STGIPS40W60L1
SLLIMM™ (small low-loss intelligent molded module)
IPM, single phase - 40 A, 600 V ultra fast IGBT
Datasheet − production data
Features
■
IPM 40 A, 600 V single phase IGBT including
control ICs for gate driving and free-wheeling
diodes
■
Very high switching speed IGBTs
■
VCE(sat) negative temperature coefficient
■
3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull down /
pull up resistors
■
Undervoltage lockout
■
Internal bootstrap diode
■
Dead time and interlocking function
■
Smart shutdown function
■
Comparator for fault protection against over
temperature and overcurrent
Description
■
Op amp for advanced current sensing
■
DBC substrate leading to low thermal
resistance
■
Isolation rating of 2500 Vrms/min
■
4.7 kΩ NTC UL recognized for temperature
control
■
UL Recognized : UL1557 file E81734
This intelligent power module provides a compact,
high performance AC motor drive for a simple and
rugged design. It targets high frequency
converters. It combines ST proprietary control ICs
with the most advanced IGBT and diode
technologies tailored to high switching frequency
operation. SLLIMM™ is a trademark of
STMicroelectronics.
SDIP-22L
Applications
■
Power factor correction for compressors
Table 1.
Device summary
Order code
Marking
Package
Packaging
STGIPS40W60L1
GIPS40W60L1
SDIP-22L
Tube
August 2012
This is information on a product in full production.
Doc ID 018866 Rev 3
1/21
www.st.com
21
Contents
STGIPS40W60L1
Contents
1
Internal schematic diagram and pin configuration . . . . . . . . . . . . . . . . 3
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1
3.2
Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1
NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2
Dead time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21
Doc ID 018866 Rev 3
Doc ID 018866 Rev 3
Pin16: GND
Pin15: GND
Pin14: CIN
Pin13: VCC
Pin12: OP+
Pin11: OPOUT
Pin10: OP-
Pin9: DT
Pin8: HIN
Pin7: /SD
Pin6: /LIN
Pin5: T2
Pin4: T1
Pin3: NC
Vboot
LVG
OUT
GND
OP+
OPOUT CP+
OP-
DT
VCC
HIN
SD/OD HVG
LIN
Pin17: N
Pin18: N
Pin19: PHASE
Pin20: PHASE
Pin21: P
Pin22: P
Figure 1.
Pin2: VBOOT
1
Pin1: OUT
STGIPS40W60L1
Internal schematic diagram and pin configuration
Internal schematic diagram and pin configuration
Internal schematic diagram
AM09386v2
3/21
Internal schematic diagram and pin configuration
Table 2.
Pin description
Pin
Symbol
1
OUTPHASE
2
Vboot
3
NC
Not connected
4
T1
NTC thermistor terminal 1
5
T2
NTC thermistor terminal 2
6
LIN
Low side logic input
7
SD/OD
8
HIN
High side logic input
9
DT
Dead time setting
10
OP-
Op amp inverting input
11
OPOUT
12
OP+
Op amp non inverting input
13
VCC
Low voltage power supply
14
CIN
Comparator input
15
GND
Ground
16
GND
Ground
17
N
Negative DC input
18
N
Negative DC input
19
PHASE
Phase output
20
PHASE
Phase output
21
P
Positive DC input
22
P
Positive DC input
Figure 2.
STGIPS40W60L1
Description
PHASE reference output
Bootstrap voltage
Shutdown logic input (active low) / open drain (comparator output)
Op amp output
Pin layout (bottom view)
Marking area
AM06017v1
4/21
Doc ID 018866 Rev 3
STGIPS40W60L1
Electrical ratings
2
Electrical ratings
2.1
Absolute maximum ratings
Table 3.
Inverter part
Symbol
Parameter
Value
Unit
VCES
Each IGBT collector emitter voltage (VIN = 0)
600
V
± IC(1)
Each IGBT continuous collector current
at TC = 25°C
40
A
Each IGBT pulsed collector current
80
A
Each IGBT total dissipation at TC = 25°C
100
W
± ICP (2)
PTOT
1. Calculated according to the iterative formula:
Tj ( max ) – TC
IC ( T C ) = ------------------------------------------------------------------------------------------------------R thj – c × V CE ( sat ) ( max ) ( T j ( max ), I C ( T C ) )
2. Pulse width limited by max junction temperature
Table 4.
Control part
Symbol
Parameter
Min.
Max.
