0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STGIPQ3H60T-HZS

STGIPQ3H60T-HZS

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    PowerDIP26

  • 描述:

    STGIPQ3H60T-HZS

  • 数据手册
  • 价格&库存
STGIPQ3H60T-HZS 数据手册
STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Datasheet SLLIMM-nano, 2nd series IPM, 3 A, 600 V, 3-phase inverter bridge IGBT Features • • • • • IPM 3 A, 600 V, 3-phase IGBT inverter bridge including 3 control ICs for gate driving and freewheeling diodes 3.3 V, 5 V, 15 V TTL/CMOS input comparators with hysteresis and pull-down/ pull-up resistors Internal bootstrap diode Optimized for low electromagnetic interference Undervoltage lockout VCE(SAT) negative temperature coefficient • • • • • • • • Shutdown function Interlocking function Op-amp for advanced current sensing Comparator for fault protection against overcurrent NTC (UL 1434 CA 2 and 4) Isolation ratings of 1500 Vrms/min. Up to ±2 kV ESD protection (HBM C = 100 pF, R = 1.5 kΩ) UL recognition: UL 1557, file E81734 • N2DIP-26L type L no stand-off N2DIP-26L type Z no stand-off Applications • • • • • • 3-phase induction motor (ACIM) Dishwasher Fans Kitchen hoods PMSM / BLDC motor control Refrigerators and freezers Product status link Description STGIPQ3H60T-HLS This second series of SLLIMM (small low-loss intelligent molded module) nano provides a compact, high-performance AC motor drive in a simple, rugged design. It is composed of six improved short-circuit rugged trench gate fieldstop IGBTs with freewheeling diodes and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is designed to allow a better and more easily screwed-on heat sink, and is optimized for thermal performance and compactness in built-in motor applications or other low power applications where assembly space is limited. This IPM includes a completely uncommitted operational amplifier and a comparator that can be used to design a fast and efficient protection circuit. STGIPQ3H60T-HZS Product summary Order code: STGIPQ3H60T-HLS Marking GIPQ3H60T-HLS Package N2DIP-26L type L no stand-off Packing Tube Order code: STGIPQ3H60T-HZS Marking GIPQ3H60T-HZS Package N2DIP-26L type Z no stand-off Packing Tube DS11141 - Rev 5 - September 2022 For further information contact your local STMicroelectronics sales office. www.st.com STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Internal schematic diagram and pin configuration 1 Internal schematic diagram and pin configuration Figure 1. Internal schematic diagram N W (26) GND (1) T/ SD / OD (2) NTC Vcc W (3) HIN W (4) W, OUT W (25) GND HVG VCC HIN OUT Vboot W (24) LVG SD/OD LIN W (5) LIN Vboot OP+ (6) N V (23) OPOUT (7) GND OP+ OPOUT OP- (8) OP- VCC Vcc V (9) HIN HVG V, OUT V (22) OUT LVG SD/OD HIN V (10) LIN Vboot Vboot V (21) LIN V (11) CIN (12) GND N U (20) CIN HVG Vcc U (13) VCC HIN U (14) HIN OUT U, OUT U (19) LVG SD/OD LIN Vboot P (18) T / SD / OD (15) LIN U (16) Vboot U (17) GIPG300720141542SMD DS11141 - Rev 5 page 2/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Internal schematic diagram and pin configuration Table 1. Pin description DS11141 - Rev 5 Pin Symbol Description 1 GND 2 T/SD/OD 3 VCC W Low-voltage power supply W phase 4 HIN W High-side logic input for W phase 5 LIN W Low-side logic input for W phase 6 OP+ 7 OPOUT 8 OP- 9 VCC V Low-voltage power supply V phase 10 HIN V High-side logic input for V phase 11 LIN V Low-side logic input for V phase Ground NTC thermistor terminal/shutdown logic input (active low)/open-drain (comparator output) Op-amp non-inverting input Op-amp output Op-amp inverting input 12 CIN 13 VCC U Comparator input Low-voltage power supply for V phase 14 HIN U High-side logic input for V phase 15 T/SD/OD 16 LIN U 17 Vboot U 18 P 19 U, OUTU 20 NU Negative DC input for U phase 21 Vboot V Bootstrap voltage for V phase 22 V, OUTV 23 NV Negative