0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F071CBT6

STM32F071CBT6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP48_7X7MM

  • 描述:

    IC MCU 32BIT 128KB FLASH 48LQFP

  • 数据手册
  • 价格&库存
STM32F071CBT6 数据手册
STM32F071x8 STM32F071xB Arm®-based 32-bit MCU, up to 128 KB Flash, 12 timers, ADC, DAC and communication interfaces, 2.0 - 3.6 V Datasheet - production data Features • Core: Arm® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz • Memories – 64 to 128 Kbytes of Flash memory – 16 Kbytes of SRAM with HW parity • CRC calculation unit • Reset and power management – Digital and I/O supply: VDD = 2.0 V to 3.6 V – Analog supply: VDDA = VDD to 3.6 V – Selected I/Os: VDDIO2 = 1.65 V to 3.6 V – Power-on/Power down reset (POR/PDR) – Programmable voltage detector (PVD) – Low power modes: Sleep, Stop, Standby – VBAT supply for RTC and backup registers • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator – Internal 48 MHz oscillator with automatic trimming based on ext. synchronization • Up to 87 fast I/Os – All mappable on external interrupt vectors – Up to 68 I/Os with 5V tolerant capability and 19 with independent supply VDDIO2 • 7-channel DMA controller • One 12-bit, 1.0 µs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply: 2.4 V to 3.6 V FBGA LQFP100 14 × 14 mm UFQFPN48 LQFP64 10 × 10 mm 7 × 7 mm LQFP48 7 × 7 mm • Up to 24 capacitive sensing channels for touchkey, linear and rotary touch sensors March 2020 This is information on a product in full production. WLCSP49 3.3 × 3.1 mm • Calendar RTC with alarm and periodic wakeup from Stop/Standby • 12 timers – One 16-bit advanced-control timer for six-channel PWM output – One 32-bit and seven 16-bit timers, with up to four IC/OC, OCN, usable for IR control decoding or DAC control – Independent and system watchdog timers – SysTick timer • Communication interfaces – 2 I2C interfaces supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, one supporting SMBus/PMBus and wakeup – 4 USARTs supporting master synchronous SPI and modem control, two with ISO7816 interface, LIN, IrDA, auto baud rate detection and wakeup feature – 2 SPIs (18 Mbit/s) with 4 to 16 programmable bit frames, and with I2S interface multiplexed • HDMI CEC, wakeup on header reception • Serial wire debug (SWD) • 96-bit unique ID • All packages ECOPACK®2 Table 1. Device summary • One 12-bit D/A converter (with 2 channels) • 2 fast low-power analog comparators with programmable input and output UFBGA100 7 × 7 mm UFBGA64 5 × 5 mm Reference STM32F071x8 STM32F071xB DS10009 Rev 7 Part number STM32F071C8, STM32F071V8 STM32F071CB, STM32F071RB, STM32F071VB 1/122 www.st.com Contents STM32F071x8 STM32F071xB Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Arm®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10 2/122 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 18 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 22 3.14.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DS10009 Rev 7 STM32F071x8 STM32F071xB 3.14.6 Contents SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 25 3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 26 3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.20 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.21 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 51 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 52 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 DS10009 Rev 7 3/122 4 Contents 7 STM32F071x8 STM32F071xB 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.18 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.20 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.21 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.22 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.1 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.4 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.5 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.6 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.7.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.7.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 115 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4/122 DS10009 Rev 7 STM32F071x8 STM32F071xB List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F071x8/xB family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 11 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Capacitive sensing GPIOs available on STM32F071x8/xB devices. . . . . . . . . . . . . . . . . . 20 Number of capacitive sensing channels available on STM32F071x8/xB devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F071x8/xB I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F071x8/xB USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F071x8/xB SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32F071x8/xB pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 42 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 43 Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 44 Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 44 Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 45 Alternate functions available on port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 52 Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 54 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 56 Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 57 Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 58 Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DS10009 Rev 7 5/122 6 List of tables Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. 6/122 STM32F071x8 STM32F071xB Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 WLCSP49 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 DS10009 Rev 7 STM32F071x8 STM32F071xB List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32F071xB memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 UFBGA100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 LQFP100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 WLCSP49 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 69 HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . . . 89 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Recommended footprint for UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 UFBGA100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Recommended footprint for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LQFP100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 WLCSP49 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 WLCSP49 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 DS10009 Rev 7 7/122 8 List of figures Figure 49. Figure 50. Figure 51. 8/122 STM32F071x8 STM32F071xB Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 LQFP64 PD max versus TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DS10009 Rev 7 STM32F071x8 STM32F071xB 1 Introduction Introduction This datasheet provides characteristics and ordering information of the STM32F071x8/xB microcontrollers. This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com. For information on the Arm®(a)Cortex®-M0 core, please refer to the Arm® Cortex®-M0 Technical Reference Manual, available from the www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. DS10009 Rev 7 9/122 27 Description 2 STM32F071x8 STM32F071xB Description The STM32F071x8/xB microcontrollers incorporate the high-performance Arm®Cortex®-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 128 Kbytes of Flash memory and 16 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (two I2Cs, two SPI/one I2S, one HDMI CEC and four USARTs), one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer. The STM32F071x8/xB microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of powersaving modes allows the design of low-power applications. The STM32F071x8/xB microcontrollers include devices in six different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included. These features make the STM32F071x8/xB microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs. 10/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Description Table 2. STM32F071x8/xB family device features and peripheral counts Peripheral STM32F071Cx Flash memory (Kbyte) 64 STM32F071RB 128 128 SRAM (Kbyte) Timers Comm. interfaces 1 (16-bit) General purpose 5 (16-bit) 1 (32-bit) Basic 2 (16-bit) SPI [I2S](1) 2 [2] 2C 2 USART 4 CEC 1 12-bit ADC (number of channels) 64 128 16 Advanced control I STM32F071Vx 1 (10 ext. + 3 int.) 1 (16 ext. + 3 int.) 12-bit DAC (number of channels) 1 (2) Analog comparator 2 GPIOs 37 51 87 Capacitive sensing channels 17 18 24 Max. CPU frequency 48 MHz Operating voltage 2.0 to 3.6 V Operating temperature Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C Packages LQFP48 UFQFPN48 WLCSP49 LQFP64 LQFP100 UFBGA100 1. The SPI interface can be used either in SPI mode or in I2S audio mode. DS10009 Rev 7 11/122 27 Description STM32F071x8 STM32F071xB Figure 1. Block diagram POWER Serial Wire Debug Obl Flash memory interface SWCLK SWDIO as AF SRAM controller NVIC Bus matrix CORTEX-M0 CPU fMAX = 48 MHz VOLT.REG 3.3 V to 1.8 V VDD18 Flash GPL up to 128 KB 32-bit VDD = 2 to 3.6 V VSS @ VDD VDDIO2 OKIN POR Reset Int SRAM 16 KB SUPPLY SUPERVISION NRST VDDA VSSA VDD POR/PDR @ VDDA HSI14 HSI PLLCLK LSI GP DMA 7 channels HSI48 PVD RC 14 MHz RC 8 MHz @ VDDA @ VDD PLL XTAL OSC 4-32 MHz RC 40 kHz RC 48MHz OSC_IN OSC_OUT Ind. Window WDG GPIO port A PB[15:0] GPIO port B PC[15:0] GPIO port C PD[15:0] GPIO port D PE[15:0] GPIO port E PF[10:9], PF6 PF[3:0] GPIO port F 8 groups of 4 channels PAD Analog switches VDD VBAT = 1.65 to 3.6 V @ VBAT XTAL32 kHz System and peripheral clocks RTC Backup reg AHB PWM TIMER 1 4 channels 3 compl. channels BRK, ETR input as AF TIMER 2 32-bit 4 ch., ETR as AF TIMER 3 4 ch., ETR as AF TIMER 14 1 channel as AF TIMER 15 2 channels 1 compl, BRK as AF TIMER 16 1 channel 1 compl, BRK as AF TIMER 17 1 channel 1 compl, BRK as AF APB EXT. IT WKUP SPI1/I2S1 MOSI/SD MISO/MCK SCK/CK NSS/WS as AF SPI2/I2S2 Window WDG IR_OUT as AF DBGMCU USART1 RX, TX,CTS, RTS, CK as AF USART2 RX, TX,CTS, RTS, CK as AF USART3 RX, TX,CTS, RTS, CK as AF USART4 RX, TX,CTS, RTS, CK as AF I2C1 SCL, SDA, SMBA (20 mA FM+) as AF I2C2 SCL, SDA (20 mA FM+) as AF SYSCFG IF GP comparator 1 GP comparator 2 @ VDDA Temp. sensor 16x AD input 3 TAMPER-RTC (ALARM OUT) SYNC CRC Touch Sensing Controller MOSI/SD MISO/MCK SCK/CK NSS/WS as AF INPUT + INPUT OUTPUT as AF OSC32_IN OSC32_OUT RTC interface CRS SYNC 87 AF Power Controller RESET & CLOCK CONTROL AHB decoder PA[15:0] 12-bit ADC HDMI-CEC IF CEC as AF TIMER 6 VDDA VSSA TIMER 7 12-bit DAC DAC_OUT1 12-bit DAC DAC_OUT2 IF @ VDDA @ VDDA Power domain of analog blocks : 12/122 VBAT VDD DS10009 Rev 7 VDDA MSv30976V3 STM32F071x8 STM32F071xB 3 Functional overview Functional overview Figure 1 shows the general block diagram of the STM32F071x8/xB devices. 3.1 Arm®-Cortex®-M0 core The Arm® Cortex®-M0 is a generation of Arm 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The Arm® Cortex®-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an Arm core, with memory sizes usually associated with 8- and 16-bit devices. The STM32F071x8/xB devices embed Arm core and are compatible with all Arm tools and software. 3.2 Memories The device has the following features: • 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications. • The non-volatile memory is divided into two arrays: – 64 to 128 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: 3.3 – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Arm® Cortex®-M0 serial wire) and boot in RAM selection disabled Boot modes At startup, the boot pin and boot selector option bit are used to select one of the three boot options: • boot from User Flash memory • boot from System Memory • boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15, or PA9/PA10 or I2C on pins PB6/PB7. DS10009 Rev 7 13/122 27 Functional overview 3.4 STM32F071x8 STM32F071xB Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes • VDD = VDDIO1 = 2.0 to 3.6 V: external power supply for I/Os (VDDIO1) and the internal regulator. It is provided externally through VDD pins. • VDDA = from VDD to 3.6 V: external analog power supply for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be established first. • VDDIO2 = 1.65 to 3.6 V: external power supply for marked I/Os. VDDIO2 is provided externally through the VDDIO2 pin. The VDDIO2 voltage level is completely independent from VDD or VDDA, but it must not be provided without a valid supply on VDD. The VDDIO2 supply is monitored and compared with the internal reference voltage (VREFINT). When the VDDIO2 is below this threshold, all the I/Os supplied from this rail are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 12: Power supply scheme. 