0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F098CCU6

STM32F098CCU6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFQFN48

  • 描述:

    IC MCU 32BIT 256KB FLSH 48UFQFPN

  • 数据手册
  • 价格&库存
STM32F098CCU6 数据手册
STM32F098CC STM32F098RC STM32F098VC Arm®-based 32-bit MCU, 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 1.8 V Datasheet - production data Features FBGA • Core: Arm® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz • Memories – 256 Kbytes of Flash memory – 32 Kbytes of SRAM with HW parity • CRC calculation unit • Reset and power management – Digital & I/Os supply: VDD = 1.8 V ± 8% – Analog supply: VDDA = VDD to 3.6 V – Selected I/Os: VDDIO2 = 1.65 V to 3.6 V – Low power modes: Sleep, Stop – VBAT supply for RTC and backup registers • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator – Internal 48 MHz oscillator with automatic trimming based on ext. synchronization • Up to 87 fast I/Os – All mappable on external interrupt vectors – Up to 68 I/Os with 5V-tolerant capability and 19 with independent supply VDDIO2 • 12-channel DMA controller • One 12-bit, 1.0 µs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply: 2.4 V to 3.6 V LQFP100 14x14 mm UFQFPN48 LQFP64 10x10 mm 7x7 mm LQFP48 7x7 mm UFBGA100 7x7 mm UFBGA64 5x5 mm WLCSP64 3.3x3.6mm • 12 timers – One 16-bit advanced-control timer for 6 channel PWM output – One 32-bit and seven 16-bit timers, with up to 4 IC/OC, OCN, usable for IR control decoding or DAC control – Independent and system watchdog timers – SysTick timer • Communication interfaces – Two I2C interfaces supporting Fast Mode Plus (1 Mbit/s) with extra current sink, one supporting SMBus/PMBus and wakeup – Up to eight USARTs supporting master synchronous SPI and modem control, three with ISO7816 interface, LIN, IrDA, auto baud rate detection and wakeup feature – Two SPIs (18 Mbit/s) with 4 to 16 programmable bit frames, and with I2S interface multiplexed – CAN interface • HDMI CEC wakeup on header reception • Serial wire debug (SWD) • 96-bit unique ID • All packages ECOPACK 2 • One 12-bit D/A converter (with 2 channels) • Two fast low-power analog comparators with programmable input and output • Up to 23 capacitive sensing channels for touchkey, linear and rotary touch sensors • Calendar RTC with alarm and periodic wakeup from Stop/Standby June 2021 This is information on a product in full production. DS10624 Rev 5 1/128 www.st.com Contents STM32F098CC STM32F098RC STM32F098VC Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Arm®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.2 Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.3 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10 2/128 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 22 3.14.3 Basic timersTIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Contents 3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 25 3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 26 3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.20 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.21 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.22 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 55 6.3.3 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 DS10624 Rev 5 3/128 4 Contents 7 STM32F098CC STM32F098RC STM32F098VC 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.14 NRST and NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.16 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.17 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.19 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.20 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.21 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.1 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.5 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 7.6 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.7 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 121 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. STM32F098CC/RC/VC family device features and peripheral counts . . . . . . . . . . . . . . . . 11 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Capacitive sensing GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Number of capacitive sensing channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SPI/I2S implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F098CC/RC/VC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 42 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 43 Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 44 Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 44 Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 45 Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 45 Peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Typical and maximum current consumption from VDD supply at VDD = 1.8 V . . . . . . . . . . 58 Typical and maximum current consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 59 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 59 Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 60 Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DS10624 Rev 5 5/128 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. 6/128 STM32F098CC STM32F098RC STM32F098VC Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 UFBGA64 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 WLCSP64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 WLCSP64 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 UFBGA100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LQFP100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 UFBGA64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 WLCSP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F098CC/RC/VC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 71 HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Recommended footprint for UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 UFBGA100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Recommended footprint for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 LQFP100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 WLCSP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Recommended footprint for WLCSP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 WLCSP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 DS10624 Rev 5 7/128 8 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. 8/128 STM32F098CC STM32F098RC STM32F098VC Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 LQFP64 PD max versus TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 1 Introduction Introduction This datasheet provides characteristics and ordering information of the STM32F098CC/RC/VC microcontrollers. This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com. For information on the Arm®(a)Cortex®-M0 core, refer to the Arm® Cortex®-M0 Technical Reference Manual, available from the www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. DS10624 Rev 5 9/128 27 Description 2 STM32F098CC STM32F098RC STM32F098VC Description The STM32F098CC/RC/VC microcontrollers incorporate the high-performance Arm® Cortex®-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (256 Kbytes of Flash memory and 32 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. The device offers standard communication interfaces (two I2Cs, two SPIs/one I2S, one HDMI CEC and up to eight USARTs), one CAN, one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer. The STM32F098CC/RC/VC microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, at a 1.8 V ± 8% power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F098CC/RC/VC microcontrollers include devices in seven different package ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included. These features make the STM32F098CC/RC/VC microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs. 10/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Description Table 1. STM32F098CC/RC/VC family device features and peripheral counts Peripheral STM32F098CC STM32F098RC Flash memory (Kbyte) 256 SRAM (Kbyte) 32 Timers Advanced control 1 (16-bit) General purpose 5 (16-bit) 1 (32-bit) Basic 2 (16-bit) SPI [I2S](1) 2 [2] 2C 2 I Comm. interfaces USART 6 8 CAN 1 CEC 1 12-bit ADC (number of channels) STM32F098VC 1 (10 ext. + 3 int.) 1 (16 ext. + 3 int.) 12-bit DAC (number of channels) 1 (2) Analog comparator 2 GPIOs 37 51 87 Capacitive sensing channels 16 17 23 Max. CPU frequency 48 MHz Operating voltage VDD = 1.8 V ± 8%, VDDA = from VDD to 3.6 V Operating temperature Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C Packages LQFP48 UFQFPN48 LQFP64 UFBGA64 WLCSP64 LQFP100 UFBGA100 1. The SPI interface can be used either in SPI mode or in I2S audio mode. DS10624 Rev 5 11/128 27 Description STM32F098CC STM32F098RC STM32F098VC Figure 1. Block diagram Serial Wire Debug Obl Flash memory interface SWCLK SWDIO as AF SRAM controller NVIC Bus matrix CORTEX-M0 CPU fMAX = 48 MHz @ VDD SRAM 32 KB @ VDDA HSI14 RC 8 MHz PLLCLK GP DMA 12 channels HSI48 POR Reset Int NPOR NRST VDDA VSSA SUPPLY NPOR SUPERVISION RC 14 MHz HSI LSI VDD = 1.8 V ±8% VSS POWER VDD18 Flash GPL up to 256 KB 32-bit @ VDDA @ VDD PLL XTAL OSC 4-32 MHz RC 40 kHz RC 48MHz OSC_IN OSC_OUT Ind. Window WDG GPIO port A PB[15:0] GPIO port B PC[15:0] GPIO port C PD[15:0] GPIO port D PE[15:0] GPIO port E PF[10:9], PF6 PF[3:0] GPIO port F 8 groups of 4 channels XTAL32 kHz System and peripheral clocks RTC Backup reg PWM TIMER 1 Touch Sensing Controller TIMER 2 32-bit AHB 4 channels 3 compl. channels BRK, ETR input as AF 4 ch., ETR as AF TIMER 3 4 ch., ETR as AF TIMER 14 1 channel as AF APB EXT. IT WKUP TIMER 15 TIMER 16 TIMER 17 BxCAN Window WDG MOSI/SD MISO/MCK SCK/CK NSS/WS as AF SPI1/I2S1 MOSI/SD MISO/MCK SCK/CK NSS/WS as AF SPI2/I2S2 INPUT + INPUT OUTPUT as AF 3 TAMPER-RTC (ALARM OUT) SYNC SRAM 256 B TX, RX as AF OSC32_IN OSC32_OUT RTC interface CRS CRC PAD Analog switches VDD VBAT = 1.65 to 3.6 V @ VBAT SYNC 87 AF POR RESET & CLOCK CONTROL AHB decoder PA[15:0] USART4 RX, TX,CTS, RTS, CK as AF RX, TX,CTS, RTS, CK as AF RX, TX,CTS, RTS, CK as AF RX, TX,CTS, RTS, CK as AF USART5 RX, TX, RTS, CK as AF USART6 RX, TX, RTS, CK as AF USART7 RX, TX, RTS, CK as AF USART8 RX, TX, RTS, CK as AF USART1 USART2 DBGMCU USART3 SYSCFG IF GP comparator 1 GP comparator 2 2 channels 1 compl, BRK as AF 1 channel 1 compl, BRK as AF 1 channel 1 compl, BRK as AF IR_OUT as AF @ VDDA I2C1 Temp. sensor 16x AD input 12-bit ADC I2C2 IF HDMI-CEC SCL, SDA, SMBA (extra mA FM+) as AF SCL, SDA (extra mA FM+) as AF CEC as AF TIMER 6 VDDA VSSA TIMER 7 12-bit DAC DAC_OUT1 12-bit DAC DAC_OUT2 IF @ VDDA @ VDDA Power domain of analog blocks : 12/128 VBAT VDD DS10624 Rev 5 VDDA MSv35577V2 STM32F098CC STM32F098RC STM32F098VC 3 Functional overview Functional overview Figure 1 shows the general block diagram of the STM32F098CC/RC/VC devices. 3.1 Arm®-Cortex®-M0 core The Arm® Cortex®-M0 is a generation of Arm 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The Arm® Cortex®-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an Arm core, with memory sizes usually associated with 8- and 16-bit devices. The STM32F098CC/RC/VC devices embed Arm core and are compatible with all Arm tools and software. 3.2 Memories The device has the following features: • 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications. • The non-volatile memory is divided into two arrays: – 256 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: 3.3 – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Arm® Cortex®-M0 serial wire) and boot in RAM selection disabled Boot modes At startup, the boot pin and boot selector option bits are used to select one of the three boot options: • boot from User Flash memory • boot from System Memory • boot from embedded SRAM The boot pin is shared with the standard GPIO and can be disabled through the boot selector option bits. The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I2C on pins PB6/PB7. DS10624 Rev 5 13/128 27 Functional overview 3.4 STM32F098CC STM32F098RC STM32F098VC Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes • VDD = VDDIO1 = 1.8 V ± 8%: external power supply for I/Os (VDDIO1) and digital logic. It is provided externally through VDD pins. • VDDA = from VDD to 3.6 V: external analog power supply for ADC, DAC, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be established first. • VDDIO2 = 1.65 to 3.6 V: external power supply for marked I/Os. VDDIO2 is provided externally through the VDDIO2 pin. The VDDIO2 voltage level is completely independent from VDD or VDDA, but it must not be provided without a valid supply on VDD. The VDDIO2 supply is monitored and compared with the internal reference voltage (VREFINT). When the VDDIO2 is below this threshold, all the I/Os supplied from this rail are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 13: Power supply scheme. 3.5.2 Power-on reset To guarantee a proper power-on reset, the NPOR pin must be held low until VDD is stable. When VDD is stable, the reset state can be exited either by: 3.5.3 • putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by • forcing the pin to high level by connecting it to VDDA Low-power modes The STM32F098CC/RC/VC microcontrollers support two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. 