Unit
Vboot - 21
Vboot + 0.3
V
VOUT
Output voltage applied between
OUTU, OUTV, OUTW - GND
VCC
Low voltage power supply
- 0.3
21
V
VCIN
Comparator input voltage
- 0.3
VCC + 0.3
V
Vop+
OPAMP non-inverting input
- 0.3
VCC + 0.3
V
Vop-
OPAMP inverting input
- 0.3
VCC + 0.3
V
Vboot
Bootstrap voltage
- 0.3
620
V
Logic input voltage applied between HIN, LIN and
GND
- 0.3
15
V
Open drain voltage
- 0.3
15
V
50
V/ns
VIN
VSD/OD
dVOUT/dt
Table 5.
Symbol
VISO
Allowed output slew rate
Total system
Parameter
Isolation withstand voltage applied between each
pin and heatsink plate (AC voltage, t = 60 sec.)
Value
Unit
2500
V
TJ
Power chips operating junction temperature
-40 to 150
°C
TC
Module case operation temperature
-40 to 125
°C
Doc ID 018866 Rev 3
5/21
Electrical ratings
2.2
STGIPS40W60L1
Thermal data
Table 6.
Thermal data
Symbol
Parameter
RthJC
Figure 3.
Value
Unit
Thermal resistance junction-case single IGBT
1.25
°C/W
Thermal resistance junction-case single diode
2.5
°C/W
Transient thermal impedance IGBT/diode - inverter
AM09385v1
10
Zthj-c [K/W]
1
Diode
IGBT
0.1
0.01
1.E-04
1.E-03
1.E-02
1.E-01
time [s]
6/21
Doc ID 018866 Rev 3
1.E+00
1.E+01
1.E+02
STGIPS40W60L1
3
Electrical characteristics
Electrical characteristics
TJ = 25 °C unless otherwise specified.
Table 7.
Inverter part
Value
Symbol
VCE(sat)
ICES
VF
Parameter
Test conditions
Unit
Min.
Typ.
Max.
VCC = Vboot = 15 V, VIN = 1 "logic
state", IC = 30 A
-
2.0
2.5
VCC = Vboot = 15 V, VIN = 1 "logic
state", IC = 30 A, TJ = 125 °C
-
1.7
Collector-cut off current
(VIN = 0 "logic state")
VCE = 550 V, VCC = VBoot = 15 V,
-
500
µA
Diode forward voltage
VIN = 0 "logic state", IF = 30A
-
2.5
V
Collector-emitter
saturation voltage
V
Switching on/off (inductive load) (1)
ton
tc(on)
toff
tc(off)
trr
Turn-on time
-
410
-
Crossover time (on)
-
80
-
-
320
-
-
125
-
-
115
-
Turn-off time
Crossover time (off)
Reverse recovery time
VDD = 410 V,
VCC = Vboot = 15 V,
VIN = 1 "logic state" (see Table 13)
IC = 30 A (see Figure 4 and 5)
Eon
Turn-on switching losses
-
585
-
Eoff
Turn-off switching losses
-
600
-
-
2500
-
-
550
-
-
110
-
-
420
-
-
140
-
-
150
-
-
930
-
-
780
-
-
2100
-
di/dt(on)
ton
tc(on)
toff
tc(off)
trr
µJ
Rate of rise of on-state
current
VDD = 410 V, VCC = Vboot = 15 V,
VIN = 1 "logic state" (see Table 13),
IC = 80 A (see Figure 4 and 5)
Turn-on time
Crossover time (on)
Turn-off time
Crossover time (off)
Reverse recovery time
Eon
Turn-on switching losses
Eoff
Turn-off switching losses
di/dt(on)
ns
VDD = 410 V,
VCC = Vboot = 15 V,
VIN = 1 "logic state" (see Table 13)
IC = 30 A, TJ = 125 °C
(see Figure 4 and 5)
A/µs
ns
µJ
Rate of rise of on-state
current
VDD = 410 V,
VCC = Vboot = 15 V,
VIN = 1 "logic state" (see Table 13)
IC = 80 A, TJ = 125 °C
(see Figure 4 and 5)
A/µs
1. tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are the switching time of IGBT itself
under the internally given gate driving condition. Parameter values take into account a 20 nH stray inductance.
Doc ID 018866 Rev 3
7/21
Electrical characteristics
STGIPS40W60L1
Figure 4.
Switching time test circuit
Figure 5.
