0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F103ZGH6

STM32F103ZGH6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LFBGA144

  • 描述:

    IC MCU 32BIT 1MB FLASH 144BGA

  • 数据手册
  • 价格&库存
STM32F103ZGH6 数据手册
STM32F103xF STM32F103xG XL-density performance line ARM®-based 32-bit MCU with 768 KB to 1 MB Flash, USB, CAN, 17 timers, 3 ADCs, 13 com. interfaces Datasheet − production data Features &"'! ® ® • Core: ARM 32-bit Cortex -M3 CPU with MPU – 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access – Single-cycle multiplication and hardware division • Memories – 768 Kbytes to 1 Mbyte of Flash memory – 96 Kbytes of SRAM – Flexible static memory controller with 4 Chip Select. Supports Compact Flash, SRAM, PSRAM, NOR and NAND memories – LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration – 32 kHz oscillator for RTC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers • 3 × 12-bit, 1 µs A/D converters (up to 21 channels) – Conversion range: 0 to 3.6 V – Triple-sample and hold capability – Temperature sensor • DMA: 12-channel DMA controller – Supported peripherals: timers, ADCs, DAC, SDIO, I2Ss, SPIs, I2Cs and USARTs May 2015 This is information on a product in full production. LFBGA144 10 × 10 mm – Serial wire debug (SWD) & JTAG interfaces – Cortex®-M3 Embedded Trace Macrocell™ • Up to 112 fast I/O ports – 51/80/112 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant • Up to 17 timers – Up to ten 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – 2 × 16-bit motor control PWM timers with dead-time generation and emergency stop – 2 × watchdog timers (Independent and Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC • Up to 13 communication interfaces – Up to 2 × I2C interfaces (SMBus/PMBus) – Up to 5 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s), 2 with I2S interface multiplexed – CAN interface (2.0B Active) – USB 2.0 full speed interface – SDIO interface • CRC calculation unit, 96-bit unique ID • 2 × 12-bit D/A converters • Debug mode LQFP64 10 × 10 mm, LQFP100 14 × 14 mm, LQFP144 20 × 20 mm • ECOPACK® packages Table 1. Device summary Reference Part number STM32F103xF STM32F103RF STM32F103VF STM32F103ZF STM32F103xG STM32F103RG STM32F103VG STM32F103ZG DocID16554 Rev 4 1/136 www.st.com Contents STM32F103xF, STM32F103xG Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2/136 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 ARM® Cortex®-M3 core with embedded Flash and SRAM . . . . . . . . . . 15 2.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15 2.3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.6 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.7 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.8 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 2.3.9 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.11 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.12 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.13 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.14 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.15 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.16 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.17 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19 2.3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) . 21 2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.22 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.23 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.24 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.25 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.26 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.27 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.28 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID16554 Rev 4 STM32F103xF, STM32F103xG Contents 2.3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 45 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 45 5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 89 5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.18 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . 108 DocID16554 Rev 4 3/136 4 Contents 6 STM32F103xF, STM32F103xG 5.3.19 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.1 LFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 6.2 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 6.3 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 130 7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F103xF and STM32F103xG features and peripheral counts . . . . . . . . . . . . . . . . . 11 STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STM32F103xF and STM32F103xG timer feature comparison . . . . . . . . . . . . . . . . . . . . . . 19 STM32F103xF and STM32F103xG pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 49 Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 50 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 68 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 69 Asynchronous multiplexed read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 77 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Switching characteristics for PC Card/CF read and write cycles in attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . 84 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DocID16554 Rev 4 5/136 6 List of tables Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. 6/136 STM32F103xF, STM32F103xG EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 126 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 STM32F103xF and STM32F103xG ordering information scheme . . . . . . . . . . . . . . . . . . 