14/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC • Functional overview Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, RTC, I2C1 USART1, USART3, COMPx. The CEC, USART1, USART2, USART3 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization. DS10624 Rev 5 15/128 27 Functional overview STM32F098CC STM32F098RC STM32F098VC Figure 2. Clock tree SYNC FLITFCLK LSE SYNCSRC I2C1SW Flash memory programming interface HSI CRS I2C1 SYSCLK HSI I2S1/SPI1 I2S2/SPI2 Trim 48 MHz HSI RC HSI48 8 MHz HSI RC HSI HSI48 CECSW LSE CEC /244 HCLK SW PREDIV PLLSRC /1,/2,.. ../16 PLL x2,x3,.. ...x16 SYSCLK HSI PLLCLK HSE /1,/2,… …/512 /1,/2,/4, /8,/16 HPRE PPRE OSC_IN 4-32 MHz HSE OSC PCLK /32 OSC32_OUT 32.768 kHz LSE OSC APB peripherals TIM1,2,3,6,7, 14,15,16,17 x1, x2 HSE LSE OSC32_IN PCLK PPRE CSS OSC_OUT Cortex system timer /8 HSI48 PLLMUL AHB, core, memory, DMA, Cortex FCLK free-run clock USARTxSW SYSCLK HSI LSE RTCCLK USART1 USART2 USART3 LSE RTC RTCSEL LSI 40 kHz LSI RC IWDG PLLNODIV MCOPRE Main clock output MCO /1,/2 HSI /1,/2,/4,.. ../128 HSI14 SYSCLK PLLCLK 14 MHz RC HSI14 HSI14 ADC asynchronous clock input HSI48 HSE Legend LSI black white LSE TIM14 MCO clock tree element clock tree control element clock line control line MSv34958V2 3.7 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. 16/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Functional overview The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.8 Direct memory access controller (DMA) The 12-channel general-purpose DMAs (seven channels for DMA1 and five channels for DMA2) manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMAs support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to ® 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4 priority levels. • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail-chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 87 GPIOs can be connected to the 16 external interrupt lines. DS10624 Rev 5 17/128 27 Functional overview 3.10 STM32F098CC STM32F098RC STM32F098VC Analog-to-digital converter (ADC) The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 2. Temperature sensor calibration values 3.10.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) 0x1FFF F7C2 - 0x1FFF F7C3 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and comparators. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 3. Internal voltage reference calibration values 18/128 Calibration value name Description Memory address VREFINT_CAL Raw data acquired at a temperature of 30 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) 0x1FFF F7BA - 0x1FFF F7BB DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 3.10.3 Functional overview VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage. 3.11 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. This digital Interface supports the following features: • 8-bit or 12-bit monotonic output • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel independent or simultaneous conversions • DMA capability for each channel • External triggers for conversion Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests. 3.12 Comparators (COMP) The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output pins • Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 25: Embedded internal reference voltage for the value and precision of the internal reference voltage. Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator. 3.13 Touch sensing controller (TSC) The STM32F098CC/RC/VC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 23 capacitive sensing channels distributed over 8 analog I/O groups. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation DS10624 Rev 5 19/128 27 Functional overview STM32F098CC STM32F098RC STM32F098VC introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. Table 4. Capacitive sensing GPIOs Group 1 2 3 4 Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G1_IO2 PA1 TSC_G1_IO3 PA2 TSC_G1_IO4 Capacitive sensing signal name Pin name TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 TSC_G5_IO3 PB6 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB11 TSC_G2_IO2 PA5 TSC_G6_IO2 PB12 TSC_G2_IO3 PA6 TSC_G6_IO3 PB13 TSC_G2_IO4 PA7 TSC_G6_IO4 PB14 TSC_G3_IO1 PC5 TSC_G7_IO1 PE2 TSC_G3_IO2 PB0 TSC_G7_IO2 PE3 TSC_G3_IO3 PB1 TSC_G7_IO3 PE4 TSC_G4_IO1 PA9 TSC_G7_IO4 PE5 TSC_G4_IO2 PA10 TSC_G8_IO1 PD12 TSC_G4_IO3 PA11 TSC_G8_IO2 PD13 TSC_G4_IO4 PA12 TSC_G8_IO3 PD14 TSC_G8_IO4 PD15 Group 5 6 7 8 Table 5. Number of capacitive sensing channels Number of capacitive sensing channels Analog I/O group 20/128 STM32F098Vx STM32F098Rx STM32F098Cx G1 3 3 3 G2 3 3 3 G3 2 2 1 G4 3 3 3 G5 3 3 3 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Functional overview Table 5. Number of capacitive sensing channels (continued) Number of capacitive sensing channels Analog I/O group 3.14 STM32F098Vx STM32F098Rx STM32F098Cx G6 3 3 3 G7 3 0 0 G8 3 0 0 Number of capacitive sensing channels 23 17 16 Timers and watchdogs The STM32F098CC/RC/VC devices include up to six general-purpose timers, two basic timers and an advanced control timer. Table 6 compares the features of the different timers. Table 6. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced control TIM1 16-bit Up, down, up/down integer from 1 to 65536 Yes 4 3 TIM2 32-bit Up, down, up/down integer from 1 to 65536 Yes 4 - TIM3 16-bit Up, down, up/down integer from 1 to 65536 Yes 4 - TIM14 16-bit Up integer from 1 to 65536 No 1 - TIM15 16-bit Up integer from 1 to 65536 Yes 2 1 TIM16 TIM17 16-bit Up integer from 1 to 65536 Yes 1 1 TIM6 TIM7 16-bit Up integer from 1 to 65536 Yes - - General purpose Basic 3.14.1 Capture/compare Complementary channels outputs Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It DS10624 Rev 5 21/128 27 Functional overview STM32F098CC STM32F098RC STM32F098VC can also be seen as a complete general-purpose timer. The four independent channels can be used for: • input capture • output compare • PWM generation (edge or center-aligned modes) • one-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. 3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) There are six synchronizable general-purpose timers embedded in the STM32F098CC/RC/VC devices (see Table 6 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM2, TIM3 STM32F098CC/RC/VC devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining. TIM2 and TIM3 both have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Their counters can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM15, TIM16, and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. The TIM15, TIM16, and TIM17 timers can work together, and TIM15 can also operate withTIM1 via the Timer Link feature for synchronization or event chaining. 22/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Functional overview TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. 3.14.3 Basic timersTIM6 and TIM7 These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases. 3.14.4 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop mode. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.14.5 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.14.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.15 • a 24-bit down counter • autoreload capability • maskable system interrupt generation when the counter reaches 0 • programmable clock source (HCLK or HCLK/8) Real-time clock (RTC) and backup registers The RTC and the five backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when VDD power is not present. They are not reset by a system or power reset. DS10624 Rev 5 23/128 27 Functional overview STM32F098CC STM32F098RC STM32F098VC The RTC is an independent BCD timer/counter. Its main features are the following: • calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format • automatic correction for 28, 29 (leap year), 30, and 31 day of the month • programmable alarm with wake up from Stop mode capability • Periodic wakeup unit with programmable resolution and period. • on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock • digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy • Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop mode on tamper event detection • timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop mode on timestamp event detection • reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision The RTC clock sources can be: 3.16 • a 32.768 kHz external crystal • a resonator or oscillator • the internal low-power RC oscillator (typical frequency of 40 kHz) • the high-speed external clock divided by 32 Inter-integrated circuit interface (I2C) Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with extra output drive on most of the associated I/Os. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters. Table 7. Comparison of I2C analog and digital filters Aspect Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2Cx peripheral clocks Benefits Available in Stop mode Drawbacks Variations depending on temperature, voltage, process –Extra filtering capability vs. standard requirements –Stable length Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts 24/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Functional overview verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. The I2C peripherals can be served by the DMA controller. Refer to Table 8 for the differences between I2C1 and I2C2. Table 8. I2C implementation I2C features(1) I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os X X Independent clock X - SMBus X - Wakeup from STOP X - 1. X = supported. 3.17 Universal synchronous/asynchronous receiver/transmitter (USART) The device embeds up to eight universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4, USART5, USART6, USART7, USART8) which communicate at speeds of up to 6 Mbit/s. They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1, USART2 and USART3 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode. The USART interfaces can be served by the DMA controller. Table 9. USART implementation USART1 USART2 USART3 USART4 USART5 USART6 USART7 USART8 Hardware flow control for modem X X - Continuous communication using DMA X X X Multiprocessor communication X X X Synchronous mode X X X Smartcard mode X - - USART modes/features(1) DS10624 Rev 5 25/128 27 Functional overview STM32F098CC STM32F098RC STM32F098VC Table 9. USART implementation (continued) USART1 USART2 USART3 USART4 USART5 USART6 USART7 USART8 Single-wire half-duplex communication X X X IrDA SIR ENDEC block X - - LIN mode X - - Dual clock domain and wakeup from Stop mode X - - Receiver timeout interrupt X - - Modbus communication X - - Auto baud rate detection X - - Driver Enable X X X USART modes/features (1) 1. X = supported. 3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. Two standard I2S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency. Table 10. SPI/I2S implementation SPI features(1) Hardware CRC calculation X Rx/Tx FIFO X NSS pulse mode X I2S mode X TI mode X 1. X = supported. 26/128 SPI1 and SPI2 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 3.19 Functional overview High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception. 3.20 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 3.21 Clock recovery system (CRS) The STM32F098CC/RC/VC embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.22 Serial wire debug port (SW-DP) An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. DS10624 Rev 5 27/128 27 Pinouts and pin descriptions 4 STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions Figure 3. UFBGA100 package pinout Top view 1 2 3 4 5 6 7 8 9 10 11 12 A PE3 PE1 PB8 PF11BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 B PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11 C PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 PF6 PA10 D PC14OSC32_ IN PE6 VSS PA9 PA8 PC9 E PC15OSC32_ OUT VBAT NC PC8 PC7 PC6 F PF0OSC_ IN PF9 VSS VSS G PF1OSC_ OUT PF10 VDDIO2 VDD H PC0 NRST VDD PD15 PD14 PD13 J PF2 PC1 PC2 PD12 PD11 PD10 K VSSA PC3 PA2 PA5 PC4 L PF3 PA0 PA3 PA6 PC5 NPOR M VDDA PA1 PA4 PA7 PB0 PB1 I/O supplied from VDDIO2 PD9 PD8 PB15 PB14 PB13 PE8 PE10 PE12 PB10 PB11 PB12 PE7 PE9 PE11 PE13 PE14 PE15 UFBGA100 MSv36402V2 28/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 1 75 2 74 3 73 4 72 5 71 6 70 7 69 8 68 9 67 10 66 11 65 12 64 LQFP100 13 63 50 49 48 47 46 45 44 43 42 41 40 VDDIO2 VSS PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 NPOR PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS VDD 39 51 38 52 25 37 53 24 36 54 23 35 55 22 34 56 21 33 57 20 32 58 19 31 59 18 30 60 17 29 61 16 28 62 15 27 14 26 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF9 PF10 PF0-OSC_IN PF1-OSC_OUT NRST PC0 PC1 PC2 PC3 PF2 VSSA VDDA PF3 PA0 PA1 PA2 98 100 Top view 99 VDD VSS PE1 PE0 PB9 PB8 PF11-BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 4. LQFP100 package pinout I/O supplied from VDDIO2 MSv35579V2 DS10624 Rev 5 29/128 41 Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC Figure 5. UFBGA64 package pinout Top view 1 2 3 4 5 6 7 8 A PC14OSC32_ IN PC13 PB9 PB4 PB3 PA15 PA14 PA13 B PC15OSC32_ OUT VBAT PB8 PF11BOOT0 PD2 PC11 PC10 PA12 C PF0OSC_ IN VSS PB7 PB5 PC12 PA10 PA9 PA11 D PF1OSC_ OUT VDD PB6 VSS VSS VSS PA8 PC9 E NRST PC1 PC0 VDD VDD VDDIO2 PC7 PC8 F VSSA PC2 PA2 PA5 PB0 PC6 PB15 PB14 G PC3 PA0 PA3 PA6 PB1 NPOR PB10 PB13 H VDDA PA1 PA4 PA7 PC4 PC5 PB11 PB12 I/O supplied from VDDIO2 UFBGA64 MSv35569V2 30/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions 49 50 51 52 53 54 55 56 57 58 59 60 61 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 LQFP64 9 40 32 31 30 29 28 27 26 VDDIO2 VSS PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 NPOR PB10 PB11 VSS VDD 25 33 24 34 16 23 35 15 22 36 14 21 37 13 20 38 12 19 39 11 18 10 17 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0 PA1 PA2 62 64 Top view 63 VDD VSS PB9 PB8 PF11-BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 6. LQFP64 package pinout I/O supplied from VDDIO2 MSv35580V2 DS10624 Rev 5 31/128 41 Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC Figure 7. WLCSP64 package pinout Top view 1 2 3 4 5 6 7 8 A VDDIO2 PA15 PC10 PD2 PB6 PB8 VSS VDD B PA12 VSS PA14 PC12 PB7 PB9 PC13 VBAT C PA9 PA10 PA13 PC11 PB5 D PC7 PA8 PA11 PB3 PB4 PC2 NRST PF0OSC_ IN E PC6 PC8 PC9 PA7 PA2 PC3 PC0 PF1OSC_ OUT F PB15 PB13 PB1 PC5 PA5 PA1 PA0 PC1 G PB14 PB12 PB10 PB0 PA6 VDD VSS VSSA H VDD VSS PB11 NPOR PC4 PA4 PA3 VDDA PF11- PC15- PC14OSC32_ OSC32_ BOOT0 OUT IN WLCSP64 I/O supplied from VDDIO2 MSv36405V3 1. The above figure shows the package in top view, changing from bottom view in the previous document versions. 