STGIPN3H60-H
SLLIMM™-nano small low-loss intelligent molded module
IPM, 3 A, 600 V, 3-phase IGBT inverter bridge
Datasheet - production data
Applications
3-phase inverters for motor drives
Dish washers, refrigerator compressors,
heating systems, air-conditioning fans,
draining and recirculation pumps
Description
Features
IPM 3 A, 600 V, 3-phase IGBT inverter
bridge including control ICs for gate driving
and freewheeling diodes
Optimized for low electromagnetic
interference
VCE(sat) negative temperature coefficient
3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull
down/pull up resistors
Undervoltage lockout
Internal bootstrap diode
Interlocking function
Smart shutdown function
Comparator for fault protection against
overtemperature and overcurrent
Op amp for advanced current sensing
Optimized pinout for easy board layout
This intelligent power module implements a
compact, high performance AC motor drive in a
simple, rugged design. It is composed of six
IGBTs with freewheeling diodes and three halfbridge HVICs for gate driving, providing low
electromagnetic interference (EMI) characteristics
with optimized switching speed. The package is
optimized for thermal performance and
compactness in built-in motor applications, or
other low power applications where assembly
space is limited. This IPM includes an operational
amplifier, completely uncommitted, and a
comparator that can be used to design a fast and
efficient protection circuit. SLLIMM™ is a
trademark of STMicroelectronics.
Table 1: Device summary
Order code
Marking
Package
Packing
STGIPN3H60-H
GIPN3H60-H
NDIP-26L
Tube
September 2016
DocID024132 Rev 4
This is information on a product in full production.
1/23
www.st.com
Contents
STGIPN3H60-H
Contents
1
Internal schematic diagram and pin configuration ....................... 3
2
Electrical ratings ............................................................................. 6
3
2.1
Absolute maximum ratings ................................................................ 6
2.2
Thermal data ..................................................................................... 7
Electrical characteristics ................................................................ 8
3.1
Inverter part ....................................................................................... 8
3.2
Control part ..................................................................................... 10
3.3
Waveform definitions....................................................................... 13
4
Smart shutdown function ............................................................. 14
5
Application circuit example .......................................................... 16
5.1
6
7
2/23
Guidelines ....................................................................................... 17
Package information ..................................................................... 18
6.1
NDIP-26L type C package information ............................................ 19
6.2
NDIP-26L packing information ........................................................ 21
Revision history ............................................................................ 22
DocID024132 Rev 4
STGIPN3H60-H
1
Internal schematic diagram and pin configuration
Internal schematic diagram and pin configuration
Figure 1: Internal schematic diagram
DocID024132 Rev 4
3/23
Internal schematic diagram and pin configuration
STGIPN3H60-H
Table 2: Pin description
4/23
Pin
Symbol
1
GND
2
SD / OD
Description
Ground
Shut down logic input (active low) / open drain (comparator output)
3
VCC W
Low voltage power supply W phase
4
HIN W
High side logic input for W phase
5
LIN W
Low side logic input for W phase
6
OP+
Op amp non inverting input
7
OPOUT
8
OP-
9
VCC V
Low voltage power supply V phase
10
HIN V
High side logic input for V phase
11
LIN V
Low side logic input for V phase
12
CIN
Comparator input
13
VCC U
Low voltage power supply for U phase
14
HIN U
High side logic input for U phase
15
SD / OD
16
LIN U
17
VBOOT U
18
P
19
U, OUTU
20
NU
Negative DC input for U phase
21
VBOOT V
Bootstrap voltage for V phase
22
V, OUTV
V phase output
23
NV
Negative DC input for V phase
24
VBOOT W
Bootstrap voltage for W phase
25
W, OUTW
W phase output
26
NW
Op amp output
Op amp inverting input
Shut down logic input (active low) / open drain (comparator output)
Low side logic input for U phase
Bootstrap voltage for U phase
Positive DC input
U phase output
Negative DC input for W phase
DocID024132 Rev 4
STGIPN3H60-H
Internal schematic diagram and pin configuration
Figure 2: Pin layout (top view)
PIN26
(*)
(*)
PIN17
PIN #1 ID
PIN16
PIN1
(*) Dummy pin internally connected to P (positive DC input).
