STM32F072x8 STM32F072xB
ARM®-based 32-bit MCU, up to 128 KB Flash, crystal-less USB
FS 2.0, CAN, 12 timers, ADC, DAC & comm. interfaces, 2.0 - 3.6 V
Datasheet - production data
Features
)%*$
®
®
• Core: ARM 32-bit Cortex -M0 CPU,
frequency up to 48 MHz
LQFP100 14x14 mm UFQFPN48
LQFP64 10x10 mm
7x7 mm
LQFP48 7x7 mm
• Memories
– 64 to 128 Kbytes of Flash memory
– 16 Kbytes of SRAM with HW parity
UFBGA100
7x7 mm
UFBGA64
5x5 mm
WLCSP49
3.3x3.1 mm
• Calendar RTC with alarm and periodic wakeup
from Stop/Standby
• CRC calculation unit
• Reset and power management
– Digital and I/O supply: VDD = 2.0 V to 3.6 V
– Analog supply: VDDA = VDD to 3.6 V
– Selected I/Os: VDDIO2 = 1.65 V to 3.6 V
– Power-on/Power down reset (POR/PDR)
– Programmable voltage detector (PVD)
– Low power modes: Sleep, Stop, Standby
– VBAT supply for RTC and backup registers
• Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x6 PLL option
– Internal 40 kHz RC oscillator
– Internal 48 MHz oscillator with automatic
trimming based on ext. synchronization
• Up to 87 fast I/Os
– All mappable on external interrupt vectors
– Up to 68 I/Os with 5V tolerant capability
and 19 with independent supply VDDIO2
• Seven-channel DMA controller
• 12 timers
– One 16-bit advanced-control timer for
six-channel PWM output
– One 32-bit and seven 16-bit timers, with up
to four IC/OC, OCN, usable for IR control
decoding or DAC control
– Independent and system watchdog timers
– SysTick timer
• Communication interfaces
– Two I2C interfaces supporting Fast Mode
Plus (1 Mbit/s) with 20 mA current sink, one
supporting SMBus/PMBus and wakeup
– Four USARTs supporting master
synchronous SPI and modem control, two
with ISO7816 interface, LIN, IrDA, auto
baud rate detection and wakeup feature
– Two SPIs (18 Mbit/s) with 4 to 16
programmable bit frames, and with I2S
interface multiplexed
– CAN interface
– USB 2.0 full-speed interface, able to run
from internal 48 MHz oscillator and with
BCD and LPM support
• One 12-bit, 1.0 µs ADC (up to 16 channels)
– Conversion range: 0 to 3.6 V
– Separate analog supply: 2.4 V to 3.6 V
• HDMI CEC wakeup on header reception
• One 12-bit D/A converter (with 2 channels)
• 96-bit unique ID
• Two fast low-power analog comparators with
programmable input and output
• All packages ECOPACK®2
• Up to 24 capacitive sensing channels for
touchkey, linear and rotary touch sensors
• Serial wire debug (SWD)
Table 1. Device summary
Reference
STM32F072x8
STM32F072xB
January 2017
This is information on a product in full production.
DocID025004 Rev 5
Part number
STM32F072C8, STM32F072R8, STM32F072V8,
STM32F072CB, STM32F072RB, STM32F072VB
1/128
www.st.com
Contents
STM32F072x8 STM32F072xB
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
ARM®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14
3.5
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10
2/128
3.5.1
3.9.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 18
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.14
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.2
General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 22
3.14.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.5
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID025004 Rev 5
STM32F072x8 STM32F072xB
3.14.6
Contents
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23
3.16
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17
Universal synchronous/asynchronous receiver/transmitter (USART) . . . 25
3.18
Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 26
3.19
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.21
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.22
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.23
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 54
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 54
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DocID025004 Rev 5
3/128
4
Contents
7
STM32F072x8 STM32F072xB
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.16
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.17
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.18
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.19
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.20
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.21
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.22
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5
WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.6
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.7
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.8.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.8.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 121
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F072x8/xB family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 11
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Capacitive sensing GPIOs available on STM32F072x8/xB devices. . . . . . . . . . . . . . . . . . 20
Number of capacitive sensing channels available
on STM32F072x8/xB devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM32F072x8/xB I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F072x8/xB USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F072x8/xB SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32F072x8/xB pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 41
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 42
Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 43
Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 43
Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 44
Alternate functions available on port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32F072x8/xB peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . 46
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 56
Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 58
Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 59
Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 60
Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DocID025004 Rev 5
5/128
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
6/128
STM32F072x8 STM32F072xB
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
UFBGA64 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
WLCSP49 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DocID025004 Rev 5
STM32F072x8 STM32F072xB
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
UFBGA100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
LQFP100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
UFBGA64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
WLCSP49 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32F072xB memory map
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 71
HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . . . 91
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Recommended footprint for UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
UFBGA100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Recommended footprint for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
LQFP100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
WLCSP49 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
WLCSP49 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
DocID025004 Rev 5
7/128
8
List of figures
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
8/128
STM32F072x8 STM32F072xB
LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP64 PD max versus TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
DocID025004 Rev 5
STM32F072x8 STM32F072xB
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F072x8/xB microcontrollers.
This document should be read in conjunction with the STM32F0xxxx reference manual
(RM0091). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
DocID025004 Rev 5
9/128
27
Description
2
STM32F072x8 STM32F072xB
Description
The STM32F072x8/xB microcontrollers incorporate the high-performance
ARM® Cortex®-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed
embedded memories (up to 128 Kbytes of Flash memory and 16 Kbytes of SRAM), and an
extensive range of enhanced peripherals and I/Os. All devices offer standard
communication interfaces (two I2Cs, two SPI/I2S, one HDMI CEC and four USARTs), one
USB Full-speed device (crystal-less), one CAN, one 12-bit ADC, one 12-bit DAC with two
channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer.
The STM32F072x8/xB microcontrollers operate in the -40 to +85 °C and -40 to +105 °C
temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of
power-saving modes allows the design of low-power applications.
The STM32F072x8/xB microcontrollers include devices in seven different packages ranging
from 48 pins to 100 pins with a die form also available upon request. Depending on the
device chosen, different sets of peripherals are included.
These features make the STM32F072x8/xB microcontrollers suitable for a wide range of
applications such as application control and user interfaces, hand-held equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.
10/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Description
Table 2. STM32F072x8/xB family device features and peripheral counts
Peripheral
STM32F072Cx
Flash memory (Kbyte)
64
128
STM32F072Rx
64
128
SRAM (Kbyte)
Timers
Comm.
interfaces
1 (16-bit)
General
purpose
5 (16-bit)
1 (32-bit)
Basic
2 (16-bit)
SPI [I2S](1)
2 [2]
2C
2
USART
4
CAN
1
USB
1
CEC
1
12-bit ADC
(number of channels)
64
128
16
Advanced
control
I
STM32F072Vx
1
(10 ext. + 3 int.)
1
(16 ext. + 3 int.)
