STGIPN3H60T-H
Datasheet
SLLIMM-nano IPM, 3 A, 600 V, 3-phase inverter bridge IGBT
Features
•
•
•
•
•
•
•
•
•
•
•
•
NDIP-26L
IPM 3 A, 600 V, 3-phase IGBT inverter bridge including control ICs for gate
driving and freewheeling diodes
Optimized for low electromagnetic interference
VCE(sat) negative temperature coefficient
3.3 V, 5 V, 15 V CMOS/TTL input comparators with hysteresis and pull-down/
pull-up resistors
Undervoltage lockout
Internal bootstrap diode
Interlocking function
Shutdown function
Comparator for fault protection against overtemperature and overcurrent
Op-amp for advanced current sensing
Optimized pinout for board layout
NTC for temperature control (UL 1434 CA 2 and 4)
Applications
•
•
•
•
•
3-phase inverters for motor drives
Dish washers
Refrigerator compressors
Air-conditioning fans
Draining and recirculation pumps
Description
Product status
STGIPN3H60T-H
Device summary
Order code
STGIPN3H60T-H
Marking
GIPN3H60T-H
Package
NDIP-26L
Packing
Tube
This SLLIMM (small low-loss intelligent molded module) nano provides a compact,
high-performance AC motor drive in a simple, rugged design. It is composed of six
IGBTs and three half-bridge HVICs for gate driving, providing low electromagnetic
interference (EMI) characteristics with optimized switching speed. The package is
optimized for thermal performance and compactness in built-in motor applications, or
other low power applications where assembly space is limited. This IPM includes an
operational amplifier, completely uncommitted, and a comparator that can be used to
design a fast and efficient protection circuit. SLLIMM is a trademark of
STMicroelectronics.
DS10102 - Rev 8 - December 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
STGIPN3H60T-H
Internal schematic diagram and pin configuration
1
Internal schematic diagram and pin configuration
Figure 1. Internal schematic diagram
N W (26)
GND (1)
T/ SD / OD (2)
NTC
Vcc W (3)
HIN W (4)
W, OUT W (25)
GND
HVG
VCC
HIN
OUT
Vboot W (24)
LVG
SD/OD
LIN W (5)
LIN
Vboot
OP+ (6)
N V (23)
OPOUT (7)
GND
OP+
OPOUT
OP- (8)
OP-
VCC
Vcc V (9)
HIN
HVG
V, OUT V (22)
OUT
LVG
SD/OD
HIN V (10)
LIN
Vboot
Vboot V (21)
LIN V (11)
CIN (12)
GND
N U (20)
CIN
HVG
Vcc U (13)
VCC
HIN U (14)
HIN
OUT
U, OUT U (19)
LVG
SD/OD
LIN
Vboot
P (18)
T / SD / OD (15)
LIN U (16)
Vboot U (17)
GIPG300720141542SMD
DS10102 - Rev 8
page 2/23
STGIPN3H60T-H
Internal schematic diagram and pin configuration
Table 1. Pin description
DS10102 - Rev 8
Pin
Symbol
Description
1
GND
2
T/SD / OD
3
VCC W
Low voltage power supply W phase
4
HIN W
High-side logic input for W phase
5
LIN W
Low-side logic input for W phase
6
OP+
7
OPOUT
8
OP-
9
VCC V
Low voltage power supply V phase
10
HIN V
High-side logic input for V phase
11
LIN V
Low-side logic input for V phase
12
CIN
13
VCC U
Low voltage power supply for U phase
14
HIN U
High-side logic input for U phase
15
T/SD / OD
16
LIN U
17
VBOOT U
18
P
19
U, OUTU
20
NU
Negative DC input for U phase
21
VBOOT V
Bootstrap voltage for V phase
22
V, OUTV
V phase output
23
NV
Negative DC input for V phase
24
VBOOT W
Bootstrap voltage for W phase
25
W, OUTW
W phase output
26
NW
Ground
NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)
Op-amp non-inverting input
Op-amp output
Op-amp inverting input
Comparator input
NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)
Low-side logic input for U phase
Bootstrap voltage for U phase
Positive DC input
U phase output
Negative DC input for W phase
page 3/23
STGIPN3H60T-H
Internal schematic diagram and pin configuration
Figure 2. Pin layout (top view)
PIN26
(*)
(*)
PIN17
PIN #1 ID
PIN1
(*) Dummy pin internally connected to P (positive DC input).
