STGIPQ8C60T-HZ
Datasheet
SLLIMM™ nano - 2nd series IPM, 3-phase inverter, 8 A, 600 V,
short‑circuit rugged IGBTs
Features
•
•
•
•
•
•
•
•
•
•
IPM 8 A, 600 V, 3-phase IGBT inverter bridge including 3 control ICs for gate
driving and freewheeling diodes
3.3 V, 5 V, 15 V TTL/CMOS input comparators with hysteresis and pull-down/
pull-up resistors
Internal bootstrap diode
Optimized for low electromagnetic interference
Undervoltage lockout
Short-circuit rugged TFS IGBTs
Shutdown function
Interlocking function
Op-amp for advanced current sensing
Comparator for fault protection against overcurrent
Isolation ratings of 1500 Vrms/min.
•
•
UL recognition: UL 1557, file E81734
NTC (UL 1434 CA 2 and 4)
•
Applications
•
•
3-phase inverters for motor drives
Dish washers, refrigerator compressors, heating systems, air-conditioning fans,
draining and recirculation pumps
Description
Product status link
STGIPQ8C60T-HZ
Product summary
Order code
STGIPQ8C60T-HZ
Marking
GIPQ8C60T-HZ
Package
N2DIP-26L type Z
Packing
Tube
This second series of SLLIMM (small low-loss intelligent molded module)-nano
provides a compact, high-performance AC motor drive in a simple, rugged design. It
is composed of six improved short-circuit rugged trench gate fieldstop IGBTs with
freewheeling diodes and three half-bridge HVICs for gate driving, providing low
electromagnetic interference (EMI) characteristics with optimized switching speed.
The package is designed to allow a better and more easily screwed-on heatsink, and
is optimized for thermal performance and compactness in built-in motor applications
or other low power applications where assembly space is limited. This IPM includes a
completely uncommitted operational amplifier and a comparator that can be used to
design a fast and efficient protection circuit. SLLIMM™ is a trademark of
STMicroelectronics.
DS11492 - Rev 4 - January 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
STGIPQ8C60T-HZ
Internal schematic diagram and pin configuration
1
Internal schematic diagram and pin configuration
Figure 1. Internal schematic diagram
N W (26)
GND (1)
T/ SD / OD (2)
NTC
Vcc W (3)
HIN W (4)
W, OUT W (25)
GND
HVG
VCC
HIN
OUT
Vboot W (24)
LVG
SD/OD
LIN W (5)
LIN
Vboot
OP+ (6)
N V (23)
OPOUT (7)
GND
OP+
OPOUT
OP- (8)
OP-
VCC
Vcc V (9)
HIN
HVG
V, OUT V (22)
OUT
LVG
SD/OD
HIN V (10)
LIN
Vboot
Vboot V (21)
LIN V (11)
CIN (12)
GND
N U (20)
CIN
HVG
Vcc U (13)
VCC
HIN U (14)
HIN
OUT
U, OUT U (19)
LVG
SD/OD
LIN
Vboot
P (18)
T / SD / OD (15)
LIN U (16)
Vboot U (17)
GIPG300720141542SMD
DS11492 - Rev 4
page 2/25
STGIPQ8C60T-HZ
Internal schematic diagram and pin configuration
Table 1. Pin description
DS11492 - Rev 4
Pin
Symbol
Description
1
GND
2
T/SD/ OD
3
VCC W
Low-voltage power supply W phase
4
HIN W
High-side logic input for W phase
5
LIN W
Low-side logic input for W phase
6
OP+
7
OPOUT
8
OP-
9
VCC V
Low-voltage power supply V phase
10
HIN V
High-side logic input for V phase
11
LIN V
Low-side logic input for V phase
