STM32F103xC, STM32F103xD,
STM32F103xE
High-density performance line Arm®-based 32-bit MCU with 256 to 512KB
Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
Datasheet −production data
Features
• Core: Arm® 32-bit Cortex®-M3 CPU
–
–
WLCSP64
72 MHz maximum frequency, 1.25 DMIPS/MHz
(Dhrystone 2.1) performance at 0 wait state
memory access
Single-cycle multiplication and hardware
division
• Memories
–
–
–
–
256 to 512 Kbytes of Flash memory
up to 64 Kbytes of SRAM
Flexible static memory controller with 4 Chip
Select. Supports Compact Flash, SRAM,
PSRAM, NOR and NAND memories
LCD parallel interface, 8080/6800 modes
• Clock, reset and supply management
–
–
–
–
–
–
2.0 to 3.6 V application supply and I/Os
POR, PDR, and programmable voltage detector
(PVD)
4-to-16 MHz crystal oscillator
Internal 8 MHz factory-trimmed RC
Internal 40 kHz RC with calibration
32 kHz oscillator for RTC with calibration
• Low power
–
–
Sleep, Stop and Standby modes
VBAT supply for RTC and backup registers
–
–
–
–
–
Up to four 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
2 × 16-bit motor control PWM timers with deadtime generation and emergency stop
2 × watchdog timers (Independent and Window)
SysTick timer: a 24-bit downcounter
2 × 16-bit basic timers to drive the DAC
• Up to 13 communication interfaces
–
–
–
–
–
–
Up to 2 × I2C interfaces (SMBus/PMBus)
Up to 5 USARTs (ISO 7816 interface, LIN, IrDA
capability, modem control)
Up to 3 SPIs (18 Mbit/s), 2 with I2S interface
multiplexed
CAN interface (2.0B Active)
USB 2.0 full speed interface
SDIO interface
Table 1.Device summary
Conversion range: 0 to 3.6 V
Triple-sample and hold capability
Temperature sensor
Reference
• DMA: 12-channel DMA controller
Supported peripherals: timers, ADCs, DAC,
SDIO, I2Ss, SPIs, I2Cs and USARTs
• Debug mode
–
–
• Up to 11 timers
• ECOPACK® packages
• 2 × 12-bit D/A converters
–
LFBGA100 10 × 10 mm
LFBGA144 10 × 10 mm
• CRC calculation unit, 96-bit unique ID
• 3 × 12-bit, 1 µs A/D converters (up to 21
channels)
–
–
–
LQFP64 10 × 10 mm,
LQFP100 14 × 14 mm,
LQFP144 20 × 20 mm
Part number
STM32F103xC
STM32F103RC STM32F103VC
STM32F103ZC
STM32F103xD
STM32F103RD STM32F103VD
STM32F103ZD
STM32F103xE
STM32F103RE STM32F103ZE
STM32F103VE
Serial wire debug (SWD) & JTAG interfaces
Cortex®-M3 Embedded Trace Macrocell™
• Up to 112 fast I/O ports
–
51/80/112 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
July 2018
DS5792 Rev 13
1/143
www.st.com
Contents
STM32F103xC, STM32F103xD, STM32F103xE
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2/143
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1
Arm® Cortex®-M3 core with embedded Flash and SRAM . . . . . . . . . . 15
2.3.2
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5
FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6
LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.11
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16
RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.18
I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.19
Universal synchronous/asynchronous receiver transmitters (USARTs) 21
2.3.20
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.21
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.22
SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.23
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.24
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.25
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.26
ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.27
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.28
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Contents
2.3.29
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.30
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 45
5.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 45
5.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.8
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.10
FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.12
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 87
5.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.16
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.17
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.18
CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.19
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
DS5792 Rev 13
3/143
4
Contents
6
STM32F103xC, STM32F103xD, STM32F103xE
5.3.20
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1
LFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2
LFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3
WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.6
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.7
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.7.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.7.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 133
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F103xC, STM32F103xD and STM32F103xE features
and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
High-density timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
High-density STM32F103xC/D/E pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 49
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 50
Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 67
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 68
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 75
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . . 81
Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 85
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DS5792 Rev 13
5/143
6
List of tables
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
6/143
STM32F103xC, STM32F103xD, STM32F103xE
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
LFBGA144 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 115
LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 118
WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
WLCSP64 recommended PCB design rules (0.5 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 121
LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 129
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram . . . 12
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STM32F103xC/D/E BGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F103xC/D/E performance line BGA100 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM32F103xC/D/E performance line LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM32F103xC/D/E performance line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32F103xC/D/E performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STM32F103xC/D/E performance line
WLCSP64 ballout, ball side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled . . . . . . . . . . . . . . . . . 48
Typical current consumption in Run mode versus frequency (at 3.6 V)code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . 48
Typical current consumption on VBAT with RTC on vs. temperature
at different VBAT values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Typical current consumption in Stop mode with regulator in run mode
versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Typical current consumption in Stop mode with regulator in low-power
mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Typical current consumption in Standby mode versus temperature at
different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 66
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 67
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 68
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 70
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 75
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 77
PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 78
PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 80
PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 81
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DS5792 Rev 13
7/143
8
List of figures
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
8/143
STM32F103xC, STM32F103xD, STM32F103xE
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 84
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 85
Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 105
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 109
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 110
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
LFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package recommended footprintoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
WLCSP64 - 64-ball, 4.4757 x 4.4049 mm, 0.5 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 122
LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline . . . . . . . . . . . . . . 126
LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 129
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 130
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F103xC, STM32F103xD and STM32F103xE high-density performance line
microcontrollers. For more details on the whole STMicroelectronics STM32F103xC/D/E
family, please refer to Section 2.2: Full compatibility throughout the family.
The high-density STM32F103xC/D/E datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M3 core please refer to the Cortex®-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS5792 Rev 13
9/143
135
Description
2
STM32F103xC, STM32F103xD, STM32F103xE
Description
The STM32F103xC, STM32F103xD and STM32F103xE performance line family
incorporates the high-performance Arm® Cortex®-M3 32-bit RISC core operating at a
72 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and
SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals
connected to two APB buses. All devices offer three 12-bit ADCs, four general-purpose 16bit timers plus two PWM timers, as well as standard and advanced communication
interfaces: up to two I2Cs, three SPIs, two I2Ss, one SDIO, five USARTs, an USB and a
CAN.
The STM32F103xC/D/E high-density performance line family operates in the –40 to
+105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of
power-saving mode allows the design of low-power applications.
These features make the STM32F103xC/D/E high-density performance line microcontroller
family suitable for a wide range of applications such as motor drives, application control,
medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial
applications, PLCs, inverters, printers, scanners, alarm systems video intercom, and HVAC.
10/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
2.1
Description
Device overview
The STM32F103xC/D/E high-density performance line family offers devices in six different
package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of
peripherals are included, the description below gives an overview of the complete range of
peripherals proposed in this family.
Figure 1 shows the general block diagram of the device family.
Table 2. STM32F103xC, STM32F103xD and STM32F103xE features
and peripheral counts
Peripherals
STM32F103Rx
Flash memory in Kbytes
256
SRAM in Kbytes
48
FSMC
Timers
384
STM32F103Vx
512
64
No
384
48
Yes
4
Advanced-control
2
Basic
2
I
512
64
General-purpose
SPI(I2S)(2)
Comm
256
(1)
STM32F103Zx
256
384
48
64
Yes
3(2)
2C
2
USART
5
USB
1
CAN
1
SDIO
1
GPIOs
51
80
112
12-bit ADC
Number of channels
3
16
3
16
3
21
12-bit DAC
Number of channels
2
2
CPU frequency
72 MHz
Operating voltage
Operating temperatures
Package
512
2.0 to 3.6 V
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 10)
Junction temperature: –40 to + 125 °C (see Table 10)
LQFP64, WLCSP64
LQFP100, BGA100
LQFP144, BGA144
1. For the LQFP100 and BGA100 packages, only FSMC Bank1 and Bank2 are available. Bank1 can only
support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or
8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is
not available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the
I2S audio mode.
DS5792 Rev 13
11/143
135
Description
STM32F103xC, STM32F103xD, STM32F103xE
Figure 1. STM32F103xC, STM32F103xD and STM32F103xE performance line block
diagram
37*4!'
4RACETRIG
4RACE
CONTROLLER
0BUS
&LASH OBL
INTERFACE
.*4234
*4$)
*4#+37#,+
*4-337$)/
*4$/
AS!&
6$$
40)5
)BUS
#ORTEX
-#05
&MAX-(Z
$BUS
3YSTEM
.6)#
"US -ATRIX
42!#%#,+
42!#%$;=
AS!3
6$$
&LASH+BYTES
BIT
32!-
+"
6$$!
2#-(Z
'0$-!
!;=
$;=
#,+
./%
.7%
.%;=
.",;=
.7!)4
.,OR.!$6
AS!&
2#K(Z
CHANNELS
0,,
!("&MAX-(Z
'0$-!
CHANNELS
&3-#
$;=
#-$
#+AS!&
0/2
2ESET
2ESET
#LOCK
CONTROL
0";=
'0)/PORT"
0#;=
'0)/PORT#
0$;=
'0)/PORT$
0%;=
'0)/PORT%
0&;=
'0)/PORT&
0';=
'0)/PORT'
CHANNELS
COMPLCHANNELS
"+).%42AS!&
CHANNELS
COMPLCHANNELS
"+).%42AS!&
-/3)-)3/
3#+.33AS!&
2848#43
243#+AS!&
!("
!0"
4)-
!0"&MAX-(Z
'0)/PORT!
62%&n
62%&
/3#?).
/3#?/54
6"!4 6TO6
/3#?).
/3#?/54
4!-0%2
24#
!,!2-3%#/.$/54
4)-
CHANNELS%42AS!&
4)-
CHANNELS%42AS!&
4)-
CHANNELS%42AS!&
4)-
53!24
53!24
CHANNELSAS!&
2848#43243
#+AS!&
2848#43243
#+AS!&
5!24
2848AS!&
5!24
2848AS!&
30))3
XXB
IT
4)-
.234
6$$!
633!
24# "ACKUP
REG
!75
"ACKUPINTERFACE
30)
XXB
IT )3
-/3)3$-)3/
3#+#+-#+.3373AS!&
-/3)3$-)3/
3#+#+-#+.3373AS!&
)#
3#,3$!3-"!AS!&
30)
32!-"
)#
3#,3$!3-"!AS!&
53!24
77$'
BX#!.DEVICE
53"&3
DEVICE
4EMPSENSOR
!$#?).S
COMMONTOTHE!$#S
!$#?).SCOMMON
TO!$#!$#
!$#?).SON!$#
6$$
84!,/3#
-(Z
84!,K(Z
!0"&MAX-(Z
!&
06$
3TANDBY
INTERFACE
6"!4
%84)4
7+50
0!;=
6$$!
3UPPLY
SUPERVISION
0/20$2
633
)7$'
0#,+
0#,+
(#,+
,+
3$)/
!("
!0"
)NT
0OWER
6OLTREG
6TO6
BIT!$# )&
BIT!$# )&
53"?$0#!.?48
53"?$-#!.?28
4)-
)& BIT $!#
)&
$!#?/54AS!&
4)-
BIT$!#
$!#?/54AS!&
6$$!
BIT!$# )&
6 $$!
AIG
1. TA = –40 °C to +85 °C (suffix 6, see Table 75) or –40 °C to +105 °C (suffix 7, see Table 75), junction
temperature up to 105 °C or 125 °C, respectively.
2. AF = alternate function on I/O port pin.9
12/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Description
Figure 2. Clock tree
)/,7)&/.
WR)ODVKSURJUDPPLQJLQWHUIDFH
86%
3UHVFDOHU
86%&/.
WR86%LQWHUIDFH
0+]
,6&/.
3HULSKHUDOFORFN
HQDEOH
0+]
+6,5&
,6&/.
6:
3//08/
+6,
[
[[[
3//
6@
/6,5&
N+]
0+]PD[
3&/.
WR$3%
SHULSKHUDOV
3HULSKHUDO&ORFN
WR7,0DQG
7,0;&/.
3&/.
0+]PD[
3HULSKHUDO&ORFN
(QDEOHELWV
7,0 WLPHUV
,I$3%SUHVFDOHU [
HOVH[
26&B287
WR&RUWH[6\VWHPWLPHU
)&/.&RUWH[
IUHHUXQQLQJFORFN
3HULSKHUDO&ORFN
(QDEOHELWV
$3%
3UHVFDOHU
0+]
/6(26&
N+]
WR)60&
(QDEOHELWV
3//;735(
26&B,1
WR6',2
+&/.
WR$+%EXVFRUH
PHPRU\DQG'0$
7,0
,I$3%SUHVFDOHU [
HOVH [
&66
+6(26&
)60&&/.
&ORFN
(QDEOHELWV
+6(
26&B,1
6',2&/.
3HULSKHUDOFORFN
HQDEOH
0+]PD[
26&B287
WR,6
3HULSKHUDOFORFN
HQDEOH
3HULSKHUDOFORFN
HQDEOH
+6,
3//65&
WR,6
SHULSKHUDOVWR$3%
WR7,0DQG7,0
7,0[&/.
3HULSKHUDO&ORFN
(QDEOHELW
WR$'&RU
$'&&/.
+&/.
7R6',2$+%LQWHUIDFH
3HULSKHUDOFORFN
HQDEOH
,:'*&/.
0DLQ
&ORFN2XWSXW
0&2
3//&/.
