0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STLED524

STLED524

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    CSP56

  • 描述:

    IC MATRIX LED DISPL DVR 56CSP

  • 数据手册
  • 价格&库存
STLED524 数据手册
STLED524 Intelligent matrix LED display driver Datasheet - preliminary data Description CSP 56 bumps 0.4 mm pitch 3.4x3.0 mm Features • Operating input voltage range from 2.7 V to 5.5 V • 5x24 LED matrix driver • Adjustable luminance separately for each LED thanks to internal registers in 255 steps • Internal registers store 2 patterns • 4-way scroll function with the possibility to lock column data • PWM dimming in 255 steps The STLED524 is a 5x24 dot matrix LED display driver. It can drive each dot with a current up to 20 mA. Rows of the matrix are multiplexed. Each LED in a row is driven by a separate low-side current mirror. Current regulators are supplied by an integrated boost DC-DC converter. Its output voltage can be adjusted by the internal register to optimize efficiency according to the type of LEDs (their forward voltage). This reduces current mirror power dissipation and improves overall efficiency. The STLED524 also includes an internal LDO regulator, which can provide a supply voltage for an additional circuitry. Maximum current, provided by each current mirror, is adjusted by RSET resistor. Current of each LED (dot) can be dimmed in 255 steps due to settings of internal registers. The STLED524 features PWM dimming in 255 steps. Automatic slope function is also supported. Cycle time and slope time can be adjusted for each LED (dot) separately. Two patterns can be stored in internal registers. The automatic scrolling of the display content is possible in 4 ways. • Adjustable blanking time • Automatic slope function • Cycle time and slope time adjustable for each dot separately Table 1. Device summary • SPI interface Order code Package Packaging • Integrated step-up converter with adjustable output voltage STLED524 CSP Tape and reel • Integrated LDO with 3.1 V output @ 80 mA • Boost efficiency 92% at 350 mA • 2.4 MHz switching frequency • CSP 56 bumps 0.4 mm pitch 3.4x3.0 mm Applications • Appliance user interfaces • Display driver for handheld units April 2014 DocID026217 Rev 1 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/72 www.st.com 72 Contents STLED524 Contents 1 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Boost converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 LED matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1 4.3 LED current setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 2/72 Blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4.1 Pattern register organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4.2 Display size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Description of registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5.1 Software control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5.2 Display control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5.3 Clock register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.5.4 Column control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5.5 Row control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.5.6 Blanking time register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.5.7 Boost control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5.8 Display visual control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5.9 PWM control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.5.10 Scroll control 1, scroll control 2 and scroll control 3 registers . . . . . . . . 27 4.5.11 Interrupt enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.5.12 Latch register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5.13 Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5.14 Scroll step register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5.15 Version register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.6 Slope mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.7 Scrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.7.1 Scroll control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.7.2 Locking columns and rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID026217 Rev 1 STLED524 Contents 4.7.3 Scroll possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.7.4 Scroll examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.8 Combining PWM, slope and scroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.9 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.10 4.9.1 Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.9.2 Address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.9.3 SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.9.4 Writing and reading multiple bytes at once . . . . . . . . . . . . . . . . . . . . . . 46 Protections and interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.10.1 Registers related to protections and interrupts . . . . . . . . . . . . . . . . . . . 47 4.10.2 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.10.3 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.10.4 Open ISET protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.10.5 Short ISET protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.10.6 Row transistor protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.10.7 Boost output voltage OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.10.8 EOSCR and step interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.11 Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.12 Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 List of control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1 6.2 6.3 Pattern examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.1 Example 1 - rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.2 Example 2 - dimming settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.3 Example 3 - slope settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1.4 Example 4 - delay settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.1.5 Example 5 - Writing pattern data into pattern 1 memory . . . . . . . . . . . . 62 Operation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.1 Example 6 - how to display patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.2 Example 7 - how to enable slope operation . . . . . . . . . . . . . . . . . . . . . . 65 6.2.3 Example 8 - how to enable PWM operation . . . . . . . . . . . . . . . . . . . . . 66 6.2.4 Example 8 - scroll operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Multiple devices in cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.1 Register setup for the STLED524 cascade . . . . . . . . . . . . . . . . . . . . . . 68 DocID026217 Rev 1 3/72 Contents STLED524 7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4/72 DocID026217 Rev 1 STLED524 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Boost control register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Boost output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Blanking time register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Impact of blanking time on the maximum PWM duty cycle. . . . . . . . . . . . . . . . . . . . . . . . . 18 Dimming, slope and delay registers of one dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Dimming, slope and delay registers of one dot (memory organization) . . . . . . . . . . . . . . . 19 Register addresses in pattern 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Register addresses in pattern 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Content of columns 20-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Software control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Display control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DISP bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Clock register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SYNC pin behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Column control 1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Column control 2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Column control 3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Row control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Blanking time duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Display visual control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 PWM control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Interrupt enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Latch register (read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Status register (read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Interrupt overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Version register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Delay duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Slope cycle duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Scroll control register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Scroll speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Scroll direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Scroll control register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Scroll control register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Wait time during scroll operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Scroll step register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Column lock register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Column lock register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Column lock register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Row lock register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 List of all scroll operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 SPI commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 SPI values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID026217 Rev 1 5/72 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. 6/72 STLED524 SPI addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Interrupt enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Latch register (read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Status register (read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 List of control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Pattern data for example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Pattern data for example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Pattern data for example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Pattern data for example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 SPI data for writing pattern from example 3 to pattern 1 memory . . . . . . . . . . . . . . . . . . . 