12
CIN
13
VCC U
Low-voltage power supply for V phase
14
HIN U
High-side logic input for V phase
15
T/SD/ OD
16
LIN U
17
Vboot U
18
P
19
U, OUTU
20
NU
Negative DC input for U phase
21
Vboot V
Bootstrap voltage for V phase
22
V, OUTV
23
NV
Negative DC input for V phase
24
Vboot W
Bootstrap voltage for W phase
25
W, OUTW
26
NW
Ground
NTC thermistor terminal/shutdown logic input (active low)/open-drain
(comparator output)
Op-amp non-inverting input
Op-amp output
Op-amp inverting input
Comparator input
NTC thermistor terminal/shutdown logic input (active low)/open-drain
(comparator output)
Low-side logic input for U phase
Bootstrap voltage for U phase
Positive DC input
U phase output
V phase output
W phase output
Negative DC input for W phase
page 3/25
STGIPQ8C60T-HZ
Internal schematic diagram and pin configuration
Figure 2. Pin layout (top view) - N2DIP-26L type Z
PIN 26
*
*
PIN 17
Exposed pin
not connected
Exposed pin internally
connected to GND
PIN 1
* Dummy pins internally connected to P (positive DC input)
DS11492 - Rev 4
PIN 16
GADG181220181216IG
page 4/25
STGIPQ8C60T-HZ
Electrical ratings
2
Electrical ratings
TJ = 25 °C unless otherwise specified
2.1
Absolute maximum ratings
Table 2. Inverter part
Symbol
Value
Unit
600
V
Continuous collector current for each IGBT (TC = 25 °C)
8
A
ICP(1)
Peak collector current for each IGBT (less than 1 ms)
16
A
PTOT
Total power dissipation for each IGBT (TC = 25 °C)
19.2
W
tSCW
Short-circuit withstand time (VCE = 300 V, TJ = 125 °C, VCC = Vboot = 15 V,
VIN(2) = 0 to 5 V)
5
µs
VCES
IC
Parameter
(2)
Collector-emitter voltage for each IGBT (VIN
= 0)
1. Pulse width limited by maximum junction temperature.
2. Applied among HINx, LINx and GND for x = U, V, W
Table 3. Control part
Symbol
Parameter
Min.
Max.
Unit
VCC
Low voltage power supply
-0.3
21
V
Vboot
Bootstrap voltage
-0.3
620
V
VOUT
Output voltage applied among OUTU,
OUTV, OUTW - GND
Vboot - 21
Vboot + 0.3
V
VCIN
Comparator input voltage
-0.3
VCC + 0.3
V
Vop+
Op-amp non-inverting input
-0.3
VCC + 0.3
V
Vop-
Op-amp inverting input
-0.3
VCC + 0.3
V
VIN
Logic input voltage applied among HINx,
LINx and GND
-0.3
15
V
VT/SD/OD
Open-drain voltage
-0.3
15
V
dVout/dt
Allowed output slew rate
50
V/ns
Value
Unit
1500
Vrms
Table 4. Total system
Symbol
VISO
DS11492 - Rev 4
Parameter
Isolation withstand voltage applied to each pin and heatsink plate
(AC voltage, t = 60 s)
TJ
Power chip operating junction temperature
-40 to 150
°C
TC
Module case operation temperature
-40 to 125
°C
page 5/25
STGIPQ8C60T-HZ
Absolute maximum ratings
2.1.1
Thermal data
Table 5. Thermal data
Symbol
Rth(j-c)
DS11492 - Rev 4
Parameter
Value
Thermal resistance junction-case single IGBT
6.5
Thermal resistance junction-case single diode
10
Unit
°C/W
page 6/25
STGIPQ8C60T-HZ
Electrical characteristics
3
Electrical characteristics
TJ = 25 °C unless otherwise noted.
3.1
Inverter part
Table 6. Static
Symbol
ICES
VCE(sat)
VF
Parameter
Test conditions
Min.
Typ.
Max.
