0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F030K6T6

STM32F030K6T6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP32_7X7MM

  • 描述:

    基于Value line Arm®的32位MCU,具有高达256 KB的闪存、定时器、ADC、通信接口、2.4-3.6 V操作

  • 详情介绍
  • 数据手册
  • 价格&库存
STM32F030K6T6 数据手册
STM32F030x4 STM32F030x6 STM32F030x8 STM32F030xC Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation Datasheet - production data Features • Core: Arm® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz • Memories – 16 to 256 Kbytes of Flash memory – 4 to 32 Kbytes of SRAM with HW parity • CRC calculation unit • Reset and power management – Digital & I/Os supply: VDD = 2.4 V to 3.6 V – Analog supply: VDDA = VDD to 3.6 V – Power-on/Power down reset (POR/PDR) – Low power modes: Sleep, Stop, Standby • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator • Up to 55 fast I/Os – All mappable on external interrupt vectors – Up to 55 I/Os with 5V tolerant capability LQFP64 10 × 10 mm LQFP48 7 × 7 mm LQFP32 7 × 7 mm TSSOP20 6.4 × 4.4 mm • Communication interfaces – Up to two I2C interfaces – Fast Mode Plus (1 Mbit/s) support on one or two I/Fs, with 20 mA current sink – SMBus/PMBus support (on single I/F) – Up to six USARTs supporting master synchronous SPI and modem control; one with auto baud rate detection – Up to two SPIs (18 Mbit/s) with 4 to 16 programmable bit frames • Serial wire debug (SWD) • All packages ECOPACK®2 Table 1. Device summary Reference Part number • 5-channel DMA controller STM32F030x4 STM32F030F4 • One 12-bit, 1.0 µs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply: 2.4 V to 3.6 V STM32F030x6 STM32F030C6, STM32F030K6 STM32F030x8 STM32F030C8, STM32F030R8 • Calendar RTC with alarm and periodic wakeup from Stop/Standby STM32F030xC STM32F030CC, STM32F030RC • 11 timers – One 16-bit advanced-control timer for six-channel PWM output – Up to seven 16-bit timers, with up to four IC/OC, OCN, usable for IR control decoding – Independent and system watchdog timers – SysTick timer January 2019 This is information on a product in full production. DS9773 Rev 4 1/93 www.st.com Contents STM32F030x4/x6/x8/xC Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Arm® Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . . 12 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10 3.11 2/93 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.2 General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 20 3.11.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.11.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 22 DS9773 Rev 4 STM32F030x4/x6/x8/xC Contents 3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 45 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 45 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DS9773 Rev 4 3/93 4 Contents 7 STM32F030x4/x6/x8/xC Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.3 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F030x4/x6/x8/xC family device features and peripheral counts . . . . . . . . . . . . . . . 10 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F030x4/x6/x8/xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F0x0 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 STM32F030x4/x6/x8/xC SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 STM32F030x4/6/8/C pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 34 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 35 Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 37 Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 37 Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 37 STM32F030x4/x6/x8/xC peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . 39 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 47 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 48 Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 49 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 DS9773 Rev 4 5/93 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. 6/93 STM32F030x4/x6/x8/xC I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 TSSOP20 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 DS9773 Rev 4 STM32F030x4/x6/x8/xC List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree of STM32F030x4/x6/x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Clock tree of STM32F030xC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 25 LQFP64 64-pin package pinout (top view), for STM32F030RC devices . . . . . . . . . . . . . . 25 LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 26 LQFP48 48-pin package pinout (top view), for STM32F030CC devices . . . . . . . . . . . . . . 26 LQFP32 32-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F030x4/x6/x8/xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 LQFP48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 LQFP32 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 TSSOP20 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 TSSOP20 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DS9773 Rev 4 7/93 7 Introduction 1 STM32F030x4/x6/x8/xC Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F030x4/x6/x8/xC microcontrollers. This document should be read in conjunction with the STM32F0x0xx reference manual (RM0360). The reference manual is available from the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M0 core, please refer to the Cortex®-M0 Technical Reference Manual, available from the www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 8/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC 2 Description Description The STM32F030x4/x6/x8/xC microcontrollers incorporate the high-performance Arm® Cortex®-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to 256 Kbytes of Flash memory and up to 32 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I2Cs, up to two SPIs and up to six USARTs), one 12-bit ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer. The STM32F030x4/x6/x8/xC microcontrollers operate in the -40 to +85 °C temperature range from a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F030x4/x6/x8/xC microcontrollers include devices in four different packages ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F030x4/x6/x8/xC peripherals proposed. These features make the STM32F030x4/x6/x8/xC microcontrollers suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs. DS9773 Rev 4 9/93 24 Description STM32F030x4/x6/x8/xC Table 2. STM32F030x4/x6/x8/xC family device features and peripheral counts Peripheral Flash (Kbytes) STM32 F030F4 STM32 F030K6 STM32 F030C6 STM32 F030C8 STM32 F030CC STM32 F030R8 STM32 F030RC 16 32 32 64 256 64 256 8 32 8 32 1 (16-bit)(2) 2 (16-bit) SRAM (Kbytes) 4 Advanced control Timers 1 (16-bit) General purpose 4 (16-bit)(1) Basic GPIOs 1 (16-bit)(2) - SPI Comm. I2C interfaces USART 12-bit ADC (number of channels) 5 (16-bit) (3) 1 2 1(4) 2 1(5) 6 2(6) 6 1 (10 ext. +2 int.) 1 (10 ext. +2 int.) 1 (10 ext. +2 int.) 1 (10 ext. +2 int.) 1 (16 ext. +2 int.) 1 (16 ext. +2 int.) 15 26 39 39 37 55 51 48 MHz Operating voltage 2.4 to 3.6 V Ambient operating temperature: -40°C to 85°C Junction temperature: -40°C to 105°C Operating temperature TSSOP20 LQFP32 LQFP48 1. TIM15 is not present. 2. TIM7 is not present. 3. SPI2 is not present. 4. I2C2 is not present. 5. USART2 to USART6 are not present. 6. USART3 to USART6 are not present 10/93 2(6) 1 (9 ext. +2 int.) Max. CPU frequency Packages 2 (16-bit) DS9773 Rev 4 LQFP64 STM32F030x4/x6/x8/xC Description Figure 1. Block diagram POWER Serial Wire Debug Obl Flash memory interface SWCLK SWDIO as AF SRAM controller NVIC Bus matrix CORTEX-M0 CPU fMAX = 48 MHz VDD18 Flash GPL 16/32/64/256 KB 32-bit @ VDDA HSI PLLCLK LSI GP DMA 5 channels VDD = 2.4 to 3.6 V VSS @ VDD SRAM 4/8/32 KB HSI14 VOLT.REG 3.3 V to 1.8 V POR Reset Int SUPPLY SUPERVISION POR/PDR NRST VDDA VSSA VDD RC 14 MHz RC 8 MHz @ VDDA @ VDD PLL RC 40 kHz XTAL OSC 4-32 MHz OSC_IN OSC_OUT Ind. Window WDG GPIO port A PB[15:0] GPIO port B PC[15:0] GPIO port C PD2 GPIO port D PF[1:0] PF[7:4] GPIO port F RESET & CLOCK CONTROL AHB decoder PA[15:0] System and peripheral clocks Power Controller XTAL32 kHz RTC OSC32_IN OSC32_OUT TAMPER-RTC (ALARM OUT) RTC interface CRC PWM TIMER 1 4 channels 3 compl. channels BRK, ETR input as AF AHB APB 55 AF EXT. IT WKUP TIMER 3 4 ch., ETR as AF TIMER 14 1 channel as AF TIMER 15 2 channels 1 compl, BRK as AF TIMER 16 1 channel 1 compl, BRK as AF TIMER 17 1 channel 1 compl, BRK as AF USART1 RX, TX,CTS, RTS, CK, as AF USART2 RX, TX,CTS, RTS, CK, as AF USART3 RX, TX,CTS, RTS, CK, as AF USART4 RX, TX,CTS, RTS, CK, as AF USART5 RX, TX,CTS, RTS, CK, as AF USART6 RX, TX,CTS, RTS, CK, as AF Window WDG MOSI, MISO, SCK, NSS, as AF MOSI, MISO, SCK, NSS, as AF IR_OUT as AF SPI1 DBGMCU SPI2 SYSCFG IF Temp. sensor 16x AD input 12-bit ADC IF VDDA VSSA TIMER 6 I2C1 SCL, SDA, SMBA (20 mA FM+), as AF TIMER 7 I2C2 SCL, SDA, as AF @ VDDA Power domain of analog blocks : VDD VDDA MSv32137V3 1. TIMER6, TIMER15, SPI, USART2 and I2C2 are available on STM32F030x8/C devices only. 2. USART3, USART4, USART5, USART6 and TIMER7 are available on STM32F030xC devices only. DS9773 Rev 4 11/93 24 Functional overview STM32F030x4/x6/x8/xC 3 Functional overview 3.1 Arm® Cortex®-M0 core with embedded Flash and SRAM The Arm® Cortex®-M0 processor is the latest generation of Arm processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The Arm® Cortex®-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices. The STM32F0xx family has an embedded Arm core and is therefore compatible with all Arm tools and software. Figure 3 shows the general block diagram of the device family. 