0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STHDLS101TQTR

STHDLS101TQTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    QFN48

  • 描述:

    IC HDMI LEVEL SHIFTER AC 48-QFN

  • 数据手册
  • 价格&库存
STHDLS101TQTR 数据手册
STHDLS101T AC coupled HDMI level shifter with configurable HPD output Features ■ Converts low-swing alternating current (AC) coupled differential input to high-definition multimedia interface (HDMI) rev 1.3 compliant ■ HDMI level shifting operation up to 2.7 Gbps per lane ■ Integrated 50-Ω termination resistors for ACcoupled differential inputs ■ Input/output transition minimized differential signaling (TMDS) enable/disable ■ Output slew rate control on TMDS outputs to minimize electromagnetic interference (EMI) ■ Fail safe outputs for backdrive protection ■ No re-timing or configuration required ■ Inter-pair output skew < 250 ps ■ Intra-pair output skew < 10 ps ■ Single power supply of 3.3 V ■ ESD protection: ±6 KV HBM on all I/O pins ■ Integrated display data channel (DDC) level shifters. Pass-gate voltage limiters allow 3.3 V termination on graphics and memory controller hub (GMCH) pins and 5 V DDC termination on HDMI connector pins ■ Level shifter and configurable output for HPD signal from HDMI/DVI connector ■ Integrated pull-down resistor on HPD_SINK and OE_N inputs u d o o s b r P e t e l o ■ Notebooks ■ PC motherboards and graphic cards ■ Dongles/cable adapters Table 1. QFN-48 (7 x 7 mm) ODescription ) u d o Applications r P e let s ( t c s b O ) s ( ct The STHDLS101T is a high-speed high-definition multimedia interface (HDMI) level shifter that converts low-swing AC coupled differential input to HDMI 1.3 compliant open-drain current steering RX-terminated differential output. Through the existing PCI-E pins in the graphics and memory controller hub (GMCH) of PCs or notebook motherboards, the pixel clock provides the required bandwidth (1.65 Gbps, 2.25 Gbps) for the video supporting 720p, 1080i, 1080p with a total of 36-bit resolution. The HDMI is multiplexed onto the PCIe pins in the motherboard where the AC coupled HDMI at 1.2 V is output by GMCH. The AC coupled HDMI is then level shifter by this device to 3.3 V DC coupled HDMI output. The STHDLS101T supports up to 2.7 Gbps, which is enough for 12-bits of color depth per channel, as indicated in HDMI rev 1.3. The device operates from a single 3.3 V supply and is available in a 48-pin QFN package. Device summary Order code Package Packaging STHDLS101TQTR QFN-48 Tape and reel December 2008 Rev 3 1/26 www.st.com 26 Contents STHDLS101T Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 System interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ) s ( ct 4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 6 u d o r P e Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.1 Power supply and temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.2 Differential inputs (IN_D signals) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 t e l o 5.2 TMDS outputs (OUT_D signals) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 HPD input and output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.4 DDC input and output chatacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.5 OE_ input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.6 HPD input resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.7 ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ) (s s b O t c u d o r P e Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 let o s b 6.1 Power supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.2 Supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.3 Differential traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 O 7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2/26 STHDLS101T Contents ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 3/26 Block diagram 1 STHDLS101T Block diagram Figure 1. STHDLS101T block diagram 0V VCC33 OUT_D4+ 50Ω±10% OUT_D4- IN _D4+ RX IN _D4- OE_N ) s ( ct 10mA current driver 0V u d o 50Ω±10% OUT_D3+ OUT_D3- r P e IN _D3+ RX t e l o IN _D3- 0V )- 50Ω ±10% s b O 10mA current driver OUT_D2+ OUT_D2- s ( t c IN _D2+ RX u d o IN _D2- r P e t e l o bs O 10mA current driver 0V OUT_D1+ 50 Ω±10% OUT_D1- IN _D1+ RX IN _D1REXT 10mA current driver HPD level shifter HPD_SOURCE DDC_EN 4/26 HPD_SINK HPD 160K SCL_SOURCE SCL_SINK SDA_SOURCE SDA_SINK STHDLS101T 2 System interface System interface Figure 2. System inferface Graphics chipset (GMCH) on the motherboard PCI-Express SDVO HDMI Level shifter HDMI output connector ) s ( ct STHDLS101T u d o Figure 3. r P e t e l o Cable adapter ) (s t c u d o r P e s b O t e l o CS00375 s b O ($-)$6) $ONGLEOR CABLE ADAPTER 34($,34 $0 !-6 5/26 System interface STHDLS101T DP to HDMI/DVI cable adapter AC_TMDS DDC DP Connector HPD HDMI/DVI Transmitter HPD_SINK HDMI/DVI Connector Figure 4. HPD_SOURCE DC TMDS STHDLS101T HDMI/DVI Cable Adaptor AC_TMDS DDC DDC ) s ( ct PC chipset u d o r P e t e l o ) (s t c u d o r P e t e l o s b O 6/26 s b O !-6 STHDLS101T Pin configuration IN_D1IN_D1+ GND VCC33 OE_N 27 26 25 30 SDA_SINK HPD_SINK 31 SCL_SINK GND 32 29 DDC_EN 33 28 FUNCTION3 VCC33 34 FUNCTION4 35 24 GND 37 23 OUT_D1- 38 22 OUT_D1+ 39 VCC33 IN_D2+ QFN-48 19 42 GND e t e l 43 IN_D3IN_D3+ 44 46 GND OUT_D3- 8 9 10 11 12 SDA_SOURCE SCL_SOURCE ANALOG2 VCC33 GND OUT_D4+ 7 13 HPD_SOURCE OUT_D4- 6 VCC33 14 REXT 15 4 3 FUNCTION1 OUT_D2+ OUT_D3+ 5 2 -O VCC33 u d o ) s ( ct 48 OUT_D2- 16 GND 47 IN_D4+ VCC33 17 FUNCTION2 IN_D4- 18 o s b 45 VCC33 o r P 20 41 ) s ( ct du 21 40 IN_D2- r P e GND GND 36 STHDLS101T pin configuration 1 Figure 5. GND 3 Pin configuration CS000118 t e l o s b O 7/26 Pin configuration 3.1 STHDLS101T Pin description Table 2. Pin description Pin number Name Type 1 GND Power Ground 2 VCC33 Power 3.3V±10% DC supply FUNCTION1 Function pins are to enable vendor-specific features or test modes. Vendor-specific For normal operation, these pins are tied to GND or control or test VCC33. pins For consistent interoperability, GND is the preferred default connection for these signals 4 FUNCTION2 Function pins are to enable vendor-specific features or test modes. Vendor-specific For normal operation, these pins are tied to GND or control or test VCC33. pins For consistent interoperability, GND is the preferred default connection for these signals 5 GND 3 6 7 ) s ( ct u d o Power ) (s REXT t c u od HPD_SOURCE r P e Analog Output r P e t e l o Ground s b O Connection to external resistor. Resistor value specified by device manufacturer. Acceptable connections to this pin are: - Resistor to GND - Resistor to 3.3V; - NC (direct connections to VCC or GND are through a 0-Ù resistor for layout compatibility Buffer from the 0 V to 5 V input signal. The output buffer stage is configurable based on the FUNCTION3 pin settings as desribed in the table below: FUNCTION3 t e l o s b O 8/26 Function HPD_SINK HPD_SOURCE 0 Low Open-drain, connected an external pull up to the desired supply (normally 1 V) 0 High (5 V) Low (0 V) 1 Low (0 V) Low (0 V) 1 High (5 V) High (3 V) 8 SDA_SOURCE I/O 3.3 V DDC data I/O. Pulled-up by external termination to 3.3 V. Connected to SDA_SINK through voltagelimiting