37 38 39 40 41 42 43 44 45 1 36 2 35 3 34 4 33 5 32 6 31 LQFP48 7 30 24 23 22 21 20 VDDIO2 VSS PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 PA3 PA4 PA5 PA6 PA7 PB0 PB1 NPOR PB10 PB11 VSS VDD 19 25 18 26 12 17 27 11 16 28 10 15 29 9 14 8 13 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST VSSA VDDA PA0 PA1 PA2 46 48 Top view 47 VDD VSS PB9 PB8 PF11-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 Figure 8. LQFP48 package pinout I/O supplied from VDDIO2 MSv35581V2 32/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions VDD VSS PB9 PB8 PF11-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 9. UFQFPN48 package pinout Top view VBAT 1 36 VDDIO2 PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PF0-OSC_IN 5 32 PA11 PF1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA 8 29 PA8 VDDA 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 UFQFPN48 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 NPOR PB10 PB11 VSS VDD Exposed pad I/O supplied from VDDIO2 MSv36404V2 Table 11. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input-only pin I/O Input / output pin FT 5 V-tolerant I/O FTf 5 V-tolerant I/O, FM+ capable TTa 3.3 V-tolerant I/O directly connected to ADC POR External power on reset pin with embedded weak pull-up resistor, powered from VDDA TC B RST Notes Definition Standard 3.3 V I/O Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. DS10624 Rev 5 33/128 41 Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC Table 11. Legend/abbreviations used in the pinout table (continued) Name Pin functions Abbreviation Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 12. STM32F098CC/RC/VC pin definitions UFBGA64 LQFP64 WLCSP64 LQFP48/UFQFPN48 Pin type I/O structure B2 1 - - - - PE2 I/O FT TSC_G7_IO1, TIM3_ETR - A1 2 - - - - PE3 I/O FT TSC_G7_IO2, TIM3_CH1 - B1 3 - - - - PE4 I/O FT TSC_G7_IO3, TIM3_CH2 - C2 4 - - - - PE5 I/O FT TSC_G7_IO4, TIM3_CH3 - D2 5 - - - - PE6 I/O FT TIM3_CH4 WKUP3, RTC_TAMP3 E2 6 B2 1 B8 1 VBAT S - Pin name (function upon reset) - Alternate functions Additional functions Backup power supply - WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT - OSC32_IN - OSC32_OUT FT TIM15_CH1, USART6_TX - I/O FT TIM15_CH2, USART6_RX - PF0-OSC_IN (PF0) I/O FTf CRS_ SYNC, I2C1_SDA OSC_IN 6 PF1-OSC_OUT (PF1) I/O FTf I2C1_SCL OSC_OUT 7 NRST I/O RST C1 7 A2 2 B7 2 PC13 I/O TC D1 8 A1 3 C8 3 PC14OSC32_IN (PC14) I/O TC E1 9 B1 4 C7 4 PC15OSC32_OUT (PC15) I/O TC F2 10 - - - - PF9 I/O G2 11 - - - - PF10 F1 12 C1 5 D8 5 G1 13 D1 6 E8 H2 14 E1 7 D7 34/128 Notes LQFP100 Pin functions UFBGA100 Pin numbers DS10624 Rev 5 (1) (2) (1) (2) (1) (2) Device reset input / internal reset output (active low) STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions Table 12. STM32F098CC/RC/VC pin definitions (continued) UFBGA64 LQFP64 WLCSP64 LQFP48/UFQFPN48 Pin type I/O structure H1 15 E3 8 E7 - PC0 I/O TTa EVENTOUT, USART6_TX, USART7_TX ADC_IN10 J2 16 E2 9 F8 - PC1 I/O TTa EVENTOUT, USART6_RX, USART7_RX ADC_IN11 J3 17 F2 10 D6 - PC2 I/O TTa SPI2_MISO, I2S2_MCK, EVENTOUT, USART8_TX ADC_IN12 K2 18 G1 11 E6 - PC3 I/O TTa SPI2_MOSI, I2S2_SD, EVENTOUT, USART8_RX ADC_IN13 J1 19 - - - - PF2 I/O FT EVENTOUT, USART7_TX, USART7_CK_RTS WKUP8 K1 20 F1 12 G8 8 VSSA S - Analog ground M1 21 H1 13 H8 9 VDDA S - Analog power supply L1 22 - - - - PF3 I/O FT EVENTOUT, USART7_RX, USART6_CK_RTS TTa USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX COMP1_OUT RTC_ TAMP2, WKUP1, ADC_IN0, COMP1_INM6 TTa USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT ADC_IN1, COMP1_INP ADC_IN2, WKUP4, COMP2_INM6 ADC_IN3, COMP2_INP L2 M2 23 24 G2 H2 14 15 F7 F6 10 11 Pin name (function upon reset) PA0 PA1 I/O I/O Notes LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions K3 25 F3 16 E5 12 PA2 I/O TTa USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3 COMP2_OUT L3 26 G3 17 H7 13 PA3 I/O TTa USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4 D3 27 C2 18 G7 - VSS S - DS10624 Rev 5 Ground 35/128 41 Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC Table 12. STM32F098CC/RC/VC pin definitions (continued) WLCSP64 LQFP48/UFQFPN48 D2 19 G6 - M3 K4 L4 29 30 31 H3 F4 G4 20 21 22 H6 F5 G5 14 15 16 VDD S - PA4 PA5 PA6 I/O I/O I/O Notes LQFP64 28 I/O structure UFBGA64 H3 Pin name (function upon reset) Pin type LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions Digital power supply TTa SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK, USART6_TX COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1 TTa SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2, USART6_RX COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2 TTa SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS ADC_IN6 ADC_IN7 M4 32 H4 23 E4 17 PA7 I/O TTa SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT K5 33 H5 24 H5 - PC4 I/O TTa EVENTOUT, USART3_TX ADC_IN14 L5 34 H6 25 F4 - PC5 I/O TTa TSC_G3_IO1, USART3_RX ADC_IN15, WKUP5 TTa TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT, USART3_CK ADC_IN8 TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3 ADC_IN9 M5 35 F5 26 G4 18 PB0 I/O M6 36 G5 27 F3 19 PB1 I/O TTa L6 37 G6 28 H4 20 NPOR I POR M7 38 - - - - PE7 I/O FT 36/128 DS10624 Rev 5 (3) Device power-on reset input (active low) TIM1_ETR, USART5_CK_RTS - STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions Table 12. STM32F098CC/RC/VC pin definitions (continued) UFBGA64 LQFP64 WLCSP64 LQFP48/UFQFPN48 Pin type I/O structure L7 39 - - - - PE8 I/O FT TIM1_CH1N, USART4_TX - M8 40 - - - - PE9 I/O FT TIM1_CH1, USART4_RX - L8 41 - - - - PE10 I/O FT TIM1_CH2N, USART5_TX - M9 42 - - - - PE11 I/O FT TIM1_CH2, USART5_RX - L9 43 - - - - PE12 I/O FT SPI1_NSS, I2S1_WS, TIM1_CH3N - M10 44 - - - - PE13 I/O FT SPI1_SCK, I2S1_CK, TIM1_CH3 - M11 45 - - - - PE14 I/O FT SPI1_MISO, I2S1_MCK, TIM1_CH4 - M12 46 - - - - PE15 I/O FT SPI1_MOSI, I2S1_SD, TIM1_BKIN - FTf SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3 - USART3_RX, TIM2_CH4, EVENTOUT, TSC_G6_IO1, I2C2_SDA - L10 47 G7 29 G3 21 Pin name (function upon reset) PB10 I/O Notes LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions L11 48 H7 30 H3 22 PB11 I/O FTf F12 49 D5 31 H2 23 VSS S - Ground G12 50 E5 32 H1 24 VDD S - Digital power supply L12 K12 51 52 H8 G8 33 34 G2 F2 25 26 PB12 PB13 I/O I/O FT TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT - FTf SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3 - DS10624 Rev 5 37/128 41 Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC Table 12. STM32F098CC/RC/VC pin definitions (continued) K11 53 F8 35 G1 27 PB14 I/O Notes I/O structure Pin name (function upon reset) Pin type LQFP48/UFQFPN48 Pin functions WLCSP64 LQFP64 UFBGA64 LQFP100 UFBGA100 Pin numbers Alternate functions Additional functions FTf SPI2_MISO, I2S2_MCK, I2C2_SDA, USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4 - WKUP7, RTC_REFIN K10 54 F7 36 F1 28 PB15 I/O FT SPI2_MOSI, I2S2_SD, TIM1_CH3N, TIM15_CH1N, TIM15_CH2 K9 55 - - - - PD8 I/O FT USART3_TX - K8 56 - - - - PD9 I/O FT USART3_RX - J12 57 - - - - PD10 I/O FT USART3_CK - J11 58 - - - - PD11 I/O FT USART3_CTS - J10 59 - - - - PD12 I/O FT USART3_RTS, TSC_G8_IO1, USART8_CK_RTS - H12 60 - - - - PD13 I/O FT TSC_G8_IO2, USART8_TX - H11 61 - - - - PD14 I/O FT TSC_G8_IO3, USART8_RX - H10 62 - - - - PD15 I/O FT TSC_G8_IO4, CRS_SYNC, USART7_CK_RTS - E12 63 F6 37 E1 - PC6 I/O FT (4) TIM3_CH1, USART7_TX - E11 64 E7 38 D1 - PC7 I/O FT (4) TIM3_CH2, USART7_RX - FT (4) TIM3_CH3, USART8_TX - TIM3_CH4, USART8_RX - E10 65 E8 39 E2 - PC8 I/O D12 66 D8 40 E3 - PC9 I/O FT (4) D11 67 D7 41 D2 29 PA8 I/O FT (4) USART1_CK, TIM1_CH1, EVENTOUT, MCO, CRS_SYNC - D10 68 C7 42 C1 30 PA9 I/O FT (4) USART1_TX, TIM1_CH2, TIM15_BKIN, MCO, TSC_G4_IO1, I2C1_SCL - C12 69 C6 43 C2 31 PA10 I/O FT (4) USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2, I2C1_SDA - 38/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions Table 12. STM32F098CC/RC/VC pin definitions (continued) 44 D3 32 PA11 Pin type LQFP48/UFQFPN48 WLCSP64 LQFP64 UFBGA64 C8 Pin name (function upon reset) I/O Notes 70 Pin functions I/O structure B12 LQFP100 UFBGA100 Pin numbers Alternate functions Additional functions FT (4) CAN_RX, USART1_CTS, TIM1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT, I2C2_SCL - (4) CAN_TX, USART1_RTS, TIM1_ETR, COMP2_OUT, TSC_G4_IO4, EVENTOUT, I2C2_SDA - (5) IR_OUT, SWDIO - (4) - - A12 71 B8 45 B1 33 PA12 I/O FT A11 72 A8 46 C3 34 PA13 I/O FT C11 73 - - - - PF6 I/O FT F11 74 D6 47 B2 35 VSS S - G11 75 E6 48 A1 36 VDDIO2 S - A10 76 A7 49 B3 37 PA14 I/O FT (4) Ground Digital power supply (4) (5) USART2_TX, SWCLK - - A9 77 A6 50 A2 38 PA15 I/O FT (4) SPI1_NSS, I2S1_WS, USART2_RX, USART4_RTS, TIM2_CH1_ETR, EVENTOUT B11 78 B7 51 A3 - PC10 I/O FT (4) USART3_TX, USART4_TX - C10 79 B6 52 C4 - PC11 I/O FT (4) USART3_RX, USART4_RX - B10 80 C5 53 B4 - PC12 I/O FT (4) USART3_CK, USART4_CK, USART5_TX - C9 81 - - - - PD0 I/O FT (4) SPI2_NSS, I2S2_WS, CAN_RX - B9 82 - - - - PD1 I/O FT (4) SPI2_SCK, I2S2_CK CAN_TX - C8 83 B5 54 A4 - PD2 I/O FT (4) USART3_RTS, TIM3_ETR, USART5_RX - B8 84 - - - - PD3 I/O FT SPI2_MISO, I2S2_MCK, USART2_CTS - DS10624 Rev 5 39/128 41 Pinouts and pin descriptions STM32F098CC STM32F098RC STM32F098VC Table 12. STM32F098CC/RC/VC pin definitions (continued) UFBGA64 LQFP64 WLCSP64 LQFP48/UFQFPN48 Pin type I/O structure B7 85 - - - - PD4 I/O FT SPI2_MOSI, I2S2_SD, USART2_RTS - A6 86 - - - - PD5 I/O FT USART2_TX - B6 87 - - - - PD6 I/O FT USART2_RX - A5 88 - - - - PD7 I/O FT USART2_CK - A8 89 A5 55 D4 39 PB3 I/O FT SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT, USART5_TX - FT SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT, USART5_RX - WKUP6 A7 90 A4 56 D5 40 Pin name (function upon reset) PB4 I/O Notes LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions C5 91 C4 57 C5 41 PB5 I/O FT SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2, USART5_CK_RTS B5 92 D3 58 A5 42 PB6 I/O FTf I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03 - - B4 93 C3 59 B5 43 PB7 I/O FTf I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N, TSC_G5_IO4 A4 94 B4 60 C6 44 PF11-BOOT0 I/O FT - Boot memory selection A3 95 B3 61 A6 45 PB8 I/O FTf I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX - - B3 96 A3 62 B6 46 PB9 I/O FTf SPI2_NSS, I2S2_WS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT, CAN_TX C3 97 - - - - PE0 I/O FT EVENTOUT, TIM16_CH1 - A2 98 - - - - PE1 I/O FT EVENTOUT, TIM17_CH1 - 40/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Pinouts and pin descriptions Table 12. STM32F098CC/RC/VC pin definitions (continued) UFBGA64 LQFP64 WLCSP64 LQFP48/UFQFPN48 Pin type I/O structure D3 99 D4 63 A7 47 VSS S - Ground C4 100 E4 64 A8 48 VDD S - Digital power supply Pin name (function upon reset) Notes LQFP100 Pin functions UFBGA100 Pin numbers Alternate functions Additional functions 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual. 3. This pin is powered by VDDA. 4. