STGIPN3H60-E
SLLIMM™-nano (small low-loss intelligent molded module)
IPM, 3 A - 600 V 3-phase IGBT inverter bridge
Datasheet - preliminary data
Applications
• 3-phase inverters for motor drives
• Dish washers, refrigerator compressors,
heating systems, air-conditioning fans,
draining and recirculation pumps
Description
NDIP-26L
Features
• IPM 3 A, 600 V, 3-phase IGBT inverter bridge
including control ICs for gate driving and
freewheeling diodes
• Optimized for low electromagnetic interference
• VCE(sat) negative temperature coefficient
• 3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull down/pull
up resistors
This intelligent power module implements a
compact, high performance AC motor drive in a
simple, rugged design. It is composed of six
IGBTs with freewheeling diodes and three halfbridge HVICs for gate driving, providing low
electromagnetic interference (EMI) characteristics
with optimized switching speed. The package is
optimized for thermal performance and
compactness in built-in motor applications, or
other low power applications where assembly
space is limited. This IPM includes an operational
amplifier, completely uncommitted, and a
comparator that can be used to design a fast and
efficient protection circuit. SLLIMM™ is a
trademark of STMicroelectronics.
• Undervoltage lockout
• Internal bootstrap diode
• Interlocking function
• Smart shutdown function
• Comparator for fault protection against
overtemperature and overcurrent
• Op amp for advanced current sensing
• Optimized pinout for easy board layout
• ESD voltage (HBM C=100 pF, R=1.5 kȍ) up to
±2 kV
Table 1. Device summary
Order code
Marking
Package
Packaging
STGIPN3H60-E
GIPN3H60-E
NDIP-26L
Tube
December 2014
DocID027271 Rev 1
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
1/22
www.st.com
Contents
STGIPN3H60-E
Contents
1
Internal schematic diagram and pin configuration . . . . . . . . . . . . . . . . 3
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1
Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2
Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4
Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/22
DocID027271 Rev 1
STGIPN3H60-E
1
Internal schematic diagram and pin configuration
Internal schematic diagram and pin configuration
Figure 1. Internal schematic diagram
PIN 1
PIN 26
GND
NW
GND
SD-OD
HVG
Vcc W
VCC
HIN W
HIN
OUT
W, OUT W
LVG
SD-OD
LIN W
VBOOT
LIN
Vboot W
OP+
GND
OPOUT
OPVcc V
OP+
OPOUT
OP-
HVG
VCC
OUT
NV
V, OUT V
LVG
HIN V
HIN
SD-OD
LIN V
VBOOT
LIN
Vboot V
CIN
GND
CIN
NU
HVG
Vcc U
VCC
OUT
U,OUT U
LVG
HIN U
SD-OD
LIN U
P
HIN
SD-OD
VBOOT
LIN
Vboot U
PIN 16
PIN 17
AM09916v1
DocID027271 Rev 1
3/22
22
Internal schematic diagram and pin configuration
STGIPN3H60-E
Table 2. Pin description
4/22
Pin
Symbol
Description
1
GND
2
SD / OD
3
VCC W
Low voltage power supply W phase
4
HIN W
High side logic input for W phase
5
LIN W
Low side logic input for W phase
6
OP+
7
OPOUT
8
OP-
9
VCC V
Low voltage power supply V phase
10
HIN V
High side logic input for V phase
11
LIN V
Low side logic input for V phase
12
CIN
13
VCC U
Low voltage power supply for U phase
14
HIN U
High side logic input for U phase
15
SD / OD
16
LIN U
17
VBOOT U
18
P
19
U, OUTU
20
NU
Negative DC input for U phase
21
VBOOT V
Bootstrap voltage for V phase
22
V, OUTV
V phase output
23
NV
Negative DC input for V phase
24
VBOOT W
Bootstrap voltage for W phase
25
W, OUTW
W phase output
26
NW
Ground
Shut down logic input (active low) / open drain (comparator output)
Op amp non inverting input
Op amp output
Op amp inverting input
Comparator input
Shut down logic input (active low) / open drain (comparator output)
Low side logic input for U phase
Bootstrap voltage for U phase
Positive DC input
U phase output
Negative DC input for W phase
DocID027271 Rev 1
STGIPN3H60-E
Internal schematic diagram and pin configuration
Figure 2. Pin layout (top view)
(*) Dummy pin internally connected to P (positive DC input).