3.5.2 Power supply supervisors The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. • The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD. • The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD 14/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Functional overview threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.5.3 Voltage regulator The regulator has two operating modes and it is always enabled after reset. • Main (MR) is used in normal operating mode (Run). • Low power (LPR) can be used in Stop mode where the power demand is reduced. In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost). 3.5.4 Low-power modes The STM32F071x8/xB microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1, USART2, COMPx, VDDIO2 supply comparator or the CEC. The CEC, USART1, USART2 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data. If this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral. • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches DS10009 Rev 7 15/122 27 Functional overview STM32F071x8 STM32F071xB back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Figure 2. Clock tree SYNC FLITFCLK LSE SYNCSRC I2C1SW Flash memory programming interface HSI CRS I2C1 SYSCLK HSI I2S1/SPI1 I2S2/SPI2 Trim 48 MHz HSI RC HSI48 8 MHz HSI RC HSI HSI48 CECSW LSE CEC /244 HCLK SW PREDIV PLLSRC /1,/2,.. ../16 PLL x2,x3,.. ...x16 SYSCLK HSI PLLCLK HSE /1,/2,… …/512 /1,/2,/4, /8,/16 HPRE PPRE OSC_IN 4-32 MHz HSE OSC PCLK /32 OSC32_OUT 32.768 kHz LSE OSC APB peripherals TIM1,2,3,6,7, 14,15,16,17 x1, x2 HSE LSE OSC32_IN PCLK PPRE CSS OSC_OUT Cortex system timer /8 HSI48 PLLMUL AHB, core, memory, DMA, Cortex FCLK free-run clock USARTxSW SYSCLK HSI LSE RTCCLK USART1 USART2 LSE RTC RTCSEL LSI 40 kHz LSI RC IWDG PLLNODIV MCOPRE Main clock output MCO /1,/2 HSI /1,/2,/4,.. ../128 HSI14 SYSCLK PLLCLK 14 MHz RC HSI14 HSI14 ADC asynchronous clock input HSI48 HSE Legend LSI black white LSE TIM14 MCO clock tree element clock tree control element clock line control line MSv31419V4 Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. 16/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Functional overview Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization. 3.7 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.8 Direct memory access controller (DMA) The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to ® 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4 priority levels. • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail-chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. DS10009 Rev 7 17/122 27 Functional overview 3.9.2 STM32F071x8 STM32F071xB Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 87 GPIOs can be connected to the 16 external interrupt lines. 3.10 Analog-to-digital converter (ADC) The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 3. Temperature sensor calibration values 3.10.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) 0x1FFF F7C2 - 0x1FFF F7C3 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and comparators. VREFINT is internally connected to the ADC_IN17 input channel. The 18/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Functional overview precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 4. Internal voltage reference calibration values 3.10.3 Calibration value name Description Memory address VREFINT_CAL Raw data acquired at a temperature of 30 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) 0x1FFF F7BA - 0x1FFF F7BB VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage. 3.11 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. This digital Interface supports the following features: • 8-bit or 12-bit monotonic output • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel independent or simultaneous conversions • DMA capability for each channel • External triggers for conversion Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests. 3.12 Comparators (COMP) The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output pins • Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to Table 28: Embedded internal reference voltage for the value and precision of the internal reference voltage. DS10009 Rev 7 19/122 27 Functional overview STM32F071x8 STM32F071xB Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator. 3.13 Touch sensing controller (TSC) The STM32F071x8/xB devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. Table 5. Capacitive sensing GPIOs available on STM32F071x8/xB devices Group 1 2 3 4 20/122 Capacitive sensing signal name Pin name Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G5_IO1 PB3 TSC_G1_IO2 PA1 TSC_G5_IO2 PB4 TSC_G1_IO3 PA2 TSC_G5_IO3 PB6 TSC_G1_IO4 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB11 TSC_G2_IO2 PA5 TSC_G6_IO2 PB12 TSC_G2_IO3 PA6 TSC_G6_IO3 PB13 TSC_G2_IO4 PA7 TSC_G6_IO4 PB14 TSC_G3_IO1 PC5 TSC_G7_IO1 PE2 TSC_G3_IO2 PB0 TSC_G7_IO2 PE3 TSC_G3_IO3 PB1 TSC_G7_IO3 PE4 TSC_G3_IO4 PB2 TSC_G7_IO4 PE5 TSC_G4_IO1 PA9 TSC_G8_IO1 PD12 TSC_G4_IO2 PA10 TSC_G8_IO2 PD13 TSC_G4_IO3 PA11 TSC_G8_IO3 PD14 TSC_G4_IO4 PA12 TSC_G8_IO4 PD15 DS10009 Rev 7 Group 5 6 7 8 STM32F071x8 STM32F071xB Functional overview Table 6. Number of capacitive sensing channels available on STM32F071x8/xB devices Number of capacitive sensing channels Analog I/O group 3.14 STM32F071Vx STM32F071Rx STM32F071Cx G1 3 3 3 G2 3 3 3 G3 3 3 2 G4 3 3 3 G5 3 3 3 G6 3 3 3 G7 3 0 0 G8 3 0 0 Number of capacitive sensing channels 24 18 17 Timers and watchdogs The STM32F071x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer. Table 7 compares the features of the different timers. Table 7. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced control TIM1 16-bit Up, down, up/down integer from 1 to 65536 Yes 4 3 TIM2 32-bit Up, down, up/down integer from 1 to 65536 Yes 4 - TIM3 16-bit Up, down, up/down integer from 1 to 65536 Yes 4 - TIM14 16-bit Up integer from 1 to 65536 No 1 - TIM15 16-bit Up integer from 1 to 65536 Yes 2 1 TIM16 TIM17 16-bit Up integer from 1 to 65536 Yes 1 1 TIM6 TIM7 16-bit Up integer from 1 to 65536 Yes - - General purpose Basic DS10009 Rev 7 Capture/compare Complementary channels outputs 21/122 27 Functional overview 3.14.1 STM32F071x8 STM32F071xB Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for: • input capture • output compare • PWM generation (edge or center-aligned modes) • one-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. 3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) There are six synchronizable general-purpose timers embedded in the STM32F071x8/xB devices (see Table 7 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM2, TIM3 STM32F071x8/xB devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining. TIM2 and TIM3 both have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Their counters can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM15, TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. 22/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Functional overview TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate withTIM1 via the Timer Link feature for synchronization or event chaining. TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. 3.14.3 Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases. 3.14.4 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.14.5 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.14.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.15 • a 24-bit down counter • autoreload capability • maskable system interrupt generation when the counter reaches 0 • programmable clock source (HCLK or HCLK/8) Real-time clock (RTC) and backup registers The RTC and the five backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or at wake up from Standby mode. DS10009 Rev 7 23/122 27 Functional overview STM32F071x8 STM32F071xB The RTC is an independent BCD timer/counter. Its main features are the following: • calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format • automatic correction for 28, 29 (leap year), 30, and 31 day of the month • programmable alarm with wake up from Stop and Standby mode capability • Periodic wakeup unit with programmable resolution and period. • on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock • digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy • Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection • timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection • reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision The RTC clock sources can be: 3.16 • a 32.768 kHz external crystal • a resonator or oscillator • the internal low-power RC oscillator (typical frequency of 40 kHz) • the high-speed external clock divided by 32 Inter-integrated circuit interface (I2C) Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive on most of the associated I/Os. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters. Table 8. Comparison of I2C analog and digital filters Aspect Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2Cx peripheral clocks Benefits Available in Stop mode Drawbacks Variations depending on temperature, voltage, process –Extra filtering capability vs. standard requirements –Stable length Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts 24/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Functional overview verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. The I2C peripherals can be served by the DMA controller. Refer to Table 9 for the differences between I2C1 and I2C2. Table 9. STM32F071x8/xB I2C implementation I2C features(1) I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os X X Independent clock X - SMBus X - Wakeup from STOP X - 1. X = supported. 3.17 Universal synchronous/asynchronous receiver/transmitter (USART) The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6 Mbit/s. They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode. The USART interfaces can be served by the DMA controller. Table 10. STM32F071x8/xB USART implementation USART1 and USART2 USART3 and USART4 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Smartcard mode X - Single-wire half-duplex communication X X USART modes/features(1) DS10009 Rev 7 25/122 27 Functional overview STM32F071x8 STM32F071xB Table 10. STM32F071x8/xB USART implementation (continued) USART1 and USART2 USART3 and USART4 IrDA SIR ENDEC block X - LIN mode X - Dual clock domain and wakeup from Stop mode X - Receiver timeout interrupt X - Modbus communication X - Auto baud rate detection X - Driver Enable X X USART modes/features(1) 1. X = supported. 3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. Two standard I2S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency. Table 11. STM32F071x8/xB SPI/I2S implementation SPI features(1) SPI1 and SPI2 Hardware CRC calculation X Rx/Tx FIFO X NSS pulse mode X I2S X mode TI mode X 1. X = supported. 3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory 26/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Functional overview overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception. 3.20 Clock recovery system (CRS) The STM32F071x8/xB embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.21 Serial wire debug port (SW-DP) An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. DS10009 Rev 7 27/122 27 Memory mapping 4 STM32F071x8 STM32F071xB Memory mapping To the difference of STM32F071xB memory map in Figure 3, the two bottom code memory spaces of STM32F071x8 end at 0x0000 FFFF and 0x0800 FFFF, respectively. Figure 3. STM32F071xB memory map 0xFFFF FFFF 0x4800 17FF Reserved AHB2 7 0xE010 0000 0xE000 0000 6 0x4800 0000 Cortex-M0 internal peripherals Reserved Reserved 0xC000 0000 0x4002 43FF AHB1 5 Reserved 0x4002 0000 Reserved 0xA000 0000 0x4001 8000 4 Reserved 0x1FFF FFFF 0x1FFF FC00 0x1FFF F800 0x8000 0000 APB Reserved Option Bytes 0x4001 0000 Reserved System memory 3 0x4000 8000 Reserved 0x1FFF C800 APB 0x6000 0000 0x4000 0000 Reserved Reserved 2 0x4000 0000 Peripherals 0x0802 0000 Reserved 1 Flash memory 0x2000 0000 SRAM 0x0800 0000 Reserved 0 CODE 0x0002 0000 Flash, system memory or SRAM, depending on BOOT configuration 0x0000 0000 0x0000 0000 MS31409V2 28/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Memory mapping Table 12. Peripheral register boundary addresses Bus Boundary address Size Peripheral - 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB GPIOE 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 4000 - 0x4002 43FF 1 KB TSC 0x4002 3400 - 0x4002 3FFF 3 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB Flash memory interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG + COMP 0x4000 8000 - 0x4000 FFFF 32 KB Reserved AHB2 - AHB1 - APB - DS10009 Rev 7 29/122 30 Memory mapping STM32F071x8 STM32F071xB Table 12. Peripheral register boundary addresses (continued) Bus APB 30/122 Boundary address Size Peripheral 0x4000 7C00 - 0x4000 7FFF 1 KB Reserved 0x4000 7800 - 0x4000 7BFF 1 KB CEC 0x4000 7400 - 0x4000 77FF 1 KB DAC 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6C00 - 0x4000 6FFF 1 KB CRS 0x4000 5C00 - 0x4000 6BFF 4 KB Reserved 0x4000 5800 - 0x4000 5BFF 1 KB I2C2 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 5000 - 0x4000 53FF 1 KB Reserved 0x4000 4C00 - 0x4000 4FFF 1 KB USART4 0x4000 4800 - 0x4000 4BFF 1 KB USART3 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1800 - 0x4000 1FFF 