DS10102 - Rev 8
PIN16
AM09368V1
page 4/23
STGIPN3H60T-H
Electrical ratings
2
Electrical ratings
2.1
Absolute maximum ratings
Table 2. Inverter part
Symbol
VCES
Parameter
(1)
Collector-emitter voltage for each IGBT (VIN
= 0 V)
Value
Unit
600
V
±IC
Continuous collector current each IGBT (TC = 25 °C)
3
A
±ICP (2)
Pulsed collector current each IGBT (less than 1 ms)
18
A
Total power dissipation each IGBT (TC = 25 °C)
9.7
W
PTOT
1. Applied between HINi, LINi and GND for i = U, V, W.
2. Pulse width limited by max. junction temperature.
Table 3. Control part
Symbol
Parameter
Min.
Max.
Unit
Vboot - 21
Vboot + 0.3
V
VOUT
Output voltage applied between OUTU, OUTV, OUTW GND
VCC
Low voltage power supply
- 0.3
21
V
VCIN
Comparator input voltage
- 0.3
VCC + 0.3
V
Vop+
Op-amp non-inverting input
- 0.3
VCC + 0.3
V
Vop-
Op-amp inverting input
- 0.3
VCC + 0.3
V
Vboot
Bootstrap voltage
- 0.3
620
V
Logic input voltage applied between HIN, LIN and GND
- 0.3
15
V
VT/SD/OD
Open-drain voltage
- 0.3
15
V
dVout/dt
Allowed output slew rate
50
V/ns
VIN
Table 4. Total system
Symbol
VISO
DS10102 - Rev 8
Parameter
Isolation withstand voltage applied between each pin and heat sink plate
(AC voltage, t = 60 s)
Value
Unit
1000
Vrms
TJ
Power chip operating junction temperature range
-40 to 150
°C
TC
Module operation case temperature range
-40 to 125
°C
page 5/23
STGIPN3H60T-H
Thermal data
2.2
Thermal data
Table 5. Thermal data
Symbol
Rth(j-c)
RthJA
DS10102 - Rev 8
Parameter
Value
Thermal resistance junction-case single IGBT
12.8
Thermal resistance junction-case single diode
15.5
Thermal resistance junction-ambient (per module)
Unit
°C/W
22
page 6/23
STGIPN3H60T-H
Electrical characteristics
3
Electrical characteristics
3.1
Inverter part
TJ = 25 °C unless otherwise specified.
Table 6. Static
Symbol
VCE(sat)
Parameter
Collector-emitter saturation
voltage
Test conditions
Min.
Typ.
Max.
-
2.15
2.6
VCC = Vboot = 15 V, VIN(1) = 0 to 5
V, IC = 1 A
V
VCC = Vboot = 15 V, VIN(1) = 0 to
-
5 V, IC = 1 A, TJ = 125 °C
ICES
VF
Collector cut-off current
(1)
(VIN
= 0 “logic state”)
Diode forward voltage
Unit
VCE = 550 V,
VCC = 15 V, VBS = 15 V
VIN(1) = 0 “logic state”, IC = 1 A
1.65
-
250
µA
-
1.7
V
Unit
1. Applied between HINi, LINi and GND for i = U, V, W.
Table 7. Inductive load switching time and energy
Symbol
ton
(1)
tc(on) (1)
toff
(1)
tc(off) (1)
trr
Parameter
Test conditions
Turn-on time
Min.
Typ.
Max.
-
275
-
Crossover time (on)
VDD = 300 V,
-
90
-
Turn-off time
VCC = Vboot = 15 V,
-
890
-
-
125
-
-
50
-
-
18
-
-
13
-
Crossover time (off)
Reverse recovery time
Eon
Turn-on switching energy
Eoff
Turn-off switching energy
VIN (2) = 0 to 5 V,
IC = 1 A
(see Figure 4. Switching time
definition)
ns
µJ
1. tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are the switching time of IGBT itself
under the internally given gate driving conditions.