DC input for V phase 24 Vboot W Bootstrap voltage for W phase 25 W, OUTW 26 NW NTC thermistor terminal/shutdown logic input (active low)/open-drain (comparator output) Low-side logic input for U phase Bootstrap voltage for U phase Positive DC input U phase output V phase output W phase output Negative DC input for W phase page 3/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Internal schematic diagram and pin configuration Figure 2. Pin layout (top view) - N2DIP-26L type L PIN 26 * * PIN 17 Exposed pin not connected Exposed pin internally connected to GND isolated by glue spot adding PIN 16 PIN 1 * Dummy pins internally connected to P (positive DC input) GADG181220181209IG Figure 3. Pin layout (top view) - N2DIP-26L type Z PIN 26 * * PIN 17 Exposed pin not connected PIN 1 * Dummy pins internally connected to P (positive DC input) DS11141 - Rev 5 Exposed pin internally connected to GND isolated by glue spot adding PIN 16 GADG181220181216IG page 4/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Electrical ratings 2 Electrical ratings TJ = 25 °C unless otherwise specified 2.1 Absolute maximum ratings Table 2. Inverter part Symbol Value Unit 600 V Continuous collector current for each IGBT (TC = 25 °C) 3 A ICP(2) Peak collector current for each IGBT (less than 1 ms) 6 A PTOT Total power dissipation for each IGBT (TC = 25 °C) 12 W VCES IC Parameter Collector-emitter voltage for each IGBT (VIN(1) = 0) 1. Applied among HINx, LINx and GND for x = U, V, W 2. Pulse width limited by maximum junction temperature. Table 3. Control part Symbol Parameter Min. Max. Unit VCC Low voltage power supply -0.3 21 V Vboot Bootstrap voltage -0.3 620 V VOUT Output voltage applied among OUTU, OUTV, OUTW - GND Vboot - 21 Vboot + 0.3 V VCIN Comparator input voltage -0.3 VCC + 0.3 V Vop+ Op-amp non-inverting input -0.3 VCC + 0.3 V Vop- Op-amp inverting input -0.3 VCC + 0.3 V VIN Logic input voltage applied among HINx, LINx and GND -0.3 15 V VT/SD/OD Open-drain voltage -0.3 15 V dVout/dt Allowed output slew rate 50 V/ns Value Unit 1500 Vrms Table 4. Total system Symbol VISO DS11141 - Rev 5 Parameter Isolation withstand voltage applied to each pin and heat sink plate (AC voltage, t = 60 s) TJ Power chip operating junction temperature -40 to 150 °C TC Operating case temperature range -40 to 125 °C page 5/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Thermal data 2.2 Thermal data Table 5. Thermal data Symbol RthJC DS11141 - Rev 5 Parameter Value Thermal resistance, junction-to-case single IGBT 10 Thermal resistance, junction-to-case single diode 15 Unit °C/W page 6/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Electrical characteristics 3 Electrical characteristics TJ = 25 °C unless otherwise specified. 3.1 Inverter part Table 6. Static Symbol Parameter ICES Collector cut-off current (VIN(1) = 0 “logic state”) VCE(sat) VF Collector-emitter saturation voltage Test conditions Min. VCE = 550 V, VCC = VBoot = 15 V Typ. - VCC = Vboot = 15 V, VIN(1) = 0 to 5 V, Max. Unit 250 μA - 2.15 2.6 V - 1.35 1.8 V Min. Typ. Max. Unit Turn-on time - 275 - Crossover time (on) - 90 - - 890 - - 125 - - 50 - Diode forward voltage IC = 1 A VIN(1) = 0 “logic state”, IC = 1 A 1. Applied among HINx, LINx and GND for x = U, V, W. Table 7. Inductive load switching time and energy Symbol ton(1) (1) tc(on) toff(1) (1) tc(off) trr Parameter Turn-off time Crossover time (off) Reverse recovery time Test conditions VDD = 300 V,VCC = Vboot = 15 V, VIN(2) = 0 to 5 V, IC = 1 A (see Figure 5. Switching time definition) Eon Turn-on switching energy - 18 - Eoff Turn-off switching energy - 13 - ns µJ 1. tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are the switching times of the IGBT itself under the internally given gate driving conditions. 