/HJHQG
+6( +LJK6SHHG([WHUQDOFORFNVLJQDO
+6,
+6, +LJK6SHHG,QWHUQDOFORFNVLJQDO
+6(
/6, /RZ6SHHG,QWHUQDOFORFNVLJQDO
6Y&Wϲϰ
ϰϬ
ϵ
ϯϵ
ϭϬ
ϯϴ
ϭϭ
ϯϳ
ϭϮ
ϯϲ
ϭϯ
ϯϱ
ϭϰ
ϯϰ
ϭϱ
ϯϯ
ϭϲ
ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϱ Ϯϲ Ϯϳ Ϯϴ Ϯϵ ϯϬ ϯϭ ϯϮ
sͺϮ
s ^^ͺϮ
W ϭϯ
W ϭϮ
W ϭϭ
W ϭϬ
W ϵ
W ϴ
Wϵ
Wϴ
Wϳ
Wϲ
W ϭϱ
W ϭϰ
W ϭϯ
W ϭϮ
W ϯ
s ^^ͺϰ
sͺϰ
W ϰ
W ϱ
W ϲ
W ϳ
Wϰ
Wϱ
W Ϭ
W ϭ
W Ϯ
Wϭ Ϭ
Wϭ ϭ
s ^^ͺϭ
sͺϭ
sd
WϭϯͲdDWZͲZd
W ϭϰͲK ^ ϯϮͺ/E
W ϭϱͲK ^ ϯϮͺKh d
W ϬͲK^ ͺ/E
W ϭͲK^ ͺKhd
EZ^d
WϬ
Wϭ
WϮ
Wϯ
s^^
s
W ϬͲt< hW
W ϭ
W Ϯ
DL
1. The above figure shows the package top view.
DS5792 Rev 13
29/143
135
Pinouts and pin descriptions
STM32F103xC, STM32F103xD, STM32F103xE
Figure 8. STM32F103xC/D/E performance line
WLCSP64 ballout, ball side
8
7
6
5
4
3
2
PB5
PB3
PD2
PC10
PC11
PA14
A
V
DD_3
VSS_3
B
PC14
PC15
PB9
PB6
PB4
NRST
VBAT
PB7
PC12
OSC_OUT
PC2
PB8
PA13
VSSA
PA1
PA5
PC1
VREF+
PA0WKUP
DDA
PA3
V
C
PC13
D
OSC_IN
E
PC0
F
G
H
V
PA2
PA4
BOOT0
DD_4
PC4
V
DD_2
BYPASS/
VSS_2
PA12
PA11
PA10
PA9
PC9
PA8
PC8
PC7
PC6
VSS_4
PB1
PB11
PB14
PB15
PA6
PA7
PC5
PB0
PA15
1
PB10
PB2
PB12
V
SS_1
PB13
V
DD_1
ai15460b
30/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Pinouts and pin descriptions
Table 5. High-density STM32F103xC/D/E pin definitions
Alternate functions(4)
LFBGA144
LFBGA100
WLCSP64
LQFP64
LQFP100
LQFP144
Pin name
Type(1)
I / O Level(2)
Pins
Main
function(3)
(after reset)
A3
A3
-
-
1
1
PE2
I/O
FT
PE2
TRACECK/ FSMC_A23
-
A2
B3
-
-
2
2
PE3
I/O
FT
PE3
TRACED0/FSMC_A19
-
B2
C3
-
-
3
3
PE4
I/O
FT
PE4
TRACED1/FSMC_A20
-
B3
D3
-
-
4
4
PE5
I/O
FT
PE5
TRACED2/FSMC_A21
-
B4
E3
-
-
5
5
PE6
I/O
FT
PE6
TRACED3/FSMC_A22
-
C2
B2
C6
1
6
6
VBAT
S
-
VBAT
-
-
A1
A2
C8
2
7
7
PC13-TAMPERRTC(5)
I/O
-
PC13(6)
TAMPER-RTC
-
B1
A1
B8
3
8
8
PC14OSC32_IN(5)
I/O
-
PC14(6)
OSC32_IN
-
C1
B1
B7
4
9
9
PC15OSC32_OUT(5)
I/O
-
PC15(6)
OSC32_OUT
-
C3
-
-
-
-
10
PF0
I/O
FT
PF0
FSMC_A0
-
C4
-
-
-
-
11
PF1
I/O
FT
PF1
FSMC_A1
-
D4
-
-
-
-
12
PF2
I/O
FT
PF2
FSMC_A2
-
E2
-
-
-
-
13
PF3
I/O
FT
PF3
FSMC_A3
-
E3
-
-
-
-
14
PF4
I/O
FT
PF4
FSMC_A4
-
E4
-
-
-
-
15
PF5
I/O
FT
PF5
FSMC_A5
-
D2
C2
-
-
10
16
VSS_5
S
-
VSS_5
-
-
D3
D2
-
-
11
17
VDD_5
S
-
VDD_5
-
-
F3
-
-
-
-
18
PF6
I/O
-
PF6
ADC3_IN4/FSMC_NIORD
-
F2
-
-
-
-
19
PF7
I/O
-
PF7
ADC3_IN5/FSMC_NREG
-
G3
-
-
-
-
20
PF8
I/O
-
PF8
ADC3_IN6/FSMC_NIOWR
-
G2
-
-
-
-
21
PF9
I/O
-
PF9
ADC3_IN7/FSMC_CD
-
G1
-
-
-
-
22
PF10
I/O
-
PF10
ADC3_IN8/FSMC_INTR
-
D1
C1
D8
5
12
23
OSC_IN
I
-
OSC_IN
-
-
E1
D1
D7
6
13
24
OSC_OUT
O
-
OSC_OUT
-
-
F1
E1
C7
7
14
25
NRST
I/O
-
NRST
-
-
H1
F1
E8
8
15
26
PC0
I/O
-
PC0
ADC123_IN10
-
H2
F2
F8
9
16
27
PC1
I/O
-
PC1
ADC123_IN11
-
H3
E2
D6
10
17
28
PC2
I/O
-
PC2
ADC123_IN12
-
DS5792 Rev 13
Default
Remap
31/143
135
Pinouts and pin descriptions
STM32F103xC, STM32F103xD, STM32F103xE
Table 5. High-density STM32F103xC/D/E pin definitions (continued)
Alternate functions(4)
LFBGA144
LFBGA100
WLCSP64
LQFP64
LQFP100
LQFP144
Pin name
Type(1)
I / O Level(2)
Pins
Main
function(3)
(after reset)
H4
F3
-
11
18
29
PC3(7)
I/O
-
PC3
ADC123_IN13
-
J1
G1
E7
12
19
30
VSSA
S
-
VSSA
-
-
K1
H1
-
-
20
31
VREF-
S
-
VREF-
-
-
L1
J1
-
21
32
VREF+
S
-
VREF+
-
-
M1
K1
22
33
VDDA
S
-
VDDA
-
-
F7
(8)
G8 13
Default
Remap
WKUP/USART2_CTS(9)
ADC123_IN0
TIM2_CH1_ETR
TIM5_CH1/TIM8_ETR
-
J2
G2
F6
14
23
34
PA0-WKUP
I/O
-
PA0
K2
H2
E6
15
24
35
PA1
I/O
-
PA1
USART2_RTS(9)
ADC123_IN1/
TIM5_CH2/TIM2_CH2(9)
-
L2
J2
H8
16
25
36
PA2
I/O
-
PA2
USART2_TX(9)/TIM5_CH3
ADC123_IN2/
TIM2_CH3 (9)
-
M2
K2
G7 17
26
37
PA3
I/O
-
PA3
USART2_RX(9)/TIM5_CH4
ADC123_IN3/TIM2_CH4(9)
-
G4
E4
F5
18
27
38
VSS_4
S
-
VSS_4
-
-
F4
F4
G6 19
28
39
VDD_4
S
-
VDD_4
-
(9)
J3
G3
H7
20
29
40
PA4
I/O
-
PA4
SPI1_NSS /
USART2_CK(9)
DAC_OUT1/ADC12_IN4
-
K3
H3
E5
21
30
41
PA5
I/O
-
PA5
SPI1_SCK(9)
DAC_OUT2 ADC12_IN5
-
L3
J3
G5 22
31
42
PA6
I/O
-
PA6
SPI1_MISO(9)
TIM8_BKIN/ADC12_IN6
TIM3_CH1(9)
TIM1_BKIN
M3
K3
G4 23
32
43
PA7
I/O
-
PA7
SPI1_MOSI(9)/
TIM8_CH1N/ADC12_IN7
TIM3_CH2(9)
TIM1_CH1N
J4
G4
H6
24
33
44
PC4
I/O
-
PC4
ADC12_IN14
-
K4
H4
H5
25
34
45
PC5
I/O
-
PC5
ADC12_IN15
-
L4
J4
H4
26
35
46
PB0
I/O
-
PB0
ADC12_IN8/TIM3_CH3
TIM8_CH2N
TIM1_CH2N
M4
K4
F4
27
36
47
PB1
I/O
-
PB1
ADC12_IN9/TIM3_CH4(9)
TIM8_CH3N
TIM1_CH3N
32/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Pinouts and pin descriptions
Table 5. High-density STM32F103xC/D/E pin definitions (continued)
Alternate functions(4)
LFBGA144
LFBGA100
WLCSP64
LQFP64
LQFP100
LQFP144
Pin name
Type(1)
I / O Level(2)
Pins
Main
function(3)
(after reset)
J5
G5
H3
28
37
48
PB2
I/O
FT
PB2/BOOT1
-
-
M5
-
-
-
-
49
PF11
I/O
FT
PF11
FSMC_NIOS16
-
L5
-
-
-
-
50
PF12
I/O
FT
PF12
FSMC_A6
-
H5
-
-
-
-
51
VSS_6
S
-
VSS_6
-
-
G5
-
-
-
-
52
VDD_6
S
-
VDD_6
-
-
K5
-
-
-
-
53
PF13
I/O
FT
PF13
FSMC_A7
-
M6
-
-
-
-
54
PF14
I/O
FT
PF14
FSMC_A8
-
L6
-
-
-
-
55
PF15
I/O
FT
PF15
FSMC_A9
-
K6
-
-
-
-
56
PG0
I/O
FT
PG0
FSMC_A10
-
J6
-
-
-
-
57
PG1
I/O
FT
PG1
FSMC_A11
-
M7
H5
-
-
38
58
PE7
I/O
FT
PE7
FSMC_D4
TIM1_ETR
L7
J5
-
-
39
59
PE8
I/O
FT
PE8
FSMC_D5
TIM1_CH1N
K7
K5
-
-
40
60
PE9
I/O
FT
PE9
FSMC_D6
TIM1_CH1
H6
-
-
-
-
61
VSS_7
S
-
VSS_7
-
-
G6
-
-
-
-
62
VDD_7
S
-
VDD_7
-
-
J7
G6
-
-
41
63
PE10
I/O
FT
PE10
FSMC_D7
TIM1_CH2N
H8
H6
-
-
42
64
PE11
I/O
FT
PE11
FSMC_D8
TIM1_CH2
J8
J6
-
-
43
65
PE12
I/O
FT
PE12
FSMC_D9
TIM1_CH3N
K8
K6
-
-
44
66
PE13
I/O
FT
PE13
FSMC_D10
TIM1_CH3
L8
G7
-
-
45
67
PE14
I/O
FT
PE14
FSMC_D11
TIM1_CH4
M8
H7
-
-
46
68
PE15
I/O
FT
PE15
FSMC_D12
TIM1_BKIN
M9
J7
G3 29
47
69
PB10
I/O
FT
PB10
I2C2_SCL/USART3_TX(9)
TIM2_CH3
M10
K7
F3
30
48
70
PB11
I/O
FT
PB11
I2C2_SDA/USART3_RX(9)
TIM2_CH4
H7
E7
H2
31
49
71
VSS_1
S
-
VSS_1
-
-
G7
F7
H1
32
50
72
VDD_1
S
-
VDD_1
-
-
-
-
Default
Remap
M11
K8
G2 33
51
73
PB12
I/O
FT
PB12
SPI2_NSS/I2S2_WS/
I2C2_SMBA/
USART3_CK(9)/
TIM1_BKIN(9)
M12
J8
G1 34
52
74
PB13
I/O
FT
PB13
SPI2_SCK/I2S2_CK
USART3_CTS(9)/
TIM1_CH1N
DS5792 Rev 13
33/143
135
Pinouts and pin descriptions
STM32F103xC, STM32F103xD, STM32F103xE
Table 5. High-density STM32F103xC/D/E pin definitions (continued)
Alternate functions(4)
LFBGA144
LFBGA100
WLCSP64
LQFP64
LQFP100
LQFP144
Pin name
Type(1)
I / O Level(2)
Pins
Main
function(3)
(after reset)
L11
H8
F2
35
53
75
PB14
I/O
FT
PB14
SPI2_MISO/TIM1_CH2N
USART3_RTS(9)/
-
L12
G8
F1
36
54
76
PB15
I/O
FT
PB15
SPI2_MOSI/I2S2_SD
TIM1_CH3N(9)/
-
L9
K9
-
-
55
77
PD8
I/O
FT
PD8
FSMC_D13
USART3_TX
K9
J9
-
-
56
78
PD9
I/O
FT
PD9
FSMC_D14
USART3_RX
J9
H9
-
-
57
79
PD10
I/O
FT
PD10
FSMC_D15
USART3_CK
H9
G9
-
-
58
80
PD11
I/O
FT
PD11
FSMC_A16
USART3_CTS
L10
K10
-
-
59
81
PD12
I/O
FT
PD12
FSMC_A17
TIM4_CH1 /
USART3_RTS
K10
J10
-
-
60
82
PD13
I/O
FT
PD13
FSMC_A18
TIM4_CH2
G8
-
-
-
-
83
VSS_8
S
-
VSS_8
-
-
F8
-
-
-
-
84
VDD_8
S
-
VDD_8
-
-
K11
H10
-
-
61
85
PD14
I/O
FT
PD14
FSMC_D0
TIM4_CH3
K12
G10
-
-
62
86
PD15
I/O
FT
PD15
FSMC_D1
TIM4_CH4
J12
-
-
-
-
87
PG2
I/O
FT
PG2
FSMC_A12
-
J11
-
-
-
-
88
PG3
I/O
FT
PG3
FSMC_A13
-
J10
-
-
-
-
89
PG4
I/O
FT
PG4
FSMC_A14
-
H12
-
-
-
-
90
PG5
I/O
FT
PG5
FSMC_A15
-
H11
-
-
-
-
91
PG6
I/O
FT
PG6
FSMC_INT2
-
H10
-
-
-
-
92
PG7
I/O
FT
PG7
FSMC_INT3
-
G11
-
-
-
-
93
PG8
I/O
FT
PG8
-
-
G10
-
-
-
-
94
VSS_9
S
-
VSS_9
-
-
F10
-
-
-
-
95
VDD_9
S
-
VDD_9
-
-
G12
F10
E1
37
63
96
PC6
I/O
FT
PC6
I2S2_MCK/
TIM8_CH1/SDIO_D6
TIM3_CH1
F12
E10
E2
38
64
97
PC7
I/O
FT
PC7
I2S3_MCK/
TIM8_CH2/SDIO_D7
TIM3_CH2
F11
F9
E3
39
65
98
PC8
I/O
FT
PC8
TIM8_CH3/SDIO_D0
TIM3_CH3
E11
E9
D1
40
66
99
PC9
I/O
FT
PC9
TIM8_CH4/SDIO_D1
TIM3_CH4
E12
D9
E4
41
67
100
PA8
I/O
FT
PA8
USART1_CK/
TIM1_CH1(9)/MCO
-
34/143
DS5792 Rev 13
Default
Remap
STM32F103xC, STM32F103xD, STM32F103xE
Pinouts and pin descriptions
Table 5. High-density STM32F103xC/D/E pin definitions (continued)
Alternate functions(4)
LFBGA144
LFBGA100
WLCSP64
LQFP64
LQFP100
LQFP144
Pin name
Type(1)
I / O Level(2)
Pins
Main
function(3)
(after reset)
D12
C9
D2
42
68
101
PA9
I/O
FT
PA9
USART1_TX(9)/
TIM1_CH2(9)
-
D11
D10
D3
43
69
102
PA10
I/O
FT
PA10
USART1_RX(9)/
TIM1_CH3(9)
-
C12
C10
C1
44
70
103
PA11
I/O
FT
PA11
USART1_CTS/USBDM
CAN_RX(9)/TIM1_CH4(9)
-
B12
B10
C2
45
71
104
PA12
I/O
FT
PA12
USART1_RTS/USBDP/
CAN_TX(9)/TIM1_ETR(9)
-
A12
A10
D4
46
72
105
PA13
I/O
FT
JTMS-SWDIO
-
PA13
C11
F8
-
-
73
106
G9
E6
B1
47
74
107
VSS_2
S
-
VSS_2
-
-
F9
F6
A1
48
75
108
VDD_2
S
-
VDD_2
-
-
A11
A9
B2
49
76
109
PA14
I/O
FT
JTCK-SWCLK
-
PA14
A10
A8
C3
50
77
110
PA15
I/O
FT
JTDI
SPI3_NSS/
I2S3_WS
TIM2_CH1_ET
R PA15 /
SPI1_NSS
B11
B9
A2
51
78
111
PC10
I/O
FT
PC10
UART4_TX/SDIO_D2
USART3_TX
B10
B8
B3
52
79
112
PC11
I/O
FT
PC11
UART4_RX/SDIO_D3
USART3_RX
C10
C8
C4
53
80
113
PC12
I/O
FT
PC12
UART5_TX/SDIO_CK
USART3_CK
E10
D8
D8
5
81
114