12-bit DAC
(number of channels)
1
(2)
Analog comparator
2
GPIOs
37
51
87
Capacitive sensing
channels
17
18
24
Max. CPU frequency
48 MHz
Operating voltage
2.0 to 3.6 V
Operating temperature
Ambient operating temperature: -40°C to 85°C / -40°C to 105°C
Junction temperature: -40°C to 105°C / -40°C to 125°C
Packages
LQFP48
UFQFPN48
WLCSP49
LQFP64
UFBGA64
LQFP100
UFBGA100
1. The SPI interface can be used either in SPI mode or in I2S audio mode.
DocID025004 Rev 5
11/128
27
Description
STM32F072x8 STM32F072xB
Figure 1. Block diagram
32:(5
6HULDO:LUH
'HEXJ
2EO
)ODVK
PHPRU\
LQWHUIDFH
6:&/.
6:',2
DV$)
19,&
65$0
FRQWUROOHU
%XVPDWUL[
&257(;0&38
I0$; 0+]
92/75(*
9WR9
9''
)ODVK*3/
XSWR.%
ELW
#9''
65$0
.%
#9''$
+6,
+6,
3//&/.
/6,
*3'0$
FKDQQHOV
+6,
9'' WR9
966
9'',22.,1
325
5HVHW
,QW
6833/@
*3,2SRUW'
3(>@
*3,2SRUW(
3)>@3)
3)>@
*3,2SRUW)
JURXSVRI
FKDQQHOV
''
026,6'
0,620&.
6&.&.
166:6DV$)
,1387
,1387
287387
DV$)
$+%
3:07,0(5
FKDQQHOV
FRPSOFKDQQHOV
%5.(75LQSXWDV$)
7,0(5ELW
FK(75DV$)
7,0(5
FK(75DV$)
7,0(5
FKDQQHODV$)
7,0(5
FKDQQHOV
FRPSO%5.DV$)
7,0(5
FKDQQHO
FRPSO%5.DV$)
7,0(5
FKDQQHO
FRPSO%5.DV$)
$3%
(;7,7:.83
86%
3+<
86%
65$0%
:LQGRZ:'*
,5B287DV$)
%[&$1
'%*0&8
63,,6
86$57
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
,&
6&/6'$60%$
P$)0DV$)
,&
6&/6'$
P$)0DV$)
63,,6
6&@
$
069
72/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
High-speed internal 48 MHz (HSI48) RC oscillator
Table 43. HSI48 oscillator characteristics(1)
Symbol
fHSI48
TRIM
Parameter
Conditions
Min
Typ
Max
Unit
-
-
48
-
MHz
Frequency
HSI48 user-trimming step
(2)
-
DuCy(HSI48) Duty cycle
0.09
-
45
TA = –40 to 105 °C
ACCHSI48
TA = –10 to 85 °C
Accuracy of the HSI48
oscillator (factory calibrated) T = 0 to 70 °C
A
IDDA(HSI48)
0.14
-
%
(2)
%
(3)
0.2
55
(3)
-
4.7
%
-4.1(3)
-
3.7(3)
%
-
(3)
%
-4.9
(3)
-3.8
TA = 25 °C
tsu(HSI48)
(2)
(2)
-2.8
3.4
-
2.9
%
µs
µA
HSI48 oscillator startup time
-
-
-
6(2)
HSI48 oscillator power
consumption
-
-
312
350(2)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Figure 21. HSI48 oscillator accuracy characterization results
0$;
0,1
7>&@
$
069
DocID025004 Rev 5
73/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Low-speed internal (LSI) RC oscillator
Table 44. LSI oscillator characteristics(1)
Symbol
Parameter
fLSI
tsu(LSI)
Min
Typ
Max
Unit
30
40
50
kHz
LSI oscillator startup time
-
-
85
µs
LSI oscillator power consumption
-
0.75
1.2
µA
Frequency
(2)
IDDA(LSI)(2)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
6.3.9
PLL characteristics
The parameters given in Table 45 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Table 45. PLL characteristics
Value
Symbol
fPLL_IN
fPLL_OUT
tLOCK
JitterPLL
Parameter
Unit
Min
Typ
Max
1(2)
8.0
24(2)
MHz
PLL input clock duty cycle
(2)
40
-
60(2)
%
PLL multiplier output clock
16(2)
-
48
MHz
PLL lock time
-
-
200(2)
µs
Cycle-to-cycle jitter
-
-
300(2)
ps
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.
6.3.10
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 46. Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA = - 40 to +105 °C
40
53.5
60
µs
Page (2 KB) erase time
TA = - 40 to +105 °C
20
-
40
ms
tME
Mass erase time
TA = - 40 to +105 °C
20
-
40
ms
IDD
Supply current
Write mode
-
-
10
mA
Erase mode
-
-
12
mA
Symbol
tprog
tERASE
Parameter
Conditions
1. Guaranteed by design, not tested in production.
74/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
Table 47. Flash memory endurance and data retention
Symbol
NEND
Parameter
Endurance
Conditions
TA = –40 to +105 °C
1
tRET
Data retention
kcycle(2)
Min(1)
Unit
10
kcycle
at TA = 85 °C
30
at TA = 105 °C
10
10 kcycle(2) at TA = 55 °C
20
1 kcycle
(2)
Year
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
6.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
Table 48. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP100, TA = +25 °C,
Voltage limits to be applied on any I/O pin
fHCLK = 48 MHz,
to induce a functional disturbance
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25°C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-4
4B
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
DocID025004 Rev 5
75/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 49. EMI characteristics
Symbol Parameter
SEMI
6.3.12
Conditions
Monitored
frequency band
0.1 to 30 MHz
VDD = 3.6 V, TA = 25 °C,
30 to 130 MHz
LQFP100 package
Peak level
compliant with
130 MHz to 1 GHz
IEC 61967-2
EMI Level
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
-2
27
dBµV
17
4
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
76/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
Table 50. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Packages
Class
Maximum
value(1)
Unit
All
2
2000
V
C3
250
C4
500
VESD(HBM)
Electrostatic discharge voltage TA = +25 °C, conforming
(human body model)
to JESD22-A114
VESD(CDM)
Electrostatic discharge voltage TA = +25 °C, conforming WLCSP49
(charge device model)
to ANSI/ESD STM5.3.1 All others
V
1. Data based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 51. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 52.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
DocID025004 Rev 5
77/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Table 52. I/O current injection susceptibility
Functional
susceptibility
Symbol
Description
Unit
Negative Positive
injection injection
IINJ
6.3.14
Injected current on BOOT0 and PF1 pins
–0
NA
Injected current on PC0 pin
–0
+5
Injected current on PA11 and PA12 pins with induced
leakage current on adjacent pins less than -1 mA
–5
NA
Injected current on all other FT and FTf pins
–5
NA
Injected current on all other TTa, TC and RST pins
–5
+5
mA
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under the conditions summarized in Table 24: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Table 53. I/O static characteristics
Symbol
VIL
VIH
Vhys
Parameter
Low level input
voltage
High level input
voltage
Schmitt trigger
hysteresis
Conditions
Typ
Max
-
-
0.3 VDDIOx
FT and FTf I/O
-
-
0.475 VDDIOx–0.2(1)
BOOT0
-
-
0.3 VDDIOx–0.3(1)
All I/Os except
BOOT0 pin
-
-
0.3 VDDIOx
TC and TTa I/O
0.445 VDDIOx+0.398(1)
-
-
FT and FTf I/O
0.5 VDDIOx
+0.2(1)
-
-
BOOT0
0.2 VDDIOx+0.95(1)
-
-
All I/Os except
BOOT0 pin
0.7 VDDIOx
-
-
TC and TTa I/O
-
200(1)
-
-
(1)
-
(1)
-
FT and FTf I/O
-
DocID025004 Rev 5
100
300
Unit
+0.07(1)
TC and TTa I/O
BOOT0
78/128
Min
V
V
mV
STM32F072x8 STM32F072xB
Electrical characteristics
Table 53. I/O static characteristics (continued)
Symbol
Ilkg
RPU
Parameter
Input leakage
current(2)
Weak pull-up
equivalent resistor
(3)
RPD
Weak pull-down
equivalent
resistor(3)
CIO
I/O pin capacitance
Conditions
Min
Typ
Max
TC, FT and FTf I/O
TTa in digital mode
VSS ≤ VIN ≤ VDDIOx
-
-
± 0.1
TTa in digital mode
VDDIOx ≤ VIN ≤ VDDA
-
-
1
TTa in analog mode
VSS ≤ VIN ≤ VDDA
-
-
± 0.2
FT and FTf I/O
VDDIOx ≤ VIN ≤ 5 V
-
-
10
VIN = VSS
25
40
55
kΩ
VIN = - VDDIOx
25
40
55
kΩ
-
5
-
pF
-
Unit
µA
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 52:
I/O current injection susceptibility.