2. Applied among HINx, LINx and GND for x = U, V, W. DS11141 - Rev 5 page 7/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Inverter part Figure 4. Switching time test circuit AM06019v2 Figure 5. Switching time definition 100% IC 100% IC t rr IC VCE VIN VIN t ON VIN(ON) VCE IC t C(ON) 10% IC 90% IC 10% VCE t OFF VIN(OFF) (a) turn-on t C(OFF) 10% VCE 10% IC (b) turn-off AM09223V1 Figure 5. Switching time definition refers to HIN, LIN inputs (active high). DS11141 - Rev 5 page 8/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Control part 3.2 Control part Table 8. Low-voltage power supply Symbol Min. Typ. Max. Unit VCC UV hysteresis 1.2 1.5 1.8 V VCC_thON VCC UV turn-ON threshold 11.5 12 12.5 V VCC_thOFF VCC UV turn-OFF threshold 10 10.5 11 V VCC_hys Parameter Test conditions Iqccu Undervoltage quiescent supply current VCC = 10 V, T/SD/OD = 5 V, LIN = HIN = CIN = 0 V 150 µA Iqcc Quiescent current VCC = 10 V, T/SD/OD = 5 V, LIN = HIN = CIN = 0 V 1 mA Vref Internal comparator (CIN) reference voltage 0.51 0.54 0.56 V Min. Typ. Max. Unit VBS UV hysteresis 1.2 1.5 1.8 V VBS_thON VBS UV turn-ON threshold 11.1 11.5 12.1 V VBS_thOFF VBS UV turn-OFF threshold 9.8 10 10.6 V IQBSU Undervoltage VBS quiescent current 70 110 µA 150 210 µA Table 9. Bootstrapped voltage Symbol VBS_hys Parameter Test conditions VBS < 9 V, T/SD/OD = 5 V, LIN = 0 V and HIN = 5 V, CIN = 0 V VBS = 15 V, T/SD/OD = 5 V, IQBS VBS quiescent current LIN = 0 V and HIN = 5 V, CIN = 0 RDS(on) Bootstrap driver on-resistance LVG ON 120 Ω Table 10. Logic inputs Symbol DS11141 - Rev 5 Parameter Vil Low logic level voltage Vih High logic level voltage Test conditions Min. Typ. Max. Unit 0.8 V 2.25 IHINh HIN logic “1” input bias current HIN = 15 V IHINl HIN logic “0” input bias current ILINl 20 V 40 100 µA HIN = 0 V 1 µA LIN logic “0” input bias current LIN = 0 V 1 µA ILINh LIN logic “1” input bias current LIN = 15 V 20 40 100 µA ISDh SD logic “0” input bias current SD = 15 V 210 350 477 µA ISDl SD logic “1” input bias current SD = 0 V 3 µA Dt Dead time See Figure 10. Dead time and interlocking waveform definitions 180 ns page 9/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Control part Table 11. Op-amp characteristics Symbol Parameter Vio Input offset voltage Iio Input offset current Iib Input bias current(1) Test conditions Min. Typ. Max. Unit 6 mV 4 40 nA 100 200 nA 75 150 mV Vic = 0 V, Vo = 7.5 V Vic = 0 V, Vo = 7.5 V VOL Low level output voltage RL = 10 kΩ to VCC VOH High level output voltage RL= 10 kΩ to GND 14 14.7 V Source, Vid = + 1 V; Vo = 0 V 16 30 mA Sink, Vid = -1 V; Vo = VCC 50 80 mA Slew rate Vi = 1 - 4 V; CL = 100 pF; unity gain 2.5 3.8 V/µs GBWP Gain bandwidth product Vo = 7.5 V 8 12 MHz Avd Large signal voltage gain RL = 2 kΩ 70 85 dB SVR Supply voltage rejection ratio vs VCC 60 75 dB CMRR Common mode rejection ratio 55 70 dB Min. Typ. Io SR Output short-circuit current 1. The direction of input current is out of the IC. Table 12. Sense comparator characteristics Symbol Iib Parameter Test conditions Max. Unit Input bias current VCIN = 1 V - 1 µA Vod Open-drain low level output voltage Iod = 3 mA - 0.5 V RON_OD Open-drain low level output Iod = 3 mA - 166 Ω RPD_SD SD pull-down resistor(1) - 125 kΩ td_comp Comparator delay T/SD/OD pulled to 5 V through 100 kΩ resistor - 90 SR Slew rate CL = 180 pF, Rpu = 5 kΩ - 60 tsd Shutdown to high-/low-side driver propagation delay VOUT = 0, Vboot = VCC, VIN = 0 to 3.3 V - 125 tisd Comparator triggering to high-/ low-side driver turn-off propagation delay Measured applying a voltage step from 0 V to 3.3 V to pin CIN 130 ns V/µs ns - 200 1. Equivalent values as a result of the resistances of three drivers in parallel. DS11141 - Rev 5 page 10/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Control part Table 13. Truth table Logic input (VI) Conditions Output T/SD/OD LIN HIN LVG HVG Shutdown enable half-bridge tri-state L