PD0
I/O
FT
OSC_IN(10)
FSMC_D2(11)
CAN_RX
D10
E8
D7
6
82
115
PD1
I/O
FT
OSC_OUT(10)
FSMC_D3(11)
CAN_TX
E9
B7
A3
54
83
116
PD2
I/O
FT
PD2
TIM3_ETR/UART5_RX
SDIO_CMD
-
D9
C7
-
-
84
117
PD3
I/O
FT
PD3
FSMC_CLK
USART2_CTS
C9
D7
-
-
85
118
PD4
I/O
FT
PD4
FSMC_NOE
USART2_RTS
B9
B6
-
-
86
119
PD5
I/O
FT
PD5
FSMC_NWE
USART2_TX
E7
-
-
-
-
120
VSS_10
S
-
VSS_10
-
-
F7
-
-
-
-
121
VDD_10
S
-
VDD_10
-
-
A8
C6
-
-
87
122
PD6
I/O
FT
PD6
FSMC_NWAIT
USART2_RX
A9
D6
-
-
88
123
PD7
I/O
FT
PD7
FSMC_NE1/FSMC_NCE2
USART2_CK
E8
-
-
-
-
124
PG9
I/O
FT
PG9
FSMC_NE2/FSMC_NCE3
-
D8
-
-
-
-
125
PG10
I/O
FT
PG10
FSMC_NCE4_1/
FSMC_NE3
-
Default
Remap
Not connected
DS5792 Rev 13
-
35/143
135
Pinouts and pin descriptions
STM32F103xC, STM32F103xD, STM32F103xE
Table 5. High-density STM32F103xC/D/E pin definitions (continued)
Alternate functions(4)
LFBGA144
LFBGA100
WLCSP64
LQFP64
LQFP100
LQFP144
Pin name
Type(1)
I / O Level(2)
Pins
Main
function(3)
(after reset)
C8
-
-
-
-
126
PG11
I/O
FT
PG11
FSMC_NCE4_2
-
B8
-
-
-
-
127
PG12
I/O
FT
PG12
FSMC_NE4
-
D7
-
-
-
-
128
PG13
I/O
FT
PG13
FSMC_A24
-
C7
-
-
-
-
129
PG14
I/O
FT
PG14
FSMC_A25
-
E6
-
-
-
-
130
VSS_11
S
-
VSS_11
-
-
F6
-
-
-
-
131
VDD_11
S
-
VDD_11
-
-
B7
-
-
-
-
132
PG15
I/O
FT
PG15
-
-
Default
Remap
A7
A7
A4
55
89
133
PB3
I/O
FT
JTDO
SPI3_SCK / I2S3_CK/
PB3/TRACES
WO
TIM2_CH2 /
SPI1_SCK
A6
A6
B4
56
90
134
PB4
I/O
FT
NJTRST
SPI3_MISO
PB4 /
TIM3_CH1
SPI1_MISO
B6
C5
A5
57
91
135
PB5
I/O
-
PB5
I2C1_SMBA/ SPI3_MOSI
I2S3_SD
TIM3_CH2 /
SPI1_MOSI
C6
B5
B5
58
92
136
PB6
I/O
FT
PB6
I2C1_SCL(9)/ TIM4_CH1(9)
USART1_TX
D6
A5
C5
59
93
137
PB7
I/O
FT
PB7
I2C1_SDA(9) / FSMC_NADV
/ TIM4_CH2(9)
USART1_RX
D5
D5
A6
60
94
138
BOOT0
I
-
BOOT0
-
-
C5
B4
D5
61
95
139
PB8
I/O
FT
PB8
TIM4_CH3(9)/SDIO_D4
I2C1_SCL/
CAN_RX
B5
A4
B6
62
96
140
PB9
I/O
FT
PB9
TIM4_CH4(9)/SDIO_D5
I2C1_SDA /
CAN_TX
A5
D4
-
-
97
141
PE0
I/O
FT
PE0
TIM4_ETR / FSMC_NBL0
-
A4
C4
-
-
98
142
PE1
I/O
FT
PE1
FSMC_NBL1
-
E5
E5
A7
63
99
143
VSS_3
S
-
VSS_3
-
-
F5
F5
A8
64
10
0
144
VDD_3
S
-
VDD_3
-
-
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
36/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Pinouts and pin descriptions
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of
30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery
backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. In the WCLSP64 package, the PC3 I/O pin is not bonded and it must be configured by software to output mode (Push-pull)
and writing 0 to the data register in order to avoid an extra consumption during low-power modes.
8. Unlike in the LQFP64 package, there is no PC3 in the WLCSP package. The VREF+ functionality is provided instead.
9. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
from the STMicroelectronics website: www.st.com.
10. For the WCLSP64/LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however
the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100/BGA100 and
LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details,
refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
11. For devices delivered in LQFP64 packages, the FSMC function is not available.
DS5792 Rev 13
37/143
135
Pinouts and pin descriptions
STM32F103xC, STM32F103xD, STM32F103xE
Table 6. FSMC pin definition
FSMC
Pins
38/143
NOR/PSRAM/
NOR/PSRAM Mux NAND 16 bit
SRAM
LQFP100
BGA100(1)
CF
CF/IDE
PE2
-
-
A23
A23
-
Yes
PE3
-
-
A19
A19
-
Yes
PE4
-
-
A20
A20
-
Yes
PE5
-
-
A21
A21
-
Yes
PE6
-
-
A22
A22
-
Yes
PF0
A0
A0
A0
-
-
-
PF1
A1
A1
A1
-
-
-
PF2
A2
A2
A2
-
-
-
PF3
A3
-
A3
-
-
-
PF4
A4
-
A4
-
-
-
PF5
A5
-
A5
-
-
-
PF6
NIORD
NIORD
-
-
-
-
PF7
NREG
NREG
-
-
-
-
PF8
NIOWR
NIOWR
-
-
-
-
PF9
CD
CD
-
-
-
-
PF10
INTR
INTR
-
-
-
-
PF11
NIOS16
NIOS16
-
-
-
-
PF12
A6
-
A6
-
-
-
PF13
A7
-
A7
-
-
-
PF14
A8
-
A8
-
-
-
PF15
A9
-
A9
-
-
-
PG0
A10
-
A10
-
-
-
PG1
-
-
A11
-
-
-
PE7
D4
D4
D4
DA4
D4
Yes
PE8
D5
D5
D5
DA5
D5
Yes
PE9
D6
D6
D6
DA6
D6
Yes
PE10
D7
D7
D7
DA7
D7
Yes
PE11
D8
D8
D8
DA8
D8
Yes
PE12
D9
D9
D9
DA9
D9
Yes
PE13
D10
D10
D10
DA10
D10
Yes
PE14
D11
D11
D11
DA11
D11
Yes
PE15
D12
D12
D12
DA12
D12
Yes
PD8
D13
D13
D13
DA13
D13
Yes
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Pinouts and pin descriptions
Table 6. FSMC pin definition (continued)
FSMC
Pins
NOR/PSRAM/
NOR/PSRAM Mux NAND 16 bit
SRAM
LQFP100
BGA100(1)
CF
CF/IDE
PD9
D14
D14
D14
DA14
D14
Yes
PD10
D15
D15
D15
DA15
D15
Yes
PD11
-
-
A16
A16
CLE
Yes
PD12
-
-
A17
A17
ALE
Yes
PD13
-
-
A18
A18
-
Yes
PD14
D0
D0
D0
DA0
D0
Yes
PD15
D1
D1
D1
DA1
D1
Yes
PG2
-
-
A12
-
-
-
PG3
-
-
A13
-
-
-
PG4
-
-
A14
-
-
-
PG5
-
-
A15
-
-
-
PG6
-
-
-
-
INT2
-
PG7
-
-
-
-
INT3
-
PD0
D2
D2
D2
DA2
D2
Yes
PD1
D3
D3
D3
DA3
D3
Yes
PD3
-
-
CLK
CLK
-
Yes
PD4
NOE
NOE
NOE
NOE
NOE
Yes
PD5
NWE
NWE
NWE
NWE
NWE
Yes
PD6
NWAIT
NWAIT
NWAIT
NWAIT
NWAIT
Yes
PD7
-
-
NE1
NE1
NCE2
Yes
PG9
-
-
NE2
NE2
NCE3
-
PG10
NCE4_1
NCE4_1
NE3
NE3
-
-
PG11
NCE4_2
NCE4_2
-
-
-
-
PG12
-
-
NE4
NE4
-
-
PG13
-
-
A24
A24
-
-
PG14
-
-
A25
A25
-
-
PB7
-
-
NADV
NADV
-
Yes
PE0
-
-
NBL0
NBL0
-
Yes
PE1
-
-
NBL1
NBL1
-
Yes
1. Ports F and G are not available in devices delivered in 100-pin packages.
DS5792 Rev 13
39/143
135
Memory mapping
4
STM32F103xC, STM32F103xD, STM32F103xE
Memory mapping
The memory map is shown in Figure 9.
Figure 9. Memory map
Reserved
FSMC register
0xA000 0000 - 0xA000 0FFF
FSMC bank4 PCCARD
0x9000 0000 - 0x9FFF FFFF
FSMC bank3 NAND (NAND2)
0xFFFF FFFF
0xE000 0000
0xDFFF FFFF
512-Mbyte
block 7
Cortex-M3's
internal
peripherals
512-Mbyte
block 6
Not used
0xC000 0000
0xBFFF FFFF
512-Mbyte
block 5
FSMC register
0xA000 0000
0x9FFF FFFF
512-Mbyte
block 4
FSMC bank 3
& bank4
0x8000 0000
0x7FFF FFFF
0x6000 0000
0x5FFF FFFF
0x7000 0000 - 0x7FFF FFFF
FSMC bank1 NOR/PSRAM 4
0x6C00 0000 - 0x6FFF FFFF
FSMC bank1 NOR/PSRAM 3
0x6800 0000 - 0x6BFF FFFF
FSMC bank1 NOR/PSRAM 2
0x6400 0000 - 0x67FF FFFF
FSMC bank1 NOR/PSRAM 1
0x6000 0000 - 0x63FF FFFF
Reserved
0x4002 4400 - 0x5FFF FFFF
0x4002 3000 - 0x4002 33FF
Reserved
0x4002 2400 - 0x4002 2FFF
Flash interface
Reserved
0x4002 1400 - 0x4002 1FFF
0x4002 1000 - 0x4002 13FF
0x4002 0400 - 0x4002 0FFF
DMA2
0x4002 0400 - 0x4002 07FF
DMA1
Reserved
SDIO
0x4002 0000 - 0x4002 03FF
0x4001 8400 - 0x4001 FFFF
0x4001 8000 - 0x4001 83FF
Reserved
ADC3
USART1
TIM8
SPI1
TIM1
ADC2
0x4001 400 - 0x4001 7FFF
0x4001 3C00 - 0x4001 3FFF
0x4001 3800 - 0x4001 3BFF
0x4001 3400 - 0x4001 37FF
0x4001 3000 - 0x4001 33FF
0x4001 2C00 - 0x4001 2FFF
ADC1
Port G
Port F
Port E
Port D
Port C
Port B
Port A
EXTI
AFIO
Reserved
DAC
PWR
BKP
Reserved
BxCAN
Shared USB/CAN SRAM 512
bytes
USB registers
I2C2
I2C1
0x4001 2400 - 0x4001 27FF
0x4001 2000 - 0x4001 23FF
0x4001 1C00 - 0x4001 1FFF
0x4001 1800 - 0x4001 1BFF
0x4001 1400 - 0x4001 17FF
0x4001 1000 - 0x4001 13FF
0x4001 0C00 - 0x4001 0FFF
0x4001 0800 - 0x4001 0BFF
0x4001 0400 - 0x4001 07FF
0x4001 0000 - 0x4001 03FF
0x4000 7800 - 0x4000 FFFF
512-Mbyte
block 0
Code
Option Bytes
System memory
Reserved
Flash
Reserved
Aliased to Flash or system
memory depending on
BOOT pins
DS5792 Rev 13
0x4000 6000 - 0x4000 63FF
0x4000 5C00 - 0x4000 5FFF
0x4000 5800 - 0x4000 5BFF
0x4000 5400 - 0x4000 57FF
0x4000 5000 - 0x4000 53FF
0x4000 4C00 - 0x4000 4FFF
USART3
USART2
0x4000 4800 - 0x4000 4BFF
0x4000 4400 - 0x4000 47FF
0x4000 4000 - 0x4000 43FF
2
SPI3/I S3
0x4000 3C00 - 0x4000 3FFF
2S2
0x4000 3800 - 0x4000 3BFF
Reserved
IWDG
0x4000 3400 - 0x4000 37FF
WWDG
0x4000 2C00 - 0x4000 2FFF
RTC
0x4000 2800 - 0x4000 2BFF
Reserved
0x4000 1800 - 0x4000 27FF
TIM7
0x2000 0000
0x1FFF FFFF
0x4000 7400 - 0x4000 77FF
0x4000 7000 - 0x4000 73FF
0x4000 6C00 - 0x4000 6FFF
0x4000 6800 - 0x4000 6BFF
0x4000 6400 - 0x4000 67FF
UART4
SPI2/I
512-Mbyte
block 1
SRAM
0x4001 2800 - 0x4001 2BFF
UART5
Reserved
SRAM (64 KB aliased
by bit-banding)
0x4002 2000 - 0x4002 23FF
Reserved
0x4000 0000
0x3FFF FFFF
40/143
CRC
RCC
512-Mbyte
block 3
FSMC bank1
& bank2
Reserved
0x8000 0000 - 0x8FFF FFFF
FSMC bank2 NAND (NAND1)
512-Mbyte
block 2
Peripherals
0x0000 0000
0xA000 1000 - 0xBFFF FFFF
0x4000 3000 - 0x4000 33FF
0x4000 1400 - 0x4000 17FF
TIM6
0x4000 1000 - 0x4000 13FF
TIM5
0x4000 0C00 - 0x4000 0FFF
TIM4
0x4000 0800 - 0x4000 0BFF
TIM3
0x4000 0400 - 0x4000 07FF
TIM2
0x4000 0000 - 0x4000 03FF
0x3FFF FFFF
0x2001 0000
0x2000 FFFF
0x2000 0000
0x1FFF F800 - 0x1FFF F80F
0x1FFF F000- 0x1FFF F7FF
0x1FFF EFFF
0x0808 0000
0x0807 FFFF
0x0800 0000
0x07FF FFFF
0x0008 0000
0x0007 FFFF
0x0000 0000
ai14753d
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 10. Pin loading conditions
Figure 11. Pin input voltage
-#5PIN
-#5PIN
#P&
6).