63 SPI data to display pattern 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 SPI data to display pattern 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 SPI data to enable slope operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 SPI data to display pattern 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 SPI data to display pattern 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 SPI data to enable PWM operation (PWM control register = 128) . . . . . . . . . . . . . . . . . . . 66 SPI data to display in pattern 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 SPI data to display in pattern 1(example 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SPI data for scroll setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SPI data to enable scroll operation with blank rows/columns . . . . . . . . . . . . . . . . . . . . . . . 67 SPI data to start scroll operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Cascade register setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 CSP 56 bumps (3.4x3.0 mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DocID026217 Rev 1 STLED524 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 LED matrix coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 LED matrix timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Internal to external clock transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Slope cycle operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Duty cycle increments during phase 1 of slope operation . . . . . . . . . . . . . . . . . . . . . . . . . 31 Truncation of duty cycle steps during slope operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Basic scroll operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Scroll operation with blank row/column insertion enabled . . . . . . . . . . . . . . . . . . . . . . . . . 37 Scroll operation with enabled wait cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Examples of scroll (DISP 01→10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Example of scroll when DISPSIZE = 1 (DISP 01 → 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Example of scroll with 2 inserted blank rows (BRCEN=1, DISP 01 → 10) . . . . . . . . . . . . . 40 Light output in case of enabled PWM and disabled slope . . . . . . . . . . . . . . . . . . . . . . . . . 40 Light output in case of disabled PWM and enabled slope . . . . . . . . . . . . . . . . . . . . . . . . . 41 Light output in case of enabled PWM and enabled slope. . . . . . . . . . . . . . . . . . . . . . . . . . 41 Light output in case of enabled scroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 SPI protocol (writing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 SPI protocol (reading) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Multiple byte writing at once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Multiple byte reading at once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 BSTOK bit behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 STLED524 cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 CSP 56 bumps (3.4x3.0 mm) drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DocID026217 Rev 1 7/72 Application schematic 1 STLED524 Application schematic Figure 1. Application schematic L VIN C4 C5 C3 VBAT1 VBAT2 SW SW VOUT VOUT C1 LDO ROW0 ROW1 ROW2 VSUP DRIVER ROW3 REF1 CONTROL C2 ROW4 STEP-UP CONVERTER REFERENCES COL0 ROW[4:0] COL1 COL2 R1 VDD COL3 V/O COL4 COL5 INT MOSI MISO SCK COL6 SPI interface I/O and level shifters + Digital core COL7 COL8 COL9 SS CLKIN COL10 CLKOUT COL11 SYNC COL12 RESET/PWRDN COL13 COL14 COL15 ISET CURRENT RF OSCILLATOR COL16 RSET COL17 COL18 COL19 TEST COL20 COL21 COL22 PGND PGND LDOGND GND AGND1 AGND2 AGND3 COL23 GIPG2702141303LM 8/72 DocID026217 Rev 1 STLED524 Application schematic Table 2. Typical external components Note: Component Manufacturer Part number Value Size C1 Murata GRM188R60J106ME84D 10 µF 0603 C2 Murata GRM188R60J106ME84D 10 µF 0603 C3 Murata GRM188R60J106ME84D 10 µF 0603 C4 Murata GRM21AR60J226ME47L 22 µF 0805 C5 Murata GRM21AR60J226ME47L 22 µF 0805 L Murata LQM2HPN1R0MJC 1.0 µH 2.0x1.6x0.9 mm RSET 25 k 0402 R1 15 k 0402 All above components refer to a typical application. The device operation is not limited to the choice of these external components. Figure 2. Pin configuration (top view) 1 2 3 4 5 6 7 A GND VDD RESET VSUP VBAT1 PGND PGND B CLKOUT CLKIN SCK ISET LDOGND SW SW C MISO MISO MOSI INT TEST VBAT2 VOUT VOUT D VIO SYNC SS COL23 COL0 AGND1 ROW0 E COL21 COL20 COL19 COL22 COL8 COL1 ROW1 F COL18 COL17 COL15 COL9 COL3 COL2 ROW2 G COL16 COL13 COL11 AGND2 COL6 COL4 ROW3 H COL14 COL12 COL10 AGND2 COL7 COL5 ROW4 GIPG2702141312LM DocID026217 Rev 1 9/72 Application schematic STLED524 Table 3. Pin description Name Pin VBAT1 A5 LDO supply voltage connection(1) VBAT2 C5 Supply voltage connection(1) SW B6, B7 Coil connection VOUT C6, C7 Step-up converter output voltage VSUP A4 ROW 0-4 D7, E7, F7, G7, H7 COL 0-23 Description LDO output voltage Matrix row connections D4,D5 E1-E6, F1F6, G1-G3, G5Matrix column connections G6, H1-H3, H5H6 PGND A6, A7 Power ground AGND1 D6 Analog ground 1 AGND2 G4, H4 Analog ground 2 GND A1 Ground VDD A2 Logic supply voltage VIO D1 I/O pin supply voltage RESET/PWRDN A3 Reset input, active low. When low, the device is in shutdown mode MISO C1 Master IN slave OUT (SPI bus) MOSI C2 Master OUT slave IN (SPI bus) SS D3 Slave select (SPI bus) SCK B3 SPU bus clock CLKIN B2 Clock input CLKOUT B1 Clock output SYNC D2 Synchronization input INT C3 Interrupt open drain output LDOGND B5 Boost output voltage setup resistor connection ISET B4 Reference current adjustment resistor connection TEST C4 Test input. It has to be connected to GND 1. Both VBAT1 and VBAT2 have to be supplied, even though LDO is not used to supply other devices. 10/72 DocID026217 Rev 1 STLED524 2 Absolute maximum ratings Absolute maximum ratings Table 4. Absolute maximum ratings Symbol Parameter Unit VBAT1, VBAT2 Supply voltage -0.3 to +6 V SW Switching node -0.3 to +6 V VOUT Output voltage -0.3 to +6 V VSUP LDO output voltage -0.3 to 3.6 V VDD Logic supply voltage -0.3 to 3.6 V VIO I/O pin supply voltage -0.3 to 3.6 V -0.3 to VOUT +0.3 V -0.3 to +6 V -0.3 to +6 V Current setting -0.3 to 2 V Machine model ±200 Human body model ±2000 Charged device model ±250 ROW 0-4 Row switches COL 0-23 Column current mirrors MISO, MOSI, SCK, SS, INT, THA, CLKIN, Signal pins CLKOUT, SYNC, RESET ISET ESD TAMB TJ TSTG Note: Value Operating ambient temperature Maximum operating junction temperature Storage temperature V -30 to 85 °C +125 °C -40 to 150 °C Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Table 5. Thermal data Symbol RthJA Note: Parameter Thermal resistance junction-ambient Value Unit 62 °C/W This parameter corresponds to the PCB board, 8 layers with 1 inch2 of cooling area. DocID026217 Rev 1 11/72 Electrical characteristics 3 STLED524 Electrical characteristics - 30 °C < TA < 85 °C, VIN = 2.7 V; VOUT = 4.0 V; typical values are at TA = 25 °C, unless otherwise specified. Table 6. Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit 3.7 5.5 V 3.6 V General section VIN Operating power input voltage range 2.7 VIO Supply voltage of I/O pins 1.8 VDD Digital supply voltage(1) 3.1 ISHDN Shutdown mode VUVLO Undervoltage lockout threshold (when reset is high) VUVLOR (VIN rising) VUVLOF (VIN falling) V 2 10 2.5 2.6 µA V 2.3 2.4 2.16 2.4 Boost fSW Switching frequency IOUT Continuous output current VIN = 3.5 V VOUT Boost output voltage VIN = 3.0 V IPK Inductor peak current η Boost efficiency (VIN = 3.7 V; VOUT = 4.0 V) IOUT = 350 mA (PS mode) 2.64 480 2.8 MHz mA 4.6 V 1.5 A 92 % VOVP Overvoltage protection 5.8 6 V VOVPHYST Overvoltage protection hysteresis 200 mV VBSTOKHYST Hysteresis of BST_OK comparator 250 mV 3.1 V LDO VSUP ΔVSUP ILDO IQ LDO output voltage VIN = 3.3 V LDO output accuracy VIN = 3.3 V IOUT = 1 mA 2 3 % LDO output current VIN = 3.3 V 80 100 mA LDO quiescent current VIN = 3.3 V IOUT = 80 mA 1.4 Thermal protection 12/72 DocID026217 Rev 1 µA STLED524 Electrical characteristics Table 6. Electrical characteristics (continued) Symbol TSHDN1 TSHDN1HYST TSHDN2 TSHDN2HYST Parameter Test conditions Min. Typ. Thermal shutdown (boost and CM) 150 Hysteresis 20 Thermal shutdown (LDO) 170 Hysteresis 20 Max. Unit °C LED current ILED0-LED23 ΔILEDx VSET Current matching ICOLx = 20 mA, VOUT > VLED+VCSH Absolute channel accuracy ICOLx = 20 mA, VOUT > VLED+VCSH Voltage reference RSET = 25 k Current mirror ratio ILED/ ISET -7.5 1.225 % +7.5 % 1.275 V 400 VCSH Current source headroom voltage (COLx to GND) IRIPPLE LED peak-to-peak current ripple(2) VIN = 3.0 V; ILED = 20 mA in all channels -15 ILED_MAX Current mirror max. current RSET = 20 kΩ 22 tSET 1.25 5 A/A 200 LED current settling time (current ICOLx = 20 mA reaches 90% of the target value) I COLx = 1 mA mV +15 25 % mA 1 μs 10 Logic inputs: MOSI, SCK, SS VIL Low-level input voltage VIO = 1.8 V to 3.6 V 0.3 VIO VIH High-level input voltage VIO = 1.8 V to 3.6 V ILK-H Input leakage current in highlevel VIO = 3.6 V 2 µA ILK-L Input leakage current in low-level VIO = 3.6 V 2 µA 0.3 VIO V 0.7 VIO V V Logic inputs: CLKIN, SYNK, RESET VIL Low-level input voltage VIO = 1.8 V to 3.6 V VIH High-level input voltage VIO = 1.8 V to 3.6 V ILK-H Input leakage current in highlevel VIO = 3.6 V 2 µA ILK-L Input leakage current in low-level VIO = 3.6 V 2 µA 0.4 V 0.7 VIO V Logic outputs VOL Low-level output voltage IOL = 2 mA VOH High-level output voltage IOH = 2 mA, VIO = 3.0 V Internal oscillator frequency VIN = 2.7 V to 5.5 V VIO -0.4 V Clocks fOSC DocID026217 Rev 1 540 600 660 kHz 13/72 Electrical characteristics STLED524 Table 6. Electrical characteristics (continued) Symbol Parameter Test conditions dCLKOUT Duty cycle of the clock out signal fEXT_MAX Maximum frequency of the external clock signal VIN = 2.7 V to 5.5 V dCLKIN Duty cycle of the external clock signal VIN = 2.7 V to 5.5 V TINTTOEXTCLK Transition time from internal to external clock Min. Typ. Max. Unit 1.25 MHz 70 % 60 30 10 TCLKEX Power switches RDS(on) RDS(on) P-channel on-resistance (boost) 230 mΩ N-channel on-resistance (boost) 130 mΩ P-channel on-resistance (ROW 0 to ROW 4) 500 mΩ N-channel on-resistance (ROW 0 to ROW 4) 200 mΩ RDS(on) Bypass switch on-resistance ILKG-LX Coil leakage current mΩ VIN = VSW2 = 4.0 V 1 µA Time and delay TCLK Clock period 1.667 µs TRTCR Delay between row rising edge and column rising edge 1 8 TRTCF Delay between column falling edge and row falling edge 1 8 TONMIN PWM minimum on-time 2 TONMAX PWM maximum on-time 510 TFRAME Frame period 2560 TROW Row duration 512 TCLK Reset TRST Minimum pulse width on RESET pin 100 1. It is strongly recommended to connect VDD pin to VSUP pin directly. 2. It is valid only if LED matrix is not farther than 10 cm from the driver, otherwise ceramic capacitors should be connected between COLx pin and ground to improve ripple. 