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 22 for standard I/Os, and in Figure 23 for
5 V-tolerant I/Os. The following curves are design simulation results, not tested in
production.
DocID025004 Rev 5
79/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Figure 22. TC and TTa I/O input characteristics
7(67('5$1*(
77/VWDQGDUGUHTXLUHPHQW
HQW
LUHP
HTX
DUGU
QG
6VWD
9,19
9
&02
[
'',2
9 ,+PLQ
81'(),1(',13875$1*(
',2[
9'
9,+PLQ
9'',2[
9,/PD[
XLUHPHQW
WDQGDUGUHT
V
6
2
0
&
9'',2[
9,/PD[
77/VWDQGDUGUHTXLUHPHQW
7(67('5$1*(
9'',2[9
06Y9
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics
7(67('5$1*(
77/VWDQGDUGUHTXLUHPHQW
HQW
LUHP
9
9 ,+PLQ
'',2
9
9,+PLQ
[
81'(),1(',13875$1*(
'',2[
9
9,/PD[
QG
6VWD
&02
9,19
HTX
DUGU
'',2[
77/VWDQGDUGUHTXLUHPHQW
XLUHPHQW
QGDUGUHT
WD
&026V
[
9'',2
9,/PD[
7(67('5$1*(
9'',2[9
06Y9
80/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 21: Voltage characteristics).
•
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 21: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 54. Output voltage characteristics(1)
Symbol
Parameter
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(4)
Output low level voltage for an I/O pin
VOH(4)
Output high level voltage for an I/O pin
VOLFm+(3)
Output low level voltage for an FTf I/O pin in
Fm+ mode
Conditions
Min
Max
CMOS port(2)
|IIO| = 8 mA
VDDIOx ≥ 2.7 V
-
0.4
VDDIOx–0.4
-
-
0.4
2.4
-
-
1.3
VDDIOx–1.3
-
-
0.4
VDDIOx–0.4
-
-
0.4
V
VDDIOx–0.4
-
V
|IIO| = 20 mA
VDDIOx ≥ 2.7 V
-
0.4
V
|IIO| = 10 mA
-
0.4
V
TTL port(2)
|IIO| = 8 mA
VDDIOx ≥ 2.7 V
|IIO| = 20 mA
VDDIOx ≥ 2.7 V
|IIO| = 6 mA
VDDIOx ≥ 2 V
|IIO| = 4 mA
Unit
V
V
V
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Data based on characterization results. Not tested in production.
4. Data based on characterization results. Not tested in production.
DocID025004 Rev 5
81/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 24 and
Table 55, respectively. Unless otherwise specified, the parameters given are derived from
tests performed under the ambient temperature and supply voltage conditions summarized
in Table 24: General operating conditions.
Table 55. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
Conditions
Min
Max
Unit
-
2
MHz
-
125
-
125
-
1
-
125
-
125
-
10
-
25
-
25
-
4
-
62.5
-
62.5
CL = 30 pF, VDDIOx ≥ 2.7 V
-
50
CL = 50 pF, VDDIOx ≥ 2.7 V
-
30
CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V
-
20
CL = 50 pF, VDDIOx < 2 V
-
10
CL = 30 pF, VDDIOx ≥ 2.7 V
-
5
CL = 50 pF, VDDIOx ≥ 2.7 V
-
8
CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V
-
12
CL = 50 pF, VDDIOx < 2 V
-
25
CL = 30 pF, VDDIOx ≥ 2.7 V
-
5
CL = 50 pF, VDDIOx ≥ 2.7 V
-
8
CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V
-
12
CL = 50 pF, VDDIOx < 2 V
-
25
fmax(IO)out Maximum frequency(3)
x0
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx ≥ 2 V
fmax(IO)out Maximum frequency(3)
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx < 2 V
fmax(IO)out Maximum frequency(3)
01
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx ≥ 2 V
fmax(IO)out Maximum frequency(3)
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx < 2 V
fmax(IO)out Maximum frequency(3)
11
tf(IO)out
tr(IO)out
82/128
Output fall time
Output rise time
DocID025004 Rev 5
ns
MHz
ns
MHz
ns
MHz
ns
MHz
ns
STM32F072x8 STM32F072xB
Electrical characteristics
Table 55. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
Fm+
configuration
(4)
-
tf(IO)out
Output fall time
tr(IO)out
Output rise time
CL = 50 pF, VDDIOx ≥ 2 V
fmax(IO)out Maximum frequency(3)
tf(IO)out
Output fall time
CL = 50 pF, VDDIOx < 2 V
tr(IO)out
Output rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
-
Min
Max
Unit
-
2
MHz
-
12
-
34
-
0.5
-
16
-
44
10
-
ns
MHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a
description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 24.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091
for a detailed description of Fm+ I/O configuration.
Figure 24. I/O AC characteristics definition
W I,2RXW
W U,2RXW
7
7DQGLIWKHGXW\F\FOHLV
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW
U I
ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ
069
6.3.15
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions.