Switching time definition (1)
100% IC 100% IC
t rr
IC
VCE
VCE
IC
VIN
VIN
t ON
t OFF
t C(OFF)
t C(ON)
VIN(ON)
10% IC 90% IC 10% VCE
(a) turn-on
VIN(OFF)
10% VCE
(b) turn-off
10% IC
AM09223V1
1. “Switching time definition" refers to HIN inputs (active high). For LIN inputs (active low), VIN polarity must
be inverted for turn-on and turn-off.
8/21
Doc ID 018866 Rev 3
STGIPS40W60L1
Electrical characteristics
3.1
Control part
Table 8.
Low voltage power supply (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
VCC UV hysteresis
1.2
1.5
1.8
V
VCC_thON
VCC UV turn ON threshold
11.5
12
12.5
V
VCC_thOFF
VCC UV turn OFF threshold
10
10.5
11
V
VCC_hys
Parameter
Test conditions
Iqccu
Undervoltage quiescent
supply current
VCC = 10 V
SD/OD = 5 V; LIN = 5 V;
HIN = 0, CIN = 0
200
µA
Iqcc
Quiescent current
VCC = 15 V
SD/OD = 5 V; LIN = 5 V
HIN = 0, CIN = 0
1
mA
Vref
Internal reference voltage
0.58
V
Table 9.
Symbol
0.5
0.54
Bootstrapped voltage (VCC = 15 V unless otherwise specified)
Min.
Typ.
Max.
Unit
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn ON threshold
10.6
11.5
12.4
V
VBS_thOFF
VBS UV turn OFF threshold
9.1
10
10.9
V
IQBSU
Undervoltage VBS quiescent
current
VBS < 9 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
70
110
µA
IQBS
VBS quiescent current
VBS = 15 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
150
210
µA
Bootstrap driver on resistance
LVG ON
120
VBS_hys
RDS(on)
Table 10.
Symbol
Parameter
Test conditions
Ω
Logic inputs (VCC = 15 V unless otherwise specified)
Parameter
Vil
Low logic level voltage
Vih
High logic level voltage
Test conditions
Min.
Typ.
Max.
Unit
0.8
V
2.25
IHINh
HIN logic “1” input bias current
HIN = 15 V
IHINl
HIN logic “0” input bias current
HIN = 0 V
ILINl
LIN logic “1” input bias current
LIN = 0 V
ILINh
LIN logic “0” input bias current
LIN = 15 V
ISDh
SD logic “0” input bias current
SD = 15 V
ISDl
SD logic “1” input bias current
SD = 0 V
Doc ID 018866 Rev 3
110
3
10
V
175
6
40
260
µA
1
µA
20
µA
1
µA
100
µA
1
µA
9/21
Electrical characteristics
Table 11.
STGIPS40W60L1
Op amp characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Vio
Input offset voltage
Iio
Input offset current
Iib
Input bias current
(1)
Test condition
Min
Typ
Max
Unit
6
mV
4
40
nA
100
200
nA
Vic = 0 V, Vo = 7.5 V
Vic = 0 V, Vo = 7.5 V
Vicm
Input common mode voltage
range
VOL
Low level output voltage
RL = 10 kΩ to VCC
VOH
High level output voltage
RL = 10 kΩ to GND
14
14.7
V
Source,
Vid = + 1; Vo = 0 V
16
30
mA
Sink,
Vid = - 1; Vo = VCC
50
80
mA
Slew rate
Vi = 1 - 4 V; CL = 100 pF;
unity gain
2.5
3.8
V/μs
GBWP
Gain bandwidth product
Vo = 7.5 V
8
12
MHz
Avd
Large signal voltage gain
RL = 2 kΩ
70
85
dB
SVR
Supply voltage rejection ratio
vs. VCC
60
75
dB
CMRR
Common mode rejection ratio
55
70
dB
Io
SR
Output short circuit current
0
V
75
150
mV
1. The direction of input current is out of the IC.
Table 12.
Sense comparator characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Iib
Input bias current
VCP+ = 1 V
-
1
µA
Vol
Open-drain low-level output
voltage
Iod = 3 mA
-
0.5
V
Comparator delay
SD/OD pulled to 5 V through
100 kΩ resistor
-
90
130
ns
SR
Slew rate
CL = 180 pF; Rpu = 5 kΩ
-
60
tsd
Shutdown to high / low side
driver propagation delay
VOUT = 0, Vboot = VCC,
VIN = 0 to 3.3 V
50
125
tisd
Comparator triggering to high /
low side driver turn-off
propagation delay
Measured applying a voltage
step from 0 V to 3.3 V to pin
CINi
td_comp
10/21
Doc ID 018866 Rev 3
V/µsec
200
ns
50
200
250
STGIPS40W60L1
Table 13.