2 KB Reserved 0x4000 1400 - 0x4000 17FF 1 KB TIM7 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB TIM2 DS10009 Rev 7 STM32F071x8 STM32F071xB 5 Pinouts and pin descriptions Pinouts and pin descriptions Figure 4. UFBGA100 package pinout Top view 1 2 3 4 5 6 7 8 9 10 11 12 A PE3 PE1 PB8 BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 B PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11 C PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 PF6 PA10 D PC14OSC32_ IN PE6 VSS PA9 PA8 PC9 E PC15OSC32_ OUT VBAT NC PC8 PC7 PC6 F PF0OSC_ IN PF9 VSS VSS G PF1OSC_ OUT PF10 VDDIO2 VDD H PC0 NRST VDD PD15 PD14 PD13 J PF2 PC1 PC2 PD12 PD11 PD10 K VSSA PC3 PA2 PA5 PC4 L PF3 PA0 PA3 PA6 PC5 PB2 M VDDA PA1 PA4 PA7 PB0 PB1 I/O supplied from VDDIO2 PD9 PD8 PB15 PB14 PB13 PE8 PE10 PE12 PB10 PB11 PB12 PE7 PE9 PE11 PE13 PE14 PE15 UFBGA100 MSv33167V4 DS10009 Rev 7 31/122 41 Pinouts and pin descriptions STM32F071x8 STM32F071xB 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 1 75 2 74 3 73 4 72 5 71 6 70 7 69 8 68 9 67 10 66 11 65 12 64 LQFP100 13 63 50 49 48 47 46 45 44 43 42 41 40 VDDIO2 VSS PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS VDD 39 51 38 52 25 37 53 24 36 54 23 35 55 22 34 56 21 33 57 20 32 58 19 31 59 18 30 60 17 28 61 16 29 62 15 27 14 26 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF9 PF10 PF0-OSC_IN PF1-OSC_OUT NRST PC0 PC1 PC2 PC3 PF2 VSSA VDDA PF3 PA0 PA1 PA2 98 100 Top view 99 VDD VSS PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 5. LQFP100 package pinout I/O supplied from VDDIO2 MSv31410V2 32/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Pinouts and pin descriptions 49 50 51 52 53 54 55 56 57 58 59 60 61 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 LQFP64 9 40 32 31 30 29 28 27 26 VDDIO2 VSS PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS VDD 25 33 24 34 16 23 35 15 22 36 14 21 37 13 20 38 12 19 39 11 18 10 17 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0 PA1 PA2 62 64 Top view 63 VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 6. LQFP64 package pinout I/O supplied from VDDIO2 MSv31411V2 37 38 39 40 41 42 43 44 45 1 36 2 35 3 34 4 33 5 32 6 31 LQFP48 7 30 24 23 22 21 20 VDDIO2 VSS PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD 19 25 18 26 12 17 27 11 16 28 10 15 29 9 14 8 13 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST VSSA VDDA PA0 PA1 PA2 46 48 Top view 47 VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 Figure 7. LQFP48 package pinout I/O supplied from VDDIO2 MSv31412V2 DS10009 Rev 7 33/122 41 Pinouts and pin descriptions STM32F071x8 STM32F071xB Figure 8. UFQFPN48 package pinout VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Top view VBAT 1 36 VDDIO2 PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PF0-OSC_IN 5 32 PA11 PF1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA 8 29 PA8 VDDA 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 UFQFPN48 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD Exposed pad I/O supplied from VDDIO2 MSv32166V2 Figure 9. WLCSP49 package pinout Top view 1 2 3 4 5 6 7 A PA14 PA15 PB3 PB4 BOOT0 VSS VDD B VSS VDDIO2 PA13 PB5 PB8 NC VBAT C PA11 PA10 PA12 PB6 PB9 D PA8 PA9 VSS PB7 PC13 PF1OSC_ OUT PF0OSC_ IN E PB15 PB12 PB10 PA3 PA2 VSSA NRST F PB14 VDD PA7 PA6 PA5 PA0 VDDA G PB13 PB11 PB2 PB1 PB0 PA4 PA1 I/O supplied from VDDIO2 PC15- PC14OSC32_ OSC32_ IN OUT WLCSP49 MSv32165V4 1. The above figure shows the package in top view, changing from bottom view in the previous document versions. 34/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Pinouts and pin descriptions Table 13. Legend/abbreviations used in the pinout table Name Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin name Pin type I/O structure S Supply pin I Input-only pin I/O Input / output pin FT 5 V-tolerant I/O FTf 5 V-tolerant I/O, FM+ capable TTa 3.3 V-tolerant I/O directly connected to ADC TC Standard 3.3 V I/O B RST Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Notes Pin functions Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 14. STM32F071x8/xB pin definitions LQFP100 LQFP64 LQFP48/UFQFPN48 WLCSP49 I/O structure Notes Pin functions UFBGA100 Pin numbers Alternate functions B2 1 - - - PE2 I/O FT - TSC_G7_IO1, TIM3_ETR - A1 2 - - - PE3 I/O FT - TSC_G7_IO2, TIM3_CH1 - B1 3 - - - PE4 I/O FT - TSC_G7_IO3, TIM3_CH2 - C2 4 - - - PE5 I/O FT - TSC_G7_IO4, TIM3_CH3 - D2 5 - - - PE6 I/O FT - TIM3_CH4 WKUP3, RTC_TAMP3 E2 6 1 1 B7 VBAT S - - C1 7 2 2 D5 Pin name (function upon reset) Pin type PC13 I/O TC (1) (2) DS10009 Rev 7 Additional functions Backup power supply - WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT 35/122 41 Pinouts and pin descriptions STM32F071x8 STM32F071xB Table 14. STM32F071x8/xB pin definitions (continued) LQFP48/UFQFPN48 WLCSP49 8 3 3 C7 PC14-OSC32_IN (PC14) I/O TC E1 9 4 4 C6 PC15OSC32_OUT (PC15) I/O TC F2 10 - - - PF9 I/O FT - TIM15_CH1 - G2 11 - - - PF10 I/O FT - TIM15_CH2 - F1 12 5 5 D7 PF0-OSC_IN (PF0) I/O FT - CRS_ SYNC OSC_IN G1 13 6 6 D6 PF1-OSC_OUT (PF1) I/O FT - - OSC_OUT H2 14 7 7 E7 NRST I/O RST - H1 15 8 - - PC0 I/O TTa - EVENTOUT ADC_IN10 J2 16 9 - - PC1 I/O TTa - EVENTOUT ADC_IN11 J3 17 10 - - PC2 I/O TTa - SPI2_MISO, I2S2_MCK, EVENTOUT ADC_IN12 K2 18 11 - - PC3 I/O TTa - SPI2_MOSI, I2S2_SD, EVENTOUT ADC_IN13 J1 19 - - - PF2 I/O FT - EVENTOUT WKUP8 K1 20 12 8 E6 VSSA S - - Analog ground M1 21 13 9 F7 VDDA S - - Analog power supply L1 22 - - - PF3 I/O FT - EVENTOUT - USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX RTC_ TAMP2, WKUP1, COMP1_OUT, ADC_IN0, COMP1_INM6 - USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT ADC_IN1, COMP1_INP L2 M2 36/122 23 24 14 15 10 11 F6 G7 Pin type PA0 PA1 I/O I/O TTa TTa Notes LQFP64 D1 Pin name (function upon reset) I/O structure LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions - OSC32_IN (2) - OSC32_OUT (1) (2) (1) DS10009 Rev 7 Device reset input / internal reset output (active low) STM32F071x8 STM32F071xB Pinouts and pin descriptions Table 14. STM32F071x8/xB pin definitions (continued) Pin type Notes Pin name (function upon reset) I/O structure Pin functions WLCSP49 LQFP48/UFQFPN48 LQFP64 LQFP100 UFBGA100 Pin numbers Alternate functions Additional functions ADC_IN2, COMP2_OUT, COMP2_INM6, WKUP4 ADC_IN3, COMP2_INP K3 25 16 12 E5 PA2 I/O TTa - USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3 L3 26 17 13 E4 PA3 I/O TTa - USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4 D3 27 18 - - VSS S - - Ground H3 28 19 - - VDD S - - Digital power supply M3 K4 L4 29 30 31 20 21 22 14 15 16 G6 F5 F4 PA4 PA5 PA6 I/O I/O I/O TTa TTa TTa - SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1 - SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2 COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2 - SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS ADC_IN6 ADC_IN7 M4 32 23 17 F3 PA7 I/O TTa - SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT K5 33 24 - - PC4 I/O TTa - EVENTOUT, USART3_TX ADC_IN14 L5 34 25 - - PC5 I/O TTa - TSC_G3_IO1, USART3_RX ADC_IN15, WKUP5 M5 35 26 18 G5 PB0 I/O TTa - TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT, USART3_CK ADC_IN8 M6 36 27 19 G4 PB1 I/O TTa - TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3 ADC_IN9 L6 37 28 20 G3 PB2 I/O FT TSC_G3_IO4 - DS10009 Rev 7 37/122 41 Pinouts and pin descriptions STM32F071x8 STM32F071xB Table 14. STM32F071x8/xB pin definitions (continued) LQFP100 LQFP64 LQFP48/UFQFPN48 WLCSP49 I/O structure Notes Pin functions UFBGA100 Pin numbers Alternate functions M7 38 - - - PE7 I/O FT - TIM1_ETR - L7 39 - - - PE8 I/O FT - TIM1_CH1N - M8 40 - - - PE9 I/O FT - TIM1_CH1 - L8 41 - - - PE10 I/O FT - TIM1_CH2N - M9 42 - - - PE11 I/O FT - TIM1_CH2 - L9 43 - - - PE12 I/O FT - SPI1_NSS, I2S1_WS, TIM1_CH3N - M10 44 - - - PE13 I/O FT - SPI1_SCK, I2S1_CK, TIM1_CH3 - M11 45 - - - PE14 I/O FT - SPI1_MISO, I2S1_MCK, TIM1_CH4 - M12 46 - - - PE15 I/O FT - SPI1_MOSI, I2S1_SD, TIM1_BKIN - L10 47 29 21 E3 PB10 I/O FT - SPI2_SCK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3 - L11 48 30 22 G2 PB11 I/O FT - USART3_RX, TIM2_CH4, EVENTOUT, TSC_G6_IO1, I2C2_SDA - F12 49 31 23 D3 VSS S - - Ground G12 50 32 24 F2 VDD S - - Digital power supply Pin name (function upon reset) Pin type Additional functions L12 51 33 25 E2 PB12 I/O FT - TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT K12 52 34 26 G1 PB13 I/O FTf - SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3 - - SPI2_MISO, I2S2_MCK, I2C2_SDA, USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4 - K11 38/122 53 35 27 F1 PB14 I/O FTf DS10009 Rev 7 - STM32F071x8 STM32F071xB Pinouts and pin descriptions Table 14. STM32F071x8/xB pin definitions (continued) Pin type Notes Pin name (function upon reset) I/O structure Pin functions WLCSP49 LQFP48/UFQFPN48 LQFP64 LQFP100 UFBGA100 Pin numbers Alternate functions Additional functions WKUP7, RTC_REFIN K10 54 36 28 E1 PB15 I/O FT - SPI2_MOSI, I2S2_SD, TIM1_CH3N, TIM15_CH1N, TIM15_CH2 K9 55 - - - PD8 I/O FT - USART3_TX - K8 56 - - - PD9 I/O FT - USART3_RX - J12 57 - - - PD10 I/O FT - USART3_CK - J11 58 - - - PD11 I/O FT - USART3_CTS - J10 59 - - - PD12 I/O FT - USART3_RTS, TSC_G8_IO1 - H12 60 - - - PD13 I/O FT - TSC_G8_IO2 - H11 61 - - - PD14 I/O FT - TSC_G8_IO3 - H10 62 - - - PD15 I/O FT - TSC_G8_IO4, CRS_SYNC - E12 63 37 - - PC6 I/O FT (3) TIM3_CH1 - E11 64 38 - - PC7 I/O FT (3) TIM3_CH2 - FT (3) TIM3_CH3 - TIM3_CH4 - E10 65 39 - - PC8 I/O D12 66 40 - - PC9 I/O FT (3) D11 67 41 29 D1 PA8 I/O FT (3) USART1_CK, TIM1_CH1, EVENTOUT, MCO, CRS_SYNC - D10 68 42 30 D2 PA9 I/O FT (3) USART1_TX, TIM1_CH2, TIM15_BKIN, TSC_G4_IO1 - C12 69 43 31 C2 PA10 I/O FT (3) USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2 - B12 70 44 32 C1 PA11 I/O FT (3) USART1_CTS, TIM1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT A12 71 45 33 C3 PA12 I/O FT (3) USART1_RTS, TIM1_ETR, COMP2_OUT, TSC_G4_IO4, EVENTOUT A11 72 46 34 B3 PA13 I/O FT (3) (4) DS10009 Rev 7 IR_OUT, SWDIO - 39/122 41 Pinouts and pin descriptions STM32F071x8 STM32F071xB Table 14. STM32F071x8/xB pin definitions (continued) LQFP100 LQFP64 LQFP48/UFQFPN48 WLCSP49 I/O structure Notes Pin functions UFBGA100 Pin numbers C11 73 - - - PF6 I/O FT (3) F11 74 47 35 B1 VSS S - - Ground G11 75 48 36 B2 VDDIO2 S - - Digital power supply A10 76 49 37 A1 Pin name (function upon reset) Pin type PA14 I/O FT (3) Alternate functions Additional functions - - (4) USART2_TX, SWCLK - - A9 77 50 38 A2 PA15 I/O FT (3) SPI1_NSS, I2S1_WS, USART2_RX, USART4_RTS, TIM2_CH1_ETR, EVENTOUT B11 78 51 - - PC10 I/O FT (3) USART3_TX, USART4_TX - C10 79 52 - - PC11 I/O FT (3) USART3_RX, USART4_RX - B10 80 53 - - PC12 I/O FT (3) USART3_CK, USART4_CK - C9 81 - - - PD0 I/O FT (3) SPI2_NSS, I2S2_WS - FT (3) SPI2_SCK, I2S2_CK - USART3_RTS, TIM3_ETR - B9 82 - - - PD1 I/O C8 83 54 - - PD2 I/O FT (3) B8 84 - - - PD3 I/O FT - SPI2_MISO, I2S2_MCK, USART2_CTS - B7 85 - - - PD4 I/O FT - SPI2_MOSI, I2S2_SD, USART2_RTS - A6 86 - - - PD5 I/O FT - USART2_TX - B6 87 - - - PD6 I/O FT - USART2_RX - A5 88 - - - PD7 I/O FT - USART2_CK - A8 89 55 39 A3 PB3 I/O FT - SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT - A7 90 56 40 A4 PB4 I/O FT - SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT - C5 91 57 41 B4 PB5 I/O FT - SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 WKUP6 40/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Pinouts and pin descriptions Table 14. STM32F071x8/xB pin definitions (continued) LQFP48/UFQFPN48 WLCSP49 92 58 42 C4 Pin type PB6 I/O Notes LQFP64 B5 Pin name (function upon reset) I/O structure LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions FTf - I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03 - I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N, TSC_G5_IO4 - B4 93 59 43 D4 PB7 I/O FTf - A4 94 60 44 A5 BOOT0 I B - A3 95 61 45 B5 PB8 I/O FTf - I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC - B3 96 62 46 C5 PB9 I/O FTf - SPI2_NSS, I2S2_WS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT - C3 97 - - - PE0 I/O FT - EVENTOUT, TIM16_CH1 - A2 98 - - - PE1 I/O FT - EVENTOUT, TIM17_CH1 - D3 99 63 47 A6 VSS S - - Ground C4 100 64 48 A7 VDD S - - Digital power supply Boot memory selection 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual. 3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os are supplied by VDDIO2. 