178
-
Turn-off time
-
500
-
-
92
-
-
300
-
ton(1)
tc(on)(1)
toff(1)
tc(off)(1)
trr
Cross-over time off
Reverse recovery time
VDD = 300 V, VCC = Vboot = 15 V,
VIN
(2)
= 0 to 5 V, IC = 20 A
Eon
Turn-on switching energy
-
624
-
Eoff
Turn-off switching energy
-
296
-
Err
Reverse recovery energy
-
80
-
Unit
ns
µJ
ns
µJ
1. ton and toff include the propagation delay time of the internal drive. tc(on) and tc(off) are the switching times of the IGBT itself
under the internally given gate driving condition.
2. Applied between HINx, LINx and GND for x = U, V, W.
DS13301 - Rev 2
page 6/24
STGIB15CH60TS-LZ
Inverter part
Figure 2. Switching time test circuit
Ic
Vcc
VCC
BOOT
HIN
HVG
GND
OUT
L
5V
+
C
Vdd
-
0V
Input
VCC
LIN
+
SD
Vce
-
Rsd
+5V
LVG
CIN
GND
Figure 3. Switching time definition
100% IC
100% IC
t rr
IC
VCE
VIN
VIN
t ON
VIN(ON)
VCE
IC
t C(ON)
10% IC
90% IC 10% VCE
(a) turn-on
t OFF
VIN(OFF)
t C(OFF)
10% VCE
10% IC
(b) turn-off
AM09223V1
DS13301 - Rev 2
page 7/24
STGIB15CH60TS-LZ
Control/protection parts
3.2
Control/protection parts
Table 8. High- and low-side drivers
Symbol
Parameter
Test condition
Vil
Low logic level voltage
Vih
High logic level voltage
IINh
IN logic “1” input bias current
INx = 15 V
IINl
IN logic “0” input bias current
INx = 0 V
Min.
Typ.
Max.
Unit
0.8
V
2
80
V
150
200
µA
1
µA
High-side
VCC_hys
VCC UV hysteresis
1.2
1.4
1.7
V
VCCH_th(on)
VCCH UV turn-on threshold
11
11.5
12
V
VCCH_th(off)
VCCH UV turn-off threshold
9.6
10.1
10.6
V
VBS UV hysteresis
0.5
1
1.6
V
VBS_th(on)
VBS UV turn-on threshold
10.1
11
11.9
V
VBS_th(off)
VBS UV turn-off threshold
9.1
10
10.9
V
VBS_hys
IQBSU
Under voltage VBS quiescent
current
VBS = 9 V, HINx(1) = 5 V
55
75
µA
IQBS
VBS quiescent current
VCC = 15 V, HINx(1) = 5 V
125
170
µA
Iqccu
Under voltage quiescent supply
current
VCC = 9 V, HINx(1) = 0 V
190
250
µA
Iqcc
Quiescent current
VCC = 15 V, HINx(1) = 0 V
560
730
µA
RDS(on)
BS driver ON resistance
VCC_hys
VCC UV hysteresis
1.1
1.4
1.6
V
VCCL_th(on)
VCCL UV turn-on threshold
10.4
11.6
12.4
V
VCCL_th(off)
VCCL UV turn-off threshold
9.0
10.3
11
V
600
800
µA
700
900
µA
0.5
0.6
0.75
V
25
50
70
µA
1
µA
150
Ω
Low-side
VCC = 10 V,
Iqccu
Under voltage quiescent supply
current
SD pulled to 5 V through RSD = 10 kΩ,
CIN = LINx(1) = 0 V
Iqcc
Quiescent current
VCC = 15 V, SD= 5 V,
CIN = LINx(1) = 0 V
VSSD
Smart SD unlatch threshold
ISDh
SD logic “1” input bias current
SD = 5 V
ISDl
SD logic “0” input bias current
SD = 0 V
1. Applied between HINx, LINx and GND for x = U, V, W.
DS13301 - Rev 2
page 8/24
STGIB15CH60TS-LZ
Control/protection parts
Table 9. Temperature sensor output
Symbol
VTSO
Parameter
Temperature sensor output
voltage
ITSO_SNK
Temperature sensor sink current
capability
ITSO_SRC
Temperature sensor source
current capability
Test condition
TJ = 25 °C
Min.