2. Applied between HINi, LINi and GND for i = U, V, W.
DS10102 - Rev 8
page 7/23
STGIPN3H60T-H
Inverter part
Figure 3. Switching time test circuit
AM06019v2
Figure 4. Switching time definition
100% IC
100% IC
t rr
IC
VCE
VIN
VIN
t ON
VIN(ON)
VCE
IC
t C(ON)
10% IC
90% IC 10% VCE
t OFF
VIN(OFF)
(a) turn-on
t C(OFF)
10% VCE
(b) turn-off
10% IC
AM09223V1
Figure 4. Switching time definition refers to HIN, LIN inputs (active high).
DS10102 - Rev 8
page 8/23
STGIPN3H60T-H
Control part
3.2
Control part
VCC = 15 V unless otherwise specified
Table 8. Low voltage power supply
Symbol
Min.
Typ.
Max.
Unit
VCC UV hysteresis
1.2
1.5
1.8
V
VCC_thON
VCC UV turn-ON threshold
11.5
12
12.5
V
VCC_thOFF
VCC UV turn-OFF threshold
10
10.5
11
V
150
µA
1
mA
VCC_hys
Iqccu
Iqcc
Parameter
Test conditions
VCC = 15 V, T/SD/OD = 5 V,
LIN = 0 V, HIN = 0 V,
Undervoltage quiescent
supply current
CIN = 0 V
VCC = 15 V, T/SD/OD = 5 V,
LIN = 0 V, HIN = 0 V,
Quiescent current
CIN = 0 V
Vref
Internal comparator (CIN)
reference voltage
0.5
0.54
0.58
V
Min.
Typ.
Max.
Unit
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn-ON threshold
11.1
11.5
12.1
V
VBS_thOFF
VBS UV turn-OFF threshold
9.8
10
10.6
V
IQBSU
Undervoltage VBS quiescent
current
70
110
µA
200
300
µA
Table 9. Bootstrapped voltage
Symbol
VBS_hys
IQBS
Parameter
VBS quiescent current
Test conditions
VBS < 9 V, T/SD/OD = 5 V,
LIN = 0 V and HIN = 5 V,
CIN = 0 V
VBS = 15 V, T/SD/OD = 5 V,
LIN = 0 V and
HIN = 5 V, CIN = 0 V
RDS(on)
DS10102 - Rev 8
Bootstrap driver on-resistance LVG ON
120
Ω
page 9/23
STGIPN3H60T-H
Control part
Table 10. Logic inputs
Symbol
Parameter
Test conditions
Vil
Low logic level voltage
Vih
High logic level voltage
IHINh
HIN logic “1” input bias
current
HIN = 15 V
IHINI
HIN logic “0” input bias
current
Min.
Typ.
Max.
Unit
0.8
V
2.25
100
µA
HIN = 0 V
1
µA
ILINI
LIN logic “0” input bias current LIN = 0 V
1
µA
ILINh
LIN logic “1” input bias current LIN = 15 V
20
40
100
µA
ISDh
SD logic “0” input bias current
SD = 15 V
200
350
500
µA
ISDI
SD logic “1” input bias current
SD = 0 V
3
µA
Dead time
(see Figure 9. Dead time and
interlocking waveform
definitions)
Dt
20
V
40
180
ns
Table 11. Op-amp characteristics
Symbol
Parameter
Vio
Input offset voltage
Iio
Input offset current
Iib
Input bias current (1)
Test condition
Min.
Typ.
Max.