4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated. DS10009 Rev 7 41/122 41 42/122 Table 15. Alternate functions selected through GPIOA_AFR registers for port A DS10009 Rev 7 Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PA0 - USART2_CTS TIM2_CH1_ETR TSC_G1_IO1 USART4_TX - - COMP1_OUT PA1 EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 USART4_RX TIM15_CH1N - - PA2 TIM15_CH1 USART2_TX TIM2_CH3 TSC_G1_IO3 - - - COMP2_OUT PA3 TIM15_CH2 USART2_RX TIM2_CH4 TSC_G1_IO4 - - - - PA4 SPI1_NSS, I2S1_WS USART2_CK - TSC_G2_IO1 TIM14_CH1 - - - PA5 SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 - - - - PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN TSC_G2_IO3 USART3_CTS TIM16_CH1 EVENTOUT COMP1_OUT PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17_CH1 EVENTOUT COMP2_OUT PA8 MCO USART1_CK TIM1_CH1 EVENTOUT CRS_SYNC - - - PA9 TIM15_BKIN USART1_TX TIM1_CH2 TSC_G4_IO1 - - - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 TSC_G4_IO2 - - - - PA11 EVENTOUT USART1_CTS TIM1_CH4 TSC_G4_IO3 - - - COMP1_OUT PA12 EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 - - - COMP2_OUT PA13 SWDIO IR_OUT - - - - - PA14 SWCLK USART2_TX - - - - - - PA15 SPI1_NSS, I2S1_WS USART2_RX TIM2_CH1_ETR EVENTOUT USART4_RTS - - - STM32F071x8 STM32F071xB DS10009 Rev 7 Pin name AF0 AF1 AF2 AF3 AF4 AF5 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N TSC_G3_IO2 USART3_CK - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N TSC_G3_IO3 USART3_RTS - PB2 - - - TSC_G3_IO4 - - PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 TSC_G5_IO1 - - PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT TSC_G5_IO2 - TIM17_BKIN PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA - - PB6 USART1_TX I2C1_SCL TIM16_CH1N TSC_G5_IO3 - - PB7 USART1_RX I2C1_SDA TIM17_CH1N TSC_G5_IO4 USART4_CTS - PB8 CEC I2C1_SCL TIM16_CH1 TSC_SYNC - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT SPI2_NSS, I2S2_WS PB10 CEC I2C2_SCL TIM2_CH3 TSC_SYNC USART3_TX SPI2_SCK, I2S2_CK PB11 EVENTOUT I2C2_SDA TIM2_CH4 TSC_G6_IO1 USART3_RX - PB12 SPI2_NSS, I2S2_WS EVENTOUT TIM1_BKIN TSC_G6_IO2 USART3_CK TIM15_BKIN PB13 SPI2_SCK, I2S2_CK - TIM1_CH1N TSC_G6_IO3 USART3_CTS I2C2_SCL PB14 SPI2_MISO, I2S2_MCK TIM15_CH1 TIM1_CH2N TSC_G6_IO4 USART3_RTS I2C2_SDA PB15 SPI2_MOSI, I2S2_SD TIM15_CH2 TIM1_CH3N TIM15_CH1N - - STM32F071x8 STM32F071xB Table 16. Alternate functions selected through GPIOB_AFR registers for port B 43/122 STM32F071x8 STM32F071xB Table 17. Alternate functions selected through GPIOC_AFR registers for port C Pin name AF0 AF1 PC0 EVENTOUT - PC1 EVENTOUT - PC2 EVENTOUT SPI2_MISO, I2S2_MCK PC3 EVENTOUT SPI2_MOSI, I2S2_SD PC4 EVENTOUT USART3_TX PC5 TSC_G3_IO1 USART3_RX PC6 TIM3_CH1 - PC7 TIM3_CH2 - PC8 TIM3_CH3 - PC9 TIM3_CH4 - PC10 USART4_TX USART3_TX PC11 USART4_RX USART3_RX PC12 USART4_CK USART3_CK PC13 - - PC14 - - PC15 - - Table 18. Alternate functions selected through GPIOD_AFR registers for port D 44/122 Pin name AF0 AF1 PD0 - SPI2_NSS, I2S2_WS PD1 - SPI2_SCK, I2S2_CK PD2 TIM3_ETR USART3_RTS PD3 USART2_CTS SPI2_MISO, I2S2_MCK PD4 USART2_RTS SPI2_MOSI, I2S2_SD PD5 USART2_TX - PD6 USART2_RX - PD7 USART2_CK - PD8 USART3_TX - PD9 USART3_RX - PD10 USART3_CK - PD11 USART3_CTS - PD12 USART3_RTS TSC_G8_IO1 PD13 - TSC_G8_IO2 PD14 - TSC_G8_IO3 PD15 CRS_SYNC TSC_G8_IO4 DS10009 Rev 7 STM32F071x8 STM32F071xB Table 19. Alternate functions selected through GPIOE_AFR registers for port E Pin name AF0 AF1 PE0 TIM16_CH1 EVENTOUT PE1 TIM17_CH1 EVENTOUT PE2 TIM3_ETR TSC_G7_IO1 PE3 TIM3_CH1 TSC_G7_IO2 PE4 TIM3_CH2 TSC_G7_IO3 PE5 TIM3_CH3 TSC_G7_IO4 PE6 TIM3_CH4 - PE7 TIM1_ETR - PE8 TIM1_CH1N - PE9 TIM1_CH1 - PE10 TIM1_CH2N - PE11 TIM1_CH2 - PE12 TIM1_CH3N SPI1_NSS, I2S1_WS PE13 TIM1_CH3 SPI1_SCK, I2S1_CK PE14 TIM1_CH4 SPI1_MISO, I2S1_MCK PE15 TIM1_BKIN SPI1_MOSI, I2S1_SD Table 20. Alternate functions available on port F Pin name AF PF0 CRS_SYNC PF1 - PF2 EVENTOUT PF3 EVENTOUT PF6 - PF9 TIM15_CH1 PF10 TIM15_CH2 DS10009 Rev 7 45/122 45 Electrical characteristics STM32F071x8 STM32F071xB 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 11. Figure 10. Pin loading conditions Figure 11. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19210V1 46/122 DS10009 Rev 7 MS19211V1 STM32F071x8 STM32F071xB 6.1.6 Electrical characteristics Power supply scheme Figure 12. Power supply scheme VBAT Backup circuitry (LSE, RTC, Backup registers) 1.65 – 3.6 V Power switch VDD VCORE 3 x VDD Regulator 3 x 100 nF GPIOs IN +1 x 4.7 μF Level shifter OUT IO logic Level shifter VDDIO1 IO logic Kernel logic (CPU, Digital & Memories) 3 x VSS VDDIO2 VDDIO2 VDDIO2 OUT 100 nF +4.7 μF GPIOs IN VSS VDDA VDDA 10 nF +1 μF VREF+ VREF- ADC/ DAC Analog: (RCs, PLL, …) VSSA MSv32190V1 Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DS10009 Rev 7 47/122 96 Electrical characteristics 6.1.7 STM32F071x8 STM32F071xB Current consumption measurement Figure 13. Current consumption measurement scheme I DD_VBAT V BAT I DD V DD V DDIO2 I DDA V DDA MS31999V2 48/122 DS10009 Rev 7 STM32F071x8 STM32F071xB 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics, Table 22: Current characteristics and Table 23: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 21. Voltage characteristics(1) Symbol VDD–VSS Ratings External main supply voltage VDDIO2–VSS External I/O supply voltage VDDA–VSS External analog supply voltage VDD–VDDA Allowed voltage difference for VDD > VDDA VBAT–VSS External backup supply voltage VIN(2) |VSSx - VSS| VESD(HBM) Max Unit - 0.3 4.0 V - 0.3 4.0 V - 0.3 4.0 V - 0.4 V - 0.3 4.0 V 4.0(3) Input voltage on FT and FTf pins VSS - 0.3 VDDIOx + Input voltage on TTa pins VSS - 0.3 4.0 V 0 9.0 V VSS - 0.3 4.0 V Variations between different VDD power pins - 50 mV Variations between all the different ground pins - 50 mV BOOT0 Input voltage on any other pin |∆VDDx| Min Electrostatic discharge voltage (human body model) V see Section 6.3.12: Electrical sensitivity characteristics - 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 22: Current characteristics for the maximum allowed injected current values. 3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V. DS10009 Rev 7 49/122 96 Electrical characteristics STM32F071x8 STM32F071xB Table 22. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD power lines (source)(1) 120 ΣIVSS (1) -120 Total current out of sum of all VSS ground lines (sink) IVDD(PIN) Maximum current into each VDD power pin (source) (1) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100 IIO(PIN) Output current sunk by any I/O and control pin 25 Output current source by any I/O and control pin -25 (2) ΣIIO(PIN) Total output current sunk by sum of all I/Os and control pins 80 Total output current sourced by sum of all I/Os and control pins(2) -80 Total output current sourced by sum of all I/Os supplied by VDDIO2 -40 Injected current on TC and RST pin ±5 Injected current on TTa pins(5) ΣIINJ(PIN) Total injected current (sum of all I/O and control mA -5/+0(4) Injected current on B, FT and FTf pins IINJ(PIN)(3) Unit ±5 pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the device. See note (2) below Table 59: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 23. Thermal characteristics Symbol TSTG TJ 50/122 Ratings Storage temperature range Maximum junction temperature DS10009 Rev 7 Value Unit –65 to +150 °C 150 °C STM32F071x8 STM32F071xB Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 24. General operating conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency - 0 48 fPCLK Internal APB clock frequency - 0 48 VDD Standard operating voltage - 2.0 3.6 V Must not be supplied if VDD is not present 1.65 3.6 V VDD 3.6 2.4 3.6 1.65 3.6 TC and RST I/O –0.3 VDDIOx+0.3 TTa I/O –0.3 VDDA+0.3(1) FT and FTf I/O –0.3 5.5(1) BOOT0 0 5.5 UFBGA100 - 364 LQFP100 - 476 LQFP64 - 455 LQFP48 - 370 UFQFPN48 - 625 WLCSP49 - 408 –40 85 –40 105 VDDIO2 VDDA VBAT VIN PD I/O supply voltage Analog operating voltage (ADC and DAC not used) Analog operating voltage (ADC and DAC used) Backup operating voltage I/O input voltage Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(2) - V Ambient temperature for the suffix 6 version Maximum power dissipation Ambient temperature for the suffix 7 version Maximum power dissipation –40 105 Low power dissipation(3) –40 125 Suffix 6 version –40 105 Suffix 7 version –40 125 TA TJ Must have a potential equal to or higher than VDD Junction temperature range Low power dissipation (3) MHz V V mW °C °C °C 1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.7: Thermal characteristics. 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.7: Thermal characteristics). 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 25 are derived from tests performed under the ambient temperature condition summarized in Table 24. DS10009 Rev 7 51/122 96 Electrical characteristics STM32F071x8 STM32F071xB Table 25. Operating conditions at power-up / power-down Symbol Parameter VDD rise time rate tVDD - VDD fall time rate VDDA rise time rate tVDDA 6.3.3 Conditions - VDDA fall time rate Min Max 0 ∞ 20 ∞ 0 ∞ 20 ∞ Unit µs/V Embedded reset and power control block characteristics The parameters given in Table 26 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 26. Embedded reset and power control block characteristics Symbol VPOR/PDR(1) VPDRhyst tRSTTEMPO(4) Parameter Conditions Min Typ Max Unit Power on/power down reset threshold Falling edge(2) 1.80 1.88 1.96(3) V 1.84(3) 1.92 2.00 V PDR hysteresis - - 40 - mV Reset temporization - 1.50 2.50 4.50 ms Rising edge 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Data based on characterization results, not tested in production. 4. Guaranteed by design, not tested in production. Table 27. Programmable voltage detector characteristics Symbol 52/122 Parameter VPVD0 PVD threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 DS10009 Rev 7 Conditions Min Typ Max Unit Rising edge 2.1 2.18 2.26 V Falling edge 2 2.08 2.16 V Rising edge 2.19 2.28 2.37 V Falling edge 2.09 2.18 2.27 V Rising edge 2.28 2.38 2.48 V Falling edge 2.18 2.28 2.38 V Rising edge 2.38 2.48 2.58 V Falling edge 2.28 2.38 2.48 V Rising edge 2.47 2.58 2.69 V Falling edge 2.37 2.48 2.59 V Rising edge 2.57 2.68 2.79 V Falling edge 2.47 2.58 2.69 V STM32F071x8 STM32F071xB Electrical characteristics Table 27. Programmable voltage detector characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Rising edge 2.66 2.78 2.9 V Falling edge 2.56 2.68 2.8 V Rising edge 2.76 2.88 3 V Falling edge 2.66 2.78 2.9 V VPVD6 PVD threshold 6 VPVD7 PVD threshold 7 VPVDhyst(1) PVD hysteresis - - 100 - mV PVD current consumption - - 0.15 0.26(1) µA IDD(PVD) 1. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 28 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 28. Embedded internal reference voltage Symbol VREFINT Parameter Conditions Internal reference voltage –40 °C < TA < +105 °C Min Typ Max Unit 1.2 1.23 1.25 V tSTART ADC_IN17 buffer startup time - - - 10(1) µs tS_vrefint ADC sampling time when reading the internal reference voltage - 4(1) - - µs ∆VREFINT Internal reference voltage spread over the temperature range VDDA = 3 V - - 10(1) mV - - 100(1) - 100(1) ppm/°C TCoeff Temperature coefficient 1. Guaranteed by design, not tested in production. 6.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 13: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. DS10009 Rev 7 53/122 96 Electrical characteristics STM32F071x8 STM32F071xB Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • • The Flash memory access time is adjusted to the fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled fPCLK = fHCLK The parameters given in to Table 31 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Parameter Symbol Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6 V All peripherals enabled Conditions IDD 54/122 Supply current in Run mode, code executing from Flash memory HSI48 fHCLK All peripherals disabled Max @ TA(1) Max @ TA(1) 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 48 MHz 24.3 26.9 27.2 27.9 13.1 14.8 14.9 15.5 48 MHz HSE bypass, 32 MHz PLL on 24 MHz 24.1 26.8 27.0 27.7 13.0 14.6 14.8 15.4 16.0 18.3 18.6 19.2 8.76 9.56 9.73 10.6 12.3 13.7 14.3 14.7 7.36 7.94 8.37 8.81 8 MHz 4.52 5.25 5.28 5.61 2.89 3.17 3.26 3.34 1 MHz 1.25 1.39 1.58 1.87 0.93 1.06 1.15 1.34 48 MHz 24.1 27.1 27.6 27.8 12.9 14.7 14.9 15.5 32 MHz 16.1 18.2 18.9 19.3 8.82 9.69 9.83 10.7 24 MHz 12.4 14.0 14.4 14.8 7.31 7.92 8.34 8.75 8 MHz 4.52 5.25 5.35 5.61 2.87 3.16 3.25 3.33 HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off Unit Typ Typ DS10009 Rev 7 mA STM32F071x8 STM32F071xB Electrical characteristics Parameter Symbol Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6 V (continued) All peripherals enabled Conditions HSI48 fHCLK 48 MHz Supply current in Run mode, code executing from RAM 48 MHz Supply current in Sleep mode IDD HSE bypass, 32 MHz PLL on 24 MHz All peripherals disabled Max @ TA(1) Max @ TA(1) 23.1 23.0 Unit Typ Typ 25 °C 85 °C 105 °C 25.4 25.8 26.6 25.7 26.5(2) 25.3 (2) 25 °C 85 °C 105 °C 12.8 13.5 13.7 13.9 12.6 13.3(2) 13.5 13.8(2) 15.4 17.3 17.8 18.3 7.96 8.92 9.17 9.73 11.4 12.9 13.5 13.7 6.48 8.04 8.23 8.41 8 MHz 4.21 4.6 4.89 5.25 2.07 2.3 2.35 2.94 1 MHz 0.78 0.9 0.92 1.15 0.36 0.48 0.59 0.82 48 MHz 23.1 24.5 25.0 25.2 12.6 13.7 13.9 14.0 32 MHz 15.4 17.4 17.7 18.2 8.05 8.85 9.16 9.94 24 MHz 11.5 13.0 13.6 13.9 6.49 8.06 8.21 8.47 HSI clock, PLL off 8 MHz 4.34 4.75 5.03 5.41 2.11 2.36 2.38 2.98 HSI48 48 MHz 15.1 16.6 16.8 17.5 3.08 3.43 3.56 3.61 48 MHz 15.0 16.5(2) 16.7 17.3(2) 2.93 3.28(2) 3.41 3.46(2) HSE bypass, PLL off HSI clock, PLL on HSE bypass, 32 MHz PLL on 24 MHz 9.9 11.4 11.6 11.9 2.0 2.24 2.32 2.49 7.43 8.17 8.71 8.82 1.63 1.82 1.88 1.9 8 MHz 2.83 3.09 3.26 3.66 0.76 0.88 0.91 0.93 1 MHz 0.42 0.54 0.55 0.67 0.28 0.39 0.41 0.43 48 MHz 15.0 17.2 17.3 17.9 3.04 3.37 3.41 3.46 32 MHz 9.93 11.3 11.6 11.7 2.11 2.35 2.44 2.65 24 MHz 7.53 8.45 8.87 8.95 1.64 1.83 1.9 1.93 8 MHz 2.95 3.24 3.41 3.8 0.8 0.92 0.94 0.97 HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off mA 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). DS10009 Rev 7 55/122 96 Electrical characteristics STM32F071x8 STM32F071xB Table 30. Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Symbol Parameter Conditions (1) HSI48 IDDA Supply current in Run or Sleep mode, code executing from Flash memory or RAM HSE bypass, PLL on HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off fHCLK 48 MHz Max @ TA(2) Typ 311 VDDA = 3.6 V Typ 25 °C 85 °C 105 °C 326 334 343 170 (3) 178 Max @ TA(2) 182 (3) Unit 25 °C 85 °C 105 °C 322 165 337 (3) 184 345 354 196 200(3) 48 MHz 152 32 MHz 105 121 126 128 113 129 136 138 24 MHz 81.9 95.9 99.5 101 88.7 102 107 108 8 MHz 2.7 3.8 4.3 4.6 3.6 4.7 5.2 5.5 1 MHz 2.7 3.8 4.3 4.6 3.6 4.7 5.2 5.5 48 MHz 223 244 255 260 245 265 279 284 32 MHz 176 195 203 206 193 212 221 224 24 MHz 154 171 178 181 168 185 192 195 8 MHz 74.2 83.4 86.4 87.3 83.4 92.5 95.3 96.6 µA 1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production unless otherwise specified. 3. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). 56/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Table 31. Typical and maximum consumption in Stop and Standby modes Parameter Supply current in Stop mode IDD Supply current in Standby mode Supply current in Stop mode Supply current in Standby mode Conditions 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA = 25 °C TA = 85 °C TA = 105 °C Regulator in run mode, all oscillators OFF 15.4 15.5 15.6 15.7 15.8 15.9 23(2) 49 68(2) Regulator in lowpower mode, all oscillators OFF 3.2 3.3 3.4 3.5 3.6 3.7 8(2) 33 51(2) LSI ON and IWDG ON 0.8 1.0 1.1 1.2 1.3 1.4 - - - LSI OFF and IWDG OFF 0.6 0.7 0.9 0.9 1.0 1.1 2.1(2) 2.6 3.1(2) Regulator in run mode, all oscillators OFF 2.1 2.2 2.3 2.5 2.6 2.8 3.5(2) 3.6 4.6(2) Regulator in low-power mode, all oscillators OFF 2.1 2.2 2.3 2.5 2.6 2.8 3.5(2) 3.6 4.6(2) LSI ON and IWDG ON 2.5 2.7 2.8 3.0 3.2 3.5 - - - LSI OFF and IWDG OFF 1.9 2.1 2.2 2.3 2.5 2.6 3.5(2) 3.6 4.6(2) Regulator in run mode, all oscillators OFF 1.3 1.3 1.4 1.4 1.5 1.5 - - - Regulator in low-power mode, all oscillators OFF 1.3 1.3 1.4 1.4 1.5 1.5 - - - LSI ON and IWDG ON 1.7 1.8 1.9 2.0 2.1 2.2 - - - LSI OFF and IWDG OFF 1.2 1.2 1.2 1.3 1.3 1.4 - - - VDDA monitoring ON Symbol Supply current in Standby mode VDDA monitoring OFF IDDA Supply current in Stop mode Max(1) Typ @VDD (VDD = VDDA) Unit µA 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). DS10009 Rev 7 57/122 96 Electrical characteristics STM32F071x8 STM32F071xB Table 32. Typical and maximum current consumption from the VBAT supply Max(1) Typ @ VBAT 2.4 V 2.7 V 3.3 V 3.6 V RTC domain IDD_VBAT supply current Conditions 1.8 V Parameter 1.65 V Symbol TA = 25 °C LSE & RTC ON; “Xtal mode”: lower driving capability; LSEDRV[1:0] = '00' 0.5 0.6 0.7 0.8 1.1 1.2 1.3 LSE & RTC ON; “Xtal mode” higher driving capability; LSEDRV[1:0] = '11' 0.8 TA = TA = 85 °C 105 °C 1.7 Unit 2.3 µA 0.9 1.1 1.2 1.4 1.6 1.7 2.1 2.8 1. Data based on characterization results, not tested in production. Typical current consumption The MCU is placed under the following conditions: 58/122 • VDD = VDDA = 3.3 V • All I/O pins are in analog input configuration • The Flash memory access time is adjusted to fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz • When the peripherals are enabled, fPCLK = fHCLK • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Table 33. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal Typical consumption in Run mode Symbol IDD IDDA Parameter Current consumption from VDD supply Current consumption from VDDA supply fHCLK Typical consumption in Sleep mode Unit Peripherals Peripherals Peripherals Peripherals enabled disabled enabled disabled 48 MHz 23.5 13.5 14.6 3.5 36 MHz 18.3 10.5 11.1 2.9 32 MHz 16.0 9.6 10.0 2.7 24 MHz 12.3 7.6 7.8 2.2 16 MHz 8.6 5.3 5.5 1.7 8 MHz 4.8 3.1 3.1 1.2 4 MHz 3.1 2.1 2.2 1.1 2 MHz 2.1 1.6 1.6 1.0 1 MHz 1.6 1.3 1.4 1.0 500 kHz 1.3 1.2 1.2 1.0 48 MHz 163.3 36 MHz 124.3 32 MHz 111.9 24 MHz 87.1 16 MHz 62.5 8 MHz 2.5 4 MHz 2.5 2 MHz 2.5 1 MHz 2.5 500 kHz 2.5 mA μA I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 53: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt DS10009 Rev 7 59/122 96 Electrical characteristics STM32F071x8 STM32F071xB trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 35: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. 60/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Table 34. Switching output I/O current consumption Symbol Parameter Conditions(1) VDDIOx = 3.3 V C =CINT VDDIOx = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 10 pF C = CINT + CEXT+ CS ISW I/O current consumption VDDIOx = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 33 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint VDDIOx = 2.4 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint I/O toggling frequency (fSW) Typ 4 MHz 0.07 8 MHz 0.15 16 MHz 0.31 24 MHz 0.53 48 MHz 0.92 4 MHz 0.18 8 MHz 0.37 16 MHz 0.76 24 MHz 1.39 48 MHz 2.188 4 MHz 0.32 8 MHz 0.64 16 MHz 1.25 24 MHz 2.23 48 MHz 4.442 4 MHz 0.49 8 MHz 0.94 16 MHz 2.38 24 MHz 3.99 4 MHz 0.64 8 MHz 1.25 16 MHz 3.24 24 MHz 5.02 4 MHz 0.81 8 MHz 1.7 16 MHz 3.67 4 MHz 0.66 8 MHz 1.43 16 MHz 2.45 24 MHz 4.97 Unit mA 1. CS = 7 pF (estimated value). DS10009 Rev 7 61/122 96 Electrical characteristics STM32F071x8 STM32F071xB On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 35. The MCU is placed under the following conditions: • All I/O pins are in analog mode • All peripherals are disabled unless otherwise mentioned • The given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on • Ambient operating temperature and supply voltage conditions summarized in Table 21: Voltage characteristics • The power consumption of the digital part of the on-chip peripherals is given in Table 35. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. Table 35. Peripheral current consumption Peripheral AHB 62/122 Typical consumption at 25 °C BusMatrix(1) 2.2 CRC 1.6 DMA 5.7 Flash memory interface 13.0 GPIOA 8.2 GPIOB 8.5 GPIOC 2.3 GPIOD 1.9 GPIOE 2.2 GPIOF 1.2 SRAM 0.9 TSC 5.0 All AHB peripherals 52.6 DS10009 Rev 7 Unit µA/MHz STM32F071x8 STM32F071xB Electrical characteristics Table 35. Peripheral current consumption (continued) Peripheral APB-Bridge Typical consumption at 25 °C (2) 2.8 ADC(3) 4.1 CEC 1.5 CRS 0.8 (3) APB Unit DAC 4.7 DEBUG (MCU debug feature) 0.1 I2C1 3.9 I2C2 4.0 PWR 1.3 SPI1 8.7 SPI2 8.5 SYSCFG & COMP 1.7 TIM1 14.9 TIM2 15.5 TIM3 11.4 TIM6 2.5 TIM7 2.3 TIM14 5.3 TIM15 9.1 TIM16 6.6 TIM17 6.8 USART1 17.0 USART2 16.7 USART3 5.4 USART4 5.4 WWDG 1.4 All APB peripherals µA/MHz 162.4 1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA). 2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus. 3. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, is not included. Refer to the tables of characteristics in the subsequent sections. DS10009 Rev 7 63/122 96 Electrical characteristics 6.3.6 STM32F071x8 STM32F071xB Wakeup time from low-power mode The wakeup times given in Table 36 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture. The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz. The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0). All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 36. Low-power mode wakeup timings Typ @VDD = VDDA Symbol Parameter Conditions Max Unit = 2.0 V = 2.4 V = 2.7 V tWUSTOP Wakeup from Stop mode Wakeup from tWUSTANDBY Standby mode tWUSLEEP 6.3.7 = 3.3 V Regulator in run mode 3.2 3.1 2.9 2.9 2.8 5 Regulator in low power mode 7.0 5.8 5.2 4.9 4.6 9 - Wakeup from Sleep mode =3V µs 60.4 - 55.6 53.5 52 51 4 SYSCLK cycles - External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 14: High-speed external clock source AC timing diagram. Table 37. High-speed external user clock characteristics Symbol 64/122 Parameter(1) Min Typ Max Unit - 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx 15 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V ns DS10009 Rev 7 - - 20 STM32F071x8 STM32F071xB Electrical characteristics 1. Guaranteed by design, not tested in production. Figure 14. High-speed external clock source AC timing diagram tw(HSEH) VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) t tw(HSEL) THSE MS19214V2 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 15. Table 38. Low-speed external user clock characteristics Parameter(1) Symbol fLSE_ext User external clock source frequency Min Typ Max Unit - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx 450 - - - - 50 tw(LSEH) OSC32_IN high or low time tw(LSEL) tr(LSE) tf(LSE) V ns OSC32_IN rise or fall time 1. Guaranteed by design, not tested in production. Figure 15. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) t tw(LSEL) TLSE MS19215V2 DS10009 Rev 7 65/122 96 Electrical characteristics STM32F071x8 STM32F071xB High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 39. HSE oscillator characteristics Symbol fOSC_IN RF Conditions(1) Min(2) Typ Max(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - kΩ - - 8.5 VDD = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz - 0.4 - VDD = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz - 0.5 - VDD = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz - 0.8 - VDD = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz - 1 - VDD = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Parameter During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time (3) mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: 66/122 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Figure 16. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MHz resonator CL2 REXT (1) fHSE RF Bias controlled gain OSC_OUT MS19876V1 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol LSE current consumption IDD Oscillator transconductance gm tSU(LSE) Parameter (3) Startup time Conditions(1) Min(2) Typ Max(2) Unit low drive capability - 0.5 0.9 medium-low drive capability - - 1 medium-high drive capability - - 1.3 high drive capability - - 1.6 low drive capability 5 - - medium-low drive capability 8 - - medium-high drive capability 15 - - high drive capability 25 - - VDDIOx is stabilized - 2 - µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer DS10009 Rev 7 67/122 96 Electrical characteristics Note: STM32F071x8 STM32F071xB For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 17. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN fLSE Drive programmable amplifier 32.768 kHz resonator OSC32_OUT CL2 MS30253V2 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. 6.3.8 Internal clock source characteristics The parameters given in Table 41 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. The provided curves are characterization results, not tested in production. 68/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics High-speed internal (HSI) RC oscillator Table 41. HSI oscillator characteristics(1) Symbol Parameter fHSI Conditions Min Typ - - Frequency TRIM HSI user trimming step DuCy(HSI) Duty cycle Accuracy of the HSI oscillator ACCHSI - - - (2) 45 IDDA(HSI) Unit 8 - MHz - (2) - % 1 (2) 55 % TA = -40 to 105°C (3) -2.8 - 3.8 TA = -10 to 85°C -1.9(3) - 2.3(3) TA = 0 to 85°C -1.9(3) - 2(3) TA = 0 to 70°C -1.3(3) - 2(3) TA = 0 to 55°C -1(3) - 2(3) -1 - 1 - 2(2) µs 80 100(2) µA TA = 25°C(4) tsu(HSI) Max HSI oscillator startup time - 1(2) HSI oscillator power consumption - - (3) % 1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. 4. Factory calibrated, parts not soldered. Figure 18. HSI oscillator accuracy characterization results for soldered parts 4% MAX MIN 3% 2% 1% 0% -40 -20 0 20 40 60 80 100 T [ºC] 120 A -1% -2% -3% -4% MS30985V4 DS10009 Rev 7 69/122 96 Electrical characteristics STM32F071x8 STM32F071xB High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 42. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Min Typ - - 14 Frequency HSI14 user-trimming step DuCy(HSI14) Duty cycle - - - (2) 45 Accuracy of the HSI14 oscillator (factory calibrated) TA = –10 to 85 °C TA = 25 °C tsu(HSI14) IDDA(HSI14) - MHz (2) - % 1 55 (2) % (3) % (3) - 5.1 –3.2(3) - 3.1(3) % –2.5 - 2.3 (3) % –1 (3) TA = 0 to 70 °C Unit - TA = –40 to 105 °C –4.2 ACCHSI14 Max HSI14 oscillator startup time - 1(2) HSI14 oscillator power consumption - - - 1 % - 2(2) µs 100 150(2) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 19. HSI14 oscillator accuracy characterization results 5% MAX MIN 4% 3% 2% 1% TA [°C] 0% -40 -20 0 20 40 60 80 100 120 - 1% - 2% - 3% -4% -5% MS30986V2 70/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics High-speed internal 48 MHz (HSI48) RC oscillator Table 43. HSI48 oscillator characteristics(1) Symbol fHSI48 TRIM Parameter Conditions Min Typ Max Unit - - 48 - MHz Frequency HSI48 user-trimming step (2) - DuCy(HSI48) Duty cycle 0.09 - 45 TA = –40 to 105 °C ACCHSI48 TA = –10 to 85 °C Accuracy of the HSI48 oscillator (factory calibrated) T = 0 to 70 °C A IDDA(HSI48) 0.14 - % (2) % (3) 0.2 55 (3) - 4.7 % -4.1(3) - 3.7(3) % - (3) % -4.9 (3) -3.8 TA = 25 °C tsu(HSI48) (2) (2) -2.8 3.4 - 2.9 % µs µA HSI48 oscillator startup time - - - 6(2) HSI48 oscillator power consumption - - 312 350(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 20. HSI48 oscillator accuracy characterization results 5% MAX MIN 4% 3% 2% 1% TA [°C] 0% -40 -20 0 20 40 60 80 100 120 - 1% - 2% - 3% -4% -5% MS34206V1 DS10009 Rev 7 71/122 96 Electrical characteristics STM32F071x8 STM32F071xB Low-speed internal (LSI) RC oscillator Table 44. LSI oscillator characteristics(1) Symbol Parameter fLSI Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 1.2 µA Frequency tsu(LSI)(2) IDDA(LSI)(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 45 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 45. PLL characteristics Value Symbol fPLL_IN fPLL_OUT tLOCK JitterPLL Parameter Unit Min Typ Max 1(2) 8.0 24(2) MHz PLL input clock duty cycle (2) 40 - 60(2) % PLL multiplier output clock 16(2) - 48 MHz PLL lock time - - 200(2) µs Cycle-to-cycle jitter - - 300(2) ps PLL input clock(1) 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 6.3.10 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 46. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = - 40 to +105 °C 40 53.5 60 µs Page (2 KB) erase time TA = - 40 to +105 °C 20 - 40 ms tME Mass erase time TA = - 40 to +105 °C 20 - 40 ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. 72/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Table 47. Flash memory endurance and data retention Symbol NEND Parameter Endurance Conditions TA = –40 to +105 °C 1 tRET Data retention kcycle(2) Min(1) Unit 10 kcycle at TA = 85 °C 30 at TA = 105 °C 10 10 kcycle(2) at TA = 55 °C 20 1 kcycle (2) Year 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.11 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 48. They are based on the EMS levels and classes defined in application note AN1709. Table 48. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin fHCLK = 48 MHz, to induce a functional disturbance conforming to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25°C, fHCLK = 48 MHz, conforming to IEC 61000-4-4 4B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. DS10009 Rev 7 73/122 96 Electrical characteristics STM32F071x8 STM32F071xB Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (for example control registers) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 49. EMI characteristics Symbol Parameter SEMI 6.3.12 Conditions Monitored frequency band 0.1 to 30 MHz VDD = 3.6 V, TA = 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with 130 MHz to 1 GHz IEC 61967-2 EMI Level Max vs. [fHSE/fHCLK] Unit 8/48 MHz -2 27 dBµV 17 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the standards stated in the following table. 74/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Table 50. ESD absolute maximum ratings Symbol Ratings Conditions Packages Class Maximum value(1) Unit All 2 2000 V C1 250 C2a 500 VESD(HBM) Electrostatic discharge voltage TA = +25 °C, conforming to (human body model) ANSI/ESDA/JEDEC JS-001 VESD(CDM) Electrostatic discharge voltage TA = +25 °C, conforming to WLCSP49 (charge device model) ANSI/ESDA/JEDEC JS-002 All others V 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 51. Electrical sensitivities Symbol LU 6.3.13 Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 52. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. DS10009 Rev 7 75/122 96 Electrical characteristics STM32F071x8 STM32F071xB Table 52. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ 6.3.14 Injected current on BOOT0 and PF1 pins –0 NA Injected current on PC0 pin –0 +5 Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA –5 NA Injected current on all other FT and FTf pins –5 NA Injected current on all other TTa, TC and RST pins –5 +5 mA I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under the conditions summarized in Table 24: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0). Table 53. I/O static characteristics Symbol VIL VIH Vhys Parameter Low level input voltage High level input voltage Schmitt trigger hysteresis Conditions Min Max - - 0.3 VDDIOx FT and FTf I/O - - 0.475 VDDIOx–0.2(1) BOOT0 - - 0.3 VDDIOx–0.3(1) All I/Os except BOOT0 pin - - 0.3 VDDIOx TC and TTa I/O 0.445 VDDIOx+0.398(1) - - FT and FTf I/O 0.5 VDDIOx +0.2(1) - - BOOT0 0.2 VDDIOx+0.95(1) - - All I/Os except BOOT0 pin 0.7 VDDIOx - - TC and TTa I/O - 200(1) - - (1) - (1) - FT and FTf I/O - DS10009 Rev 7 100 300 Unit +0.07(1) TC and TTa I/O BOOT0 76/122 Typ V V mV STM32F071x8 STM32F071xB Electrical characteristics Table 53. I/O static characteristics (continued) Symbol Ilkg RPU Parameter Input leakage current(2) Weak pull-up equivalent resistor (3) RPD Weak pull-down equivalent resistor(3) CIO I/O pin capacitance Conditions Min Typ Max TC, FT and FTf I/O TTa in digital mode VSS ≤ VIN ≤ VDDIOx - - ± 0.1 TTa in digital mode VDDIOx ≤ VIN ≤ VDDA - - 1 TTa in analog mode VSS ≤ VIN ≤ VDDA - - ± 0.2 FT and FTf I/O VDDIOx ≤ VIN ≤ 5 V - - 10 VIN = VSS 25 40 55 kΩ VIN = - VDDIOx 25 40 55 kΩ - 5 - pF - Unit µA 1. Data based on design simulation only. Not tested in production. 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 52: I/O current injection susceptibility. 3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 21 for standard I/Os, and in Figure 22 for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production. DS10009 Rev 7 77/122 96 Electrical characteristics STM32F071x8 STM32F071xB Figure 21. TC and TTa I/O input characteristics 3 2.5 TESTED RANGE 2 TTL standard requirement ent) irem equ ard r nd S sta (CMO VIN (V) 1.5 V IHmin V DDIOx = 0.7 0.445 VIHmin = VDDIOx + 0.398 UNDEFINED INPUT RANGE 1 3 VDDIOx + VILmax = 0. 0.5 0.07 3 VDDIOx VILmax = 0. TTL standard requirement t) quiremen andard re (CMOS st TESTED RANGE 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDDIOx (V) MSv32130V4 Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics 3 2.5 TESTED RANGE 2 TTL standard requirement ent) irem equ ard r nd S sta (CMO VIN (V) 1.5 V IHmin VIHmin = 1 V DDIOx = 0.7 UNDEFINED INPUT RANGE 0.5 + VDDIOx 0.475 VILmax = 0.5 0.2 VDDIOx - 0.2 3 VDDIOx VILmax = 0. TTL standard requirement t) quiremen andard re (CMOS st TESTED RANGE 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDDIOx (V) MSv32131V4 78/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 21: Voltage characteristics). • The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 21: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified). Table 54. Output voltage characteristics(1) Symbol Parameter VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(4) Output low level voltage for an I/O pin VOH(4) Output high level voltage for an I/O pin VOLFm+(3) Output low level voltage for an FTf I/O pin in Fm+ mode Conditions Min Max CMOS port(2) |IIO| = 8 mA VDDIOx ≥ 2.7 V - 0.4 VDDIOx–0.4 - - 0.4 2.4 - - 1.3 VDDIOx–1.3 - - 0.4 VDDIOx–0.4 - - 0.4 V VDDIOx–0.4 - V |IIO| = 20 mA VDDIOx ≥ 2.7 V - 0.4 V |IIO| = 10 mA - 0.4 V TTL port(2) |IIO| = 8 mA VDDIOx ≥ 2.7 V |IIO| = 20 mA VDDIOx ≥ 2.7 V |IIO| = 6 mA VDDIOx ≥ 2 V |IIO| = 4 mA Unit V V V V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. Data based on characterization results. Not tested in production. 4. Data based on characterization results. Not tested in production. DS10009 Rev 7 79/122 96 Electrical characteristics STM32F071x8 STM32F071xB Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 23 and Table 55, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 55. I/O AC characteristics(1)(2) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions Min Max Unit - 2 MHz - 125 - 125 - 1 - 125 - 125 - 10 - 25 - 25 - 4 - 62.5 - 62.5 CL = 30 pF, VDDIOx ≥ 2.7 V - 50 CL = 50 pF, VDDIOx ≥ 2.7 V - 30 CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V - 20 CL = 50 pF, VDDIOx < 2 V - 10 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V - 12 CL = 50 pF, VDDIOx < 2 V - 25 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V - 12 CL = 50 pF, VDDIOx < 2 V - 25 fmax(IO)out Maximum frequency(3) x0 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx < 2 V fmax(IO)out Maximum frequency(3) 01 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx < 2 V fmax(IO)out Maximum frequency(3) 11 tf(IO)out tr(IO)out 80/122 Output fall time Output rise time DS10009 Rev 7 ns MHz ns MHz ns MHz ns MHz ns STM32F071x8 STM32F071xB Electrical characteristics Table 55. I/O AC characteristics(1)(2) (continued) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions fmax(IO)out Maximum frequency(3) Fm+ configuration (4) - tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time CL = 50 pF, VDDIOx < 2 V tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller - Min Max Unit - 2 MHz - 12 - 34 - 0.5 - 16 - 44 10 - ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design, not tested in production. 3. The maximum frequency is defined in Figure 23. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration. Figure 23. I/O AC characteristics definition 10% 90% 50% 50% 10% 90% t f(IO)out t r(IO)out T Maximum frequency is achieved if (t r + t f ) ≤ 2 T and if the duty cycle is (45-55%) 3 when loaded by CL (see the table I/O AC characteristics definition) MS32132V3 6.3.15 NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating conditions. Table 56. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1) VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) - - DS10009 Rev 7 Unit V 81/122 96 Electrical characteristics STM32F071x8 STM32F071xB Table 56. NRST pin characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ VF(NRST) NRST input filtered pulse - - - 100(1) ns 2.7 < VDD < 3.6 300(3) - - 2.0 < VDD < 3.6 (3) - - VNF(NRST) NRST input not filtered pulse 500 ns 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 3. Data based on design simulation only. Not tested in production. Figure 24. Recommended NRST pin protection External reset circuit(1) VDD RPU NRST(2) Internal reset Filter 0.1 μF MS19878V3 1. The external capacitor protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. 6.3.16 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under the conditions summarized in Table 24: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 57. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC ON - 2.4 - 3.6 V VDDA = 3.3 V - 0.9 - mA - 0.6 - 14 MHz 12-bit resolution 0.043 - 1 MHz IDDA (ADC) Current consumption of the ADC(1) fADC ADC clock frequency fS(2) Sampling rate 82/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Table 57. ADC characteristics (continued) Symbol fTRIG(2) Parameter Conditions Min Typ Max Unit External trigger frequency fADC = 14 MHz, 12-bit resolution - - 823 kHz 12-bit resolution - - 17 1/fADC VAIN Conversion voltage range - 0 - VDDA V RAIN(2) External input impedance See Equation 1 and Table 58 for details - - 50 kΩ RADC(2) Sampling switch resistance - - - 1 kΩ CADC(2) Internal sample and hold capacitor - - - 8 pF tCAL(2)(3) Calibration time WLATENCY(2)(4) tlatr(2) ADC_DR register ready latency fADC = 14 MHz 5.9 µs - 83 1/fADC ADC clock = HSI14 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle fADC = fPCLK/2 = 14 MHz 0.196 µs fADC = fPCLK/2 5.5 1/fPCLK 0.219 µs 10.5 1/fPCLK Trigger conversion latency fADC = fPCLK/4 = 12 MHz fADC = fPCLK/4 JitterADC tS(2) fADC = fHSI14 = 14 MHz 0.179 - 0.250 µs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 µs - 1.5 - 239.5 1/fADC ADC jitter on trigger conversion Sampling time tSTAB(2) Stabilization time tCONV(2) Total conversion time (including sampling time) fADC = 14 MHz, 12-bit resolution 12-bit resolution 14 1 - 1/fADC 18 14 to 252 (tS for sampling +12.5 for successive approximation) µs 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA on IDD should be taken into account. 2. Guaranteed by design, not tested in production. 3. Specified value includes only ADC timing. It does not include the latency of the register access. 4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time. DS10009 Rev 7 83/122 96 Electrical characteristics STM32F071x8 STM32F071xB Equation 1: RAIN max formula TS - – R ADC R AIN < ------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 58. RAIN max for fADC = 14 MHz Ts (cycles) tS (µs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 59. ADC accuracy(1)(2)(3) Symbol Parameter Test conditions Typ Max(4) ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ±0.8 ±1.5 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 3 V to 3.6 V TA = 25 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 2.7 V to 3.6 V TA = - 40 to 105 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 2.4 V to 3.6 V TA = 25 °C 1. ADC DC accuracy values are measured after internal calibration. 