Typ.
Max.
Unit
0.974
1.16
1.345
V
0.1
mA
4
mA
Table 10. Sense comparator (VCC = 15 V, unless otherwise is specified)
Symbol
Parameter
ICIN
CIN input bias current
Vref
Internal reference voltage
VOD
Open-drain low level output
voltage
Test condition
VCIN = 1 V
Min.
Typ.
-0.2
460
510
Iod = 5 mA
Max.
Unit
0.2
µA
560
mV
500
mV
410
ns
SD pulled to 5 V through RSD = 10 kΩ;
tCIN_SD
CIN comparator delay to SD
measured applying a voltage step 0-1 V
to pin CIN;
240
320
50% CIN to 90% SD
SD pulled to 5 V through RSD= 10 kΩ;
SRSD
SD fall slew rate
CL= 1 nF through SD and ground;
25
V/µs
90% SD to 10% SD
The comparator stays enabled even if VCC is in the UVLO condition but higher than 4 V.
DS13301 - Rev 2
page 9/24
STGIB15CH60TS-LZ
Fault management
4
Fault management
The device integrates an open-drain output connected to the SD pin. As soon as a fault occurs, the open-drain is
activated and the LVGx outputs are forced low. Two types of fault can be identified:
•
Overcurrent (OC) sensed by the internal comparator (see more detail in Section 4.1 Smart shutdown
function);
•
Undervoltage on supply voltage (VCC)
Each fault enables the SD open drain for a different time, as described in the following table.
Table 11. Fault timing
Symbol
Parameter
OC
Over-current event
UVLO
Event time (1)
SD open-drain enable time result (1)(2)
≤ 24 μs
24 μs
> 24 µs
OC time
≤ 70 μs
70 µs
> 70 µs
Under-voltage lockout event
until the VCC_LS exceeds the
VCC_LS UV turn ON threshold
UVLO time
1. Typical value (-40 °C ≤ TJ ≤ +125 °C).
2. Without contribution of the RC network on SD.
Actually, the device remains in a fault condition (SD at low logic level and LVGx outputs disabled) for a time also
depending on the RC network connected to the SD pin. The network generates a time contribution that is added
to the internal value.
Figure 4. Overcurrent timing (without contribution of the RC network on SD)
GIPG120520141638FSR
DS13301 - Rev 2
page 10/24
STGIB15CH60TS-LZ
Fault management
Figure 5. UVLO timing (without contribution of the RC network on SD)
GIPG120520141644FSR
DS13301 - Rev 2
page 11/24
STGIB15CH60TS-LZ
Smart shutdown function
4.1
Smart shutdown function
The device integrates a comparator committed to the fault sensing function. The comparator input can be
connected to an external shunt resistor in order to implement a simple overcurrent detection function.
The output signal of the comparator is fed to an integrated MOSFET with the open drain output available on the
SD input. When the comparator triggers, the device is set in shutdown state and its outputs are all set to low level.
Figure 6. Smart shutdown timing waveforms in case of overcurrent event
comp
Vref
PROTECTION
CIN
t CIN_SD
LIN
LVG
SD
l
open-drain gate
(internal)
t2
t1
t OC
real disable time
Fast shutdown:
the driver outputs are set in SD state
immediately after comparator triggering
even if the SD signal has not yet reached
the lower input threshold
t1
SHUTDOWN CIRCUIT
t2
where:
VBIAS
RSD
SD
FROM / TO
CONTROLLER
CSD
R PD_SD
R ON_OD
SMART
SD
LOGIC
RON_OD = VOD/5 mA, see Table 10. Sense comparator (VCC = 15 V, unless otherwise is specified);
RPD_SD (typ.) = 5 V/ISDh
DS13301 - Rev 2
page 12/24
STGIB15CH60TS-LZ
Smart shutdown function
In common overcurrent protection designs, the comparator output is usually connected to the SD input and an RC
network is connected to this SD line in order to provide a mono-stable circuit which implements a protection time
that follows the fault condition.