DocID024132 Rev 4
AM09368V1
5/23
Electrical ratings
STGIPN3H60-H
2
Electrical ratings
2.1
Absolute maximum ratings
Table 3: Inverter part
Symbol
Parameter
Value
Unit
VCES
Each IGBT collector emitter voltage (VIN(1)= 0)
600
V
± IC(2)
Each IGBT continuous collector current at TC = 25°C
3
A
± ICP(3)
Each IGBT pulsed collector current
18
A
Each IGBT total dissipation at TC = 25°C
8
W
PTOT
Notes:
(1)Applied
between HINi, LINi and GND for i = U, V, W.
(2)Calculated
(3)Pulse
according to the iterative formula:
width limited by max junction temperature.
Table 4: Control part
Symbol
Parameter
Min.
Max.
Unit
Vboot - 21
Vboot + 0.3
V
VOUT
Output voltage applied between OUTU, OUTV, OUTW GND
VCC
Low voltage power supply
- 0.3
21
V
VCIN
Comparator input voltage
- 0.3
VCC + 0.3
V
Vop+
OPAMP non-inverting input
- 0.3
VCC + 0.3
V
Vop-
OPAMP inverting input
- 0.3
VCC + 0.3
V
Vboot
Bootstrap voltage
- 0.3
620
V
Logic input voltage applied between HIN, LIN and GND
- 0.3
15
V
Open drain voltage
- 0.3
15
V
50
V/ns
VIN
VSD⁄OD
∆VOUT/dT
Allowed output slew rate
Table 5: Total system
6/23
Symbol
Parameter
Value
Unit
VISO
Isolation withstand voltage applied between each pin and
heatsink plate (AC voltage, t = 60 s.)
1000
V
Tj
Power chips operating junction temperature range
-40 to 150
°C
TC
Module operation case temperature range
-40 to 125
°C
DocID024132 Rev 4
STGIPN3H60-H
2.2
Electrical ratings
Thermal data
Table 6: Thermal data
Symbol
RthJA
Parameter
Thermal resistance junction-ambient
DocID024132 Rev 4
Value
Unit
50
°C/W
7/23
Electrical characteristics
STGIPN3H60-H
3
Electrical characteristics
3.1
Inverter part
TJ = 25 °C unless otherwise specified.
Table 7: Static
Symbol
VCE(sat)
Parameter
Collector-emitter saturation
voltage
Test conditions
Min.
Typ.
Max.
VCC = Vboot = 15 V,
VIN(1)
= 0 to 5 V, IC = 1 A
-
2.15
2.6
VCC = Vboot = 15 V,
TJ = 125 °C
VIN(1)
= 0 to 5 V, IC = 1 A,
-
1.65
Unit
V
ICES
Collector-cut off current
(VIN(1) = 0 “logic state”)
VCE = 550 V, VCC = VBoot = 15 V
-
250
µA
VF
Diode forward voltage
VIN(1) = 0 “logic state”, IC = 1 A
-
1.7
V
Unit
Notes:
(1)Applied
between HINi, LINi and GND for i = U, V, W.
Table 8: Inductive load switching time and energy
Symbol
ton
(1)
tc(on)(1)
toff(1)
tc(off)(1)
trr
Parameter
Test conditions
Turn-on time
Crossover time (on)
Turn-off time
Crossover time (off)
Reverse recovery time
Eon
Turn-on switching energy
Eoff
Turn-off switching energy
VDD = 300 V,
VCC = Vboot = 15 V,
VIN(2) = 0 to 5 V,
IC = 1 A
(see Figure 4: "Switching time definition")
Min.
Typ.
Max.