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os are supplied by VDDIO2 5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated. DS10624 Rev 5 41/128 41 42/128 Table 13. Alternate functions selected through GPIOA_AFR registers for port A AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PA0 - USART2_CTS TIM2_CH1_ETR TSC_G1_IO1 USART4_TX - - COMP1_OUT PA1 EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 USART4_RX TIM15_CH1N - - PA2 TIM15_CH1 USART2_TX TIM2_CH3 TSC_G1_IO3 - - - COMP2_OUT PA3 TIM15_CH2 USART2_RX TIM2_CH4 TSC_G1_IO4 - - - - PA4 SPI1_NSS, I2S1_WS USART2_CK - TSC_G2_IO1 TIM14_CH1 USART6_TX - - PA5 SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 - USART6_RX - - PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN TSC_G2_IO3 USART3_CTS TIM16_CH1 EVENTOUT COMP1_OUT PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17_CH1 EVENTOUT COMP2_OUT PA8 MCO USART1_CK TIM1_CH1 EVENTOUT CRS_SYNC - - - PA9 TIM15_BKIN USART1_TX TIM1_CH2 TSC_G4_IO1 I2C1_SCL MCO - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 TSC_G4_IO2 I2C1_SDA - - - PA11 EVENTOUT USART1_CTS TIM1_CH4 TSC_G4_IO3 CAN_RX I2C2_SCL - COMP1_OUT PA12 EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 CAN_TX I2C2_SDA - COMP2_OUT PA13 SWDIO IR_OUT - - - - - - PA14 SWCLK USART2_TX - - - - - - PA15 SPI1_NSS, I2S1_WS USART2_RX TIM2_CH1_ETR EVENTOUT USART4_RTS - - - STM32F098CC STM32F098RC STM32F098VC DS10624 Rev 5 Pin name DS10624 Rev 5 Pin name AF0 AF1 AF2 AF3 AF4 AF5 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N TSC_G3_IO2 USART3_CK - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N TSC_G3_IO3 USART3_RTS - PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 TSC_G5_IO1 USART5_TX - PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT TSC_G5_IO2 USART5_RX TIM17_BKIN PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA USART5_CK_RTS - PB6 USART1_TX I2C1_SCL TIM16_CH1N TSC_G5_IO3 - - PB7 USART1_RX I2C1_SDA TIM17_CH1N TSC_G5_IO4 USART4_CTS - PB8 CEC I2C1_SCL TIM16_CH1 TSC_SYNC CAN_RX - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT CAN_TX SPI2_NSS, I2S2_WS PB10 CEC I2C2_SCL TIM2_CH3 TSC_SYNC USART3_TX SPI2_SCK, I2S2_CK PB11 EVENTOUT I2C2_SDA TIM2_CH4 TSC_G6_IO1 USART3_RX - PB12 SPI2_NSS, I2S2_WS EVENTOUT TIM1_BKIN TSC_G6_IO2 USART3_CK TIM15_BKIN PB13 SPI2_SCK, I2S2_CK - TIM1_CH1N TSC_G6_IO3 USART3_CTS I2C2_SCL PB14 SPI2_MISO, I2S2_MCK TIM15_CH1 TIM1_CH2N TSC_G6_IO4 USART3_RTS I2C2_SDA PB15 SPI2_MOSI, I2S2_SD TIM15_CH2 TIM1_CH3N TIM15_CH1N - - STM32F098CC STM32F098RC STM32F098VC Table 14. Alternate functions selected through GPIOB_AFR registers for port B 43/128 STM32F098CC STM32F098RC STM32F098VC Table 15. Alternate functions selected through GPIOC_AFR registers for port C Pin name AF0 AF1 AF2 PC0 EVENTOUT USART7_TX USART6_TX PC1 EVENTOUT USART7_RX USART6_RX PC2 EVENTOUT SPI2_MISO, I2S2_MCK USART8_TX PC3 EVENTOUT SPI2_MOSI, I2S2_SD USART8_RX PC4 EVENTOUT USART3_TX - PC5 TSC_G3_IO1 USART3_RX - PC6 TIM3_CH1 USART7_TX - PC7 TIM3_CH2 USART7_RX - PC8 TIM3_CH3 USART8_TX - PC9 TIM3_CH4 USART8_RX - PC10 USART4_TX USART3_TX - PC11 USART4_RX USART3_RX - PC12 USART4_CK USART3_CK USART5_TX PC13 - - - PC14 - - - PC15 - - - Table 16. Alternate functions selected through GPIOD_AFR registers for port D 44/128 Pin name AF0 AF1 AF2 PD0 CAN_RX SPI2_NSS, I2S2_WS - PD1 CAN_TX SPI2_SCK, I2S2_CK - PD2 TIM3_ETR USART3_RTS USART5_RX PD3 USART2_CTS SPI2_MISO, I2S2_MCK - PD4 USART2_RTS SPI2_MOSI, I2S2_SD - PD5 USART2_TX - - PD6 USART2_RX - - PD7 USART2_CK - - PD8 USART3_TX - - PD9 USART3_RX - - PD10 USART3_CK - - PD11 USART3_CTS - - PD12 USART3_RTS TSC_G8_IO1 USART8_CK_RTS PD13 USART8_TX TSC_G8_IO2 - PD14 USART8_RX TSC_G8_IO3 - PD15 CRS_SYNC TSC_G8_IO4 USART7_CK_RTS DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Table 17. Alternate functions selected through GPIOE_AFR registers for port E Pin name AF0 AF1 PE0 TIM16_CH1 EVENTOUT PE1 TIM17_CH1 EVENTOUT PE2 TIM3_ETR TSC_G7_IO1 PE3 TIM3_CH1 TSC_G7_IO2 PE4 TIM3_CH2 TSC_G7_IO3 PE5 TIM3_CH3 TSC_G7_IO4 PE6 TIM3_CH4 - PE7 TIM1_ETR USART5_CK_RTS PE8 TIM1_CH1N USART4_TX PE9 TIM1_CH1 USART4_RX PE10 TIM1_CH2N USART5_TX PE11 TIM1_CH2 USART5_RX PE12 TIM1_CH3N SPI1_NSS, I2S1_WS PE13 TIM1_CH3 SPI1_SCK, I2S1_CK PE14 TIM1_CH4 SPI1_MISO, I2S1_MCK PE15 TIM1_BKIN SPI1_MOSI, I2S1_SD Table 18. Alternate functions selected through GPIOF_AFR registers for port F Pin name AF0 AF1 AF2 PF0 CRS_SYNC I2C1_SDA - PF1 - I2C1_SCL - PF2 EVENTOUT USART7_TX USART7_CK_RTS PF3 EVENTOUT USART7_RX USART6_CK_RTS PF6 - - - PF9 TIM15_CH1 USART6_TX - PF10 TIM15_CH2 USART6_RX - DS10624 Rev 5 45/128 45 Memory mapping 5 STM32F098CC STM32F098RC STM32F098VC Memory mapping Figure 10. STM32F098CC/RC/VC memory map 0xFFFF FFFF 0x4800 17FF Reserved AHB2 7 0xE010 0000 0xE000 0000 6 0x4800 0000 Cortex-M0 internal peripherals Reserved Reserved 0xC000 0000 0x4002 43FF AHB1 5 Reserved 0x4002 0000 Reserved 0xA000 0000 0x4001 8000 4 Reserved 0x1FFF FFFF 0x1FFF FC00 0x1FFF F800 0x8000 0000 APB Reserved Option Bytes 0x4001 0000 Reserved System memory 3 0x4000 8000 Reserved 0x1FFF D800 APB 0x6000 0000 0x4000 0000 Reserved Reserved 2 0x4000 0000 Peripherals 0x0804 0000 Reserved 1 Flash memory 0x2000 0000 SRAM 0x0800 0000 Reserved 0 CODE 0x0004 0000 Flash, system memory or SRAM, depending on BOOT configuration 0x0000 0000 0x0000 0000 MSv34959V3 46/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Memory mapping Table 19. Peripheral register boundary addresses Bus Boundary address Size Peripheral - 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB GPIOE 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 4000 - 0x4002 43FF 1 KB TSC 0x4002 3400 - 0x4002 3FFF 3 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB Flash memory interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved AHB2 - AHB1 - DS10624 Rev 5 47/128 49 Memory mapping STM32F098CC STM32F098RC STM32F098VC Table 19. Peripheral register boundary addresses (continued) Bus APB - 48/128 Boundary address Size Peripheral 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 2000 - 0x4001 23FF 1 KB Reserved 0x4001 1C00 – 0x4001 1FFF 1 KB USART8 0x4001 1800 – 0x4001 1BFF 1 KB USART7 0x4001 1400 – 0x4001 17FF 1 KB USART6 0x4001 0800 - 0x4001 13FF 3 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG + COMP 0x4000 8000 - 0x4000 FFFF 32 KB Reserved DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Memory mapping Table 19. Peripheral register boundary addresses (continued) Bus APB Boundary address Size Peripheral 0x4000 7C00 - 0x4000 7FFF 1 KB Reserved 0x4000 7800 - 0x4000 7BFF 1 KB CEC 0x4000 7400 - 0x4000 77FF 1 KB DAC 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6C00 - 0x4000 6FFF 1 KB CRS 0x4000 6800 - 0x4000 6BFF 1 KB Reserved 0x4000 6400 - 0x4000 67FF 1 KB BxCAN 0x4000 6100 - 0x4000 63FF 768 B Reserved 0x4000 6000 - 0x4000 60FF 256 B CAN RAM 0x4000 5C00 - 0x4000 5FFF 1 KB Reserved 0x4000 5800 - 0x4000 5BFF 1 KB I2C2 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 5000 - 0x4000 53FF 1 KB USART5 0x4000 4C00 - 0x4000 4FFF 1 KB USART4 0x4000 4800 - 0x4000 4BFF 1 KB USART3 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1800 - 0x4000 1FFF 2 KB Reserved 0x4000 1400 - 0x4000 17FF 1 KB TIM7 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB TIM2 DS10624 Rev 5 49/128 49 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 1.8 V and VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 11. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 12. Figure 11. Pin loading conditions Figure 12. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19210V1 50/128 DS10624 Rev 5 MS19211V1 STM32F098CC STM32F098RC STM32F098VC 6.1.6 Electrical characteristics Power supply scheme Figure 13. Power supply scheme VBAT Backup circuitry (LSE, RTC, Backup registers) 1.65 – 3.6 V Power switch NPOR VDD VCORE 3 x VDD 3 x 100 nF GPIOs IN +1 x 4.7 μF Level shifter OUT IO logic Level shifter VDDIO1 IO logic Kernel logic (CPU, Digital & Memories) 3 x VSS VDDIO2 VDDIO2 VDDIO2 OUT 100 nF +4.7 μF GPIOs IN VSS VDDA VDDA 10 nF +1 μF VREF+ VREF- ADC/ DAC Analog: (RCs, PLL, …) VSSA MS34930V1 Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DS10624 Rev 5 51/128 99 Electrical characteristics 6.1.7 STM32F098CC STM32F098RC STM32F098VC Current consumption measurement Figure 14. Current consumption measurement scheme I DD_VBAT V BAT I DD V DD V DDIO2 I DDA V DDA MS31999V2 52/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics, Table 21: Current characteristics and Table 22: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 20. Voltage characteristics(1) Symbol VDD–VSS Ratings External main supply voltage VDDIO2–VSS External I/O supply voltage VDDA–VSS External analog supply voltage VDD–VDDA Allowed voltage difference for VDD > VDDA VBAT–VSS External backup supply voltage VIN(2) |∆VDDx| |VSSx - VSS| VESD(HBM) Min Max Unit − 0.3 1.95 V - 0.3 4.0 V - 0.3 4.0 V - 0.4 V - 0.3 4.0 V 4.0(3) Input voltage on FT and FTf pins VSS − 0.3 VDDIOx + Input voltage on POR pins VSS − 0.3 4.0 V Input voltage on TTa pins VSS − 0.3 4.0 V Input voltage on any other pin VSS − 0.3 4.0 V Variations between different VDD power pins - 50 mV Variations between all the different ground pins - 50 mV Electrostatic discharge voltage (human body model) V see Section 6.3.11: Electrical sensitivity characteristics - 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 21: Current characteristics for the maximum allowed injected current values. 3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V. DS10624 Rev 5 53/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 21. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD power lines (source)(1) 120 ΣIVSS (1) -120 Total current out of sum of all VSS ground lines (sink) IVDD(PIN) Maximum current into each VDD power pin (source) (1) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100 IIO(PIN) Output current sunk by any I/O and control pin 25 Output current source by any I/O and control pin -25 (2) ΣIIO(PIN) Total output current sunk by sum of all I/Os and control pins 80 Total output current sourced by sum of all I/Os and control pins(2) -80 Total output current sourced by sum of all I/Os supplied by VDDIO2 -40 Injected current on TC and RST pin ±5 Injected current on TTa pins(5) ΣIINJ(PIN) Total injected current (sum of all I/O and control mA -5/+0(4) Injected current on POR, FT and FTf pins IINJ(PIN)(3) Unit ±5 pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 20: Voltage characteristics for the maximum allowed input voltage values. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the device. See note (2) below Table 57: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 22. Thermal characteristics Symbol TSTG TJ 54/128 Ratings Storage temperature range Maximum junction temperature DS10624 Rev 5 Value Unit –65 to +150 °C 150 °C STM32F098CC STM32F098RC STM32F098VC 6.3 Operating conditions 6.3.1 General operating conditions Electrical characteristics Table 23. General operating conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency - 0 48 fPCLK Internal APB clock frequency - 0 48 VDD Standard operating voltage - 1.65 1.95 V Must not be supplied if VDD is not present 1.65 3.6 V VDD 3.6 2.4 3.6 1.65 3.6 TC and RST I/O –0.3 VDDIOx+0.3 TTa and POR I/O –0.3 VDDA+0.3(1) –0.3 5.2(1) UFBGA100 - 364 LQFP100 - 476 - 455 - 377 - 308 LQFP48 - 370 UFQFPN48 - 625 –40 85 –40 105 VDDIO2 VDDA VBAT VIN I/O supply voltage Analog operating voltage (ADC and DAC not used) Analog operating voltage (ADC and DAC used) Must have a potential equal to or higher than VDD Backup operating voltage I/O input voltage - FT and FTf I/O PD LQFP64 Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for WLCSP64 suffix 7(2) UFBGA64 V Ambient temperature for the suffix 6 version Maximum power dissipation Ambient temperature for the suffix 7 version Maximum power dissipation –40 105 Low power dissipation(3) –40 125 TA Low power dissipation (3) MHz V V mW °C °C 1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8: Thermal characteristics). 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 24 are derived from tests performed under the ambient temperature condition summarized in Table 23. DS10624 Rev 5 55/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 24. Operating conditions at power-up / power-down Symbol tVDD tVDDA 6.3.3 Parameter Conditions VDD rise time rate - VDD fall time rate VDDA rise time rate - VDDA fall time rate Min Max 0 ∞ 20 ∞ 0 ∞ 20 ∞ Unit µs/V Embedded reference voltage The parameters given in Table 25 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. Table 25. Embedded internal reference voltage Symbol VREFINT Parameter Conditions Internal reference voltage –40 °C < TA < +105 °C Min Typ Max Unit 1.2 1.23 1.25 V tSTART ADC_IN17 buffer startup time - - - 10(1) µs tS_vrefint ADC sampling time when reading the internal reference voltage - 4(1) - - µs ∆VREFINT Internal reference voltage spread over the temperature range VDDA = 3 V - - 10(1) mV - - 100(1) - 100(1) ppm/°C - 1.5 2.5 TCoeff Temperature coefficient TVREFINT_RDY Internal reference voltage (2) temporization 4.5 ms 1. Guaranteed by design, not tested in production. 2. Guaranteed by design, not tested in production. This parameter is the latency between the time when pin NPOR is set to 1 by the application and the time when the VREFINTRDYF status bit is set to 1 by the hardware. 6.3.4 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 14: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. 