DocID027271 Rev 1
5/22
22
Electrical ratings
STGIPN3H60-E
2
Electrical ratings
2.1
Absolute maximum ratings
Table 3. Inverter part
Symbol
Parameter
Value
Unit
600
V
VCES
Each IGBT collector emitter voltage (VIN(1) = 0)
± IC (2)
Each IGBT continuous collector current
at TC = 25°C
3
A
± ICP (3)
Each IGBT pulsed collector current
18
A
Each IGBT total dissipation at TC = 25°C
8
W
PTOT
1. Applied between HINi, LINi and GND for i = U, V, W
2. Calculated according to the iterative formula:
Tj ( max ) – TC
IC ( T C ) = ------------------------------------------------------------------------------------------------------R thj – c × V CE ( sat ) ( max ) ( T j ( max ), I C ( T C ) )
3. Pulse width limited by max junction temperature
Table 4. Control part
Symbol
Parameter
Min.
Max.
Unit
Vboot - 21
Vboot + 0.3
V
VOUT
Output voltage applied between OUTU, OUTV,
OUTW - GND
VCC
Low voltage power supply
- 0.3
21
V
VCIN
Comparator input voltage
- 0.3
VCC +0.3
V
Vop+
OPAMP non-inverting input
- 0.3
VCC +0.3
V
Vop-
OPAMP inverting input
- 0.3
VCC +0.3
V
Vboot
Bootstrap voltage
- 0.3
620
V
Logic input voltage applied between HIN, LIN
and GND
- 0.3
15
V
Open drain voltage
- 0.3
15
V
50
V/ns
VIN
VSD/OD
ΔVOUT/dT
Allowed output slew rate
Table 5. Total system
Symbol
VISO
6/22
Parameter
Isolation withstand voltage applied between each
pin and heatsink plate (AC voltage, t = 60 sec.)
Value
Unit
1000
V
Tj
Power chips operating junction temperature
-40 to 150
°C
TC
Module case operation temperature
-40 to 125
°C
DocID027271 Rev 1
STGIPN3H60-E
2.2
Electrical ratings
Thermal data
Table 6. Thermal data
Symbol
RthJA
Parameter
Thermal resistance junction-ambient
DocID027271 Rev 1
Value
Unit
50
°C/W
7/22
22
Electrical characteristics
3
STGIPN3H60-E
Electrical characteristics
TJ = 25 °C unless otherwise specified.
Table 7. Inverter part
Symbol
VCE(sat)
ICES
VF
Parameter
Test conditions
Min.
Typ.
Max.
VCC = Vboot = 15 V, VIN(1)= 0 - 5 V,
IC = 1 A
-
2.15
2.6
VCC = Vboot = 15 V, VIN(1)= 0 - 5 V,
IC = 1 A, TJ = 125 °C
-
1.65
Collector-cut off current
(VIN(1)= 0 “logic state”)
VCE = 550 V, VCC = VBoot = 15 V
-
250
μA
Diode forward voltage
VIN(1) = 0 “logic state”, IC = 1 A
-
1.7
V
Collector-emitter
saturation voltage
Unit
V
Inductive load switching time and energy
ton
tc(on)
toff
tc(off)
trr
Turn-on time
Crossover time (on)
Turn-off time
Crossover time (off)
Reverse recovery time
Eon
Turn-on switching losses
Eoff
Turn-off switching losses
VDD = 300 V,
VCC = Vboot = 15 V,
VIN(1) = 0 - 5 V,
IC = 1 A
(see Figure 4)
-
275
-
90
-
890
-
125
-
50
-
18
-
13
ns
μJ
1. Applied between HINi, LINi and GND for i = U, V, W (LIN inputs are active-low).
Note:
8/22
tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are
the switching time of IGBT itself under the internally given gate driving condition.