integrated NMOS pass-gate 9 SCL_SOURCE Input 3.3 V DDC clock I/O. Pulled-up by external termination to 3.3 V. Connected to SCL_SINK through voltagelimiting integrated NMOS pass-gate STHDLS101T Pin configuration Table 2. Pin description (continued) Pin number Type Function 10 ANALOG2 Analog Analog connection determined by vendor. Acceptable connections to this pin are: - Resistor or capacitor to GND - Resistor or capacitor to 3.3 V - Short to 3.3 V or to GND - NC 11 VCC33 Power 3.3 V ±10% DC supply 12 GND Power Ground 13 OUT_D4+ Output HDMI 1.3 compliant TMDS output. OUT_D4+ makes a differential output signal with OUT_D4-. 14 OUT_D4- Output HDMI 1.3 compliant TMDS output. OUT_D4- makes a differential output signal with OUT_D4+. 15 VCC33 Power 3.3 V±10% DC supply 16 OUT_D3+ Output HDMI 1.3 compliant TMDS output. OUT_D3+ makes a differential output signal with OUT_D3-. 17 OUT_D3- Output 18 GND 19 OUT_D2+ ) (s ) s ( ct u d o r P e t e l o s b O HDMI 1.3 compliant TMDS output. OUT_D3- makes a differential output signal with OUT_D3+. Power Ground Output HDMI 1.3 compliant TMDS output. OUT_D2+ makes a differential output signal with OUT_D2-. OUT_D2- Output HDMI 1.3 compliant TMDS output. OUT_D2- makes a differential output signal with OUT_D2+. 21 VCC33 Power 3.3 V±10% DC supply 22 OUT_D1+ Output HDMI 1.3 compliant TMDS output. OUT_D1+ makes a differential output signal with OUT_D1-. 23 OUT_D1- Output HDMI 1.3 compliant TMDS output. OUT_D1- makes a differential output signal with OUT_D1+. 24 GND Power Ground 20 e t e ol s b O Name u d o ct Pr Enable for level shifter path. 3.3 V tolerant low-voltage single-ended input. Internal pull-down enables chip when unconnected. 25 26 OE_N VCC33 Input Power OE_N IN_D termination OUT_D Outputs 1 High-Z High-Z 0 50 Ω Active 3.3 V±10% DC supply 9/26 Pin configuration STHDLS101T Table 2. Pin description (continued) Pin number Name Type 27 GND Power Ground 28 SCL_SINK Output 5 V DDC Clock I/O. Pulled-up by external termination to 5 V. Connected to SCL_SOURCE through voltagelimiting integrated NMOS pass-gate 29 SDA_SINK I/O 5V DDC Data I/O. Pulled-up by external termination to 5V. Connected to SDA_SOURCE through voltagelimiting integrated NMOS pass-gate Function 30 HPD_SINK Input Low-frequency, 0V to 5V (nominal) input signal. This signal comes from the HDMI connector. Voltage high indicates “plugged” state; voltage low indicates “unplugged” state. HPD_SINK is pulled down by an integrated 160KΩ pull-down resistor. 31 GND Power Ground ) s ( ct u d o r P e Enables bias voltage to the DDC pass-gate level shifter gates. (May be implemented as a bias voltage connection to the DDC pass-gate themselves). 32 DDC_EN Input t e l o DDC_EN bs 0V -O 3.3 V 33 34 e t e l 35 o s b O 10/26 VCC33 u d o Pr FUNCTION4 Disabled Enabled Power 3.3V±10% DC supply Input Used for polarity control of the HPD_SOURCE output. When L, the HPD_SOURCE is an open-drain output sand when H, the HPD_SOURCE is a buffered output (O V to VCC) ) s ( ct FUNCTION3 Pass-gate Function pins are to enable vendor-specific features or test modes. Vendor-specific For normal operation, these pins are tied to GND or control or test VCC33. pins For consistent interoperability, GND is the preferred default connection for these signals 36 GND Power Ground 37 GND Power Ground 38 IN_D1- Input Low-swing differential input from GMCH PCIE outputs. IN_D1- makes a differential pair with IN_D1+. 39 IN_D1+ Input Low-swing differential input from GMCH PCIE outputs. IN_D1+ makes a differential pair with IN_D1-. 