STM32F030x4 STM32F030x6
STM32F030x8 STM32F030xC
Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers,
ADC, communication interfaces, 2.4-3.6 V operation
Datasheet - production data
Features
• Core: Arm® 32-bit Cortex®-M0 CPU, frequency
up to 48 MHz
• Memories
– 16 to 256 Kbytes of Flash memory
– 4 to 32 Kbytes of SRAM with HW parity
• CRC calculation unit
• Reset and power management
– Digital & I/Os supply: VDD = 2.4 V to 3.6 V
– Analog supply: VDDA = VDD to 3.6 V
– Power-on/Power down reset (POR/PDR)
– Low power modes: Sleep, Stop, Standby
• Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x6 PLL option
– Internal 40 kHz RC oscillator
• Up to 55 fast I/Os
– All mappable on external interrupt vectors
– Up to 55 I/Os with 5V tolerant capability
LQFP64 10 × 10 mm
LQFP48 7 × 7 mm
LQFP32 7 × 7 mm
TSSOP20 6.4 × 4.4 mm
• Communication interfaces
– Up to two I2C interfaces
–
Fast Mode Plus (1 Mbit/s) support on
one or two I/Fs, with 20 mA current sink
–
SMBus/PMBus support (on single I/F)
– Up to six USARTs supporting master
synchronous SPI and modem control; one
with auto baud rate detection
– Up to two SPIs (18 Mbit/s) with 4 to 16
programmable bit frames
• Serial wire debug (SWD)
• All packages ECOPACK®2
Table 1. Device summary
Reference
Part number
• 5-channel DMA controller
STM32F030x4
STM32F030F4
• One 12-bit, 1.0 µs ADC (up to 16 channels)
– Conversion range: 0 to 3.6 V
– Separate analog supply: 2.4 V to 3.6 V
STM32F030x6
STM32F030C6, STM32F030K6
STM32F030x8
STM32F030C8, STM32F030R8
• Calendar RTC with alarm and periodic wakeup
from Stop/Standby
STM32F030xC STM32F030CC, STM32F030RC
• 11 timers
– One 16-bit advanced-control timer for
six-channel PWM output
– Up to seven 16-bit timers, with up to four
IC/OC, OCN, usable for IR control
decoding
– Independent and system watchdog timers
– SysTick timer
January 2019
This is information on a product in full production.
DS9773 Rev 4
1/93
www.st.com
Contents
STM32F030x4/x6/x8/xC
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
Arm® Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . . 12
3.2
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13
3.5
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10
3.11
2/93
3.5.1
3.9.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.2
General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.5
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13
Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14
Universal synchronous/asynchronous receiver/transmitter (USART) . . . 22
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Contents
3.15
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 45
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 45
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.16
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.17
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.18
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.19
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
DS9773 Rev 4
3/93
4
Contents
7
STM32F030x4/x6/x8/xC
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.1
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F030x4/x6/x8/xC family device features and peripheral counts . . . . . . . . . . . . . . . 10
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F030x4/x6/x8/xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F0x0 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
STM32F030x4/x6/x8/xC SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32F030x4/6/8/C pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 34
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 35
Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 37
Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 37
Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 37
STM32F030x4/x6/x8/xC peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . 39
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 47
Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 48
Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 49
Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
DS9773 Rev 4
5/93
6
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
6/93
STM32F030x4/x6/x8/xC
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
TSSOP20 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
DS9773 Rev 4
STM32F030x4/x6/x8/xC
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Clock tree of STM32F030x4/x6/x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Clock tree of STM32F030xC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 25
LQFP64 64-pin package pinout (top view), for STM32F030RC devices . . . . . . . . . . . . . . 25
LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 26
LQFP48 48-pin package pinout (top view), for STM32F030CC devices . . . . . . . . . . . . . . 26
LQFP32 32-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM32F030x4/x6/x8/xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
LQFP48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
LQFP32 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
TSSOP20 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
TSSOP20 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DS9773 Rev 4
7/93
7
Introduction
1
STM32F030x4/x6/x8/xC
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F030x4/x6/x8/xC microcontrollers.
This document should be read in conjunction with the STM32F0x0xx reference manual
(RM0360). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Arm®(a) Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
8/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
2
Description
Description
The STM32F030x4/x6/x8/xC microcontrollers incorporate the high-performance Arm®
Cortex®-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded
memories (up to 256 Kbytes of Flash memory and up to 32 Kbytes of SRAM), and an
extensive range of enhanced peripherals and I/Os. All devices offer standard
communication interfaces (up to two I2Cs, up to two SPIs and up to six USARTs), one 12-bit
ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer.
The STM32F030x4/x6/x8/xC microcontrollers operate in the -40 to +85 °C temperature
range from a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows
the design of low-power applications.
The STM32F030x4/x6/x8/xC microcontrollers include devices in four different packages
ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of
peripherals are included. The description below provides an overview of the complete range
of STM32F030x4/x6/x8/xC peripherals proposed.
These features make the STM32F030x4/x6/x8/xC microcontrollers suitable for a wide range
of applications such as application control and user interfaces, handheld equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
DS9773 Rev 4
9/93
24
Description
STM32F030x4/x6/x8/xC
Table 2. STM32F030x4/x6/x8/xC family device features and peripheral counts
Peripheral
Flash (Kbytes)
STM32
F030F4
STM32
F030K6
STM32
F030C6
STM32
F030C8
STM32
F030CC
STM32
F030R8
STM32
F030RC
16
32
32
64
256
64
256
8
32
8
32
1 (16-bit)(2)
2 (16-bit)
SRAM (Kbytes)
4
Advanced
control
Timers
1 (16-bit)
General
purpose
4 (16-bit)(1)
Basic
GPIOs
1 (16-bit)(2)
-
SPI
Comm.
I2C
interfaces
USART
12-bit ADC
(number of channels)
5 (16-bit)
(3)
1
2
1(4)
2
1(5)
6
2(6)
6
1
(10 ext.
+2 int.)
1
(10 ext.
+2 int.)
1
(10 ext.
+2 int.)
1
(10 ext.
+2 int.)
1
(16 ext.
+2 int.)
1
(16 ext.
+2 int.)
15
26
39
39
37
55
51
48 MHz
Operating voltage
2.4 to 3.6 V
Ambient operating temperature: -40°C to 85°C
Junction temperature: -40°C to 105°C
Operating temperature
TSSOP20
LQFP32
LQFP48
1. TIM15 is not present.
2. TIM7 is not present.
3. SPI2 is not present.
4. I2C2 is not present.
5. USART2 to USART6 are not present.
6. USART3 to USART6 are not present
10/93
2(6)
1
(9 ext.
+2 int.)
Max. CPU frequency
Packages
2 (16-bit)
DS9773 Rev 4
LQFP64
STM32F030x4/x6/x8/xC
Description
Figure 1. Block diagram
POWER
Serial Wire
Debug
Obl
Flash
memory
interface
SWCLK
SWDIO
as AF
SRAM
controller
NVIC
Bus matrix
CORTEX-M0 CPU
fMAX = 48 MHz
VDD18
Flash GPL
16/32/64/256 KB
32-bit
@ VDDA
HSI
PLLCLK
LSI
GP DMA
5 channels
VDD = 2.4 to 3.6 V
VSS
@ VDD
SRAM
4/8/32 KB
HSI14
VOLT.REG
3.3 V to 1.8 V
POR
Reset
Int
SUPPLY
SUPERVISION
POR/PDR
NRST
VDDA
VSSA
VDD
RC 14 MHz
RC 8 MHz
@ VDDA
@ VDD
PLL
RC 40 kHz
XTAL OSC
4-32 MHz
OSC_IN
OSC_OUT
Ind. Window WDG
GPIO port A
PB[15:0]
GPIO port B
PC[15:0]
GPIO port C
PD2
GPIO port D
PF[1:0]
PF[7:4]
GPIO port F
RESET & CLOCK
CONTROL
AHB decoder
PA[15:0]
System and peripheral
clocks
Power
Controller
XTAL32 kHz
RTC
OSC32_IN
OSC32_OUT
TAMPER-RTC
(ALARM OUT)
RTC interface
CRC
PWM TIMER 1
4 channels
3 compl. channels
BRK, ETR input as AF
AHB
APB
55 AF
EXT. IT WKUP
TIMER 3
4 ch., ETR as AF
TIMER 14
1 channel as AF
TIMER 15
2 channels
1 compl, BRK as AF
TIMER 16
1 channel
1 compl, BRK as AF
TIMER 17
1 channel
1 compl, BRK as AF
USART1
RX, TX,CTS, RTS,
CK, as AF
USART2
RX, TX,CTS, RTS,
CK, as AF
USART3
RX, TX,CTS, RTS,
CK, as AF
USART4
RX, TX,CTS, RTS,
CK, as AF
USART5
RX, TX,CTS, RTS,
CK, as AF
USART6
RX, TX,CTS, RTS,
CK, as AF
Window WDG
MOSI, MISO,
SCK, NSS,
as AF
MOSI, MISO,
SCK, NSS,
as AF
IR_OUT as AF
SPI1
DBGMCU
SPI2
SYSCFG IF
Temp.
sensor
16x
AD input
12-bit ADC
IF
VDDA
VSSA
TIMER 6
I2C1
SCL, SDA, SMBA
(20 mA FM+), as AF
TIMER 7
I2C2
SCL, SDA, as AF
@ VDDA
Power domain of analog blocks :
VDD
VDDA
MSv32137V3
1. TIMER6, TIMER15, SPI, USART2 and I2C2 are available on STM32F030x8/C devices only.
2. USART3, USART4, USART5, USART6 and TIMER7 are available on STM32F030xC devices only.
DS9773 Rev 4
11/93
24
Functional overview
STM32F030x4/x6/x8/xC
3
Functional overview
3.1
Arm® Cortex®-M0 core with embedded Flash and SRAM
The Arm® Cortex®-M0 processor is the latest generation of Arm processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The Arm® Cortex®-M0 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an Arm core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F0xx family has an embedded Arm core and is therefore compatible with all Arm
tools and software.
Figure 3 shows the general block diagram of the device family.
3.2
Memories
The device has the following features:
•
4 to 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0
wait states and featuring embedded parity checking with exception generation for failcritical applications.
•
The non-volatile memory is divided into two arrays:
–
16 to 256 Kbytes of embedded Flash memory for programs and data
–
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
3.3
–
Level 0: no readout protection
–
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
–
Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and boot
in RAM selection disabled
Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
•
Boot from User Flash
•
Boot from System Memory
•
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART on pins PA14/PA15 or PA9/PA10.
12/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
3.4
Functional overview
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.5
Power management
3.5.1
Power supply schemes
•
VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
•
VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs
and PLL. The VDDA voltage level must be always greater or equal to the VDD voltage
level and must be provided first.
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.
3.5.2
Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
3.5.3
•
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
•
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
Voltage regulator
The regulator has two operating modes and it is always enabled after reset.
•
Main (MR) is used in normal operating mode (Run).
•
Low power (LPR) can be used in Stop mode where the power demand is reduced.
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high
impedance and the kernel circuitry is powered down, inducing zero consumption (but the
contents of the registers and SRAM are lost).