Electrical characteristics
Truth table
Logic input (VI)
Output
Condition
SD/OD
LIN
HIN
LVG
HVG
Shutdown enable
half-bridge tri-state
L
X
X
L
L
Interlocking
half-bridge tri-state
H
L
H
L
L
0 ‘’logic state”
half-bridge tri-state
H
H
L
L
L
1 “logic state”
low side direct driving
H
L
L
H
L
1 “logic state”
high side direct driving
H
H
H
L
H
Note:
X: don’t care
Doc ID 018866 Rev 3
11/21
Electrical characteristics
3.1.1
STGIPS40W60L1
NTC thermistor
Table 14.
NTC thermistor
Symbol
Parameter
Test conditions
Min.
R25
Resistance
TC = 25°C
4.7
kΩ
R125
Resistance
TC = 125°C
160
Ω
B
B-constant
TC = 25°C
3950
K
T
Operating temperature
-40
Equation 1: resistance variation vs. temperature
R ( T ) = R 25 ⋅ e
1
1
B ⎛⎝ --- – ----------⎞⎠
T 298
Where T are temperatures in Kelvins
Figure 6.
NTC resistance vs. temperature
AM07843v1
R (kΩ)
100
10
1
0.1
0.01
-50
12/21
Typ. Max. Unit.
0
50
Doc ID 018866 Rev 3
100
T (°C)
150
°C
STGIPS40W60L1
Dead time
Figure 7.
Dead time and interlocking waveforms definitions
INTE
RLO
CK
ING
HIN
INTE
RLO
CK
CONTROL SIGNAL EDGES
OVERLAPPED:
INTERLOCKING + DEAD TIME
ING
LIN
LVG
DTHL
DTLH
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
SYNCHRONOUS (*):
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
BUT INSIDE THE DEAD TIME:
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
OUTSIDE THE DEAD TIME:
DIRECT DRIVING
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
(*) HIN and LIN can be connected together and driven by just one control signal
Figure 8.
Typical dead time vs. DT resistor value
3.5
3
2.5
2
DT (µs)
3.1.2
Electrical characteristics
1.5
1
0.5
0
0
50
100
150
200
250
300
Rdt (kOhm)
AM06020v1
Doc ID 018866 Rev 3
13/21
Electrical characteristics
3.2
STGIPS40W60L1
Recommendations
●
Input signal HIN is active high logic. A 85 kΩ (typ.) pull down resistor is built-in for each
high side input. If an external RC filter is used, for noise immunity, pay attention to the
variation of the input signal level.
●
Input signal LIN is active low logic. A 720 kΩ (typ.) pull-up resistor, connected to an
internal 5 V regulator through a diode, is built-in for each low side input.
●
To prevent the input signals oscillation, the wiring of each input should be as short as
possible.
●
By integrating an application specific type HVIC inside the module, direct coupling to
MCU terminals without any opto-coupler is possible.
●
Each capacitor should be located as nearby the pins of IPM as possible.
●
Low inductance shunt resistors should be used for phase leg current sensing.
●
Electrolytic bus capacitors should be mounted as close to the module bus terminals as
possible. Additional high frequency ceramic capacitor mounted close to the module
pins will further improve performance.
●
The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see
Section 4: Smart shutdown function for detailed info).
●
When setting the maximum voltage to be applied between P-N, the internal stray
inductance and the maximum di/dt should be considered. Due to both internal and
layout stray inductances, the di/dt results in a voltage surges between the DC-link
capacitor and the switches during commutations.
●
Suggested control supply voltage (VCC): from 13.5 V to 18 V
●
Suggested high side bias voltage (VBS between VBOOT and PHASE): from 13 V to 18 V
Table 15.
Recommended operating conditions
Value
Symbol
Parameter
Conditions
Unit
Min.
VPN
Supply voltage
Applied between P-Nu, Nv, Nw
VCC
Control supply voltage
Applied between VCC-GND
VBS
High side bias voltage
Applied between VBOOTi-OUTi for
i = U, V, W
13
tdead
Blanking time to
prevent Arm-short
For each input signal
1
fPWM
PWM input signal
-40°C < Tc < 100°C
-40°C < Tj < 125°C
TC
Case operation
temperature
For further details refer to AN3338.