X(1) X(1) L L Interlocking half-bridge tri-state H H H L L 0 “logic state” half-bridge tri-state H L L L L 1 “logic state” low-side direct driving H H L H L 1 “logic state” high-side direct driving H L H L H 1. X: don’t care. 3.2.1 NTC thermistor Figure 6. Internal structure of SD and NTC Vbias R SD LIN VT/SD/OD Vboot SD/OD C SD HVG HIN NTC VCC OUT RPD_SD LVG GND CIN RPD_SD: equivalent value as result of resistances of three drivers in parallel. Figure 7. Equivalent resistance (NTC//RPD_SD) 140 Equivalent Resistance (kΩ) 120 100 80 60 40 20 0 -40 -20 0 20 40 60 80 100 120 Temperature (°C) DS11141 - Rev 5 page 11/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Control part Figure 8. Equivalent resistance (NTC//RPD_SD) zoom 14 12 Equivalent Resistance (kΩ) 10 8 6 4 2 0 70 80 90 100 110 120 Temperature (°C) Figure 9. Voltage of T/SD/OD pin according to NTC temperature 5.0 SD/OD: high 4.5 VBias = 5 V R SD = 2.2 kΩ VSD(V) 4.0 3.5 VBias = 3.3 V RSD = 1.0 kΩ 3.0 2.5 2.0 25 50 75 100 125 Temperature (°C) DS11141 - Rev 5 page 12/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Waveform definitions 3.3 Waveform definitions DS11141 - Rev 5 CKIN GG ERO L INT INT ERO L CKIN G Figure 10. Dead time and interlocking waveform definitions page 13/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Shutdown function 4 Shutdown function The device is equipped with three half-bridge IC gate drivers and integrates a comparator for fault detection. The comparator has an internal voltage reference VREF connected to the inverting input, while the non-inverting input pin (CIN) can be connected to an external shunt resistor for current monitoring. Since the comparator is embedded in the U IC gate driver, in case of fault it disables directly the U outputs, whereas the shutdown of V and W IC gate drivers depends on the RC value of the external SD circuitry, which fixes the disabling time. For an effective design of the shutdown circuit, please refer to Application note AN4966. Figure 11. Shutdown timing waveforms GADG250120171515FSR V REF CI N H IN or LIN U V, W H VG or LVG PROTECT ION SD /OD or T/SD/OD A B open -drain ga te (interna l) A B ∗ ∗ ∗ ∗ ≅ ∗ _ ∗ RSD and CSD external circuitry must be designed to ensure Please refer to AN4966 for further details. * RNTC to be considered only when the NTC is internally connected to the T/SD/OD pin. DS11141 - Rev 5 page 14/26 DS11141 - Rev 5 RS + R1 5V / 3.3V - VC C C vc c C SD R SD 5V / 3.3V ADC C2 R1 HIN W R3 R2 R4 R1 R1 R1 SD Temp. Monitoring MICROCONTROLLER LIN W ADC HIN V LIN V R1 HIN U RS R1 R5 C1 C1 C1 C1 DZ1 LIN U (16) Vcc W (3) HIN W (4) LINW (5) OP+ (6) OPOUT (7) OP- (8) Vcc V (9) HIN V (10) LIN V (11) GND (1) T / SD / OD (2) C OP C SF CIN (12) Vcc U (13) HIN U (14) T / SD / OD (15) SGN_GN D R SF C1 C1 NTC LIN GND VCC HIN SD/OD LIN GND OPOUT OP- VCC HIN SD/OD LIN GND VCC HIN SD/OD LVG OUT HVG Vboot OP+ LVG OUT HVG Vboot CIN LVG OUT HVG Vboot RS N W (26) W, OUT W (25) Vboot W (24) N V (23) V, OUT V (22) Vboot V (21) N U (20) U, OUT U (19) P (18) Vboot U (17) Cboot W Cboot V Cboot U C3 C3 C3 DZ2 DZ2 DZ2 PWR_GN D Rshunt M C4 Cvdc - + VDC 5 LIN U STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Application circuit example Application circuit example Figure 12. Application circuit example GAD250720161156FSR Application designers are free to use a different scheme according to the specifications of the device. page 15/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Guidelines 5.1 Guidelines • • Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull-down resistor is built-in for each input. To avoid input signal oscillation, the wiring of each input should be as short as possible, and the use of RC filters (R1, C1) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins. The use of a bypass capacitor CVCC (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, a decoupling capacitor C2 (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to the Vcc pin and in parallel with the bypass capacitor. • The use of an RC filter (RSF, CSF) is recommended to prevent protection circuit malfunction. The time constant (RSF x CSF) should be set to 1 μs and the filter must be placed as close as possible to the CIN pin. • The SD is an input/output pin (open-drain type if it is used as output). A built-in thermistor NTC is internally connected between the SD pin and GND. The voltage VSD-GND decreases as the temperature increases, due to the pull-up resistor RSD. In order to keep the voltage always higher than the high-level logic threshold, the pull-up resistor should be set to 1 kΩ or 2.2 kΩ for 3.3 V or 5 V MCU power supply, respectively. The capacitor CSD of the filter on SD should be fixed no higher than 3.3 nF in order to assure the SD activation time τA ≤ 500 ns. Besides, the filter should be placed as close as possible to the SD pin. • The decoupling capacitor C3 (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each Cboot, filters high-frequency disturbance. Both Cboot and C3 (if present) should be placed as close as possible to the U, V, W and Vboot pins. Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires. To avoid overvoltage on the Vcc pin, a Zener diode (Dz1) can be used. Similarly on the Vboot pin, a Zener diode (Dz2) can be placed in parallel with each Cboot. • • The use of the decoupling capacitor C4 (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor Cvdc is useful to prevent surge destruction. Both capacitors C4 and Cvdc should be placed as close as possible to the IPM (C4 has priority over Cvdc). • By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-couplers is possible. Low-inductance shunt resistors have to be used for phase leg current sensing. In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as possible. The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation. • • • These guidelines ensure the specifications of the device for application designs. For further details, please refer to the relevant application note. Table 14. Recommended operating conditions Symbol Test conditions VPN Supply voltage Applied among P-Nu, Nv, Nw VCC Control supply voltage Applied to VCC-GND VBS High-side bias voltage Applied to VBOOTx-OUT for x = U, V, W tdead Blanking time to prevent arm-short For each input signal fPWM PWM input signal TC DS11141 - Rev 5 Parameter Operating case temperature -40 °C < TC < 100 °C -40 °C < TJ < 125 °C Min. 13.5 13 Typ. Max. Unit 300 500 V 15 18 V 18 V 1.5 µs 25 kHz 100 °C page 16/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Electrical characteristics (curves) 6 Electrical characteristics (curves) Figure 13. Output characteristics IC (A) VCC = 15 V GADG291020181423OCH Figure 14. Vce(sat) vs collector current VCE (V) VCC = 15 V 5 3.0 4 2.5 3 2.0 2 1.5 1 1.0 0 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 VCE (V) Figure 15. IC vs case temperature IC (A) GADG291020181425CCT 0.5 0 2.5 1.6 2.0 1.4 1.5 1.2 1.0 1.0 50 75 100 125 TC (°C) Figure 17. Eon switching energy vs collector current EON GADG291020181425SNC (mJ) V = 300 V, V = V DD CC boot = 15 V 0.20 3 4 5 IC (A) GADG291020181424DVF TJ = 25 °C TJ = 150 °C 0.6 0 1 2 3 4 5 IF (A) Figure 18. Eoff switching energy vs collector current GADG291020181426SFC EOFF (mJ) VDD = 300 V, VCC = Vboot = 15 V 0.15 TJ = 150 °C 0.10 TJ = 150 °C 0.10 TJ = 25 °C 0.05 DS11141 - Rev 5 2 0.20 0.15 0.00 0 1 0.8 VCC ≥ 15 V, TJ ≤ 150 °C 25 TJ = 150 °C VF (V) VCC = 15 V 1.8 0.0 0 TJ = 25 °C Figure 16. Diode VF vs forward current 3.0 0.5 GADG071120181035VCEC 1 2 3 4 5 TJ = 25 °C 0.05 IC (A) 0.00 0 1 2 3 4 5 IC (A) page 17/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Electrical characteristics (curves) Figure 