40 VCC33 Power 3.3 V±10% DC supply 41 IN_D2- Input Low-swing differential input from GMCH PCIE outputs. IN_D2- makes a differential pair with IN_D2+. 42 IN_D2+ Input Low-swing differential input from GMCH PCIE outputs. IN_D2+ makes a differential pair with IN_D2-. STHDLS101T Pin configuration Table 2. Pin description (continued) Pin number Name Type 43 GND Power Ground 44 IN_D3- Input Low-swing differential input from GMCH PCIE outputs. IN_D3- makes a differential pair with IN_D3+. 45 IN_D3+ Input Low-swing differential input from GMCH PCIE outputs. IN_D3+ makes a differential pair with IN_D3-. 46 VCC33 Power 3.3 V±10% DC supply 47 IN_D4- Input Low-swing differential input from GMCH PCIE outputs. IN_D4- makes a differential pair with IN_D4+. 48 IN_D4+ Input Low-swing differential input from GMCH PCIE outputs. IN_D4+ makes a differential pair with IN_D4-. Function ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 11/26 Functional description 4 STHDLS101T Functional description The section describes the basic functionality of the STHDLS101T device. Power supply The STHDLS101T is powered by a single DC power supply of 3.3 V ± 10%. Clocking This device does not retime any data. The device contains no state machines. No inputs or outputs of the device are latched or clocked. ) s ( ct Reset This device acts as a level shifter, reset is not required. OE_N function u d o r P e When OE_N is asserted (low level), the IN_D and OUT_D signals are fully functional. Input termina-tion resistors are enabled and any internal bias circuits are turned on. t e l o OE_N pin has an internal pull-down that enables the chip if left unconnected. When OE_N is de-asserted (high level), the OUT_D outputs are in high impedance state. The IN_D input buffers are disabled and the IN_D termination resistors are disabled. Internal bias circuits for the differential inputs and outputs are turned off. Power consumption of the chip is minimized. ) (s s b O The HPD_SINK input and HPD_SOURCE output are not affected by OE_N. The SCL and SDA pass-gates are not affected by OE_N. Table 3. t c u OE_N description d o r OE_N P e t e l o Asserted (low level) or unconnected Differential input buffers and output buffers enabled. Input impedance = 50Ù Low-power state. s b O Differential input buffers and terminations are disabled. Differential input buffers are in high-impedance state. De-asserted (high level) 12/26 Device state Comments Normal functioning state for IN_D to OUT_D level shifting function. Intended for lowest power condition when: • No display is plugged in or • The level shifted data path is disabled HPD_SINK input and OUT_D level shifting outputs are HPD_SOURCE output are not disabled. OUT_D level shifting affected by OE_N. outputs are in a high-impedance state. SCL_SOURCE, SCL_SINK, SDA_SOURCE and SDA_SINK Internal bias currents are turned signals and functions are not off. affected by OE_N. STHDLS101T Functional description Table 4. OE_N function OE_N IN_Dx OUT_Dx (TMDS outputs) Notes Device disabled. Low power state. Internal bias currents are disabled. De-asserted (high level) High-Z High-Z Asserted or unconnected (low level) 50 Ω termination Enabled Level shifting mode enabled. ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 13/26 Maximum ratings 5 STHDLS101T Maximum ratings Stressing the device above the rating listed in the “Absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 5. Absolute maximum ratings Symbol Parameter VCC VI Value Supply voltage to ground potential -0.5 to +4.0 DC input voltage (TMDS and PCIe ports) -0.5 to +4.0 Control pins -0.5 to +4.0 IO DC output current PD Power dissipation e t e l o s b Storage temperature TL Lead temperature (10 sec) Electrostatic discharge voltage on IOs(1) VESD ) s ( ct -O Human body model Pr ) s ( t uc od SDA_SINK, SCL_SINK, HPD_SINK pins TSTG Unit V V V -0.5 to +6 V 120 mA 1 W -65 to +150 °C 300 °C ±6 kV 1. In accordance with the MIL standard 883 method 3015 Table 6. Symbol u d o Thermal data r P e θJA t e l o s b O 14/26 Parameter Junction-ambient thermal coefficient QFN-48 Unit 48 °C/W STHDLS101T Maximum ratings 5.1 Recommended operating conditions 5.1.1 Power supply and temperature range Table 7. Power supply and temperature range Symbol VCC33 ICC T Parameter Comments 3.3 V power supply Operating temperature range Differential inputs (IN_D signals) Table 8. Differential input characteristics for IN_D signals Parameter Comments Tbit is determined by the display mode. Nominal bit rate ranges from 250 Mbps to 2.5 Gbps per lane. Nominal Tbit at 2.5 Gbps = 400 ps. 360 ps = 400 ps – 10% e t e ol Unit interval )- VRX-DIFFp-p Differential input peak to peak voltage TRX-EYE VCM-AC-pp s ( t c Minimum eye width at IN_D input pair u d o O Unit 3.0 3.3 3.6 V 100 mA s b O The level shifter may add a maximum of 0.02UI jitter u d o Min Typ 0.175 1.2 0.8 DC single-ended input impedance Applies to IN_D+ as well as IN_D- pins (50 Ω ± 20% tolerance) 40 VRX-Bias RX input termination voltage Intended to limit power-up stress on chipset’s PCIE output buffers 0 100 Unit ps V Tbit r P e Single-ended input resistance for Differential inputs must be in IN_Dx when inputs are in high-Z state a high impedance state Max 360 ZRX-DC ZRX-HIGH-Z C ) s ( ct Pr VRX-DIFFp-p=2*|VRX-D+ - VRXD-|. Applies to IN_D signals. o 85 VCM-AC-pp=|VRX-D+ + VRX-D-|/2 – VRX-CM-DC. VRX-CM-DC=DC(avg) of AC peak common mode input voltage |VRX-D+ + VRX-D-|/2 VCM-AC-pp includes all frequencies above 30 kHz. t e l o bs Max -40 5.1.2 Tbit Typ Total current from VCC 3.3 V power supply Maximum power supply current Symbol Min 50 100 mV 60 Ω 2 V KΩ 15/26 Maximum ratings 5.2 STHDLS101T TMDS outputs (OUT_D signals) The level shifter’s TMDS outputs are required to meet the HDMI 1.3 specifications. The HDMI 1.3 specification is assumed to be the correct reference in instances where this document conflicts with the HDMI 1.3 specification. Table 9. Symbol Differential output characteristics for TMDS OUT_D signals Parameter Comments Min Typ Max Unit AVCC is the DC termination voltage in the HDMI or DVI sink. AVCC is nominally 3.3 V AVCC-10 mV AVCC AVCC+10 m V V AVCC600 mV AVCC500 mV AVCC400 mV 400 mV 500 mV t c u (s) 600 mV V 10 µA 125 ps 0.4 Tbit ps 125 ps 0.4 Tbit ps This differential skew budget is in addition to the skew presented between D+ and Dpaired input pins. 10 ps This lane to lane skew budget is in addition to the skew between differential input pairs. 250 ps Jitter budget for TMDS signals as they pass through the level shifter. 7.4 ps = 0.02 Tbit at 2.7 Gbps 7.4 ps VH Single-ended high level output voltage VL Single-ended low level The open-drain output pulls output voltage down form AVCC VSWING IOFF TR TF Single-ended output swing voltage Swing down from TMDS termination voltage (3.3 V ±10%) Single-ended current in high-Z state Measured with TMDS outputs pulled up to AVCC max (3.6 V) through 50 Ω resistors Rise time Maximum rise/fall time at 2.7 Gbps = 148ps. 125ps = 148 – 15% Fall time Maximum rise/fall time at 2.7 Gbps = 148 ps. 125ps = 148 – 15% )- TSKEW- Intra-pair differential skew INTRA u d o Pr TSKEW- Inter-pair lane to lane output skew INTER s b O e t e ol TJIT 16/26 Jitter added to TMDS signals t e l o s b O s ( t c P e