DS9773 Rev 4
13/93
24
Functional overview
3.5.4
STM32F030x4/x6/x8/xC
Low-power modes
The STM32F030x4/x6/x8/xC microcontrollers support three low-power modes to achieve
the best compromise between low power consumption, short startup time and available
wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines and RTC.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the RTC
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
14/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Functional overview
Figure 2. Clock tree of STM32F030x4/x6/x8
FLITFCLK
I2C1SW
8 MHz
HSI RC
HSI
HSI
HSI
Flash memory
programming
interface
I2C1
SYSCLK
/2
HCLK
PLLSRC
SW
PLLMUL
PREDIV
OSC_IN
4-32 MHz
HSE OSC
/1,/2,/4,
/8,/16
HPRE
PPRE
PCLK
x1, x2
CKMODE
/2, /4
32.768 kHz
LSE OSC
RTCCLK
PCLK
LSE
USART1SW
SYSCLK
HSI
LSE
USART1
LSI
RTC
PLLNODIV
MCOPRE
Main clock
output
MCO
TIM1,3,6(2)
14,15(2),16,17
ADC
(14 MHz max)
14 MHz
HSI14 RC
RTCSEL
40 kHz
LSI RC
APB
peripherals
PPRE
HSE
/32
OSC32_OUT
/1,/2,…
…/512
CSS
LSE
OSC32_IN
Cortex
system timer
/8
/1,/2,..
../16
OSC_OUT
SYSCLK
HSI
PLLCLK
HSE
PLL
x2,x3,..
...x16
AHB, core, memory, DMA,
Cortex FCLK free-run clock
IWDG
(1)
(1)
/1 ,/2 PLLCLK
HSI
/1,/2,/4,..
../128
HSE
LSI(1)
HSI14
SYSCLK
LSE(1)
MCO
Legend
black
white
clock tree element
clock tree control element
clock line
control line
MSv32138V3
1. Applies to STM32F030x4/x6 devices.
2. Applies to STM32F030x8 devices.
DS9773 Rev 4
15/93
24
Functional overview
STM32F030x4/x6/x8/xC
Figure 3. Clock tree of STM32F030xC
FLITFCLK
I2C1SW
8 MHz
HSI RC
HSI
HSI
HSI
HCLK
SW
PLLMUL
/1,/2,..
../16
OSC_IN
4-32 MHz
HSE OSC
/1,/2,…
…/512
/1,/2,/4,
/8,/16
HPRE
PPRE
x1, x2
HSE
CKMODE
/2, /4
32.768 kHz
LSE OSC
RTCCLK
PCLK
LSE
USART1
LSI
RTC
PLLNODIV
MCOPRE
Main clock
output
MCO
TIM1,3,6,7
14,15,16,17
USART1SW
SYSCLK
HSI
LSE
RTCSEL
40 kHz
LSI RC
APB
peripherals
ADC
(14 MHz max)
14 MHz
HSI14 RC
/32
OSC32_OUT
PCLK
PPRE
LSE
OSC32_IN
Cortex
system timer
/8
HSI
PLLCLK
HSE
PLL
x2,x3,..
...x16
AHB, core, memory, DMA,
Cortex FCLK free-run clock
SYSCLK
CSS
OSC_OUT
I2C1
SYSCLK
PREDIV
PLLSRC
Flash memory
programming
interface
/1,/2
IWDG
PLLCLK
HSI
/1,/2,/4,..
../128
HSE
LSI
HSI14
SYSCLK
LSE
Legend
black
white
MCO
clock tree element
clock tree control element
clock line
control line
MSv47988V1
3.7
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
16/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
3.8
Functional overview
Direct memory access controller (DMA)
The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory
and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except
TIM14) and ADC.
3.9
Interrupts and events
3.9.1
Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M0) and 4
priority levels.
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Closely coupled NVIC core interface
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail-chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 32 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 55
GPIOs can be connected to the 16 external interrupt lines.
DS9773 Rev 4
17/93
24
Functional overview
3.10
STM32F030x4/x6/x8/xC
Analog to digital converter (ADC)
The 12-bit analog to digital converter has up to 16 external and two internal (temperature
sensor, voltage reference measurement) channels and performs conversions in single-shot
or scan modes. In scan mode, automatic conversion is performed on a selected group of
analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 3. Temperature sensor calibration values
Calibration value name
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
TS_CAL1
3.10.2
Description
Memory address
0x1FFF F7B8 - 0x1FFF F7B9
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage
of VREFINT is individually measured for each part by ST during production test and stored in
the system memory area. It is accessible in read-only mode.
Table 4. Internal voltage reference calibration values
Calibration value name
VREFINT_CAL
18/93
Description
Memory address
Raw data acquired at a
temperature of 30 °C (± 5 °C), 0x1FFF F7BA - 0x1FFF F7BB
VDDA= 3.3 V (± 10 mV)
DS9773 Rev 4
STM32F030x4/x6/x8/xC
3.11
Functional overview
Timers and watchdogs
The STM32F030x4/x6/x8/xC devices include up to five general-purpose timers, two basic
timers and one advanced control timer.
Table 5 compares the features of the different timers.
Table 5. Timer feature comparison
Timer
type
Timer
Counter
resolution
Counter
type
Prescaler
factor
Advanced
control
TIM1
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
3
TIM3
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
-
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
-
TIM15(1)
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
TIM16,
TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
TIM6,(1)
TIM7(2)
16-bit
Up
Any integer
between 1
and 65536
Yes
0
-
General
purpose
Basic
DMA request Capture/compare Complementary
generation
channels
outputs
1. Available on STM32F030x8 and STM32F030xC devices only.
2. Available on STM32F030xC devices only
3.11.1
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes)
•
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
DS9773 Rev 4
19/93
24
Functional overview
3.11.2
STM32F030x4/x6/x8/xC
General-purpose timers (TIM3, TIM14..17)
There are four or five synchronizable general-purpose timers embedded in the
STM32F030x4/x6/x8/xC devices (see Table 5 for differences). Each general-purpose timer
can be used to generate PWM outputs, or as simple time base.
TIM3
STM32F030x4/x6/x8/xC devices feature one synchronizable 4-channel general-purpose
timer. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It
features four independent channels each for input capture/output compare, PWM or
one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the
largest packages.
The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the
Timer Link feature for synchronization or event chaining.
TIM3 has an independent DMA request generation.
This timer is capable of handling quadrature (incremental) encoder signals and the digital
outputs from 1 to 3 hall-effect sensors.
The counter can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate
withTIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.11.3
Basic timers TIM6 and TIM7
These timers can be used as a generic 16-bit time base.
3.11.4
Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop and Standby modes. It
20/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Functional overview
can be used either as a watchdog to reset the device when a problem occurs, or as a free
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.11.5
System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.11.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
3.12
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source (HCLK or HCLK/8)
Real-time clock (RTC)
The RTC is an independent BCD timer/counter. Its main features are the following:
•
Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
•
Programmable alarm with wake up from Stop and Standby mode capability.
•
Periodic wakeup unit with programmable resolution and period (on STM32F030xC
only).
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock.
•
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Tow anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
The RTC clock sources can be:
•
A 32.768 kHz external crystal
•
A resonator or oscillator
•
The internal low-power RC oscillator (typical frequency of 40 kHz)
•
The high-speed external clock divided by 32
DS9773 Rev 4
21/93
24
Functional overview
3.13
STM32F030x4/x6/x8/xC
Inter-integrated circuit interfaces (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also
supports Fast Mode Plus (up to 1 Mbit/s), with 20 mA output drive.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). They also include programmable analog and
digital noise filters.
Table 6. Comparison of I2C analog and digital filters
-
Analog filter
Digital filter
Pulse width of
suppressed spikes
≥ 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
-
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the differences between I2C1 and I2C2.
Table 7. STM32F030x4/x6/x8/xC I2C implementation(1)
I2C1
I2C2(2)
7-bit addressing mode
X
X
10-bit addressing mode
X
X
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus (up to 1 Mbit/s), with 20mA output drive I/Os
X
-
Independent clock
X
-
SMBus
X
-
Wakeup from STOP
-
-
I2C features
1. X = supported.
2. Only available on STM32F030x8/C devices.
3.14
Universal synchronous/asynchronous receiver/transmitter
(USART)
The device embeds up to six universal synchronous/asynchronous receivers/transmitters
that communicate at speeds of up to 6 Mbit/s.
22/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Functional overview
Table 8 gives an overview of features as implemented on the available USART interfaces.
All USART interfaces can be served by the DMA controller.
Table 8. STM32F0x0 USART implementation(1)
STM32F030x4
STM32F030x6
STM32F030x8
USART modes/
features
STM32F030xC
USART1
USART1
USART2
USART1
USART2
USART3
USART4
USART5
USART6
Hardware flow control
for modem
X
X
X
X
X
-
-
Continuous
communication using
DMA
X
X
X
X
X
X
X
Multiprocessor
communication
X
X
X
X
X
X
X
Synchronous mode
X
X
X
X
X
X
-
Smartcard mode
-
-
-
-
-
-
-
Single-wire Half-duplex
communication
X
X
X
X
X
X
X
IrDA SIR ENDEC block
-
-
-
-
-
-
-
LIN mode
-
-
-
-
-
-
-
Dual clock domain and
wakeup from Stop mode
-
-
-
-
-
-
-
Receiver timeout
interrupt
X
X
-
X
-
-
-
Modbus communication
-
-
-
-
-
-
-
Auto baud rate detection
(supported modes)
2
2
-
2
-
-
-
Driver Enable
X
X
X
X
X
X
-
USART data length
8 and 9 bits
7, 8 and 9 bits
1. X = supported.
3.15
Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
SPI1 and SPI2 are identical and implement the set of features shown in the following table.
DS9773 Rev 4
23/93
24
Functional overview
STM32F030x4/x6/x8/xC
Table 9. STM32F030x4/x6/x8/xC SPI implementation(1)
SPI1
SPI2(2)
Hardware CRC calculation
X
X
Rx/Tx FIFO
X
X
NSS pulse mode
X
X
TI mode
X
X
SPI features
1. X = supported.
2. Not available on STM32F030x4/6.
3.16
Serial wire debug port (SW-DP)
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to
the MCU.
24/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Pinouts and pin descriptions
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PA3
PF4
PF5
VDD
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0
PA1
PA2
BOOT0
VDD
VSS
PB9
PB8
Figure 4. LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices
IO pins replaced by supply pairs for STM32F030RC devices.
MSv36496V2
PD2
PC12
PC11
PC10
PA15
PA14
PB7
PB6
PB5
PB4
PB3
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VDD
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0
PA1
PA2
BOOT0
VDD
VSS
PB9
PB8
Figure 5. LQFP64 64-pin package pinout (top view), for STM32F030RC devices
PA3
VSS
VDD
4
Pinouts and pin descriptions
Additional supply pins required for STM32F030RC devices.
DS9773 Rev 4
MSv36483V2
25/93
33
Pinouts and pin descriptions
STM32F030x4/x6/x8/xC
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
Figure 6. LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
3
4
5
6
LQFP48
7
8
9
10
11
12
13 14 15 16 17 18 19 20 21 22 23 24
35
34
33
32
31
30
29
28
27
26
25
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VDD
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST
VSSA
VDDA
PA0
PA1
PA2
IO pins replaced by supply pairs for STM32F030CC devices.