-36
DS5792 Rev 13
-36
41/143
135
Electrical characteristics
5.1.6
STM32F103xC, STM32F103xD, STM32F103xE
Power supply scheme
Figure 12. Power supply scheme
s d
ĂĐŬƵƉĐŝƌĐƵŝƚƌLJ
;K^ϯϮ@
$GGUHVV
WY%/B1(
)60&B1%/>@
WK%/B1:(
1%/
WY'DWDB1(
WK'DWDB1:(
'DWD
)60&B'>@
W Y1$'9B1(
)60&B1$'9
WZ1$'9
DL
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
DS5792 Rev 13
67/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol
Parameter
Min
Max
Unit
tw(NE)
FSMC_NE low time
3tHCLK – 1
3tHCLK + 2
ns
tv(NWE_NE)
FSMC_NEx low to FSMC_NWE low
tHCLK – 0.5
tHCLK + 1.5
ns
tw(NWE)
FSMC_NWE low time
th(NE_NWE)
FSMC_NWE high to FSMC_NE high hold time
tv(A_NE)
FSMC_NEx low to FSMC_A valid
th(A_NWE)
Address hold time after FSMC_NWE high
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE high
tv(Data_NE)
FSMC_NEx low to Data valid
th(Data_NWE)
tHCLK – 0.5
tHCLK + 1.5
ns
tHCLK
-
ns
-
7.5
ns
tHCLK
-
ns
-
0
ns
tHCLK – 0.5
-
ns
-
tHCLK + 7
ns
Data hold time after FSMC_NWE high
tHCLK
-
ns
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
-
5.5
ns
tw(NADV)
FSMC_NADV low time
-
tHCLK + 1.5
ns
1. CL = 15 pF.
2. Guaranteed by characterization results.
Figure 26. Asynchronous multiplexed PSRAM/NOR read waveforms
TW.%
&3-#?.%
TV./%?.%
T H.%?./%
&3-#?./%
T W./%
&3-#?.7%
TV!?.%
&3-#?!;=
T H!?./%
!DDRESS
TV",?.%
TH",?./%
&3-#?.",;=
.",
TH$ATA?.%
TSU$ATA?.%
T V!?.%
&3-#? !$;=
TSU$ATA?./%
!DDRESS
T V.!$6?.%
TH$ATA?./%
$ATA
TH!$?.!$6
TW.!$6
&3-#?.!$6
AIB
68/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Table 33. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Symbol
Parameter
Min
Max
Unit
tw(NE)
FSMC_NE low time
7tHCLK – 2
7tHCLK + 2
ns
tv(NOE_NE)
FSMC_NEx low to FSMC_NOE low
3tHCLK – 0.5
3tHCLK + 1.5
ns
tw(NOE)
FSMC_NOE low time
4tHCLK – 1
4tHCLK + 2
ns
th(NE_NOE)
FSMC_NOE high to FSMC_NE high hold time
–1
-
ns
tv(A_NE)
FSMC_NEx low to FSMC_A valid
-
0
ns
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
3
5
ns
tw(NADV)
FSMC_NADV low time
th(AD_NADV)
FSMC_AD (address) valid hold time after
FSMC_NADV high
tHCLK
-
ns
th(A_NOE)
Address hold time after FSMC_NOE high
tHCLK -2
-
ns
th(BL_NOE)
FSMC_BL hold time after FSMC_NOE high
0
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
0
ns
tsu(Data_NE)
Data to FSMC_NEx high setup time
2tHCLK + 24
-
ns
tsu(Data_NOE) Data to FSMC_NOE high setup time
2tHCLK + 25
-
ns
tHCLK –1.5
tHCLK + 1.5
ns
th(Data_NE)
Data hold time after FSMC_NEx high
0
-
ns
th(Data_NOE)
Data hold time after FSMC_NOE high
0
-
ns
1. CL = 15 pF.
2. Guaranteed by characterization results.
DS5792 Rev 13
69/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 27. Asynchronous multiplexed PSRAM/NOR write waveforms
WZ1(
)60&B1([
)60&B12(
WY1:(B1(
WZ1:(
W K1(B1:(
)60&B1:(
WK$B1:(
WY$B1(
)60&B$>@
$GGUHVV
WY%/B1(
WK%/B1:(
)60&B1%/>@
1%/
W Y$B1(
W Y'DWDB1$'9
$GGUHVV
)60&B$'>@
W Y1$'9B1(
WK'DWDB1:(
'DWD
WK$'B1$'9
WZ1$'9
)60&B1$'9
DL%
Table 34. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol
Parameter
Max
5tHCLK – 1
5tHCLK + 2
Unit
tw(NE)
FSMC_NE low time
tv(NWE_NE)
FSMC_NEx low to FSMC_NWE low
2tHCLK
2tHCLK + 1
ns
tw(NWE)
FSMC_NWE low time
2tHCLK – 1
2tHCLK + 2
ns
th(NE_NWE)
FSMC_NWE high to FSMC_NE high hold time
tv(A_NE)
FSMC_NEx low to FSMC_A valid
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
3
5
ns
tw(NADV)
FSMC_NADV low time
tHCLK – 1
tHCLK + 1
ns
th(AD_NADV)
FSMC_AD (address) valid hold time after
FSMC_NADV high
tHCLK – 3
-
ns
th(A_NWE)
Address hold time after FSMC_NWE high
4tHCLK
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
1.6
ns
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE high
tHCLK – 1.5
-
ns
-
tHCLK + 1.5
ns
tHCLK – 5
-
ns
tv(Data_NADV) FSMC_NADV high to Data valid
th(Data_NWE)
Data hold time after FSMC_NWE high
1. CL = 15 pF.
2. BGuaranteed by characterization results.
70/143
Min
DS5792 Rev 13
ns
tHCLK – 1
-
ns
-
7
ns
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Synchronous waveforms and timings
Figure 28 through Figure 31 represent synchronous waveforms and Table 36 through
Table 38 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
•
BurstAccessMode = FSMC_BurstAccessMode_Enable;
•
MemoryType = FSMC_MemoryType_CRAM;
•
WriteBurst = FSMC_WriteBurst_Enable;
•
CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
•
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Figure 28. Synchronous multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,
.%X,
T D#,+,
.%X(
&3-#?.%X
TD#,+,
.!$6,
TD#,+,
.!$6(
&3-#?.!$6
TD#,+,
!)6
TD#,+,
!6
&3-#?!;=
TD#,+(
./%,
TD#,+,
./%(
&3-#?./%
TD#,+,
!$)6
TSU!$6
#,+(
TD#,+,
!$6
&3-#?!$;=
!$;=
TH#,+(
!$6
TSU!$6
#,+(
$
TSU.7!)46
#,+(
TH#,+(
!$6
$
$
TH#,+(
.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46
#,+(
TH#,+(
.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46
#,+(
TH#,+(
.7!)46
AII
DS5792 Rev 13
71/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 35. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol
Parameter
Max
Unit
27.7
-
ns
tw(CLK)
FSMC_CLK period
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x = 0...2)
-
1.5
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x = 0...2)
2
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
4
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
5
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x = 16...25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x = 16...25)
2
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
1
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
1.5
-
ns
td(CLKL-ADV)
FSMC_CLK low to FSMC_AD[15:0] valid
-
12
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
0
-
ns
tsu(ADV-CLKH)
FSMC_A/D[15:0] valid data before FSMC_CLK
high
6
-
ns
th(CLKH-ADV)
FSMC_A/D[15:0] valid data after FSMC_CLK high
0
-
ns
8
-
ns
2
-
ns
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high
th(CLKH-NWAITV)
FSMC_NWAIT valid after FSMC_CLK high
1. CL = 15 pF.
2. Guaranteed by characterization results.
72/143
Min
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 29. Synchronous multiplexed PSRAM write timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,
.%X,
TD#,+,
.%X(
&3-#?.%X
TD#,+,
.!$6,
TD#,+,
.!$6(
&3-#?.!$6
TD#,+,
!6
TD#,+,
!)6
&3-#?!;=
TD#,+,
.7%,
TD#,+,
.7%(
&3-#?.7%
TD#,+,
!$)6
TD#,+,
!$6
&3-#?!$;=
TD#,+,
$ATA
TD#,+,
$ATA
!$;=
$
$
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46
#,+(
TH#,+(
.7!)46
TD#,+,
.",(
&3-#?.",
AIG
DS5792 Rev 13
73/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 36. Synchronous multiplexed PSRAM write timings(1)(2)
Symbol
Parameter
Max
Unit
27.7
-
ns
tw(CLK)
FSMC_CLK period
td(CLKL-NExL)
FSMC_CLK low to FSMC_Nex low (x = 0...2)
-
2
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x = 0...2)
2
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
4
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
5
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x = 16...25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x = 16...25)
2
-
ns
td(CLKL-NWEL)
FSMC_CLK low to FSMC_NWE low
-
1
ns
td(CLKL-NWEH)
FSMC_CLK low to FSMC_NWE high
1
-
ns
td(CLKL-ADV)
FSMC_CLK low to FSMC_AD[15:0] valid
-
12
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
3
-
ns
td(CLKL-Data)
FSMC_A/D[15:0] valid after FSMC_CLK low
-
6
ns
td(CLKL-NBLH)
FSMC_CLK low to FSMC_NBL high
1
-
ns
tsu(NWAITV-CLKH)
FSMC_NWAIT valid before FSMC_CLK high
7
-
ns
th(CLKH-NWAITV)
FSMC_NWAIT valid after FSMC_CLK high
2
-
ns
1. CL = 15 pF.
2. Guaranteed by characterization results.
74/143
Min
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 30. Synchronous non-multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
TD#,+,
.%X,
TD#,+,
.%X(
$ATALATENCY
&3-#?.%X
TD#,+,
.!$6,
TD#,+,
.!$6(
&3-#?.!$6
TD#,+,
!)6
TD#,+,
!6
&3-#?!;=
TD#,+(
./%,
TD#,+,
./%(
&3-#?./%
TSU$6
#,+(
TH#,+(
$6
TSU$6
#,+(
&3-#?$;=
$
TSU.7!)46
#,+(
TH#,+(
$6
$
$
TH#,+(
.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46
#,+(
T H#,+(
.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46
#,+(
TH#,+(
.7!)46
AIH
Table 37. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol
Parameter
Min
Max
Unit
27.7
-
ns
FSMC_CLK low to FSMC_NEx low (x = 0...2)
-
1.5
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x = 0...2)
2
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
4
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
5
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x = 0...25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x = 0...25)
4
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
1.5
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
1.5
-
ns
tsu(DV-CLKH)
FSMC_D[15:0] valid data before FSMC_CLK
high
6.5
-
ns
th(CLKH-DV)
FSMC_D[15:0] valid data after FSMC_CLK high
7
-
ns
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high
7
-
ns
th(CLKH-NWAITV)
2
-
ns
tw(CLK)
FSMC_CLK period
td(CLKL-NExL)
FSMC_NWAIT valid after FSMC_CLK high
1. CL = 15 pF.
2. Guaranteed by characterization results.
DS5792 Rev 13
75/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 31. Synchronous non-multiplexed PSRAM write timings
%867851
WZ&/.
WZ&/.
)60&B&/.
'DWDODWHQF\
WG&/./1([/
W G&/./1([+
)60&B1([
WG&/./1$'9/
WG&/./1$'9+
)60&B1$'9
WG&/./$,9
WG&/./$9
)60&B$>@
WG&/.+12(/
WG&/./12(+
)60&B12(
WG&/./$'9
WG&/./$',9
WVX$'9&/.+
)60&B$'>@
$'>@
WK&/.+$'9
WVX$'9&/.+
'
WVX1:$,79&/.+
WK&/.+$'9
'
WK&/.+1:$,79
)60&B1:$,7
:$,7&)* E:$,732/E
WVX1:$,79&/.+
WK&/.+1:$,79
)60&B1:$,7
:$,7&)* E:$,732/E
WVX1:$,79&/.+
WK&/.+1:$,79
DLK
Table 38. Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol
Parameter
Max
Unit
27.7
-
ns
tw(CLK)
FSMC_CLK period
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x = 0...2)
-
2
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x = 0...2)
2
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
4
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
5
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x = 16...25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x = 16...25)
2
-
ns
td(CLKL-NWEL)
FSMC_CLK low to FSMC_NWE low
-
1
ns
td(CLKL-NWEH)
FSMC_CLK low to FSMC_NWE high
1
-
ns
td(CLKL-Data)
FSMC_D[15:0] valid data after FSMC_CLK low
-
6
ns
td(CLKL-NBLH)
FSMC_CLK low to FSMC_NBL high
1
-
ns
tsu(NWAITV-CLKH)
FSMC_NWAIT valid before FSMC_CLK high
7
-
ns
th(CLKH-NWAITV)
FSMC_NWAIT valid after FSMC_CLK high
2
-
ns
1. CL = 15 pF.
2. Guaranteed by characterization results.
76/143
Min
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
PC Card/CompactFlash controller waveforms and timings
Figure 32 through Figure 37 represent synchronous waveforms and Table 39 provides the
corresponding timings. The results shown in this table are obtained with the following FSMC
configuration:
•
COM.FSMC_SetupTime = 0x04;
•
COM.FSMC_WaitSetupTime = 0x07;
•
COM.FSMC_HoldSetupTime = 0x04;
•
COM.FSMC_HiZSetupTime = 0x00;
•
ATT.FSMC_SetupTime = 0x04;
•
ATT.FSMC_WaitSetupTime = 0x07;
•
ATT.FSMC_HoldSetupTime = 0x04;
•
ATT.FSMC_HiZSetupTime = 0x00;
•
IO.FSMC_SetupTime = 0x04;
•
IO.FSMC_WaitSetupTime = 0x07;
•
IO.FSMC_HoldSetupTime = 0x04;
•
IO.FSMC_HiZSetupTime = 0x00;
•
TCLRSetupTime = 0;
•
TARSetupTime = 0;
Figure 32. PC Card/CompactFlash controller waveforms for common memory read
access
)60&B1&(B
)60&B1&(B
WK1&([$,
WY1&([$
)60&B$>@
WK1&([15(*
WK1&([1,25'
WK1&([1,2:5
WG15(*1&([
WG1,25'1&([
)60&B15(*
)60&B1,2:5
)60&B1,25'
)60&B1:(
WG1&(B12(
)60&B12(
WZ12(
WVX'12(
WK12('
)60&B'>@
DLE
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
DS5792 Rev 13
77/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 33. PC Card/CompactFlash controller waveforms for common memory write
access
)60&B1&(B
)60&B1&(B +LJK
WY1&(B$
WK1&(B$,
)60&B$>@
WK1&(B15(*
WK1&(B1,25'
WK1&(B1,2:5
WG15(*1&(B
WG1,25'1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1&(B1:(
WZ1:(
WG1:(1&(B
)60&B1:(
)60&B12(
0(0[+,=
WG'1:(
WY1:('
WK1:('
)60&B'>@
DLE
78/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 34. PC Card/CompactFlash controller waveforms for attribute memory read
access
)60&B1&(B
WY1&(B$
WK1&(B$,
)60&B1&(B +LJK
)60&B$>@
)60&B1,2:5
)60&B1,25'
WG15(*1&(B
WK1&(B15(*
)60&B15(*
)60&B1:(
WG1&(B12(
WZ12(
WG12(1&(B
)60&B12(
WVX'12(
WK12('
)60&B'>@
DLE
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
DS5792 Rev 13
79/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 35. PC Card/CompactFlash controller waveforms for attribute memory write
access
)60&B1&(B
)60&B1&(B
+LJK
WY1&(B$
WK1&(B$,
)60&B$>@
)60&B1,2:5
)60&B1,25'
WG15(*1&(B
WK1&(B15(*
)60&B15(*
WG1&(B1:(
WZ1:(
)60&B1:(
WG1:(1&(B
)60&B12(
WY1:('
)60&B'>@
DLE
1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).