14/21
Doc ID 018866 Rev 3
13.5
Typ.
Max.
300
400
V
15
18
V
18
V
µs
20
kHz
100
°C
STGIPS40W60L1
4
Smart shutdown function
Smart shutdown function
The STGIPS40W60L1 integrates a comparator for fault sensing purposes. The comparator
non-inverting input (CIN) can be connected to an external shunt resistor in order to
implement a simple overcurrent protection function. When the comparator triggers, the
device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in tri-state. In the common overcurrent protection architectures the comparator output
is usually connected to the shutdown input through a RC network, in order to provide a
mono-stable circuit, which implements a protection time that follows the fault condition.
Our smart shutdown architecture allows to immediately turn-off the output gate driver in
case of overcurrent, the fault signal has a preferential path which directly switches off the
outputs. The time delay between the fault and the outputs turn-off is no more dependent on
the RC values of the external network connected to the shutdown pin. At the same time the
internal logic turns on the open-drain output and holds it on until the shutdown voltage goes
below the logic input lower threshold. Finally the smart shutdown function provides the
possibility to increase the real disable time without increasing the constant time of the
external RC network.
Figure 9.
Smart shutdown timing waveforms
comp
Vref
CP+
PROTECTION
HIN/LIN
HVG/LVG
SD/OD
upper
threshold
lower
threshold
1
2
open drain gate
(internal)
real disable time
Fast shut down:
the driver outputs are set in SD state
immediately after the comparator
triggering even if the SD signal
has not yet reach
the lower input threshold
TIME CONSTANTS
1
= (RON_OD // RSD) CSD
2
= RSD CSD
SHUT DOWN CIRCUIT
VBIAS
RSD
FROM/TO
CONTROLLER
SD/OD
CSD
RON_OD
SMART
SD
LOGIC
Pls refer to Table 12 for internal propagation delay time details.
Doc ID 018866 Rev 3
15/21
Package mechanical data
5
STGIPS40W60L1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Please refer to dedicated technical note TN0107 for mounting instructions.
Table 16.
SDIP-22L package mechanical data
mm.
Dim.
16/21
Min.
Typ.
Max.
A
43.90
44.40
44.90
A1
1.15
1.35
1.55
A2
1.40
1.60
1.80
A3
38.90
39.40
39.90
B
21.50
22.00
22.50
B1
11.25
11.85
12.45
B2
24.83
25.23
25.63
C
5.00
5.40
6.00
C1
6.50
7.00
7.50
C2
11.20
11.70
12.20
e
2.15
2.35
2.55
e1
3.40
3.60
3.80
e2
4.50
4.70
4.90
e3
15.70
15.90
16.10
e4
6.30
6.50
6.70
e5
9.20
9.40
9.60
D
33.20
D1
5.60
E
10.20
E1
0.40
F
0.85
1.00
1.15
F1
0.35
0.50
0.65
R
1.55
1.75
1.95
T
0.45
0.55
0.65
V
0°
Doc ID 018866 Rev 3
6°
STGIPS40W60L1
Package mechanical data
Figure 10. SDIP-22L package drawing (dimensions are in mm.)
8229874_D
Doc ID 018866 Rev 3
17/21
Package mechanical data
STGIPS40W60L1
Base quantity: 11 pcs
Bulk quantity: 132 pcs
8123127_E
AM10488v1
Figure 11. SDIP-22L shipping tube (dimensions are in mm.)
18/21
Doc ID 018866 Rev 3
STGIPS40W60L1
Package mechanical data
Base quantity: 11 pcs
Bulk quantity: 132 pcs
8123127_E
ANTIS TATIC S
03 PVC
AM10487v1
Figure 12. SDIP-22L shipping tube type B (dimensions are in mm.)
Doc ID 018866 Rev 3
19/21
Revision history
6
Revision history
Table 17.
Document revision history
Date
Revision
14-Jun-2011
1
Initial release.
24-Jan-2012
2
Added: Figure 11 on page 18.
Updated: Figure 10 on page 17.
3
Document status promoted from preliminary data to production data.
Added: feature Comparator for fault protection against over
temperature and overcurrent on page 1.
Modified: Min. and Max. value Table 4 on page 5.
28-Aug-2012
20/21
STGIPS40W60L1
Changes
Doc ID 018866 Rev 3
STGIPS40W60L1
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 018866 Rev 3
21/21