84/122 DS10009 Rev 7 Unit LSB LSB LSB STM32F071x8 STM32F071xB Electrical characteristics 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. Figure 25. ADC accuracy characteristics VSSA EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4095 4094 4093 (2) ET (3) 7 (1) 6 5 EO EL 4 3 ED 2 1 LSB IDEAL 1 0 1 2 3 4 5 6 ET = total unajusted error: maximum deviation between the actual and ideal transfer curves. EO = offset error: maximum deviation between the first actual transition and the first ideal one. EG = gain error: deviation between the last ideal transition and the last actual one. ED = differential linearity error: maximum deviation between actual steps and the ideal ones. EL = integral linearity error: maximum deviation between any actual transition and the end point correlation line. 4093 4094 4095 4096 7 VDDA MS19880V2 Figure 26. Typical connection diagram using the ADC VDDA Sample and hold ADC converter VT RAIN (1) VAIN RADC AINx VT Cparasitic (2) IL ±1 μA 12-bit converter CADC MS33900V2 1. Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 12: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. DS10009 Rev 7 85/122 96 Electrical characteristics 6.3.17 STM32F071x8 STM32F071xB DAC electrical specifications Table 60. DAC characteristics Symbol Parameter VDDA Analog supply voltage for DAC ON RLOAD(1) Resistive load with buffer ON RO(1) CLOAD(1) Min Typ Max Unit Comments 2.4 - 3.6 V - 5 - - kΩ Load connected to VSSA 25 - - kΩ Load connected to VDDA Impedance output with buffer OFF - - 15 kΩ When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VDDA = 3.6 V and (0x155) and (0xEAB) at VDDA = 2.4 V DAC_OUT min(1) Lower DAC_OUT voltage with buffer ON 0.2 - - V DAC_OUT max(1) Higher DAC_OUT voltage with buffer ON - - VDDA – 0.2 V DAC_OUT min(1) Lower DAC_OUT voltage with buffer OFF - 0.5 - mV DAC_OUT max(1) Higher DAC_OUT voltage with buffer OFF - - VDDA – 1LSB V - - 600 µA IDDA(1) DAC DC current consumption in quiescent mode(2) With no load, middle code (0x800) on the input - - 700 µA With no load, worst code (0xF1C) on the input Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for the DAC in 10-bit configuration - - ±2 LSB Given for the DAC in 12-bit configuration - - ±1 LSB Given for the DAC in 10-bit configuration - - ±4 LSB Given for the DAC in 12-bit configuration - - ±10 mV - - ±3 LSB Given for the DAC in 10-bit at VDDA = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VDDA = 3.6 V DNL(3) INL(3) Offset(3) 86/122 Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) Offset error (difference between measured value at Code (0x800) and the ideal value = VDDA/2) DS10009 Rev 7 It gives the maximum output excursion of the DAC. - STM32F071x8 STM32F071xB Electrical characteristics Table 60. DAC characteristics (continued) Symbol Min Typ Max Unit Gain error(3) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration Settling time (full scale: for a 10-bit input code transition (3) between the lowest and the tSETTLING highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 tWAKEUP(3) Wakeup time from off state (Setting the ENx bit in the DAC Control register) - 6.5 10 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. PSRR+ (1) Power supply rejection ratio (to VDDA) (static DC measurement - –67 –40 dB No RLOAD, CLOAD = 50 pF Update rate(3) Parameter Comments MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ 1. Guaranteed by design, not tested in production. 2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved. 3. Data based on characterization results, not tested in production. Figure 27. 12-bit buffered / non-buffered DAC Buffered/Non-buffered DAC Buffer (1) RL 12-bit digital to analog converter DAC_OUTx CL MS39009V1 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. DS10009 Rev 7 87/122 96 Electrical characteristics 6.3.18 STM32F071x8 STM32F071xB Comparator characteristics Table 61. Comparator characteristics Min(1) Typ Max(1) Symbol Parameter Conditions VDDA Analog supply voltage - VDD - 3.6 V VIN Comparator input voltage range - 0 - VDDA - VSC VREFINT scaler offset voltage - - ±5 ±10 mV tS_SC VREFINT scaler startup time from power down First VREFINT scaler activation after device power on - - Next activations - - 0.2 Startup time to reach propagation delay specification - - 60 Ultra-low power mode - 2 4.5 Low power mode - 0.7 1.5 Medium power mode - 0.3 0.6 VDDA ≥ 2.7 V - 50 100 VDDA < 2.7 V - 100 240 Ultra-low power mode - 2 7 Low power mode - 0.7 2.1 Medium power mode - 0.3 1.2 VDDA ≥ 2.7 V - 90 180 VDDA < 2.7 V - 110 300 tSTART Comparator startup time Propagation delay for 200 mV step with 100 mV overdrive High speed mode tD Propagation delay for full range step with 100 mV overdrive High speed mode Unit 1000 (2) ms µs µs ns µs ns Voffset Comparator offset error - - ±4 ±10 mV dVoffset/dT Offset error temperature coefficient - - 18 - µV/°C Ultra-low power mode - 1.2 1.5 Low power mode - 3 5 Medium power mode - 10 15 High speed mode - 75 100 IDD(COMP) 88/122 COMP current consumption DS10009 Rev 7 µA STM32F071x8 STM32F071xB Electrical characteristics Table 61. Comparator characteristics (continued) Symbol Parameter No hysteresis (COMPxHYST[1:0]=00) Vhys Min(1) Typ Max(1) Conditions Comparator hysteresis - - High speed mode Low hysteresis (COMPxHYST[1:0]=01) All other power modes 3 High speed mode Medium hysteresis (COMPxHYST[1:0]=10) All other power modes 7 High speed mode High hysteresis (COMPxHYST[1:0]=11) All other power modes 18 5 9 19 0 Unit 13 8 10 26 15 mV 19 49 31 40 1. Data based on characterization results, not tested in production. 2. For more details and conditions see Figure 28: Maximum VREFINT scaler startup time from power down. Figure 28. Maximum VREFINT scaler startup time from power down 2.0V ≤ V DDA < 2.4V 2.4V ≤ V DDA < 3.0V 3.0V ≤ V DDA < 3.6V 1000 tS_SC(max) (ms) 100 10 1 -40 -20 0 20 40 Temperature (°C) DS10009 Rev 7 60 80 100 89/122 96 Electrical characteristics 6.3.19 STM32F071x8 STM32F071xB Temperature sensor characteristics Table 62. TS characteristics Symbol Parameter TL(1) Avg_Slope Min Typ Max Unit - ±1 ±2 °C 4.0 4.3 4.6 mV/°C 1.34 1.43 1.52 V VSENSE linearity with temperature (1) V30 Average slope (2) Voltage at 30 °C (± 5 °C) tSTART(1) ADC_IN16 buffer startup time - - 10 µs tS_temp(1) ADC sampling time when reading the temperature 4 - - µs 1. Guaranteed by design, not tested in production. 2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values. 6.3.20 VBAT monitoring characteristics Table 63. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 2 x 50 - kΩ Q Ratio on VBAT measurement - 2 - - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 4 - - µs Er(1) tS_vbat(1) 1. Guaranteed by design, not tested in production. 6.3.21 Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 64. TIMx characteristics Symbol Parameter tres(TIM) Timer resolution time fEXT Timer external clock frequency on CH1 to CH4 16-bit timer maximum period tMAX_COUNT 32-bit counter maximum period 90/122 Conditions Min Typ Max Unit - - 1 - tTIMxCLK fTIMxCLK = 48 MHz - 20.8 - ns - - fTIMxCLK/2 - MHz fTIMxCLK = 48 MHz - 24 - MHz - - 216 - tTIMxCLK fTIMxCLK = 48 MHz - 1365 - µs - - 232 - tTIMxCLK fTIMxCLK = 48 MHz - 89.48 - s DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Table 65. IWDG min/max timeout period at 40 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 66. WWDG min/max timeout value at 48 MHz (PCLK) 6.3.22 Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 Unit ms Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: DS10009 Rev 7 91/122 96 Electrical characteristics STM32F071x8 STM32F071xB Table 67. I2C analog filter characteristics(1) Symbol tAF Parameter Maximum width of spikes that are suppressed by the analog filter Min Max Unit 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 68 for SPI or in Table 69 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 24: General operating conditions. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 68. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Max Master mode - 18 Slave mode - 18 - 6 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 15 pF tsu(NSS) NSS setup time Slave mode 4Tpclk - th(NSS) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk tdis(SO)(3) Data output disable time Slave mode 0 18 tv(SO) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - Slave mode 25 75 th(SO) th(MO) DuCy(SCK) Data output hold time SPI slave input clock duty cycle Unit MHz ns ns % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 92/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Electrical characteristics Figure 29. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) SCK input tsu(NSS) th(NSS) tw(SCKH) tr(SCK) CPHA=0 CPOL=0 CPHA=0 CPOL=1 ta(SO) tw(SCKL) MISO output tv(SO) th(SO) First bit OUT tf(SCK) Next bits OUT tdis(SO) Last bit OUT th(SI) tsu(SI) MOSI input First bit IN Next bits IN Last bit IN MSv41658V1 Figure 30. SPI timing diagram - slave mode and CPHA = 1 NSS input SCK input tc(SCK) tsu(NSS) tw(SCKH) ta(SO) tw(SCKL) tf(SCK) th(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 MISO output tv(SO) First bit OUT tsu(SI) MOSI input th(SO) Next bits OUT tr(SCK) tdis(SO) Last bit OUT th(SI) First bit IN Next bits IN Last bit IN MSv41659V1 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. DS10009 Rev 7 93/122 96 Electrical characteristics STM32F071x8 STM32F071xB Figure 31. SPI timing diagram - master mode High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) tsu(MI) MISO INP UT tr(SCK) tf(SCK) BIT6 IN MSB IN LSB IN th(MI) MOSI OUTPUT B I T1 OUT MSB OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. Table 69. I2S characteristics(1) Symbol fCK 1/tc(CK) Parameter I2S clock frequency Conditions Master mode (data: 16 bits, Audio frequency = 48 kHz) Slave mode tr(CK) I2S clock rise time tf(CK) I2S clock fall time Capacitive load CL = 15 pF Min Max 1.597 1.601 0 6.5 - 10 - 12 306 - 312 - tw(CKH) I2S tw(CKL) 2 I S clock low time Master fPCLK= 16 MHz, audio frequency = 48 kHz tv(WS) WS valid time Master mode 2 - th(WS) WS hold time Master mode 2 - tsu(WS) WS setup time Slave mode 7 - th(WS) WS hold time Slave mode 0 - Slave mode 25 75 DuCy(SCK) 94/122 I2S clock high time slave input clock duty cycle DS10009 Rev 7 Unit MHz ns % STM32F071x8 STM32F071xB Electrical characteristics Table 69. I2S characteristics(1) (continued) Symbol tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) Parameter Conditions Data input setup time (2) (2) tv(SD_MT)(2) tv(SD_ST)(2) th(SD_MT) th(SD_ST) Data input hold time Data output valid time Data output hold time Min Max Master receiver 6 - Slave receiver 2 - Master receiver 4 - Slave receiver 0.5 - Master transmitter - 4 Slave transmitter - 20 Master transmitter 0 - Slave transmitter 13 - Unit ns 1. Data based on design simulation and/or characterization results, not tested in production. 2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns. Figure 32. I2S slave timing diagram (Philips protocol) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit tsu(SD_SR) SDreceive LSB receive(2) th(SD_ST) Bitn transmit th(SD_SR) MSB receive Bitn receive LSB receive MSv39721V1 1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DS10009 Rev 7 95/122 96 Electrical characteristics STM32F071x8 STM32F071xB Figure 33. I2S master timing diagram (Philips protocol) 90% 10% tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive MSv39720V1 1. Data based on characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 96/122 DS10009 Rev 7 STM32F071x8 STM32F071xB 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 UFBGA100 package information UFBGA100 is a 100-ball, 7 × 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package. Figure 34. UFBGA100 package outline Z Seating plane ddd Z A4 A3 A2 A1 A E1 A1 ball identifier Z e A1 ball index area X E A Z D1 D e Y M 12 1 BOTTOM VIEW Øb (100 balls) Ø eee M Z Y X Ø fff M Z TOP VIEW A0C2_ME_V5 1. Drawing is not to scale. Table 70. UFBGA100 package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 0.600 - - 0.0236 A1 - - 0.110 - - 0.0043 A2 - 0.450 - - 0.0177 - A3 - 0.130 - - 0.0051 0.0094 A4 - 0.320 - - 0.0126 - DS10009 Rev 7 97/122 118 Package information STM32F071x8 STM32F071xB Table 70. UFBGA100 package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. b 0.240 0.290 0.340 0.0094 0.0114 0.0134 D 6.850 7.000 7.150 0.2697 0.2756 0.2815 D1 - 5.500 - - 0.2165 - E 6.850 7.000 7.150 0.2697 0.2756 0.2815 E1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - Z - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 35. Recommended footprint for UFBGA100 package Dpad Dsm A0C2_FP_V1 Table 71. UFBGA100 recommended PCB design rules Dimension 98/122 Recommended values Pitch 0.5 Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the solder mask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm DS10009 Rev 7 STM32F071x8 STM32F071xB Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 36. UFBGA100 package marking example Product identification (1) STM32F 071VBH6 Date code Y WW Pin 1 identifier R Revision code MS39010V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS10009 Rev 7 99/122 118 Package information 7.2 STM32F071x8 STM32F071xB LQFP100 package information LQFP100 is a100-pin, 14 × 14 mm low-profile quad flat package. Figure 37. LQFP100 package outline 0.25 mm c A1 A A2 SEATING PLANE C GAUGE PLANE D A1 K ccc C L D1 L1 D3 51 75 50 100 26 PIN 1 1 IDENTIFICATION E E3 E1 b 76 25 e 1L_ME_V5 1. Drawing is not to scale. Table 72. LQPF100 package mechanical data inches(1) millimeters Symbol 100/122 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 DS10009 Rev 7 STM32F071x8 STM32F071xB Package information Table 72. LQPF100 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 38. Recommended footprint for LQFP100 package 75 76 51 50 0.5 0.3 16.7 14.3 100 26 1.2 1 25 12.3 16.7 ai14906c 1. Dimensions are expressed in millimeters. DS10009 Rev 7 101/122 118 Package information STM32F071x8 STM32F071xB Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 39. LQFP100 package marking example Optional gate mark Product identification (1) STM32F071 VBT6 Revision code R Date code Y WW Pin 1 identifier MS39011V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 102/122 DS10009 Rev 7 STM32F071x8 STM32F071xB LQFP64 package information LQFP64 is a 64-pin, 10 × 10 mm low-profile quad flat package. Figure 40. LQFP64 package outline 0.25 mm GAUGE PLANE c A1 A SEATING PLANE C A2 A1 ccc C D D1 D3 K L L1 33 48 32 49 64 E E1 b E3 7.3 Package information 17 PIN 1 IDENTIFICATION 16 1 e 5W_ME_V3 1. Drawing is not to scale. Table 73. LQFP64 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - DS10009 Rev 7 103/122 118 Package information STM32F071x8 STM32F071xB Table 73. LQFP64 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 41. Recommended footprint for LQFP64 package 48 33 0.3 0.5 49 32 12.7 10.3 10.3 17 64 1.2 16 1 7.8 12.7 ai14909c 1. Dimensions are expressed in millimeters. 