Figure 36. PC Card/CompactFlash controller waveforms for I/O space read access
)60&B1&(B
)60&B1&(B
WK1&(B$,
WY1&([$
)60&B$>@
)60&B15(*
)60&B1:(
)60&B12(
)60&B1,2:5
WZ1,25'
WG1,25'1&(B
)60&B1,25'
WVX'1,25'
WG1,25''
)60&B'>@
DL%
80/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access
)60&B1&(B
)60&B1&(B
WY1&([$
WK1&(B$,
)60&B$>@
)60&B15(*
)60&B1:(
)60&B12(
)60&B1,25'
WG1&(B1,2:5
WZ1,2:5
)60&B1,2:5
$77[+,=
WY1,2:5'
WK1,2:5'
)60&B'>@
DLF
Table 39. Switching characteristics for PC Card/CF read and write cycles(1)(2)
Symbol
Parameter
Min
Max
Unit
-
0
ns
tv(NCEx-A)
tv(NCE4_1-A)
FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y =
0...10) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay
valid (y = 0...10)
th(NCEx-AI)
th(NCE4_1-AI)
FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x =
0...10) FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax
invalid (x = 0...10)
2.5
-
ns
td(NREG-NCEx)
td(NREG-NCE4_1)
FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1
low to FSMC_NREG valid
-
5
ns
th(NCEx-NREG)
th(NCE4_1-NREG)
FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1
high to FSMC_NREG invalid
tHCLK + 3
-
ns
td(NCE4_1-NOE)
FSMC_NCE4_1 low to FSMC_NOE low
-
5tHCLK + 2
ns
tw(NOE)
FSMC_NOE low width
8tHCLK –1.5
8tHCLK + 1
ns
td(NOE-NCE4_1
FSMC_NOE high to FSMC_NCE4_1 high
5tHCLK + 2
-
ns
tsu(D-NOE)
FSMC_D[15:0] valid data before FSMC_NOE high
25
-
ns
th(NOE-D)
FSMC_D[15:0] valid data after FSMC_NOE high
15
-
ns
tw(NWE)
FSMC_NWE low width
8tHCLK – 1
8tHCLK + 2
ns
td(NWE-NCE4_1)
FSMC_NWE high to FSMC_NCE4_1 high
5tHCLK + 2
-
ns
td(NCE4_1-NWE)
FSMC_NCE4_1 low to FSMC_NWE low
-
5tHCLK + 1.5
ns
tv(NWE-D)
FSMC_NWE low to FSMC_D[15:0] valid
-
0
ns
th(NWE-D)
FSMC_NWE high to FSMC_D[15:0] invalid
11tHCLK
-
ns
td(D-NWE)
FSMC_D[15:0] valid before FSMC_NWE high
13tHCLK
-
ns
DS5792 Rev 13
81/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 39. Switching characteristics for PC Card/CF read and write cycles(1)(2) (continued)
Symbol
Parameter
tw(NIOWR)
FSMC_NIOWR low width
tv(NIOWR-D)
FSMC_NIOWR low to FSMC_D[15:0] valid
th(NIOWR-D)
FSMC_NIOWR high to FSMC_D[15:0] invalid
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid
th(NCEx-NIOWR)
FSMC_NCEx high to FSMC_NIOWR invalid
th(NCE4_1-NIOWR) FSMC_NCE4_1 high to FSMC_NIOWR invalid
td(NIORD-NCEx)
FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1
td(NIORD-NCE4_1) low to FSMC_NIORD valid
th(NCEx-NIORD)
FSMC_NCEx high to FSMC_NIORD invalid
th(NCE4_1-NIORD) FSMC_NCE4_1 high to FSMC_NIORD invalid
tsu(D-NIORD)
FSMC_D[15:0] valid before FSMC_NIORD high
td(NIORD-D)
FSMC_D[15:0] valid after FSMC_NIORD high
tw(NIORD)
FSMC_NIORD low width
1. CL = 15 pF.
2. Guaranteed by characterization results.
82/143
DS5792 Rev 13
Min
Max
Unit
8tHCLK + 3
-
ns
-
5tHCLK +1
ns
11tHCLK
-
ns
-
5tHCLK+3ns
ns
5tHCLK – 5
-
ns
-
5tHCLK + 2.5
ns
5tHCLK – 5
-
ns
4.5
-
ns
9
-
ns
8tHCLK + 2
-
ns
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
NAND controller waveforms and timings
Figure 38 through Figure 41 represent synchronous waveforms and Table 39 provides the
corresponding timings. The results shown in this table are obtained with the following FSMC
configuration:
•
COM.FSMC_SetupTime = 0x01;
•
COM.FSMC_WaitSetupTime = 0x03;
•
COM.FSMC_HoldSetupTime = 0x02;
•
COM.FSMC_HiZSetupTime = 0x01;
•
ATT.FSMC_SetupTime = 0x01;
•
ATT.FSMC_WaitSetupTime = 0x03;
•
ATT.FSMC_HoldSetupTime = 0x02;
•
ATT.FSMC_HiZSetupTime = 0x01;
•
Bank = FSMC_Bank_NAND;
•
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
•
ECC = FSMC_ECC_Enable;
•
ECCPageSize = FSMC_ECCPageSize_512Bytes;
•
TCLRSetupTime = 0;
•
TARSetupTime = 0;
Figure 38. NAND controller waveforms for read access
)60&B1&([ /RZ
$/()60&B$
&/()60&B$
)60&B1:(
WK12($/(
WG$/(12(
)60&B12(15(
WVX'12(
WK12('
)60&B'>@
DLE
DS5792 Rev 13
83/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 39. NAND controller waveforms for write access
)60&B1&([
$/()60&B$
&/()60&B$
WG$/(1:(
WK1:($/(
)60&B1:(
)60&B12(15(
WK1:('
WY1:('
)60&B'>@
AIC
Figure 40. NAND controller waveforms for common memory read access
)60&B1&([ /RZ
$/()60&B$
&/()60&B$
WG$/(12(
WK12($/(
)60&B1:(
WZ12(
)60&B12(
WVX'12(
WK12('
)60&B'>@
DLE
84/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 41. NAND controller waveforms for common memory write access
)60&B1&([ /RZ
$/()60&B$
&/()60&B$
WG$/(1:(
WZ1:(
WK1:($/(
)60&B1:(
)60&B12(
WG'1:(
WY1:('
WK1:('
)60&B'>@
DLE
Table 40. Switching characteristics for NAND Flash read and write cycles(1)
Symbol
Parameter
td(D-NWE)(2)
FSMC_D[15:0] valid before FSMC_NWE high
tw(NOE)(2)
FSMC_NWE low width
tsu(D-NOE)(2)
FSMC_D[15:0] valid data before
FSMC_NOE
Min
Max
Unit
5tHCLK + 12
-
ns
4tHCLK-1.5
4tHCLK+1.5
ns
25
-
ns
7
-
-
4tHCLK-1
4tHCLK+1
ns
-
0
ns
2tHCLK + 4
-
ns
-
3tHCLK + 1.5
ns
3tHCLK + 4.5
-
ns
-
3tHCLK+ 2
ns
3tHCLK+ 4.5
-
ns
high
th(NOE-D)(2)
FSMC_D[15:0] valid data after FSMC_NOE high
tw(NWE)(2)
FSMC_NWE low width
tv(NWE-D)
(2)
FSMC_NWE low to FSMC_D[15:0] valid
(2)
FSMC_NWE high to FSMC_D[15:0] invalid
th(NWE-D)
td(ALE-NWE)(3) FSMC_ALE valid before FSMC_NWE low
th(NWE-ALE)(3) FSMC_NWE high to FSMC_ALE invalid
td(ALE-NOE)
(3)
FSMC_ALE valid before FSMC_NOE low
(3)
FSMC_NWE high to FSMC_ALE invalid
th(NOE-ALE)
1. CL = 15 pF.
2. Guaranteed by characterization results.
3. Guaranteed by design.
DS5792 Rev 13
85/143
135
Electrical characteristics
5.3.11
STM32F103xC, STM32F103xD, STM32F103xE
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Table 41. EMS characteristics
Symbol
Parameter
Conditions
VFESD
VDD = 3.3 V, LQFP144, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 72 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
Level/
Class
VDD = 3.3 V, LQFP144, TA = +25
°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-4
2B
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
86/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 42. EMI characteristics
Symbol Parameter
SEMI
5.3.12
Conditions
Max vs. [fHSE/fHCLK]
Monitored
frequency band
Unit
8/48 MHz 8/72 MHz
0.1 to 30 MHz
VDD = 3.3 V, TA = 25 °C,
30 to 130 MHz
LQFP144 package
Peak level
compliant with IEC
130 MHz to 1GHz
61967-2
SAE EMI Level
8
12
31
21
28
33
4
4
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 43. ESD absolute maximum ratings
Class
Maximum
value(1)
Electrostatic discharge voltage TA = +25 °C, conforming to
(human body model)
JESD22-A114
2
2000
Electrostatic discharge voltage TA = +25 °C, conforming to
VESD(CDM)
(charge device model)
JESD22-C101
III
Symbol
VESD(HBM)
Ratings
Conditions
Unit
V
500
1. Guaranteed by characterization results.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
DS5792 Rev 13
87/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 44. Electrical sensitivities
Symbol
LU
5.3.13
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 45
Table 45. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
88/143
Description
Negative
injection
Positive
injection
Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13
-0
+0
Injected current on all FT pins
-5
+0
Injected current on any other pin
-5
+5
DS5792 Rev 13
Unit
mA
STM32F103xC, STM32F103xD, STM32F103xE
5.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL
compliant.
Table 46. I/O static characteristics
Symbol
VIL
Parameter
Standard IO input low
level voltage
IO FT(1) input low level
voltage
Standard IO input high
level voltage
VIH
Vhys
Conditions
Min
Typ
Max
Unit
–0.3
-
0.28*(VDD-2 V)+0.8 V
V
–0.3
-
0.32*(VDD-2 V)+0.75 V
V
0.41*(VDD-2 V)+1.3
V
-
VDD+0.3
V
0.42*(VDD-2 V)+1 V
-
200
-
-
mV
5% VDD(3)
-
-
mV
VSS ≤VIN ≤VDD
Standard I/Os
-
-
±1
VIN= 5 V,
I/O FT
-
-
3
-
-
IO FT(1) input high level VDD > 2 V
voltage
VDD ≤2 V
Standard IO Schmitt
trigger voltage
hysteresis(2)
Input leakage current (4)
V
5.2
-
IO FT Schmitt trigger
voltage hysteresis(2)
Ilkg
5.5
µA
RPU
Weak pull-up equivalent
resistor(5)
VIN = VSS
30
40
50
kΩ
RPD
Weak pull-down
equivalent resistor(5)
VIN = VDD
30
40
50
kΩ
CIO
I/O pin capacitance
-
-
5
-
pF
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
disabled.
2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 42 and Figure 43 for standard I/Os, and
in Figure 44 and Figure 45 for 5 V tolerant I/Os.
DS5792 Rev 13
89/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 42. Standard I/O input characteristics - CMOS port
6)(6),6
/3STAN
#-
7)(MIN
6 )(
6
6), $$
T6 ),6 $$
RDREQUIREMEN
#-/3STANDA
)NPUTRANGE
NOTGUARANTEED
7),MAX
6 $$
6 $$
NT6 )(
UIREME
DARDREQ
6$$6
AIB
Figure 43. Standard I/O input characteristics - TTL port
6)(6),6
7)(MIN
44,REQUIREMENTS 6)( 6
6
6 )( $$
)NPUTRANGE
NOTGUARANTEED
7),MAX
6 ),6 $$
44,REQUIREMENTS 6),6
6$$6
AI
Figure 44. 5 V tolerant I/O input characteristics - CMOS port
6)(6),6
6 $$
MENTS6 )(
)NPUTRANGE
NOTGUARANTEED
6 ),6 $$
6 $$
IRMENT6 ),
DARDREQU
#-/3STAN
6 )(6 $$
REQUIRE
TANDARD
#-/3S
6$$6
6$$
AIB
90/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 45. 5 V tolerant I/O input characteristics - TTL port
6)(6),6
44,REQUIREMENT6 )(6
6 $$
6 )(
7)(MIN
7),MAX
)NPUTRANGE
NOTGUARANTEED
6 ),
6 $$
44,REQUIREMENTS6 ),6
6$$6
AI
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ± 20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3 mA. When using the GPIOs PC13 to PC15 in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 8).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 8).
Output voltage levels
Unless otherwise specified, the parameters given in Table 47 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 10. All I/Os are CMOS and TTL compliant.
Table 47. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL (1)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH (2)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
DS5792 Rev 13
Conditions
Min
Max
TTL port(3)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
CMOS port(3)
IIO =+ 8mA
2.7 V < VDD < 3.6 V
Unit
V
V
91/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 47. Output voltage characteristics (continued)
Symbol
Parameter
VOL(1)(4)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)(4)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(1)(4)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)(4)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
Conditions
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2 V < VDD < 2.7 V
Min
Max
-
1.3
Unit
V
VDD–1.3
-
-
0.4
V
VDD–0.4
-
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
4. Guaranteed by characterization results.
92/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 46 and
Table 48, respectively.