Table 56. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input low level voltage
-
-
-
0.3 VDD+0.07(1)
VIH(NRST)
NRST input high level voltage
-
0.445 VDD+0.398(1)
-
-
DocID025004 Rev 5
Unit
V
83/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Table 56. NRST pin characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
-
-
200
-
mV
RPU
Weak pull-up equivalent
resistor(2)
VIN = VSS
25
40
55
kΩ
VF(NRST)
NRST input filtered pulse
-
-
-
100(1)
ns
2.7 < VDD < 3.6
300(3)
-
-
2.0 < VDD < 3.6
(3)
-
-
VNF(NRST) NRST input not filtered pulse
500
ns
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
Figure 25. Recommended NRST pin protection
([WHUQDO
UHVHWFLUFXLW
9''
538
1567
,QWHUQDOUHVHW
)LOWHU
)
069
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
6.3.16
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the conditions summarized in Table 24: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 57. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Analog supply voltage for
ADC ON
-
2.4
-
3.6
V
VDDA = 3.3 V
-
0.9
-
mA
-
0.6
-
14
MHz
12-bit resolution
0.043
-
1
MHz
IDDA (ADC)
Current consumption of
the ADC(1)
fADC
ADC clock frequency
fS(2)
Sampling rate
84/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
Table 57. ADC characteristics (continued)
Symbol
fTRIG(2)
Parameter
Conditions
Min
Typ
Max
Unit
External trigger frequency
fADC = 14 MHz,
12-bit resolution
-
-
823
kHz
12-bit resolution
-
-
17
1/fADC
VAIN
Conversion voltage range
-
0
-
VDDA
V
RAIN(2)
External input impedance
See Equation 1 and
Table 58 for details
-
-
50
kΩ
RADC(2)
Sampling switch
resistance
-
-
-
1
kΩ
CADC(2)
Internal sample and hold
capacitor
-
-
-
8
pF
tCAL(2)(3)
Calibration time
WLATENCY(2)(4)
tlatr(2)
ADC_DR register ready
latency
fADC = 14 MHz
5.9
µs
-
83
1/fADC
ADC clock = HSI14
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2
-
4.5
-
fPCLK
cycle
ADC clock = PCLK/4
-
8.5
-
fPCLK
cycle
fADC = fPCLK/2 = 14 MHz
0.196
µs
fADC = fPCLK/2
5.5
1/fPCLK
0.219
µs
10.5
1/fPCLK
Trigger conversion latency fADC = fPCLK/4 = 12 MHz
fADC = fPCLK/4
JitterADC
tS(2)
fADC = fHSI14 = 14 MHz
0.179
-
0.250
µs
fADC = fHSI14
-
1
-
1/fHSI14
fADC = 14 MHz
0.107
-
17.1
µs
-
1.5
-
239.5
1/fADC
ADC jitter on trigger
conversion
Sampling time
tSTAB(2)
Stabilization time
tCONV(2)
Total conversion time
(including sampling time)
fADC = 14 MHz,
12-bit resolution
12-bit resolution
14
1
-
1/fADC
18
14 to 252 (tS for sampling +12.5 for
successive approximation)
µs
1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
3. Specified value includes only ADC timing. It does not include the latency of the register access.
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.
DocID025004 Rev 5
85/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Equation 1: RAIN max formula
TS
- – R ADC
R AIN < --------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 58. RAIN max for fADC = 14 MHz
Ts (cycles)
tS (µs)
RAIN max (kΩ)(1)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design, not tested in production.
Table 59. ADC accuracy(1)(2)(3)
Symbol
Parameter
Test conditions
Typ
Max(4)
±1.3
±2
±1
±1.5
±0.5
±1.5
±0.7
±1
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
±0.8
±1.5
ET
Total unadjusted error
±3.3
±4
EO
Offset error
±1.9
±2.8
EG
Gain error
±2.8
±3
ED
Differential linearity error
±0.7
±1.3
EL
Integral linearity error
±1.2
±1.7
ET
Total unadjusted error
±3.3
±4
EO
Offset error
±1.9
±2.8
EG
Gain error
±2.8
±3
ED
Differential linearity error
±0.7
±1.3
EL
Integral linearity error
±1.2
±1.7
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 kΩ
VDDA = 3 V to 3.6 V
TA = 25 °C
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 kΩ
VDDA = 2.7 V to 3.6 V
TA = - 40 to 105 °C
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 kΩ
VDDA = 2.4 V to 3.6 V
TA = 25 °C
1. ADC DC accuracy values are measured after internal calibration.
86/128
DocID025004 Rev 5
Unit
LSB
LSB
LSB
STM32F072x8 STM32F072xB
Electrical characteristics
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
Figure 26. ADC accuracy characteristics
966$
(*
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH
(7
(2
(/
('
/6%,'($/
(7 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW
LGHDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW
LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP
GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
9''$
069
Figure 27. Typical connection diagram using the ADC
9''$
6DPSOHDQGKROG$'&
FRQYHUWHU
97
5$,1
9$,1
5$'&
$,1[
97
&SDUDVLWLF
,/ $
ELW
FRQYHUWHU
&$'&
069
1. Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
DocID025004 Rev 5
87/128
99
Electrical characteristics
6.3.17
STM32F072x8 STM32F072xB
DAC electrical specifications
Table 60. DAC characteristics
Symbol
Parameter
VDDA
Analog supply voltage for
DAC ON
RLOAD(1)
Resistive load with buffer
ON
RO(1)
CLOAD(1)
Min
Typ
Max
Unit
Comments
2.4
-
3.6
V
-
5
-
-
kΩ
Load connected to VSSA
25
-
-
kΩ
Load connected to VDDA
Impedance output with
buffer OFF
-
-
15
kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a
1% accuracy is 1.5 MΩ
Capacitive load
-
-
50
pF
Maximum capacitive load at
DAC_OUT pin (when the buffer
is ON).
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VDDA = 3.6 V and (0x155) and
(0xEAB) at VDDA = 2.4 V
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer ON
0.2
-
-
V
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer ON
-
-
VDDA – 0.2
V
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer OFF
-
0.5
-
mV
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer OFF
-
-
VDDA – 1LSB
V
-
-
600
µA
IDDA(1)
DAC DC current
consumption in quiescent
mode(2)
With no load, middle code
(0x800) on the input
-
-
700
µA
With no load, worst code
(0xF1C) on the input
Differential non linearity
Difference between two
consecutive code-1LSB)
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration
-
-
±2
LSB
Given for the DAC in 12-bit
configuration
-
-
±1
LSB
Given for the DAC in 10-bit
configuration
-
-
±4
LSB
Given for the DAC in 12-bit
configuration
-
-
±10
mV
-
-
±3
LSB
Given for the DAC in 10-bit at
VDDA = 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at
VDDA = 3.6 V
DNL(3)
INL(3)
Offset(3)
88/128
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VDDA/2)
DocID025004 Rev 5
It gives the maximum output
excursion of the DAC.
-
STM32F072x8 STM32F072xB
Electrical characteristics
Table 60. DAC characteristics (continued)
Symbol
Min
Typ
Max
Unit
Gain error(3) Gain error
-
-
±0.5
%
Given for the DAC in 12-bit
configuration
Settling time (full scale: for a
10-bit input code transition
(3) between the lowest and the
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±1LSB
-
3
4
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
tWAKEUP(3)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (1)
Power supply rejection ratio
(to VDDA) (static DC
measurement
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
Update
rate(3)
Parameter
Comments
MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
1. Guaranteed by design, not tested in production.
2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved.