MSv36497V2
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
Figure 7. LQFP48 48-pin package pinout (top view), for STM32F030CC devices
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
3
4
5
6
LQFP48
7
8
9
10
11
12
13 14 15 16 17 18 19 20 21 22 23 24
35
34
33
32
31
30
29
28
27
26
25
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VDD
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST
VSSA
VDDA
PA0
PA1
PA2
Additional supply pins required for STM32F030CC devices.
MSv36484V2
26/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Pinouts and pin descriptions
PB3
PA15
PB4
PB6
PB5
PB7
VSS
BOOT0
Figure 8. LQFP32 32-pin package pinout (top view)
32 31 30 29 28 27 26 25
VDD
PF0-OSC_IN
1
PF1-OSC_OUT
3
NRST
VDDA
PA0
PA1
4
PA2
24
23
22
2
21
20
19
18
17
LQFP32
5
6
7
8
PA14
PA13
PA12
PA11
PA10
PA9
PA8
VDD
PB1
VSS
PB0
PA5
PA6
PA7
PA3
PA4
9 10 11 12 13 14 15 16
MS32144V1
Figure 9. TSSOP20 20-pin package pinout (top view)
1
20
PA14
PF0-OSC_IN
2
19
PA13
PF1-OSC_OUT
3
18
PA10
NRST
4
17
PA 9
VDDA
5
16
VDD
PA0
6
15
VSS
PA1
7
14
PB1
PA2
8
13
PA7
PA3
9
12
PA6
PA4
10
11
PA5
BOOT0
MSv36473V1
DS9773 Rev 4
27/93
33
Pinouts and pin descriptions
STM32F030x4/x6/x8/xC
Table 10. Legend/abbreviations used in the pinout table
Name
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin name
Pin type
I/O structure
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3 V I/O
B
RST
Dedicated BOOT0 pin
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset.
Notes
Pin
functions
Definition
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
Table 11. STM32F030x4/6/8/C pin definitions
Pin number
LQFP32
TSSOP20
1
-
-
VDD
I/O structure
LQFP48
1
Pin name
(function after
reset)
Pin type
LQFP64
Pin functions
Notes
S
-
-
-
RTC_TAMP1,
RTC_TS,
RTC_OUT,
WKUP2
Alternate functions
Additional functions
Complementary power supply
2
2
-
-
PC13
I/O
TC
(1)
3
3
-
-
PC14-OSC32_IN
(PC14)
I/O
TC
(1)
-
OSC32_IN
4
4
-
-
PC15-OSC32_OUT
I/O
(PC15)
TC
(1)
-
OSC32_OUT
5
5
2
2
PF0-OSC_IN
(PF0)
I/O
FT
-
I2C1_SDA(5)
OSC_IN
6
6
3
3
PF1-OSC_OUT
(PF1)
I/O
FT
-
I2C1_SCL(5)
OSC_OUT
7
7
4
4
NRST
28/93
I/O RST
-
DS9773 Rev 4
Device reset input / internal reset output
(active low)
STM32F030x4/x6/x8/xC
Pinouts and pin descriptions
Table 11. STM32F030x4/6/8/C pin definitions (continued)
LQFP48
LQFP32
TSSOP20
Pin type
I/O structure
Pin functions
LQFP64
Pin number
Notes
8
-
-
-
PC0
I/O
TTa
-
EVENTOUT,
USART6_TX(5)
ADC_IN10
9
-
-
-
PC1
I/O
TTa
-
EVENTOUT,
USART6_RX(5)
ADC_IN11
10
-
-
-
PC2
I/O
TTa
-
SPI2_MISO(5),
EVENTOUT
ADC_IN12
11
-
-
-
PC3
I/O
TTa
-
SPI2_MOSI(5),
EVENTOUT
ADC_IN13
12
8
-
-
VSSA
S
-
-
Analog ground
13
9
5
5
VDDA
S
-
-
Analog power supply
14
10
6
6
Pin name
(function after
reset)
PA0
I/O
TTa
Alternate functions
Additional functions
-
USART1_CTS(2),
USART2_CTS(3)(5),
USART4_TX(5)
ADC_IN0,
RTC_TAMP2,
WKUP1
ADC_IN1
15
11
7
7
PA1
I/O
TTa
-
USART1_RTS(2),
USART2_RTS(3)(5),
EVENTOUT,
USART4_RX(5)
16
12
8
8
PA2
I/O
TTa
-
USART1_TX(2),
USART2_TX(3)(5),
TIM15_CH1(3)(5)
ADC_IN2, WKUP4(5)
ADC_IN3
-
17
13
9
9
PA3
I/O
TTa
-
USART1_RX(2),
USART2_RX(3)(5),
TIM15_CH2(3)(5)
18(4)
-
-
-
PF4
I/O
FT
(4)
EVENTOUT
18(5)
-
-
-
VSS
S
-
(5)
19(4)
-
-
-
PF5
I/O
FT
(4)
19(5)
-
-
-
VDD
-
-
(5)
Ground
EVENTOUT
Complementary power supply
20
14
10
10
PA4
I/O
TTa
-
SPI1_NSS,
USART1_CK(2)
USART2_CK(3)(5),
TIM14_CH1,
USART6_TX(5)
21
15
11
11
PA5
I/O
TTa
-
SPI1_SCK,
USART6_RX(5)
DS9773 Rev 4
-
ADC_IN4
ADC_IN5
29/93
33
Pinouts and pin descriptions
STM32F030x4/x6/x8/xC
Table 11. STM32F030x4/6/8/C pin definitions (continued)
22
16
12
12
PA6
Pin type
Pin name
(function after
reset)
I/O structure
Pin functions
TSSOP20
LQFP32
LQFP48
LQFP64
Pin number
I/O
TTa
Notes
Alternate functions
Additional functions
-
SPI1_MISO,
TIM3_CH1,
TIM1_BKIN,
TIM16_CH1,
EVENTOUT
USART3_CTS(5)
ADC_IN6
ADC_IN7
23
17
13
13
PA7
I/O
TTa
-
SPI1_MOSI,
TIM3_CH2,
TIM14_CH1,
TIM1_CH1N,
TIM17_CH1,
EVENTOUT
24
-
-
-
PC4
I/O
TTa
-
EVENTOUT,
USART3_TX(5)
ADC_IN14
25
-
-
-
PC5
I/O
TTa
-
USART3_RX(5)
ADC_IN15, WKUP5(5)
-
TIM3_CH3,
TIM1_CH2N,
EVENTOUT,
USART3_CK(5)
ADC_IN8
ADC_IN9
-
26
18
14
-
PB0
I/O
TTa
27
19
15
14
PB1
I/O
TTa
-
TIM3_CH4,
TIM14_CH1,
TIM1_CH3N,
USART3_RTS(5)
28
20
-
-
PB2
I/O
FT
(6)
(5),
29
21
-
-
PB10
I/O
FT
-
SPI2_SCK
I2C1_SCL(2),
I2C2_SCL(3)(5),
USART3_TX(5)
-
I2C1_SDA(2),
I2C2_SDA(3)(5),
EVENTOUT,
USART3_RX(5)
-
30
22
-
-
PB11
I/O
FT
-
31
23
16
-
VSS
S
-
-
Ground
32
24
17
16
VDD
S
-
-
Digital power supply
33
30/93
25
-
-
PB12
I/O
FT
-
DS9773 Rev 4
SPI1_NSS(2),
SPI2_NSS(3)(5),
TIM1_BKIN,
EVENTOUT,
USART3_CK(5)
-
STM32F030x4/x6/x8/xC
Pinouts and pin descriptions
Table 11. STM32F030x4/6/8/C pin definitions (continued)
34
35
26
27
-
-
-
-
PB13
PB14
Pin type
Pin name
(function after
reset)
I/O structure
Pin functions
TSSOP20
LQFP32
LQFP48
LQFP64
Pin number
I/O
I/O
FT
FT
Notes
Alternate functions
Additional functions
-
SPI1_SCK(2),
SPI2_SCK(3)(5),
I2C2_SCL(5),
TIM1_CH1N,
USART3_CTS(5)
-
-
SPI1_MISO(2),
SPI2_MISO(3)(5),
I2C2_SDA(5),
TIM1_CH2N,
TIM15_CH1(3)(5),
USART3_RTS(5)
-
RTC_REFIN,
WKUP7(5)
36
28
-
-
PB15
I/O
FT
-
SPI1_MOSI(2),
SPI2_MOSI(3)(5),
TIM1_CH3N,
TIM15_CH1N(3)(5),
TIM15_CH2(3)(5)
37
-
-
-
PC6
I/O
FT
-
TIM3_CH1
-
38
-
-
-
PC7
I/O
FT
-
TIM3_CH2
-
39
-
-
-
PC8
I/O
FT
-
TIM3_CH3
-
40
-
-
-
PC9
I/O
FT
-
TIM3_CH4
-
-
USART1_CK,
TIM1_CH1,
EVENTOUT,
MCO
-
-
USART1_TX,
TIM1_CH2,
TIM15_BKIN(3)(5)
I2C1_SCL(2)(5)
-
-
USART1_RX,
TIM1_CH3,
TIM17_BKIN
I2C1_SDA(2)(5)
-
-
USART1_CTS,
TIM1_CH4,
EVENTOUT,
I2C2_SCL(5)
-
-
USART1_RTS,
TIM1_ETR,
EVENTOUT,
I2C2_SDA(5)
-
41
42
43
44
45
29
30
31
32
33
18
19
20
21
22
-
17
18
-
-
PA8
PA9
PA10
PA11
PA12
I/O
I/O
I/O
I/O
I/O
FT
FT
FT
FT
FT
DS9773 Rev 4
31/93
33
Pinouts and pin descriptions
STM32F030x4/x6/x8/xC
Table 11. STM32F030x4/6/8/C pin definitions (continued)
FT
(7)
IR_OUT,
SWDIO
-
47(4) 35(4)
-
-
PF6
I/O
FT
(4)
I2C1_SCL(2),
I2C2_SCL(3)
-
47(5) 35(5)
-
-
VSS
S
-
(5)
48(4) 36(4)
-
-
PF7
I/O
FT
(4)
48(5) 36(5)
-
-
VDD
S
-
(5)
20
PA14
(SWCLK)
FT
(7)
USART1_TX(2),
USART2_TX(3)(5),
SWCLK
-
-
TSSOP20
I/O
LQFP32
PA13
(SWDIO)
LQFP48
Notes
LQFP64
I/O structure
Pin functions
Pin type
Pin number
46
34
23
19
49
37
24
Pin name
(function after
reset)
I/O
Alternate functions
Additional functions
Ground
I2C1_SDA(2),
I2C2_SDA(3)
-
Complementary power supply
50
38
25
-
PA15
I/O
FT
-
SPI1_NSS,
USART1_RX(2),
USART2_RX(3)(5),
USART4_RTS(5),
EVENTOUT
51
-
-
-
PC10
I/O
FT
-
USART3_TX(5),
USART4_TX(5)
-
52
-
-
-
PC11
I/O
FT
-
USART3_RX(5),
USART4_RX(5)
-
-
53
-
-
-
PC12
I/O
FT
-
USART3_CK(5),
USART4_CK(5),
USART5_TX(5)
54
-
-
-
PD2
I/O
FT
-
TIM3_ETR,
USART3_RTS(5),
USART5_RX(5)
-
55
39
26
-
PB3
I/O
FT
-
SPI1_SCK,
EVENTOUT,
USART5_TX(5)
-
-
SPI1_MISO,
TIM3_CH1,
EVENTOUT,
TIM17_BKIN(5),
USART5_RX(5)
-
-
SPI1_MOSI,
I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2,
USART5_CK_RTS(5)
WKUP6(5)
56
57
32/93
40
41
27
28
-
-
PB4
PB5
I/O
I/O
FT
FT
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Pinouts and pin descriptions
Table 11. STM32F030x4/6/8/C pin definitions (continued)
TSSOP20
42
29
-
PB6
I/O
I/O structure
LQFP32
58
Pin name
(function after
reset)
Pin type
LQFP48
Pin functions
LQFP64
Pin number
Notes
Alternate functions
Additional functions
FTf
-
I2C1_SCL,
USART1_TX,
TIM16_CH1N
-
I2C1_SDA,
USART1_RX,
TIM17_CH1N,
USART4_CTS(5)
-
59
43
30
-
PB7
I/O
FTf
-
60
44
31
1
BOOT0
I
B
-
61
45
-
-
PB8
I/O
FTf
(6)
I2C1_SCL,
TIM16_CH1
-
I2C1_SDA,
IR_OUT,
SPI2_NSS(5),
TIM17_CH1,
EVENTOUT
-
Boot memory selection
62
46
-
-
PB9
I/O
FTf
-
63
47
32
15
VSS
S
-
-
Ground
64
48
1
16
VDD
S
-
-
Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. This feature is available on STM32F030x6 and STM32F030x4 devices only.