14/72 DocID026217 Rev 1 µs STLED524 4 Detailed description Detailed description The STLED524 is a 5x24 LED dot matrix display driver. It includes 24 low-side current mirrors (for each LED in a row). Rows are multiplexed by 5 internal PMOS transistors. Current mirrors are supplied by the integrated boost converter. Its output voltage is adjustable so it can be adapted to the forward voltage of LEDs. It reduces power dissipation and improves efficiency. 4.1 Boost converter The step-up bridge with current mode control regulation provides output voltage according to the value of VOUT[3:0] register. This voltage should be adjusted to be high enough to provide sufficient headroom to regulate current sources connected to COL 0-23 pins. On the other hand, keeping boost output voltage unnecessarily high, increases power dissipation and degrades efficiency. Boost incorporates a zero current comparator. When the input voltage is close to the output voltage, pulse-skipping is applied to keep the output voltage regulated. If the input voltage is higher than desired output voltage, boost switches to bypass mode automatically. In this mode, the output voltage is equal to the input voltage lowered by voltage drop on the PMOS transistor. Boost converter is enabled only when BSTEN bit in the boost control register is set to 1. VOUT setting shouldn’t be changed when boost is on (BSTEN=1). Table 7. Boost control register bits Boost control Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 16h BSTEN - - - VOUT3 VOUT2 VOUT1 VOUT0 Default 0 0 0 0 1 0 1 0 BSTEN = 0, boost is disabled BSTEN = 1, boost is enabled Table 8. Boost output voltage VOUT[3:0] VOUT[V] 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 2.80 2.92 3.04 3.16 3.28 3.40 3.52 3.64 3.76 3.88 4.00 4.12 4.24 4.36 4.48 4.60 One step = 120 mV DocID026217 Rev 1 15/72 Detailed description 4.2 STLED524 LED matrix Figure 3. LED matrix coordinates GIPG2702141315LM LED matrix rows are connected to ROW 0-4 pins. Columns are connected to COL 0-23 pins. 4.2.1 Blanking time Rows are multiplexed by TROW period according to Figure 4. The duration of one row is given by TROW = TFRAME / 5, but the maximum dot on-time is TONMAX = TROW - (TRTCR + TRTCF) only. 16/72 DocID026217 Rev 1 STLED524 Detailed description Figure 4. LED matrix timing GIPG2103140938LM TRTCR and TRTCF are adjustable due to the blanking time register. If a blanking time is set longer than 2 TCLK, maximum PWM duty cycle is limited according to Table 10. DocID026217 Rev 1 17/72 Detailed description STLED524 Table 9. Blanking time register Blanking time Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Add = 15h - - - - - Default - - - - - Bit 2 Bit 1 Bit 0 BLK[2:0] 0 0 0 Table 10. Impact of blanking time on the maximum PWM duty cycle 4.3 Blanking time register value Blanking time [TCLK] 000 2 1 1 255/255 001 4 2 2 254/255 010 6 3 3 253/255 011 8 4 4 252/255 100 10 5 5 251/255 101 12 6 6 250/255 110 14 7 7 249/255 111 16 8 8 248/255 TRTCR [TCLK] TRTCF [TCLK] Max. PWM duty cycle LED current setting Although each current mirror can sink up to ~35 mA (that is more than test conditions), the following conditions have to be met: • The sum of all current mirrors should not exceed 600 mA in bypass mode. • The sum of all current mirrors should not exceed 480 mA in boost mode. • If sum of all current mirrors exceeds test conditions, it may exceed the related specifications. The device is not guaranteed to sink current greater than test conditions. Maximum current of all current mirrors can be adjusted by RSET resistor value according to the following formula: Equation 1 VSET I LEDMAX = -------------- × 400 RSET where: VSET = 1.25 V typically. Current of each dot can be adjusted in its register, so each LED may have an independent setting of current. Current can be adjusted in 255 steps; 1 step represents approximately 0.392% of ILEDMAX. Current settings are carried out by Dn_xx registers, where n is the pattern number and xx are the coordinates of a dot in the matrix. 18/72 DocID026217 Rev 1 STLED524 Detailed description To avoid false activation of the short or open ISET pin protection, the minimum value of RSET should be higher than 14 kΩ and lower than 270 kΩ. 4.4 Patterns The STLED524 includes the memory for 2 patterns of 5x24 dots. Each dot in a pattern has 2 registers for its setting. One 8-bit register stores dimming settings. The other one is 4-bit only and stores information about slope and delay. Table 11. Dimming, slope and delay registers of one dot Dimming Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Add = nnh Dn_xx[7:0] Default value Not defined Bit 2 Bit 1 Bit 0 Bit 2 Bit 1 Bit 0 Slope and delay (S&D) Bit 7 Bit 6 Bit 5 Bit 4 Add = (nn+1)h - - - - PnCYCxx[1:0] PnDLYxx[1:0] Default value - - - - Not defined Not defined Bit 3 where: n: is a number of pattern xx: are coordinates of a dot in the matrix xx = {A0, A1, A2, A3, A4, B0, B1, …, B4, C0…, X0, X1, X2, X3, X4}. Pattern 1 and pattern 2 memories are not initialized after the reset. They can contain random data. Their content should be reset by CLR1/CLR2 bits. 4.4.1 Pattern register organization A pair of 8-bit registers is used to set properties of each dot in the matrix. Table 12. Dimming, slope and delay registers of one dot (memory organization) Bit 7 Bit 6 Address 0xnnh Address 0x(nn+1)h Dimming register Slope and delay register Bit 5 Bit 4 Bit 3 Dn_xx[7:0] Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 - - - - DocID026217 Rev 1 Bit 3 Bit 2 PnCYCxx[1:0] Bit 1 Bit 0 PnDLYxx[1:0] 19/72 Detailed description STLED524 Table 13. Register addresses in pattern 1 Address Dimming register Address Slope and delay register 00h D1_A0[7:0] 01h P1CYCA0[1:0] P1DLYA0[1:0] 02hh D1_A1[7:0] 03h P1CYCA1[1:0] P1DLYA1[1:0] … … … … … EEh D1_X4[7:0] EFh P1CYCX4[1:0] P1DLYX4[1:0] Table 14. Register addresses in pattern 2 4.4.2 Address Dimming register Address Slope and delay register 00h D2_A0[7:0] 01h P2CYCA0[1:0] P2DLYA0[1:0] 02h D2_A1[7:0] 03h P2CYCA1[1:0] P2DLYA1[1:0] … … … … … EEh D2_X4[7:0] EFh P2CYCX4[1:0] P2DLYX4[1:0] Display size If DISPSIZE bit is set to 1, the content of columns 20-23 is always linked to pattern 1 regardless of the value of DISP bits. Columns 0-19 can still be used as a display, while columns 20-23 can be used for other functions. If DISPSIZE bit is set to 1, the content of pattern 2 is also limited to columns 0-19 only. Columns 20-23 are not displayed during scrolling. The minimum number of scroll steps in horizontal direction is reduced to 20, if DISPSIZE = 1. Table 15. Content of columns 20-23 20/72 DISP DISPSIZE COL 0-19 COL 20-23 00 0 Blank Blank 01 0 Pattern 1 Pattern 1 10 0 Pattern 2 Pattern 2 00 1 Blank Pattern 1 01 1 Pattern 1 Pattern 1 10 1 Pattern 2 Pattern 1 DocID026217 Rev 1 STLED524 Detailed description 4.5 Description of registers 4.5.1 Software control register Table 16. Software control register Software control Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 00h SWRST - - - - CLR2 CLR1 EN Default 0 0 0 0 0 0 0 0 When CLR1 is set to 1, pattern 1 is cleared, (dimming, slope and delay of all dots are set to 0) then it is set to 0 automatically. When CLR2 is set to 1, pattern 2 is cleared, (dimming, slope and delay of all dots are set to 0) then it is set to 0 automatically. If SWRST bit is set to 1, content of all registers is set to default values and SWRST bit is cleared automatically. If EN = 0, display is off If EN = 1, display is on 4.5.2 Display control register Table 17. Display control register Display control Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 01h - - - - - - DISP2 DISP1 Default 0 0 0 0 0 0 0 0 DISP1 and DISP2 bits define which pattern is displayed, see Table 18. Table 18. DISP bits DISP2 DISP1 Displayed pattern 0 0 No pattern is displayed (blank screen) 0 1 Pattern 1 is displayed 1 0 Pattern 2 is displayed 1 1 No pattern is displayed (blank screen) DISP bits can be written by SPI anytime, but the display change (from pattern 1 to pattern 2 or vice versa) is performed according to the following rules: • On next frame, if the display is on and scroll features are disabled (EN=1, SCRLEN=0). • If SCRLEN=1 and EN=1, scroll operation starts according to the scroll setup. DocID026217 Rev 1 21/72 Detailed description 4.5.3 STLED524 Clock register This register is used to set up clock signals. Table 19. Clock register Clock Bit 7 Bit 6 Bit 5 Add = 10h - - - Default 0 0 0 Bit 4 Bit 3 Bit 2 REFSEL SYNCSEL SYNCEN 0 1 Bit 1 Bit 0 CLKIN CLKOUT 0 0 0 CLKOUT = 0, CLKOUT pin does not provide any clock signal. It is permanently low CLKOUT = 1, CLKOUT pin provides CLK signal CLKIN = 0, clock signal from the internal oscillator is used for display timings CLKIN = 1, clock signal from CLKIN pin is used for display timings SYNCEN = 0, driver operation synchronization is disabled by an external signal connected to SYNC pin SYNCEN = 1, driver operation synchronization is enabled by an external signal connected to SYNC pin SYNCSEL = 0, driver operation is enabled when SYNC signal is low SYNCSEL = 1, driver operation is enabled when SYNC signal is high REFSEL = 0, external reference defined by RSET value is used for current mirrors REFSEL = 1, internal reference is used for current mirrors If the clock signal changes from internal to external, the external clock has to be provided, at least TINTTOEXTCLK before than CLKIN bit is set to 1. Figure 5. Internal to external clock transition NTCLK IEXTCLK (CLKIN pin) CLKIN bit TINTTOEXTLCLK GIPG27021413139LM SYNC pin behavior If the synchronization is enabled (SYNCEN = 1), SYNC pin is in inactive state (defined by SYNCSEL bit) and the micro writes EN, DISP or SLPEN bits, but the corresponding operation is delayed, until SYNC pin gets to the active state. If the synchronization is disabled (SYNCEN = 0), the micro writes EN, DISP or SLPEN bits, and the corresponding operation starts immediately. 22/72 DocID026217 Rev 1 STLED524 Detailed description Table 20. SYNC pin behavior 4.5.4 SYNCEN bit SYNCSEL bit SYNC pin Operation 0 0 0 Not synchronized 0 0 1 Not synchronized 0 1 0 Not synchronized 0 1 1 Not synchronized 1 0 0 Synchronized, but the bit change has immediate effect 1 0 1 Synchronized, the operation is delayed, until SYNC pin is 0 1 1 0 Synchronized, the operation is delayed, until SYNC pin is 1 1 1 1 Synchronized, but bit change has immediate effect Column control register These registers are used to enable/disable columns of the matrix. Table 21. Column control 1 register Column control 1 Add = 11h Default Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 COL7EN COL6EN COL5EN COL4EN COL3EN COL2EN COL1EN COL0EN 1 1 1 1 DocID026217 Rev 1 1 1 1 1 23/72 Detailed description STLED524 Table 22. Column control 2 register Column control 2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 12h COL15EN COL14EN COL13EN COL12EN COL11EN COL10EN COL9EN COL8EN Default 1 1 1 1 1 1 1 1 Bit 2 Bit 1 Bit 0 Table 23. Column control 3 register Column control 3 Add = 13h Default Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 COL23EN COL22EN COL21EN COL20EN COL19EN COL18EN COL17EN COL16EN 1 1 1 1 1 1 1 1 COLEN = 0, column is disabled COLEN = 1, column is enabled These bits can be read or written in any configuration, but these registers should be changed when EN=0. 