Unit
250
μA
2.4
V
Collector cut-off current
(VIN(1) = 0 “logic state”)
VCE = 550 V, VCC = VBoot = 15 V
-
Collector-emitter
saturation voltage
VCC = Vboot = 15 V, VIN(1) = 0 to 5 V,
IC = 8 A
-
2.0
Diode forward voltage
VIN(1) = 0 “logic state”, IC = 8 A
-
2.4
Min.
Typ.
Max.
Turn-on time
-
290
-
Crossover time (on)
-
145
-
V
1. Applied among HINx, LINx and GND for x = U, V, W
Table 7. Inductive load switching time and energy
Symbol
ton(1)
tc(on)(1)
toff
(1)
tc(off)(1)
trr
Parameter
Test conditions
Turn-off time
VDD = 300 V,VCC = Vboot = 15 V,
-
515
-
Crossover time (off)
VIN(2) = 0 to 5 V, IC = 8 A
-
90
-
Reverse recovery time
(see Figure 4. Switching time definition)
-
110
-
Eon
Turn-on switching energy
-
200
-
Eoff
Turn-off switching energy
-
95
-
Unit
ns
µJ
1. tON and tOFF include the propagation delay times of the internal drive. tC(ON) and tC(OFF) are the switching times of IGBT
itself under the internally given gate driving conditions.
2. Applied among HINx, LINx and GND for x = U, V, W.
DS11492 - Rev 4
page 7/25
STGIPQ8C60T-HZ
Inverter part
Figure 3. Switching time test circuit
AM06019v2
Figure 4. Switching time definition
100% IC
100% IC
t rr
IC
VCE
VIN
VIN
t ON
VIN(ON)
t C(ON)
10% IC
90% IC 10% VCE
(a) turn-on
DS11492 - Rev 4
VCE
IC
t OFF
VIN(OFF)
t C(OFF)
10% VCE
(b) turn-off
10% IC
AM09223V1
page 8/25
STGIPQ8C60T-HZ
Control part
3.2
Control part
(VCC = 15 V unless otherwise specified)
Table 8. Low-voltage power supply
Symbol
Min.
Typ.
Max.
Unit
VCC UV hysteresis
1.2
1.5
1.8
V
VCC_thON
VCC UV turn-ON threshold
11.5
12
12.5
V
VCC_thOFF
VCC UV turn-OFF threshold
10
10.5
11
V
VCC_hys
Parameter
Test conditions
Iqccu
Undervoltage quiescent supply
current
VCC = 10 V, VT/SD/OD = 5 V,
LIN = HIN = CIN = 0 V
150
µA
Iqcc
Quiescent current
VCC = 10 V, VT/SD/OD = 5 V,
LIN = HIN = CIN = 0 V
1
mA
Vref
Internal comparator (CIN)
reference voltage
0.51
0.54
0.56
V
Min.
Typ.
Max.
Unit
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn-ON threshold
11.1
11.5
12.1
V
VBS_thOFF
VBS UV turn-OFF threshold
9.8
10
10.6
V
IQBSU
Undervoltage VBS quiescent
current
70
110
µA
150
210
µA
Table 9. Bootstrapped voltage
Symbol
VBS_hys
Parameter
Test conditions
VBS < 9 V, VT/SD/OD = 5 V,
LIN = 0 V and HIN = 5 V,
CIN = 0 V
VBS = 15 V, VT/SD/OD = 5 V,
IQBS
VBS quiescent current
LIN = 0 V and HIN = 5 V,
CIN = 0 V
RDS(on)
Bootstrap driver on-resistance
LVG ON
120
Ω
Table 10. Logic inputs
Symbol
DS11492 - Rev 4
Parameter
Vil
Low logic level voltage
Vih
High logic level voltage
Test conditions
Min.
Typ.
Max.