3. This feature is available on STM32F030x8 devices only.
4. For STM32F030x4/6/8 devices only.
5. For STM32F030xC devices only.
6. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the
package, they are not forced to a defined level by hardware).
7. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin
and internal pull-down on SWCLK pin are activated.
DS9773 Rev 4
33/93
33
34/93
Table 12. Alternate functions selected through GPIOA_AFR registers for port A
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
-
-
USART4_TX(1)
-
-
-
-
USART4_RX(1)
TIM15_CH1N(1)
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM14_CH1
USART6_TX(1)
-
USART1_CTS(2)
PA0
-
USART2_CTS(1)(3)
USART1_RTS(2)
PA1
EVENTOUT
(1)(3)
USART2_RTS
DS9773 Rev 4
PA2
TIM15_CH1(1)(3)
PA3
TIM15_CH2(1)(3)
USART1_TX(2)
USART2_TX(1)(3)
USART1_RX(2)
USART2_RX(1)(3)
USART1_CK(2)
SPI1_NSS
PA5
SPI1_SCK
-
-
-
-
USART6_RX(1)
-
PA6
SPI1_MISO
TIM3_CH1
TIM1_BKIN
-
USART3_CTS(1)
TIM16_CH1
EVENTOUT
PA7
SPI1_MOSI
TIM3_CH2
TIM1_CH1N
-
TIM14_CH1
TIM17_CH1
EVENTOUT
PA8
MCO
USART1_CK
TIM1_CH1
EVENTOUT
-
-
-
PA9
TIM15_BKIN(1)(3)
USART1_TX
TIM1_CH2
-
I2C1_SCL(1)(2)
MCO(1)
-
PA10
TIM17_BKIN
USART1_RX
TIM1_CH3
-
I2C1_SDA(1)(2)
-
-
PA11
EVENTOUT
USART1_CTS
TIM1_CH4
-
-
SCL
-
USART2_CK(1)(3)
STM32F030x4/x6/x8/xC
PA4
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
PA12
EVENTOUT
USART1_RTS
TIM1_ETR
-
-
SDA
-
PA13
SWDIO
IR_OUT
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT
USART4_RTS(1)
-
-
USART1_TX(2)
PA14
SWCLK
PA15
SPI1_NSS
USART2_TX(1)(3)
USART1_RX(2)
USART2_RX(1)(3)
1. This feature is available on STM32F030xC devices.
2. This feature is available on STM32F030x4 and STM32F030x6 devices.
DS9773 Rev 4
3. This feature is available on STM32F030x8 devices.
Table 13. Alternate functions selected through GPIOB_AFR registers for port B
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
PB0
EVENTOUT
TIM3_CH3
TIM1_CH2N
-
USART3_CK(1)
-
PB1
TIM14_CH1
TIM3_CH4
TIM1_CH3N
-
USART3_RTS(1)
-
PB2
-
-
-
-
-
-
PB3
SPI1_SCK
EVENTOUT
-
-
USART5_TX(1)
-
PB4
SPI1_MISO
TIM3_CH1
EVENTOUT
-
USART5_RX(1)
TIM17_BKIN(1)
PB5
SPI1_MOSI
TIM3_CH2
TIM16_BKIN
I2C1_SMBA
USART5_CK_RTS(1)
-
PB6
USART1_TX
I2C1_SCL
TIM16_CH1N
-
-
-
PB7
USART1_RX
I2C1_SDA
TIM17_CH1N
-
USART4_CTS(1)
-
STM32F030x4/x6/x8/xC
Table 12. Alternate functions selected through GPIOA_AFR registers for port A (continued)
35/93
36/93
Table 13. Alternate functions selected through GPIOB_AFR registers for port B (continued)
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
PB8
-
I2C1_SCL
TIM16_CH1
-
-
-
PB9
IR_OUT
I2C1_SDA
TIM17_CH1
EVENTOUT
-
SPI2_NSS(1)
-
-
USART3_TX(1)
SPI2_SCK(1)
-
-
USART3_RX(1)
-
EVENTOUT
TIM1_BKIN
-
USART3_RTS(1)
TIM15(1)
-
TIM1_CH1N
-
USART3_CTS(1)
I2C2_SCL(1)
TIM15_CH1(1)(3)
TIM1_CH2N
-
USART3_RTS(1)
I2C2_SDA(1)
TIM15_CH2(1)(3)
TIM1_CH3N
TIM15_CH1N(1)(3)
-
-
I2C1_SCL(2)
PB10
-
PB11
EVENTOUT
I2C2_SCL(1)(3)
I2C1_SDA(2)
I2C2_SDA(1)(3)
SPI1_NSS(2)
PB12
DS9773 Rev 4
SPI2_NSS(1)(3)
SPI1_SCK(2)
PB13
SPI2_SCK(1)(3)
SPI1_MISO(2)
PB14
SPI2_MISO(1)(3)
SPI1_MOSI(2)
PB15
SPI2_MOSI(1)(3)
2. This feature is available on STM32F030x4 and STM32F030x6 devices.
3. This feature is available on STM32F030x8 devices.
STM32F030x4/x6/x8/xC
1. This feature is available on STM32F030xC devices.
STM32F030x4/x6/x8/xC
Table 14. Alternate functions selected through GPIOC_AFR(1) registers for port C
Pin name
AF0(2)
AF1(1)
AF2(1)
PC0
EVENTOUT
-
USART6_TX
PC1
EVENTOUT
-
USART6_RX
PC2
EVENTOUT
SPI2_MISO
-
PC3
EVENTOUT
SPI2_MOSI
-
PC4
EVENTOUT
USART3_TX
-
PC5
-
USART3_RX
-
PC6
TIM3_CH1
-
-
PC7
TIM3_CH2
-
-
PC8
TIM3_CH3
-
-
PC9
TIM3_CH4
-
-
PC10
USART4_TX(1)
USART3_TX
-
PC11
USART4_RX(1)
USART3_RX
-
PC12
USART4_CK(1)
USART3_CK
USART5_TX
PC13
-
-
-
PC14
-
-
-
PC15
-
-
-
1. Available on STM32F030xC devices only.
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOC_AFR registers).
Table 15. Alternate functions selected through GPIOD_AFR(1) registers for port D
Pin name
AF0(2)
AF1(1)
AF2(1)
PD2
TIM3_ETR
USART3_RTS
USART5_RX
1. Available on STM32F030xC devices only.
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOD_AFR registers).
Table 16. Alternate functions selected through GPIOF_AFR(1) registers for port F
Pin name
AF0(2)
AF1(1)
PF0
-
I2C1_SDA
PF1
-
I2C1_SCL
PF4
EVENTOUT(1)
PF5
EVENTOUT(1)
PF6
I2C1_SCL(3), I2C2_SCL(4)
PF7
I2C1_SDA(3), I2C2_SDA(4)
1. Available on STM32F030xC devices only.
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOF_AFR registers).
3. Applies to STM32F030x4/x6
4. Applies to STM32F030x8
DS9773 Rev 4
37/93
37
Memory mapping
5
STM32F030x4/x6/x8/xC
Memory mapping
Figure 10. STM32F030x4/x6/x8/xC memory map
0xFFFF FFFF
0x4800 17FF
Reserved
AHB2
7
0xE010 0000
0xE000 0000
6
0x4800 0000
Cortex-M0 internal
peripherals
Reserved
Reserved
0xC000 0000
0x4002 43FF
AHB1
5
Reserved
0x4002 0000
Reserved
0xA000 0000
0x4001 8000
4
Reserved
0x1FFF FFFF
0x1FFF FC00
0x1FFF F800
0x8000 0000
APB
Reserved
Option Bytes
0x4001 0000
Reserved
System memory
3
0x4000 8000
Reserved
0x1FFF xx00(1)
APB
0x6000 0000
0x4000 0000
Reserved
Reserved
2
0x4000 0000
Peripherals
0x0804 0000
Reserved
1
Flash memory
0x2000 0000
SRAM
0x0800 0000
Reserved
0
CODE
0x0004 0000
Flash, system
memory or SRAM,
depending on BOOT
configuration
0x0000 0000
0x0000 0000
MSv36474V2
1. The start address of the system memory is 0x1FFF EC00 for STM32F030x4, STM32F030x6 and STM32F030x8 devices,
and 0x1FFF D800 for STM32F030xC devices.
38/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Memory mapping
Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses
Bus
-
AHB2
-
AHB1
-
APB
Boundary address
Size
Peripheral
0x4800 1800 - 0x5FFF FFFF
~384 MB
Reserved
0x4800 1400 - 0x4800 17FF
1 KB
GPIOF
0x4800 1000 - 0x4800 13FF
1 KB
Reserved
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~128 MB
Reserved
0x4002 3400 - 0x4002 43FF
4 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH Interface
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0400 - 0x4002 0FFF
3 KB
Reserved
0x4002 0000 - 0x4002 03FF
1 KB
DMA
0x4001 8000 - 0x4001 FFFF
32 KB
Reserved
0x4001 5C00 - 0x4001 7FFF
9 KB
Reserved
0x4001 5800 - 0x4001 5BFF
1 KB
DBGMCU
0x4001 4C00 - 0x4001 57FF
3 KB
Reserved
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15(1)
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2800 - 0x4001 2BFF
1 KB
Reserved
0x4001 2400 - 0x4001 27FF
1 KB
ADC
0x4001 1800 - 0x4001 23FF
3 KB
Reserved
0x4001 1400 - 0x4001 17FF
1 KB
USART6(2)
0x4001 0800 - 0x4001 13FF
3 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0000 - 0x4001 03FF
1 KB
SYSCFG
DS9773 Rev 4
39/93
40
Memory mapping
STM32F030x4/x6/x8/xC
Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses (continued)
Bus
-
APB
Boundary address
Size
Peripheral
0x4000 8000 - 0x4000 FFFF
32 KB
Reserved
0x4000 7400 - 0x4000 7FFF
3 KB
Reserved
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 5C00 - 0x4000 6FFF
5 KB
Reserved
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2(1)
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 5000 - 0x4000 53FF
1 KB
USART5(2)
0x4000 4C00 - 0x4000 4FFF
1 KB
USART4(2)
0x4000 4800 - 0x4000 4BFF
1 KB
USART3(2)
0x4000 4400 - 0x4000 47FF
1 KB
USART2(1)
0x4000 3C00 - 0x4000 43FF
2 KB
Reserved
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2(1)
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 2400 - 0x4000 27FF
1 KB
Reserved
0x4000 2000 - 0x4000 23FF
1 KB
TIM14
0x4000 1800 - 0x4000 1FFF
2 KB
Reserved
0x4000 1400 - 0x4000 17FF
1 KB
TIM7(2)
0x4000 1000 - 0x4000 13FF
1 KB
TIM6(1)
0x4000 0800 - 0x4000 0FFF
2 KB
Reserved
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
Reserved
1. This feature is available on STM32F030x8 and STM32F030xC devices only. For STM32F030x6 and
STM32F060x4, the area is Reserved.