56/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • • The Flash memory access time is adjusted to the fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 26 to Table 29 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. DS10624 Rev 5 57/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Parameter Symbol Table 26. Typical and maximum current consumption from VDD supply at VDD = 1.8 V All peripherals enabled Conditions Supply current in Sleep mode IDD Supply current in Run mode, code executing from RAM Supply current in Run mode, code executing from Flash memory HSI48 Max @ TA(1) Max @ TA(1) Unit Typ Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 48 MHz 26.2 28.0 28.8 28.9 14.2 15.1 15.2 15.3 48 MHz HSE bypass, 32 MHz PLL on 24 MHz 26.1 27.9 28.7 28.8 14.1 15.0 15.1 15.3 17.7 18.9 19.4 19.5 9.6 10.2 10.3 10.4 13.8 14.6 14.9 15.0 7.9 8.2 8.4 8.6 8 MHz 4.7 5.0 5.1 5.3 2.7 2.9 2.9 2.9 1 MHz 0.8 0.9 1.0 1.1 0.6 0.7 0.8 0.8 48 MHz 26.1 27.9 28.7 28.9 14.1 15.0 15.2 15.3 32 MHz 17.8 19.0 19.4 19.5 9.7 10.2 10.4 10.4 24 MHz 13.9 14.7 15.0 15.1 8.0 8.3 8.5 8.7 HSI clock, PLL off 8 MHz 4.8 5.1 5.1 5.4 2.7 2.9 2.9 2.9 HSI48 48 MHz 25.7 27.6 28.2 28.5 13.6 14.6 14.7 14.9 48 MHz HSE bypass, 32 MHz PLL on 24 MHz 25.5 27.4 28.1 28.3 13.5 14.5 14.7 14.8 17.2 18.4 18.9 19.0 9.1 9.7 9.9 9.9 13.1 14.0 14.3 14.4 7.1 7.5 7.7 7.8 8 MHz 4.2 4.6 4.7 4.8 2.3 2.5 2.5 2.6 1 MHz 0.5 0.7 0.7 0.7 0.3 0.4 0.4 0.5 48 MHz 25.6 27.5 28.2 28.4 13.6 14.5 14.7 14.8 32 MHz 17.3 18.5 18.9 19.0 9.1 9.8 9.9 10.0 24 MHz 13.2 14.1 14.4 14.4 7.2 7.6 7.8 7.9 HSI clock, PLL off 8 MHz 4.4 4.7 4.9 4.9 2.3 2.6 2.6 2.6 HSI48 48 MHz 16.5 17.7 18.2 18.3 3.1 3.4 3.5 3.6 48 MHz HSE bypass, 32 MHz PLL on 24 MHz 16.4 17.6 18.0 18.1 3.1 3.3 3.4 3.5 11.1 11.9 12.2 12.3 2.1 2.3 2.4 2.5 8.4 9.1 9.3 9.4 1.6 1.8 1.9 2.0 8 MHz 2.8 3.0 3.1 3.4 0.5 0.7 0.7 0.8 1 MHz 0.4 0.5 0.5 0.6 0.2 0.3 0.3 0.4 48 MHz 16.4 17.7 18.1 18.2 3.1 3.3 3.4 3.5 32 MHz 11.2 12.0 12.2 12.3 2.2 2.4 2.5 2.6 24 MHz 8.5 9.1 9.3 9.4 1.7 1.8 1.9 2.0 8 MHz 2.8 3.1 3.1 3.5 0.6 0.7 0.7 0.8 HSE bypass, PLL off HSI clock, PLL on HSE bypass, PLL off HSI clock, PLL on HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off 58/128 fHCLK All peripherals disabled DS10624 Rev 5 mA mA STM32F098CC STM32F098RC STM32F098VC Electrical characteristics 1. Data based on characterization results, not tested in production unless otherwise specified. Table 27. Typical and maximum current consumption in Stop mode IDDA Max = 3.6 V = 3.3 V = 3.0 V = 2.7 V = 2.4 V = 2.0 V Conditions All oscillators OFF = 1.8 V Parameter Supply current in Stop mode Symbol IDD Typ @ VDDA (VDD = 1.8 V) 0.6 0.9 0.9 1.0 1.0 1.0 1.1 1.2 TA = 25 °C Unit TA = TA = 85 °C 105 °C 2.4 33 78 2.5 3.0 3.7 µA Symbol Para-meter Table 28. Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Conditions (1) HSI48 IDDA Supply current in Run or Sleep mode, code executing from Flash memory or RAM HSE bypass, PLL on HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off fHCLK VDDA = 3.6 V Max @ TA(2) Max @ TA(2) Unit Typ Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 48 MHz 311 332 337 346 315 333 340 349 48 MHz 146 167 177 180 159 180 191 196 32 MHz 100 118 124 126 108 126 134 137 24 MHz 79 95 98 99 85 100 105 108 8 MHz 2 3 3 4 3 3 4 4 1 MHz 2 2 3 3 2 3 3 4 48 MHz 212 242 253 257 234 261 274 280 32 MHz 165 193 202 203 183 206 215 219 24 MHz 143 170 176 177 160 179 186 189 8 MHz 64 82 84 85 76 88 91 92 µA 1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production unless otherwise specified. DS10624 Rev 5 59/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 29. Typical and maximum current consumption from the VBAT supply Max(1) Typ @ VBAT 2.4 V 2.7 V 3.3 V 3.6 V RTC domain IDD_VBAT supply current Conditions 1.8 V Parameter 1.65 V Symbol TA = 25 °C LSE & RTC ON; “Xtal mode”: lower driving capability; LSEDRV[1:0] = '00' 0.5 0.5 0.6 0.7 0.9 1.0 1.0 LSE & RTC ON; “Xtal mode” higher driving capability; LSEDRV[1:0] = '11' 0.8 TA = TA = 85 °C 105 °C 1.3 Unit 1.8 µA 0.8 0.9 1.0 1.2 1.3 1.4 1.7 2.2 1. Data based on characterization results, not tested in production. Typical current consumption The MCU is placed under the following conditions: 60/128 • VDD = VDDA = 1.8 V • All I/O pins are in analog input configuration • The Flash memory access time is adjusted to fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz • When the peripherals are enabled, fPCLK = fHCLK • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 30. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal Typical consumption in Run mode Symbol IDD IDDA Parameter Current consumption from VDD supply Current consumption from VDDA supply fHCLK Typical consumption in Sleep mode Unit Peripherals Peripherals Peripherals Peripherals enabled disabled enabled disabled 48 MHz 26.1 14.3 16.8 3.4 36 MHz 20.2 11.1 13.0 2.8 32 MHz 18.5 10.3 11.7 2.5 24 MHz 14.5 8.1 9.1 1.9 16 MHz 10.1 5.7 6.3 1.4 8 MHz 5.0 2.8 2.9 0.7 4 MHz 3.1 1.8 1.9 0.6 2 MHz 1.8 1.1 1.3 0.6 1 MHz 1.2 0.8 1.0 0.5 500 kHz 1.0 0.7 0.9 0.5 48 MHz 151 36 MHz 118 32 MHz 108 24 MHz 87 16 MHz 63 8 MHz 1.1 4 MHz 1.1 2 MHz 1.1 1 MHz 1.1 500 kHz 1.1 mA μA I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 50: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt DS10624 Rev 5 61/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 32: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. 62/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 31. Switching output I/O current consumption Symbol Parameter Conditions(1) VDDIOx = 1.8 V CEXT = 0 pF C = CINT + CEXT + CS VDDIOx = 1.8 V CEXT = 10 pF C = CINT + CEXT + CS ISW I/O current consumption VDDIOx = 1.8 V CEXT = 22 pF C = CINT + CEXT + CS VDDIOx = 1.8 V CEXT = 33 pF C = CINT + CEXT + CS VDDIOx = 1.8 V CEXT = 47 pF C = CINT + CEXT + CS I/O toggling frequency (fSW) Typ 2 MHz 0.09 4 MHz 0.17 8 MHz 0.34 18 MHz 0.79 36 MHz 1.50 48 MHz 2.06 2 MHz 0.13 4 MHz 0.26 8 MHz 0.50 18 MHz 1.18 36 MHz 2.27 48 MHz 3.03 2 MHz 0.18 4 MHz 0.36 8 MHz 0.69 18 MHz 1.60 36 MHz 3.27 2 MHz 0.23 4 MHz 0.45 8 MHz 0.87 18 MHz 2.0 36 MHz 3.7 2 MHz 0.29 4 MHz 0.55 8 MHz 1.09 18 MHz 2.43 Unit mA 1. CS = 5 pF (estimated value). DS10624 Rev 5 63/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 32. The MCU is placed under the following conditions: • All I/O pins are in analog mode • All peripherals are disabled unless otherwise mentioned • The given value is calculated by measuring the current consumption • – with all peripherals clocked off – with only one peripheral clocked on Ambient operating temperature and supply voltage conditions summarized in Table 20: Voltage characteristics Table 32. Peripheral current consumption Peripheral AHB 64/128 Typical consumption at 25 °C BusMatrix(1) 3.1 CRC 2.0 DMA1 5.5 DMA2 5.1 Flash memory interface 15.4 GPIOA 5.5 GPIOB 5.4 GPIOC 3.2 GPIOD 3.1 GPIOE 4.0 GPIOF 2.5 SRAM 0.8 TSC 5.5 All AHB peripherals 61.0 DS10624 Rev 5 Unit µA/MHz STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 32. Peripheral current consumption (continued) Peripheral APB-Bridge APB Typical consumption at 25 °C (2) Unit 3.6 ADC(3) 4.3 CAN 12.4 CEC 0.4 CRS 0.0 DAC(3) 4.2 DBG (MCU Debug Support) 0.2 I2C1 2.9 I2C2 2.4 PWR 0.6 SPI1 8.8 SPI2 7.8 SYSCFG and COMP 1.9 TIM1 15.2 TIM14 2.6 TIM15 8.7 TIM16 5.8 TIM17 7.0 TIM2 16.2 TIM3 11.9 TIM6 11.8 TIM7 2.5 USART1 17.6 USART2 16.3 USART3 16.2 USART4 4.7 USART5 4.4 USART6 5.5 USART7 5.2 USART8 5.1 WWDG 1.1 All APB peripherals µA/MHz 207.2 1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA). 2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus. 3. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, comparators, is not included. Refer to the tables of characteristics in the subsequent sections. DS10624 Rev 5 65/128 99 Electrical characteristics 6.3.5 STM32F098CC STM32F098RC STM32F098VC Wakeup time from low-power mode The wakeup times given in Table 33 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture. The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop mode, SYSCLK takes the default setting: HSI 8 MHz. The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. Table 33. Low-power mode wakeup timings Symbol tWUSTOP Wakeup from Stop mode tWUSLEEP Wakeup from Sleep mode 6.3.6 Typ @ VDDA Parameter = 1.8 V = 3.3 V 3.5 2.8 Max Unit 5.3 µs - µs 4 SYSCLK cycles External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 15: High-speed external clock source AC timing diagram. Table 34. High-speed external user clock characteristics Symbol Parameter(1) Typ Max Unit - 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx tw(HSEH) tw(HSEL) OSC_IN high or low time 15 - - tr(HSE) tf(HSE) OSC_IN rise or fall time - - 20 V ns 1. Guaranteed by design, not tested in production. 66/128 Min DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Figure 15. High-speed external clock source AC timing diagram tw(HSEH) VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) t tw(HSEL) THSE MS19214V2 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 16. Table 35. Low-speed external user clock characteristics Parameter(1) Symbol fLSE_ext User external clock source frequency Min Typ Max Unit - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx 450 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) tr(LSE) tf(LSE) V ns OSC32_IN rise or fall time - - 50 1. Guaranteed by design, not tested in production. Figure 16. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) t tw(LSEL) TLSE MS19215V2 DS10624 Rev 5 67/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 36. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 36. HSE oscillator characteristics Symbol fOSC_IN RF Conditions(1) Min(2) Typ Max(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - kΩ - - 8.5 VDD = 1.8 V, Rm = 30 Ω, CL = 10 pF@8 MHz - 0.4 - VDD = 1.8 V, Rm = 45 Ω, CL = 10 pF@8 MHz - 0.5 - VDD = 1.8 V, Rm = 30 Ω, CL = 5 pF@32 MHz - 0.8 - VDD = 1.8 V, Rm = 30 Ω, CL = 10 pF@32 MHz - 1 - VDD = 1.8 V, Rm = 30 Ω, CL = 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Parameter During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time (3) mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: 68/128 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Figure 17. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MHz resonator CL2 REXT (1) fHSE RF Bias controlled gain OSC_OUT MS19876V1 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 37. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 37. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol LSE current consumption IDD Oscillator transconductance gm tSU(LSE) Parameter (3) Startup time Conditions(1) Min(2) Typ Max(2) Unit low drive capability - 0.5 0.9 medium-low drive capability - - 1 medium-high drive capability - - 1.3 high drive capability - - 1.6 low drive capability 5 - - medium-low drive capability 8 - - medium-high drive capability 15 - - high drive capability 25 - - VDDIOx is stabilized - 2 - µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer DS10624 Rev 5 69/128 99 Electrical characteristics Note: STM32F098CC STM32F098RC STM32F098VC For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 18. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN fLSE Drive programmable amplifier 32.768 kHz resonator OSC32_OUT CL2 MS30253V2 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. 6.3.7 Internal clock source characteristics The parameters given in Table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. The provided curves are characterization results, not tested in production. 70/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics High-speed internal (HSI) RC oscillator Table 38. HSI oscillator characteristics(1) Symbol Parameter fHSI Conditions Min Typ - - Frequency TRIM HSI user trimming step DuCy(HSI) Duty cycle Accuracy of the HSI oscillator ACCHSI - - - (2) 45 IDDA(HSI) Unit 8 - MHz - (2) - % 1 (2) 55 % TA = -40 to 105°C (3) -2.8 - 3.8 TA = -10 to 85°C -1.9(3) - 2.3(3) TA = 0 to 85°C -1.9(3) - 2(3) TA = 0 to 70°C -1.3(3) - 2(3) TA = 0 to 55°C -1(3) - 2(3) -1 - 1 - 2(2) µs 80 100(2) µA TA = 25°C(4) tsu(HSI) Max HSI oscillator startup time - 1(2) HSI oscillator power consumption - - (3) % 1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. 4. Factory calibrated, parts not soldered. Figure 19. HSI oscillator accuracy characterization results for soldered parts 4% MAX MIN 3% 2% 1% 0% -40 -20 0 20 40 60 80 100 T [ºC] 120 A -1% -2% -3% -4% MS30985V4 DS10624 Rev 5 71/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 39. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Min Typ - - 14 Frequency HSI14 user-trimming step DuCy(HSI14) Duty cycle - - - (2) 45 Accuracy of the HSI14 oscillator (factory calibrated) TA = –10 to 85 °C TA = 25 °C tsu(HSI14) IDDA(HSI14) - MHz (2) - % 1 55 (2) % (3) % (3) - 5.1 –3.2(3) - 3.1(3) % –2.5 - 2.3 (3) % –1 (3) TA = 0 to 70 °C Unit - TA = –40 to 105 °C –4.2 ACCHSI14 Max HSI14 oscillator startup time - 1(2) HSI14 oscillator power consumption - - - 1 % - 2(2) µs 100 150(2) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 20. HSI14 oscillator accuracy characterization results 5% MAX MIN 4% 3% 2% 1% TA [°C] 0% -40 -20 0 20 40 60 80 100 120 - 1% - 2% - 3% -4% -5% MS30986V2 72/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics High-speed internal 48 MHz (HSI48) RC oscillator Table 40. HSI48 oscillator characteristics(1) Symbol fHSI48 TRIM Parameter Conditions Min Typ Max Unit - - 48 - MHz Frequency HSI48 user-trimming step (2) - DuCy(HSI48) Duty cycle 0.09 - 45 TA = –40 to 105 °C ACCHSI48 TA = –10 to 85 °C Accuracy of the HSI48 oscillator (factory calibrated) T = 0 to 70 °C A IDDA(HSI48) 0.14 - % (2) % (3) 0.2 55 (3) - 4.7 % -4.1(3) - 3.7(3) % - (3) % -4.9 (3) -3.8 TA = 25 °C tsu(HSI48) (2) (2) -2.8 3.4 - 2.9 % µs µA HSI48 oscillator startup time - - - 6(2) HSI48 oscillator power consumption - - 312 350(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 21. HSI48 oscillator accuracy characterization results 5% MAX MIN 4% 3% 2% 1% TA [°C] 0% -40 -20 0 20 40 60 80 100 120 - 1% - 2% - 3% -4% -5% MS34206V1 DS10624 Rev 5 73/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Low-speed internal (LSI) RC oscillator Table 41. LSI oscillator characteristics(1) Symbol Parameter fLSI Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 1.2 µA Frequency tsu(LSI)(2) IDDA(LSI)(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.8 PLL characteristics The parameters given in Table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. Table 42. PLL characteristics Value Symbol fPLL_IN fPLL_OUT tLOCK JitterPLL Parameter Unit Min Typ Max 1(2) 8.0 24(2) MHz PLL input clock duty cycle (2) 40 - 60(2) % PLL multiplier output clock 16(2) - 48 MHz PLL lock time - - 200(2) µs Cycle-to-cycle jitter - - 300(2) ps PLL input clock(1) 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 6.3.9 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 43. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = - 40 to +105 °C 40 53.5 60 µs Page (2 KB) erase time TA = - 40 to +105 °C 20 - 40 ms tME Mass erase time TA = - 40 to +105 °C 20 - 40 ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. 74/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 44. Flash memory endurance and data retention Symbol NEND Parameter Endurance Conditions TA = –40 to +105 °C 1 tRET Data retention kcycle(2) Min(1) Unit 10 kcycle at TA = 85 °C 30 at TA = 105 °C 10 10 kcycle(2) at TA = 55 °C 20 1 kcycle (2) Year 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 45. They are based on the EMS levels and classes defined in application note AN1709. Table 45. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 1.8 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin fHCLK = 48 MHz, to induce a functional disturbance conforming to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 1.8 V, LQFP100, TA = +25°C, fHCLK = 48 MHz, conforming to IEC 61000-4-4 4B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. DS10624 Rev 5 75/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (for example control registers) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 46. EMI characteristics Symbol Parameter SEMI 6.3.11 Conditions Monitored frequency band 0.1 to 30 MHz VDD = 1.8 V, TA = 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with 130 MHz to 1 GHz IEC 61967-2 EMI Level Max vs. [fHSE/fHCLK] Unit 8/48 MHz 3 23 dBµV 15 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the standards stated in the following table. 76/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 47. ESD absolute maximum ratings Symbol Ratings Conditions VESD(HBM) Electrostatic discharge voltage TA = +25 °C, conforming to (human body model) ANSI/ESDA/JEDEC JS-001 VESD(CDM) Electrostatic discharge voltage TA = +25 °C, conforming to (charge device model) ANSI/ESD STM5.3.1 Packages Class Maximum value(1) Unit All 2 2000 V WLCSP64, LQFP100 C3 250 All others C4 500 V 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 48. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 49. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. DS10624 Rev 5 77/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 49. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ 6.3.13 Injected current on BOOT0 -0 NA Injected current on PF1 pin (FTf pin) -0 NA Injected current on PC0 pin (TTA pin) -0 +5 Injected current on PA4, PA5 pins with induced leakage current on adjacent pins less than -20 μA -5 NA Injected current on other FT and FTf pins, and on NPOR pin -5 NA Injected current on all other TC, TTa and RST pins -5 +5 mA I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under the conditions summarized in Table 23: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant. Table 50. I/O static characteristics Symbol VIL Parameter Low level input voltage Conditions Min Typ Max TC and TTa I/O - - 0.3 VDDIOx+0.07(1) FT and FTf I/O - - 0.475 VDDIOx–0.2(1) All I/Os - - 0.3 VDDIOx - - 0.5 VDDIOx+0.2(1) - - 0.7 VDDIOx - TC and TTa I/O VIH High level input voltage 0.445 VDDIOx FT and FTf I/O All I/Os Vhys Ilkg 78/128 Schmitt trigger hysteresis Input leakage current(2) TC and TTa I/O - +0.398(1) V V (1) - (1) - 200 FT and FTf I/O - 100 TC, FT and FTf I/O TTa in digital mode VSS ≤ VIN ≤ VDDIOx - - ± 0.1 TTa in digital mode VDDIOx ≤ VIN ≤ VDDA - - 1 TTa in analog mode VSS ≤ VIN ≤ VDDA - - ± 0.2 FT and FTf I/O VDDIOx ≤ VIN ≤ 5 V - - 10 DS10624 Rev 5 Unit mV µA STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 50. I/O static characteristics (continued) Symbol RPU Parameter Weak pull-up equivalent resistor (3) RPD Weak pull-down equivalent resistor(3) CIO I/O pin capacitance Conditions Min Typ Max Unit VIN = VSS 25 40 55 kΩ VIN = - VDDIOx 25 40 55 kΩ - 5 - pF - 1. Data based on design simulation only. Not tested in production. 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 49: I/O current injection susceptibility. 3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 22 for standard I/Os, and in Figure 23 for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production. DS10624 Rev 5 79/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Figure 22. TC and TTa I/O input characteristics 3 2.5 TESTED RANGE 2 TTL standard requirement ent) irem equ ard r nd S sta (CMO VIN (V) 1.5 V IHmin V DDIOx = 0.7 0.445 VIHmin = VDDIOx + 0.398 UNDEFINED INPUT RANGE 1 3 VDDIOx + VILmax = 0. 0.5 0.07 3 VDDIOx VILmax = 0. TTL standard requirement t) quiremen andard re (CMOS st TESTED RANGE 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDDIOx (V) MSv32130V4 Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics 3 2.5 TESTED RANGE 2 TTL standard requirement ent) irem equ ard r nd S sta (CMO VIN (V) 1.5 V IHmin VIHmin = 1 V DDIOx = 0.7 UNDEFINED INPUT RANGE 0.5 + VDDIOx 0.475 VILmax = 0.5 0.2 VDDIOx - 0.2 3 VDDIOx VILmax = 0. TTL standard requirement t) quiremen andard re (CMOS st TESTED RANGE 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDDIOx (V) MSv32131V4 80/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 20: Voltage characteristics). • The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 20: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified). Table 51. Output voltage characteristics(1) Symbol Parameter VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(4) Output low level voltage for an I/O pin VOH(4) Output high level voltage for an I/O pin VOLFm+(3) Output low level voltage for an FTf I/O pin in Fm+ mode Conditions Min Max CMOS port(2) |IIO| = 8 mA VDDIOx ≥ 2.7 V - 0.4 VDDIOx–0.4 - - 0.4 2.4 - - 1.3 VDDIOx–1.3 - - 0.4 VDDIOx–0.4 - - 0.4 V VDDIOx–0.4 - V |IIO| = 20 mA VDDIOx ≥ 2.7 V - 0.4 V |IIO| = 10 mA - 0.4 V TTL port(2) |IIO| = 8 mA VDDIOx ≥ 2.7 V |IIO| = 20 mA VDDIOx ≥ 2.7 V |IIO| = 6 mA VDDIOx ≥ 2 V |IIO| = 4 mA Unit V V V V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. Data based on characterization results. Not tested in production. 4. Data based on characterization results. Not tested in production. DS10624 Rev 5 81/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 24 and Table 52, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. Table 52. I/O AC characteristics(1)(2) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions Min Max Unit - 2 MHz - 125 - 125 - 1 - 125 - 125 - 10 - 25 - 25 - 4 - 62.5 - 62.5 CL = 30 pF, VDDIOx ≥ 2.7 V - 50 CL = 50 pF, VDDIOx ≥ 2.7 V - 30 CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V - 20 CL = 50 pF, VDDIOx < 2 V - 10 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V - 12 CL = 50 pF, VDDIOx < 2 V - 25 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2 V ≤ VDDIOx < 2.7 V - 12 CL = 50 pF, VDDIOx < 2 V - 25 fmax(IO)out Maximum frequency(3) x0 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx < 2 V fmax(IO)out Maximum frequency(3) 01 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx < 2 V fmax(IO)out Maximum frequency(3) 11 tf(IO)out tr(IO)out 82/128 Output fall time Output rise time DS10624 Rev 5 ns MHz ns MHz ns MHz ns MHz ns STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 52. I/O AC characteristics(1)(2) (continued) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions fmax(IO)out Maximum frequency(3) Fm+ configuration (4) - tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2 V fmax(IO)out Maximum frequency(3) tf(IO)out Output fall time CL = 50 pF, VDDIOx < 2 V tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller - Min Max Unit - 2 MHz - 12 - 34 - 0.5 - 16 - 44 10 - ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design, not tested in production. 3. The maximum frequency is defined in Figure 24. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration. Figure 24. I/O AC characteristics definition 90% 10% 50% 50% 10% 90% t f(IO)out t r(IO)out T Maximum frequency is achieved if (t r + t f ) ≤ 2 T and if the duty cycle is (45-55%) 3 when loaded by CL (see the table I/O AC characteristics definition) MS32132V3 6.3.14 NRST and NPOR pin characteristics NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. DS10624 Rev 5 83/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 53. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1) VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV V RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ VF(NRST) NRST input filtered pulse - - - 100(1) ns - 700(1) - - ns VNF(NRST) NRST input not filtered pulse 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). Figure 25. Recommended NRST pin protection External reset circuit(1) VDD RPU NRST(2) Internal reset Filter 0.1 μF MS19878V3 1. The external capacitor protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 53: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. NPOR pin characteristics The NPOR pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor to the VDDA, RPU. Unless otherwise specified, the parameters given in Table 54 below are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. 84/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 54. NPOR pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NPOR) NPOR Input low level voltage - - - 0.475 VDDA - 0.2(1) VIH(NPOR) NPOR Input high level voltage - 0.5 VDDA + 0.2(1) - - Vhys(NPOR) NPOR Schmitt trigger voltage hysteresis - - 100(1) - mV VIN = VSS 25 40 55 kΩ RPU Weak pull-up equivalent resistor(2) Unit V 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 6.3.15 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under the conditions summarized in Table 23: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 55. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC ON - 2.4 - 3.6 V VDDA = 3.3 V - 0.9 - mA - 0.6 - 14 MHz IDDA (ADC) Current consumption of the ADC(1) fADC ADC clock frequency fS(2) Sampling rate 12-bit resolution 0.043 - 1 MHz External trigger frequency fADC = 14 MHz, 12-bit resolution - - 823 kHz 12-bit resolution - - 17 1/fADC fTRIG(2) VAIN Conversion voltage range - 0 - VDDA V RAIN(2) External input impedance See Equation 1 and Table 56 for details - - 50 kΩ RADC(2) Sampling switch resistance - - - 1 kΩ CADC(2) Internal sample and hold capacitor - - - 8 pF tCAL(2)(3) Calibration time fADC = 14 MHz 5.9 µs - 83 1/fADC DS10624 Rev 5 85/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 55. ADC characteristics (continued) Symbol Parameter WLATENCY(2)(4) tlatr (2) ADC_DR register ready latency Conditions Min Typ Max Unit ADC clock = HSI14 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle fADC = fPCLK/2 = 14 MHz 0.196 µs fADC = fPCLK/2 5.5 1/fPCLK 0.219 µs 10.5 1/fPCLK Trigger conversion latency fADC = fPCLK/4 = 12 MHz fADC = fPCLK/4 JitterADC tS(2) fADC = fHSI14 = 14 MHz 0.179 - 0.250 µs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 µs - 1.5 - 239.5 1/fADC ADC jitter on trigger conversion Sampling time tSTAB(2) Stabilization time tCONV(2) Total conversion time (including sampling time) fADC = 14 MHz, 12-bit resolution 12-bit resolution 14 1 1/fADC - 18 14 to 252 (tS for sampling +12.5 for successive approximation) µs 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA on IDD should be taken into account. 2. Guaranteed by design, not tested in production. 3. Specified value includes only ADC timing. It does not include the latency of the register access. 4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time. Equation 1: RAIN max formula TS R AIN < ------------------------------------------------------------- – R ADC N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 56. RAIN max for fADC = 14 MHz 86/128 Ts (cycles) tS (µs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 56. RAIN max for fADC = 14 MHz (continued) Ts (cycles) tS (µs) RAIN max (kΩ)(1) 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 57. ADC accuracy(1)(2)(3) Symbol Parameter Test conditions Typ Max(4) ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ±0.8 ±1.5 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 ET Total unadjusted error ±3.3 ±4 ±1.9 ±2.8 ±2.8 ±3 ±0.7 ±1.3 ±1.2 ±1.7 EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 3 V to 3.6 V TA = 25 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 2.7 V to 3.6 V TA = - 40 to 105 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 2.4 V to 3.6 V TA = 25 °C Unit LSB LSB LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. DS10624 Rev 5 87/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Figure 26. ADC accuracy characteristics VSSA EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4095 4094 4093 (2) ET (3) 7 (1) 6 5 EO EL 4 3 ED 2 1 LSB IDEAL 1 0 1 2 3 4 5 6 ET = total unajusted error: maximum deviation between the actual and ideal transfer curves. EO = offset error: maximum deviation between the first actual transition and the first ideal one. EG = gain error: deviation between the last ideal transition and the last actual one. ED = differential linearity error: maximum deviation between actual steps and the ideal ones. EL = integral linearity error: maximum deviation between any actual transition and the end point correlation line. 4093 4094 4095 4096 7 VDDA MS19880V2 Figure 27. Typical connection diagram using the ADC VDDA Sample and hold ADC converter VT RAIN (1) VAIN RADC AINx VT Cparasitic (2) IL ±1 μA 12-bit converter CADC MS33900V2 1. Refer to Table 55: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 