Unit
6
mV
4
40
nA
100
200
nA
75
150
mV
Vic = 0 V, Vo = 7.5 V
Vic = 0 V, Vo = 7.5 V
VOL
Low level output voltage
RL = 10 kΩ to VCC
VOH
High level output voltage
RL = 10 kΩ to GND
14
14.7
V
Source, Vid = + 1 V, Vo = 0 V
16
30
mA
Sink, Vid = -1 V, Vo = VCC
50
80
mA
2.5
3.8
V/µs
Io
SR
Output short-circuit current
Slew rate
Vi = 1 - 4 V, CL = 100 pF,
unity gain
GBWP
Gain bandwidth product
Vo = 7.5 V
8
12
MHz
Avd
Large signal voltage gain
RL = 2 kΩ
70
85
dB
SVR
Supply voltage rejection ratio
vs. VCC
60
75
dB
CMRR
Common mode rejection ratio
55
70
dB
1. The direction of input current is out of the IC.
DS10102 - Rev 8
page 10/23
STGIPN3H60T-H
Control part
Table 12. Sense comparator characteristics
Symbol
Iib
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Input bias current
VCIN = 1 V
1
µA
Vod
Open-drain low level output
voltage
Iod = 3 mA
0.5
V
RON_OD
Open-drain low level output
Iod = 3 mA
RPD_SD
SD pull-down resistor (1)
td_comp
Comparator delay
T/SD/OD pulled to 5 V
through 100 kΩ resistor
90
SR
Slew rate
CL = 180 pF; Rpu = 5 kΩ
60
tsd
Shutdown to high- / low-side
driver propagation delay
VOUT = 0, Vboot = VCC,
VIN = 0 to 3.3 V
tisd
Comparator triggering to
high- / low-side driver turn-off
propagation delay
Measured applying a voltage
step from 0 V to 3.3 V to pin
CIN
50
166
Ω
125
kΩ
130
ns
V/µs
125
200
ns
50
200
250
1. Equivalent value derived from the resistances of three drivers in parallel.
Table 13. Truth table
Logic input (VI)
Condition
Output
T/SD/OD
LIN
HIN
LVG
HVG
Shutdown enable half-bridge tri-state
L
X(1)
X(1)
L
L
Interlocking half-bridge tri-state
H
H
H
L
L
0 “logic state” half-bridge tri-state
H
L
L
L
L
1 “logic state” low- side direct driving
H
H
L
H
L
1 “logic state” high- side direct driving
H
L
H
L
H
1. X: don’t care.
3.2.1
NTC thermistor
Figure 5. Internal structure of SD and NTC
Vbias
R SD
LIN
VT/SD/OD
Vboot
SD/OD
C SD
NTC
HVG
HIN
VCC
OUT
RPD_SD
LVG
GND
CIN
RPD_SD: equivalent value as result of resistances of three drivers in parallel.
DS10102 - Rev 8
page 11/23
STGIPN3H60T-H
Control part
Figure 6. Equivalent resistance (NTC//RPD_SD)
140
Equivalent Resistance (kΩ)
120
100
80
60
40
20
0
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
Figure 7. Equivalent resistance (NTC//RPD_SD zoom)
14
12
Equivalent Resistance (kΩ)
10
8
6
4
2
0
70
80
90
100
110
120
Temperature (°C)
DS10102 - Rev 8
page 12/23
STGIPN3H60T-H
Control part
Figure 8. Voltage of T/SD/OD pin according to NTC temperature
5.0
SD/OD: high
4.5
VBias = 5 V
R SD = 2.2 kΩ
VSD(V)
4.0
3.5
VBias = 3.3 V
RSD = 1.0 kΩ
3.0
2.5
2.0
25
50
75
100
125
Temperature (°C)
DS10102 - Rev 8
page 13/23
STGIPN3H60T-H
Waveform definitions
3.3
Waveform definitions
DS10102 - Rev 8
CKIN
GG
ERO
L
INT
INT
ERO
L
CKIN
G
Figure 9. Dead time and interlocking waveform definitions
page 14/23
STGIPN3H60T-H
Shutdown function
4
Shutdown function
The device is equipped with three half-bridge IC gate drivers and integrates a comparator for fault detection.
The comparator has an internal voltage reference VREF connected to the inverting input, while the non-inverting
input pin (CIN) can be connected to an external shunt resistor for current monitoring.
Since the comparator is embedded in the U IC gate driver, in case of fault it disables directly the U outputs,
whereas the shutdown of V and W IC gate drivers depends on the RC value of the external SD circuitry, which
fixes the disabling time.
For an effective design of the shutdown circuit, please refer to Application note AN4966.
Figure 10. Shutdown timing waveforms
GADG250120171515FSR
V REF
CI N
H IN or LIN
U
V, W
H VG or LVG
PROTECT ION
SD /OD
or
T/SD/OD
A
B
open -drain ga te
(interna l)
A
B
∗
∗
∗
∗
≅
∗
_
∗
RSD and CSD external circuitry must be designed to ensure
Please refer to AN4966 for further details.
* RNTC to be considered only when the NTC is internally connected to the T/SD/OD pin.