As opposed to common fault detection systems, the device smart shutdown architecture allows the immediate
turn-off of output gates driver in case of fault, by minimizing the propagation delay between the fault detection
event and the actual switching off of the outputs. In fact, the time delay between the fault and the turning off of the
outputs is no longer dependent on the RC value of the external network connected to the pin.
In the smart shutdown circuitry, the fault signal has a preferential path which directly switches off the outputs after
the comparator triggering.
At the same time, the internal logic turns on the open-drain output and holds it on until the SD voltage goes below
the VSSD threshold and the toc time is elapsed.
The driver outputs restart following the input pins as soon as the voltage at the SD pin reaches the higher
threshold of the SD logic input.
The smart shutdown system provides the possibility to increase the time constant of the external RC network (i.e.,
the disable time after the fault event) up to very high values without increasing the delay time of the protection.
DS13301 - Rev 2
page 13/24
STGIB15CH60TS-LZ
Temperature monitoring solutions
5
Temperature monitoring solutions
5.1
TSO output
The device integrates a temperature sensor. A voltage proportional to the die temperature is available on the TSO
pin. When this function is not used, the pin can be left floating.
Figure 7. VTSO output characteristics vs LVIC temperature
VTSO
(V)
IGBT110820161234TSO
2.8
Min
2.2
1.6
Typ
Max
1.0
0.4
0
5.2
25
50
75
100
T (°C)
NTC thermistor
Table 12. NTC thermistor
Symbol
DS13301 - Rev 2
Parameter
Test condition
Min.
Typ.
Max.
Unit
R25
Resistance
T = 25 °C
85
kΩ
R125
Resistance
T = 125 °C
2.6
kΩ
B
B-constant
T = 25 to 100 °C
4092
K
T
Operating temperature range
-40
125
°C
page 14/24
STGIB15CH60TS-LZ
NTC thermistor
Figure 8. NTC resistance vs temperature
GIPG120520142249FSR
R(kΩ)
3000
2500
2000
1500
Typ
1000
500
0
-50
Max
Min
-25
0
25
50
75
100
125
T(°C)
Figure 9. NTC resistance vs temperature - zoom
GIPG120520141304FSR
R(kΩ)
30
25
20
Max
15
Typ
10
Min
5
0
50
DS13301 - Rev 2
60
70
80
90
100
110
120 T(°C)
page 15/24
DS13301 - Rev 2
VTSO/NTC
Fault
Lin W
Lin V
Lin U
Hin W
3.3V/5V
R1
R1
R1
R1
R1
R1
VTSO/NTC
CSD
RSD
C1
C1
C1
C1
C1
C1
Vcc
Vcc
Cboot W
CTSO
-
+
-
+
Cvcc
Cvcc
Cboot V
C2
C2
SGN_GND
Dz
Dz
Cboot U
(17)TSO
(16)GND
(15)Cin
(14)SD/OD
(13)VccL
(12)LinW
(11)LinV
(10)LinU
(9)GND
(8)VccH
(7)HinW
(6)HinV
(5)HinU
(4)VbootW
(3)VbootV
(2)VbootU
(1)NC
L-side
H-side
CSF
RSF
NW(18)
NV(19)
NU(20)
W(21)
V(22)
U(23)
P(24)
T2(25)
T1(26)
PWR_GND
Rshunt
to
RTO
MCU/op-amp
M
CTO
C4
VTSO/NTC
Cvdc
-
+
Vdc
6
Hin V
Hin U
C3
C3
C3
3.3V/5V
STGIB15CH60TS-LZ
Application circuit example
Application circuit example
Figure 10. Application circuit example
MICROCONTROLLER
GADG310320201430GT
Application designers are free to use a different scheme according to the device specifications.
page 16/24
STGIB15CH60TS-LZ
Guidelines
6.1
Guidelines
1.