DocID027271 Rev 1
STGIPN3H60-E
Electrical characteristics
Figure 3. Switching time test circuit
INPUT
BOOT
/Lin
HVG
/SD
RSD
Hin
VCC
BUS
VBOOT>VCC
+5V
L
OUT
Vcc
IC
DT
LVG
GND
CP+
VCE
0
1
Figure 4. Switching time definition
100% IC 100% IC
t rr
IC
VCE
VCE
IC
VIN
VIN
t ON
t OFF
t C(OFF)
t C(ON)
VIN(ON)
10% IC 90% IC 10% VCE
(a) turn-on
Note:
VIN(OFF)
10% VCE
(b) turn-off
10% IC
AM09223V1
Figure 4 “Switching time definition” refers to HIN inputs (active high). For LIN inputs (active
low), VIN polarity must be inverted for turn-on and turn-off.
DocID027271 Rev 1
9/22
22
Electrical characteristics
3.1
STGIPN3H60-E
Control part
Table 8. Low voltage power supply (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
VCC UV hysteresis
1.2
1.5
1.8
V
VCC_thON
VCC UV turn ON threshold
11.5
12
12.5
V
VCC_thOFF
VCC UV turn OFF threshold
10
10.5
11
V
VCC_hys
Parameter
Test conditions
Iqccu
Undervoltage quiescent
supply current
VCC = 10 V
SD/OD = 5 V; LIN = 5 V;
HIN = 0, CIN = 0
150
μA
Iqcc
Quiescent current
Vcc = 15 V
SD/OD = 5 V; LIN = 5 V
HIN = 0, CIN = 0
1
mA
Vref
Internal comparator (CIN)
reference voltage
0.58
V
0.5
0.54
Table 9. Bootstrapped voltage (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn ON threshold
11.1
11.5
12.1
V
VBS_thOFF
VBS UV turn OFF threshold
9.8
10
10.6
V
IQBSU
Undervoltage VBS quiescent
current
VBS < 9 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
70
110
μA
IQBS
VBS quiescent current
VBS = 15 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
200
300
μA
Bootstrap driver on resistance
LVG ON
120
VBS_hys
RDS(on)
ȍ
Table 10. Logic inputs (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Vil
Low logic level voltage
0.8
1.1
V
Vih
High logic level voltage
1.9
2.25
V
260
μA
1
μA
20
μA
1
μA
300
μA
IHINh
HIN logic “1” input bias current
HIN = 15 V
IHINl
HIN logic “0” input bias current
HIN = 0 V
ILINl
LIN logic “1” input bias current
LIN = 0 V
ILINh
LIN logic “0” input bias current
LIN = 15 V
ISDh
SD logic “0” input bias current
SD = 15 V
10/22
DocID027271 Rev 1
110
3
30
175
6
120
STGIPN3H60-E
Electrical characteristics
Table 10. Logic inputs (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
ISDl
SD logic “1” input bias current
SD = 0 V
Dt
Dead time
see Figure 5
Min.
Typ.
Max.
Unit
3
μA
180
ns
Table 11. OPAMP characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Vio
Input offset voltage
Iio
Input offset current
Iib
Input bias current
(1)
Test condition
Min.
Typ.
Max.