DS10102 - Rev 8
page 15/23
DS10102 - Rev 8
RS
+
R1
5V / 3.3V
-
VC C
C vc c
C SD
R SD
5V / 3.3V
ADC
C2
R1
HIN W
R3
R2
R4
R1
R1
R1
SD
Temp.
Monitoring
MICROCONTROLLER
LIN W
ADC
HIN V
LIN V
R1
HIN U
RS
R1
R5
C1
C1
C1
C1
DZ1
LIN U (16)
Vcc W (3)
HIN W (4)
LINW (5)
OP+ (6)
OPOUT (7)
OP- (8)
Vcc V (9)
HIN V (10)
LIN V (11)
CIN (12)
GND (1)
T / SD / OD (2)
C OP
C SF
Vcc U (13)
HIN U (14)
T / SD / OD (15)
SGN_GN D
R SF
C1
C1
NTC
LIN
GND
VCC
HIN
SD/OD
LIN
GND
OPOUT
OP-
VCC
HIN
SD/OD
LIN
GND
VCC
HIN
SD/OD
LVG
OUT
HVG
Vboot
OP+
LVG
OUT
HVG
Vboot
CIN
LVG
OUT
HVG
Vboot
RS
N W (26)
W, OUT W (25)
Vboot W (24)
N V (23)
V, OUT V (22)
Vboot V (21)
N U (20)
U, OUT U (19)
P (18)
Vboot U (17)
Cboot W
Cboot V
Cboot U
C3
C3
C3
DZ2
DZ2
DZ2
PWR_GN D
Rshunt
M
C4
Cvdc
-
+
VDC
5
LIN U
Application circuit example
STGIPN3H60T-H
Application circuit example
Figure 11. Application circuit example
GAD250720161156FSR
Application designers are free to use a different scheme according to the specifications of the device.
page 16/23
STGIPN3H60T-H
Guidelines
5.1
Guidelines
•
•
Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull-down resistor is built-in for each input. To
avoid input signal oscillation, the wiring of each input should be as short as possible, and the use of RC
filters (R1, C1) on each input signal is suggested. The filters should be with a time constant of about 100 ns
and placed as close as possible to the IPM input pins.
The use of a bypass capacitor CVCC (aluminum or tantalum) can reduce the transient circuit demand on the
power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, a
decoupling capacitor C2 (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible
to the Vcc pin and in parallel with the bypass capacitor.
•
The use of an RC filter (RSF, CSF) is recommended to prevent protection circuit malfunction. The time
constant (RSF x CSF) should be set to 1 μs and the filter must be placed as close as possible to the CIN pin.
•
The SD is an input/output pin (open-drain type if it is used as output). A built-in thermistor NTC is internally
connected between the SD pin and GND. The voltage VSD-GND decreases as the temperature increases,
due to the pull-up resistor RSD. In order to keep the voltage always higher than the high-level logic threshold,
the pull-up resistor should be set to 1 kΩ or 2.2 kΩ for 3.3 V or 5 V MCU power supply, respectively. The
capacitor CSD of the filter on SD should be fixed no higher than 3.3 nF in order to assure the SD activation
time τA ≤ 500 ns. Besides, the filter should be placed as close as possible to the SD pin.
•
The decoupling capacitor C3 (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each
Cboot, filters high-frequency disturbance. Both Cboot and C3 (if present) should be placed as close as
possible to the U, V, W and Vboot pins. Bootstrap negative electrodes should be connected to U, V, W
terminals directly and separated from the main output wires.
To avoid overvoltage on the Vcc pin, a Zener diode (Dz1) can be used. Similarly on the Vboot pin, a Zener
diode (Dz2) can be placed in parallel with each Cboot.
•
•
The use of the decoupling capacitor C4 (100 to 220 nF, with low ESR and low ESL) in parallel with the
electrolytic capacitor Cvdc is useful to prevent surge destruction. Both capacitors C4 and Cvdc should be
placed as close as possible to the IPM (C4 has priority over Cvdc).
•
By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals
without an opto-couplers is possible.
Low-inductance shunt resistors have to be used for phase leg current sensing.
In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as
possible.
The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can
reduce the impact of power ground fluctuation.