2. This feature is available on STM32F030xC devices only. This area is reserved for STM32F030x4/6/8
devices.
40/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions
Figure 12. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
DS9773 Rev 4
MS19211V1
41/93
75
Electrical characteristics
6.1.6
STM32F030x4/x6/x8/xC
Power supply scheme
Figure 13. Power supply scheme
LSE, RTC,
Wake-up logic
Power switch
VDD
VCORE
2 x VDD
Regulator
OUT
2 x 100 nF
GPIOs
IN
+1 x 4.7 μF
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, Digital
& Memories)
2 x VSS
VDDA
VDDA
10 nF
+1 μF
VREF+
VREF-
ADC
Analog:
(RCs, PLL, …)
VSSA
MSv39025V1
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
6.1.7
Current consumption measurement
Figure 14. Current consumption measurement scheme
IDD
VDD
IDDA
VDDA
MS32142V2
42/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
6.2
Electrical characteristics
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,
Table 19: Current characteristics and Table 20: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 18. Voltage characteristics(1)
Symbol
Ratings
Min
Max
Unit
VDD–VSS
External main supply voltage
-0.3
4.0
V
VDDA–VSS
External analog supply voltage
-0.3
4.0
V
VDD–VDDA
Allowed voltage difference for VDD > VDDA
-
0.4
VIN(2)
Input voltage on FT and FTf pins
VSS −0.3
Input voltage on TTa pins
VSS −0.3
BOOT0
0
VDDIOx + 4.0
V
(3)
V
4.0
VDDIOx + 4.0
V
(3)
V
VSS − 0.3
4.0
V
Variations between different VDD power pins
-
50
mV
|VSSx − VSS|
Variations between all the different ground
pins
-
50
mV
VESD(HBM)
Electrostatic discharge voltage
(human body model)
Input voltage on any other pin
|ΔVDDx|
see Section 6.3.12: Electrical
sensitivity characteristics
-
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum
allowed injected current values.
3. VDDIOx is internally connected with VDD pin.
DS9773 Rev 4
43/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 19. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD power lines (source)(1)
120
ΣIVSS
(1)
-120
Total current out of sum of all VSS ground lines (sink)
IVDD(PIN)
Maximum current into each VDD power pin (source)
(1)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
-100
Output current sunk by any I/O and control pin
IIO(PIN)
25
Output current source by any I/O and control pin
-25
(2)
ΣIIO(PIN)
IINJ(PIN)(3)
Total output current sunk by sum of all I/Os and control pins
80
Total output current sourced by sum of all I/Os and control pins(2)
-80
Injected current on FT and FTf pins
-5/+0(4)
Injected current on TC and RST pin
±5
Injected current on TTa pins
ΣIINJ(PIN)
Unit
(5)
mA
±5
Total injected current (sum of all I/O and control pins)(6)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 18: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 52: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 20. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Value
Unit
–65 to +150
°C
150
°C
Maximum junction temperature
6.3
Operating conditions
6.3.1
General operating conditions
Table 21. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
48
fPCLK
Internal APB clock frequency
-
0
48
VDD
Standard operating voltage
-
2.4
3.6
44/93
DS9773 Rev 4
Unit
MHz
V
STM32F030x4/x6/x8/xC
Electrical characteristics
Table 21. General operating conditions (continued)
Symbol
VDDA
VIN
PD
Parameter
Analog operating voltage
I/O input voltage
Power dissipation at TA = 85 °C
for suffix 6 (1)
Conditions
Min
Max
Unit
Must have a potential equal
to or higher than VDD
2.4
3.6
V
TC and RST I/O
-0.3
VDDIOx+0.3
TTa I/O
-0.3
VDDA+0.3(2)
FT and FTf I/O
-0.3
5.5(2)
BOOT0
0
5.5
LQFP64
-
455
LQFP48
-
364
LQFP32
-
357
TSSOP20
-
263
TA
Ambient temperature for the
suffix 6 version
Maximum power dissipation
-40
85
Low power dissipation(2)
-40
105
TJ
Junction temperature range
Suffix 6 version
-40
105
V
mW
°C
°C
1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5:
Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
Table 22. Operating conditions at power-up / power-down
Symbol
Parameter
VDD rise time rate
tVDD
-
VDD fall time rate
VDDA rise time rate
tVDDA
6.3.3
Conditions
-
VDDA fall time rate
Min
Max
0
∞
20
∞
0
∞
20
∞
Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 23. Embedded reset and power control block characteristics
Symbol
VPOR/PDR(1)
Parameter
Power on/power down
reset threshold
Conditions
Min
Typ
Max
Unit
Falling edge(2)
1.80
1.88
1.96(3)
V
1.84(3)
1.92
2.00
V
Rising edge
DS9773 Rev 4
45/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 23. Embedded reset and power control block characteristics (continued)
Symbol
VPDRhyst
tRSTTEMPO(4)
Parameter
Conditions
Min
Typ
Max
Unit
PDR hysteresis
-
-
40
-
mV
Reset temporization
-
1.50
2.50
4.50
ms
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Data based on characterization results, not tested in production.
4. Guaranteed by design, not tested in production.
6.3.4
Embedded reference voltage
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 24. Embedded internal reference voltage
Symbol
Parameter
VREFINT
Internal reference
voltage
Conditions
Min
Typ
Max
Unit
-40°C < TA < +85°C
1.2
1.23
1.25
V
tSTART
ADC_IN17 buffer startup
time
-
-
-
10(1)
µs
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
-
4 (1)
-
-
µs
ΔVREFINT
Internal reference
voltage spread over the
temperature range
VDDA = 3 V
-
-
10(1)
mV
TCoeff
Temperature coefficient
-
-100(1)
-
100(1) ppm/°C
1. Guaranteed by design, not tested in production.
6.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
46/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
•
The Flash memory access time is adjusted to the fHCLK frequency:
–
0 wait state and Prefetch OFF from 0 to 24 MHz
–
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 25 to Table 27 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V(1)
Symbol
All peripherals enabled
IDD
Parameter
Conditions
fHCLK
Supply current in
Run mode, code
executing from Flash
HSI or HSE clock, PLL on
Supply current in
Run mode, code
executing from RAM
HSI or HSE clock, PLL on
HSI or HSE clock, PLL off
IDD
Unit
Typ
85 °C
HSI or HSE clock, PLL off
IDD
Max @ TA(2)
Supply current in
Sleep mode, code
executing from Flash
or RAM
HSI or HSE clock, PLL on
HSI or HSE clock, PLL off
48 MHz
22.0
22.8
48 MHz
26.8
30.2
24 MHz
12.2
13.2
24 MHz
14.1
16.2
8 MHz
4.4
5.2
8 MHz
4.9
5.6
48 MHz
22.2
23.2
48 MHz
26.1
29.3
24 MHz
11.2
12.2
24 MHz
13.3
15.7
8 MHz
4.0
4.5
8 MHz
4.6
5.2
48 MHz
14
15.3
48 MHz
17.0
19.0
24 MHz
7.3
7.8
24 MHz
8.7
10.1
8 MHz
2.6
2.9
8 MHz
3.0
3.5
mA
mA
mA
1. The gray shading is used to distinguish the values for STM32F030xC devices.
2. Data based on characterization results, not tested in production unless otherwise specified.
DS9773 Rev 4
47/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 26. Typical and maximum current consumption from the VDDA supply(1)
VDDA = 3.6 V
Symbol
Parameter
Conditions(2)
fHCLK
Typ
Max @ TA(3)
Unit
85 °C
HSE bypass, PLL on
IDDA
Supply current in
Run or Sleep mode,
code executing
from Flash memory
or RAM
HSE bypass, PLL off
HSI clock, PLL on
HSI clock, PLL off
48 MHz
175
215
48 MHz
160
192
8 MHz
3.9
4.9
8 MHz
3.7
4.6
1 MHz
3.9
4.1
1 MHz
3.3
4.4
48 MHz
244
275
48 MHz
235
275
8 MHz
85
105
8 MHz
77
92
µA
1. The gray shading is used to distinguish the values for STM32F030xC devices.
2. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent of the
frequency.
3. Data based on characterization results, not tested in production.
48/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Table 27. Typical and maximum consumption in Stop and Standby modes
Symbol
IDD
Typ @VDD
(VDD = VDDA)
Max(1)
3.6 V
TA = 85 °C
Regulator in run mode, all oscillators OFF
19
48
Regulator in low-power mode, all oscillators OFF
5
32
2
-
Regulator in run or lowpower mode, all
oscillators OFF
2.9
3.5
LSI ON and IWDG ON
3.3
-
LSI OFF and IWDG OFF
2.8
3.5
Regulator in run or lowpower mode, all
oscillators OFF
1.7
-
LSI ON and IWDG ON
2.3
-
LSI OFF and IWDG OFF
1.4
-
Parameter
Conditions
Supply current in
Stop mode
Supply current in
LSI ON and IWDG ON
Standby mode
Supply current in
Stop mode
VDDA monitoring ON
Supply current in
Standby mode
IDDA
Supply current in
Stop mode
VDDA monitoring OFF
Supply current in
Standby mode
Unit
µA
1. Data based on characterization results, not tested in production unless otherwise specified.
Typical current consumption
The MCU is placed under the following conditions:
•
VDD = VDDA = 3.3 V
•
All I/O pins are in analog input configuration
•
The Flash access time is adjusted to fHCLK frequency:
–
0 wait state and Prefetch OFF from 0 to 24 MHz
–
1 wait state and Prefetch ON above 24 MHz
•
When the peripherals are enabled, fPCLK = fHCLK
•
PLL is used for frequencies greater than 8 MHz
•
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
DS9773 Rev 4
49/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 28. Typical current consumption in Run mode, code with data processing
running from Flash
Typ
Symbol
IDD
IDDA
Parameter
Conditions
Supply current in Run
Running from
mode from VDD
HSE crystal
supply
clock 8 MHz,
Supply current in Run code executing
mode from VDDA
from Flash
supply
fHCLK
Peripherals Peripherals
enabled
disabled
48 MHz
23.3
11.5
8 MHz
4.5
3.0
48 MHz
158
158
8 MHz
2.43
2.43
Unit
mA
µA
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 46: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously, the I/Os
used by an application also contribute to the current consumption. When an I/O pin
switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to
charge/discharge the capacitive load (internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
50/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Table 29. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDDIOx = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
ISW
I/O current
consumption
VDDIOx = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
VDDIOx = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
I/O toggling
frequency (fSW)
Typ
4 MHz
0.18
8 MHz
0.37
16 MHz
0.76
24 MHz
1.39
48 MHz
2.188
4 MHz
0.49
8 MHz
0.94
16 MHz
2.38
24 MHz
3.99
4 MHz
0.81
8 MHz
1.7
16 MHz
3.67
Unit
mA
1. CS = 7 pF (estimated value).
6.3.6
Wakeup time from low-power mode
The wakeup times given in Table 30 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 21: General operating conditions.