4.5.5 Row control register This register is used to enable/disable rows of the matrix. Table 24. Row control register Row control Bit 7 Bit 6 Bit 5 Add = 14h - - - Default 0 0 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ROW4EN ROW3EN ROW2EN ROW1EN ROW0EN 1 1 1 1 1 ROWEN = 0, row is disabled ROWEN = 1, row is enabled These bits can be read or written in any configuration, but these registers should be registerd when EN=0. 4.5.6 Blanking time register This register sets the blanking time duration. Table 25. Blanking time duration 24/72 Blanking time Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Add = 16h - - - - - Default 0 0 0 0 0 DocID026217 Rev 1 Bit 2 Bit 1 Bit 0 BLK[2:0] 0 0 0 STLED524 Detailed description BLK[2:0] - blanking time duration 000: 2 clock periods 001: 4 clock periods 010: 6 clock periods 011: 8 clock periods 100: 10 clock periods 101: 12 clock periods 110: 14 clock periods 111: 16 clock periods These bits can be read or written in any configuration, these registers should be changed when EN=0. See Section 4.2.1 for details. 4.5.7 Boost control register This register is described in Section 4.1. 4.5.8 Display visual control register This register enables/disables the driver visual features. Table 26. Display visual control register Display visual control Bit 7 Bit 6 Add = 20h - - Default 0 0 Bit 5 Bit 4 BRCEN WAITEN 0 0 Bit 3 Bit 2 Bit 1 Bit 0 SLPEN SCRLEN PWMEN DISPSIZE 0 0 0 0 PWMEN = 0, PWM duty cycle is fixed to maximum available PWMEN = 1, PWM duty cycle can be customized by PWM control register SCRLEN = 0, scrolling is disabled SCRLEN = 1, scrolling is enabled SLPEN = 0, slope operation is disabled SLPEN = 1, slope operation is enabled WAITEN = 0, wait time at the end of scroll operation is disabled WAITEN = 1, wait time at the end of scroll operation is enabled BRCEN = 0, insertion of blank rows/columns during scroll operation is disabled BRCEN = 1, insertion of blank rows/columns during scroll operation is enabled DISPSIZE = 0, full number of columns is used to display content of patterns 1 and 2 DISPSIZE = 1, content of columns 20-23 is always linked to pattern 1 regardless of the value of DISP bits. If content of pattern 2 is displayed, then columns 0-19 are visible. The rest is "hidden behind" in the columns 20-23 that display content of pattern 1 permanently. DocID026217 Rev 1 25/72 Detailed description Note: STLED524 Setting EN=0, the display turns off immediately. If PWM is enabled / disabled while a slope cycle is running, new PWM settings have effect as described in PWM control register. When SLPEN is set to 0, slope is disabled immediately, regardless of the current slope status for each dot. When SCRLEN is set to 0, the display reverts immediately to its target pattern (given by DISP bit values), aborting any scrolling cycle. 4.5.9 PWM control register This register is used to set PWM duty cycle. Table 27. PWM control register PWM control Bit 7 Bit 6 Bit 5 Add = 21h Default Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 PWM[7:0] 0 0 0 0 0 PWM[7:0] represents PWM duty cycle value PWM[7:0] = 0x00h represents 0/255 duty cycle (0%) PWM[7:0] = 0x01h represents 1/255 duty cycle (0.4%) PWM[7:0] = 0x80h represents 128/255 duty cycle (50.2%) PWM[7:0] = 0xFFh represents 255/255 duty cycle (100%) PWM control register is accessible anytime, but a change of its value is evident only if PWM operation is enabled (PWMEN=1). PWM is a global setting valid for all dots. PWM duty cycle changes next frame period. If slope operation is active, new settings of PWM are applied according to slope cycle evolution: • During slope phase 1 (PWM ramp-up), PWM setting change is applied only if PWM value is lower than the new value. • During slope phase 2 (PWM at maximum), PWM setting change is ignored and it takes effect during next slope cycle. • During 3 and 4 slope phase, new PWM settings don't have any effect and they take effect during next slope cycle. If blanking time is longer than default, the highest values in PWM register are not valid and the maximum allowed value is applied. See Section 4.2.1. 26/72 DocID026217 Rev 1 STLED524 4.5.10 Detailed description Scroll control 1, scroll control 2 and scroll control 3 registers These registers are described in Section 4.7. 4.5.11 Interrupt enable register Table 28. Interrupt enable register Interrupt enable Bit 7 Bit 6 Add = 40h BSTOK_M ROWSC_M Default 0 0 Bit 5 Bit 4 EOSCR_M STEP_M 0 0 Bit 3 Bit 2 Bit 1 Bit 0 SHORT_M OPEN_M THP_M OVP_M 0 0 0 0 OVP_M = 0, the interrupt generated by overvoltage protection is disabled OVP_M = 1, the interrupt generated by overvoltage protection is enabled THP_M = 0, the interrupt generated by overtemperature protection is disabled THP_M = 1, the interrupt generated by overtemperature protection is enabled OPEN_M = 0, the interrupt generated by open RSET protection is disabled OPEN_M = 1, the interrupt generated by open RSET protection is enabled SHORT_M = 0, the interrupt generated by short RSET protection is disabled SHORT_M = 1, the interrupt generated by short RSET protection is enabled STEP_M = 0 the interrupt generated at the beginning of a scroll step is disabled STEP_M = 1, the interrupt generated at the beginning of a scroll step is enabled EOSCR_M = 0, the interrupt generated at the end of scroll operation is disabled EOSCR_M = 1, the interrupt generated at the end of scroll operation is enabled ROWSC_M = 0, the interrupt generated by row short-circuit is disabled ROWSC_M = 1, the interrupt generated by row short-circuit is enabled BSTOK_M = 0, the interrupt generated is disabled, when boost output voltage reaches the target value BSTOK_M = 1, the interrupt generated is enabled, when the boost output voltage reaches the target value DocID026217 Rev 1 27/72 Detailed description 4.5.12 STLED524 Latch register Table 29. Latch register (read only) Latch Add = 41h Default Bit 7 Bit 6 Bit 5 BSTOK ROWSC EOSCR 0 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 STEP SHORT OPEN THP OVP 0 0 0 0 0 0 Bits in this register are set when the corresponding interrupt occurs and they are latched. Those bits, which have been set, can only be cleared by reading the register through SPI. 4.5.13 Status register Table 30. Status register (read only) Status Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 42h BSTOK - EOSCR - SHORT OPEN THP OVP Default 0 0 1 0 0 0 0 0 Bits in the status register are set and reset according to the state of internal signals (overtemperature, overvoltage etc.). Reading the status register through SPI does not affect the state of bits. BSTOK bit is set to 1 when VOUT voltage has reached the target value. The bit is set to 0, if VOUT is lower than VOUTSET - VBSTOKHYST. VOUTSET is the target output voltage given by VOUT[3:0] register. VBSTOKHYST is the hysteresis of BST_OK comparator. An interrupt is generated, it is enabled and BSTOK bit in the latch register is set. THP bit is set when thermal protection has been activated (when junction temperature exceeds TSHDN1). The bit is reset if the temperature falls below TSHDN1HYST thermal protection hysteresis. An interrupt is generated, when THP bit is set, if it is enabled and THP bit is set in the latch register. When the thermal protection is activated, EN and BSTEN bits are set to 0. The device has to be re-enabled through SPI to restart the operation. An interrupt is also generated when THP bit is reset to 0. So the microcontroller can wait for this interrupt and then re-enable the device. OVP bit is set when boost output voltage exceeds VOVP threshold. The bit is reset, if the voltage falls below the hysteresis of OVP threshold. An interrupt is generated, when this bit is set, if it is enabled and OVP bit in the latch register is set. The boost is disabled automatically, BSTEN bit is set to 0. RSET resistance is checked when EN bit is set to 1. If RSET value is too high (or it is not connected at all), OPEN bit in the status register is set. An interrupt is generated, if it is enabled and OPEN bit is set in the latch register. If RSET value is smaller than RSETMIN (typically 14 kΩ), SHORT bit in the status register is set to 1. An interrupt is generated, if it is enabled. Current mirrors and boost are not stopped. STEP bit is set at the beginning of each scroll step. An interrupt is generated, if it is enabled. It hasn’t a corresponding bit in the status register. 28/72 DocID026217 Rev 1 STLED524 Detailed description EOSCR bit is set, when the scroll operation is over. An interrupt is generated, if it is enabled. When a short-circuit is detected on any row connections, current mirrors are disabled by setting EN bit to 0 automatically. Boost operation is not touched. An interrupt is generated if it is enabled and ROWSC bit is set in the latch register. Table 31. Interrupt overview Latch register bit Interrupt generated when set 4.5.14 Interrupt generated when reset BSTOK Yes Yes ROWSC Yes No EOSCR Yes No SHORT Yes No OPEN Yes No THP Yes Yes OVP Yes No Scroll step register This register is described in Section 4.7.1 4.5.15 Version register Table 32. Version register Version Bit 7 Bit 6 Bit 5 Bit 4 Add = FFh - - - - Default 0 0 0 0 Bit 3 Bit 2 Bit 1 Bit 0 VER[3:0] 0 0 0 1 The version register contains information about the version of the chip. 4.6 Slope mode operation Figure 6. Slope cycle operation GIPGLM2103140944LM DocID026217 Rev 1 29/72 Detailed description STLED524 A delay and a slope cycle time can be specified for each dot of the matrix separately. The delay is set by PnDLYxx bits, n is a pattern number (see Section 4.4) and xx are the coordinates of a dot. Table 33. Delay duration PnDLYxx Delay time 00 No delay 01 1/4 of the slope cycle time 10 1/2 of the slope cycle time 11 3/4 of the slope cycle time Slope cycle time is set by PnCYCxx bits, n is a pattern number (see Section 4.4) and xx are the coordinates of a dot. Table 34. Slope cycle duration PnCYCxx Cycle time [s] Duration of one phase [s] Duty cycle step 00 0 0 0 01 1.456 0.364 3 10 2.184 0.546 2 11 4.367 1.092 1 PWM duty cycle is incremented / decremented during slope operation in steps stated in Table 32. If the final value of PWM duty cycle given by the value in PWM duty register is not a multiple of the duty cycle step, then last step in phase 1 is truncated to reach the final value of PWM duty cycle given by PWM duty register. Therefore, last step in phase 3 is truncated to reach 0 duty cycle. See Figure 8. 30/72 DocID026217 Rev 1 STLED524 Detailed description Figure 7. Duty cycle increments during phase 1 of slope operation GIPG210314947LM Figure 8. Truncation of duty cycle steps during slope operation GIPG210314949LM If SLPEN is set to 0 during the slope cycle, slope cycle is not finished and the display goes to the new operation mode immediately. DocID026217 Rev 1 31/72 Detailed description 4.7 STLED524 Scrolling The STLED524 has built-in function of 4-way scroll of the display content. The scroll speed can be defined in 8 steps. Blank rows or columns can be added to patterns to improve readability during scrolling and a wait loop with adjustable duration can be performed at the end of scroll to let reader read the display content. 