19. Thermal impedance for IGBT K Zthjc N2DIP-26L 10 -1 10 -2 10 -3 10 -5 DS11141 - Rev 5 10 -4 10 -3 10 -2 10 -1 10 0 tp (s) page 18/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Package information 7 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 N2DIP-26L type L no stand-off package information Figure 20. N2DIP-26L type L no stand-off package outline 8558322_3_typeL_NO_stand_off DS11141 - Rev 5 page 19/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS N2DIP-26L type L no stand-off package information Table 15. N2DIP-26L type L no stand-off mechanical data Dim. mm Min. Typ. A DS11141 - Rev 5 Max. 3.80 A1 0.45 0.75 1.05 A2 4.00 4.10 4.20 A3 1.70 1.80 1.90 A4 1.70 1.80 1.90 A5 8.10 8.40 8.70 A6 1.75 b 0.53 0.72 b2 0.83 1.02 c 0.46 0.59 D 32.05 D1 2.10 D2 1.85 D3 32.15 32.25 30.65 30.75 30.85 E 12.35 12.45 12.55 e 1.70 1.80 1.90 e1 2.40 2.50 2.60 eB1 14.25 14.55 14.85 L 0.85 1.05 1.25 Dia 3.10 3.20 3.30 page 20/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS N2DIP-26L type Z no stand-off package information 7.2 N2DIP-26L type Z no stand-off package information Figure 21. N2DIP-26L type Z no stand-off package outline 8558322_3_typeZ_NO_stand_off DS11141 - Rev 5 page 21/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS N2DIP-26L type Z no stand-off package information Table 16. N2DIP-26L type Z no stand-off mechanical data Dim. mm Min. Typ. A DS11141 - Rev 5 Max. 3.80 A1 0.45 0.75 1.05 A2 4.00 4.10 4.20 A3 1.70 1.80 1.90 A4 1.70 1.80 1.90 A5 8.10 8.40 8.70 A6 1.75 b 0.53 0.72 b2 0.83 1.02 c 0.46 0.59 D 32.05 D1 2.10 D2 1.85 D3 32.15 32.25 30.65 30.75 30.85 E 12.35 12.45 12.55 e 1.70 1.80 1.90 e1 2.40 2.50 2.60 eB1 16.10 16.40 16.70 eB2 21.18 21.48 21.78 L 0.85 1.05 1.25 Dia 3.10 3.20 3.30 page 22/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS N2DIP-26L packing information 7.3 N2DIP-26L packing information Figure 22. N2DIP-26L tube (dimensions are in mm) DS11141 - Rev 5 page 23/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Revision history Table 17. Document revision history Date Revision Changes 08-Jul-2015 1 Initial release. 07-Oct-2015 2 Document status promoted from preliminary data to production data. Modified features on cover page 24-Mar-2017 3 Modified Figure 4: "Internal structure of SD and NTC" Minor text changes. Updated package silhouette on cover page. 18-Dec-2018 4 Updated Section 1 Internal schematic diagram and pin configuration, Section 2.1 Absolute maximum ratings, Section 3.2 Control part, Section 4 Shutdown function and Section 5.1 Guidelines. Added Section 6 Electrical characteristics (curves). Updated Section 7 Package information. Minor text changes Modified Applications on cover page 05-Sep-2022 5 Modified Table 5. Thermal data Minor text changes. DS11141 - Rev 5 page 24/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Contents Contents 1 Internal schematic diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 3 2.1 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Inverter part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.1 3.3 NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 5 Application circuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 5.1 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 7 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 7.1 N2DIP-26L type L no stand-off package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.2 N2DIP-26L type Z no stand-off package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.3 N2DIP-26L packing information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 DS11141 - Rev 5 page 25/26 STGIPQ3H60T-HLS, STGIPQ3H60T-HZS IMPORTANT NOTICE – READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics – All rights reserved DS11141 - Rev 5 page 26/26
STGIPQ3H60T-HZS 价格&库存

很抱歉,暂时无法提供与“STGIPQ3H60T-HZS”相匹配的价格&库存,您可以联系我们找货

免费人工找货