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 10.
Table 48. I/O AC characteristics(1)
MODEx[1:0]
bit value(1)
10
01
Symbol
Parameter
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
Fmax(IO)out Maximum
11
tf(IO)out
tr(IO)out
-
Conditions
tEXTIpw
frequency(2)
Output high to low level
fall time
Output low to high level
rise time
Pulse width of external
signals detected by the
EXTI controller
Min
Max
Unit
-
2
MHz
-
125(3)
-
125(3)
-
10
-
25(3)
-
25(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
50
MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
30
MHz
CL = 50 pF, VDD = 2 V to 2.7 V
-
20
MHz
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
10
-
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 50 pF, VDD = 2 V to 3.6 V
ns
MHz
CL = 50 pF, VDD = 2 V to 3.6 V
-
ns
ns
ns
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of
GPIO Port configuration register.
2. The maximum frequency is defined in Figure 46.
3. Guaranteed by design.
DS5792 Rev 13
93/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 46. I/O AC characteristics definition
(;7(51$/
287387
21&/
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´
5.3.15
DLG
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 46).
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 10.
Table 49. NRST pin characteristics
Symbol
Conditions
Min
Typ
Max
VIL(NRST)(1) NRST Input low level voltage
-
–0.5
-
0.8
VIH(NRST)(1)
NRST Input high level voltage
-
2
-
VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
-
-
200
-
mV
VIN = VSS
30
40
50
kΩ
-
-
-
100
ns
-
300
-
-
ns
Weak pull-up equivalent resistor(2)
RPU
VF(NRST)
Parameter
(1)
NRST Input filtered pulse
VNF(NRST)(1) NRST Input not filtered pulse
Unit
V
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
94/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 47. Recommended NRST pin protection
9''
([WHUQDO
UHVHWFLUFXLW
538
1567
,QWHUQDO5HVHW
)LOWHU
)
670)
DLF
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49. Otherwise the reset will not be taken into account by the device.
5.3.16
TIM timer characteristics
The parameters given in Table 50 are guaranteed by design.
Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 50. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
Parameter
Conditions
Min
Max
Unit
1
-
tTIMxCLK
13.9
-
ns
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 72 MHz
0
fTIMxCLK/2
MHz
0
36
MHz
Timer resolution
-
16
bit
16-bit counter clock
1
period when internal clock
fTIMxCLK = 72 MHz 0.0139
is selected
65536
tTIMxCLK
910
µs
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 72 MHz
-
59.6
s
Timer resolution time
fTIMxCLK = 72 MHz
-
tMAX_COUNT Maximum possible count
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
DS5792 Rev 13
95/143
135
Electrical characteristics
5.3.17
STM32F103xC, STM32F103xD, STM32F103xE
Communications interfaces
I2C interface characteristics
The STM32F103xC, STM32F103xD and STM32F103xESTM32F103xF and STM32F103xG
performance line I2C interface meets the requirements of the standard I2C communication
protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not
“true” open-drain. When configured as open-drain, the PMOS connected between the I/O
pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 51. Refer also to Section 5.3.14: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 51. I2C characteristics
Symbol
Standard mode
I2C(1)(2)
Parameter
Fast mode I2C(1)(2)
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
-
3450(3)
-
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
μs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
μs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
tSP
Pulse width of the spikes
that are suppressed by the
analog filter for standard and
fast mode
0
50(4)
0
50(4)
μs
1. Guaranteed by design.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve the fast mode I2C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast
mode maximum clock speed of 400 kHz.
3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
undefined region on the falling edge of SCL.
4. The minimum width of the spikes filtered by the analog filter is above tSP(max).
96/143
DS5792 Rev 13
µs
ns
µs
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 48. I2C bus AC waveforms and measurement circuit
9''B,&
53
9''B,&
53
670
56
6'$
,ð&EXV
56
6&/
67$575(3($7('
67$57
67$57
WVX67$
6'$
WI6'$
WU6'$
WK67$
WVX6'$
WK6'$
WZ6&//
6&/
WZ6&/+
WU6&/
WI6&/
WZ67267$
6 723
WVX672
DLG
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
2. Rs: Series protection resistors.
3. Rp: Pull-up resistors.
4. VDD_I2C : I2C bus supply
Table 52. SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x801E
300
0x8028
200
0x803C
100
0x00B4
50
0x0168
20
0x0384
2
1. RP = External pull-up resistance, fSCL = I C speed.
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
DS5792 Rev 13
97/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
I2S - SPI characteristics
Unless otherwise specified, the parameters given in Table 53 for SPI or in Table 54 for I2S
are derived from tests performed under ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 10.
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 53. SPI characteristics
Symbol
fSCK
1/tc(SCK)
Parameter
Conditions
SPI clock frequency
Min
Max
Master mode
-
18
Slave mode
-
18
-
8
ns
%
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 30 pF
DuCy(SCK)
SPI slave input clock
duty cycle
Slave mode
30
70
tsu(NSS)(1)
NSS setup time
Slave mode
4tPCLK
-
th(NSS)(1)
NSS hold time
Slave mode
2tPCLK
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
50
60
Master mode
5
-
Slave mode
5
-
Master mode
5
-
Slave mode
4
-
Data output access time
Slave mode, fPCLK = 20 MHz
0
3tPCLK
tw(SCKH)(1)
tw(SCKL)(1)
tsu(MI) (1)
tsu(SI)(1)
(1)
th(MI)
th(SI)(1)
ta(SO)(1)(2)
tdis(SO)
Data input setup time
(1)(3)
Data input hold time
Data output disable time
Slave mode
2
10
(1)
Data output valid time
Slave mode (after enable edge)
-
25
tv(MO)(1)
Data output valid time
Master mode (after enable edge)
-
5
Slave mode (after enable edge)
15
-
Master mode (after enable edge)
2
-
tv(SO)
th(SO)(1)
th(MO)(1)
Data output hold time
Unit
MHz
1. Guaranteed by characterization results.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
98/143
DS5792 Rev 13
ns
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 49. SPI timing diagram - slave mode and CPHA = 0
Figure 50. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
6&.LQSXW
W68166
&3+$
&32/
&3+$
&32/
WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
%,7287
WU6&.
WI6&.
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
WK166
WF6&.
06%,1
%,7,1
/6%,1
DLE
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DS5792 Rev 13
99/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 51. SPI timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
&3+$
&32/
6&.2XWSXW
WF6&.
&3+$
&32/
&3+$
&32/
&3+$
&32/
WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
06%,1
WU6&.
WI6&.
%,7,1
/6%,1
WK0,
026,
287387
06%287
WY02
% , 7287
/6%287
WK02
DLF
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
100/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Table 54. I2S characteristics
Symbol
DuCy(SCK)
Parameter
Conditions
Min
Max
Unit
30
70
%
1.522
1.525
Slave mode
0
6.5
I2S slave input clock duty cycle Slave mode
Master mode (data: 16 bits,
Audio frequency = 48 kHz)
fCK
1/tc(CK)
I S clock frequency
tr(CK)
tf(CK)
I2S clock rise and fall time
Capacitive load CL = 50 pF
-
8
tv(WS) (1)
WS valid time
Master mode
3
-
th(WS) (1)
WS hold time
Master mode
I2S2
2
-
I2S3
0
-
WS setup time
Slave mode
4
-
WS hold time
Slave mode
0
-
CK high and low time
Master fPCLK= 16 MHz, audio
frequency = 48 kHz
312.5
-
345
-
tsu(SD_MR) (1)
Data input setup time
Master receiver
I2S2
2
-
I2S3
6.5
-
tsu(SD_SR) (1)
Data input setup time
Slave receiver
1.5
-
Master receiver
0
-
Slave receiver
0.5
-
tsu(WS)
th(WS)
2
(1)
(1)
tw(CKH) (1)
tw(CKL)
(1)
th(SD_MR)(1)(2)
th(SD_SR)
(1)(2)
Data input hold time
MHz
tv(SD_ST) (1)(2)
Data output valid time
Slave transmitter (after enable
edge)
-
18
th(SD_ST) (1)
Data output hold time
Slave transmitter (after enable
edge)
11
-
tv(SD_MT) (1)(2)
Data output valid time
Master transmitter (after enable
edge)
-
3
th(SD_MT) (1)
Data output hold time
Master transmitter (after enable
edge)
0
-
ns
1. Guaranteed by design and/or characterization results.
2. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.
DS5792 Rev 13
101/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 52. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 53. I2S master timing diagram (Philips protocol)(1)
1. Guaranteed by characterization results.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
102/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 10.
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (D[7:0], CMD, CK).
Figure 54. SDIO high-speed mode
Figure 55. SD default mode
#+
T/6$
T/($
$#-$
OUTPUT
AI
Table 55. SD / MMC characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
MHz
Clock frequency in data transfer
mode
CL ≤ 30 pF
0
48
tW(CKL)
Clock low time, fPP = 16 MHz
CL ≤ 30 pF
32
-
tW(CKH)
Clock high time, fPP = 16 MHz
CL ≤ 30 pF
30
-
tr
Clock rise time
CL ≤ 30 pF
-
4
tf
Clock fall time
CL ≤ 30 pF
-
5
fPP
DS5792 Rev 13
ns
103/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 55. SD / MMC characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
CMD, D inputs (referenced to CK)
tISU
Input setup time
CL ≤ 30 pF
2
-
tIH
Input hold time
CL ≤ 30 pF
0
-
ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV
Output valid time
CL ≤ 30 pF
-
6
tOH
Output hold time
CL ≤ 30 pF
0
-
ns
CMD, D outputs (referenced to CK) in SD default mode(1)
tOVD
Output valid default time
CL ≤ 30 pF
-
7
tOHD
Output hold default time
CL ≤ 30 pF
0.5
-
ns
1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.
USB characteristics
The USB interface is USB-IF certified (Full Speed).
Table 56. USB startup time
Symbol
tSTARTUP(1)
Parameter
USB transceiver startup time
1. Guaranteed by design.
104/143
DS5792 Rev 13
Max
Unit
1
µs
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Table 57. USB DC electrical characteristics
Symbol
Parameter
Conditions
Min.(1)
Max.(1)
Unit
3.0(3)
3.6
V
0.2
-
Input levels
VDD
VDI
(4)
USB operating voltage(2)
-
Differential input sensitivity
I(USB_DP, USB_DM)
VCM(4)
Differential common mode range Includes VDI range
0.8
2.5
VSE(4)
Single ended receiver threshold
1.3
2.0
-
0.3
2.8
3.6
-
V
Output levels
VOL
Static output level low
RL of 1.5 kΩ to 3.6 V(5)
VOH
Static output level high
RL of 15 kΩ to VSS(5)
V
1. All the voltages are measured from the local ground potential.
2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.
3. The STM32F103xC/D/E USB functionality is ensured down to 2.7 V but not the full USB electrical
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
4. Guaranteed by characterization results.
5. RL is the load connected on the USB drivers
Figure 56. USB timings: definition of data signal rise and fall time
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WI
WU
DLE
Table 58. USB: full-speed electrical characteristics
Driver characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
tr
Rise time(2)
CL = 50 pF
4
20
ns
tf
Time(2)
CL = 50 pF
4
20
ns
tr/tf
90
110
%
-
1.3
2.0
V
trfm
VCRS
Fall
Rise/ fall time matching
Output signal crossover voltage
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
DS5792 Rev 13
105/143
135
Electrical characteristics
5.3.18
STM32F103xC, STM32F103xD, STM32F103xE
CAN (controller area network) interface
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
5.3.19
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 59 are preliminary values derived
from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply
voltage conditions summarized in Table 10.
Note:
It is recommended to perform a calibration after each power-up.
Table 59. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Power supply
-
2.4
-
3.6
V
VREF+
Positive reference voltage
-
2.4
-
VDDA
V
VREF-
Negative reference voltage
-
IVREF
Current on the VREF input
pin
-
-
160(1)
220
µA
fADC
ADC clock frequency
-
0.6
-
14
MHz
fS(2)
Sampling rate
-
0.05
-
1
MHz
fADC = 14 MHz
-
-
823
kHz
-
-
-
17
1/fADC
-
0 (VSSA or VREFtied to ground)
-
VREF+
V
See Equation 1 and
Table 60 for details
-
-
50
κΩ
fTRIG(2)
VAIN
External trigger frequency
Conversion voltage range(3)
0
V
RAIN(2)
External input impedance
RADC(2)
Sampling switch resistance
-
-
-
1
κΩ
CADC(2)
Internal sample and hold
capacitor
-
-
-
8
pF
tCAL(2)
Calibration time
fADC = 14 MHz
5.9
µs
-
83
1/fADC
tlat(2)
Injection trigger conversion
latency
fADC = 14 MHz
-
-
0.214
µs
-
-
-
3(4)
1/fADC
tlatr(2)
Regular trigger conversion
latency
fADC = 14 MHz
-
-
0.143
µs
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
106/143
Total conversion time
(including sampling time)
(4)
1/fADC
-
-
-
2
fADC = 14 MHz
0.107
-
17.1
µs
-
1.5
-
239.5
1/fADC
-
0
0
1
µs
fADC = 14 MHz
1
-
18
µs
-
DS5792 Rev 13
14 to 252 (tS for sampling +12.5 for
successive approximation)
1/fADC
STM32F103xC, STM32F103xD, STM32F103xE
1.
Electrical characteristics
Guaranteed by characterization results.
2. Guaranteed by design.
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 3: Pinouts and pin descriptions for further details.
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 59.
Equation 1: RAIN max formula
TS
- – R ADC
R AIN < --------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 60. RAIN max for fADC = 14 MHz(1)
Ts (cycles)
tS (µs)
RAIN max (kΩ)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design.
Table 61. ADC accuracy - limited test conditions(1)(2)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
Typ
Max(3)
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 3 V to 3.6 V
TA = 25 °C
Measurements made after
ADC calibration
VREF+ = VDDA
±1.3
±2
±1
±1.5
±0.5
±1.5
±0.7
±1
±0.8
±1.5
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should
be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially
inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.14 does not
affect the ADC accuracy.
3. Guaranteed by characterization results.
DS5792 Rev 13
107/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 62. ADC accuracy(1) (2)(3)
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 2.4 V to 3.6 V
Measurements made after
ADC calibration
Typ
Max(4)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should
be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially
inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.14 does not
affect the ADC accuracy.
4. Guaranteed by characterization results.
Figure 57. ADC accuracy characteristics
6 2%&
6 $$!
;,3" )$%!,
ORDEPENDINGONPACKAGE =
%'
%4
%/
%,
%$
, 3")$%!,
6 33!
6$$!