3. Data based on characterization results, not tested in production.
Figure 28. 12-bit buffered / non-buffered DAC
%XIIHUHG1RQEXIIHUHG'$&
%XIIHU
5/
ELWGLJLWDO
WRDQDORJ
FRQYHUWHU
'$&B287[
&/
069
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
DocID025004 Rev 5
89/128
99
Electrical characteristics
6.3.18
STM32F072x8 STM32F072xB
Comparator characteristics
Table 61. Comparator characteristics
Symbol
Parameter
Conditions
Min(1) Typ Max(1)
Unit
Analog supply voltage
-
VDD
-
3.6
V
VIN
Comparator input
voltage range
-
0
-
VDDA
-
VSC
VREFINT scaler offset
voltage
-
-
±5
±10
mV
tS_SC
VREFINT scaler startup
time from power down
First VREFINT scaler activation after device
power on
-
-
Next activations
-
-
0.2
Startup time to reach propagation delay
specification
-
-
60
Ultra-low power mode
-
2
4.5
Low power mode
-
0.7
1.5
Medium power mode
-
0.3
0.6
VDDA ≥ 2.7 V
-
50
100
VDDA < 2.7 V
-
100
240
Ultra-low power mode
-
2
7
Low power mode
-
0.7
2.1
Medium power mode
-
0.3
1.2
VDDA ≥ 2.7 V
-
90
180
VDDA < 2.7 V
-
110
300
VDDA
tSTART
Comparator startup
time
Propagation delay for
200 mV step with
100 mV overdrive
High speed mode
tD
Propagation delay for
full range step with
100 mV overdrive
High speed mode
1000
(2)
ms
µs
µs
ns
µs
ns
Voffset
Comparator offset error
-
-
±4
±10
mV
dVoffset/dT
Offset error
temperature coefficient
-
-
18
-
µV/°C
Ultra-low power mode
-
1.2
1.5
Low power mode
-
3
5
Medium power mode
-
10
15
High speed mode
-
75
100
IDD(COMP)
90/128
COMP current
consumption
DocID025004 Rev 5
µA
STM32F072x8 STM32F072xB
Electrical characteristics
Table 61. Comparator characteristics (continued)
Symbol
Parameter
No hysteresis
(COMPxHYST[1:0]=00)
Vhys
Min(1) Typ Max(1)
Conditions
Comparator hysteresis
-
-
High speed mode
Low hysteresis
(COMPxHYST[1:0]=01) All other power
modes
3
High speed mode
Medium hysteresis
(COMPxHYST[1:0]=10) All other power
modes
7
High speed mode
High hysteresis
(COMPxHYST[1:0]=11) All other power
modes
18
5
9
19
0
Unit
13
8
10
26
15
mV
19
49
31
40
1. Data based on characterization results, not tested in production.
2. For more details and conditions see Figure 29: Maximum VREFINT scaler startup time from power down.
Figure 29. Maximum VREFINT scaler startup time from power down
Ϯ͘Ϭsчs фϮ͘ϰs
Ϯ͘ϰsчs фϯ͘Ϭs
ϯ͘Ϭsчs фϯ͘ϲs
ϭϬϬϬ
ƚ^ͺ^;ŵĂdžͿ ;ŵƐͿ
ϭϬϬ
ϭϬ
ϭ
ͲϰϬ
ͲϮϬ
Ϭ
ϮϬ
ϰϬ
dĞŵƉĞƌĂƚƵƌĞ;ΣͿ
DocID025004 Rev 5
ϲϬ
ϴϬ
91/128
99
Electrical characteristics
6.3.19
STM32F072x8 STM32F072xB
Temperature sensor characteristics
Table 62. TS characteristics
Symbol
Parameter
TL(1)
Avg_Slope
Min
Typ
Max
Unit
-
±1
±2
°C
4.0
4.3
4.6
mV/°C
1.34
1.43
1.52
V
VSENSE linearity with temperature
(1)
V30
Average slope
(2)
Voltage at 30 °C (± 5 °C)
tSTART(1)
ADC_IN16 buffer startup time
-
-
10
µs
tS_temp(1)
ADC sampling time when reading the
temperature
4
-
-
µs
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:
Temperature sensor calibration values.
6.3.20
VBAT monitoring characteristics
Table 63. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT
-
2 x 50
-
kΩ
Q
Ratio on VBAT measurement
-
2
-
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
4
-
-
µs
Er(1)
tS_vbat(1)
1. Guaranteed by design, not tested in production.
6.3.21
Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 64. TIMx characteristics
Symbol
Parameter
tres(TIM)
Timer resolution time
fEXT
Timer external clock
frequency on CH1 to
CH4
16-bit timer maximum
period
tMAX_COUNT
32-bit counter
maximum period
92/128
Conditions
Min
Typ
Max
Unit
-
-
1
-
tTIMxCLK
fTIMxCLK = 48 MHz
-
20.8
-
ns
-
-
fTIMxCLK/2
-
MHz
fTIMxCLK = 48 MHz
-
24
-
MHz
-
-
216
-
tTIMxCLK
fTIMxCLK = 48 MHz
-
1365
-
µs
-
-
232
-
tTIMxCLK
fTIMxCLK = 48 MHz
-
89.48
-
s
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
Table 65. IWDG min/max timeout period at 40 kHz (LSI)(1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
6 or 7
6.4
26214.4
Unit
ms
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Table 66. WWDG min/max timeout value at 48 MHz (PCLK)
6.3.22
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.0853
5.4613
2
1
0.1706
10.9226
4
2
0.3413
21.8453
8
3
0.6826
43.6906
Unit
ms
Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2Cx peripheral is
properly configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
DocID025004 Rev 5
93/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Table 67. I2C analog filter characteristics(1)
Symbol
tAF
Parameter
Maximum width of spikes that are
suppressed by the analog filter
Min
Max
Unit
50(2)
260(3)
ns
1. Guaranteed by design, not tested in production.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 68 for SPI or in Table 69 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and
supply voltage conditions summarized in Table 24: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 68. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Max
Master mode
-
18
Slave mode
-
18
-
6
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 15 pF
tsu(NSS)
NSS setup time
Slave mode
4Tpclk
-
th(NSS)
NSS hold time
Slave mode
2Tpclk + 10
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
Tpclk/2 -2
Tpclk/2 + 1
Master mode
4
-
Slave mode
5
-
Master mode
4
-
Slave mode
5
-
Data output access time
Slave mode, fPCLK = 20 MHz
0
3Tpclk
Data output disable time
Slave mode
0
18
tv(SO)
Data output valid time
Slave mode (after enable edge)
-
22.5
tv(MO)
Data output valid time
Master mode (after enable edge)
-
6
Slave mode (after enable edge)
11.5
-
Master mode (after enable edge)
2
-
Slave mode
25
75
tw(SCKH)
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
ta(SO)(2)
tdis(SO)
(3)
th(SO)
th(MO)
DuCy(SCK)
Data input setup time
Data input hold time
Data output hold time
SPI slave input clock
duty cycle
Unit
MHz
ns
ns
%
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
94/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
Figure 30. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
WF6&.
6&.LQSXW
WVX166
WK166
WZ6&.+
WU6&.
&3+$
&32/
&3+$
&32/
WD62
WZ6&./
0,62RXWSXW
WY62
WK62
)LUVWELW287
WI6&.
1H[WELWV287
WGLV62
/DVWELW287
WK6,
WVX6,
026,LQSXW
)LUVWELW,1
1H[WELWV,1
/DVWELW,1
06Y9
Figure 31. SPI timing diagram - slave mode and CPHA = 1
166LQSXW
6&.LQSXW
WF6&.