-
275
-
-
90
-
-
890
-
-
125
-
-
50
-
-
18
-
-
13
-
ns
µJ
Notes:
(1)t
ON and tOFF include the propagation delay time of the internal drive. t C(ON) and tC(OFF) are the switching time of IGBT itself under
the internally given gate driving condition.
(2)Applied
8/23
between HINi, LINi and GND for i = U, V, W.
DocID024132 Rev 4
STGIPN3H60-H
Electrical characteristics
Figure 3: Switching time test circuit
INPUT
BOOT
Lin
BUS
VBOOT>VCC
+5V
/SD
HVG
RSD
Hin
L
OUT
VCC
Vcc
IC
DT
LVG
GND
CP+
VCE
0
1
AM06019v3
Figure 4: Switching time definition(1)
Notes:
(1)Figure
4: "Switching time definition" refers to HIN, LIN inputs (active high).
DocID024132 Rev 4
9/23
Electrical characteristics
3.2
STGIPN3H60-H
Control part
Table 9: Low voltage power supply (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VCC_hys
VCC UV hysteresis
1.2
1.5
1.8
V
VCC_thON
VCC UV turn ON threshold
11.5
12
12.5
V
VCC_thOFF
VCC UV turn OFF threshold
10
10.5
11
V
150
µA
1
mA
0.58
V
Iqccu
Iqcc
Undervoltage quiescent supply
current
Quiescent current
VCC = 10 V, SD /OD = 5 V, LIN = 0,
HIN = 0, CIN = 0
Vcc = 15 V, SD /OD = 5 V, LIN = 0,
HIN = 0, CIN = 0
Vref
Internal comparator (CIN)
reference voltage
0.5
0.54
Table 10: Bootstrapped voltage (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VBS_hys
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn ON threshold
11.1
11.5
12.1
V
VBS_thOFF
VBS UV turn OFF threshold
9.8
10
10.6
V
IQBSU
Undervoltage VBS quiescent
current
70
110
µA
150
210
µA
IQBS
VBS quiescent current
VBS < 9 V, SD /OD = 5 V, LIN = 0,
HIN=5 V, CIN = 0
VBS =15 V, SD /OD = 5 V, LIN = 0,
HIN=5 V, CIN = 0
RDS(on)
10/23
Bootstrap driver onresistance
LVG ON
DocID024132 Rev 4
120
Ω
STGIPN3H60-H
Electrical characteristics
Table 11: Logic inputs (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Vil
Low logic level voltage
Vih
High logic level voltage
IHINh
HIN logic “1” input bias
current
HIN = 15 V
IHINI
HIN logic “0” input bias
current
HIN = 0 V
ILINh
LIN logic “1” input bias
current
LIN = 15 V
ILINI
LIN logic “0” input bias
current
LIN = 0 V
SD logic “0” input bias
ISDh
Min.
Typ.
Max.
Unit
0.8
V
2.25
20
20
SD
= 15 V
SD
=0V
30
V
40
40
120
100
µA
1
µA
100
µA
1
µA
300
µA
3
µA
current
SD logic “1” input bias
ISDI
current
Dt
see Figure 5: "Dead time and interlocking
waveform definitions"
Dead time
180
ns
Table 12: OPAMP characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test condition
Vio
Input offset voltage
Iio
Input offset current
Input bias current
Iib
(1)
Min.
Typ.
Max.
Unit
6
mV
4
40
nA
100
200
nA
Vic = 0 V, Vo = 7.5 V
Vic = 0 V, Vo = 7.5 V
Vicm
Input common mode voltage
range
VOL
Low level output voltage
RL = 10 kΩ to VCC
VOH
High level output voltage
RL = 10 kΩ to GND
14
14.7
V
Source, Vid = + 1 V; Vo = 0 V
16
30
mA
Sink, Vid = -1 V; Vo = VCC
50
80
mA
Slew rate
Vi = 1 - 4 V; CL = 100 pF; unity gain
2.5
3.8
V/µs
GBWP
Gain bandwidth product
Vo = 7.5 V
8
12
MHz
Avd
Large signal voltage gain
RL = 2 kΩ
70
85
dB
SVR
Supply voltage rejection ratio
vs. VCC
60
75
dB
CMRR
Common mode rejection ratio
55
70
dB
Io
Output short-circuit current
SR
0
V
75
150
mV
Notes:
(1)The
direction of input current is out of the IC.