2.
3.
4.
5.
6.
7.
8.
Input signals HIN, LIN are active-high logic. A 100 kΩ (typ.) pull-down resistor is built-in for each input pin.
To prevent input signal oscillations, the wiring of each input should be as short as possible and the use of
RC filters (R1, C1) on each input signal is suggested. The filters should be with a time constant of about 100
ns and placed as close as possible to the IPM input pins.
The use of a bypass capacitor CVCC (aluminum or tantalum) can reduce the transient circuit demand on
the power supply. Besides, to reduce any high-frequency switching noise distributed on the power lines, a
decoupling capacitor C2 (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible
to each Vcc pin and in parallel with the bypass capacitor.
The use of an RC filter (RSF, CSF) prevents protection circuit malfunctions. The time constant (RSF x CSF)
should be set to 1 µs and the filter must be placed as close as possible to the CIN pin.
The SD is an input/output pin (open-drain type if it is used as output). It should be pulled up to a power
supply (i.e., MCU bias at 3.3/5 V) by a resistor value, which can keep the Iod no higher than 5 mA (VOD ≤
500 mV when open-drain MOSFET is ON). The filter on SD should be sized to get a desired re-starting time
after a fault event and placed as close as possible to the SD pin.
A decoupling capacitor CTSO between 1 nF and 10 nF can be used to increase the noise immunity of the
TSO thermal sensor; a similar decoupling capacitor COT (between 10 nF and 100 nF) can be implemented
if the NTC thermistor is available and used. In both cases, their effectiveness is improved if these capacitors
are placed close to the MCU.
The decoupling capacitor C3 (100 to 220 nF with low ESR and low ESL) in parallel with each Cboot filters
high-frequency disturbances. Both Cboot and C3 (if present) should be placed as close as possible to the
U,V,W and Vboot pins. Bootstrap negative electrodes should be connected to the U,V,W terminals directly
and separated from the main output wires.
To prevent overvoltage on the VCC pin, a Zener diode (Dz) can be used.
The use of the decoupling capacitor C4 (100 to 220 nF, with low ESR and low ESL) in parallel with the
electrolytic capacitor CVdc prevents surge destruction. Both capacitors C4 and CVdc should be placed as
close as possible to the IPM (C4 has priority over Cvdc).
9.
By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals
without an optocoupler is possible.
10. Low inductance shunt resistors should be used for phase leg current sensing.
11. In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as
possible.
12. The connection of the SGN_GND to the PWR_GND at one point only (close to the shunt resistor terminal)
can reduce the impact of power ground fluctuation.
These guidelines ensure the device specifications for application designs. For further details, please refer to the
relevant application note.
Table 13. Recommended operating conditions
Symbol
Test conditions
VPN
Supply voltage
Applied between P-Nu, NV, Nw
VCC
Control supply voltage
Applied between VCC-GND
VBS
High-side bias voltage
tdead
Blanking time to prevent arm-short For each input signal
fPWM
PWM input signal
TC
DS13301 - Rev 2
Parameter
Case operation temperature
Applied between VBOOTi-OUTi
for i = U, V, W
-40 °C < TC < 100 °C
-40 °C < TJ < 125 °C
Min.
13.5
13
Typ.
Max.