4.7.1 Scroll control registers Table 35. Scroll control register 1 Scroll control 1 Bit 7 Bit 6 Add = 30h Bit 5 Bit 4 Bit 3 Bit 2 SCRSPD[5:0] Default 0 0 0 0 0 Bit 1 Bit 0 DIR1 DIR0 0 0 0 SCRSPD[5:0] scroll speed register fixes the speed according to which the content of the display is scrolled. Table 36 shows duration of one scroll step according to SCRSPD[5:0] value. Table 36. Scroll speed 1 step duration SCLSPD[5:0] [TFRAME] [ms](1) 0 3 12.8 1 7 29.9 2 11 46.9 … … … N Nx4+3 (N x 4 + 3) x 10.24/2.4 … … … 62 252 1075 63 255 1088 1. When the internal clock is used. Table 37. Scroll direction DIR1 DIR0 Direction 0 0 Left 0 1 Right 1 0 Down 1 1 Up SCRSPD settings can be updated only when scroll is disabled. 32/72 DocID026217 Rev 1 STLED524 Detailed description DIR bits can be updated only when scroll is disabled. Table 38. Scroll control register 2 Scroll control 2 Bit 7 Add = 31h Bit 6 Bit 5 Bit 4 Bit 3 BLNK_R[2:0] Default 0 0 Bit 2 Bit 1 Bit 0 0 0 BLNK_C[4:0] 0 0 0 0 BLNK_C[4:0] - blank column register. It defines the number of blank columns during horizontal direction scroll (left/right). Maximum allowed value is 24. If the value is higher than 24, 24 blank columns are inserted only. If DISPISIZE = 1, the maximum number of blank columns is limited to 20. BLNK_R[2:0] - blank row register. It defines the number of blank rows during vertical direction scroll (up/down). Maximum allowed value is 5. If the value is higher than 5, 5 blank rows can be only inserted. Note: This register cannot be read. Table 39. Scroll control register 3 Scroll control 3 Bit 7 Bit 6 Add = 32h - - Default 0 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 WAIT[5:0] 0 0 0 0 Table 40. Wait time during scroll operation Wait time duration WAIT[5:0] [TFRAME] [ms](1) 0 3 12.8 1 7 29.9 2 11 46.9 … … … N Nx4+3 (N x 4 + 3) x 2.56/0.6 … … … 62 252 1075 63 255 1088 1. When internal clock is used. Scroll step register stores the number of scroll steps already fulfilled. DocID026217 Rev 1 33/72 Detailed description STLED524 Table 41. Scroll step register 4.7.2 Scroll steps Bit 7 Bit 6 Add = 43h - - Default 0 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 SCRSTP[4:0] 0 0 0 0 Locking columns and rows The content of any column or row can be locked during scroll. The content of locked rows/columns does not move during scroll. Locked rows/columns always display the content of pattern 1. Any combination of columns can be locked by corresponding bits in the column lock registers. Besides, any combination of rows can be locked by corresponding bits in the row lock register. Columns and rows can be locked at the same time. Table 42. Column lock register 1 Column lock 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 33h COLCK7 COLCK6 COLCK5 COLCK4 COLCK3 COLCK2 COLCK1 COLCK0 Default 0 0 0 0 0 0 0 0 Table 43. Column lock register 2 Column lock 2 Bit 7 Add = 34h COLCK15 Default 0 Bit 6 Bit 5 COLCK14 COLCK13 0 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 COLCK12 COLCK11 COLCK10 COLCK9 COLCK8 0 0 0 0 0 Bit 2 Bit 1 Bit 0 Table 44. Column lock register 3 Column Bit 7 lock 3 Add = 35h Bit 6 Bit 5 Bit 4 Bit 3 COLCK23 COLCK22 COLCK21 COLCK20 COLCK19 COLCK18 COLCK17 COLCK16 Default 0 0 0 0 0 0 0 0 Table 45. Row lock register Column lock 3 Bit 7 Bit 6 Bit 5 Add = 35h Default 34/72 0 0 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ROWLCK4 ROWLCK3 ROWLCK2 ROWLCK1 ROWLCK0 0 0 0 0 0 DocID026217 Rev 1 STLED524 4.7.3 Detailed description Scroll possibilities The display content scroll is enabled, if SCRLEN bit in the display visual control register is set to 1. If this bit is 1 and new value of DISP bits (DISP1 and DISP2) is written through SPI, scroll operation starts. The type of scroll operation is defined by the content of scroll control registers. Blank rows or columns can be inserted between two patterns during the scroll operation. These blank rows/columns are inserted by the logic of the driver automatically, so they are not part of patterns. The number of blank rows/columns can be set by the scroll control register 2. The insertion of blank rows/columns is enabled, when BRCEN bit in the display visual control register is set to 1. Table 44 contains all possible types of scroll operations. X → Y expression means that the display content is X and when the scroll operation is over, it is Y. All possibilities listed below are valid for all directions. DISP (act) is the value of DISP bits. DISP (new) is the new value of these bits written through SPI. There are two interrupts related to the scroll operation. These are EOSCR (end of scroll) and step. This interrupt is generated at the end of scroll operation (when the new pattern is visible). The end of step interrupt is generated after each scroll step. It is useful to read the scroll step register value, when this interrupt is detected. It gives the microcontroller information about the position of the pattern on the display. If WAITEN bit in the display visual control register is set, the end of scroll interrupt is delayed by the wait time given by the value of the scroll control 3 register. Columns from 20 to 23 can be locked during the scroll operation. These locked columns do not move during scroll operation. Their content is always stored in pattern 1 register. DISPSIZE bit, in the display visual control register, has to be set to 1 to lock columns from 20 to 23. If this bit is set to 0, columns from 20 to 23 scroll in the same way as the rest of the display. If DISPSIZE bit is set to 1, the number of scroll steps is limited to 20 in horizontal direction (if no blank column is inserted). The number of steps in vertical direction is not affected. Table 46. List of all scroll operations DISP (act) DISP (new) BRCEN 00 00 0 B→B 00 01 0 B → P1 00 10 0 B → P2 01 00 0 P1 → B 01 01 0 P1 → P1 (rotation) 01 10 0 P1 → P2 10 00 0 P2 → B 10 01 0 P2 → P1 10 10 0 P2 → P2 (rotation) 00 00 1 B → Brc →B 00 01 1 B → Brc → P1 00 10 1 B → Brc → P2 DocID026217 Rev 1 35/72 Detailed description STLED524 Table 46. List of all scroll operations (continued) DISP (act) DISP (new) BRCEN 01 00 1 P1 → Brc →B 01 01 1 P1 → Brc →P1 (rotation) 01 10 1 P1 → Brc →P2 10 00 1 P2 → Brc →B 10 01 1 P2 → Brc →P1 10 10 1 P2 → Brc →P2 (rotation) P1 = pattern 1, P2 = pattern 2, B = blank display, Brc = blank rows/columns Figure 9 shows a scroll operation in vertical direction (5 steps). No blank column or row is inserted and wait time is disabled. As for horizontal direction, the only difference is the number of scroll steps (24 instead of 5). EOSCR bit is set to 1 in the 24th step. Figure 9. Basic scroll operation GIPG210314953LM Figure 10 shows a scroll operation with blank row/column insertion enabled. S is the number of standard scroll steps (with blank row/column insertion disabled). S = 24 for horizontal direction and 5 in case of vertical direction, n is the number of blank rows/columns to be inserted. 36/72 DocID026217 Rev 1 STLED524 Detailed description Figure 10. Scroll operation with blank row/column insertion enabled GIPG210314956LM Figure 11 shows a scroll operation example when wait cycle is enabled. When P2 pattern is visible, the wait counter starts. EOSCR interrupt is generated, when the wait counter reaches the value set by scroll control register 3. Figure 11. Scroll operation with enabled wait cycle GIPG2103141000LM All three examples above show the scroll operation during the which P1 pattern is replaced by P2 pattern, but the behavior described in these examples is also valid for all other cases stated in Table 44. DocID026217 Rev 1 37/72 Detailed description 4.7.4 STLED524 Scroll examples Figure 12. Examples of scroll (DISP 01→10) GIPG2103141102LM 38/72 DocID026217 Rev 1 STLED524 Detailed description Figure 13. Example of scroll when DISPSIZE = 1 (DISP 01 → 10) GIPG2103141105LM DocID026217 Rev 1 39/72 Detailed description STLED524 Figure 14. Example of scroll with 2 inserted blank rows (BRCEN=1, DISP 01 → 10) GIPG2103141107LM 4.8 Combining PWM, slope and scroll PWM and slope can be combined without any restrictions. Figure 15. Light output in case of enabled PWM and disabled slope GIPG2103141014LM 40/72 DocID026217 Rev 1 STLED524 Detailed description Figure 16. Light output in case of disabled PWM and enabled slope GIPG2103141024LM Figure 17. Light output in case of enabled PWM and enabled slope GIPG2103141026LM Figure 18. Light output in case of enabled scroll GIPG2103141030LM 4.9 SPI The STLED524 is fully compatible with SPI protocol. All commands, addresses and input data bytes are shifted inside the device, the most significant bit first. The first serial data input (MOSI) is sampled on the first rising edge of the serial clock (SCK) after slave select (SS) goes low. Figure 19 shows the writing of a single byte into the device. DocID026217 Rev 1 41/72 Detailed description STLED524 Figure 19. SPI protocol (writing) GIPG2103141035LM All output data bytes are shifted out of the device, the most significant bit first. The serial data output (MISO) is latched on the first falling edge of the serial clock (SCK) after the command (such as the read from control registers) has been clocked into the device. Figure 20 shows the reading of a single byte from the device. Figure 20. SPI protocol (reading) GIPG2103141042LM 42/72 DocID026217 Rev 1 STLED524 4.9.1 Detailed description Command byte Table 47. SPI commands 4.9.2 Value (hex) Value (bin) Meaning 00 00000000 Writing to control register memory 02 00000010 Writing to pattern 1 memory 04 00000100 Writing to pattern 2 memory 01 00000001 Reading from control register memory 03 00000011 Reading from pattern 1 memory 05 00000101 Reading from pattern 2 memory Address byte Table 48. SPI values Value (hex) Value (bin) Meaning 00 00000000 Writing to control register memory 02 00000010 Writing to pattern 1 memory 04 00000100 Writing to pattern 2 memory 01 00000001 Reading from control register memory 03 00000011 Reading from pattern 1 memory 05 00000101 Reading from pattern 2 memory Table 49. SPI addresses Address range (hex) Memory from to 00 FF Control registers 00 EF Pattern 1 00 EF Pattern 2 Writing to the address out of specified ranges is ignored. The internal address register is incremented automatically when a byte is written or read. When the address register reaches the end of the address range, it resets to 0. DocID026217 Rev 1 43/72 Detailed description 4.9.3 STLED524 SPI timing Figure 21. Serial input timing GIPG2103141047LM 44/72 DocID026217 Rev 1 STLED524 Detailed description Figure 22. Serial output timing GIPG2103141054LM Data are captured on SCK rising edge and are propagated to SCK falling edge. SCK is low