DocID024132 Rev 4
11/23
Electrical characteristics
STGIPN3H60-H
Table 13: Sense comparator characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Iib
Input bias current
VCIN = 1 V
3
µA
Vol
Open drain low level output voltage
Iod = 3 mA
0.5
V
130
ns
td_comp
SD /OD pulled to 5 V through
Comparator delay
90
100 kΩ resistor
SR
Slew rate
CL = 180 pF; Rpu = 5 kΩ
tsd
Shutdown to high / low side driver
propagation delay
VOUT = 0, Vboot = VCC, VIN = 0 to
3.3 V
50
125
200
tisd
Comparator triggering to high / low
side driver turn-off propagation delay
Measured applying a voltage
step from 0 V to 3.3 V to pin CIN
50
200
250
60
V/µsec
ns
Table 14: Truth table
Logic input (VI)
Condition
Output
SD /OD
LIN
HIN
LVG
HVG
Shutdown enable half-bridge tri-state
L
X(1)
X(1)
L
L
Interlocking half-bridge tri-state
H
H
H
L
L
0 “logic state” half-bridge tri-state
H
L
L
L
L
1 “logic state” low side direct driving
H
H
L
H
L
1 “logic state” high side direct driving
H
L
H
L
H
Notes:
(1)X:
don’t care.
12/23
DocID024132 Rev 4
STGIPN3H60-H
3.3
Electrical characteristics
Waveform definitions
Figure 5: Dead time and interlocking waveform definitions
DocID024132 Rev 4
13/23
Smart shutdown function
4
STGIPN3H60-H
Smart shutdown function
The STGIPN3H60-H integrates a comparator for fault sensing purposes. The comparator
has an internal voltage reference VREF connected to the inverting input, while the
noninverting input, available on pin (CIN), can be connected to an external shunt resistor in
order to implement a simple over-current protection function. When the comparator
triggers, the device is set in shutdown state and both its outputs are set to low-level leading
the halfbridge in tri-state. In the common overcurrent protection architectures the
comparator output is usually connected to the shutdown input through a RC network, in
order to provide a mono-stable circuit, which implements a protection time that follows the
fault condition. Our smart shutdown architecture allows to immediately turn-off the output
gate driver in case of overcurrent, the fault signal has a preferential path which directly
switches off the outputs. The time delay between the fault and the outputs turn-off is no
more dependent on the RC values of the external network connected to the shutdown pin.
At the same time the DMOS connected to the open-drain output is turned on by the internal
logic which holds it on until the shutdown voltage is lower than the logic input lower
threshold (Vil). Finally, the smart shutdown function provides the possibility to increase the
real disable time without increasing the constant time of the external RC network.
14/23
DocID024132 Rev 4
STGIPN3H60-H
Smart shutdown function
Figure 6: Smart shutdown timing waveforms
comp Vref
C P+
H IN /LIN
PROTECTION
H VG/LVG
SD /OD
open drain gate
(internal)
disable tim e
Fast shut down :
the driver outputs are set in SD state im m ediately after the com parator
triggering even if the SD signal has not yet reach the low er input threshold
An approximation of the disable time is given by:
SHUT DOW N CIRCUIT
V BIAS
where:
R SD
SD/OD
FROM /TO
CONTROLLER
C SD
RON_OD
SM ART
SD
LOGIC
RPD_SD
AM12947v1
Please refer to Table 13: "Sense comparator characteristics (VCC = 15 V unless otherwise
specified)" for internal propagation delay time details.
DocID024132 Rev 4
15/23
Application circuit example
5
STGIPN3H60-H
Application circuit example
Figure 7: Application circuit example
AM09367v1
Application designers are free to use a different scheme according with the specifications
of the device.