•
•
•
These guidelines ensure the device specifications for application designs. For further details, please refer to the
relevant application note.
Table 14. Recommended operating conditions
Symbol
Test conditions
VPN
Supply voltage
Applied between P-Nu, Nv, Nw
VCC
Control supply voltage
Applied between VCC-GND
VBS
High-side bias voltage
tdead
fPWM
TC
DS10102 - Rev 8
Parameter
Blanking time to prevent
arm-short
PWM input signal
Case operation temperature
Applied between VBOOTx-OUT
for x = U, V, W
For each input signal
-40 °C < TC < 100 °C
-40 °C < TJ < 125 °C
Min.
13.5
13
Typ.
Max.
Unit
300
500
V
15
18
V
18
V
1.5
μs
25
kHz
100
°C
page 17/23
STGIPN3H60T-H
Package information
6
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
6.1
NDIP-26L type C package information
Figure 12. NDIP-26L type C package outline
8278949_7
DS10102 - Rev 8
page 18/23
STGIPN3H60T-H
NDIP-26L type C package information
Table 15. NDIP-26L type C mechanical data
Dim.
mm
Min.
Typ.
A
4.40
A1
0.80
1.00
1.20
A2
3.00
3.10
3.20
A3
1.70
1.80
1.90
A4
5.70
5.90
6.10
b
0.53
b1
0.52
b2
0.83
b3
0.82
c
0.46
c1
0.45
0.50
0.55
D
29.05
29.15
29.25
D1
0.50
0.77
1.00
D2
0.35
0.53
0.70
0.72
0.60
0.68
1.02
0.90
0.98
0.59
D3
DS10102 - Rev 8
Max.
29.55
E
12.35
12.45
12.55
e
1.70
1.80
1.90
e1
2.40
2.50
2.60
eB1
16.10
16.40
16.70
eB2
21.18
21.48
21.78
L
1.24
1.39
1.54
page 19/23
STGIPN3H60T-H
NDIP-26L packing information
6.2
NDIP-26L packing information
Figure 13. NDIP-26L tube (dimensions are in mm)
Notes:
±0.1
1- Material: extrused/transparent PVC 0.80
mm thickness 10E6~10E11/SQ PVC
2- General tolerance unless otherwise specified: ±0.25 mm
8313150_3
Table 16. Shipping details
Parameter
Value
Base quantity
17 pieces
Bulk quantity
476 pieces
DS10102 - Rev 8
page 20/23
STGIPN3H60T-H
Revision history
Table 17. Document revision history
Date
Revision
Changes
19-Dec-2013
1
Initial release.
23-Apr-2014
2
Updated Figure 1: Internal schematic diagram and Section 3: Electrical
characteristics.
Minor text changes.
05-May-2014
3
Updated features in cover page.
Updated:
– Figure 1: Internal schematic diagram – Table 10: Logic inputs (VCC = 15 V unless
otherwise specified)
– Table 12: Sense comparator characteristics (VCC = 15 V unless otherwise
specified)
04-Nov-2014
4
– Section 3.1.1: NTC thermistor
– Section 4: Smart shutdown function description
– Figure 10: Smart shutdown timing waveforms
– Figure 11: Typical application circuit
– Section 5.1: Recommendations
– minor text changes
07-Nov-2014
5
08-Jun-2015
6
16-Mar-2017
7
Minor text and formatting edits throughout document.
Updated Section 6: Package information.
Minor text changes.
Updated Section 6.1: "NDIP-26L type C package information" and Section 6.2:
"NDIP-26L packing information"
Minor text changes
Removed maturity status indication from cover page.
Modified applications and description on cover page.
11-Dec-2019
8
Modified Table 2. Inverter part, Table 5. Thermal data and Table 6. Static.
Modified Section 3.2 Control part, Section 4 Shutdown function and Section
5.1 Guidelines.
Minor text changes.
DS10102 - Rev 8
page 21/23
STGIPN3H60T-H
Contents
Contents
1
Internal schematic diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3
2.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1
Inverter part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2
Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1
3.3
NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4
Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5
Application circuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.1
6
Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
6.1
NDIP-26L type C package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2
NDIP-26L packing information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
DS10102 - Rev 8
page 22/23
STGIPN3H60T-H
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
DS10102 - Rev 8
page 23/23