DS9773 Rev 4
51/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 30. Low-power mode wakeup timings
Symbol
Parameter
Typ @VDD =
VDDA
Conditions
Max Unit
= 3.3 V
tWUSTOP
Wakeup from Stop mode
Regulator in run mode
2.8
5
-
51
-
-
4 SYSCLK
cycles
-
tWUSTANDBY Wakeup from Standby mode
tWUSLEEP
6.3.7
Wakeup from Sleep mode
µs
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 15: High-speed external clock
source AC timing diagram.
Table 31. High-speed external user clock characteristics
Parameter(1)
Symbol
Min
Typ
Max
Unit
1
8
32
MHz
fHSE_ext
User external clock source frequency
VHSEH
OSC_IN input pin high level voltage
0.7 VDDIOx
-
VDDIOx
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3 VDDIOx
15
-
-
tw(HSEH)
tw(HSEL)
OSC_IN high or low time
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
V
ns
-
-
20
1. Guaranteed by design, not tested in production.
Figure 15. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tw(HSEL)
t
THSE
MS19214V2
52/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 16.
Table 32. Low-speed external user clock characteristics
Parameter(1)
Symbol
Min
Typ
Max
Unit
-
32.768
1000
kHz
fLSE_ext User external clock source frequency
VLSEH
OSC32_IN input pin high level voltage
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3 VDDIOx
450
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
tr(LSE)
tf(LSE)
V
ns
OSC32_IN rise or fall time
-
-
50
1. Guaranteed by design, not tested in production.
Figure 16. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
t
tf(LSE)
tw(LSEL)
TLSE
MS19215V2
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 33. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 33. HSE oscillator characteristics
Symbol
fOSC_IN
RF
Conditions(1)
Min(2)
Typ
Max(2)
Unit
Oscillator frequency
-
4
8
32
MHz
Feedback resistor
-
-
200
-
kΩ
Parameter
DS9773 Rev 4
53/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 33. HSE oscillator characteristics
Symbol
Conditions(1)
Min(2)
Typ
Max(2)
-
-
8.5
VDD = 3.3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.5
-
VDD = 3.3 V,
Rm = 30 Ω,
CL = 20 pF@32 MHz
-
1.5
-
Startup
10
-
-
mA/V
VDD is stabilized
-
2
-
ms
Parameter
During startup
IDD
gm
tSU(HSE)(4)
HSE current consumption
Oscillator transconductance
Startup time
(3)
Unit
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 17. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
54/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
obtained with typical external components specified in Table 34. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol
LSE current
consumption
IDD
Oscillator
transconductance
gm
tSU(LSE)
(3)
Conditions(1)
Min(2)
Typ
Max(2)
low drive capability
-
0.5
0.9
medium-low drive capability
-
-
1
medium-high drive capability
-
-
1.3
high drive capability
-
-
1.6
low drive capability
5
-
-
medium-low drive capability
8
-
-
medium-high drive capability
15
-
-
high drive capability
25
-
-
VDDIOx is stabilized
-
2
-
Parameter
Startup time
Unit
µA
µA/V
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3.
Note:
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly
with the crystal manufacturer
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 18. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DS9773 Rev 4
55/93
75
Electrical characteristics
6.3.8
STM32F030x4/x6/x8/xC
Internal clock source characteristics
The parameters given in Table 35 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI) RC oscillator
Table 35. HSI oscillator characteristics(1)
Symbol
fHSI
TRIM
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
-
-
8
-
MHz
HSI user trimming step
-
-
-
1(2)
%
-
45(2)
-
55(2)
%
-
±5
-
%
-
±1(3)
-
%
DuCyHSI
Duty cycle
ACCHSI
Accuracy of the HSI oscillator
(factory calibrated)
tSU(HSI)
HSI oscillator startup time
-
1(2)
-
2(2)
µs
IDDA(HSI)
HSI oscillator power
consumption
-
-
80
-
µA
TA = -40 to 85°C
TA = 25°C
1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. With user calibration.
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Table 36. HSI14 oscillator characteristics(1)
Symbol
fHSI14
TRIM
Parameter
Conditions
Min
Typ
-
-
14
Frequency
HSI14 user-trimming step
DuCy(HSI14) Duty cycle
Max
Unit
-
MHz
(2)
-
-
-
1
%
-
45(2)
-
55(2)
%
ACCHSI14
Accuracy of the HSI14
oscillator (factory calibrated)
TA = –40 to 85 °C
-
±5
-
%
tsu(HSI14)
HSI14 oscillator startup time
-
1(2)
-
2(2)
µs
HSI14 oscillator power
consumption
-
-
100
-
µA
IDDA(HSI14)
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 37. LSI oscillator characteristics(1)
Symbol
fLSI
56/93
Parameter
Frequency
DS9773 Rev 4
Min
Typ
Max
Unit
30
40
50
kHz
STM32F030x4/x6/x8/xC
Electrical characteristics
Table 37. LSI oscillator characteristics(1)
Symbol
Parameter
tsu(LSI)(2)
IDDA(LSI)(2)
Min
Typ
Max
Unit
LSI oscillator startup time
-
-
85
µs
LSI oscillator power consumption
-
0.75
-
µA
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
6.3.9
PLL characteristics
The parameters given in Table 38 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 38. PLL characteristics
Value
Symbol
fPLL_IN
fPLL_OUT
tLOCK
Parameter
Unit
Min
Typ
Max
PLL input clock(1)
1(2)
8.0
24(2)
MHz
PLL input clock duty cycle
40(2)
-
60(2)
%
PLL multiplier output clock
16(2)
-
48
MHz
-
200(2)
µs
-
300(2)
ps
PLL lock time
JitterPLL
-
Cycle-to-cycle jitter
-
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.
6.3.10
Memory characteristics
Flash memory
The characteristics are given at TA = -40 to 85 °C unless otherwise specified.
Table 39. Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA = -40 to +85 °C
-
53.5
-
µs
Page erase time(2)
TA = -40 to +85 °C
-
30
-
ms
tME
Mass erase time
TA = -40 to +85 °C
-
30
-
ms
IDD
Supply current
Write mode
-
-
10
mA
Erase mode
-
-
12
mA
2.4
-
3.6
V
Symbol
tprog
tERASE
Vprog
Parameter
Programming voltage
Conditions
-
1. Guaranteed by design, not tested in production.
2. Page size is 1KB for STM32F030x4/6/8 devices and 2KB for STM32F030xC devices
DS9773 Rev 4
57/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 40. Flash memory endurance and data retention
Symbol
NEND
tRET
Min(1)
Unit
TA = -40 to +85 °C
1
kcycle
(2)
20
Years
Parameter
Endurance
Data retention
Conditions
1 kcycle
at TA = 85 °C
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
6.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Table 41. EMS characteristics
Symbol
Parameter
Conditions
VFESD
VDD = 3.3V, LQFP48, TA = +25 °C,
Voltage limits to be applied on any I/O pin
fHCLK = 48 MHz,
to induce a functional disturbance
conforming to IEC 61000-4-2
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3V, LQFP48, TA = +25°C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-4
Level/
Class
3B(1)
2B(2)
4B
1. Applies to STM32F030xC.
2. Applies to STM32F030x4/x6/x8.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
58/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 42. EMI characteristics
Symbol Parameter
SEMI
6.3.12
Conditions
Monitored
frequency band
0.1 to 30 MHz
VDD = 3.6 V, TA = 25 °C,
30 to 130 MHz
LQFP100 package
Peak level
compliant with
130 MHz to 1 GHz
IEC 61967-2
EMI Level
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
-3
23
dBµV
17
4
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
DS9773 Rev 4
59/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 43. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Packages
Class
Maximum
value(1)
Unit
VESD(HBM)
Electrostatic discharge voltage TA = +25 °C, conforming
(human body model)
to JESD22-A114
All
2
2000
V
VESD(CDM)
Electrostatic discharge voltage TA = +25 °C, conforming
(charge device model)
to ANSI/ESD STM5.3.1
All
C4(2)
C3(3)
500(2)
250(3)
V
1. Data based on characterization results, not tested in production.
2. Applicable to STM32F030xC
3. Applicable to STM32F030x4, STM32F030x6, and STM32F030x8
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 44. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 45.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
60/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Table 45. I/O current injection susceptibility
Functional
susceptibility
Symbol
Description
Unit
Negative Positive
injection injection
IINJ
6.3.14
Injected current on BOOT0 and PF1 pins
-0
NA
Injected current on PA9, PB3, PB13, PF11 pins with induced
leakage current on adjacent pins less than 50 µA
-5
NA
Injected current on PA11 and PA12 pins with induced
leakage current on adjacent pins less than -1 mA
-5
NA
Injected current on all other FT and FTf pins
-5
NA
Injected current on PB0 and PB1 pins
-5
NA
Injected current on PC0 pin
-0
+5
Injected current on all other TTa, TC and RST pins
-5
+5
mA
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Table 46. I/O static characteristics
Symbol
VIL
VIH
Vhys
Parameter
Low level input
voltage
High level input
voltage
Schmitt trigger
hysteresis
Conditions
Min
Typ
Max
TC and TTa I/O
-
-
0.3 VDDIOx+0.07(1)
FT and FTf I/O
-
-
0.475 VDDIOx–0.2(1)
BOOT0
-
-
0.3 VDDIOx–0.3(1)
All I/Os except
BOOT0 pin
-
-
0.3 VDDIOx
TC and TTa I/O
0.445 VDDIOx+0.398(1)
-
-
-
-
-
-
FT and FTf I/O
BOOT0
0.5 VDDIOx
+0.2(1)
(1)
0.2 VDDIOx+0.95
All I/Os except
BOOT0 pin
0.7 VDDIOx
-
TC and TTa I/O
-
200(1)
-
-
(1)
-
(1)
-
FT and FTf I/O
BOOT0
-
DS9773 Rev 4
100
300
Unit
V
V
mV
61/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 46. I/O static characteristics (continued)
Symbol
Ilkg
RPU
Parameter
Input leakage
current(2)
Weak pull-up
equivalent resistor
(4)
RPD
Weak pull-down
equivalent
resistor(4)
CIO
I/O pin capacitance
Conditions
Min
Typ
Max
TC, FT and FTf I/O
TTa in digital mode
VSS ≤ VIN ≤ VDDIOx
-
-
± 0.1
TTa in digital mode
VDDIOx ≤ VIN ≤ VDDA
-
-
1
TTa in analog mode
VSS ≤ VIN ≤ VDDA
-
-
± 0.2
FT and FTf I/O (3)
VDDIOx ≤ VIN ≤ 5 V
-
-
10
VIN = VSS
25
40
55
kΩ
VIN = VDDIOx
25
40
55
kΩ
-
5
-
pF
-
Unit
µA
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45:
I/O current injection susceptibility.