d o r V STHDLS101T Maximum ratings 5.3 HPD input and output characteristics Table 10. HPD_SINK input and HPS_SOURCE output Symbol Parameter Comment Min Typ Max Unit Low speed input changes state on cable plug/unplug 2 5.0 5.3 V 0.8 V 50 µA VIH-HPD_SINK HPD_SINK input high level VIL-HPD_SINK HPD_SINK input low level IIN-HPD_SINK HPD_SINK input leakage current Measured with HPD_SINK at VIH-HPD max and VILHPD min HPD_SOURCE output high level when FUNCTION3 = L VCC = 3.3 V ±10% Based on external pull-up resistor; output is open drain. HPD_SOURCE output low level when FUNCTION3 = H VCC = 3.3 V ±10% HPD_SOURCE output high level when FUNCTION3 = L VCC = 3.3 V ±10% IOL = 1 mA HPD_SOURCE output low level when FUNCTION3 = H VCC = 3.3 V ±10% VOHHPD_SOURCE 0 (INV) VOLHPD_SOURCE VOHHPD_SOURCE (INV) VOLHPD_SOURCE THPD u d o e t e l TRF-HPD b O so Pr HPD_SOURCE rise/fall time o s b VCC V 0 0.2 V 0 0.2 V 200 ns 20 ns Time from HPD_SINK changing state to HPD_SOURCE changing state. Includes HPD_SOURCE rise/fall time CL=10 pF Time required to transition from VOH-HPD_SOURCE to VOL-HPD_SOURCE or from VOL-HPD_SOURCE to VOH- u d o Pr 2.5 O ) s ( t c HPD_SINK to HPD_SOURCE propagation delay e t e l ) s ( ct 1 HPD_SOURCE CL=10 pF 17/26 Maximum ratings STHDLS101T 5.4 DDC input and output chatacteristics Table 11. SDA_SOURCE, SCL_SOURCE and SDA_SINK, SCL_SINK characteristics Symb ol Parameter Input voltage on SDA_SINK, SCL_SINK pins VI Comment Min Voltage on the DDC pins on connector end ILKG VCC = 3.3 V VI =0.1VDD to 0.9 VDD to isolated DDC inputs Input leakage current on SDA_SINK, SCL_SINK VDD = external pull-up pins resistor voltage on SDA_SINK and SCL_SINK inputs (maximum of 5.5 V) IOFF VCC = 0.0 V VI = 0.1 VDD to 0.9 VDD to DDC sink inputs VDD = external pull-up resistor voltage on SDA_SINK and SCL_SINK inputs (maximum of 5.5 V) SDA_SOURCE, SCL_SOURCE = 0.0 V Power-down leakage current on SDA_SINK, SCL_SINK pins t e l o s b O VI(pp)=1 V, 100 KHz VCC=3.3 V, T=25C Input/output capacitance (switch off) CI/O Input/output capacitance (switch on) RON Switch resistance TPD Time from DDC_SINK changing state to DDC_SOURCE changing state while the pass gate is DDC_SINK to DDC_SOURCE propagation delay enabled. CL=10 pF RPU=1.5 K (min), 2.0 K (max) 18/26 u d o r P e Switch time from DDC_EN to the valid state on DDC_SOURCE Unit 0 5.5 V -10 10 µA 10 µA ) s ( ct u d o -10 5 VI(pp)=1 V, 100KHz VCC = 3.3 V, T= 25 ° C IO=3 mA, VO = 0.4 V VCC = 3.3 V t e l o s b O TSX s ( t c Max r P e CI/O )- Typ CL = 10 pF RPU = 1.5 K (min), 2.0 K (max) pF 10 pF 27 40 Ω 8 15 ns 8 15 ns STHDLS101T Maximum ratings 5.5 OE_ input characteristics Table 12. OE_N input characteristics Symbol Parameter Comment Min Typ Max Unit VIH-OE_N Input high level 2 VCC33 V VIL-OE_N Input low level 0 0.8 V IIN-OE_N Input leakage current 200 µA Measured with OE_N at VIH-OE_N max and VILOE_N mix 5.6 HPD input resistor Table 13. HDP input resistor Symbol RHPD ) s ( ct Parameter 5.7 ESD performance Table 14. ESD performance t c u Parameter ESD MIL STD 883 method 3015 (all pins) r P e t e l o Guarantees HPD_SINK is LOW when no display is plugged in ) (s Symbol od r P e Comment HPD_SINK input pull-down resistor u d o Min Typ Max Unit 130 K 160 K 190 K Ω s b O Test condition Min Human Body Model (HBM) -6 Typ Max Unit +6 kV t e l o s b O 19/26 Application information STHDLS101T 6 Application information 6.1 Power supply sequencing Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply VCC before applying any signals to the input/output or control pins. 6.2 Supply bypassing Bypass each of the VCC pins with 0.1 