3.2 Memories The device has the following features: • 4 to 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for failcritical applications. • The non-volatile memory is divided into two arrays: – 16 to 256 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: 3.3 – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and boot in RAM selection disabled Boot modes At startup, the boot pin and boot selector option bit are used to select one of the three boot options: • Boot from User Flash • Boot from System Memory • Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10. 12/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC 3.4 Functional overview Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes • VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. For more details on how to connect power pins, refer to Figure 13: Power supply scheme. 3.5.2 Power supply supervisors The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. 3.5.3 • The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD. • The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. Voltage regulator The regulator has two operating modes and it is always enabled after reset. • Main (MR) is used in normal operating mode (Run). • Low power (LPR) can be used in Stop mode where the power demand is reduced. In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost). DS9773 Rev 4 13/93 24 Functional overview 3.5.4 STM32F030x4/x6/x8/xC Low-power modes The STM32F030x4/x6/x8/xC microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines and RTC. • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. 14/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Functional overview Figure 2. Clock tree of STM32F030x4/x6/x8 FLITFCLK I2C1SW 8 MHz HSI RC HSI HSI HSI Flash memory programming interface I2C1 SYSCLK /2 HCLK PLLSRC SW PLLMUL PREDIV OSC_IN 4-32 MHz HSE OSC /1,/2,/4, /8,/16 HPRE PPRE PCLK x1, x2 CKMODE /2, /4 32.768 kHz LSE OSC RTCCLK PCLK LSE USART1SW SYSCLK HSI LSE USART1 LSI RTC PLLNODIV MCOPRE Main clock output MCO TIM1,3,6(2) 14,15(2),16,17 ADC (14 MHz max) 14 MHz HSI14 RC RTCSEL 40 kHz LSI RC APB peripherals PPRE HSE /32 OSC32_OUT /1,/2,… …/512 CSS LSE OSC32_IN Cortex system timer /8 /1,/2,.. ../16 OSC_OUT SYSCLK HSI PLLCLK HSE PLL x2,x3,.. ...x16 AHB, core, memory, DMA, Cortex FCLK free-run clock IWDG (1) (1) /1 ,/2 PLLCLK HSI /1,/2,/4,.. ../128 HSE LSI(1) HSI14 SYSCLK LSE(1) MCO Legend black white clock tree element clock tree control element clock line control line MSv32138V3 1. Applies to STM32F030x4/x6 devices. 2. Applies to STM32F030x8 devices. DS9773 Rev 4 15/93 24 Functional overview STM32F030x4/x6/x8/xC Figure 3. Clock tree of STM32F030xC FLITFCLK I2C1SW 8 MHz HSI RC HSI HSI HSI HCLK SW PLLMUL /1,/2,.. ../16 OSC_IN 4-32 MHz HSE OSC /1,/2,… …/512 /1,/2,/4, /8,/16 HPRE PPRE x1, x2 HSE CKMODE /2, /4 32.768 kHz LSE OSC RTCCLK PCLK LSE USART1 LSI RTC PLLNODIV MCOPRE Main clock output MCO TIM1,3,6,7 14,15,16,17 USART1SW SYSCLK HSI LSE RTCSEL 40 kHz LSI RC APB peripherals ADC (14 MHz max) 14 MHz HSI14 RC /32 OSC32_OUT PCLK PPRE LSE OSC32_IN Cortex system timer /8 HSI PLLCLK HSE PLL x2,x3,.. ...x16 AHB, core, memory, DMA, Cortex FCLK free-run clock SYSCLK CSS OSC_OUT I2C1 SYSCLK PREDIV PLLSRC Flash memory programming interface /1,/2 IWDG PLLCLK HSI /1,/2,/4,.. ../128 HSE LSI HSI14 SYSCLK LSE Legend black white MCO clock tree element clock tree control element clock line control line MSv47988V1 3.7 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 16/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC 3.8 Functional overview Direct memory access controller (DMA) The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except TIM14) and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M0) and 4 priority levels. • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail-chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 55 GPIOs can be connected to the 16 external interrupt lines. DS9773 Rev 4 17/93 24 Functional overview 3.10 STM32F030x4/x6/x8/xC Analog to digital converter (ADC) The 12-bit analog to digital converter has up to 16 external and two internal (temperature sensor, voltage reference measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 3. Temperature sensor calibration values Calibration value name TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) TS_CAL1 3.10.2 Description Memory address 0x1FFF F7B8 - 0x1FFF F7B9 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 4. Internal voltage reference calibration values Calibration value name VREFINT_CAL 18/93 Description Memory address Raw data acquired at a temperature of 30 °C (± 5 °C), 0x1FFF F7BA - 0x1FFF F7BB VDDA= 3.3 V (± 10 mV) DS9773 Rev 4 STM32F030x4/x6/x8/xC 3.11 Functional overview Timers and watchdogs The STM32F030x4/x6/x8/xC devices include up to five general-purpose timers, two basic timers and one advanced control timer. Table 5 compares the features of the different timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor Advanced control TIM1 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 3 TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 - TIM14 16-bit Up Any integer between 1 and 65536 No 1 - TIM15(1) 16-bit Up Any integer between 1 and 65536 Yes 2 1 TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 TIM6,(1) TIM7(2) 16-bit Up Any integer between 1 and 65536 Yes 0 - General purpose Basic DMA request Capture/compare Complementary generation channels outputs 1. Available on STM32F030x8 and STM32F030xC devices only. 2. Available on STM32F030xC devices only 3.11.1 Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) • One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. DS9773 Rev 4 19/93 24 Functional overview 3.11.2 STM32F030x4/x6/x8/xC General-purpose timers (TIM3, TIM14..17) There are four or five synchronizable general-purpose timers embedded in the STM32F030x4/x6/x8/xC devices (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM3 STM32F030x4/x6/x8/xC devices feature one synchronizable 4-channel general-purpose timer. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining. TIM3 has an independent DMA request generation. This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. The counter can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM15, TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate withTIM1 via the Timer Link feature for synchronization or event chaining. TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. 3.11.3 Basic timers TIM6 and TIM7 These timers can be used as a generic 16-bit time base. 3.11.4 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It 20/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Functional overview can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.11.5 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.11.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.12 • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source (HCLK or HCLK/8) Real-time clock (RTC) The RTC is an independent BCD timer/counter. Its main features are the following: • Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 day of the month. • Programmable alarm with wake up from Stop and Standby mode capability. • Periodic wakeup unit with programmable resolution and period (on STM32F030xC only). • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock. • Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. • Tow anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC clock sources can be: • A 32.768 kHz external crystal • A resonator or oscillator • The internal low-power RC oscillator (typical frequency of 40 kHz) • The high-speed external clock divided by 32 DS9773 Rev 4 21/93 24 Functional overview 3.13 STM32F030x4/x6/x8/xC Inter-integrated circuit interfaces (I2C) Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also supports Fast Mode Plus (up to 1 Mbit/s), with 20 mA output drive. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters - Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process - In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management The I2C interfaces can be served by the DMA controller. Refer to Table 7 for the differences between I2C1 and I2C2. Table 7. STM32F030x4/x6/x8/xC I2C implementation(1) I2C1 I2C2(2) 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus (up to 1 Mbit/s), with 20mA output drive I/Os X - Independent clock X - SMBus X - Wakeup from STOP - - I2C features 1. X = supported. 2. Only available on STM32F030x8/C devices. 3.14 Universal synchronous/asynchronous receiver/transmitter (USART) The device embeds up to six universal synchronous/asynchronous receivers/transmitters that communicate at speeds of up to 6 Mbit/s. 22/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Functional overview Table 8 gives an overview of features as implemented on the available USART interfaces. All USART interfaces can be served by the DMA controller. Table 8. STM32F0x0 USART implementation(1) STM32F030x4 STM32F030x6 STM32F030x8 USART modes/ features STM32F030xC USART1 USART1 USART2 USART1 USART2 USART3 USART4 USART5 USART6 Hardware flow control for modem X X X X X - - Continuous communication using DMA X X X X X X X Multiprocessor communication X X X X X X X Synchronous mode X X X X X X - Smartcard mode - - - - - - - Single-wire Half-duplex communication X X X X X X X IrDA SIR ENDEC block - - - - - - - LIN mode - - - - - - - Dual clock domain and wakeup from Stop mode - - - - - - - Receiver timeout interrupt X X - X - - - Modbus communication - - - - - - - Auto baud rate detection (supported modes) 2 2 - 2 - - - Driver Enable X X X X X X - USART data length 8 and 9 bits 7, 8 and 9 bits 1. X = supported. 