Unit
0.8
V
2.25
IHINh
HIN logic “1” input bias current
HIN = 15 V
IHINl
HIN logic “0” input bias current
ILINl
20
V
40
100
µA
HIN = 0 V
1
µA
LIN logic “0” input bias current
LIN = 0 V
1
µA
ILINh
LIN logic “1” input bias current
LIN = 15 V
20
40
100
µA
ISDh
SD logic “0” input bias current
SD = 15 V
210
350
477
µA
ISDl
SD logic “1” input bias current
SD = 0 V
3
µA
Dt
Dead time
See Figure 9. Dead time and
interlocking waveform definitions
180
ns
page 9/25
STGIPQ8C60T-HZ
Control part
Table 11. Op-amp characteristics
Symbol
Parameter
Vio
Input offset voltage
Iio
Input offset current
Iib
current(1)
Input bias
Test conditions
Min.
Vic = 0 V, Vo = 7.5 V
Typ.
Max.
Unit
6
mV
4
40
nA
100
200
nA
75
150
mV
VOL
Low level output voltage
RL = 10 kΩ to VCC
VOH
High level output voltage
RL= 10 kΩ to GND
14
14.7
V
Source, Vid = + 1 V; Vo = 0 V
16
30
mA
Sink, Vid = -1 V; Vo = VCC
50
80
mA
Slew rate
Vi = 1 - 4 V; CL = 100 pF; unity gain
2.5
3.8
V/µs
GBWP
Gain bandwidth product
Vo = 7.5 V
8
12
MHz
Avd
Large signal voltage gain
RL = 2 kΩ
70
85
dB
SVR
Supply voltage rejection ratio
vs VCC
60
75
dB
CMRR
Common mode rejection ratio
55
70
dB
Min.
Typ.
Io
SR
Output short-circuit current
1. The direction of input current is out of the IC.
Table 12. Sense comparator characteristics
Symbol
Iib
Parameter
Test conditions
Max.
Unit
Input bias current
VCIN = 1 V
-
1
µA
Vod
Open-drain low level output
voltage
Iod = 3 mA
-
0.5
V
RON_OD
Open-drain low level output
Iod = 3 mA
-
166
Ω
-
125
kΩ
RPD_SD
SD pull-down
td_comp
Comparator delay
VT/SD/OD pulled to 5 V through 100
kΩ resistor
-
90
SR
Slew rate
CL = 180 pF, Rpu = 5 kΩ
-
60
tsd
Shutdown to high-/low-side driver
propagation delay
VOUT = 0, Vboot = VCC,
VIN = 0 to 3.3 V
50
125
200
tisd
Comparator triggering to high-/
low-side driver turn-off
propagation delay
Measured applying a voltage step
from 0 V to 3.3 V to pin CIN
50
200
250
resistor(1)
130
ns
V/µs
ns
1. Equivalent values as a result of the resistances of three drivers in parallel.
DS11492 - Rev 4
page 10/25
STGIPQ8C60T-HZ
Control part
Table 13. Truth table
Logic input (VI)
Conditions
Output
T/SD/OD
LIN
HIN
LVG
HVG
Shutdown enable half-bridge tri-state
L
X(1)
X(1)
L
L
Interlocking half-bridge tri-state
H
H
H
L
L
0 “logic state” half-bridge tri-state
H
L
L
L
L
1 “logic state” low-side direct driving
H
H
L
H
L
1 “logic state” high-side direct driving
H
L
H
L
H
1. X: don’t care.
3.2.1
NTC thermistor
Figure 5. Internal structure of SD and NTC
Vbias
R SD
LIN
VT/SD/OD
Vboot
SD/OD
C SD
HVG
HIN
NTC
VCC
OUT
RPD_SD
LVG
GND
CIN
RPD_SD: equivalent value as result of resistances of three drivers in parallel.