when it is in idle mode. SPI master selects one slave at a time through 5 pF Cmax SS signal. DocID026217 Rev 1 45/72 Detailed description STLED524 Table 50. SPI timings 4.9.4 Symbol Parameter Min. Typ. Max. Unit fC Clock frequency DC 20 MHz tSLCH SS active set-up time 20 ns tSHCH SS not active set-up time 10 ns tSHSL SS deselect time 100 ns tCHSH SS active hold time 20 ns tCHSL SS not active hold time 10 ns tCH Clock high time 20 ns tCL Clock low time 20 ns tCLCH Clock rise time 5 ns tCHCL Clock fall time 5 ns tDVCH Data in set-up time 4 ns tCHDX Data in hold time 5 ns tSHQZ Output disable time 20 ns tCLQV Clock low to output valid 23 ns tCLQX Output hold time tQLQH Output rise time 10 ns tQHQL Output fall time 10 ns 0 ns Writing and reading multiple bytes at once Figure 23. Multiple byte writing at once GIPG2103141112LM 46/72 DocID026217 Rev 1 STLED524 Detailed description The STLED524 supports the writing of multiple bytes at once. When the first byte is received, the internal address counter is incremented automatically. Next byte from SPI frame is written into this new address and so on, until the nth byte is received. If the address counter reaches the end of address space, it resets to 0 automatically and the writing continues. When the reading of multiple bytes is performed, the internal address register is incremented after each byte reading automatically. If the address counter reaches the end of address space, it resets to 0 automatically and the reading continues. Figure 24. Multiple byte reading at once GIPG2103141124LM 4.10 Protections and interrupts 4.10.1 Registers related to protections and interrupts There are 3 registers related to protections and interrupts. They are: status, latch and interrupt enable registers. Table 51. Interrupt enable register Interrupt enable Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 40h BSTOK_M ROWSC_M EOSCR_M STEP_M SHORT_M OPEN_M THP_M OVP_M Default 0 0 0 0 0 0 0 0 OVP_M = 0, the interrupt generated by overvoltage protection is disabled OVP_M = 1, the interrupt generated by overvoltage protection is enabled THP_M = 0, the interrupt generated by overtemperature protection is disabled THP_M = 1, the interrupt generated by overtemperature protection is enabled OPEN_M = 0, the interrupt generated by open RSET protection is disabled DocID026217 Rev 1 47/72 Detailed description STLED524 OPEN_M = 1, the interrupt generated by open RSET protection is enabled SHORT_M = 0, the interrupt generated by short RSET protection is disabled SHORT_M = 1, the interrupt generated by short RSET protection is enabled STEP_M = 0 the interrupt generated at the beginning of a scroll step is disabled STEP_M = 1, the interrupt generated at the beginning of a scroll step is enabled EOSCR_M = 0, the interrupt generated at the end of scroll operation is disabled EOSCR_M = 1, the interrupt generated at the end of scroll operation is enabled ROWSC_M = 0, the interrupt generated by row short-circuit is disabled ROWSC_M = 1, the interrupt generated by row short-circuit is enabled BSTOK_M = 0, the interrupt generated, when the boost output voltage reaches the target value, is disabled BSTOK_M = 1, the interrupt generated, when the boost output voltage reaches the target value, is enabled Table 52. Latch register (read only) Latch Add = 41h Default Bit 7 Bit 6 Bit 5 BSTOK ROWSC EOSCR 0 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 STEP SHORT OPEN THP OVP 0 0 0 0 0 0 Bits in this register are set when the corresponding interrupt occurs. These bits are latched and they can only be cleared by reading the register through SPI. When an interrupt is disabled, the corresponding bit in the latch register is not set. Table 53. Status register (read only) Status Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Add = 42h BSTOK - - - SHORT OPEN THP OVP Default 0 0 0 0 0 0 0 0 Bits in the status register are set and reset according to the state of internal signals (overtemperature, overvoltage etc.). Reading the status register through SPI does not influence the state of bits. 4.10.2 Overvoltage protection If the output voltage of boost is higher than the overvoltage protection threshold, the boost is stopped. OVP bit in the status register is set. The interrupt is generated, if it is enabled and OVP bit in the latch register is also set and remains latched, until it is read through SPI. If the output voltage of the boost goes below the overvoltage protection hysteresis, OVP bit in the status register is reset. The microcontroller decides, whether to start the boost again or not. 48/72 DocID026217 Rev 1 STLED524 4.10.3 Detailed description Thermal protection There are two thermal sensors inside the chip. The former protects boost and current mirrors. The latter protects LDO. Boost thermal protection and current mirrors have TSHDN1 threshold (150 °C) and 20 °C hysteresis, while LDO thermal protection has TSHDN2 threshold (170 °C) and 20 °C hysteresis. If the chip temperature reaches the first TSHDN1 threshold, boost and current mirrors are automatically disabled (EN bit and BSTEN bit are reset). An interrupt is generated, if it is enabled and THP in the latch register is set. If the chip temperature goes below thermal shutdown hysteresis, an interrupt is generated, THP bit in the status register is reset and THP bit in the latch register is set. Boost and current mirrors are not re-enabled automatically; the microcontroller can do it. If the microcontroller tries to re-enable boost and current mirrors, when THP is active, boost and current mirrors stay off. When LDO temperature reaches TSHDN2 threshold, it is turned off. If LDO supplies the digital part, the content of patterns and all settings in the control registers are lost. LDO is reenabled automatically, as soon as its temperature goes below TSHDN2HYST overtemperature hysteresis. 4.10.4 Open ISET protection When EN bit is set to 1, REFSEL bit is set to 0 and ISET pin is opened or RSET resistor value is higher than 270 kΩ typically, then current mirrors are turned off. Boost operation is not touched. OPEN bit is set in the status register and an interrupt is generated, if it is enabled and OPEN bit in the latch register is set. EN bit is not touched, but current mirrors are disabled. In this situation the microcontroller has the possibility to set REFSEL bit to 1 in the clock register and run with the internal reference for the current mirrors. 4.10.5 Short ISET protection When EN bit is set to 1, REFSEL bit is set to 0 and ISET pin is shorted or RSET value is lower than 14 kΩ, then current mirrors are turned off. Boost operation is not touched. SHORT bit is set in the status register and an interrupt is generated, if it is enabled and SHORT bit in the latch register is set. EN bit is not touched, but current mirrors are disabled. In this situation the microcontroller has the possibility to set REFSEL bit to 1 in the clock register and run with the internal reference for the current mirrors. 4.10.6 Row transistor protection If any of 5-row pins is shorted to GND, current mirrors are disabled and EN bit is reset. An interrupt is generated, if it is enabled and ROWSC bit in the latch register is set. 4.10.7 Boost output voltage OK When boost output voltage reaches the target value given by VOUT register (VOUTSET), BSTOK bit in the status register is set to 1. An interrupt is generated, if it is enabled. BSTOK bit in the latch register is set to 1. When boost output voltage falls below VOUTSET, VBSTOKHYST, BSTOK bit is reset and an interrupt is generated, if it is enabled. BSTOK bit hasn’t any impact on boost or current mirrors. The microcontroller can decide whether to stop operation of the display or not, if boost output voltage is not sufficient (BSTOK = 0). DocID026217 Rev 1 49/72 Detailed description STLED524 Figure 25. BSTOK bit behavior GIPG2103141128LM 4.10.8 EOSCR and step interrupts Functions of these two interrupts are described in Section 4.7.3. 4.11 Shutdown mode When the device is in shutdown mode, its power consumption is minimized. It is not possible to write data to any register over SPI. RESET/PWRDN pin has to be low to keep the device in shutdown mode. LDO is always alive regardless of the level on RESET/PWRDN pin. SCK, MOSI, SS, SYNC and CLKIN logic input pins can increase power consumption, if they are left floating. These pins should be connected to either logic 0 or logic 1 in shutdown mode. Thanks to this condition, the minimum power consumption can be achieved. INT pin is pulled up typically. If this pin is not used in the application, it can be left floating in shutdown mode without any negative impact on power consumption. Do not pull this pin down in shutdown mode as it increases power consumption. MISO pin is in high Z state, when the device is in shutdown mode. So it can be left floating or it can be pulled up or down without any effect on power consumption in shutdown mode. CLKOUT pin is driven low internally in shutdown mode. So it can be left floating in shutdown mode. Do not pull this pin up in shutdown mode as it increases power consumption. 4.12 Undervoltage lockout If the input voltage falls below VUVLOF threshold, the device enters the undervoltage lockout. Boost and drivers are turned off. LDO is not turned off. When the input voltage rises above VUVLOR, patterns have to be loaded again and the device has to be re-enabled, because it is not guaranteed that the digital section can keep data during the undervoltage lockout. 