3.15 Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. SPI1 and SPI2 are identical and implement the set of features shown in the following table. DS9773 Rev 4 23/93 24 Functional overview STM32F030x4/x6/x8/xC Table 9. STM32F030x4/x6/x8/xC SPI implementation(1) SPI1 SPI2(2) Hardware CRC calculation X X Rx/Tx FIFO X X NSS pulse mode X X TI mode X X SPI features 1. X = supported. 2. Not available on STM32F030x4/6. 3.16 Serial wire debug port (SW-DP) An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. 24/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Pinouts and pin descriptions PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS VDD 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 PF4 PF5 VDD PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0 PA1 PA2 BOOT0 VDD VSS PB9 PB8 Figure 4. LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices IO pins replaced by supply pairs for STM32F030RC devices. MSv36496V2 PD2 PC12 PC11 PC10 PA15 PA14 PB7 PB6 PB5 PB4 PB3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD VSS PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS VDD VDD PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0 PA1 PA2 BOOT0 VDD VSS PB9 PB8 Figure 5. LQFP64 64-pin package pinout (top view), for STM32F030RC devices PA3 VSS VDD 4 Pinouts and pin descriptions Additional supply pins required for STM32F030RC devices. DS9773 Rev 4 MSv36483V2 25/93 33 Pinouts and pin descriptions STM32F030x4/x6/x8/xC VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 Figure 6. LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices 48 47 46 45 44 43 42 41 40 39 38 37 36 1 2 3 4 5 6 LQFP48 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 35 34 33 32 31 30 29 28 27 26 25 PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD VDD PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST VSSA VDDA PA0 PA1 PA2 IO pins replaced by supply pairs for STM32F030CC devices. MSv36497V2 VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 Figure 7. LQFP48 48-pin package pinout (top view), for STM32F030CC devices 48 47 46 45 44 43 42 41 40 39 38 37 36 1 2 3 4 5 6 LQFP48 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 35 34 33 32 31 30 29 28 27 26 25 VDD VSS PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD VDD PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST VSSA VDDA PA0 PA1 PA2 Additional supply pins required for STM32F030CC devices. MSv36484V2 26/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Pinouts and pin descriptions PB3 PA15 PB4 PB6 PB5 PB7 VSS BOOT0 Figure 8. LQFP32 32-pin package pinout (top view) 32 31 30 29 28 27 26 25 VDD PF0-OSC_IN 1 PF1-OSC_OUT 3 NRST VDDA PA0 PA1 4 PA2 24 23 22 2 21 20 19 18 17 LQFP32 5 6 7 8 PA14 PA13 PA12 PA11 PA10 PA9 PA8 VDD PB1 VSS PB0 PA5 PA6 PA7 PA3 PA4 9 10 11 12 13 14 15 16 MS32144V1 Figure 9. TSSOP20 20-pin package pinout (top view) 1 20 PA14 PF0-OSC_IN 2 19 PA13 PF1-OSC_OUT 3 18 PA10 NRST 4 17 PA 9 VDDA 5 16 VDD PA0 6 15 VSS PA1 7 14 PB1 PA2 8 13 PA7 PA3 9 12 PA6 PA4 10 11 PA5 BOOT0 MSv36473V1 DS9773 Rev 4 27/93 33 Pinouts and pin descriptions STM32F030x4/x6/x8/xC Table 10. Legend/abbreviations used in the pinout table Name Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin name Pin type I/O structure S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3 V I/O B RST Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Notes Pin functions Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 11. STM32F030x4/6/8/C pin definitions Pin number LQFP32 TSSOP20 1 - - VDD I/O structure LQFP48 1 Pin name (function after reset) Pin type LQFP64 Pin functions Notes S - - - RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2 Alternate functions Additional functions Complementary power supply 2 2 - - PC13 I/O TC (1) 3 3 - - PC14-OSC32_IN (PC14) I/O TC (1) - OSC32_IN 4 4 - - PC15-OSC32_OUT I/O (PC15) TC (1) - OSC32_OUT 5 5 2 2 PF0-OSC_IN (PF0) I/O FT - I2C1_SDA(5) OSC_IN 6 6 3 3 PF1-OSC_OUT (PF1) I/O FT - I2C1_SCL(5) OSC_OUT 7 7 4 4 NRST 28/93 I/O RST - DS9773 Rev 4 Device reset input / internal reset output (active low) STM32F030x4/x6/x8/xC Pinouts and pin descriptions Table 11. STM32F030x4/6/8/C pin definitions (continued) LQFP48 LQFP32 TSSOP20 Pin type I/O structure Pin functions LQFP64 Pin number Notes 8 - - - PC0 I/O TTa - EVENTOUT, USART6_TX(5) ADC_IN10 9 - - - PC1 I/O TTa - EVENTOUT, USART6_RX(5) ADC_IN11 10 - - - PC2 I/O TTa - SPI2_MISO(5), EVENTOUT ADC_IN12 11 - - - PC3 I/O TTa - SPI2_MOSI(5), EVENTOUT ADC_IN13 12 8 - - VSSA S - - Analog ground 13 9 5 5 VDDA S - - Analog power supply 14 10 6 6 Pin name (function after reset) PA0 I/O TTa Alternate functions Additional functions - USART1_CTS(2), USART2_CTS(3)(5), USART4_TX(5) ADC_IN0, RTC_TAMP2, WKUP1 ADC_IN1 15 11 7 7 PA1 I/O TTa - USART1_RTS(2), USART2_RTS(3)(5), EVENTOUT, USART4_RX(5) 16 12 8 8 PA2 I/O TTa - USART1_TX(2), USART2_TX(3)(5), TIM15_CH1(3)(5) ADC_IN2, WKUP4(5) ADC_IN3 - 17 13 9 9 PA3 I/O TTa - USART1_RX(2), USART2_RX(3)(5), TIM15_CH2(3)(5) 18(4) - - - PF4 I/O FT (4) EVENTOUT 18(5) - - - VSS S - (5) 19(4) - - - PF5 I/O FT (4) 19(5) - - - VDD - - (5) Ground EVENTOUT Complementary power supply 20 14 10 10 PA4 I/O TTa - SPI1_NSS, USART1_CK(2) USART2_CK(3)(5), TIM14_CH1, USART6_TX(5) 21 15 11 11 PA5 I/O TTa - SPI1_SCK, USART6_RX(5) DS9773 Rev 4 - ADC_IN4 ADC_IN5 29/93 33 Pinouts and pin descriptions STM32F030x4/x6/x8/xC Table 11. STM32F030x4/6/8/C pin definitions (continued) 22 16 12 12 PA6 Pin type Pin name (function after reset) I/O structure Pin functions TSSOP20 LQFP32 LQFP48 LQFP64 Pin number I/O TTa Notes Alternate functions Additional functions - SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT USART3_CTS(5) ADC_IN6 ADC_IN7 23 17 13 13 PA7 I/O TTa - SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT 24 - - - PC4 I/O TTa - EVENTOUT, USART3_TX(5) ADC_IN14 25 - - - PC5 I/O TTa - USART3_RX(5) ADC_IN15, WKUP5(5) - TIM3_CH3, TIM1_CH2N, EVENTOUT, USART3_CK(5) ADC_IN8 ADC_IN9 - 26 18 14 - PB0 I/O TTa 27 19 15 14 PB1 I/O TTa - TIM3_CH4, TIM14_CH1, TIM1_CH3N, USART3_RTS(5) 28 20 - - PB2 I/O FT (6) (5), 29 21 - - PB10 I/O FT - SPI2_SCK I2C1_SCL(2), I2C2_SCL(3)(5), USART3_TX(5) - I2C1_SDA(2), I2C2_SDA(3)(5), EVENTOUT, USART3_RX(5) - 30 22 - - PB11 I/O FT - 31 23 16 - VSS S - - Ground 32 24 17 16 VDD S - - Digital power supply 33 30/93 25 - - PB12 I/O FT - DS9773 Rev 4 SPI1_NSS(2), SPI2_NSS(3)(5), TIM1_BKIN, EVENTOUT, USART3_CK(5) - STM32F030x4/x6/x8/xC Pinouts and pin descriptions Table 11. STM32F030x4/6/8/C pin definitions (continued) 34 35 26 27 - - - - PB13 PB14 Pin type Pin name (function after reset) I/O structure Pin functions TSSOP20 LQFP32 LQFP48 LQFP64 Pin number I/O I/O FT FT Notes Alternate functions Additional functions - SPI1_SCK(2), SPI2_SCK(3)(5), I2C2_SCL(5), TIM1_CH1N, USART3_CTS(5) - - SPI1_MISO(2), SPI2_MISO(3)(5), I2C2_SDA(5), TIM1_CH2N, TIM15_CH1(3)(5), USART3_RTS(5) - RTC_REFIN, WKUP7(5) 36 28 - - PB15 I/O FT - SPI1_MOSI(2), SPI2_MOSI(3)(5), TIM1_CH3N, TIM15_CH1N(3)(5), TIM15_CH2(3)(5) 37 - - - PC6 I/O FT - TIM3_CH1 - 38 - - - PC7 I/O FT - TIM3_CH2 - 39 - - - PC8 I/O FT - TIM3_CH3 - 40 - - - PC9 I/O FT - TIM3_CH4 - - USART1_CK, TIM1_CH1, EVENTOUT, MCO - - USART1_TX, TIM1_CH2, TIM15_BKIN(3)(5) I2C1_SCL(2)(5) - - USART1_RX, TIM1_CH3, TIM17_BKIN I2C1_SDA(2)(5) - - USART1_CTS, TIM1_CH4, EVENTOUT, I2C2_SCL(5) - - USART1_RTS, TIM1_ETR, EVENTOUT, I2C2_SDA(5) - 41 42 43 44 45 29 30 31 32 33 18 19 20 21 22 - 17 18 - - PA8 PA9 PA10 PA11 PA12 I/O I/O I/O I/O I/O FT FT FT FT FT DS9773 Rev 4 31/93 33 Pinouts and pin descriptions STM32F030x4/x6/x8/xC Table 11. STM32F030x4/6/8/C pin definitions (continued) FT (7) IR_OUT, SWDIO - 47(4) 35(4) - - PF6 I/O FT (4) I2C1_SCL(2), I2C2_SCL(3) - 47(5) 35(5) - - VSS S - (5) 48(4) 36(4) - - PF7 I/O FT (4) 48(5) 36(5) - - VDD S - (5) 20 PA14 (SWCLK) FT (7) USART1_TX(2), USART2_TX(3)(5), SWCLK - - TSSOP20 I/O LQFP32 PA13 (SWDIO) LQFP48 Notes LQFP64 I/O structure Pin functions Pin type Pin number 46 34 23 19 49 37 24 Pin name (function after reset) I/O Alternate functions Additional functions Ground I2C1_SDA(2), I2C2_SDA(3) - Complementary power supply 50 38 25 - PA15 I/O FT - SPI1_NSS, USART1_RX(2), USART2_RX(3)(5), USART4_RTS(5), EVENTOUT 51 - - - PC10 I/O FT - USART3_TX(5), USART4_TX(5) - 52 - - - PC11 I/O FT - USART3_RX(5), USART4_RX(5) - - 53 - - - PC12 I/O FT - USART3_CK(5), USART4_CK(5), USART5_TX(5) 54 - - - PD2 I/O FT - TIM3_ETR, USART3_RTS(5), USART5_RX(5) - 55 39 26 - PB3 I/O FT - SPI1_SCK, EVENTOUT, USART5_TX(5) - - SPI1_MISO, TIM3_CH1, EVENTOUT, TIM17_BKIN(5), USART5_RX(5) - - SPI1_MOSI, I2C1_SMBA, TIM16_BKIN, TIM3_CH2, USART5_CK_RTS(5) WKUP6(5) 56 57 32/93 40 41 27 28 - - PB4 PB5 I/O I/O FT FT DS9773 Rev 4 STM32F030x4/x6/x8/xC Pinouts and pin descriptions Table 11. STM32F030x4/6/8/C pin definitions (continued) TSSOP20 42 29 - PB6 I/O I/O structure LQFP32 58 Pin name (function after reset) Pin type LQFP48 Pin functions LQFP64 Pin number Notes Alternate functions Additional functions FTf - I2C1_SCL, USART1_TX, TIM16_CH1N - I2C1_SDA, USART1_RX, TIM17_CH1N, USART4_CTS(5) - 59 43 30 - PB7 I/O FTf - 60 44 31 1 BOOT0 I B - 61 45 - - PB8 I/O FTf (6) I2C1_SCL, TIM16_CH1 - I2C1_SDA, IR_OUT, SPI2_NSS(5), TIM17_CH1, EVENTOUT - Boot memory selection 62 46 - - PB9 I/O FTf - 63 47 32 15 VSS S - - Ground 64 48 1 16 VDD S - - Digital power supply 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. This feature is available on STM32F030x6 and STM32F030x4 devices only. 3. This feature is available on STM32F030x8 devices only. 4. For STM32F030x4/6/8 devices only. 5. For STM32F030xC devices only. 6. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware). 7. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin and internal pull-down on SWCLK pin are activated. DS9773 Rev 4 33/93 33 34/93 Table 12. Alternate functions selected through GPIOA_AFR registers for port A Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 - - USART4_TX(1) - - - - USART4_RX(1) TIM15_CH1N(1) - - - - - - - - - - - - - TIM14_CH1 USART6_TX(1) - USART1_CTS(2) PA0 - USART2_CTS(1)(3) USART1_RTS(2) PA1 EVENTOUT (1)(3) USART2_RTS DS9773 Rev 4 PA2 TIM15_CH1(1)(3) PA3 TIM15_CH2(1)(3) USART1_TX(2) USART2_TX(1)(3) USART1_RX(2) USART2_RX(1)(3) USART1_CK(2) SPI1_NSS PA5 SPI1_SCK - - - - USART6_RX(1) - PA6 SPI1_MISO TIM3_CH1 TIM1_BKIN - USART3_CTS(1) TIM16_CH1 EVENTOUT PA7 SPI1_MOSI TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - - PA9 TIM15_BKIN(1)(3) USART1_TX TIM1_CH2 - I2C1_SCL(1)(2) MCO(1) - PA10 TIM17_BKIN USART1_RX TIM1_CH3 - I2C1_SDA(1)(2) - - PA11 EVENTOUT USART1_CTS TIM1_CH4 - - SCL - USART2_CK(1)(3) STM32F030x4/x6/x8/xC PA4 Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 PA12 EVENTOUT USART1_RTS TIM1_ETR - - SDA - PA13 SWDIO IR_OUT - - - - - - - - - - - EVENTOUT USART4_RTS(1) - - USART1_TX(2) PA14 SWCLK PA15 SPI1_NSS USART2_TX(1)(3) USART1_RX(2) USART2_RX(1)(3) 1. This feature is available on STM32F030xC devices. 2. This feature is available on STM32F030x4 and STM32F030x6 devices. DS9773 Rev 4 3. This feature is available on STM32F030x8 devices. Table 13. Alternate functions selected through GPIOB_AFR registers for port B Pin name AF0 AF1 AF2 AF3 AF4 AF5 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - USART3_CK(1) - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - USART3_RTS(1) - PB2 - - - - - - PB3 SPI1_SCK EVENTOUT - - USART5_TX(1) - PB4 SPI1_MISO TIM3_CH1 EVENTOUT - USART5_RX(1) TIM17_BKIN(1) PB5 SPI1_MOSI TIM3_CH2 TIM16_BKIN I2C1_SMBA USART5_CK_RTS(1) - PB6 USART1_TX I2C1_SCL TIM16_CH1N - - - PB7 USART1_RX I2C1_SDA TIM17_CH1N - USART4_CTS(1) - STM32F030x4/x6/x8/xC Table 12. Alternate functions selected through GPIOA_AFR registers for port A (continued) 35/93 36/93 Table 13. Alternate functions selected through GPIOB_AFR registers for port B (continued) Pin name AF0 AF1 AF2 AF3 AF4 AF5 PB8 - I2C1_SCL TIM16_CH1 - - - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT - SPI2_NSS(1) - - USART3_TX(1) SPI2_SCK(1) - - USART3_RX(1) - EVENTOUT TIM1_BKIN - USART3_RTS(1) TIM15(1) - TIM1_CH1N - USART3_CTS(1) I2C2_SCL(1) TIM15_CH1(1)(3) TIM1_CH2N - USART3_RTS(1) I2C2_SDA(1) TIM15_CH2(1)(3) TIM1_CH3N TIM15_CH1N(1)(3) - - I2C1_SCL(2) PB10 - PB11 EVENTOUT I2C2_SCL(1)(3) I2C1_SDA(2) I2C2_SDA(1)(3) SPI1_NSS(2) PB12 DS9773 Rev 4 SPI2_NSS(1)(3) SPI1_SCK(2) PB13 SPI2_SCK(1)(3) SPI1_MISO(2) PB14 SPI2_MISO(1)(3) SPI1_MOSI(2) PB15 SPI2_MOSI(1)(3) 2. This feature is available on STM32F030x4 and STM32F030x6 devices. 3. This feature is available on STM32F030x8 devices. STM32F030x4/x6/x8/xC 1. This feature is available on STM32F030xC devices. STM32F030x4/x6/x8/xC Table 14. Alternate functions selected through GPIOC_AFR(1) registers for port C Pin name AF0(2) AF1(1) AF2(1) PC0 EVENTOUT - USART6_TX PC1 EVENTOUT - USART6_RX PC2 EVENTOUT SPI2_MISO - PC3 EVENTOUT SPI2_MOSI - PC4 EVENTOUT USART3_TX - PC5 - USART3_RX - PC6 TIM3_CH1 - - PC7 TIM3_CH2 - - PC8 TIM3_CH3 - - PC9 TIM3_CH4 - - PC10 USART4_TX(1) USART3_TX - PC11 USART4_RX(1) USART3_RX - PC12 USART4_CK(1) USART3_CK USART5_TX PC13 - - - PC14 - - - PC15 - - - 1. Available on STM32F030xC devices only. 2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOC_AFR registers). Table 15. Alternate functions selected through GPIOD_AFR(1) registers for port D Pin name AF0(2) AF1(1) AF2(1) PD2 TIM3_ETR USART3_RTS USART5_RX 1. Available on STM32F030xC devices only. 2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOD_AFR registers). Table 16. Alternate functions selected through GPIOF_AFR(1) registers for port F Pin name AF0(2) AF1(1) PF0 - I2C1_SDA PF1 - I2C1_SCL PF4 EVENTOUT(1) PF5 EVENTOUT(1) PF6 I2C1_SCL(3), I2C2_SCL(4) PF7 I2C1_SDA(3), I2C2_SDA(4) 1. Available on STM32F030xC devices only. 2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOF_AFR registers). 3. Applies to STM32F030x4/x6 4. Applies to STM32F030x8 DS9773 Rev 4 37/93 37 Memory mapping 5 STM32F030x4/x6/x8/xC Memory mapping Figure 10. STM32F030x4/x6/x8/xC memory map 0xFFFF FFFF 0x4800 17FF Reserved AHB2 7 0xE010 0000 0xE000 0000 6 0x4800 0000 Cortex-M0 internal peripherals Reserved Reserved 0xC000 0000 0x4002 43FF AHB1 5 Reserved 0x4002 0000 Reserved 0xA000 0000 0x4001 8000 4 Reserved 0x1FFF FFFF 0x1FFF FC00 0x1FFF F800 0x8000 0000 APB Reserved Option Bytes 0x4001 0000 Reserved System memory 3 0x4000 8000 Reserved 0x1FFF xx00(1) APB 0x6000 0000 0x4000 0000 Reserved Reserved 2 0x4000 0000 Peripherals 0x0804 0000 Reserved 1 Flash memory 0x2000 0000 SRAM 0x0800 0000 Reserved 0 CODE 0x0004 0000 Flash, system memory or SRAM, depending on BOOT configuration 0x0000 0000 0x0000 0000 MSv36474V2 1. The start address of the system memory is 0x1FFF EC00 for STM32F030x4, STM32F030x6 and STM32F030x8 devices, and 0x1FFF D800 for STM32F030xC devices. 38/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Memory mapping Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses Bus - AHB2 - AHB1 - APB Boundary address Size Peripheral 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB Reserved 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 3400 - 0x4002 43FF 4 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15(1) 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 1800 - 0x4001 23FF 3 KB Reserved 0x4001 1400 - 0x4001 17FF 1 KB USART6(2) 0x4001 0800 - 0x4001 13FF 3 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG DS9773 Rev 4 39/93 40 Memory mapping STM32F030x4/x6/x8/xC Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses (continued) Bus - APB Boundary address Size Peripheral 0x4000 8000 - 0x4000 FFFF 32 KB Reserved 0x4000 7400 - 0x4000 7FFF 3 KB Reserved 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 5C00 - 0x4000 6FFF 5 KB Reserved 0x4000 5800 - 0x4000 5BFF 1 KB I2C2(1) 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 5000 - 0x4000 53FF 1 KB USART5(2) 0x4000 4C00 - 0x4000 4FFF 1 KB USART4(2) 0x4000 4800 - 0x4000 4BFF 1 KB USART3(2) 0x4000 4400 - 0x4000 47FF 1 KB USART2(1) 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2(1) 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1800 - 0x4000 1FFF 2 KB Reserved 0x4000 1400 - 0x4000 17FF 1 KB TIM7(2) 0x4000 1000 - 0x4000 13FF 1 KB TIM6(1) 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB Reserved 1. This feature is available on STM32F030x8 and STM32F030xC devices only. For STM32F030x6 and STM32F060x4, the area is Reserved. 2. This feature is available on STM32F030xC devices only. This area is reserved for STM32F030x4/6/8 devices. 40/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 11. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 12. Figure 11. Pin loading conditions Figure 12. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19210V1 DS9773 Rev 4 MS19211V1 41/93 75 Electrical characteristics 6.1.6 STM32F030x4/x6/x8/xC Power supply scheme Figure 13. Power supply scheme LSE, RTC, Wake-up logic Power switch VDD VCORE 2 x VDD Regulator OUT 2 x 100 nF GPIOs IN +1 x 4.7 μF Level shifter VDDIO1 IO logic Kernel logic (CPU, Digital & Memories) 2 x VSS VDDA VDDA 10 nF +1 μF VREF+ VREF- ADC Analog: (RCs, PLL, …) VSSA MSv39025V1 Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 6.1.7 Current consumption measurement Figure 14. Current consumption measurement scheme IDD VDD IDDA VDDA MS32142V2 42/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics, Table 19: Current characteristics and Table 20: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 18. Voltage characteristics(1) Symbol Ratings Min Max Unit VDD–VSS External main supply voltage -0.3 4.0 V VDDA–VSS External analog supply voltage -0.3 4.0 V VDD–VDDA Allowed voltage difference for VDD > VDDA - 0.4 VIN(2) Input voltage on FT and FTf pins VSS −0.3 Input voltage on TTa pins VSS −0.3 BOOT0 0 VDDIOx + 4.0 V (3) V 4.0 VDDIOx + 4.0 V (3) V VSS − 0.3 4.0 V Variations between different VDD power pins - 50 mV |VSSx − VSS| Variations between all the different ground pins - 50 mV VESD(HBM) Electrostatic discharge voltage (human body model) Input voltage on any other pin |ΔVDDx| see Section 6.3.12: Electrical sensitivity characteristics - 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected current values. 3. VDDIOx is internally connected with VDD pin. DS9773 Rev 4 43/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 19. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD power lines (source)(1) 120 ΣIVSS (1) -120 Total current out of sum of all VSS ground lines (sink) IVDD(PIN) Maximum current into each VDD power pin (source) (1) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100 Output current sunk by any I/O and control pin IIO(PIN) 25 Output current source by any I/O and control pin -25 (2) ΣIIO(PIN) IINJ(PIN)(3) Total output current sunk by sum of all I/Os and control pins 80 Total output current sourced by sum of all I/Os and control pins(2) -80 Injected current on FT and FTf pins -5/+0(4) Injected current on TC and RST pin ±5 Injected current on TTa pins ΣIINJ(PIN) Unit (5) mA ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 18: Voltage characteristics for the maximum allowed input voltage values. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the device. See note (2) below Table 52: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 20. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Value Unit –65 to +150 °C 150 °C Maximum junction temperature 6.3 Operating conditions 6.3.1 General operating conditions Table 21. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 48 fPCLK Internal APB clock frequency - 0 48 VDD Standard operating voltage - 2.4 3.6 44/93 DS9773 Rev 4 Unit MHz V STM32F030x4/x6/x8/xC Electrical characteristics Table 21. General operating conditions (continued) Symbol VDDA VIN PD Parameter Analog operating voltage I/O input voltage Power dissipation at TA = 85 °C for suffix 6 (1) Conditions Min Max Unit Must have a potential equal to or higher than VDD 2.4 3.6 V TC and RST I/O -0.3 VDDIOx+0.3 TTa I/O -0.3 VDDA+0.3(2) FT and FTf I/O -0.3 5.5(2) BOOT0 0 5.5 LQFP64 - 455 LQFP48 - 364 LQFP32 - 357 TSSOP20 - 263 TA Ambient temperature for the suffix 6 version Maximum power dissipation -40 85 Low power dissipation(2) -40 105 TJ Junction temperature range Suffix 6 version -40 105 V mW °C °C 1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. 2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5: Thermal characteristics). 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 22 are derived from tests performed under the ambient temperature condition summarized in Table 21. Table 22. Operating conditions at power-up / power-down Symbol Parameter VDD rise time rate tVDD - VDD fall time rate VDDA rise time rate tVDDA 6.3.3 Conditions - VDDA fall time rate Min Max 0 ∞ 20 ∞ 0 ∞ 20 ∞ Unit µs/V Embedded reset and power control block characteristics The parameters given in Table 23 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 23. Embedded reset and power control block characteristics Symbol VPOR/PDR(1) Parameter Power on/power down reset threshold Conditions Min Typ Max Unit Falling edge(2) 1.80 1.88 1.96(3) V 1.84(3) 1.92 2.00 V Rising edge DS9773 Rev 4 45/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 23. Embedded reset and power control block characteristics (continued) Symbol VPDRhyst tRSTTEMPO(4) Parameter Conditions Min Typ Max Unit PDR hysteresis - - 40 - mV Reset temporization - 1.50 2.50 4.50 ms 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Data based on characterization results, not tested in production. 4. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 24 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 24. Embedded internal reference voltage Symbol Parameter VREFINT Internal reference voltage Conditions Min Typ Max Unit -40°C < TA < +85°C 1.2 1.23 1.25 V tSTART ADC_IN17 buffer startup time - - - 10(1) µs tS_vrefint ADC sampling time when reading the internal reference voltage - 4 (1) - - µs ΔVREFINT Internal reference voltage spread over the temperature range VDDA = 3 V - - 10(1) mV TCoeff Temperature coefficient - -100(1) - 100(1) ppm/°C 1. Guaranteed by design, not tested in production. 6.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 14: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. 46/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • • The Flash memory access time is adjusted to the fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 25 to Table 27 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V(1) Symbol All peripherals enabled IDD Parameter Conditions fHCLK Supply current in Run mode, code executing from Flash HSI or HSE clock, PLL on Supply current in Run mode, code executing from RAM HSI or HSE clock, PLL on HSI or HSE clock, PLL off IDD Unit Typ 85 °C HSI or HSE clock, PLL off IDD Max @ TA(2) Supply current in Sleep mode, code executing from Flash or RAM HSI or HSE clock, PLL on HSI or HSE clock, PLL off 48 MHz 22.0 22.8 48 MHz 26.8 30.2 24 MHz 12.2 13.2 24 MHz 14.1 16.2 8 MHz 4.4 5.2 8 MHz 4.9 5.6 48 MHz 22.2 23.2 48 MHz 26.1 29.3 24 MHz 11.2 12.2 24 MHz 13.3 15.7 8 MHz 4.0 4.5 8 MHz 4.6 5.2 48 MHz 14 15.3 48 MHz 17.0 19.0 24 MHz 7.3 7.8 24 MHz 8.7 10.1 8 MHz 2.6 2.9 8 MHz 3.0 3.5 mA mA mA 1. The gray shading is used to distinguish the values for STM32F030xC devices. 2. Data based on characterization results, not tested in production unless otherwise specified. DS9773 Rev 4 47/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 26. Typical and maximum current consumption from the VDDA supply(1) VDDA = 3.6 V Symbol Parameter Conditions(2) fHCLK Typ Max @ TA(3) Unit 85 °C HSE bypass, PLL on IDDA Supply current in Run or Sleep mode, code executing from Flash memory or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off 48 MHz 175 215 48 MHz 160 192 8 MHz 3.9 4.9 8 MHz 3.7 4.6 1 MHz 3.9 4.1 1 MHz 3.3 4.4 48 MHz 244 275 48 MHz 235 275 8 MHz 85 105 8 MHz 77 92 µA 1. The gray shading is used to distinguish the values for STM32F030xC devices. 2. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent of the frequency. 3. Data based on characterization results, not tested in production. 48/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Table 27. Typical and maximum consumption in Stop and Standby modes Symbol IDD Typ @VDD (VDD = VDDA) Max(1) 3.6 V TA = 85 °C Regulator in run mode, all oscillators OFF 19 48 Regulator in low-power mode, all oscillators OFF 5 32 2 - Regulator in run or lowpower mode, all oscillators OFF 2.9 3.5 LSI ON and IWDG ON 3.3 - LSI OFF and IWDG OFF 2.8 3.5 Regulator in run or lowpower mode, all oscillators OFF 1.7 - LSI ON and IWDG ON 2.3 - LSI OFF and IWDG OFF 1.4 - Parameter Conditions Supply current in Stop mode Supply current in LSI ON and IWDG ON Standby mode Supply current in Stop mode VDDA monitoring ON Supply current in Standby mode IDDA Supply current in Stop mode VDDA monitoring OFF Supply current in Standby mode Unit µA 1. Data based on characterization results, not tested in production unless otherwise specified. Typical current consumption The MCU is placed under the following conditions: • VDD = VDDA = 3.3 V • All I/O pins are in analog input configuration • The Flash access time is adjusted to fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz • When the peripherals are enabled, fPCLK = fHCLK • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively DS9773 Rev 4 49/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 28. Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol IDD IDDA Parameter Conditions Supply current in Run Running from mode from VDD HSE crystal supply clock 8 MHz, Supply current in Run code executing mode from VDDA from Flash supply fHCLK Peripherals Peripherals enabled disabled 48 MHz 23.3 11.5 8 MHz 4.5 3.0 48 MHz 158 158 8 MHz 2.43 2.43 Unit mA µA I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 46: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously, the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx × f SW × C 50/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. Table 29. Switching output I/O current consumption Symbol Parameter Conditions(1) VDDIOx = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS ISW I/O current consumption VDDIOx = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint I/O toggling frequency (fSW) Typ 4 MHz 0.18 8 MHz 0.37 16 MHz 0.76 24 MHz 1.39 48 MHz 2.188 4 MHz 0.49 8 MHz 0.94 16 MHz 2.38 24 MHz 3.99 4 MHz 0.81 8 MHz 1.7 16 MHz 3.67 Unit mA 1. CS = 7 pF (estimated value). 6.3.6 Wakeup time from low-power mode The wakeup times given in Table 30 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture. The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz. The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0). All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. DS9773 Rev 4 51/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 30. Low-power mode wakeup timings Symbol Parameter Typ @VDD = VDDA Conditions Max Unit = 3.3 V tWUSTOP Wakeup from Stop mode Regulator in run mode 2.8 5 - 51 - - 4 SYSCLK cycles - tWUSTANDBY Wakeup from Standby mode tWUSLEEP 6.3.7 Wakeup from Sleep mode µs External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 15: High-speed external clock source AC timing diagram. Table 31. High-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit 1 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx 15 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V ns - - 20 1. Guaranteed by design, not tested in production. Figure 15. High-speed external clock source AC timing diagram tw(HSEH) VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tw(HSEL) t THSE MS19214V2 52/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 16. Table 32. Low-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit - 32.768 1000 kHz fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx 450 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) tr(LSE) tf(LSE) V ns OSC32_IN rise or fall time - - 50 1. Guaranteed by design, not tested in production. Figure 16. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% VLSEL 10% tr(LSE) t tf(LSE) tw(LSEL) TLSE MS19215V2 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 33. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 33. HSE oscillator characteristics Symbol fOSC_IN RF Conditions(1) Min(2) Typ Max(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - kΩ Parameter DS9773 Rev 4 53/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 33. HSE oscillator characteristics Symbol Conditions(1) Min(2) Typ Max(2) - - 8.5 VDD = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz - 0.5 - VDD = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Parameter During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time (3) Unit mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 17. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MHz resonator CL2 REXT (1) fHSE RF Bias controlled gain OSC_OUT MS19876V1 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results 54/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics obtained with typical external components specified in Table 34. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol LSE current consumption IDD Oscillator transconductance gm tSU(LSE) (3) Conditions(1) Min(2) Typ Max(2) low drive capability - 0.5 0.9 medium-low drive capability - - 1 medium-high drive capability - - 1.3 high drive capability - - 1.6 low drive capability 5 - - medium-low drive capability 8 - - medium-high drive capability 15 - - high drive capability 25 - - VDDIOx is stabilized - 2 - Parameter Startup time Unit µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. Note: tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 18. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN fLSE Drive programmable amplifier 32.768 kHz resonator OSC32_OUT CL2 MS30253V2 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DS9773 Rev 4 55/93 75 Electrical characteristics 6.3.8 STM32F030x4/x6/x8/xC Internal clock source characteristics The parameters given in Table 35 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 35. HSI oscillator characteristics(1) Symbol fHSI TRIM Parameter Conditions Min Typ Max Unit Frequency - - 8 - MHz HSI user trimming step - - - 1(2) % - 45(2) - 55(2) % - ±5 - % - ±1(3) - % DuCyHSI Duty cycle ACCHSI Accuracy of the HSI oscillator (factory calibrated) tSU(HSI) HSI oscillator startup time - 1(2) - 2(2) µs IDDA(HSI) HSI oscillator power consumption - - 80 - µA TA = -40 to 85°C TA = 25°C 1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. With user calibration. High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 36. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Min Typ - - 14 Frequency HSI14 user-trimming step DuCy(HSI14) Duty cycle Max Unit - MHz (2) - - - 1 % - 45(2) - 55(2) % ACCHSI14 Accuracy of the HSI14 oscillator (factory calibrated) TA = –40 to 85 °C - ±5 - % tsu(HSI14) HSI14 oscillator startup time - 1(2) - 2(2) µs HSI14 oscillator power consumption - - 100 - µA IDDA(HSI14) 1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. Low-speed internal (LSI) RC oscillator Table 37. LSI oscillator characteristics(1) Symbol fLSI 56/93 Parameter Frequency DS9773 Rev 4 Min Typ Max Unit 30 40 50 kHz STM32F030x4/x6/x8/xC Electrical characteristics Table 37. LSI oscillator characteristics(1) Symbol Parameter tsu(LSI)(2) IDDA(LSI)(2) Min Typ Max Unit LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 - µA 1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 38. PLL characteristics Value Symbol fPLL_IN fPLL_OUT tLOCK Parameter Unit Min Typ Max PLL input clock(1) 1(2) 8.0 24(2) MHz PLL input clock duty cycle 40(2) - 60(2) % PLL multiplier output clock 16(2) - 48 MHz - 200(2) µs - 300(2) ps PLL lock time JitterPLL - Cycle-to-cycle jitter - 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 6.3.10 Memory characteristics Flash memory The characteristics are given at TA = -40 to 85 °C unless otherwise specified. Table 39. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = -40 to +85 °C - 53.5 - µs Page erase time(2) TA = -40 to +85 °C - 30 - ms tME Mass erase time TA = -40 to +85 °C - 30 - ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA 2.4 - 3.6 V Symbol tprog tERASE Vprog Parameter Programming voltage Conditions - 1. Guaranteed by design, not tested in production. 2. Page size is 1KB for STM32F030x4/6/8 devices and 2KB for STM32F030xC devices DS9773 Rev 4 57/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 40. Flash memory endurance and data retention Symbol NEND tRET Min(1) Unit TA = -40 to +85 °C 1 kcycle (2) 20 Years Parameter Endurance Data retention Conditions 1 kcycle at TA = 85 °C 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.11 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 41. They are based on the EMS levels and classes defined in application note AN1709. Table 41. EMS characteristics Symbol Parameter Conditions VFESD VDD = 3.3V, LQFP48, TA = +25 °C, Voltage limits to be applied on any I/O pin fHCLK = 48 MHz, to induce a functional disturbance conforming to IEC 61000-4-2 VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3V, LQFP48, TA = +25°C, fHCLK = 48 MHz, conforming to IEC 61000-4-4 Level/ Class 3B(1) 2B(2) 4B 1. Applies to STM32F030xC. 2. Applies to STM32F030x4/x6/x8. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations 58/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 42. EMI characteristics Symbol Parameter SEMI 6.3.12 Conditions Monitored frequency band 0.1 to 30 MHz VDD = 3.6 V, TA = 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with 130 MHz to 1 GHz IEC 61967-2 EMI Level Max vs. [fHSE/fHCLK] Unit 8/48 MHz -3 23 dBµV 17 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. DS9773 Rev 4 59/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 43. ESD absolute maximum ratings Symbol Ratings Conditions Packages Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage TA = +25 °C, conforming (human body model) to JESD22-A114 All 2 2000 V VESD(CDM) Electrostatic discharge voltage TA = +25 °C, conforming (charge device model) to ANSI/ESD STM5.3.1 All C4(2) C3(3) 500(2) 250(3) V 1. Data based on characterization results, not tested in production. 2. Applicable to STM32F030xC 3. Applicable to STM32F030x4, STM32F030x6, and STM32F030x8 Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 44. Electrical sensitivities Symbol LU 6.3.13 Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 45. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. 60/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Table 45. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ 6.3.14 Injected current on BOOT0 and PF1 pins -0 NA Injected current on PA9, PB3, PB13, PF11 pins with induced leakage current on adjacent pins less than 50 µA -5 NA Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA -5 NA Injected current on all other FT and FTf pins -5 NA Injected current on PB0 and PB1 pins -5 NA Injected current on PC0 pin -0 +5 Injected current on all other TTa, TC and RST pins -5 +5 mA I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the conditions summarized in Table 21: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0). Table 46. I/O static characteristics Symbol VIL VIH Vhys Parameter Low level input voltage High level input voltage Schmitt trigger hysteresis Conditions Min Typ Max TC and TTa I/O - - 0.3 VDDIOx+0.07(1) FT and FTf I/O - - 0.475 VDDIOx–0.2(1) BOOT0 - - 0.3 VDDIOx–0.3(1) All I/Os except BOOT0 pin - - 0.3 VDDIOx TC and TTa I/O 0.445 VDDIOx+0.398(1) - - - - - - FT and FTf I/O BOOT0 0.5 VDDIOx +0.2(1) (1) 0.2 VDDIOx+0.95 All I/Os except BOOT0 pin 0.7 VDDIOx - TC and TTa I/O - 200(1) - - (1) - (1) - FT and FTf I/O BOOT0 - DS9773 Rev 4 100 300 Unit V V mV 61/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 46. I/O static characteristics (continued) Symbol Ilkg RPU Parameter Input leakage current(2) Weak pull-up equivalent resistor (4) RPD Weak pull-down equivalent resistor(4) CIO I/O pin capacitance Conditions Min Typ Max TC, FT and FTf I/O TTa in digital mode VSS ≤ VIN ≤ VDDIOx - - ± 0.1 TTa in digital mode VDDIOx ≤ VIN ≤ VDDA - - 1 TTa in analog mode VSS ≤ VIN ≤ VDDA - - ± 0.2 FT and FTf I/O (3) VDDIOx ≤ VIN ≤ 5 V - - 10 VIN = VSS 25 40 55 kΩ VIN = VDDIOx 25 40 55 kΩ - 5 - pF - Unit µA 1. Data based on design simulation only. Not tested in production. 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility. 3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled. 4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 19 for standard I/Os, and in Figure 20 for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production. 62/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Figure 19. TC and TTa I/O input characteristics 3 2.5 TESTED RANGE TTL standard requirement ent) 2 ard tand Ss (CMO VIN (V) 1.5 V IHmin irem requ V DDIOx = 0.7 0.445 VIHmin = VDDIOx + 0.398 UNDEFINED INPUT RANGE 1 3 VDDIOx + VILmax = 0. 0.5 0.07 3 VDDIOx VILmax = 0. TTL standard requirement t) quiremen andard re (CMOS st TESTED RANGE 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDDIOx (V) MSv32130V4 Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics 3 2.5 TESTED RANGE TTL standard requirement ent) 2 ard tand Ss (CMO VIN (V) 1.5 V IHmin VILmax 0.5 V DDIOx = 0.7 VIHmin = 1 irem requ UNDEFINED INPUT RANGE 0.2 x+ 0.5 VDDIO = 0.475 VDDIOx - 0.2 3 VDDIOx VILmax = 0. TTL standard requirement t) quiremen andard re (CMOS st TESTED RANGE 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDDIOx (V) MSv32131V4 DS9773 Rev 4 63/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 18: Voltage characteristics). • The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 18: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified). Table 47. Output voltage characteristics(1) Symbol Parameter VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(2) Output low level voltage for an I/O pin VOH(2) Output high level voltage for an I/O pin VOL(2) Output low level voltage for an I/O pin VOH(2) Output high level voltage for an I/O pin VOLFm+(2) Output low level voltage for an FTf I/O pin in Fm+ mode Conditions Min Max |IIO| = 8 mA VDDIOx ≥ 2.7 V - 0.4 VDDIOx–0.4 - - 1.3 VDDIOx–1.3 - - 0.4 VDDIOx–0.4 - |IIO| = 20 mA VDDIOx ≥ 2.7 V - 0.4 V |IIO| = 10 mA - 0.4 V |IIO| = 20 mA VDDIOx ≥ 2.7 V |IIO| = 6 mA Unit V V V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO. 2. Data based on characterization results. Not tested in production. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 21 and Table 48, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. 64/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Table 48. I/O AC characteristics(1)(2) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions Min Max Unit - 2 MHz - 125 - 125 - 10 - 25 - 25 CL = 30 pF, VDDIOx ≥ 2.7 V - 50 CL = 50 pF, VDDIOx ≥ 2.7 V - 30 CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V - 20 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V - 12 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V - 12 - 2 - 12 - 34 10 - fmax(IO)out Maximum frequency(3) x0 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2.4 V fmax(IO)out Maximum frequency(3) 01 tf(IO)out Output fall time tr(IO)out Output rise time fmax(IO)out Maximum 11 tf(IO)out tr(IO)out Fm+ configuration (4) - CL = 50 pF, VDDIOx ≥ 2.4 V frequency(3) Output fall time Output rise time fmax(IO)out Maximum frequency(3) CL = 50 pF, VDDIOx ≥ 2.4 V tf(IO)out Output fall time tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller - ns MHz ns MHz ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design, not tested in production. 3. The maximum frequency is defined in Figure 21. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360 for a detailed description of Fm+ I/O configuration. DS9773 Rev 4 65/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Figure 21. I/O AC characteristics definition 10% 90% 50% 50% 10% 90% t f(IO)out t r(IO)out T Maximum frequency is achieved if (t r + t f ) ≤ 2 T and if the duty cycle is (45-55%) 3 when loaded by CL (see the table I/O AC characteristics definition) MS32132V3 6.3.15 NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 49. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1) VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV V RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ VF(NRST) NRST input filtered pulse - - - 100(1) ns 2.7 < VDD < 3.6 300(3) - - 2.4 < VDD < 3.6 500(3) - - VNF(NRST) NRST input not filtered pulse 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 3. Data based on design simulation only. Not tested in production. 66/93 DS9773 Rev 4 ns STM32F030x4/x6/x8/xC Electrical characteristics Figure 22. Recommended NRST pin protection External reset circuit(1) VDD RPU NRST(2) Internal reset Filter 0.1 μF(3) MS19878V4 1. The external capacitor protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. 6.3.16 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 50 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 21: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 50. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC ON - 2.4 - 3.6 V VDD = VDDA = 3.3 V - 0.9 - mA IDDA (ADC) Current consumption of the ADC(1) fADC ADC clock frequency - 0.6 - 14 MHz fS(2) Sampling rate - 0.05 - 1 MHz fADC = 14 MHz - - 823 kHz - - - 17 1/fADC fTRIG(2) External trigger frequency VAIN Conversion voltage range - 0 - VDDA V RAIN(2) External input impedance See Equation 1 and Table 51 for details - - 50 kΩ RADC(2) Sampling switch resistance - - - 1 kΩ CADC(2) Internal sample and hold capacitor - - - 8 pF DS9773 Rev 4 67/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 50. ADC characteristics (continued) Symbol Parameter tCAL(2)(3) Conditions Calibration time tlatr(2) JitterADC tS(2) ADC_DR register write latency 5.9 µs - 83 1/fADC 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle tCONV(2) fADC = fPCLK/2 = 14 MHz 0.196 µs fADC = fPCLK/2 5.5 1/fPCLK fADC = fPCLK/4 = 12 MHz 0.219 µs fADC = fPCLK/4 10.5 1/fPCLK fADC = fHSI14 = 14 MHz 0.188 - 0.259 µs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 µs - 1.5 - 239.5 1/fADC Sampling time Total conversion time (including sampling time) Unit - ADC jitter on trigger conversion Stabilization time Max 1.5 ADC cycles + 2 fPCLK cycles Trigger conversion latency tSTAB(2) Typ fADC = 14 MHz ADC clock = HSI14 WLATENCY(2)(4) Min fADC = 14 MHz, 12-bit resolution 12-bit resolution 14 1 - 1/fADC 18 14 to 252 (tS for sampling +12.5 for successive approximation) µs 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA on IDD should be taken into account. 2. Guaranteed by design, not tested in production. 3. Specified value includes only ADC timing. It does not include the latency of the register access. 4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time. Equation 1: RAIN max formula TS - – R ADC R AIN < --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). 68/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Table 51. RAIN max for fADC = 14 MHz Ts (cycles) tS (µs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 52. ADC accuracy(1)(2)(3) Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 2.7 V to 3.6 V TA = −40 to 85 °C Typ Max(4) ±3.3 ±4 ±1.9 ±2.8 ±2.8 ±3 ±0.7 ±1.3 ±1.2 ±1.7 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. DS9773 Rev 4 69/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Figure 23. ADC accuracy characteristics VSSA EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4095 4094 4093 ET = total unajusted error: maximum deviation between the actual and ideal transfer curves. EO = offset error: maximum deviation between the first actual transition and the first ideal one. EG = gain error: deviation between the last ideal transition and the last actual one. ED = differential linearity error: maximum deviation between actual steps and the ideal ones. EL = integral linearity error: maximum deviation between any actual transition and the end point correlation line. (2) ET (3) 7 (1) 6 5 EO EL 4 3 ED 2 1 LSB IDEAL 1 0 1 2 3 4 5 6 4093 4094 4095 4096 7 VDDA MS19880V2 Figure 24. Typical connection diagram using the ADC V DDA Sample and hold ADC con ver ter VT R AIN (1) VAIN R ADC AINx C par asitic VT IL ±1 μA 12-bit con ver ter CADC MS33900V1 1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 13: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 70/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC 6.3.17 Electrical characteristics Temperature sensor characteristics Table 53. TS characteristics Symbol Parameter TL(1) Avg_Slope Min Typ Max Unit - ±1 ±2 °C 4.0 4.3 4.6 mV/°C 1.34 1.43 1.52 V VSENSE linearity with temperature (1) V30 Average slope Voltage at 30 °C (± 5 °C) (2) tSTART(1) ADC_IN16 buffer startup time - - 10 µs tS_temp(1) ADC sampling time when reading the temperature 4 - - µs 1. Guaranteed by design, not tested in production. 2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values. 6.3.18 Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 54. TIMx characteristics Symbol tres(TIM) fEXT Parameter Timer resolution Timer external clock frequency on CH1 to CH4 16-bit timer maximum period tMAX_COUNT 32-bit timer maximum period Conditions Min Typ Max Unit - - 1 - tTIMxCLK fTIMxCLK = 48 MHz - 20.8 - ns - - fTIMxCLK/2 - MHz fTIMxCLK = 48 MHz - 24 - MHz - - 216 - tTIMxCLK fTIMxCLK = 48 MHz - 1365 - µs - - 232 - tTIMxCLK fTIMxCLK = 48 MHz - 89.48 - s DS9773 Rev 4 71/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Table 55. IWDG min/max timeout period at 40 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 56. WWDG min/max timeout value at 48 MHz (PCLK) 6.3.19 Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 Unit ms Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: 72/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Table 57. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered SPI characteristics Unless otherwise specified, the parameters given in Table 58 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 21: General operating conditions. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics. Table 58. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Max Master mode - 18 Slave mode - 18 - 6 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 15 pF tsu(NSS) NSS setup time Slave mode 4Tpclk - th(NSS) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk tdis(SO)(3) Data output disable time Slave mode 0 18 tv(SO) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - Slave mode 25 75 th(SO) th(MO) DuCy(SCK) Data output hold time SPI slave input clock duty cycle Unit MHz ns ns % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z DS9773 Rev 4 73/93 75 Electrical characteristics STM32F030x4/x6/x8/xC Figure 25. SPI timing diagram - slave mode and CPHA = 0 Figure 26. SPI timing diagram - slave mode and CPHA = 1 NSS input SCK input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) th(SO) tv(SO) ta(SO) MISO OUTPUT MSB OUT BIT6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) tsu(SI) MOSI INPUT th(NSS) tc(SCK) MSB IN BIT 1 IN LSB IN ai14135b 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. 