13: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 88/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 6.3.16 Electrical characteristics DAC electrical specifications Table 58. DAC characteristics Symbol Parameter VDDA Analog supply voltage for DAC ON RLOAD(1) Resistive load with buffer ON RO(1) CLOAD(1) Min Typ Max Unit Comments 2.4 - 3.6 V - 5 - - kΩ Load connected to VSSA 25 - - kΩ Load connected to VDDA Impedance output with buffer OFF - - 15 kΩ When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VDDA = 3.6 V and (0x155) and (0xEAB) at VDDA = 2.4 V DAC_OUT min(1) Lower DAC_OUT voltage with buffer ON 0.2 - - V DAC_OUT max(1) Higher DAC_OUT voltage with buffer ON - - VDDA – 0.2 V DAC_OUT min(1) Lower DAC_OUT voltage with buffer OFF - 0.5 - mV DAC_OUT max(1) Higher DAC_OUT voltage with buffer OFF - - VDDA – 1LSB V - - 600 µA IDDA(1) DAC DC current consumption in quiescent mode(2) With no load, middle code (0x800) on the input - - 700 µA With no load, worst code (0xF1C) on the input Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for the DAC in 10-bit configuration - - ±2 LSB Given for the DAC in 12-bit configuration - - ±1 LSB Given for the DAC in 10-bit configuration - - ±4 LSB Given for the DAC in 12-bit configuration - - ±10 mV - - ±3 LSB Given for the DAC in 10-bit at VDDA = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VDDA = 3.6 V DNL(3) INL(3) Offset(3) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) Offset error (difference between measured value at Code (0x800) and the ideal value = VDDA/2) DS10624 Rev 5 It gives the maximum output excursion of the DAC. - 89/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 58. DAC characteristics (continued) Symbol Min Typ Max Unit Gain error(3) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration Settling time (full scale: for a 10-bit input code transition (3) between the lowest and the tSETTLING highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 tWAKEUP(3) Wakeup time from off state (Setting the ENx bit in the DAC Control register) - 6.5 10 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. PSRR+ (1) Power supply rejection ratio (to VDDA) (static DC measurement - –67 –40 dB No RLOAD, CLOAD = 50 pF Update rate(3) Parameter Comments MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ 1. Guaranteed by design, not tested in production. 2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved. 3. Data based on characterization results, not tested in production. 90/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 6.3.17 Electrical characteristics Comparator characteristics Table 59. Comparator characteristics Min(1) Typ Max(1) Symbol Parameter Conditions VDDA Analog supply voltage - VDD - 3.6 V VIN Comparator input voltage range - 0 - VDDA - VSC VREFINT scaler offset voltage - - ±5 ±10 mV tS_SC VREFINT scaler startup time from power down - - - 0.2 ms tSTART Comparator startup time Startup time to reach propagation delay specification - - 60 µs Ultra-low power mode - 2 4.5 Low power mode - 0.7 1.5 Medium power mode - 0.3 0.6 VDDA ≥ 2.7 V - 50 100 VDDA < 2.7 V - 100 240 Ultra-low power mode - 2 7 Low power mode - 0.7 2.1 Medium power mode - 0.3 1.2 VDDA ≥ 2.7 V - 90 180 VDDA < 2.7 V - 110 300 Propagation delay for 200 mV step with 100 mV overdrive High speed mode tD Propagation delay for full range step with 100 mV overdrive High speed mode Unit µs ns µs ns Voffset Comparator offset error - - ±4 ±10 mV dVoffset/dT Offset error temperature coefficient - - 18 - µV/°C Ultra-low power mode - 1.2 1.5 Low power mode - 3 5 Medium power mode - 10 15 High speed mode - 75 100 IDD(COMP) COMP current consumption DS10624 Rev 5 µA 91/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 59. Comparator characteristics (continued) Symbol Parameter No hysteresis (COMPxHYST[1:0]=00) Vhys Comparator hysteresis - - High speed mode Low hysteresis (COMPxHYST[1:0]=01) All other power modes 3 High speed mode Medium hysteresis (COMPxHYST[1:0]=10) All other power modes 7 High speed mode High hysteresis (COMPxHYST[1:0]=11) All other power modes 18 1. Data based on characterization results, not tested in production. 92/128 Min(1) Typ Max(1) Conditions DS10624 Rev 5 5 9 19 0 Unit 13 8 10 26 15 19 49 31 40 mV STM32F098CC STM32F098RC STM32F098VC 6.3.18 Electrical characteristics Temperature sensor characteristics Table 60. TS characteristics Symbol Parameter TL(1) Avg_Slope Min Typ Max Unit - ±1 ±2 °C 4.0 4.3 4.6 mV/°C 1.34 1.43 1.52 V VSENSE linearity with temperature (1) V30 Average slope (2) Voltage at 30 °C (± 5 °C) tSTART(1) ADC_IN16 buffer startup time - - 10 µs tS_temp(1) ADC sampling time when reading the temperature 4 - - µs 1. Guaranteed by design, not tested in production. 2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 2: Temperature sensor calibration values. 6.3.19 VBAT monitoring characteristics Table 61. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 2 x 50 - kΩ Q Ratio on VBAT measurement - 2 - - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 4 - - µs Er(1) tS_vbat(1) 1. Guaranteed by design, not tested in production. 6.3.20 Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 62. TIMx characteristics Symbol Parameter tres(TIM) Timer resolution time fEXT Timer external clock frequency on CH1 to CH4 16-bit timer maximum period tMAX_COUNT 32-bit counter maximum period Conditions Min Typ Max Unit - - 1 - tTIMxCLK fTIMxCLK = 48 MHz - 20.8 - ns - - fTIMxCLK/2 - MHz fTIMxCLK = 48 MHz - 24 - MHz - - 216 - tTIMxCLK fTIMxCLK = 48 MHz - 1365 - µs - - 232 - tTIMxCLK fTIMxCLK = 48 MHz - 89.48 - s DS10624 Rev 5 93/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 63. IWDG min/max timeout period at 40 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 64. WWDG min/max timeout value at 48 MHz (PCLK) 6.3.21 Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 Unit ms Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: 94/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Table 65. I2C analog filter characteristics(1) Symbol tAF Parameter Maximum width of spikes that are suppressed by the analog filter Min Max Unit 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 66 for SPI or in Table 67 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 23: General operating conditions. Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 66. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Max Master mode - 18 Slave mode - 18 - 6 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 15 pF tsu(NSS) NSS setup time Slave mode 4Tpclk - th(NSS) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk tdis(SO)(3) Data output disable time Slave mode 0 18 tv(SO) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - Slave mode 25 75 th(SO) th(MO) DuCy(SCK) Data output hold time SPI slave input clock duty cycle Unit MHz ns ns % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z DS10624 Rev 5 95/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Figure 28. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) tsu(NSS) th(NSS) tw(SCKH) tr(SCK) SCK input CPHA=0 CPOL=0 CPHA=0 CPOL=1 ta(SO) tw(SCKL) MISO output tv(SO) th(SO) First bit OUT tf(SCK) Next bits OUT tdis(SO) Last bit OUT th(SI) tsu(SI) MOSI input First bit IN Next bits IN Last bit IN MSv41658V1 Figure 29. SPI timing diagram - slave mode and CPHA = 1 NSS input tc(SCK) tsu(NSS) tw(SCKH) ta(SO) tw(SCKL) tf(SCK) th(NSS) SCK input CPHA=1 CPOL=0 CPHA=1 CPOL=1 MISO output tv(SO) First bit OUT tsu(SI) MOSI input th(SO) Next bits OUT tr(SCK) tdis(SO) Last bit OUT th(SI) First bit IN Next bits IN Last bit IN MSv41659V1 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. 96/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Figure 30. SPI timing diagram - master mode High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) tsu(MI) MISO INP UT tr(SCK) tf(SCK) BIT6 IN MSB IN LSB IN th(MI) MOSI OUTPUT B I T1 OUT MSB OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. Table 67. I2S characteristics(1) Symbol fCK 1/tc(CK) Parameter I2S clock frequency Conditions Master mode (data: 16 bits, Audio frequency = 48 kHz) Slave mode tr(CK) I2S clock rise time tf(CK) I2S clock fall time Capacitive load CL = 15 pF Min Max 1.597 1.601 0 6.5 - 10 - 12 306 - 312 - tw(CKH) I2S tw(CKL) 2 I S clock low time Master fPCLK= 16 MHz, audio frequency = 48 kHz tv(WS) WS valid time Master mode 2 - th(WS) WS hold time Master mode 2 - tsu(WS) WS setup time Slave mode 7 - th(WS) WS hold time Slave mode 0 - Slave mode 25 75 DuCy(SCK) I2S clock high time slave input clock duty cycle DS10624 Rev 5 Unit MHz ns % 97/128 99 Electrical characteristics STM32F098CC STM32F098RC STM32F098VC Table 67. I2S characteristics(1) (continued) Symbol tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) Parameter Conditions Data input setup time (2) (2) tv(SD_MT)(2) tv(SD_ST)(2) th(SD_MT) th(SD_ST) Data input hold time Data output valid time Data output hold time Min Max Master receiver 6 - Slave receiver 2 - Master receiver 4 - Slave receiver 0.5 - Master transmitter - 4 Slave transmitter - 31 Master transmitter 0 - Slave transmitter 13 - Unit ns 1. Data based on design simulation and/or characterization results, not tested in production. 2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns. Figure 31. I2S slave timing diagram (Philips protocol) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit tsu(SD_SR) SDreceive LSB receive(2) th(SD_ST) Bitn transmit th(SD_SR) MSB receive Bitn receive LSB receive MSv39721V1 1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 98/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Electrical characteristics Figure 32. I2S master timing diagram (Philips protocol) 90% 10% tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive MSv39720V1 1. Data based on characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. CAN (controller area network) interface Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). DS10624 Rev 5 99/128 99 Package information 7 STM32F098CC STM32F098RC STM32F098VC Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 UFBGA100 package information UFBGA100 is a 100-ball, 7 × 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package. Figure 33. UFBGA100 package outline Z Seating plane ddd Z A4 A3 A2 A1 A E1 A1 ball identifier Z e A1 ball index area X E A Z D1 D e Y M 12 1 BOTTOM VIEW Øb (100 balls) Ø eee M Z Y X Ø fff M Z TOP VIEW A0C2_ME_V5 1. Drawing is not to scale. Table 68. UFBGA100 package mechanical data inches(1) millimeters Symbol 100/128 Min. Typ. Max. Min. Typ. Max. A - - 0.600 - - 0.0236 A1 - - 0.110 - - 0.0043 A2 - 0.450 - - 0.0177 - A3 - 0.130 - - 0.0051 0.0094 A4 - 0.320 - - 0.0126 - b 0.240 0.290 0.340 0.0094 0.0114 0.0134 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Table 68. UFBGA100 package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. D 6.850 7.000 7.150 0.2697 0.2756 0.2815 D1 - 5.500 - - 0.2165 - E 6.850 7.000 7.150 0.2697 0.2756 0.2815 E1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - Z - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 34. Recommended footprint for UFBGA100 package Dpad Dsm A0C2_FP_V1 Table 69. UFBGA100 recommended PCB design rules Dimension Recommended values Pitch 0.5 Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the solder mask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm DS10624 Rev 5 101/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 35. UFBGA100 package marking example Product identification (1) STM32F 098VCH6 Date code Y WW Pin 1 identifier R Revision code MS36403V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 102/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC LQFP100 package information LQFP100 is a100-pin, 14 × 14 mm low-profile quad flat package. Figure 36. LQFP100 package outline 0.25 mm c A1 A SEATING PLANE C A2 GAUGE PLANE D A1 K ccc C L D1 L1 D3 51 75 76 50 100 26 PIN 1 1 IDENTIFICATION E E3 E1 b 7.2 Package information 25 e 1L_ME_V5 1. Drawing is not to scale. Table 70. LQPF100 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 DS10624 Rev 5 103/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Table 70. LQPF100 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 37. Recommended footprint for LQFP100 package 75 76 51 50 0.5 0.3 16.7 14.3 100 26 1.2 1 25 12.3 16.7 ai14906c 1. Dimensions are expressed in millimeters. 