104/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 42. LQFP64 package marking example Revision code R Product identification (1) STM32F071 RBT6 Y WW Pin 1 identifier Date code MS39012V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS10009 Rev 7 105/122 118 Package information 7.4 STM32F071x8 STM32F071xB WLCSP49 package information WLCSP49 is a 49-ball, 3.277 × 3.109 mm, 0.4 mm pitch wafer-level chip-scale package. Figure 43. WLCSP49 package outline e1 bbb Z F A1 ball location 7 1 A G Detail A e2 E e G A A2 e Bump side Side view A3 Front view Bump D A1 eee Z b Seating plane E Detail A (rotated 90 °) A1 orientation reference aaa (4X) Wafer back side A0XL_ME_V1 1. Drawing is not to scale. 106/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Package information Table 74. WLCSP49 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - - 0.025 - - 0.0010 - b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 3.242 3.277 3.312 0.1276 0.1290 0.1304 E 3.074 3.109 3.144 0.1210 0.1224 0.1238 e - 0.400 - - 0.0157 - e1 - 2.400 - - 0.0945 - e2 - 2.400 - - 0.0945 - F - 0.4385 - - 0.0173 - G - 0.3545 - - 0.0140 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 A3 (2) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. DS10009 Rev 7 107/122 118 Package information STM32F071x8 STM32F071xB Device marking The following figure gives an example of topside marking orientation versus ball A1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 44. WLCSP49 package marking example Dot Device identification 1 F071CBY Date code Y WW R Revision code MS39013V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 108/122 DS10009 Rev 7 STM32F071x8 STM32F071xB LQFP48 package information LQFP48 is a 48-pin, 7 × 7 mm low-profile quad flat package. Figure 45. LQFP48 package outline SEATING PLANE C c A1 A A2 0.25 mm GAUGE PLANE ccc C K D A1 L D1 L1 D3 36 25 37 24 48 PIN 1 IDENTIFICATION E E1 b E3 7.5 Package information 13 1 12 e 5B_ME_V2 1. Drawing is not to scale. DS10009 Rev 7 109/122 118 Package information STM32F071x8 STM32F071xB Table 75. LQFP48 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 46. Recommended footprint for LQFP48 package 0.50 1.20 9.70 0.30 25 36 37 24 0.20 7.30 5.80 7.30 48 13 12 1 1.20 5.80 9.70 ai14911d 1. Dimensions are expressed in millimeters. 110/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 47. LQFP48 package marking example Product identification (1) STM32 F071CBT6 Pin 1 identifier Y Date code WW R Revision code MS39015V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS10009 Rev 7 111/122 118 Package information 7.6 STM32F071x8 STM32F071xB UFQFPN48 package information UFQFPN48 is a 48-lead, 7 × 7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package. Figure 48. UFQFPN48 package outline Pin 1 identifier laser marking area D A E E T ddd A1 Seating plane b e Detail Y D Exposed pad area Y D2 1 L 48 C 0.500x45° pin1 corner E2 R 0.125 typ. Detail Z 1 Z 48 A0B9_ME_V3 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 112/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Package information Table 76. UFQFPN48 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 49. Recommended footprint for UFQFPN48 package 7.30 6.20 48 37 1 36 5.60 0.20 7.30 5.80 6.20 5.60 0.30 12 25 13 24 0.50 0.55 5.80 0.75 A0B9_FP_V2 1. Dimensions are expressed in millimeters. DS10009 Rev 7 113/122 118 Package information STM32F071x8 STM32F071xB Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 50. UFQFPN48 package marking example Product identification 1 STM32F 071CBU6 Date code Y WW Pin 1 identification Revision code R MS39014V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 114/122 DS10009 Rev 7 STM32F071x8 STM32F071xB 7.7 Package information Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 24: General operating conditions. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ ((VDDIOx – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 77. Package thermal characteristics Symbol ΘJA 7.7.1 Parameter Value Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm 55 Thermal resistance junction-ambient LQFP100 - 14 × 14 mm 42 Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 44 Thermal resistance junction-ambient LQFP48 - 7 × 7 mm 54 Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm 32 Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch 49 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 7.7.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Ordering information. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. DS10009 Rev 7 115/122 118 Package information STM32F071x8 STM32F071xB As applications do not commonly use the STM32F071x8/xB at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax= 175 + 272 = 447 mW Using the values obtained in Table 77 TJmax is calculated as follows: – For LQFP64, 45 °C/W TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Ordering information). Note: With this given PDmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7). Suffix 6: TAmax = TJmax - (45°C/W × 447 mW) = 105-20.115 = 84.885 °C Suffix 7: TAmax = TJmax - (45°C/W × 447 mW) = 125-20.115 = 104.885 °C Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW Using the values obtained in Table 77 TJmax is calculated as follows: – For LQFP64, 45 °C/W TJmax = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C 116/122 DS10009 Rev 7 STM32F071x8 STM32F071xB Package information This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Ordering information) unless we reduce the power dissipation in order to be able to use suffix 6 parts. Refer to Figure 51 to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements. Figure 51. LQFP64 PD max versus TA 700 PD (mW) 600 500 400 Suffix 6 300 Suffix 7 200 100 0 65 75 85 95 105 115 TA (°C) DS10009 Rev 7 125 135 MSv32143V1 117/122 118 Ordering information 8 STM32F071x8 STM32F071xB Ordering information Example: STM32 F 071 R B T 6 x Device family STM32 = Arm-based 32-bit microcontroller Product type F = General-purpose Sub-family 071 = STM32F071xx Pin count C = 48/49 pins R = 64 pins V = 100 pins User code memory size 8 = 64 Kbyte B = 128 Kbyte Package H = UFBGA T = LQFP U = UFQFPN Y = WLCSP Temperature range 6 = –40 to 85 °C 7 = –40 to 105 °C Options xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. 118/122 DS10009 Rev 7 STM32F071x8 STM32F071xB 9 Revision history Revision history Table 78. Document revision history Date Revision 13-Jan-2014 1 Initial draft 2 Added part number STM32F071V8. Changed status of document from “Preliminary data” to “Production data”. Updated “Reset and power management” data in Features. Updated tS_vrefint in Table: Embedded internal reference voltage. Updated VHSEH and VHSEL in Table: High-speed external user clock characteristics. Updated VLSEH and VLSEL in Table: Low-speed external user clock characteristics. Updated tS_temp in Table: TS characteristics. Updated tS_vbat in Table: VBAT monitoring characteristics. Updated Section: I2C interface characteristics. Updated Figure: UFBGA100 package top view and Figure: WLCSP49 package top view. Modified value of ts_sc and removed row VBG in Table: Comparator characteristics. 3 Cover page: – part numbers moved to title and table of part numbers removed – generic product name in the whole document changed to STM32F071x8/xB Section 2: Description: – Figure 1: Block diagram updated Section 3: Functional overview: – Figure 2: Clock tree updated – Section 3.5.4: Low-power modes - added USART2 to comm. peripherals configurable to operate with HSI Section 5: Pinouts and pin descriptions: – Package pinout figures updated (look and feel) – Figure 9: WLCSP49 package pinout - now presented in top view – Figure 4: UFBGA100 package pinout - names of PC14, PC15, PF0, PF1 complemented – Table 14: STM32F071x8/xB pin definitions - pin types corrected for PF0 and PF1 Section 4: Memory mapping: – Figure 3: added information on STM32F071V8 difference versus STM32F071xB map 21-Feb-2014 17-Dec-2015 Changes DS10009 Rev 7 119/122 121 Revision history STM32F071x8 STM32F071xB Table 78. Document revision history (continued) Date 17-Dec-2015 14-Jun-2016 120/122 Revision Changes 3 (continued) Section 6: Electrical characteristics: – Table 21: Voltage characteristics and Table 22: Current characteristics updated – Table 24: General operating conditions - added footnote for VIN of TTa I/O – Table 28: Embedded internal reference voltage: added tSTART parameter and removal of -40°-to-85° condition for VREFINT and associated note – Table 32: Typical and maximum current consumption from the VBAT supply - added max values – Merger of two tables into Table 33: Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal – Table 35: Peripheral current consumption - APB peripheral total current consumption corrected – Table 40: LSE oscillator characteristics (fLSE = 32.768 kHz) - VDD replaced with VDDIOx – Table 41: HSI oscillator characteristics and Figure 18: HSI oscillator accuracy characterization results for soldered parts updated – Table 42: HSI14 oscillator characteristics: changed ACCHSI14 for 0-70° Ta range – Table 46: Flash memory characteristics: removed Vprog – Table 49: EMI characteristics updated – Table 50: ESD absolute maximum ratings updated – Table 53: I/O static characteristics - note removed – Table 57: ADC characteristics - updated some parameter values, test conditions and added footnotes (3) and (4) – Table 60: DAC characteristics - IDDA max value (DAC DC current consumption) updated – Table 61: Comparator characteristics - min value added for VDDA – Figure 28: Maximum VREFINT scaler startup time from power down added – Table 63: VBAT monitoring characteristics: changed the typical value for R parameter – Table 69: I2S characteristics: table reorganized Section 7: Package information: – information on packages generally updated Section 8: Ordering information: – added tray packing to options 4 Added STM32F071C8 part number Section 6: Electrical characteristics: – VREFINT values updated in Table 28: Embedded internal reference voltage – RLOAD - added value for connection to VDD DS10009 Rev 7 STM32F071x8 STM32F071xB Revision history Table 78. Document revision history (continued) Date 15-Sep-2016 10-Jan-2017 27-Mar-2020 Revision Changes 5 Section 6: Electrical characteristics: – Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 updated - modified NSS timing waveforms (among other changes) 6 Section 6: Electrical characteristics: – Table 40: LSE oscillator characteristics (fLSE = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. – Table 28: Embedded internal reference voltage - VREFINT values – Table 60: DAC characteristics - min. RLOAD to VDDA defined – Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: – The name of the section changed from the previous “Part numbering” 7 Section 6: Electrical characteristics: – Table 50: ESD absolute maximum ratings - information on test standards and classes modified – Memory and peripheral mapping moved before pinout information DS10009 Rev 7 121/122 121 STM32F071x8 STM32F071xB 32 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved 122/122 DS10009 Rev 7
STM32F071CBT6 价格&库存

很抱歉,暂时无法提供与“STM32F071CBT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货