Figure 6. Equivalent resistance (NTC//RPD_SD)
140
Equivalent Resistance (kΩ)
120
100
80
60
40
20
0
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
DS11492 - Rev 4
page 11/25
STGIPQ8C60T-HZ
Control part
Figure 7. Equivalent resistance (NTC//RPD_SD) zoom
14
12
Equivalent Resistance (kΩ)
10
8
6
4
2
0
70
80
90
100
110
120
Temperature (°C)
Figure 8. Voltage of T/SD/OD pin according to NTC temperature
5.0
SD/OD: high
4.5
VBias = 5 V
R SD = 2.2 kΩ
VSD(V)
4.0
3.5
VBias = 3.3 V
RSD = 1.0 kΩ
3.0
2.5
2.0
25
50
75
100
125
Temperature (°C)
DS11492 - Rev 4
page 12/25
STGIPQ8C60T-HZ
Waveform definitions
3.3
Waveform definitions
DS11492 - Rev 4
CKIN
GG
ERO
L
INT
INT
ERO
L
CKIN
G
Figure 9. Dead time and interlocking waveform definitions
page 13/25
STGIPQ8C60T-HZ
Shutdown function
4
Shutdown function
The device is equipped with three half-bridge IC gate drivers and integrates a comparator for fault detection.
The comparator has an internal voltage reference VREF connected to the inverting input, while the non-inverting
input pin (CIN) can be connected to an external shunt resistor for current monitoring.
Since the comparator is embedded in the U IC gate driver, in case of fault it disables directly the U outputs,
whereas the shutdown of V and W IC gate drivers depends on the RC value of the external SD circuitry, which
fixes the disabling time.
For an effective design of the shutdown circuit, please refer to Application note AN4966.
DS11492 - Rev 4
page 14/25
STGIPQ8C60T-HZ
Shutdown function
Figure 10. Shutdown timing waveforms
V REF
CI N
H IN or LIN
U
V, W
H VG or LVG
PROTECT ION
SD /OD
or
T/SD/OD
A
B
open -drain ga te
(interna l)
A
B
∗
∗
∗
∗
≅
∗
_
∗
RSD and CSD external circuitry must be designed to ensure
Please refer to AN4966 for further details.
* RNTC to be considered only when the NTC is internally connected to the T/SD/OD pin.
GADG250120171515FSR
DS11492 - Rev 4
page 15/25
DS11492 - Rev 4
RS
+
R1
5V / 3.3V
-
VC C
C vc c
C SD
R SD
5V / 3.3V
C2
R1
HIN W
R3
ADC
R4
R1
R1
R1
SD
Temp.
Monitoring
MICROCONTROLLER
LIN W
ADC
HIN V
R2
HIN U
LIN V
R1
RS
R1
R5
C1
C1
C1
C1
DZ1
LIN U (16)
Vcc W (3)
HIN W (4)
LINW (5)
OP+ (6)
OPOUT (7)
OP- (8)
Vcc V (9)
HIN V (10)
LIN V (11)
CIN (12)
GND (1)
T / SD / OD (2)
C OP
C SF
Vcc U (13)
HIN U (14)
T / SD / OD (15)
SGN_GN D
R SF
C1
C1
NTC
LIN
GND
VCC
HIN
SD/OD
LIN
GND
OPOUT
OP-
VCC
HIN
SD/OD
LIN
GND
VCC
HIN
SD/OD
LVG
OUT
HVG
Vboot
OP+
LVG
OUT
HVG
Vboot
CIN
LVG
OUT
HVG
Vboot
RS
N W (26)
W, OUT W (25)
Vboot W (24)
N V (23)
V, OUT V (22)
Vboot V (21)
N U (20)
U, OUT U (19)
P (18)
Vboot U (17)
Cboot W
Cboot V
Cboot U
C3
C3
C3
DZ2
DZ2
DZ2
PWR_GN D
Rshunt
M
C4
Cvdc
-
+
VDC
5
LIN U
Application circuit example
STGIPQ8C60T-HZ
Application circuit example
Figure 11. Application circuit example
GAD250720161156FSR
Application designers are free to use a different scheme according to the specifications of the device.
page 16/25
STGIPQ8C60T-HZ
Guidelines
5.1
Guidelines
•
•
Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull-down resistor is built-in for each input. To
avoid input signal oscillation, the wiring of each input should be as short as possible, and the use of RC
filters (R1, C1) on each input signal is suggested. The filters should be with a time constant of about 100 ns
and placed as close as possible to the IPM input pins.