WVX166
WZ6&.+
WD62
WZ6&./
WI6&.
WK166
&3+$
&32/
&3+$
&32/
0,62RXWSXW
WY62
)LUVWELW287
WVX6,
026,LQSXW
WK62
1H[WELWV287
WU6&.
WGLV62
/DVWELW287
WK6,
)LUVWELW,1
1H[WELWV,1
/DVWELW,1
06Y9
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID025004 Rev 5
95/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Figure 32. SPI timing diagram - master mode
+LJK
166LQSXW
6&.2XWSXW
&3+$
&32/
6&.2XWSXW
WF6&.
&3+$
&32/
&3+$
&32/
&3+$
&32/
WZ6&.+
WZ6&./
WVX0,
0,62
,13 87
WU6&.
WI6&.
%,7,1
06%,1
/6%,1
WK0,
026,
287387
% , 7287
06%287
WY02
/6%287
WK02
DLF
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
Table 69. I2S characteristics(1)
Symbol
fCK
1/tc(CK)
Parameter
I2S
clock frequency
Conditions
Master mode (data: 16 bits, Audio
frequency = 48 kHz)
Slave mode
tr(CK)
I2S clock rise time
tf(CK)
I2S clock fall time
Capacitive load CL = 15 pF
Min
Max
1.597
1.601
0
6.5
-
10
-
12
306
-
312
-
tw(CKH)
I2S
tw(CKL)
2
I S clock low time
Master fPCLK= 16 MHz, audio
frequency = 48 kHz
tv(WS)
WS valid time
Master mode
2
-
th(WS)
WS hold time
Master mode
2
-
tsu(WS)
WS setup time
Slave mode
7
-
th(WS)
WS hold time
Slave mode
0
-
Slave mode
25
75
DuCy(SCK)
96/128
I2S
clock high time
slave input clock duty
cycle
DocID025004 Rev 5
Unit
MHz
ns
%
STM32F072x8 STM32F072xB
Electrical characteristics
Table 69. I2S characteristics(1) (continued)
Symbol
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
Parameter
Conditions
Data input setup time
(2)
(2)
tv(SD_MT)(2)
tv(SD_ST)(2)
th(SD_MT)
th(SD_ST)
Data input hold time
Data output valid time
Data output hold time
Min
Max
Master receiver
6
-
Slave receiver
2
-
Master receiver
4
-
Slave receiver
0.5
-
Master transmitter
-
4
Slave transmitter
-
20
Master transmitter
0
-
Slave transmitter
13
-
Unit
ns
1. Data based on design simulation and/or characterization results, not tested in production.
2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns.
Figure 33. I2S slave timing diagram (Philips protocol)
&.,QSXW
WF&.
&32/
&32/
WZ&.+
WK:6
WZ&./
:6LQSXW
WY6'B67
WVX:6
6'WUDQVPLW
/6%WUDQVPLW
06%WUDQVPLW
WVX6'B65
6'UHFHLYH
/6%UHFHLYH
WK6'B67
%LWQWUDQVPLW
WK6'B65
06%UHFHLYH
%LWQUHFHLYH
/6%UHFHLYH
06Y9
1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DocID025004 Rev 5
97/128
99
Electrical characteristics
STM32F072x8 STM32F072xB
Figure 34. I2S master timing diagram (Philips protocol)
WI&.
WU&.
&.RXWSXW
WF&.
&32/
WZ&.+
&32/
WY:6
WK:6
WZ&./
:6RXWSXW
WY6'B07
6'WUDQVPLW
/6%WUDQVPLW
06%WUDQVPLW
/6%UHFHLYH
/6%WUDQVPLW
WK6'B05
WVX6'B05
6'UHFHLYH
%LWQWUDQVPLW
WK6'B07
06%UHFHLYH
%LWQUHFHLYH
/6%UHFHLYH
06Y9
1. Data based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
98/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Electrical characteristics
USB characteristics
The STM32F072x8/xB USB interface is fully compliant with the USB specification version
2.0 and is USB-IF certified (for Full-speed device operation).
Table 70. USB electrical characteristics
Symbol
Conditions
Min.
Typ
Max.
Unit
USB transceiver operating
voltage
-
3.0(1)
-
3.6
V
tSTARTUP(2)
USB transceiver startup time
-
-
-
1.0
µs
RPUI
Embedded USB_DP pull-up
value during idle
-
1.1
1.26
1.5
RPUR
Embedded USB_DP pull-up
value during reception
-
ZDRV(2)
Output driver impedance(3)
VDDIO2
Parameter
kΩ
Driving high
and low
2.0
2.26
2.6
28
40
44
Ω
1. The STM32F072x8/xB USB functionality is ensured down to 2.7 V but not the full USB electrical
characteristics which are degraded in the 2.7-to-3.0 V voltage range.
2. Guaranteed by design, not tested in production.
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
DocID025004 Rev 5
99/128
99
Package information
7
STM32F072x8 STM32F072xB
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
UFBGA100 package information
UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array
package.
Figure 35. UFBGA100 package outline
= 6HDWLQJSODQH
GGG =
$ $ $
$ $
(
$EDOO $EDOO
LGHQWLILHU LQGH[DUHD
=
H
;
(
$
=
'
'
H
<
0
%277209,(:
EEDOOV
HHH 0 = < ;
III 0 =
7239,(:
$&B0(B9
1. Drawing is not to scale.
Table 71. UFBGA100 package mechanical data
inches(1)
millimeters
Symbol
100/128
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
0.600
-
-
0.0236
A1
-
-
0.110
-
-
0.0043
A2
-
0.450
-
-
0.0177
-
A3
-
0.130
-
-
0.0051
0.0094
A4
-
0.320
-
-
0.0126
-
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Package information
Table 71. UFBGA100 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
b
0.240
0.290
0.340
0.0094
0.0114
0.0134
D
6.850
7.000
7.150
0.2697
0.2756
0.2815
D1
-
5.500
-
-
0.2165
-
E
6.850
7.000
7.150
0.2697
0.2756
0.2815
E1
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
Z
-
0.750
-
-
0.0295
-
ddd
-
-
0.080
-
-
0.0031
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 36. Recommended footprint for UFBGA100 package
'SDG
'VP
$&B)3B9
Table 72. UFBGA100 recommended PCB design rules
Dimension
Recommended values
Pitch
0.5
Dpad
0.280 mm
Dsm
0.370 mm typ. (depends on the solder mask
registration tolerance)
Stencil opening
0.280 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
DocID025004 Rev 5
101/128
124
Package information
STM32F072x8 STM32F072xB
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 37. UFBGA100 package marking example
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
670)
;ϭͿ
9%+
ĂƚĞĐŽĚĞ
< ::
WŝŶϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
5
ZĞǀŝƐŝŽŶĐŽĚĞ
D^ϯϱϱϴϱsϭ
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
102/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
LQFP100 package information
LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.
Figure 38. LQFP100 package outline
PP
F
$
$
6($7,1*3/$1(
&
$
*$8*(3/$1(
'
$
.