AIC
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
108/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Electrical characteristics
Figure 58. Typical connection diagram using the ADC
670)
9''
5$,1 $,1[
9$,1
&SDUDVLWLF
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$'&
97
9
ELW
FRQYHUWHU
& $'&
,/$
DL
1. Refer to Table 59 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 59 or Figure 60,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 59. Power supply and reference decoupling (VREF+ not connected to VDDA)
670)[[
95()
VHHQRWH
)Q)
9''$
)Q)
966$ 95()±
VHHQRWH
DLE
1. VREF+ and VREF– inputs are available only on 100-pin packages.
DS5792 Rev 13
109/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Figure 60. Power supply and reference decoupling (VREF+ connected to VDDA)
670)[[
95()9''$
6HHQRWH
)Q)
95()±966$
6HHQRWH
DL
1. VREF+ and VREF– inputs are available only on 100-pin packages.
110/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
5.3.20
Electrical characteristics
DAC electrical specifications
Table 63. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
-
VDDA
Analog supply voltage
2.4
-
3.6
V
VREF+
Reference supply voltage
2.4
-
3.6
V
VSSA
Ground
0
-
0
V
-
RLOAD(1)
Resistive load with buffer
ON
-
-
kΩ
-
5
VREF+ must always be below VDDA
Impedance output with
buffer OFF
-
-
15
When the buffer is OFF, the
Minimum resistive load between
kΩ
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(1)
Capacitive load
-
-
50
pF
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer ON
0.2
-
-
V
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer ON
-
-
VDDA – 0.2
V
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer OFF
-
0.5
-
mV
DAC_OUT
max(1)
Higher DAC_OUT voltage
with buffer OFF
-
-
VREF+ –
1LSB
V
IDDVREF+
DAC DC current
consumption in quiescent
mode (Standby mode)
-
-
220
µA
-
-
380
µA
With no load, middle code (0x800)
on the inputs
IDDA
DAC DC current
consumption in quiescent
mode(3)
-
-
480
µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration
-
-
±2
LSB
Given for the DAC in 12-bit
configuration
-
-
±1
LSB
Given for the DAC in 10-bit
configuration
-
-
±4
LSB
Given for the DAC in 12-bit
configuration
RO
(2)
DNL(4)
INL(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
DS5792 Rev 13
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V
and (0x155) and (0xEAB) at VREF+
= 2.4 V
It gives the maximum output
excursion of the DAC.
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
111/143
135
Electrical characteristics
STM32F103xC, STM32F103xD, STM32F103xE
Table 63. DAC characteristics (continued)
Symbol
Min
Typ
Max
Unit
Comments
-
-
±10
mV
-
-
-
±3
LSB
Given for the DAC in 10-bit at VREF+
= 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at VREF+
= 3.6 V
-
-
±0.5
%
Given for the DAC in 12bit
configuration
Settling time (full scale: for
a 10-bit input code
transition between the
tSETTLING(3)
lowest and the highest input
codes when DAC_OUT
reaches final value ±1LSB
-
3
4
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
Update
rate(3)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to
i+1LSB)
-
-
1
MS/
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
s
tWAKEUP(3)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (1)
Power supply rejection ratio
(to VDDA) (static DC
measurement
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
Offset(3)
Gain
error(3)
Parameter
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VREF+/2)
Gain error
1. Guaranteed by design.
2. Guaranteed by characterization.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results.
Figure 61. 12-bit buffered /non-buffered DAC
%XIIHUHG1RQEXIIHUHG'$&
%XIIHU
5/
'$&B287[
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
&/
AI6
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
112/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
5.3.21
Electrical characteristics
Temperature sensor characteristics
Table 64. TS characteristics
Symbol
Parameter
Min
Typ
Max
Unit
-
±1
±2
°C
TL
VSENSE linearity with temperature
Avg_Slope
Average slope
4.0
4.3
4.6
mV/°C
V25
Voltage at 25 °C
1.34
1.43
1.52
V
tSTART(1)
Startup time
4
-
10
µs
TS_temp(2)(1)
ADC sampling time when reading the
temperature
-
-
17.1
µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
DS5792 Rev 13
113/143
135
Package information
6
STM32F103xC, STM32F103xD, STM32F103xE
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1
LFBGA144 package information
Figure 62. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package outline
& 6HDWLQJSODQH
GGG &
$ $ $
$ $
'
H
$%$//
3$'&251(5
)
$%$//
3$'&251(5
%
'
$
)
(
(
H
$
0
%277209,(:
EEDOOV
HHH 0 & $ %
III 0 &
7239,(:
/)%*$B;B0(B9
1. Drawing is not to scale.
Table 65. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data
inches(1)
millimeters
Symbol
114/143
Min
Typ
Max
Typ
Min
Max
A(2)
-
-
1.700
-
-
0.0669
A1
0.250
0.300
0.350
0.098
0.0118
0.0138
A2
0.810
0.910
1.010
0.0319
0.0358
0.0398
A3
0.225
0.26
0.295
0.0089
0.0102
0.0116
A4
0.585
0.650
0.715
0.0230
0.0256
0.0281
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Package information
Table 65. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Typ
Min
Max
b
0.350
0.400
0.450
0.0138
0.0157
0.0177
D
9.900
10.000
10.100
0.3898
0.3937
0.3976
D1
-
8.800
-
-
0.3465
-
E
9.900
10.000
10.100
0.3898
0.3937
0.3976
E1
-
8.800
-
-
0.3465
-
e
-
0.800
-
-
0.0315
-
F
-
0.600
-
-
0.0236
-
ddd
-
-
0.100
-
-
0.0039
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. STATSChipPAC package dimensions.
Figure 63. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package recommended footprint
'SDG
'VP
/)%*$B;B)3B9
Table 66. LFBGA144 recommended PCB design rules (0.8 mm pitch BGA)
Dimension
Recommended values
Pitch
0.8 mm
Dpad
0.400 mm
DS5792 Rev 13
115/143
135
Package information
STM32F103xC, STM32F103xD, STM32F103xE
Table 66. LFBGA144 recommended PCB design rules (0.8 mm pitch BGA) (continued)
Dimension
Recommended values
UBM
0.350 mm
Dsm
0.470 mm typ. (depends on the solder mask
registration tolerance)
Stencil opening
0.400 mm
Stencil thickness
Between 0.100 mm to 0.125 mm
Pad trace width
0.120 mm
Ball Diameter
0.400 mm
Device marking for LFBGA144 package
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 64. LFBGA144 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670)
=&+
%DOO
$LGHQWLILHU
'DWHFRGH
< ::
06Y9
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity
116/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
6.2
Package information
LFBGA100 package information
Figure 65. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
outline
= 6HDWLQJSODQH
GGG =
$ $
$ $
(
H
;
$EDOO
$EDOO
LGHQWLILHU LQGH[DUHD
)
(
$
)
'
'
H
<
.
EEDOOV
HHH 0 = < ;
III 0 =
%277209,(:
7239,(:
+B0(B9
1. Drawing is not to scale.
Table 67. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.700
-
-
0.0669
A1
0.270
-
-
0.0106
-
-
A2
-
0.300
-
-
0.0118
-
A4
-
-
0.800
-
-
0.0315
b
0.450
0.500
0.550
0.0177
0.0197
0.0217
D
9.850
10.000
10.150
0.3878
0.3937
0.3996
D1
-
7.200
-
-
0.2835
-
E
9.850
10.000
10.150
0.3878
0.3937
0.3996
E1
-
7.200
-
-
0.2835
-
e
-
0.800
-
-
0.0315
-
F
-
1.400
-
-
0.0551
-
ddd
-
-
0.120
-
-
0.0047
DS5792 Rev 13
117/143
135
Package information
STM32F103xC, STM32F103xD, STM32F103xE
Table 67. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 66. LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package recommended footprintoutline
'SDG
'VP
+B)3B9
Table 68. LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)
Dimension
118/143
Recommended values
Pitch
0.8
Dpad
0.500 mm
Dsm
0.570 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.500 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
Pad trace width
0.120 mm
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Package information
Device marking for LFBGA100 package
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 67. LFBGA100 marking example (package top view)
$GGLWLRQDO
LQIRUPDWLRQ
;
3URGXFWLGHQWLILFDWLRQ
670)
9+
'DWHFRGH
< ::
%DOO$
LQGHQWLILHU
06Y9
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity
DS5792 Rev 13
119/143
135
Package information
6.3
STM32F103xC, STM32F103xD, STM32F103xE
WLCSP64 package information
Figure 68. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
package outline
H
EEE =
)
*
$
'HWDLO$
H
H
+
*
)
H
$
$
%XPSVLGH
6LGHYLHZ
;
'
<
%XPS
$
HHH =
(
E
$ 2ULHQWDWLRQ
UHIHUHQFH
FFF
GGG
DDD
=
; < =
=
6HDWLQJSODQH
'HWDLO$
URWDWHG
[
:DIHUEDFNVLGH
&5B0(B9
1. Drawing is not to scale.
2. Primary datum Z and seating plane are defined by the spherical crowns of the ball.
Table 69. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
package mechanical data
inches(1)
millimeters
Symbol
Min
120/143
Typ
Max
Min
Typ
Max
A
0.535
0.585
0.635
0.0211
0.0230
0.0250
A1
0.205
0.230
0.255
0.0081
0.0091
0.0100
A2
0.330
0.355
0.380
0.0130
0.0140
0.0150
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Package information
Table 69. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
package mechanical data
inches(1)
millimeters
Symbol
Min
b(2)
0.290
Typ
0.320
Max
0.350
Min
Typ
Max
0.0114
0.0126
0.0138
e
-
0.500
-
-
0.0197
-
e1
-
3.500
-
-
0.1378
-
F
-
0.447
-
-
0.0176
-
G
-
0.483
-
-
0.0190
-
D
4.446
4.466
4.486
0.1750
0.1758
0.1766
E
4.375
4.395
4.415
0.1722
0.1730
0.1738
H
-
0.250
-
-
0.0098
-
L
-
0.200
-
-
0.0079
-
eee
-
0.05
-
-
0.0020
-
aaa
-
0.10
-
-
0.0039
-
Number of balls
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum ball diameter parallel to primary datum Z.
Figure 69. WLCSP64 - 64-ball, 4.4757 x 4.4049 mm, 0.5 mm pitch wafer level chip scale
package recommended footprint
'SDG
'VP
:/&63B&5B)3B9
Table 70. WLCSP64 recommended PCB design rules (0.5 mm pitch)
Dimension
Recommended values
Pitch
0.5
Dpad
250 µm
Dsm
300 µm
Stencil Opening
320 µm
DS5792 Rev 13
121/143
135
Package information
STM32F103xC, STM32F103xD, STM32F103xE
Table 70. WLCSP64 recommended PCB design rules (0.5 mm pitch) (continued)
6.4
Dimension
Recommended values
Stencil Thickness
Between 100 µm to 125 µm
Pad trace width
100 µm
Ball Diameter
320 µm
LQFP144 package information
Figure 70. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline
6($7,1*
3/$1(
F
$
$
$
&
PP
*$8*(3/$1(
'
/
'
.
$
FFF &
/
'
(
3,1
(
(
E
,'(17,),&$7,21
H
$B0(B9
1. Drawing is not to scale.
122/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Package information
Table 71. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
21.800
22.000
22.200
0.8583
0.8661
0.8740
D1
19.800
20.000
20.200
0.7795
0.7874
0.7953
D3
-
17.500
-
-
0.6890
-
E
21.800
22.000
22.200
0.8583
0.8661
0.8740
E1
19.800
20.000
20.200
0.7795
0.7874
0.7953
E3
-
17.500
-
-
0.6890
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DS5792 Rev 13
123/143
135
Package information
STM32F103xC, STM32F103xD, STM32F103xE
Figure 71. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint
DLH
1. Dimensions are expressed in millimeters.
124/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Package information
Device marking for LQFP144 package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 72. LQFP144 marking example (package top view)
2SWLRQDOJDWHPDUN
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
;
670)=(7
'DWHFRGH
< ::
3LQLGHQWLILHU
06Y9
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity
DS5792 Rev 13
125/143
135
Package information
6.5
STM32F103xC, STM32F103xD, STM32F103xE
LQFP100 package information
Figure 73. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline
MM
C
!
!
!
3%!4).'0,!.%
#
'!5'%0,!.%
$
,
$
!
+
CCC #
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
,?-%?6
1. Drawing is not to scale.
Table 72. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
126/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Package information
Table 72. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.08
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 74. LQFP100 recommended footprint
AIC
1. Dimensions are in millimeters.
DS5792 Rev 13
127/143
135
Package information
STM32F103xC, STM32F103xD, STM32F103xE
Device marking for LQFP100 package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 75. LQFP100 marking example (package top view)
2SWLRQDOJDWH
PDUN
3URGXFWLGHQWLILFDWLRQ
^dDϯϮ&ϭϬϯ
sϴdϲ
5HYLVLRQFRGH
y
'DWHFRGH
z tt
3LQLGHQWLILHU
06Y9
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity
128/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
6.6
Package information
LQFP64 package information
Figure 76. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
(
(
(
E
3,1
,'(17,),&$7,21
H
:B0(B9
1. Drawing is not in scale.
Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DS5792 Rev 13
129/143
135
Package information
STM32F103xC, STM32F103xD, STM32F103xE
Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
θ
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 77. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint
AIC
1. Dimensions are in millimeters.
130/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Package information
Device marking for LQFP64 package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 78. LQFP64 marking example (package top view)
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
^dDϯϮ&ϭϬϯ
Zdϲ
z tt
3LQLGHQWLILHU
'DWHFRGH
06Y9
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity
DS5792 Rev 13
131/143
135
Package information
6.7
STM32F103xC, STM32F103xD, STM32F103xE
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 10: General operating conditions on page 44.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 74. Package thermal characteristics
Symbol
ΘJA
6.7.1
Parameter
Value
Thermal resistance junction-ambient
LFBGA144 - 10 × 10 mm / 0.8 mm pitch
40
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch
30
Thermal resistance junction-ambient
LFBGA100 - 10 × 10 mm / 0.8 mm pitch
40
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
45
Thermal resistance junction-ambient
WLCSP64
50
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
132/143
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
6.7.2
Package information
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 75: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F103xC, STM32F103xD and
STM32F103xE at maximum dissipation, it is useful to calculate the exact power
consumption and junction temperature to determine which temperature range will be best
suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Table 74 TJmax is calculated as follows:
–
For LQFP100, 46 °C/W
TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 75: Ordering information scheme).
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
DS5792 Rev 13
133/143
135
Package information
STM32F103xC, STM32F103xD, STM32F103xE
Using the values obtained in Table 74 TJmax is calculated as follows:
–
For LQFP100, 46 °C/W
TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Table 75: Ordering information scheme).