The use of a bypass capacitor CVCC (aluminum or tantalum) can reduce the transient circuit demand on the
power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, a
decoupling capacitor C2 (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible
to the Vcc pin and in parallel with the bypass capacitor.
•
The use of an RC filter (RSF, CSF) is recommended to prevent protection circuit malfunction. The time
constant (RSF x CSF) should be set to 1 μs and the filter must be placed as close as possible to the CIN pin.
•
The SD is an input/output pin (open-drain type if it is used as output). A built-in thermistor NTC is internally
connected between the SD pin and GND. The voltage VSD-GND decreases as the temperature increases,
due to the pull-up resistor RSD. In order to keep the voltage always higher than the high-level logic threshold,
the pull-up resistor should be set to 1 kΩ or 2.2 kΩ for 3.3 V or 5 V MCU power supply, respectively. The
capacitor CSD of the filter on SD should be fixed no higher than 3.3 nF in order to assure the SD activation
time τA ≤ 500 ns. Besides, the filter should be placed as close as possible to the SD pin.
•
The decoupling capacitor C3 (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each
Cboot, filters high-frequency disturbance. Both Cboot and C3 (if present) should be placed as close as
possible to the U, V, W and Vboot pins. Bootstrap negative electrodes should be connected to U, V, W
terminals directly and separated from the main output wires.
To avoid overvoltage on the Vcc pin, a Zener diode (Dz1) can be used. Similarly on the Vboot pin, a Zener
diode (Dz2) can be placed in parallel with each Cboot.
•
•
The use of the decoupling capacitor C4 (100 to 220 nF, with low ESR and low ESL) in parallel with the
electrolytic capacitor Cvdc is useful to prevent surge destruction. Both capacitors C4 and Cvdc should be
placed as close as possible to the IPM (C4 has priority over Cvdc).
•
By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals
without an opto-couplers is possible.
Low-inductance shunt resistors have to be used for phase leg current sensing.
In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as
possible.
The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can
reduce the impact of power ground fluctuation.
•
•
•
These guidelines ensure the specifications of the device for application designs. For further details, please refer to
the relevant application note.
Table 14. Recommended operating conditions
Symbol
Test conditions
VPN
Supply voltage
Applied among P-Nu, Nv, Nw
VCC
Control supply voltage
Applied to VCC-GND
VBS
High-side bias voltage
Applied to VBOOTx-OUT for x = U,
V, W
tdead
Blanking time to prevent arm-short For each input signal
fPWM
PWM input signal
TC
DS11492 - Rev 4
Parameter
Case operation temperature
-40 °C < TC < 100 °C
-40 °C < TJ < 125 °C
Min.
13.5
13
Typ.
Max.