Unit
300
400
V
15
18
V
18
V
1.0
µs
20
kHz
100
°C
page 17/24
STGIB15CH60TS-LZ
Electrical characteristics (curves)
7
Electrical characteristics (curves)
Figure 11. Output characteristics
IC
(A)
IGBT060820151616OC25
VCC = 18 V
32
VCE(sat)
(V)
2.4
15 V
24
Figure 12. VCE(sat) vs collector current
2.0
13 V
16
1.6
8
1.2
0
0.0
0.5
1.0
1.5
2.0
VCE (V)
Figure 13. IC vs case temperature
IC
(A)
GADG140620191319CCT
0.8
0
15
1.4
25
50
75
100
125
150
TC (°C)
IGBT060820151618SLC
VDD = 300 V, VCC = Vboot = 15 V
2.1
16
24
32
IC (A)
IGBT270920161207DVF
VCC = 15 V
Tj = 25 °C
Tj = 175 °C
0.2
0
8
16
24
32
IF (A)
Figure 16. EOFF switching energy vs collector current
EOFF
(mJ)
0.8
IGBT060820151621SLC
VDD = 300 V, VCC = Vboot = 15 V
0.7
1.8
0.6
Tj = 175 °C
1.5
0.5
1.2
Tj = 175 °C
0.4
Tj = 25 °C
0.9
0.3
0.6
0.2
0.3
0.1
DS13301 - Rev 2
8
0.6
Figure 15. EON switching energy vs collector current
0.0
0
Tj = 25 °C
1.0
VCC ≥ 15 V,TJ ≤ 175 °C
5
EON
(mJ)
2.4
Tj = 175 °C
VF
(V)
1.8
0
0
VCC = 15 V
Figure 14. Diode VF vs forward current
20
10
IGBT270920161213VCEC
10
20
30
IC (A)
0.0
0
Tj = 25 °C
8
16
24
32
IC (A)
page 18/24
STGIB15CH60TS-LZ
Electrical characteristics (curves)
Figure 17. Thermal impedance
K
GIPD290720151032FSR
10 -1
10 -2
10 -5
DS13301 - Rev 2
10 -4
10 -3
10 -2
10 -1
10 0
t p (s)
page 19/24
STGIB15CH60TS-LZ
Package information
8
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
8.1
SDIP2B-26L type L1 package information
Figure 18. SDIP2B-26L type L1 package outline
8450802_7_type_L1_IGBT
DS13301 - Rev 2
page 20/24
STGIB15CH60TS-LZ
SDIP2B-26L type L1 package information
Table 14. SDIP2B-26L type L1 package mechanical data
Ref.
Dimensions (mm)
Min.
Typ.
Max.
A
37.50
38.00
38.50
A1
0.97
1.22
1.47
A2
0.97
1.22
1.47
A3
34.70
35.00
35.30
c
1.45
1.50
1.55
B
23.50
24.00
24.50
B1
12.00
B2
13.90
14.40
14.90
B3
28.90
29.40
29.90
C
3.30
3.50
3.70
C1
5.00
5.50
6.00
C2
13.50
14.00
14.50
D
28.45
28.95
29.45
D1
2.725
3.025
3.325
e
3.356
3.556
3.756
e1
1.578
1.778
1.978
e2
7.42
7.62
7.82
e3
4.88
5.08
5.28
e4
2.34
2.54
2.74
E
11.90
12.40
12.90
E1
3.45
3.75
4.05
E2
DS13301 - Rev 2
1.80
f
0.45
0.60
0.75
f1
0.35
0.50
0.65
F
1.95
2.10
2.25
F1
0.95
1.10
1.25
R
1.55
1.575
1.60
T
0.375
0.40
0.425
V
0°
5°
page 21/24
STGIB15CH60TS-LZ
Revision history
Table 15. Document revision history
DS13301 - Rev 2
Date
Revision
02-Apr-2020
1
22-Sep-2021
2
Changes
Initial release.
Updated Section Features.
Updated Table 4. Total system.
page 22/24
STGIB15CH60TS-LZ
Contents
Contents
1
Internal schematic and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1
3
4
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1
Inverter part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2
Control/protection parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
4.1
5
6
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Temperature monitoring solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
5.1
TSO output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2
NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Application circuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
6.1
Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7
Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
8
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
8.1
SDIP2B-26L type L1 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
DS13301 - Rev 2
page 23/24
STGIB15CH60TS-LZ
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS13301 - Rev 2
page 24/24