50/72 DocID026217 Rev 1 List of control registers STLED524 5 Table 54. List of control registers Name Software control Display control Add 00h 01h Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SWRST - - - - CLR2 CLR1 EN 0 0 0 0 0 0 0 0 ACLR - - - - ACLR ACLR R/W - - - - - - DISP2 DISP1 0 0 0 0 0 0 0 0 - - - - - - R/W R/W DocID026217 Rev 1 Section A: these settings should be applied with EN=0 Clock Column control 1 Column control 2 51/72 Row control 11h 12h 13h 14h - - REFSEL SYNCSEL SYNCEN CLKIN CLKOUT 0 0 0 0 0 0 0 0 - - - R/W R/W R/W R/W R/W COL7EN COL6EN COL5EN COL4EN COL3EN COL2EN COL1EN COL0EN 1 1 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W R/W R/W COL15EN COL14EN COL13EN COL12EN COL11EN COL10EN COL9EN COL8EN 1 1 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W R/W R/W COL23EN COL22EN COL21EN COL20EN COL19EN COL18EN COL17EN COL16EN 1 1 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W R/W R/W - - - ROW4EN ROW3EN ROW2EN ROW1EN ROW0EN 0 0 0 1 1 1 1 1 - - - R/W R/W R/W R/W R/W List of control registers Column control 3 10h - Name Blanking time Boost control Add 15h 16h Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - - - - 0 0 0 0 0 0 0 0 - - - - - R/W R/W R/W BSTEN - - - 0 - - - 1 0 1 0 R/W - - - R/W R/W R/W R/W BLK[2:0] VOUT[3:0] List of control registers 52/72 Table 54. List of control registers (continued) Section B: DocID026217 Rev 1 Display visual control 20h - - BRCEN WAITEN SLPEN SCRLEN PWMEN DISPSIZE 0 0 0 0 0 0 0 0 - - R/W R/W R/W R/W R/W R/W PWM[7:0] PWM control 21h 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W Section C: these settings should be applied when scroll is not active (EOSCR = 1) SCLSPD[5:0] Scroll control 1 30h SCRL_DIR[1:0] 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W BLNK_R[2:0] Scroll control 2 32h 0 0 0 0 0 0 0 0 W W W W W W W W - - 0 0 0 0 0 0 0 0 - - R/W R/W R/W R/W R/W R/W WAIT[2:0] STLED524 Scroll control 3 31h BLNK_C[4:0] Name Column lock 1 Column lock 2 Column lock 3 DocID026217 Rev 1 Row lock Add 33h 34h 35h 36h Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 COLCK7 COLCK6 COLCK5 COLCK4 COLCK3 COLCK2 COLCK1 COLCK0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W COLCK15 COLCK14 COLCK13 COLCK12 COLCK11 COLCK10 COLCK9 COLCK8 0 0 0 0 0 0 0 0 - - R/W R/W R/W R/W R/W R/W COLCK23 COLCK22 COLCK21 COLCK20 COLCK19 COLCK18 COLCK17 COLCK16 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W - - - ROWLCK4 ROWLCK3 ROWLCK2 ROWLCK1 ROWLCK0 0 0 0 0 0 0 0 0 - - - R/W R/W R/W R/W R/W STLED524 Table 54. List of control registers (continued) Section D: interrupts Interrupt enable Latch 41h 42h ROWSC_M EOSCR_M STEP_M SHORT_M OPEN_M THP_M OVP_M 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W BST_OK ROWSC EOSCR STEP SHORT OPEN THP OVP 0 0 0 0 0 0 0 0 RCLEAR RCLEAR RCLEAR RCLEAR RCLEAR RCLEAR RCLEAR RCLEAR BST_OK ROWSC EOSCR - SHORT OPEN THP OVP 0 0 1 0 0 0 0 0 R R R - R R R R 53/72 List of control registers Status 40h BST_OK_M Name Scroll steps Version Add 43h FFh Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 - - 0 0 0 0 0 - - R R R - - - - 0 0 0 0 0 - - - - R Bit 2 Bit 1 Bit 0 0 0 0 R R R 0 0 1 R R R SCRSTP [5:0] VER[3:0] List of control registers 54/72 Table 54. List of control registers (continued) DocID026217 Rev 1 STLED524 Application information 6.1 Pattern examples 6.1.1 Example 1 - rectangle STLED524 6 Dimming of all dots in the rectangle is set to 255. Slope is set to 1 and delay is set to 0. Figure 26. Example 1 DocID026217 Rev 1 GIPG2103141146LM Application information 55/72 Row 0 1 2 3 4 DocID026217 Rev 1 Add Dimm. S&D(1) Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D A 0x00 0xFF 0x04 0x02 0xFF 0x04 0x04 0xFF 0x04 0x06 0xFF 0x04 0x08 0xFF 0x04 B 0x0A 0xFF 0x04 0x0C 0x00 0x00 0x0E 0x00 0x00 0x10 0x00 0x00 0x12 0xFF 0x04 C 0x14 0xFF 0x04 0x16 0x00 0x00 0x18 0x00 0x00 0x1A 0x00 0x00 0x1C 0xFF 0x04 D 0x1E 0xFF 0x04 0x20 0x00 0x00 0x22 0x00 0x00 0x24 0x00 0x00 0x26 0xFF 0x04 E 0x28 0xFF 0x04 0x2A 0x00 0x00 0x2C 0x00 0x00 0x2E 0x00 0x00 0x30 0xFF 0x04 F 0x32 0xFF 0x04 0x34 0x00 0x00 0x36 0x00 0x00 0x38 0x00 0x00 0x3A 0xFF 0x04 G 0x3C 0xFF 0x04 0x3E 0x00 0x00 0x40 0x00 0x00 0x42 0x00 0x00 0x44 0xFF 0x04 H 0x46 0xFF 0x04 0x48 0x00 0x00 0x4A 0x00 0x00 0x4C 0x00 0x00 0x4E 0xFF 0x04 I 0x50 0xFF 0x04 0x52 0x00 0x00 0x54 0x00 0x00 0x56 0x00 0x00 0x58 0xFF 0x04 J 0x5A 0xFF 0x04 0x5C 0x00 0x00 0x5E 0x00 0x00 0x60 0x00 0x00 0x62 0xFF 0x04 K 0x64 0xFF 0x04 0x66 0x00 0x00 0x68 0x00 0x00 0x6A 0x00 0x00 0x6C 0xFF 0x04 L 0x6E 0xFF 0x04 0x70 0x00 0x00 0x72 0x00 0x00 0x74 0x00 0x00 0x76 0xFF 0x04 M 0x78 0xFF 0x04 0x7A 0x00 0x00 0x7C 0x00 0x00 0x7E 0x00 0x00 0x80 0xFF 0x04 N 0x82 0xFF 0x04 0x84 0x00 0x00 0x86 0x00 0x00 0x88 0x00 0x00 0x8A 0xFF 0x04 O 0x8C 0xFF 0x04 0x8E 0x00 0x00 0x90 0x00 0x00 0x92 0x00 0x00 0x94 0xFF 0x04 P 0x96 0xFF 0x04 0x98 0x00 0x00 0x9A 0x00 0x00 0x9C 0x00 0x00 0x9E 0xFF 0x04 Q 0xA0 0xFF 0x04 0xA2 0x00 0x00 0xA4 0x00 0x00 0xA6 0x00 0x00 0xA8 0xFF 0x04 R 0xAA 0xFF 0x04 0xAC 0x00 0x00 0xAE 0x00 0x00 0xB0 0x00 0x00 0xB2 0xFF 0x04 S 0xB4 0xFF 0x04 0xB6 0x00 0x00 0xB8 0x00 0x00 0xBA 0x00 0x00 0xBC 0xFF 0x04 T 0xBE 0xFF 0x04 0xC0 0x00 0x00 0xC2 0x00 0x00 0xC4 0x00 0x00 0xC6 0xFF 0x04 U 0xC8 0xFF 0x04 0xCA 0x00 0x00 0xCC 0x00 0x00 0xCE 0x00 0x00 0xD0 0xFF 0x04 V 0xD2 0xFF 0x04 0xD4 0x00 0x00 0xD6 0x00 0x00 0xD8 0x00 0x00 0xDA 0xFF 0x04 STLED524 Col. Application information 56/72 Table 55. Pattern data for example 1 Row 0 1 2 3 4 Col. Add Dimm. S&D(1) Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D W 0xDC 0xFF 0x04 0xDE 0x00 0x00 0xE0 0x00 0x00 0xE2 0x00 0x00 0xE4 0xFF 0x04 X 0xE6 0xFF 0x04 0xE8 0xFF 0x04 0xEA 0xFF 0x04 0xEC 0xFF 0x04 0xEE 0xFF 0x04 STLED524 Table 55. Pattern data for example 1 (continued) 1. Slope and delay, please see Table 11. 6.1.2 Example 2 - dimming settings Columns L and M are the brightest. Their dimming is set to 255. Columns J, K, N and O have dimming set to 240. Columns H, I, P and Q have dimming set to 225. Columns F, G, R and S have dimming set to 210. Columns D, E, T and U have dimming set to 195. Columns B, C, V and W have dimming set to 180. Slope and delay settings of all dots are 0. DocID026217 Rev 1 Figure 27. Example 2 GIPG2103141149LM Application information 57/72 Row 0 1 2 3 4 DocID026217 Rev 1 Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D A 0x00 0x00 0x00 0x02 0x00 0x00 0x04 0x00 0x00 0x06 0x00 0x00 0x08 0x00 0x00 B 0x0A 0xAA 0x00 0x0C 0xAA 0x00 0x0E 0xAA 0x00 0x10 0xAA 0x00 0x12 0xAA 0x00 C 0x14 0xAA 0x00 0x16 0xAA 0x00 0x18 0xAA 0x00 0x1A 0xAA 0x00 0x1C 0xAA 0x00 D 0x1E 0xC3 0x00 0x20 0xC3 0x00 0x22 0xC3 0x00 0x24 0xC3 0x00 0x26 0xC3 0x00 E 0x28 0xC3 0x00 0x2A 0xC3 0x00 0x2C 0xC3 0x00 0x2E 0xC3 0x00 0x30 0xC3 0x00 F 0x32 0xD2 0x00 0x34 0xD2 0x00 0x36 0xD2 0x00 0x38 0xD2 0x00 0x3A 0xD2 0x00 G 0x3C 0xD2 0x00 0x3E 0xD2 0x00 0x40 0xD2 0x00 0x42 0xD2 0x00 0x44 0xD2 0x00 H 0x46 0xE1 0x00 0x48 0xE1 0x00 0x4A 0xE1 0x00 0x4C 0xE1 0x00 0x4E 0xE1 0x00 I 0x50 0xE1 0x00 0x52 0xE1 0x00 0x54 0xE1 0x00 0x56 0xE1 0x00 0x58 0xE1 0x00 J 0x5A 0xF0 0x00 0x5C 0xF0 0x00 0x5E 0xF0 0x00 0x60 0xF0 0x00 0x62 0xF0 0x00 K 0x64 0xF0 0x00 0x66 0xF0 0x00 0x68 0xF0 0x00 0x6A 0xF0 0x00 0x6C 0xF0 0x00 L 0x6E 0xFF 0x00 0x70 0xFF 0x00 0x72 0xFF 0x00 0x74 0xFF 0x00 0x76 0xFF 0x00 M 0x78 0xFF 0x00 0x7A 0xFF 0x00 0x7C 0xFF 0x00 0x7E 0xFF 0x00 0x80 0xFF 0x00 N 0x82 0xF0 0x00 0x84 0xF0 0x00 0x86 0xF0 0x00 0x88 0xF0 0x00 0x8A 0xF0 0x00 O 0x8C 0xF0 0x00 0x8E 0xF0 0x00 0x90 0xF0 0x00 0x92 0xF0 0x00 0x94 0xF0 0x00 P 0x96 0xE1 0x00 0x98 0xE1 0x00 0x9A 0xE1 0x00 0x9C 0xE1 0x00 0x9E 0xE1 0x00 Q 0xA0 0xE1 0x00 0xA2 0xE1 0x00 0xA4 0xE1 0x00 0xA6 0xE1 0x00 0xA8 0xE1 0x00 R 0xAA 0xD2 0x00 0xAC 0xD2 0x00 0xAE 0xD2 0x00 0xB0 0xD2 0x00 0xB2 0xD2 0x00 S 0xB4 0xD2 0x00 0xB6 0xD2 0x00 0xB8 0xD2 0x00 0xBA 0xD2 0x00 0xBC 0xD2 0x00 T 0xBE 0xC3 0x00 0xC0 0xC3 0x00 0xC2 0xC3 0x00 0xC4 0xC3 0x00 0xC6 0xC3 0x00 U 0xC8 0xC3 0x00 0xCA 0xC3 0x00 0xCC 0xC3 0x00 0xCE 0xC3 0x00 0xD0 0xC3 0x00 V 0xD2 0xAA 0x00 0xD4 0xAA 0x00 0xD6 0xAA 0x00 0xD8 0xAA 0x00 0xDA 0xAA 0x00 STLED524 Col. Application information 58/72 Table 56. Pattern data for example 2 Row 0 1 2 3 4 Col. Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D W 0xDC 0xAA 0x00 0xDE 0xAA 0x00 0xE0 0xAA 0x00 0xE2 0xAA 0x00 0xE4 0xAA 0x00 X 0xE6 0x00 0x00 0xE8 0x00 0x00 0xEA 0x00 0x00 0xEC 0x00 0x00 0xEE 0x00 0x00 6.1.3 STLED524 Table 56. Pattern data for example 2 (continued) Example 3 - slope settings Dots, creating number 1, have dimming set to 255, slope to 1 and delay to 0. Dots, creating number 2, have dimming set to 255, slope to 2 and delay to 0. Dots, creating number 3, have dimming set to 255, slope to 3 and delay to 0. When this pattern is displayed with SLPEN=1, number 1 brightness ramps up/down at the furthest speed, number 2 at medium speed and number 3 at the slowest speed. DocID026217 Rev 1 Figure 28. Example 3 GIPG2103141151LM Row 0 1 2 3 4 59/72 Col. Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D A 0x00 0x00 0x00 0x02 0x00 0x00 0x04 0x00 0x00 0x06 0x00 0x00 0x08 0x00 0x00 B 0x0A 0x00 0x00 0x0C 0xFF 0x04 0x0E 0x00 0x00 0x10 0x00 0x00 0x12 0x00 0x00 C 0x14 0xFF 0x04 0x16 0xFF 0x04 0x18 0xFF 0x04 0x1A 0xFF 0x04 0x1C 0xFF 0x04 Application information Table 57. Pattern data for example 3 Row 0 1 2 3 4 DocID026217 Rev 1 Col. Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D D 0x1E 0xFF 0x04 0x20 0xFF 0x04 0x22 0xFF 0x04 0x24 0xFF 0x04 0x26 0xFF 0x04 E 0x28 0x00 0x00 0x2A 0x00 0x00 0x2C 0x00 0x00 0x2E 0x00 0x00 0x30 0x00 0x00 F 0x32 0x00 0x00 0x34 0x00 0x00 0x36 0x00 0x00 0x38 0x00 0x00 0x3A 0x00 0x00 G 0x3C 0x00 0x00 0x3E 0x00 0x00 0x40 0x00 0x00 0x42 0x00 0x00 0x44 0x00 0x00 H 0x46 0x00 0x00 0x48 0x00 0x00 0x4A 0x00 0x00 0x4C 0x00 0x00 0x4E 0x00 0x00 I 0x50 0xFF 0x08 0x52 0x00 0x00 0x54 0xFF 0x08 0x56 0xFF 0x08 0x58 0xFF 0x08 J 0x5A 0xFF 0x08 0x5C 0x00 0x00 0x5E 0xFF 0x08 0x60 0xFF 0x08 0x62 0xFF 0x08 K 0x64 0xFF 0x08 0x66 0x00 0x00 0x68 0xFF 0x08 0x6A 0x00 0x00 0x6C 0xFF 0x08 L 0x6E 0xFF 0x08 0x70 0xFF 0x08 0x72 0xFF 0x08 0x74 0x00 0x00 0x76 0xFF 0x08 M 0x78 0xFF 0x08 0x7A 0xFF 0x08 0x7C 0xFF 0x08 0x7E 0x00 0x00 0x80 0xFF 0x08 N 0x82 0x00 0x00 0x84 0x00 0x00 0x86 0x00 0x00 0x88 0x00 0x00 0x8A 0x00 0x00 O 0x8C 0x00 0x00 0x8E 0x00 0x00 0x90 0x00 0x00 0x92 0x00 0x00 0x94 0x00 0x00 P 0x96 0x00 0x00 0x98 0x00 0x00 0x9A 0x00 0x00 0x9C 0x00 0x00 0x9E 0x00 0x00 Q 0xA0 0x00 0x00 0xA2 0x00 0x00 0xA4 0x00 0x00 0xA6 0x00 0x00 0xA8 0x00 0x00 R 0xAA 0xFF 0x0C 0xAC 0x00 0x00 0xAE 0x00 0x00 0xB0 0x00 0x00 0xB2 0xFF 0x0C S 0xB4 0xFF 0x0C 0xB6 0x00 0x00 0xB8 0x00 0x00 0xBA 0x00 0x00 0xBC 0xFF 0x0C T 0xBE 0xFF 0x0C 0xC0 0x00 0x00 0xC2 0xFF 0x0C 0xC4 0x00 0x00 0xC6 0xFF 0x0C U 0xC8 0xFF 0x0C 0xCA 0xFF 0x0C 0xCC 0xFF 0x0C 0xCE 0xFF 0x0C 0xD0 0xFF 0x0C V 0xD2 0xFF 0x0C 0xD4 0xFF 0x0C 0xD6 0xFF 0x0C 0xD8 0xFF 0x0C 0xDA 0xFF 0x0C W 0xDC 0x00 0x00 0xDE 0x00 0x00 0xE0 0x00 0x00 0xE2 0x00 0x00 0xE4 0x00 0x00 X 0xE6 0x00 0x00 0xE8 0x00 0x00 0xEA 0x00 0x00 0xEC 0x00 0x00 0xEE 0x00 0x00 Application information 60/72 Table 57. Pattern data for example 3 (continued) STLED524 Example 4 - delay settings Dots, creating number 0, have dimming set to 255, slope to 1 and delay to 0. Dots, creating number 2, have dimming set to 255, slope to 1 and delay to 1. Dots, creating number 2, have dimming set to 255, slope to 1 and delay to 2. Dots, creating number 3, have dimming set to 255, slope to 1 and delay to 3. When this pattern is displayed with SLPEN=1, brightness of all numbers ramps up/down at the same speed. Ramping of number 1 is delayed by 1 phase compared to number 0. Ramping of number 2 is delayed by 2 phases compared to number 0. Ramping of number 3 is delayed by 3 phases compared to number 0. STLED524 6.1.4 Figure 29. Example 4 DocID026217 Rev 1 GIPG2103141154LM Table 58. Pattern data for example 4 Row 0 1 2 3 4 Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D A 0x00 0x00 0x00 0x02 0x00 0x00 0x04 0x00 0x00 0x06 0x00 0x00 0x08 0x00 0x00 B 0x0A 0x00 0x00 0x0C 0xFF 0x04 0x0E 0x00 0x00 0x10 0x00 0x00 0x12 0x00 0x00 C 0x14 0xFF 0x04 0x16 0xFF 0x04 0x18 0xFF 0x04 0x1A 0xFF 0x04 0x1C 0xFF 0x04 D 0x1E 0xFF 0x04 0x20 0xFF 0x04 0x22 0xFF 0x04 0x24 0xFF 0x04 0x26 0xFF 0x04 E 0x28 0x00 0x00 0x2A 0x00 0x00 0x2C 0x00 0x00 0x2E 0x00 0x00 0x30 0x00 0x00 F 0x32 0x00 0x00 0x34 0x00 0x00 0x36 0x00 0x00 0x38 0x00 0x00 0x3A 0x00 0x00 G 0x3C 0x00 0x00 0x3E 0x00 0x00 0x40 0x00 0x00 0x42 0x00 0x00 0x44 0x00 0x00 Application information 61/72 Col. Row 0 1 2 3 4 DocID026217 Rev 1 Col. Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D Add Dimm. S&D H 0x46 0x00 0x00 0x48 0x00 0x00 0x4A 0x00 0x00 0x4C 0x00 0x00 0x4E 0x00 0x00 I 0x50 0xFF 0x08 0x52 0x00 0x00 0x54 0xFF 0x08 0x56 0xFF 0x08 0x58 0xFF 0x08 J 0x5A 0xFF 0x08 0x5C 0x00 0x00 0x5E 0xFF 0x08 0x60 0xFF 0x08 0x62 0xFF 0x08 K 0x64 0xFF 0x08 0x66 0x00 0x00 0x68 0xFF 0x08 0x6A 0x00 0x00 0x6C 0xFF 0x08 L 0x6E 0xFF 0x08 0x70 0xFF 0x08 0x72 0xFF 0x08 0x74 0x00 0x00 0x76 0xFF 0x08 M 0x78 0xFF 0x08 0x7A 0xFF 0x08 0x7C 0xFF 0x08 0x7E 0x00 0x00 0x80 0xFF 0x08 N 0x82 0x00 0x00 0x84 0x00 0x00 0x86 0x00 0x00 0x88 0x00 0x00 0x8A 0x00 0x00 O 0x8C 0x00 0x00 0x8E 0x00 0x00 0x90 0x00 0x00 0x92 0x00 0x00 0x94 0x00 0x00 P 0x96 0x00 0x00 0x98 0x00 0x00 0x9A 0x00 0x00 0x9C 0x00 0x00 0x9E 0x00 0x00 Q 0xA0 0x00 0x00 0xA2 0x00 0x00 0xA4 0x00 0x00 0xA6 0x00 0x00 0xA8 0x00 0x00 R 0xAA 0xFF 0x0C 0xAC 0x00 0x00 0xAE 0x00 0x00 0xB0 0x00 0x00 0xB2 0xFF 0x0C S 0xB4 0xFF 0x0C 0xB6 0x00 0x00 0xB8 0x00 0x00 0xBA 0x00 0x00 0xBC 0xFF 0x0C T 0xBE 0xFF 0x0C 0xC0 0x00 0x00 0xC2 0xFF 0x0C 0xC4 0x00 0x00 0xC6 0xFF 0x0C U 0xC8 0xFF 0x0C 0xCA 0xFF 0x0C 0xCC 0xFF 0x0C 0xCE 0xFF 0x0C 0xD0 0xFF 0x0C V 0xD2 0xFF 0x0C 0xD4 0xFF 0x0C 0xD6 0xFF 0x0C 0xD8 0xFF 0x0C 0xDA 0xFF 0x0C W 0xDC 0x00 0x00 0xDE 0x00 0x00 0xE0 0x00 0x00 0xE2 0x00 0x00 0xE4 0x00 0x00 X 0xE6 0x00 0x00 0xE8 0x00 0x00 0xEA 0x00 0x00 0xEC 0x00 0x00 0xEE 0x00 0x00 6.1.5 Application information 62/72 Table 58. Pattern data for example 4 (continued) Example 5 - Writing pattern data into pattern 1 memory If pattern from example 3 is written to pattern 1 memory, the following data have to be sent through the SPI. STLED524 Byte index(1) Data(1) 1 2 3 0x02(2) 0x00(3) 0x00 4 5 6 7 8 9 10 11 12 13 14 15 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0x04 DocID026217 Rev 1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Data 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0x04 0xFF 0x04 0xFF 0x04 0xFF 0x04 0xFF 0x04 Byte index 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Data 0xFF 0x04 0xFF 0x04 0xFF 0x04 0xFF 0x04 0xFF 0x04 0x00 0x00 0x00 0x00 0x00 0x00 Byte index 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 Byte index 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 Byte index 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 Data 0x00 0x00 0xFF 0x08 0x00 0x00 0xFF 0x08 0xFF 0x08 0xFF 0x08 0xFF 0x08 0x00 0x00 Byte index 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 Data 0xFF 0x08 0xFF 0x08 0xFF 0x08 0xFF 0x08 0x00 0x00 0xFF 0x08 0x00 0x00 0xFF 0x08 Byte index 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 Data 0xFF 0x08 0xFF 0x08 0xFF 0x08 0x00 0x00 0xFF 0x08 0xFF 0x08 0xFF 0x08 0xFF 0x08 Byte index 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 Data 0x00 0x00 0xFF 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 Byte index 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 Byte index 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0x0C 0x00 0x00 Byte index 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 Data 0x00 0x00 0x00 0x00 0xFF 0x0C 0xFF 0x0C 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0x0C Application information 63/72 Byte index STLED524 Table 59. SPI data for writing pattern from example 3 to pattern 1 memory Byte index(1) Data(1) 1 2 3 0x02(2) 0x00(3) 0x00 4 5 6 7 8 9 10 11 12 13 14 15 16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0x04 DocID026217 Rev 1 Byte index 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 Data 0xFF 0x0C 0x00 0x00 0xFF 0x0C 0x00 0x00 0xFF 0x0C 0xFF 0x0C 0xFF 0x0C 0xFF 0x0C Byte index 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 Data 0xFF 0x0C 0xFF 0x0C 0xFF 0x0C 0xFF 0x0C 0xFF 0x0C 0xFF 0x0C 0xFF 0x0C 0x00 0x00 Byte index 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 Byte index 241 Data 0x00 Application information 64/72 Table 59. SPI data for writing pattern from example 3 to pattern 1 memory (continued) 1. Byte index and data represent the current data of the pattern from example 3. If the same pattern is written into pattern 2, data are the same but the byte with index 1 has to be changed to 0x04. Data can be written at once as per Section 4.9.4. 2. SPI command to write to pattern 1 memory. 3. Address in pattern 1 memory where the data storage begins. STLED524 STLED524 Application information 6.2 Operation examples 6.2.1 Example 6 - how to display patterns Some patterns have already been written into pattern 1 and 2 memories as described in the previous example. EN bit has to be set to 1 and DISP register value has to be set to 01 (for pattern 1) or 10 (for pattern 2). EN bit is located in the software control register whose address is 00h and DISP bits are located in the display control register whose address is 01h. As registers are located next to each other they can be written at once as it is shown in Table 60 and Table 61. Table 60. SPI data to display pattern 1 Byte index 1 2 3 4 Data 0x00 0x00 0x01 0x01 Table 61. SPI data to display pattern 2 Byte index 1 2 3 4 Data 0x00 0x00 0x01 0x02 Note: Byte 1 represents SPI command to write to the control register memory. Byte 2 is the address where the writing starts. Byte 3 contains data written to address 00h (software control register). Byte 3 contains data written to address 01h (display control register). 6.2.2 Example 7 - how to enable slope operation When slope operation is being activated, a pattern, containing non-zero slope data, has to be used. Such patterns are in examples 1, 3 and 4. In example 2, pattern has all slope data = 0. Let's suppose that a pattern with non-zero slope data has been already written into pattern 1 memory. First of all, we enable slope operation by setting SLPEN bit to 1. Table 62. SPI data to enable slope operation Byte index 1 2 3 Data 0x00 0x20 0x08 Byte 1 represents SPI command to write to the control register memory. Byte 2 is the address where the writing starts. Byte 3 contains data written to address 20h (display visual control register). As per example 6, we display pattern 1 by writing data to Table 63 or pattern 2 by writing data to Table 64 . DocID026217 Rev 1 65/72 Application information STLED524 Table 63. SPI data to display pattern 1 Byte index 1 2 3 4 Data 0x00 0x00 0x01 0x01 Table 64. SPI data to display pattern 2 6.2.3 Byte index 1 2 3 4 Data 0x00 0x00 0x01 0x02 Example 8 - how to enable PWM operation Pattern has already been loaded into pattern 1 memory. In this example, we display pattern 1 with 50% of brightness which is achieved by enabling PWM. First of all, we enable PWM operation and set PWM register to 128 by using data in Table 65. Table 65. SPI data to enable PWM operation (PWM control register = 128) Byte index 1 2 3 4 Data 0x00 0x20 0x02 0x80 Byte 1 represents SPI command to write to the control register memory. Byte 2 is the address where the writing starts. Byte 3 contains data written to address 20h (display visual control register). Byte 4 contains data written to address 21h (PWM control register). As per example 6, we display pattern 1 by writing data to Table 66. Table 66. SPI data to display in pattern 1 6.2.4 Byte index 1 2 3 4 Data 0x00 0x00 0x01 0x01 Example 8 - scroll operation In this example we scroll with 2 blank rows and a speed set to 5. Pattern 2 replaces pattern 1. Both patterns, 1 and 2, have already been loaded into pattern memory according to example 5. Scroll operation should start with pattern 1, so we display pattern 1 first by writing data to Table 67. 66/72 DocID026217 Rev 1 STLED524 Application information Table 67. SPI data to display in pattern 1(example 5) Byte index 1 2 3 4 Data 0x00 0x00 0x01 0x01 Scroll parameters have to be set by writing data: Table 68. SPI data for scroll setup Byte index 1 2 3 4 Data 0x00 0x30 0x13 0x40 Byte 1 represents SPI command to write to the control register memory. Byte 2 is the address where writing starts. Byte 3 contains data written to address 30h (scroll control 1 register). This sets the scroll speed to 5 and direction. Byte 4 contains data that are written to address 31h (scroll control 2 register). This sets the number of blank rows to 2. Scroll and insertion of blank rows/columns have to be enabled by writing to the display visual control register, in the following table: Table 69. SPI data to enable scroll operation with blank rows/columns Byte index 1 2 3 Data 0x00 0x20 0x24 Byte 1 represents SPI command to write to the control register memory. Byte 2 is the address where the writing starts. Byte 3 contains data written to address 20h (display control register). Value 24h enables insertion of blank columns/rows and enables the scroll. Scroll operation starts by writing to the display control register. This changes DISP bit value from 01 to 10 and so the scroll operation begins. Pattern 1 is replaced by pattern 2. Table 70. SPI data to start scroll operation Byte index 1 2 3 Data 0x00 0x01 0x02 Byte 1 represents SPI command to write to the control register memory. Byte 2 is the address where the writing starts. Byte 3 contains data written to address 01h (display control register). DocID026217 Rev 1 67/72 Application information 6.3 STLED524 Multiple devices in cascade The STLED524 multiple devices can be linked in cascade according to Figure 30. Figure 30. STLED524 cascade GIPG2103141214LM 6.3.1 • Each device in cascade needs a controlled SS input separately. • RESET/PWRDN, SYNC, SCK, MISO and MOSI pins are connected in parallel. • CLKOUT of nth device is connected to CLKIN of the (n+1)th device. • CLKIN of the 1st device does not have to be connected, if internal clock of the 1st device is used to provide clock for the whole cascade. • Another possibility for CLOCK signal is to connect all CLKIN pins to an external clock. Register setup for the STLED524 cascade Table 71. Cascade register setup Position CLKIN CLKOUT SYNCEN SYNCSEL 1 0 1 1 X 2 to (n-1) 1 1 1 X n 1 0 1 X Position means position of the device in cascade: CLKIN bit of the first device is set to 0, because the first device uses its internal clock. CLKOUT bit of the last device is set to 0, because there is no other device connected. SYNCEN bit of all devices has to be set to 1. SYNCSEL bit can be either 0 or 1, but the value has to be the same as all devices in cascade. 68/72 DocID026217 Rev 1 STLED524 7 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Figure 31. CSP 56 bumps (3.4x3.0 mm) drawings DocID026217 Rev 1 69/72 Package mechanical data STLED524 Table 72. CSP 56 bumps (3.4x3.0 mm) mechanical data mm Dim. Min. Typ. Max. A 0.50 0.55 0.60 A1 0.17 0.20 0.23 A2 0.33 0.35 0.37 b 0.23 0.25 0.29 D 3.34 3.37 3.40 D1 E 70/72 2.8 2.94 2.97 E1 2.4 e 0.40 SE 0.20 fD 0.285 fE 0.285 ccc 0.075 DocID026217 Rev 1 3.0 STLED524 8 Revision history Revision history Table 73. Document revision history Date Revision 14-Apr-2014 1 Changes First release. DocID026217 Rev 1 71/72 STLED524 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 72/72 DocID026217 Rev 1
STLED524 价格&库存

很抱歉,暂时无法提供与“STLED524”相匹配的价格&库存,您可以联系我们找货

免费人工找货