Unit
300
500
V
15
18
V
18
V
1
µs
25
kHz
100
°C
page 17/25
STGIPQ8C60T-HZ
Electrical characteristics (curves)
6
Electrical characteristics (curves)
Figure 12. Output characteristics (TJ = 25°C)
IC
(A)
IGBT250720161421OC25
VGE = 13 - 18 V
8
Figure 13. VCE(sat) vs collector current
VCE(SAT)
(V)
2
4
1.6
2
1.2
0.6
1.2
1.8
VCE (V)
TJ = 25 °C
2
4
6
8
IC (A)
Figure 15. IC vs case temperature
IC
(A)
IGBT260620151410DVF
3.0
2.5
TJ = 150 °C
0.8
0
Figure 14. Diode VF vs forward current
VF
(V)
VCC = 15 V
2.4
6
0
0
IGBT161220161058VCEC
GADG28012019945CD
8.0
TJ= 25 °C
6.0
2.0
TJ= 150 °C
1.5
4.0
1.0
2.0
0.5
VCC ≥ 15 V, TJ ≤ 150 °C
0
0
4
8
12
IF(A)
Figure 16. Eon switching energy vs collector current
IGBT250720161523SLC
Eon
(mJ) VDD = 300 V, VCC = Vboot = 15 V
0.0
0
50
100
125
TC (°C)
Figure 17. Eoff switching energy vs collector current
Eoff
(mJ)
IGBT250720161533SLC
VDD = 300 V, VCC = Vboot = 15 V
0.36
0.12
TJ = 150 °C
0.27
TJ = 150 °C
0.18
TJ = 25 °C
0.06
TJ = 25 °C
0.09
0
0
DS11492 - Rev 4
2
4
6
8
IC (A)
0
0
2
4
6
8
IC (A)
page 18/25
STGIPQ8C60T-HZ
Electrical characteristics (curves)
Figure 18. Thermal impedance for IGBT
K
Zthjc N2DIP-26L IGBT
10 -1
10 -2
10 -3
10 -5
DS11492 - Rev 4
10 -4
10 -3
10 -2
10 -1
10 0
tp (s)
page 19/25
STGIPQ8C60T-HZ
Package information
7
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK®
packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions
and product status are available at: www.st.com. ECOPACK® is an ST trademark.
7.1
N2DIP-26L type Z package information
Figure 19. N2DIP-26L type Z package outline
8558322_typeZ_rev3
DS11492 - Rev 4
page 20/25
STGIPQ8C60T-HZ
N2DIP-26L type Z package information
Table 15. N2DIP-26L type Z mechanical data
Dim.
DS11492 - Rev 4
mm
Min.
Typ.
Max.
A
4.80
5.10
5.40
A1
0.80
1.00
1.20
A2
4.00
4.10
4.20
A3
1.70
1.80
1.90
A4
1.70
1.80
1.90
A5
8.10
8.40
8.70
A6
1.75
b
0.53
0.72
b2
0.83
1.02
c
0.46
0.59
D
32.05
D1
2.10
D2
1.85
D3
32.15
32.25
30.65
30.75
30.85
E
12.35
12.45
12.55
e
1.70
1.80
1.90
e1
2.40
2.50
2.60
eB1
16.10
16.40
16.70
eB2
21.18
21.48
21.78
L
0.85
1.05
1.25
Dia
3.10
3.20
3.30
page 21/25
STGIPQ8C60T-HZ
N2DIP-26L packing information
7.2
N2DIP-26L packing information
Figure 20. N2DIP-26L tube (dimensions are in mm)
DS11492 - Rev 4
page 22/25
STGIPQ8C60T-HZ
Revision history
Table 16. Document revision history
Date
Revision
22-Jan-2016
1
Changes
Initial release.
Document status promoted from target to preliminary data.
Updated features in cover page, Section 3: Electrical
26-Jul-2016
2
characteristics, Section 3.2: Control part, Section 5: Application
circuit example and Section 6: Guidelines.
Added Section 7: Electrical characteristics (curves).
16-Dec-2016
3
Document status promoted from preliminary to production data.
Updated Figure 12: VCE(sat) vs. collector current.
Updated N2DIP-26L type Z cover image silhouette and Section Features.
30-Jan-2019
4
Added Figure 2. Pin layout (top view) - N2DIP-26L type Z and Figure 15. IC vs
case temperature.
Updated Section 3.2 Control part and Figure 14. Diode VF vs forward current.
Minor text changes.
DS11492 - Rev 4
page 23/25
STGIPQ8C60T-HZ
Contents
Contents
1
Internal schematic diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1
3
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1
Inverter part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2
Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1
3.3
NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
5
Application circuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.1
Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
7
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
7.1
N2DIP-26L type Z package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2
N2DIP-26L packing information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
DS11492 - Rev 4
page 24/25
STGIPQ8C60T-HZ
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
DS11492 - Rev 4
page 25/25