µF and 1nF capacitors in parallel as close to the device as possible, with the smaller-valued capacitor as close to the VCC pin of the device as possible. ) s ( ct 6.3 u d o Differential traces r P e The high-speed inputs and TMDS outputs are the most critical parts for the device. There are several considerations to minimize discontinuities on these transmission lines between the connectors and the device. t e l o (a) Maintain 100 Ω differential transmission line impedance into and out of the device. s b O (b) Keep an uninterrupted ground plane below the high-speed I/Os. ) (s (c) Keep the ground-path vias to the device as close as possible to allow the shortest return current path. t c u (d) Layout of the TMDS differential outputs should be with the shortest stubs from the connectors. d o r Output trace characteristics affect the performance of the STHDLS101T. Use controlled impedance traces to match trace impedance to both the transmission medium impedance and termination resistor. Run the differential traces close together to minimize the effects of the noise. Reduce skew by matching the electrical length of the traces. Avoid discontinuities in the differential trace layout. Avoid 90 degree turns and minimize the number of vias to further prevent impedance discontinuities. P e t e l o s b O 20/26 STHDLS101T 7 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 21/26 Package mechanical data Figure 6. STHDLS101T QFN-48 (7 x 7 mm) package outline ) s ( ct u d o r P e t e l o ) (s t c u d o r P e t e l o s b O 22/26 s b O STHDLS101T Package mechanical data Table 15. QFN-48 (7 x 7 mm) package mechanical data Symbol Min Typ Max Min Typ Max A 0.80 0.90 1.00 0.80 0.85 1.00 A1 0.02 0.05 0.01 0.05 A2 0.65 1.00 0.65 A3 0.25 0.20 b 0.18 0.23 0.30 0.18 0.23 0.30 D 6.85 7.00 7.15 6.90 7.00 7.10 D2 2.25 4.70 5.25 E 6.85 7.00 7.15 E2 2.25 4.70 5.25 e 0.45 0.50 0.55 0.45 L 0.30 0.40 0.50 0.30 0.08 e t e ol ddd Figure 7. 6.90 7.00 u d o 7.10 SEE EXPOSED PAD VARIATIONS QFN-48 tape and reel information ) (s ) s ( ct SEE EXPOSED PAD VARIATIONS Pr 0.50 0.40 0.55 0.50 0.08 s b O t c u d o r P e t e l o s b O 23/26 Package mechanical data Figure 8. STHDLS101T Reel information ) s ( ct u d o r P e t e l o ct Table 16. l o s b O 24/26 u d o 0084694_J Reel mechanical data (dimensions in mm) Pr A ete ) (s s b O 330.2 C N T 13 ±0.25 100 16.4 STHDLS101T 8 Revision history Revision history Table 17. Document revision history Date Revision 30-Jun-2008 1 Initial release. 24-Sep-2008 2 Document status promoted from preliminary data to datasheet. Modified: features section, Table 2: Pin description on page 8 and Section 4: Functional description. 3 Updated: Features section andChapter 5: Maximum ratings Added: Figure 3: Cable adapter on page 5 , Figure 4: DP to HDMI/DVI cable adapter on page 6, Figure 8: Reel information on page 24 and Table 16: Reel mechanical data (dimensions in mm) on page 24 01-Dec-2008 Changes ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 25/26 STHDLS101T ) s ( ct Please Read Carefully: u d o Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. r P e All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. t e l o No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. ) (s s b O UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. t c u UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. d o r P e t e l o Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. s b O ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26
STHDLS101TQTR 价格&库存

很抱歉,暂时无法提供与“STHDLS101TQTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货