74/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Electrical characteristics Figure 27. SPI timing diagram - master mode High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MSB IN tr(SCK) tf(SCK) BIT6 IN LSB IN th(MI) MOSI OUTPUT MSB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. DS9773 Rev 4 75/93 75 Package information 7 STM32F030x4/x6/x8/xC Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 LQFP64 package information LQFP64 is 64-pin, 10 x 10 mm low-profile quad flat package. Figure 28. LQFP64 outline 0.25 mm GAUGE PLANE c A1 A A2 SEATING PLANE C A1 ccc C D D1 D3 K L L1 33 48 32 49 64 PIN 1 IDENTIFICATION E E1 E3 b 17 16 1 e 5W_ME_V3 1. Drawing is not to scale. Table 59. LQFP64 mechanical data inches(1) millimeters Symbol 76/93 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 DS9773 Rev 4 STM32F030x4/x6/x8/xC Package information Table 59. LQFP64 mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 29. LQFP64 recommended footprint 48 33 0.3 0.5 49 32 12.7 10.3 10.3 17 64 1.2 16 1 7.8 12.7 ai14909c 1. Dimensions are expressed in millimeters. DS9773 Rev 4 77/93 89 Package information STM32F030x4/x6/x8/xC Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 30. LQFP64 marking example (package top view) Revision code R Product identification (1) STM32F030 RCT6 Date code Y WW Pin 1 identifier MSv36475V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 78/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC LQFP48 package information LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package Figure 31. LQFP48 outline SEATING PLANE C c A1 A A2 0.25 mm GAUGE PLANE ccc C K D A1 L D1 L1 D3 36 25 37 24 48 E E1 b E3 7.2 Package information 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2 1. Drawing is not to scale. Table 60. LQFP48 mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 DS9773 Rev 4 79/93 89 Package information STM32F030x4/x6/x8/xC Table 60. LQFP48 mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 32. LQFP48 recommended footprint 0.50 1.20 37 9.70 0.30 25 36 24 0.20 7.30 5.80 7.30 48 13 12 1 1.20 5.80 9.70 ai14911d 1. Dimensions are expressed in millimeters. 80/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 33. LQFP48 marking example (package top view) Product identification(1) STM32F 030CCT6 Date code Pin 1 identifier Y WW R Revision code MSv36476V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS9773 Rev 4 81/93 89 Package information 7.3 STM32F030x4/x6/x8/xC LQFP32 package information LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package Figure 34. LQFP32 outline c A2 A1 A SEATING PLANE C 0.25 mm ccc GAUGE PLANE C K D L A1 D1 L1 D3 24 17 16 32 9 PIN 1 IDENTIFICATION 1 E E1 E3 b 25 8 e 5V_ME_V2 1. Drawing is not to scale. Table 61. LQFP32 mechanical data inches(1) millimeters Symbol 82/93 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 DS9773 Rev 4 STM32F030x4/x6/x8/xC Package information Table 61. LQFP32 mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 35. LQFP32 recommended footprint 0.80 1.20 24 17 25 16 0.50 0.30 7.30 6.10 9.70 7.30 32 9 8 1 1.20 6.10 9.70 5V_FP_V2 1. Dimensions are expressed in millimeters. DS9773 Rev 4 83/93 89 Package information STM32F030x4/x6/x8/xC Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 36. LQFP32 marking example (package top view) Product identification (1) STM32F 030K6T6 Date code Pin 1 identification Y WW R Revision code MSv36477V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 84/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC 7.4 Package information TSSOP20 package information TSSOP20 is a 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch package. Figure 37. TSSOP20 outline D 20 11 c E1 E 1 SEATING PLANE C 0.25 mm GAUGE PLANE 10 PIN 1 IDENTIFICATION k aaa C A1 A A2 b L L1 e YA_ME_V3 1. Drawing is not to scale. Table 62. TSSOP20 mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.200 - - 0.0472 A1 0.050 - 0.150 0.0020 - 0.0059 A2 0.800 1.000 1.050 0.0315 0.0394 0.0413 b 0.190 - 0.300 0.0075 - 0.0118 c 0.090 - 0.200 0.0035 - 0.0079 D 6.400 6.500 6.600 0.2520 0.2559 0.2598 E 6.200 6.400 6.600 0.2441 0.2520 0.2598 E1 4.300 4.400 4.500 0.1693 0.1732 0.1772 e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - DS9773 Rev 4 85/93 89 Package information STM32F030x4/x6/x8/xC Table 62. TSSOP20 mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. k 0° - 8° 0° - 8° aaa - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. Figure 38. TSSOP20 footprint 0.25 6.25 20 11 1.35 0.25 7.10 4.40 1.35 1 10 0.40 1. Dimensions are expressed in millimeters. 86/93 DS9773 Rev 4 0.65 YA_FP_V1 STM32F030x4/x6/x8/xC Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 39. TSSOP20 marking example (package top view) Device identification (1) 32F030F4P6 Date code Pin 1 identification Y WW R Revision code MSv36478V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS9773 Rev 4 87/93 89 Package information 7.5 STM32F030x4/x6/x8/xC Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 21: General operating conditions. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ ((VDD - VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 63. Package thermal characteristics Symbol ΘJ 7.5.1 Parameter Value Thermal resistance junction-ambient LQFP64 - 10 mm x 10 mm 44 Thermal resistance junction-ambient LQFP48 - 7 mm x 7 mm 55 Thermal resistance junction-ambient LQFP32 - 7 mm x 7 mm 56 Thermal resistance junction-ambient TSSOP20 - 6.5 mm x 6.4 mm 76 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 88/93 DS9773 Rev 4 STM32F030x4/x6/x8/xC 8 Ordering information Ordering information + Example: STM32 F 030 C 6 T 6 x Device family STM32 = Arm-based 32-bit microcontroller Product type F = General-purpose Sub-family 030 = STM32F030xx Pin count F = 20 pins K = 32 pins C = 48 pins R = 64 pins Code size 4 = 16 Kbyte of Flash memory 6 = 32 Kbyte of Flash memory 8 = 64 Kbyte of Flash memory C = 256 Kbyte of Flash memory Package P = TSSOP T = LQFP Temperature range 6 = –40 to 85 °C Option xxx = programmed parts TR = tape and reel For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. DS9773 Rev 4 89/93 89 Revision history 9 STM32F030x4/x6/x8/xC Revision history Table 64. Document revision history Date Revision 04-Jul-2013 1 Initial release. 2 Extended the applicability to STM32F030xC. Updated: – Features and Table Device summary, – Section: Description, – Table: STM32F030x4/6/8/C family device features and peripheral counts, – Figure: Block diagram, – Section: Memories, – Section: General-purpose inputs/outputs (GPIOs), – Section: Universal synchronous/asynchronous receiver transmitters (USART), – Table: STM32F030x4/6/8/C pin definitions, – Table: Alternate functions selected through GPIOA_AFR registers for port A, – Table: Alternate functions selected through GPIOB_AFR registers for port B – Table: Alternate functions selected through GPIOC_AFR registers for port C – Table: Alternate functions selected through GPIOD_AFR registers for port D, – Table: Alternate functions selected through GPIOF_AFR registers for port F, – Section: EMC characteristics, – Section: Part numbering. Added device marking examples: – Figure: LQFP64 marking example (package top view), – Figure: LQFP48 marking example (package top view), – Figure: LQFP32 marking example (package top view), – Figure: TSSOP20 marking example (package top view). 3 Updated: – Table 2: STM32F030x4/x6/x8/xC family device features and peripheral counts – Figure 1: Block diagram and figure footnotes – Figure 2: Clock tree of STM32F030x4/x6/x8 and figure footnotes – Section 3.11: Timers and watchdogs - number of timers, counts of complementary outputs in the table and the footnotes 15-Jan-2015 23-Jan-2017 90/93 Changes DS9773 Rev 4 STM32F030x4/x6/x8/xC Revision history Table 64. Document revision history (continued) Date 23-Jan-2017 Revision Changes 3 – Section 3.11.2: General-purpose timers (TIM3, TIM14..17) - number of timers – Table 5: Timer feature comparison - footnotes added – Table 7: STM32F030x4/x6/x8/xC I2C implementation FM+ and footnote – Figure 4 through Figure 7 - darker highlight on pins – Table 11: STM32F030x4/6/8/C pin definitions corrections – Table 12: Alternate functions selected through GPIOA_AFR registers for port A - note order – Table 14 through Table 16 - corrected footnotes – Figure 10: STM32F030x4/x6/x8/xC memory map footnote – Figure 13: Power supply scheme – Table 24: Embedded internal reference voltage: added tSTART, changed VREFINT and tS_vrefint values and notes – Table 25: Typical and maximum current consumption from VDD supply at VDD = 3.6 V footnotes – Table 26: Typical and maximum current consumption from the VDDA supply values for STM32F030xC and footnotes – Table 34: LSE oscillator characteristics (fLSE = 32.768 kHz) LSEDRV[1:0] values removed (see ref. manual) – Table 50: ADC characteristics - tSTAB defined relative to clock frequency; notes 3. and 4. added – Section 3.14: Universal synchronous/asynchronous receiver/transmitter (USART) - introduction and Table 8: STM32F0x0 USART implementation – Figure 10: STM32F030x4/x6/x8/xC memory map footnote – Table 43: ESD absolute maximum ratings - C4 or C3 class, depending on device variant; CDM values updated to match the referenced standard. (CDM standard was updated in the previous release, without duly modifying the related values.) – Table 53: TS characteristics: removed the min. value for tSTART and parameter name change – Figure 19 and Figure 20 improved – Section 7: Package information name and structure change – Section 8: Ordering information renamed from Part numbering DS9773 Rev 4 91/93 92 Revision history STM32F030x4/x6/x8/xC Table 64. Document revision history (continued) Date 15-Jan-2019 92/93 Revision Changes 4 – Figure 2 split in two figures – TIM15 complementary outputs count in Table 5 – Periodic wakeup unit feature in Section 3.12: Realtime clock (RTC) – Driver Enable for USART 6 in Table 8 – Number of supported auto baud rate detection modes corrected in Table 8 – AF4 and AF5 for PB10 in Table 13 – Notes in Table 14, Table 15, and Table 16 – Extension of Table 16 – VFESD class in Table 41 DS9773 Rev 4 STM32F030x4/x6/x8/xC IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS9773 Rev 4 93/93 93
STM32F030K6T6
物料型号:STM32F030K6T6 器件简介:STM32F030K6T6 是一款基于 ARM Cortex-M0 内核的 32 位微控制器,由意法半导体(ST)生产。

引脚分配:该芯片有 32 个引脚,包括电源引脚、地引脚、复位引脚、时钟引脚、I/O 引脚等。

参数特性:工作电压范围为 2.05V 至 3.6V,工作频率最高可达 48MHz,内置 16KB 闪存和 4KB RAM。

功能详解:该芯片具有多种功能,包括 GPIO、定时器、ADC、通信接口(如 USART、SPI、I2C)等。

应用信息:适用于需要低功耗和高性能的嵌入式系统,如家用电器、工业控制、医疗设备等。

封装信息:该芯片采用 LQFP48 封装。