Unit
6
mV
4
40
nA
100
200
nA
Vic = 0 V, Vo = 7.5 V
Vic = 0 V, Vo = 7.5 V
Vicm
Input common mode voltage
range
VOL
Low level output voltage
RL = 10 kW to VCC
VOH
High level output voltage
RL = 10 kW to GND
14
14.7
V
Source,
Vid = +1; Vo = 0 V
16
30
mA
Sink,
Vid = -1; Vo = VCC
50
80
mA
Slew rate
Vi = 1 - 4 V; CL = 100 pF;
unity gain
2.5
3.8
V/μs
GBWP
Gain bandwidth product
Vo = 7.5 V
8
12
MHz
Avd
Large signal voltage gain
RL = 2 kW
70
85
dB
SVR
Supply voltage rejection ratio
vs. VCC
60
75
dB
CMRR
Common mode rejection ratio
55
70
dB
Output short-circuit current
Io
SR
0
V
75
150
mV
1. The direction of input current is out of the IC.
Table 12. Sense comparator characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Iib
Input bias current
VCIN = 1 V
3
μA
Vol
Open drain low level output
voltage
Iod = 3 mA
0.5
V
Comparator delay
SD/OD pulled to 5 V through
100 kΩ resistor
90
130
ns
SR
Slew rate
CL = 180 pF; Rpu = 5 kΩ
60
tsd
Shutdown to high / low side
driver propagation delay
VOUT = 0, Vboot = VCC,
VIN = 0 to 3.3 V
tisd
Comparator triggering to high /
low side driver turn-off
propagation delay
Measured applying a voltage
step from 0 V to 3.3 V to pin
CIN
td_comp
DocID027271 Rev 1
50
125
V/μsec
200
ns
50
200
250
11/22
22
Electrical characteristics
STGIPN3H60-E
Table 13. Truth table
Logic input (VI)
Output
Condition
SD/OD
LIN
HIN
LVG
HVG
Shutdown enable
half-bridge tri-state
L
X
X
L
L
Interlocking
half-bridge tri-state
H
L
H
L
L
0 “logic state”
half-bridge tri-state
H
H
L
L
L
1 “logic state”
low side direct driving
H
L
L
H
L
1 “logic state”
high side direct driving
H
H
H
L
H
Note:
12/22
X: don’t care
DocID027271 Rev 1
STGIPN3H60-E
Waveform definitions
Figure 5. Dead time and interlocking waveform definitions
HIN
INTE
RLO
CK
ING
CONTROL SIGNAL EDGES
OVERLAPPED:
INTERLOCKING + DEAD TIME
ING
LIN
INTE
RLO
CK
3.2
Electrical characteristics
LVG
DTHL
DTLH
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
SYNCHRONOUS (*):
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
BUT INSIDE THE DEAD TIME:
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
OUTSIDE THE DEAD TIME:
DIRECT DRIVING
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
(*) HIN and LIN can be connected together and driven by just one control signal
DocID027271 Rev 1
13/22
22
Smart shutdown function
4
STGIPN3H60-E
Smart shutdown function
The STGIPN3H60-E integrates a comparator for fault sensing purposes. The comparator
non-inverting input (CIN) can be connected to an external shunt resistor in order to
implement a simple overcurrent protection function. When the comparator triggers, the
device is set in shutdown state and both its outputs are set to low-level leading the half
bridge in 3-state. In the common overcurrent protection architectures the comparator output
is usually connected to the shutdown input through a RC network, in order to provide a
mono-stable circuit, which implements a protection time that follows the fault condition. Our
smart shutdown architecture allows to immediately turn-off the output gate driver in case of
overcurrent, the fault signal has a preferential path which directly switches off the outputs.
The time delay between the fault and the outputs turn-off is no more dependent on the RC
values of the external network connected to the shutdown pin. At the same time the internal
logic turns on the open-drain output and holds it on until the shutdown voltage goes below
the logic input lower threshold. Finally the smart shutdown function provides the possibility
to increase the real disable time without increasing the constant time of the external RC
network.