3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 19 for standard I/Os, and in Figure 20 for
5 V tolerant I/Os. The following curves are design simulation results, not tested in
production.
62/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Figure 19. TC and TTa I/O input characteristics
3
2.5
TESTED RANGE
TTL standard requirement
ent)
2
ard
tand
Ss
(CMO
VIN (V)
1.5
V IHmin
irem
requ
V DDIOx
= 0.7
0.445
VIHmin =
VDDIOx +
0.398
UNDEFINED INPUT RANGE
1
3 VDDIOx +
VILmax = 0.
0.5
0.07
3 VDDIOx
VILmax = 0.
TTL standard requirement
t)
quiremen
andard re
(CMOS st
TESTED RANGE
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VDDIOx (V)
MSv32130V4
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics
3
2.5
TESTED RANGE
TTL standard requirement
ent)
2
ard
tand
Ss
(CMO
VIN (V)
1.5
V IHmin
VILmax
0.5
V DDIOx
= 0.7
VIHmin =
1
irem
requ
UNDEFINED INPUT RANGE
0.2
x+
0.5 VDDIO
= 0.475
VDDIOx -
0.2
3 VDDIOx
VILmax = 0.
TTL standard requirement
t)
quiremen
andard re
(CMOS st
TESTED RANGE
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VDDIOx (V)
MSv32131V4
DS9773 Rev 4
63/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 18: Voltage characteristics).
•
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 18: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 47. Output voltage characteristics(1)
Symbol
Parameter
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOLFm+(2)
Output low level voltage for an FTf I/O pin in
Fm+ mode
Conditions
Min
Max
|IIO| = 8 mA
VDDIOx ≥ 2.7 V
-
0.4
VDDIOx–0.4
-
-
1.3
VDDIOx–1.3
-
-
0.4
VDDIOx–0.4
-
|IIO| = 20 mA
VDDIOx ≥ 2.7 V
-
0.4
V
|IIO| = 10 mA
-
0.4
V
|IIO| = 20 mA
VDDIOx ≥ 2.7 V
|IIO| = 6 mA
Unit
V
V
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. Data based on characterization results. Not tested in production.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 21 and
Table 48, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
64/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Table 48. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
Conditions
Min
Max
Unit
-
2
MHz
-
125
-
125
-
10
-
25
-
25
CL = 30 pF, VDDIOx ≥ 2.7 V
-
50
CL = 50 pF, VDDIOx ≥ 2.7 V
-
30
CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V
-
20
CL = 30 pF, VDDIOx ≥ 2.7 V
-
5
CL = 50 pF, VDDIOx ≥ 2.7 V
-
8
CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V
-
12
CL = 30 pF, VDDIOx ≥ 2.7 V
-
5
CL = 50 pF, VDDIOx ≥ 2.7 V
-
8
CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V
-
12
-
2
-
12
-
34
10
-
fmax(IO)out Maximum frequency(3)
x0
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx ≥ 2.4 V
fmax(IO)out Maximum frequency(3)
01
tf(IO)out
Output fall time
tr(IO)out
Output rise time
fmax(IO)out Maximum
11
tf(IO)out
tr(IO)out
Fm+
configuration
(4)
-
CL = 50 pF, VDDIOx ≥ 2.4 V
frequency(3)
Output fall time
Output rise time
fmax(IO)out Maximum
frequency(3)
CL = 50 pF, VDDIOx ≥ 2.4 V
tf(IO)out
Output fall time
tr(IO)out
Output rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
-
ns
MHz
ns
MHz
ns
MHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a
description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 21.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360
for a detailed description of Fm+ I/O configuration.
DS9773 Rev 4
65/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Figure 21. I/O AC characteristics definition
10%
90%
50%
50%
10%
90%
t f(IO)out
t r(IO)out
T
Maximum frequency is achieved if (t r + t f ) ≤ 2 T and if the duty cycle is (45-55%)
3
when loaded by CL (see the table I/O AC characteristics definition)
MS32132V3
6.3.15
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions.
Table 49. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIL(NRST)
NRST input low level voltage
-
-
-
0.3 VDD+0.07(1)
VIH(NRST)
NRST input high level voltage
-
0.445 VDD+0.398(1)
-
-
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
-
-
200
-
mV
V
RPU
Weak pull-up equivalent
resistor(2)
VIN = VSS
25
40
55
kΩ
VF(NRST)
NRST input filtered pulse
-
-
-
100(1)
ns
2.7 < VDD < 3.6
300(3)
-
-
2.4 < VDD < 3.6
500(3)
-
-
VNF(NRST) NRST input not filtered pulse
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
66/93
DS9773 Rev 4
ns
STM32F030x4/x6/x8/xC
Electrical characteristics
Figure 22. Recommended NRST pin protection
External
reset circuit(1)
VDD
RPU
NRST(2)
Internal reset
Filter
0.1 μF(3)
MS19878V4
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
6.3.16
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 50 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 21: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 50. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Analog supply voltage for
ADC ON
-
2.4
-
3.6
V
VDD = VDDA = 3.3 V
-
0.9
-
mA
IDDA (ADC)
Current consumption of
the ADC(1)
fADC
ADC clock frequency
-
0.6
-
14
MHz
fS(2)
Sampling rate
-
0.05
-
1
MHz
fADC = 14 MHz
-
-
823
kHz
-
-
-
17
1/fADC
fTRIG(2)
External trigger
frequency
VAIN
Conversion voltage range
-
0
-
VDDA
V
RAIN(2)
External input impedance
See Equation 1 and
Table 51 for details
-
-
50
kΩ
RADC(2)
Sampling switch
resistance
-
-
-
1
kΩ
CADC(2)
Internal sample and hold
capacitor
-
-
-
8
pF
DS9773 Rev 4
67/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 50. ADC characteristics (continued)
Symbol
Parameter
tCAL(2)(3)
Conditions
Calibration time
tlatr(2)
JitterADC
tS(2)
ADC_DR register write
latency
5.9
µs
-
83
1/fADC
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2
-
4.5
-
fPCLK
cycle
ADC clock = PCLK/4
-
8.5
-
fPCLK
cycle
tCONV(2)
fADC = fPCLK/2 =
14 MHz
0.196
µs
fADC = fPCLK/2
5.5
1/fPCLK
fADC = fPCLK/4 =
12 MHz
0.219
µs
fADC = fPCLK/4
10.5
1/fPCLK
fADC = fHSI14 = 14 MHz
0.188
-
0.259
µs
fADC = fHSI14
-
1
-
1/fHSI14
fADC = 14 MHz
0.107
-
17.1
µs
-
1.5
-
239.5
1/fADC
Sampling time
Total conversion time
(including sampling time)
Unit
-
ADC jitter on trigger
conversion
Stabilization time
Max
1.5 ADC
cycles + 2
fPCLK cycles
Trigger conversion
latency
tSTAB(2)
Typ
fADC = 14 MHz
ADC clock = HSI14
WLATENCY(2)(4)
Min
fADC = 14 MHz,
12-bit resolution
12-bit resolution
14
1
-
1/fADC
18
14 to 252 (tS for sampling +12.5 for
successive approximation)
µs
1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
3. Specified value includes only ADC timing. It does not include the latency of the register access.
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.
Equation 1: RAIN max formula
TS
- – R ADC
R AIN < --------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
68/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Table 51. RAIN max for fADC = 14 MHz
Ts (cycles)
tS (µs)
RAIN max (kΩ)(1)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design, not tested in production.
Table 52. ADC accuracy(1)(2)(3)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 kΩ
VDDA = 2.7 V to 3.6 V
TA = −40 to 85 °C
Typ
Max(4)
±3.3
±4
±1.9
±2.8
±2.8
±3
±0.7
±1.3
±1.2
±1.7
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
DS9773 Rev 4
69/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Figure 23. ADC accuracy characteristics
VSSA
EG
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
ET = total unajusted error: maximum deviation
between the actual and ideal transfer curves.
EO = offset error: maximum deviation
between the first actual transition and
the first ideal one.
EG = gain error: deviation between the last
ideal transition and the last actual one.
ED = differential linearity error: maximum
deviation between actual steps and the ideal ones.
EL = integral linearity error: maximum deviation
between any actual transition and the end point
correlation line.
(2)
ET
(3)
7
(1)
6
5
EO
EL
4
3
ED
2
1 LSB IDEAL
1
0
1
2
3
4
5
6
4093 4094 4095 4096
7
VDDA
MS19880V2
Figure 24. Typical connection diagram using the ADC
V DDA
Sample and hold ADC
con ver ter
VT
R AIN (1)
VAIN
R ADC
AINx
C par asitic
VT
IL ±1 μA
12-bit
con ver ter
CADC
MS33900V1
1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
70/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
6.3.17
Electrical characteristics
Temperature sensor characteristics
Table 53. TS characteristics
Symbol
Parameter
TL(1)
Avg_Slope
Min
Typ
Max
Unit
-
±1
±2
°C
4.0
4.3
4.6
mV/°C
1.34
1.43
1.52
V
VSENSE linearity with temperature
(1)
V30
Average slope
Voltage at 30 °C (± 5 °C)
(2)
tSTART(1)
ADC_IN16 buffer startup time
-
-
10
µs
tS_temp(1)
ADC sampling time when reading the
temperature
4
-
-
µs
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:
Temperature sensor calibration values.
6.3.18
Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 54. TIMx characteristics
Symbol
tres(TIM)
fEXT
Parameter
Timer resolution
Timer external clock
frequency on CH1 to
CH4
16-bit timer maximum
period
tMAX_COUNT
32-bit timer maximum
period
Conditions
Min
Typ
Max
Unit
-
-
1
-
tTIMxCLK
fTIMxCLK = 48 MHz
-
20.8
-
ns
-
-
fTIMxCLK/2
-
MHz
fTIMxCLK = 48 MHz
-
24
-
MHz
-
-
216
-
tTIMxCLK
fTIMxCLK = 48 MHz
-
1365
-
µs
-
-
232
-
tTIMxCLK
fTIMxCLK = 48 MHz
-
89.48
-
s
DS9773 Rev 4
71/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Table 55. IWDG min/max timeout period at 40 kHz (LSI)(1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
6 or 7
6.4
26214.4
Unit
ms
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Table 56. WWDG min/max timeout value at 48 MHz (PCLK)
6.3.19
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.0853
5.4613
2
1
0.1706
10.9226
4
2
0.3413
21.8453
8
3
0.6826
43.6906
Unit
ms
Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
72/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Table 57. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter
50(2)
260(3)
ns
1. Guaranteed by design, not tested in production.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
SPI characteristics
Unless otherwise specified, the parameters given in Table 58 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 21: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 58. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Max
Master mode
-
18
Slave mode
-
18
-
6
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 15 pF
tsu(NSS)
NSS setup time
Slave mode
4Tpclk
-
th(NSS)
NSS hold time
Slave mode
2Tpclk + 10
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
Tpclk/2 -2
Tpclk/2 + 1
Master mode
4
-
Slave mode
5
-
Master mode
4
-
Slave mode
5
-
tw(SCKH)
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO)(2)
Data output access time
Slave mode, fPCLK = 20 MHz
0
3Tpclk
tdis(SO)(3)
Data output disable time
Slave mode
0
18
tv(SO)
Data output valid time
Slave mode (after enable edge)
-
22.5
tv(MO)
Data output valid time
Master mode (after enable edge)
-
6
Slave mode (after enable edge)
11.5
-
Master mode (after enable edge)
2
-
Slave mode
25
75
th(SO)
th(MO)
DuCy(SCK)
Data output hold time
SPI slave input clock
duty cycle
Unit
MHz
ns
ns
%
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
DS9773 Rev 4
73/93
75
Electrical characteristics
STM32F030x4/x6/x8/xC
Figure 25. SPI timing diagram - slave mode and CPHA = 0
Figure 26. SPI timing diagram - slave mode and CPHA = 1
NSS input
SCK input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
th(SO)
tv(SO)
ta(SO)
MISO
OUTPUT
MSB OUT
BIT6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
tsu(SI)
MOSI
INPUT
th(NSS)
tc(SCK)
MSB IN
BIT 1 IN
LSB IN
ai14135b
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
74/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Electrical characteristics
Figure 27. SPI timing diagram - master mode
High
NSS input
SCK Output
CPHA= 0
CPOL=0
SCK Output
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
MSB IN
tr(SCK)
tf(SCK)
BIT6 IN
LSB IN
th(MI)
MOSI
OUTPUT
MSB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136c
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DS9773 Rev 4
75/93
75
Package information
7
STM32F030x4/x6/x8/xC
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
LQFP64 package information
LQFP64 is 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 28. LQFP64 outline