Figure 79. LQFP100 PD max vs. TA
700
PD (mW)
600
500
Suffix 6
400
Suffix 7
300
200
100
0
65
75
85
95
105
TA (°C)
134/143
DS5792 Rev 13
115
125
135
STM32F103xC, STM32F103xD, STM32F103xE
7
Ordering information
Ordering information
Table 75. Ordering information scheme
Example:
STM32
F 103 R C
T
6
xxx
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
103 = performance line
Pin count
R = 64 pins
V = 100 pins
Z = 144 pins
Flash memory size
C = 256 Kbytes of Flash memory
D = 384 Kbytes of Flash memory
E = 512 Kbytes of Flash memory
Package
H = BGA
T = LQFP
Y = WLCSP64
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and real
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
DS5792 Rev 13
135/143
135
Revision history
8
STM32F103xC, STM32F103xD, STM32F103xE
Revision history
Table 76.Document revision history
Date
Revision
07-Apr-2008
1
Initial release.
2
Document status promoted from Target Specification to Preliminary
Data.
Section 1: Introduction and Section 2.2: Full compatibility throughout
the family modified. Small text changes.
Note 2 added in Table 2: STM32F103xC, STM32F103xD and
STM32F103xE features and peripheral counts on page 11.
LQPF100/BGA100 column added to Table 6: FSMC pin definition on
page 38.
Values and Figures added to Maximum current consumption on
page 62 (see Table 18, Table 19, Table 20 and Table 21 and see
Figure 14, Figure 15, Figure 17, Figure 18 and Figure 19).
Values added to Typical current consumption on page 73 (see
Table 22, Table 23 and Table 24). Table 19: Typical current
consumption in Standby mode removed.
Note 4 and Note 1 added to Table 65: USB DC electrical characteristics
and Table 66: USB: full-speed electrical characteristics on page 129,
respectively.
VUSB added to Table 65: USB DC electrical characteristics on
page 129.
Figure 68: Recommended footprint(1) on page 143 corrected.
Equation 1 corrected. Figure 73: LQFP100 PD max vs. TA on page 149
modified.
Tolerance values corrected in Table 74: LFBGA144 – 144-ball low
profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package
data on page 139.
22-May-2008
136/143
Changes
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Revision history
Table 76.Document revision history
Date
21-Jul-2008
Revision
Changes
3
Document status promoted from Preliminary Data to full datasheet.
FSMC (flexible static memory controller) on page 22 modified.
Number of complementary channels corrected in Figure 1:
STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and
STM32F103xG performance line block diagram.
Power supply supervisor on page 23 modified and VDDA added to
Table 14: General operating conditions on page 59.
Table notes revised in Section 5: Electrical characteristics.
Capacitance modified in Figure 12: Power supply scheme on page 57.
Table 60: SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) updated.
Table 61: SPI characteristics modified, th(NSS) modified in Figure 49:
SPI timing diagram - slave mode and CPHA = 0 on page 123.
Minimum SDA and SCL fall time value for Fast mode removed from
Table 59: I2C characteristics on page 120, note 1 modified.
IDD_VBAT values and some IDD values with regulator in run mode added
to Table 21: Typical and maximum current consumptions in Stop and
Standby modes on page 68.
Table 34: Flash memory endurance and data retention on page 87
updated.
tsu(NSS) modified in Table 61: SPI characteristics on page 122.
EO corrected in Table 70: ADC accuracy on page 132. Figure 58:
Typical connection diagram using the ADC on page 133 and note below
corrected.
Typical TS_temp value removed from Table 72: TS characteristics on
page 137.
Section 6.1: Package mechanical data on page 138 updated.
Small text changes.
DS5792 Rev 13
137/143
142
Revision history
STM32F103xC, STM32F103xD, STM32F103xE
Table 76.Document revision history
Date
12-Dec-2008
138/143
Revision
Changes
4
Timers specified on page 1 (motor control capability mentioned).
Section 2.2: Full compatibility throughout the family updated.
Table 6: High-density timer feature comparison added.
General-purpose timers (TIMx) and Advanced-control timers (TIM1 and
TIM8) on page 27 updated.
Figure 1: STM32F103xF, STM32F103xD and
STM32F103xGSTM32F103xF and STM32F103xG performance line
block diagram modified.
Note 10 added, main function after reset and Note 5 on page 44
updated in Table 8: High-density STM32F103xx pin definitions.
Note 2 modified below Table 11: Voltage characteristics on page 58,
|DVDDx| min and |DVDDx| min removed.
Note 2 and PD values for LQFP144 and LFBGA144 packages added to
Table 14: General operating conditions on page 59.
Measurement conditions specified in Section 5.3.5: Supply current
characteristics on page 62.
Max values at TA = 85 °C and TA = 105 °C updated in Table 21: Typical
and maximum current consumptions in Stop and Standby modes on
page 68.
Section 5.3.10: FSMC characteristics on page 87 updated.
Data added to Table 50: EMI characteristics on page 111.
IVREF added to Table 67: ADC characteristics on page 130.
Table 81: Package thermal characteristics on page 146 updated.
Small text changes.
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Revision history
Table 76.Document revision history
Date
30-Mar-2009
Revision
Changes
5
I/O information clarified on page 1. Figure 4: STM32F103xC and
STM32F103xE performance line BGA100 ballout corrected.
I/O information clarified on page 1.
In Table 5: High-density STM32F103xx pin definitions:
– I/O level of pins PF11, PF12, PF13, PF14, PF15, G0, G1 and G15
updated
– PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default
column to Remap column
PG14 pin description modified in Table 6: FSMC pin definition.
Figure 9: Memory map on page 54 modified.
Note modified in Table 18: Maximum current consumption in Run
mode, code with data processing running from Flash and Table 20:
Maximum current consumption in Sleep mode, code running from Flash
or RAM.
Figure 17, Figure 18 and Figure 19 show typical curves (titles
changed).
Table 25: High-speed external user clock characteristics and Table 26:
Low-speed external user clock characteristics modified. ACCHSI max
values modified in Table 29: HSI oscillator characteristics.
FSMC configuration modified for Asynchronous waveforms and
timings. Notes modified below Figure 24: Asynchronous nonmultiplexed SRAM/PSRAM/NOR read waveforms and Figure 25:
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms.
tw(NADV) values modified in Table 35: Asynchronous non-multiplexed
SRAM/PSRAM/NOR read timings and Table 39: Asynchronous
multiplexed PSRAM/NOR write timings. th(Data_NWE) modified in
Table 36: Asynchronous non-multiplexed SRAM/PSRAM/NOR write
timings
In Table 41: Synchronous multiplexed PSRAM write timings and
Table 43: Synchronous non-multiplexed PSRAM write timings:
– tv(Data-CLK) renamed as td(CLKL-Data)
– td(CLKL-Data) min value removed and max value added
– th(CLKL-DV) / th(CLKL-ADV) removed
Figure 28: Synchronous multiplexed NOR/PSRAM read timings,
Figure 29: Synchronous multiplexed PSRAM write timings and
Figure 31: Synchronous non-multiplexed PSRAM write timings
modified.
Figure 52: I2S slave timing diagram (Philips protocol)(1) and Figure 53:
I2S master timing diagram (Philips protocol)(1) modified.
WLCSP64 package added (see Figure 8: STM32F103xC and
STM32F103xE performance line WLCSP64 ballout, ball side, Table 8:
High-density STM32F103xx pin definitions, Figure 65: WLCSP, 64-ball
4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package
outline and Table 76: WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm
pitch, wafer-level chip-scale package mechanical data).
Small text changes.
DS5792 Rev 13
139/143
142
Revision history
STM32F103xC, STM32F103xD, STM32F103xE
Table 76.Document revision history
Date
21-Jul-2009
24-Sep-2009
140/143
Revision
Changes
6
Figure 1: STM32F103xC, STM32F103xD and STM32F103xE
performance line block diagram updated.
Note 5 updated and Note 4 added in Table 5: High-density
STM32F103xC/D/E pin definitions.
VRERINT and TCoeff added to Table 13: Embedded internal reference
voltage.
Table 16: Maximum current consumption in Sleep mode, code running
from Flash or RAM modified.
fHSE_ext min modified in Table 21: High-speed external user clock
characteristics.
CL1 and CL2 replaced by C in Table 23: HSE 4-16 MHz oscillator
characteristics and Table 24: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables.
Note 1 modified below Figure 29: Synchronous multiplexed PSRAM
write timings. Table 25: HSI oscillator characteristics modified.
Conditions removed from Table 27: Low-power mode wakeup timings.
Jitter added to Table 28: PLL characteristics.
Figure 47: Recommended NRST pin protection modified.
In Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read
timings: th(BL_NOE) and th(A_NOE) modified.
In Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write
timings: th(A_NWE) and th(Data_NWE) modified.
In Table 33: Asynchronous multiplexed PSRAM/NOR read timings:
th(AD_NADV) and th(A_NOE) modified.
In Table 34: Asynchronous multiplexed PSRAM/NOR write timings:
th(A_NWE) modified.
In Table 35: Synchronous multiplexed NOR/PSRAM read timings:
th(CLKH-NWAITV) modified.
In Table 40: Switching characteristics for NAND Flash read and write
cycles: th(NOE-D) modified.
Table 53: SPI characteristics modified. Values added to Table 54: I2S
characteristics and Table 55: SD / MMC characteristics.
CADC and RAIN parameters modified in Table 59: ADC characteristics.
RAIN max values modified in Table 60: RAIN max for fADC = 14 MHz.
Table 71: DAC characteristics modified. Figure 61: 12-bit buffered /nonbuffered DAC added.
Figure 63: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array
package outline and Table 75: LFBGA100 - 10 x 10 mm low profile fine
pitch ball grid array package mechanical data updated.
7
Number of DACs corrected in Table 3: STM32F103xx family.
IDD_VBAT updated in Table 17: Typical and maximum current
consumptions in Stop and Standby modes.
Figure 16: Typical current consumption on VBAT with RTC on vs.
temperature at different VBAT values added.
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to
IEC 61967-2 in Section 5.3.11: EMC characteristics on page 86.
Table 63: DAC characteristics modified. Small text changes.
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
Revision history
Table 76.Document revision history
Date
19-Apr-2011
30-Sept-2014
23-Feb-2015
Revision
Changes
8
Updated package choice for 103Rx in Table 2
Updated footnotes below Table 7: Voltage characteristics on page 43
and Table 8: Current characteristics on page 43
Updated tw min in Table 21: High-speed external user clock
characteristics on page 58
Updated startup time in Table 24: LSE oscillator characteristics (fLSE =
32.768 kHz) on page 61
Updated note 2 in Table 51: I2C characteristics on page 96
Updated Figure 48: I2C bus AC waveforms and measurement circuit
Updated Figure 47: Recommended NRST pin protection
Updated Section 5.3.14: I/O port characteristics
Updated Table 35: Synchronous multiplexed NOR/PSRAM read
timings on page 72
Updated FSMC Figure 26 thru Figure 31
Updated Figure 41.: NAND controller waveforms for common memory
write access and Figure 48.: I2C bus AC waveforms and measurement
circuit
Added Section 5.3.13: I/O current injection characteristics
Updated Figure 67 and added Table 69: WLCSP, 64-ball 4.466 × 4.395
mm, 0.500 mm pitch, wafer-level chip-scale package mechanical data
on page 120
LQFP64 package mechanical data updated: see Figure 73.: LQFP64 –
10 x 10 mm 64 pin low-profile quad flat package outline and Table 73:
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical
data on page 129.
9
Added Note 7 in Table 5: High-density STM32F103xC/D/E pin
definitions on page 31.
Updated Note 10 in Table 5: High-density STM32F103xC/D/E pin
definitions on page 31.
Modified Note 2 in Table 62: ADC accuracy on page 108
Modified Note 3 in Table 62: ADC accuracy on page 108
Modified notes in Table 51: I2C characteristics on page 96
Updated Figure 51: SPI timing diagram - master mode(1) on page 100
10
Updated Figure 66.: BGA pad footprint, Figure 70: LQFP144 - 144-pin,
20 x 20 mm low-profile quad flat package outline, Figure 73.: LQFP100
– 14 x 14 mm 100 pin low-profile quad flat package outline, Figure 74.:
LQFP100 recommended footprint, Figure 76.: LQFP64 – 10 x 10 mm
64 pin low-profile quad flat package outline, Figure 77.: LQFP64 - 64pin, 10 x 10 mm low-profile quad flat recommended footprint
Added Figure 72.: LQFP144 marking example (package top view),
Figure 75.: LQFP100 marking example (package top view), Figure 78.:
LQFP64 marking example (package top view)
Updated Table 72: LQPF100 – 14 x 14 mm 100-pin low-profile quad flat
package mechanical data, Table 73: LQFP64 – 10 x 10 mm 64 pin lowprofile quad flat package mechanical data
DS5792 Rev 13
141/143
142
Revision history
STM32F103xC, STM32F103xD, STM32F103xE
Table 76.Document revision history
Date
31-08-2015
26-Nov-2015
10-Jul-2018
142/143
Revision
Changes
11
Replaced USBDP and USBDM by USB_DP and USB_DM in the whole
document.
Updated:
– Introduction
– Reference standard in Table 43: ESD absolute maximum ratings.
– Updated IDDA description in Table 63: DAC characteristics.
– Section : I2C interface characteristics
– Figure 62: LFBGA144 – 144-ball low profile fine pitch ball grid array,
10 x 10 mm, 0.8 mm pitch, package outline
– Updated sentence before Figure 78: LQFP64 marking example
(package top view).
– Figure 65: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid
array package outline and sentence before Figure 75: LQFP100
marking example (package top view)
– Figure 68: WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch,
wafer-level chip-scale package outline
– Figure 48: I2C bus AC waveforms and measurement circuit on
page 97
– Section 6.1: LFBGA144 package information and Section 6.2:
LFBGA100 package information.
– Table 20: Peripheral current consumption
Added:
– Figure 63: LFBGA144 – 144-ball low profile fine pitch ball grid array,
10 x 10 mm, 0.8 mm pitch, package recommended footprint
– Figure 64: LFBGA144 marking example (package top view)
– Figure 66: LFBGA100 – 100-ball low profile fine pitch ball grid array,
10 x 10 mm, 0.8 mm pitch, package recommended footprintoutline
– Figure 69: WLCSP64 - 64-ball, 4.4757 x 4.4049 mm, 0.5 mm pitch
wafer level chip scale package recommended footprint
– Table 66: LFBGA144 recommended PCB design rules (0.8 mm pitch
BGA)
– Table 68: LFBGA100 recommended PCB design rules (0.8 mm pitch
BGA)
– Table 70: WLCSP64 recommended PCB design rules (0.5 mm pitch).
12
Updated:
– Table 59: ADC characteristics
– Table 65: LFBGA144 – 144-ball low profile fine pitch ball grid array,
10 x 10 mm, 0.8 mm pitch, package mechanical data
– Table 66: LFBGA144 recommended PCB design rules (0.8 mm pitch
BGA)
Added:
– Note 3 on Table 7: Voltage characteristics
13
Updated:
– Table 2: STM32F103xC, STM32F103xD and STM32F103xE features
and peripheral counts
– Section 7: Ordering information
DS5792 Rev 13
STM32F103xC, STM32F103xD, STM32F103xE
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved
DS5792 Rev 13
143/143
143