16/23
DocID024132 Rev 4
STGIPN3H60-H
5.1
Application circuit example
Guidelines
Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull down resistor is builtin for each input. If an external RC filter is used, for noise immunity, pay attention to
the variation of the input signal level.
To prevent input signal oscillation, the wiring of each input should be as short as
possible.
By integrating an application-specific type HVIC inside the module, direct coupling to
the MCU terminals without an opto-coupler is possible.
Each capacitor should be located as close as possible to the pins of the IPM.
Low inductance shunt resistors should be used for phase leg current sensing.
Electrolytic bus capacitors should be mounted as close to the module bus terminals as
possible. Additional high frequency ceramic capacitors mounted close to the module
pins will further improve performance.
The SD /OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see
Section 4: "Smart shutdown function" for detailed info).
These guidelines are useful for application design to ensure the specifications of the
device. For further details, please refer to the relevant application note AN4043.
Table 15: Recommended operating conditions
Symbol
Parameter
Test conditions
Min.
VPN
Supply voltage
Applied between P-Nu, Nv, Nw
VCC
Control supply voltage
Applied between VCC-GND
VBS
High side bias voltage
Applied between VBOOTi-OUTi
for i = U, V, W
13
tdead
Blanking time to prevent
Arm-short
For each input signal
1.5
fPWM
PWM input signal
-40°C < Tc < 100 °C
-40°C < Tj < 125 °C
TC
Case operation
temperature
DocID024132 Rev 4
13.5
Typ.
Max.
Unit
300
500
V
15
18
V
18
V
µs
25
kHz
100
°C
17/23
Package information
6
STGIPN3H60-H
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK ®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
18/23
DocID024132 Rev 4
STGIPN3H60-H
6.1
Package information
NDIP-26L type C package information
Figure 8: NDIP-26L type C package outline
8278949_7
DocID024132 Rev 4
19/23
Package information
STGIPN3H60-H
Table 16: NDIP-26L type C mechanical data
mm
Dim.
Min.
Typ.
A
4.40
A1
0.80
1.00
1.20
A2
3.00
3.10
3.20
A3
1.70
1.80
1.90
A4
5.70
5.90
6.10
b
0.53
b1
0.52
0.72
b2
0.83
b3
0.82
c
0.46
c1
0.45
0.50
0.55
D
29.05
29.15
29.25
D1
0.50
0.77
1.00
D2
0.35
0.53
0.60
0.68
1.02
0.90
0.98
0.59
D3
20/23
Max.
0.70
29.55
E
12.35
12.45
12.55
e
1.70
1.80
1.90
e1
2.40
2.50
2.60
eB1
16.10
16.40
16.70
eB2
21.18
21.48
21.78
L
1.24
1.39
1.54
DocID024132 Rev 4
STGIPN3H60-H
6.2
Package information
NDIP-26L packing information
Figure 9: NDIP-26L tube dimensions (dimensions are in mm)
Notes:
8313150_3
Table 17: Shipping details
Parameter
Value
Base quantity
17 pcs
Bulk quantity
476 pcs
DocID024132 Rev 4
21/23
Revision history
7
STGIPN3H60-H
Revision history
Table 18: Document revision history
22/23
Date
Revision
Changes
15-Jan-2013
1
Initial release.
02-May-2013
2
Modified: Figure 3 on page 8, Section 4 on page 14 and Figure 6 on
page 15.
14-Mar-2014
3
Updated Figure 3: Switching time test circuit, Table 9: Bootstrapped
voltage (VCC = 15 V unless otherwise specified) and Table 10: Logic
inputs (VCC = 15 V unless otherwise specified).
Updated Section 6: Package mechanical data.
08-Sep-2016
4
Updated Section 6.1: "NDIP-26L type C package information" and
Section 6.2: "NDIP-26L packing information"
Minor text changes
DocID024132 Rev 4
STGIPN3H60-H
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID024132 Rev 4
23/23