0.25 mm
GAUGE PLANE
c
A1
A
A2
SEATING PLANE
C
A1
ccc C
D
D1
D3
K
L
L1
33
48
32
49
64
PIN 1
IDENTIFICATION
E
E1
E3
b
17
16
1
e
5W_ME_V3
1. Drawing is not to scale.
Table 59. LQFP64 mechanical data
inches(1)
millimeters
Symbol
76/93
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Package information
Table 59. LQFP64 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 29. LQFP64 recommended footprint
48
33
0.3
0.5
49
32
12.7
10.3
10.3
17
64
1.2
16
1
7.8
12.7
ai14909c
1. Dimensions are expressed in millimeters.
DS9773 Rev 4
77/93
89
Package information
STM32F030x4/x6/x8/xC
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 30. LQFP64 marking example (package top view)
Revision code
R
Product identification (1)
STM32F030
RCT6
Date code
Y
WW
Pin 1 identifier
MSv36475V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
78/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
LQFP48 package information
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package
Figure 31. LQFP48 outline
SEATING
PLANE
C
c
A1
A
A2
0.25 mm
GAUGE PLANE
ccc C
K
D
A1
L
D1
L1
D3
36
25
37
24
48
E
E1
b
E3
7.2
Package information
13
PIN 1
IDENTIFICATION
1
12
e
5B_ME_V2
1. Drawing is not to scale.
Table 60. LQFP48 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
DS9773 Rev 4
79/93
89
Package information
STM32F030x4/x6/x8/xC
Table 60. LQFP48 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 32. LQFP48 recommended footprint
0.50
1.20
37
9.70
0.30
25
36
24
0.20
7.30
5.80
7.30
48
13
12
1
1.20
5.80
9.70
ai14911d
1. Dimensions are expressed in millimeters.
80/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 33. LQFP48 marking example (package top view)
Product identification(1)
STM32F
030CCT6
Date code
Pin 1 identifier
Y WW
R
Revision code
MSv36476V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS9773 Rev 4
81/93
89
Package information
7.3
STM32F030x4/x6/x8/xC
LQFP32 package information
LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package
Figure 34. LQFP32 outline
c
A2
A1
A
SEATING
PLANE
C
0.25 mm
ccc
GAUGE PLANE
C
K
D
L
A1
D1
L1
D3
24
17
16
32
9
PIN 1
IDENTIFICATION
1
E
E1
E3
b
25
8
e
5V_ME_V2
1. Drawing is not to scale.
Table 61. LQFP32 mechanical data
inches(1)
millimeters
Symbol
82/93
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Package information
Table 61. LQFP32 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 35. LQFP32 recommended footprint
0.80
1.20
24
17
25
16
0.50
0.30
7.30
6.10
9.70
7.30
32
9
8
1
1.20
6.10
9.70
5V_FP_V2
1. Dimensions are expressed in millimeters.
DS9773 Rev 4
83/93
89
Package information
STM32F030x4/x6/x8/xC
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 36. LQFP32 marking example (package top view)
Product identification (1)
STM32F
030K6T6
Date code
Pin 1 identification
Y WW
R
Revision code
MSv36477V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
84/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
7.4
Package information
TSSOP20 package information
TSSOP20 is a 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch package.
Figure 37. TSSOP20 outline
D
20
11
c
E1 E
1
SEATING
PLANE
C
0.25 mm
GAUGE PLANE
10
PIN 1
IDENTIFICATION
k
aaa C
A1
A
A2
b
L
L1
e
YA_ME_V3
1. Drawing is not to scale.
Table 62. TSSOP20 mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
D
6.400
6.500
6.600
0.2520
0.2559
0.2598
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1
4.300
4.400
4.500
0.1693
0.1732
0.1772
e
-
0.650
-
-
0.0256
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
DS9773 Rev 4
85/93
89
Package information
STM32F030x4/x6/x8/xC
Table 62. TSSOP20 mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
Figure 38. TSSOP20 footprint
0.25
6.25
20
11
1.35
0.25
7.10 4.40
1.35
1
10
0.40
1. Dimensions are expressed in millimeters.
86/93
DS9773 Rev 4
0.65
YA_FP_V1
STM32F030x4/x6/x8/xC
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 39. TSSOP20 marking example (package top view)
Device identification (1)
32F030F4P6
Date code
Pin 1 identification
Y
WW
R
Revision code
MSv36478V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS9773 Rev 4
87/93
89
Package information
7.5
STM32F030x4/x6/x8/xC
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 21: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in ° C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ ((VDD - VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 63. Package thermal characteristics
Symbol
ΘJ
7.5.1
Parameter
Value
Thermal resistance junction-ambient
LQFP64 - 10 mm x 10 mm
44
Thermal resistance junction-ambient
LQFP48 - 7 mm x 7 mm
55
Thermal resistance junction-ambient
LQFP32 - 7 mm x 7 mm
56
Thermal resistance junction-ambient
TSSOP20 - 6.5 mm x 6.4 mm
76
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
88/93
DS9773 Rev 4
STM32F030x4/x6/x8/xC
8
Ordering information
Ordering information
+
Example:
STM32
F
030
C
6
T
6
x
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
030 = STM32F030xx
Pin count
F = 20 pins
K = 32 pins
C = 48 pins
R = 64 pins
Code size
4 = 16 Kbyte of Flash memory
6 = 32 Kbyte of Flash memory
8 = 64 Kbyte of Flash memory
C = 256 Kbyte of Flash memory
Package
P = TSSOP
T = LQFP
Temperature range
6 = –40 to 85 °C
Option
xxx = programmed parts
TR = tape and reel
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
DS9773 Rev 4
89/93
89
Revision history
9
STM32F030x4/x6/x8/xC
Revision history
Table 64. Document revision history
Date
Revision
04-Jul-2013
1
Initial release.
2
Extended the applicability to STM32F030xC.
Updated:
– Features and Table Device summary,
– Section: Description,
– Table: STM32F030x4/6/8/C family device features
and peripheral counts,
– Figure: Block diagram,
– Section: Memories,
– Section: General-purpose inputs/outputs (GPIOs),
– Section: Universal synchronous/asynchronous
receiver transmitters (USART),
– Table: STM32F030x4/6/8/C pin definitions,
– Table: Alternate functions selected through
GPIOA_AFR registers for port A,
– Table: Alternate functions selected through
GPIOB_AFR registers for port B
– Table: Alternate functions selected through
GPIOC_AFR registers for port C
– Table: Alternate functions selected through
GPIOD_AFR registers for port D,
– Table: Alternate functions selected through
GPIOF_AFR registers for port F,
– Section: EMC characteristics,
– Section: Part numbering.
Added device marking examples:
– Figure: LQFP64 marking example (package top view),
– Figure: LQFP48 marking example (package top view),
– Figure: LQFP32 marking example (package top view),
– Figure: TSSOP20 marking example (package top
view).
3
Updated:
– Table 2: STM32F030x4/x6/x8/xC family device
features and peripheral counts
– Figure 1: Block diagram and figure footnotes
– Figure 2: Clock tree of STM32F030x4/x6/x8 and
figure footnotes
– Section 3.11: Timers and watchdogs - number of
timers, counts of complementary outputs in the table
and the footnotes
15-Jan-2015
23-Jan-2017
90/93
Changes
DS9773 Rev 4
STM32F030x4/x6/x8/xC
Revision history
Table 64. Document revision history (continued)
Date
23-Jan-2017
Revision
Changes
3
– Section 3.11.2: General-purpose timers (TIM3,
TIM14..17) - number of timers
– Table 5: Timer feature comparison - footnotes added
– Table 7: STM32F030x4/x6/x8/xC I2C implementation FM+ and footnote
– Figure 4 through Figure 7 - darker highlight on pins
– Table 11: STM32F030x4/6/8/C pin definitions corrections
– Table 12: Alternate functions selected through
GPIOA_AFR registers for port A - note order
– Table 14 through Table 16 - corrected footnotes
– Figure 10: STM32F030x4/x6/x8/xC memory map
footnote
– Figure 13: Power supply scheme
– Table 24: Embedded internal reference voltage:
added tSTART, changed VREFINT and tS_vrefint values
and notes
– Table 25: Typical and maximum current consumption
from VDD supply at VDD = 3.6 V footnotes
– Table 26: Typical and maximum current consumption
from the VDDA supply values for STM32F030xC and
footnotes
– Table 34: LSE oscillator characteristics (fLSE = 32.768
kHz) LSEDRV[1:0] values removed (see ref. manual)
– Table 50: ADC characteristics - tSTAB defined relative
to clock frequency; notes 3. and 4. added
– Section 3.14: Universal synchronous/asynchronous
receiver/transmitter (USART) - introduction and
Table 8: STM32F0x0 USART implementation
– Figure 10: STM32F030x4/x6/x8/xC memory map
footnote
– Table 43: ESD absolute maximum ratings - C4 or C3
class, depending on device variant; CDM values
updated to match the referenced standard. (CDM
standard was updated in the previous release, without
duly modifying the related values.)
– Table 53: TS characteristics: removed the min. value
for tSTART and parameter name change
– Figure 19 and Figure 20 improved
– Section 7: Package information name and structure
change
– Section 8: Ordering information renamed from Part
numbering
DS9773 Rev 4
91/93
92
Revision history
STM32F030x4/x6/x8/xC
Table 64. Document revision history (continued)
Date
15-Jan-2019
92/93
Revision
Changes
4
– Figure 2 split in two figures
– TIM15 complementary outputs count in Table 5
– Periodic wakeup unit feature in Section 3.12: Realtime clock (RTC)
– Driver Enable for USART 6 in Table 8
– Number of supported auto baud rate detection modes
corrected in Table 8
– AF4 and AF5 for PB10 in Table 13
– Notes in Table 14, Table 15, and Table 16
– Extension of Table 16
– VFESD class in Table 41
DS9773 Rev 4
STM32F030x4/x6/x8/xC
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
DS9773 Rev 4
93/93
93