14/22
DocID027271 Rev 1
STGIPN3H60-E
Smart shutdown function
Figure 6. Smart shutdown timing waveforms
comp Vref
CP+
HIN/LIN
PROTECTION
HVG/LVG
SD/OD
open drain gate
(internal)
disable time
Fast shut down:
the driver outputs are set in SD state immediately after the comparator
triggering even if the SD signal has not yet reach the lower input threshold
An approximation of the disable time is given by:
SHUT DOWN CIRCUIT
VBIAS
where:
RSD
SD/OD
FROM/TO
CONTROLLER
CSD
RON_OD
SMART
SD
LOGIC
RPD_SD
AM12947v1
Please refer to Table 12 for internal propagation delay time details.
DocID027271 Rev 1
15/22
22
Application information
5
STGIPN3H60-E
Application information
Figure 7. Typical application circuit
16/22
DocID027271 Rev 1
STGIPN3H60-E
5.1
Application information
Recommendations
•
Input signal HIN is active high logic. An 85 kΩ (typ.) pull-down resistor is built-in for
each high side input. If an external RC filter is used for noise immunity, attention should
be given to the variation of the input signal level.
•
Input signal LIN is active low logic. A 720 kΩ (typ.) pull-up resistor, connected to an
internal 5 V regulator through a diode, is built-in for each low side input.
•
To prevent input signal oscillation, the wiring of each input should be as short as
possible.
•
By integrating an application-specific type HVIC inside the module, direct coupling to
the MCU terminals without an opto-coupler is possible.
•
Each capacitor should be located as close as possible to the pins of the IPM.
•
Low inductance shunt resistors should be used for phase leg current sensing.
•
Electrolytic bus capacitors should be mounted as close to the module bus terminals as
possible. Additional high frequency ceramic capacitors mounted close to the module
pins will further improve performance.
•
The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see
Section 4: Smart shutdown function for detailed info).
Table 14. Recommended operating conditions
Symbol
Test conditions
Min.
VPN
Supply voltage
Applied between P-Nu,
Nv, Nw
VCC
Control supply voltage
Applied between VCCGND
VBS
High side bias voltage
Applied between VBOOTiOUTi for i = U, V, W
13
tdead
Blanking time to prevent
Arm-short
For each input signal
1.5
fPWM
PWM input signal
-40°C < Tc < 100°C
-40°C < Tj < 125°C
TC
Note:
Parameter
Case operation temperature
13.5
Typ.
Max.
Unit
300
500
V
15
18
V
18
V
μs
25
kHz
100
°C
For further details refer to AN4043.
DocID027271 Rev 1
17/22
22
Package mechanical data
6
STGIPN3H60-E
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 8. NDIP-26L type C mechanical drawing
B%
18/22
DocID027271 Rev 1
STGIPN3H60-E
Package mechanical data
Table 15. NDIP-26L type C mechanical data
mm
Dim.
Min.
Typ.
A
Max.
4.40
A1
0.80
1.00
1.20
A2
3.00
3.10
3.20
A3
1.70
1.80
1.90
A4
5.70
5.90
6.10
b
0.53
b1
0.52
b2
0.83
b3
0.82
c
0.46
c1
0.45
0.50
0.55
D
29.05
29.15
29.25
D1
0.50
0.77
1.00
D2
0.35
0.53
0.70
0.72
0.60
0.68
1.02
0.90
0.98
0.59
D3
29.55
E
12.35
12.45
12.55
e
1.70
1.80
1.90
e1
2.40
2.50
2.60
eB1
16.10
16.40
16.70
eB2
21.18
21.48
21.78
L
1.24
1.39
1.54
DocID027271 Rev 1
19/22
22
Package mechanical data
STGIPN3H60-E
AN T IS T AT IC
S
03 P VC
AM10474v1
Figure 9. NDIP-26L tube dimensions (dimensions are in mm.)
8313150_A
Note:
20/22
Base quantity 17 pcs, bulk quantity 476 pcs.
DocID027271 Rev 1
STGIPN3H60-E
7
Revision history
Revision history
Table 16. Document revision history
Date
Revision
05-Dec-2014
1
Changes
Initial release.
DocID027271 Rev 1
21/22
22
STGIPN3H60-E
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved
22/22
DocID027271 Rev 1