104/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 38. LQFP100 package marking example Optional gate mark Product identification (1) STM32F098 VCT6 Revision code R Date code Y WW Pin 1 identifier MS35582V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS10624 Rev 5 105/128 124 Package information 7.3 STM32F098CC STM32F098RC STM32F098VC UFBGA64 package information UFBGA64 is a 64-ball, 5 × 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array package. Figure 39. UFBGA64 package outline Z Seating plane ddd Z A4 A3 A2 A1 A E1 e A1 ball A1 ball identifier index area F X E A F D1 D e Y H 8 1 BOTTOM VIEW Øb (64 balls) Ø eee M Z Y X Ø fff M Z TOP VIEW A019_ME_V1 1. Drawing is not to scale. Table 71. UFBGA64 package mechanical data inches(1) millimeters Symbol 106/128 Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 0.080 0.130 0.180 0.0031 0.0051 0.0071 A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.170 0.280 0.330 0.0067 0.0110 0.0130 D 4.850 5.000 5.150 0.1909 0.1969 0.2028 D1 3.450 3.500 3.550 0.1358 0.1378 0.1398 E 4.850 5.000 5.150 0.1909 0.1969 0.2028 E1 3.450 3.500 3.550 0.1358 0.1378 0.1398 e - 0.500 - - 0.0197 - F 0.700 0.750 0.800 0.0276 0.0295 0.0315 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Table 71. UFBGA64 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 40. Recommended footprint for UFBGA64 package Dpad Dsm A019_FP_V2 Table 72. UFBGA64 recommended PCB design rules Dimension Recommended values Pitch 0.5 Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.100 mm DS10624 Rev 5 107/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Device marking The following figure gives an example of topside marking orientation versus ball A1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 41. UFBGA64 package marking example Product identification (1) F098RCH6 Date code Y Standard ST logo WW Revision code Ball 1 identifier R MS39019V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 108/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 7.4 Package information WLCSP64 package information WLCSP64 is a 64-ball, 3.347 × 3.585 mm, 0.4 mm pitch wafer-level chip-scale package. Figure 42. WLCSP64 package outline e1 bbb Z F G 8 A 1 Detail A e2 e H G e A A2 A3 F Bump side Side view D Bump A1 eee Z E A1 Orientation reference b Seating plane (4x) Wafer back side Detail A (rotated 90 °) A024_ME_V1 1. Drawing is not to scale. Table 73. WLCSP64 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - A3 - 0.025 - - 0.0010 - DS10624 Rev 5 109/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Table 73. WLCSP64 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max (2) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 3.312 3.347 3.382 0.1304 0.1318 0.1331 E 3.550 3.585 3.620 0.1398 0.1411 0.1425 e - 0.400 - - 0.0157 - e1 - 2.800 - - 0.1102 - e2 - 2.800 - - 0.1102 - F - 0.2735 - - 0.0108 - G - 0.3925 - - 0.0155 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 b 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Figure 43. Recommended footprint for WLCSP64 package Dpad Dsm MS18965V2 Table 74. WLCSP64 recommended PCB design rules Dimension Recommended values Pitch 0.4 Dpad 110/128 260 µm max. (circular) 220 µm recommended Dsm 300 µm min. (for 260 µm diameter pad) PCB pad design Non-solder mask defined via underbump allowed. DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Device marking The following figure gives an example of topside marking orientation versus ball A1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 44. WLCSP64 package marking example Dot Product (1) identification STM32F 098RCY6 Date code Revision code Y WW R MS36406V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS10624 Rev 5 111/128 124 Package information 7.5 STM32F098CC STM32F098RC STM32F098VC LQFP64 package information LQFP64 is a 64-pin, 10 × 10 mm low-profile quad flat package. Figure 45. LQFP64 package outline 0.25 mm GAUGE PLANE c A1 A A2 SEATING PLANE C A1 ccc C D D1 D3 K L L1 33 48 32 49 64 E E1 E3 b 17 PIN 1 IDENTIFICATION 16 1 e 5W_ME_V3 1. Drawing is not to scale. Table 75. LQFP64 package mechanical data inches(1) millimeters Symbol 112/128 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Table 75. LQFP64 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 46. Recommended footprint for LQFP64 package 48 33 0.3 0.5 49 32 12.7 10.3 10.3 17 64 1.2 16 1 7.8 12.7 ai14909c 1. Dimensions are expressed in millimeters. DS10624 Rev 5 113/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 47. LQFP64 package marking example Revision code R Product identification (1) STM32F098 RCT6 Y WW Pin 1 identifier Date code MS35583V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 114/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC LQFP48 package information LQFP48 is a 48-pin, 7 × 7 mm low-profile quad flat package. Figure 48. LQFP48 package outline SEATING PLANE C c A1 A A2 0.25 mm GAUGE PLANE ccc C K D A1 L D1 L1 D3 36 25 37 24 48 PIN 1 IDENTIFICATION E E1 b E3 7.6 Package information 13 1 12 e 5B_ME_V2 1. Drawing is not to scale. DS10624 Rev 5 115/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Table 76. LQFP48 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 49. Recommended footprint for LQFP48 package 0.50 1.20 9.70 0.30 25 36 37 24 0.20 7.30 5.80 7.30 48 13 12 1 1.20 5.80 9.70 ai14911d 1. Dimensions are expressed in millimeters. 116/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 50. LQFP48 package marking example Product identification (1) STM32F 098CCT6 Pin 1 identifier Date code Y WW R Revision code MS35584V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS10624 Rev 5 117/128 124 Package information 7.7 STM32F098CC STM32F098RC STM32F098VC UFQFPN48 package information UFQFPN48 is a 48-lead, 7 × 7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package. Figure 51. UFQFPN48 package outline Pin 1 identifier laser marking area D A E E T ddd A1 Seating plane b e Detail Y D Exposed pad area Y D2 1 L 48 C 0.500x45° pin1 corner E2 R 0.125 typ. Detail Z 1 Z 48 A0B9_ME_V3 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 118/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Table 77. UFQFPN48 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 52. Recommended footprint for UFQFPN48 package 7.30 6.20 48 37 1 36 5.60 0.20 7.30 5.80 6.20 5.60 0.30 12 25 13 24 0.50 0.55 5.80 0.75 A0B9_FP_V2 1. Dimensions are expressed in millimeters. DS10624 Rev 5 119/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 53. UFQFPN48 package marking example Product identification (1) STM32F 098CCU6 Pin 1 identifier Date code Y WW R Revision code MS36407V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 120/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC 7.8 Package information Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 23: General operating conditions. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ ((VDDIOx – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 78. Package thermal characteristics Symbol ΘJA 7.8.1 Parameter Value Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm 55 Thermal resistance junction-ambient LQFP100 - 14 × 14 mm 42 Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm / 0.5 mm pitch 65 Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 44 Thermal resistance junction-ambient WLCSP64 - 0.4 mm pitch 53 Thermal resistance junction-ambient LQFP48 - 7 × 7 mm 54 Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm 32 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 7.8.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Ordering information. DS10624 Rev 5 121/128 124 Package information STM32F098CC STM32F098RC STM32F098VC Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F098CC/RC/VC at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Using the values obtained in Table 78 TJmax is calculated as follows: – For LQFP64, 45 °C/W TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Ordering information). Note: With this given PDmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7). Suffix 6: TAmax = TJmax - (45°C/W × 447 mW) = 105-20.115 = 84.885 °C Suffix 7: TAmax = TJmax - (45°C/W × 447 mW) = 125-20.115 = 104.885 °C Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW 122/128 DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Package information Using the values obtained in Table 78 TJmax is calculated as follows: – For LQFP64, 45 °C/W TJmax = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Ordering information) unless we reduce the power dissipation in order to be able to use suffix 6 parts. Refer to the figure below to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements. Figure 54. LQFP64 PD max versus TA 700 PD (mW) 600 500 400 Suffix 6 300 Suffix 7 200 100 0 65 75 85 95 105 115 TA (°C) DS10624 Rev 5 125 135 MSv32143V1 123/128 124 Ordering information 8 STM32F098CC STM32F098RC STM32F098VC Ordering information For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 79. Ordering information scheme Example: STM32 Device family STM32 = Arm-based 32-bit microcontroller Product type F = General-purpose Sub-family 098 = STM32F098xx Pin count C = 48 pins R = 64 pins V = 100 pins User code memory size C = 256 Kbyte Package H = UFBGA T = LQFP U = UFQFPN Y = WLCSP Temperature range 6 = –40 to 85 °C Options xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing 124/128 DS10624 Rev 5 F 098 R C T 6 x STM32F098CC STM32F098RC STM32F098VC 9 Revision history Revision history Table 80. Document revision history Date Revision 10-Nov-2014 1 Initial release. 2 Updated: – Section: Features on the cover page: changed the number of capacitive sensing channels. – Table: STM32F098xC family device features and peripheral counts: changed the number of GPIOs and capacitive sensing channels. 3 Cover page: – the document status to Datasheet - Production data – Fast Mode Plus current sink corrected from 20 mA to “extra” Section 2: Description: – Table 1: STM32F098CC/RC/VC family device features and peripheral counts- I/O and capacitive channel numbers corrected Section 3: Functional overview: – updated Figure 1: Block diagram (number of AF) and Figure 2: Clock tree – Section 3.5.3: Low-power modes - added info. on comm. peripherals configurable to operate with HSI – Section 3.9.2: Extended interrupt/event controller (EXTI) - number of GPIOs corrected – added number of complementary outputs for the general purpose and for the advance control timers in Table 6: Timer feature comparison – Section 3.14.3: Basic timersTIM6 and TIM7 corrected from plain text to numbered title Section 4: Pinouts and pin descriptions: – Package pinout figures updated (look and feel) – Figure 7: WLCSP64 package pinout - now presented in top view – Table 12: STM32F098CC/RC/VC pin definitions MCO moved from additional to alternate functions column – Table 14: Alternate functions selected through GPIOB_AFR registers for port B- CAN_RX and CANTX added as AF4 for PB8 and PB9, respectively – Table 18: Alternate functions selected through GPIOF_AFR registers for port F- lines PF4 and PF5 removed Section 5: Memory mapping: – updated Figure 10: STM32F098CC/RC/VC memory map 19-Nov-2014 17-Dec-2015 Changes DS10624 Rev 5 125/128 127 Revision history STM32F098CC STM32F098RC STM32F098VC Table 80. Document revision history (continued) Date 17-Dec-2015 126/128 Revision Changes 3 (continued) Section 6: Electrical characteristics: – footnote for VIN max value in Table 20: Voltage characteristics – footnote for VIN max value in Table 23: General operating conditions – Table 25: Embedded internal reference voltage: added tSTART parameter and removal of -40°-to-85° condition for VREFINT and associated note – Figure 18: Typical application with a 32.768 kHz crystal - correction of OSC_IN and OSC_OUT to OSC32_IN and OSC32_OUT and fHSE to fLSE – Table 47: ESD absolute maximum ratings updated – VDDIOx replaced VDD in Figure 22: TC and TTa I/O input characteristics and Figure 23: Five volt tolerant (FT and FTf) I/O input characteristics – Table 50: I/O static characteristics- note removed – Table 55: ADC characteristics - updated some parameter values, test conditions and added footnotes (3) and (4) – IDDA max value (DAC DC current consumption) in Table 58: DAC characteristics – Table 59: Comparator characteristics - min value added for VDDA – Table 60: TS characteristics: removed the minimum value for tSTART symbol and updated parameter name – R parameter typical. value in Table 61: VBAT monitoring characteristics – Table 62: TIMx characteristics: removed ResTM parameter line and all values put in new Typ column, tCOUNTER substituted with tMAX_COUNT, values defined as powers of two – Table 67: I2S characteristics reorganized and max value added for tv(SD_ST) – Figure 32: I2S master timing diagram (Philips protocol) added definition of edge level references Section 7: Package information: – Figure 33: UFBGA100 package outline and associated Table 68 updated – Figure 34 and associated Table 69 updated – Figure 35: UFBGA100 package marking example and associated text updated – Figure 38: LQFP100 package marking example and associated text updated – Table 72: UFBGA64 recommended PCB design rules added – Figure 41: UFBGA64 package marking example added Section 8: Part numbering: – added tray packing to options DS10624 Rev 5 STM32F098CC STM32F098RC STM32F098VC Revision history Table 80. Document revision history (continued) Date 10-Jan-2017 17-Jun-2021 Revision Changes 4 Section 6: Electrical characteristics: – Table 37: LSE oscillator characteristics (fLSE = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. – Table 25: Embedded internal reference voltage VREFINT values – Table 58: DAC characteristics - min. RLOAD to VDDA defined – Figure 28: SPI timing diagram - slave mode and CPHA = 0 and Figure 29: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: – The name of the section changed from the previous “Part numbering” 5 Section 4: Pinouts and pin descriptions: – Table 14: Alternate functions selected through GPIOB_AFR registers for port B - AF4 column for ports PB3, PB4, and PB5 filled with USART5_TX, USART5_RX, and USART5_CK_RTS, respectively Section 6: Electrical characteristics: – Table 47: ESD absolute maximum ratings information on standards in Conditions column for human body model DS10624 Rev 5 127/128 127 STM32F098CC STM32F098RC STM32F098VC 32 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved 128/128 DS10624 Rev 5
STM32F098CCU6 价格&库存

很抱歉,暂时无法提供与“STM32F098CCU6”相匹配的价格&库存,您可以联系我们找货

免费人工找货