FFF &
/
'
/
'
3,1
,'(17,),&$7,21
(
(
(
E
7.2
Package information
H
/B0(B9
1. Drawing is not to scale.
Table 73. LQPF100 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
DocID025004 Rev 5
103/128
124
Package information
STM32F072x8 STM32F072xB
Table 73. LQPF100 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 39. Recommended footprint for LQFP100 package
DLF
1. Dimensions are expressed in millimeters.
104/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 40. LQFP100 package marking example
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
670)
9%7
5
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
< ::
WŝŶϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
D^ϯϱϱϴϲsϭ
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID025004 Rev 5
105/128
124
Package information
7.3
STM32F072x8 STM32F072xB
UFBGA64 package information
UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array
package.
Figure 41. UFBGA64 package outline
= 6HDWLQJSODQH
GGG =
$
$ $
$ $
(
H
$EDOO
$EDOO
LGHQWLILHU LQGH[DUHD
)
;
(
$
)
'
'
H
<
+
%277209,(:
EEDOOV
HHH 0 = < ;
III 0 =
7239,(:
$B0(B9
1. Drawing is not to scale.
Table 74. UFBGA64 package mechanical data
inches(1)
millimeters
Symbol
106/128
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A3
0.080
0.130
0.180
0.0031
0.0051
0.0071
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.170
0.280
0.330
0.0067
0.0110
0.0130
D
4.850
5.000
5.150
0.1909
0.1969
0.2028
D1
3.450
3.500
3.550
0.1358
0.1378
0.1398
E
4.850
5.000
5.150
0.1909
0.1969
0.2028
E1
3.450
3.500
3.550
0.1358
0.1378
0.1398
e
-
0.500
-
-
0.0197
-
F
0.700
0.750
0.800
0.0276
0.0295
0.0315
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Package information
Table 74. UFBGA64 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
ddd
-
-
0.080
-
-
0.0031
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 42. Recommended footprint for UFBGA64 package
'SDG
'VP
$B)3B9
Table 75. UFBGA64 recommended PCB design rules
Dimension
Recommended values
Pitch
0.5
Dpad
0.280 mm
Dsm
0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.280 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
Pad trace width
0.100 mm
DocID025004 Rev 5
107/128
124
Package information
STM32F072x8 STM32F072xB
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 43. UFBGA64 package marking example
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
(65%+
ĂƚĞĐŽĚĞ
< ::
5
ĂůůϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
ZĞǀŝƐŝŽŶĐŽĚĞ
D^ϯϱϱϴϳsϭ
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
108/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
LQFP64 package information
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 44. LQFP64 package outline
PP
*$8*(3/$1(
F
$
$
6($7,1*3/$1(
&
$
$
FFF &
'
'
'
.
/
/
(
(
E
(
7.4
Package information
3,1
,'(17,),&$7,21
H
:B0(B9
1. Drawing is not to scale.
Table 76. LQFP64 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DocID025004 Rev 5
109/128
124
Package information
STM32F072x8 STM32F072xB
Table 76. LQFP64 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 45. Recommended footprint for LQFP64 package
DLF
1. Dimensions are expressed in millimeters.
110/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 46. LQFP64 package marking example
ZĞǀŝƐŝŽŶĐŽĚĞ
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
5
;ϭͿ
670)
5%7
ĂƚĞĐŽĚĞ
< ::
WŝŶϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
D^ϯϱϱϴϴsϭ
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID025004 Rev 5
111/128
124
Package information
7.5
STM32F072x8 STM32F072xB
WLCSP49 package information
WLCSP49 is a 49-ball, 3.277 x 3.109 mm, 0.4 mm pitch wafer-level chip-scale package.
Figure 47. WLCSP49 package outline
H
EEE =
)
$EDOOORFDWLRQ
$
*
'HWDLO$
H (
H
*
$
$
H
%XPSVLGH
6LGHYLHZ
$
)URQWYLHZ
%XPS
'
$
HHH =
E
6HDWLQJSODQH
(
'HWDLO$
URWDWHG
$RULHQWDWLRQ
UHIHUHQFH
DDD
;
:DIHUEDFNVLGH
1. Drawing is not to scale.
112/128
DocID025004 Rev 5
$;/B0(B9
STM32F072x8 STM32F072xB
Package information
Table 77. WLCSP49 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
-
0.175
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
-
0.025
-
-
0.0010
-
b(3)
0.220
0.250
0.280
0.0087
0.0098
0.0110
D
3.242
3.277
3.312
0.1276
0.1290
0.1304
E
3.074
3.109
3.144
0.1210
0.1224
0.1238
e
-
0.400
-
-
0.0157
-
e1
-
2.400
-
-
0.0945
-
e2
-
2.400
-
-
0.0945
-
F
-
0.4385
-
-
0.0173
-
G
-
0.3545
-
-
0.0140
-
aaa
-
-
0.100
-
-
0.0039
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee
-
-
0.050
-
-
0.0020
A3
(2)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
DocID025004 Rev 5
113/128
124
Package information
STM32F072x8 STM32F072xB
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 48. WLCSP49 package marking example
WŝŶϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
)&%<
ĂƚĞĐŽĚĞ
<
ZĞǀŝƐŝŽŶĐŽĚĞ
::
5
D^ϯϱϱϵϭsϭ
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
114/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
LQFP48 package information
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.
Figure 49. LQFP48 package outline
6($7,1*
3/$1(
&
F
$
$
$
PP
*$8*(3/$1(
FFF &
'
.
$
'
/
/
'
3,1
,'(17,),&$7,21
(
(
E
(
7.6
Package information
H
%B0(B9
1. Drawing is not to scale.
DocID025004 Rev 5
115/128
124
Package information
STM32F072x8 STM32F072xB
Table 78. LQFP48 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 50. Recommended footprint for LQFP48 package
DLG
1. Dimensions are expressed in millimeters.
116/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 51. LQFP48 package marking example
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
670
)&%7
ĂƚĞĐŽĚĞ
< ::
WŝŶϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
ZĞǀŝƐŝŽŶĐŽĚĞ
5
D^ϯϱϱϴϵsϭ
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID025004 Rev 5
117/128
124
Package information
7.7
STM32F072x8 STM32F072xB
UFQFPN48 package information
UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.
Figure 52. UFQFPN48 package outline
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
'
$
(
(
7
GGG
$
6HDWLQJ
SODQH
E
H
'HWDLO<
'
([SRVHGSDG
DUHD
<
'
/
&[
SLQFRUQHU
(
5W\S
'HWDLO=
=
$%B0(B9
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
118/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Package information
Table 79. UFQFPN48 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 53. Recommended footprint for UFQFPN48 package
$%B)3B9
1. Dimensions are expressed in millimeters.
DocID025004 Rev 5
119/128
124
Package information
STM32F072x8 STM32F072xB
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 54. UFQFPN48 package marking example
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
670)
&%8
ĂƚĞĐŽĚĞ
< ::
WŝŶϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
ZĞǀŝƐŝŽŶĐŽĚĞ
5
D^ϯϱϱϵϬsϭ
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
120/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
7.8
Package information
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 24: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ ((VDDIOx – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 80. Package thermal characteristics
Symbol
ΘJA
7.8.1
Parameter
Value
Thermal resistance junction-ambient
UFBGA100 - 7 × 7 mm
55
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm
42
Thermal resistance junction-ambient
UFBGA64 - 5 × 5 mm / 0.5 mm pitch
65
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
44
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm
54
Thermal resistance junction-ambient
UFQFPN48 - 7 × 7 mm
32
Thermal resistance junction-ambient
WLCSP49 - 0.4 mm pitch
49
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
7.8.2
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Ordering information.
DocID025004 Rev 5
121/128
124
Package information
STM32F072x8 STM32F072xB
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F072x8/xB at maximum dissipation, it is
useful to calculate the exact power consumption and junction temperature to determine
which temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50
mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL
= 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level
with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax= 175 + 272 = 447 mW
Using the values obtained in Table 80 TJmax is calculated as follows:
–
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Ordering information).
Note:
With this given PDmax we can find the TAmax allowed for a given device temperature range
(order code suffix 6 or 7).
Suffix 6: TAmax = TJmax - (45°C/W × 447 mW) = 105-20.115 = 84.885 °C
Suffix 7: TAmax = TJmax - (45°C/W × 447 mW) = 125-20.115 = 104.885 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high temperatures
with a low dissipation, as long as junction temperature TJ remains within the specified
range.
Assuming the following application conditions:
Maximum temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax =
20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with
IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
122/128
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Package information
Using the values obtained in Table 80 TJmax is calculated as follows:
–
For LQFP64, 45 °C/W
TJmax = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Ordering information) unless we reduce the power dissipation in order to be able
to use suffix 6 parts.
Refer to Figure 55 to select the required temperature range (suffix 6 or 7) according to your
temperature or power requirements.
Figure 55. LQFP64 PD max versus TA
3'P:
6XIIL[
6XIIL[
7$&
DocID025004 Rev 5
06Y9
123/128
124
Ordering information
8
STM32F072x8 STM32F072xB
Ordering information
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Table 81. Ordering information scheme
STM32
Example:
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
072 = STM32F072xx
Pin count
C = 48/49 pins
R = 64 pins
V = 100 pins
User code memory size
8 = 64 Kbyte
B = 128 Kbyte
Package
H = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = –40 to 85 °C
7 = –40 to 105 °C
Options
xxx = code ID of programmed parts (includes packing type)
TR = tape and reel packing
blank = tray packing
124/128
DocID025004 Rev 5
F
072
R
8
T
6
x
STM32F072x8 STM32F072xB
9
Revision history
Revision history
Table 82. Document revision history
Date
Revision
13-Jan-2014
1
Initial release.
2
Updated “Reset and power management“ data in Features.
Updated tS_vrefint in Table: Embedded internal reference
voltage.
Updated VHSEH and VHSEL in Table: High-speed external user
clock characteristics.
Updated VLSEH and VLSEL in Table: Low-speed external user
clock characteristics.
Updated tS_temp in Table: TS characteristics.
Updated tS_vbat in Table: VBAT monitoring characteristics.
Updated Section: I2C interface characteristics.
Updated Figure: UFBGA100 package top view and Figure:
WLCSP49 package top view.
Modified value of ts_sc and removed row VBG in Table:
Comparator characteristics.
3
Section 2: Description:
– Figure 1: Block diagram - AF number corrected
– UFBGA64 package added
Section 3: Functional overview:
– Table 7: Timer feature comparison - added number of
complementary outputs for TIM1, 15, 16 and TIM17
Section 4: Pinouts and pin descriptions: UFBGA64 added
Section 5: Memory mapping:
– Figure 10: STM32F072xB memory map updated
Section 6: Electrical characteristics:
– Table 21: Voltage characteristics and Table 22: Current
characteristics updated
– Table 24: General operating conditions - footnote for VIN
– Table 28: Embedded internal reference voltage - tSTART
parameter added
– Table 31: Typical and maximum consumption in Stop and
Standby modes updated
– Merger of tables 33 and 34 into Table 33: Typical current
consumption, code executing from Flash memory, running
from HSE 8 MHz crystal
– Table 37: High-speed external user clock characteristics:
replaced VDD with VDDIOX
– Table 38: Low-speed external user clock characteristics
and Table 40: LSE oscillator characteristics (fLSE = 32.768
kHz): replaced VDD with VDDIOX
– Table 41: HSI oscillator characteristics and Figure 19: HSI
oscillator accuracy characterization results for soldered
parts updated
21-Feb-2014
18-Sep-2015
Changes
DocID025004 Rev 5
125/128
127
Revision history
STM32F072x8 STM32F072xB
Table 82. Document revision history (continued)
Date
18-Sep-2015
17-Dec-2015
126/128
Revision
Changes
3 (continued)
– Table 42: HSI14 oscillator characteristics: changed the min
value for ACCHSI14
– Table 46: Flash memory characteristics: removed Vprog
– Table 49: EMI characteristics updated
– Table 50: ESD absolute maximum ratings updated
– Table 57: ADC characteristics - updated some parameter
values, test conditions and added footnotes (3) and (4)
– Table 60: DAC characteristics - IDDA max value (DAC DC
current consumption) updated
– Table 61: Comparator characteristics: changed the
description and values for tS_SC parameter
– Table 62: TS characteristics: changed the min value for
tS-temp
– Table 63: VBAT monitoring characteristics: changed the
typical value for R parameter
– Table 69: I2S characteristics: updated the min value for data
input hold time (master and slave receiver)
Section 7: Package information:
– information generally updated, UFBGA64 added
Section 8: Part numbering: UFBGA64 added
4
Section 2: Description:
– Figure 1: Block diagram updated
Section 3: Functional overview:
– Figure 2: Clock tree updated
Section 4: Pinouts and pin descriptions
– Package pinout figures updated (look and feel)
– Figure 9: WLCSP49 package pinout - now presented in
top view
Section 5: Memory mapping:
– added information on STM32F072x8 difference versus
STM32F072xB map in Figure 10
– Table 28: Embedded internal reference voltage: removed
-40°-to-85° condition for VREFINT and associated note
Section 6: Electrical characteristics:
– Table 61: Comparator characteristics - min value for VDDA
replaced with VDD
– Figure 29: Maximum VREFINT scaler startup time from
power down added
– Table 53: I/O static characteristics - note removed
– Table 69: I2S characteristics: table reorganized
Section 8: Ordering information:
– added tray packing to options
DocID025004 Rev 5
STM32F072x8 STM32F072xB
Revision history
Table 82. Document revision history (continued)
Date
10-Jan-2017
Revision
Changes
5
Section 6: Electrical characteristics:
– Table 40: LSE oscillator characteristics (fLSE = 32.768 kHz)
- information on configuring different drive capabilities
removed. See the corresponding reference manual.
– Table 28: Embedded internal reference voltage - VREFINT
values
– Table 60: DAC characteristics - min. RLOAD to VDDA defined
– Figure 30: SPI timing diagram - slave mode and CPHA = 0
and Figure 31: SPI timing diagram - slave mode and CPHA
= 1 enhanced and corrected
Section 8: Ordering information:
– The name of the section changed from the previous “Part
numbering”
DocID025004 Rev 5
127/128
127
STM32F072x8 STM32F072xB
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved
128/128
DocID025004 Rev 5