132 DocID16554 Rev 4 STM32F103xF, STM32F103xG List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. STM32F103xF and STM32F103xG performance line block diagram. . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 STM32F103xF/G BGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F103xF/G performance line LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM32F103xF/G performance line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F103xF/G performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled . . . . . . . . . . . . . . . . . 48 Typical current consumption in Run mode versus frequency (at 3.6 V)code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . 48 Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Typical current consumption in Standby mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 67 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 68 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 70 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 71 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 77 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 79 PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 80 PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 82 PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 83 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 86 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 86 Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 DocID16554 Rev 4 7/136 8 List of figures Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. 8/136 STM32F103xF, STM32F103xG Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 111 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 112 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 119 LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 LFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 123 LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 LFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 126 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 127 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 DocID16554 Rev 4 STM32F103xF, STM32F103xG 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F103xF and STM32F103xG XL-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xF/G family, please refer to Section 2.2: Full compatibility throughout the family. The XL-density STM32F103xF/G datasheet should be read in conjunction with the STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex®-M3 core please refer to the Cortex®-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com. DocID16554 Rev 4 9/136 132 Description 2 STM32F103xF, STM32F103xG Description The STM32F103xF and STM32F103xG performance line family incorporates the highperformance ARM® Cortex®-M3 32-bit RISC core operating at a 72 MHz frequency, highspeed embedded memories (Flash memory up to 1 Mbyte and SRAM up to 96 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer three 12-bit ADCs, ten general-purpose 16-bit timers plus two PWM timers, as well as standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2Ss, one SDIO, five USARTs, an USB and a CAN. The STM32F103xF/G XL-density performance line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. These features make the STM32F103xF/G high-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems and video intercom. 10/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG 2.1 Description Device overview The STM32F103xF/G XL-density performance line family offers devices in four different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. Figure 1 shows the general block diagram of the device family. Table 2. STM32F103xF and STM32F103xG features and peripheral counts Peripherals Flash memory STM32F103Rx 768 KB 1 MB STM32F103Vx 768 KB 1 MB STM32F103Zx 768 KB 1 MB SRAM in Kbytes 96 96 96 FSMC No Yes(1) Yes Timers General-purpose 10 Advanced-control 2 Basic 2 SPI(I2S)(2) 3(2) 2C Comm I 2 USART 5 USB 1 CAN 1 SDIO 1 GPIOs 51 80 112 12-bit ADC Number of channels 3 16 3 16 3 21 12-bit DAC Number of channels 2 2 CPU frequency 72 MHz Operating voltage Operating temperatures Package 2.0 to 3.6 V Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 10) Junction temperature: –40 to + 125 °C (see Table 10) LQFP64 LQFP100 LQFP144, BGA144 1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. DocID16554 Rev 4 11/136 132 Description STM32F103xF, STM32F103xG 1-7567 -7', -7&.6:&/. -7066:'$7 -7'2 DV $) 73,8 (70 6:-7$* 7UDFH7ULJ ,E X V )ODVK.% &RUWH[0&38 )PD[0+] 19,& 'EXV 92/7 5(* 9 72 9  ELW 5& +6 65$0 .E\WH 325 6833/< 5HVHW 683(59,6,21 ,QW 325  3'5 39' #9'' ;7$/ 26&  0+] 5& /6  FKDQQHOV ,:'* *3 '0$ 6WDQGE\ LQWHUIDFH 5HVHW FORFN FRQWUROOHU 1567 9''$ 966$ #9''$ 3//  FKDQQHOV 9''  WR 9 966 #9'' #9''$ %XVPDWUL[ *3 '0$ 3&/. 3&/. 3&/. +&/. )&/. 26&B,1 26&B287 9 %$7 9 WR 9 #96: ;7$/ N+] 57& $:8 )60& %DFNXS UHJ 26&B,1 26&B287 7$03(557& $/$50 287 %DFNXS LQWHUIDFH $+% 6',2 *3,2SRUW$ *3,2SRUW% 3&>@ *3,2SRUW& 3'>@ *3,2SRUW' 3(>@ *3,2SRUW( 3)>@ *3,2SRUW)  FKDQQHOV DV $) $3% (;7,7 :.83 3%>@ 3*>@  FKDQQHOV  FRPSO FKDQQHOV %.,1(75LQSXWDV$)  FKDQQHOV  FRPSO FKDQQHOV %.,1(75LQSXWDV$) $3% *3,2SRUW* $3%  )PD[    0+] 3$>@ $3% $3%  )PD[    0+]  $) 7,0  &K (75 DV $) 7,0  &K (75 DV $) 7,0  &K (75 DV $) 7,0  &K 7,0 FKDQQHOVDV$) 7,0 FKDQQHODV$) 7,0 FKDQQHODV$) 86$57 86$57 8$57 7,0 8$57 7,0 63,,6 7,0 63,,6  FKDQQHO DV $) 7,0  FKDQQHO DV $) 026,0,62 6&.166 DV $) 5;7; &76 576 &. DV $) 7,0 ::'* 63, 5;7; &76 576 &. DV $) 5;7; &76 576 &. DV $) 5;7; DV $) 5;7; DV $) 026,6'0,62 6&.&.166:6 0&/. DV $) 026,6'0,62 6&.&.166:6 0&/. DV $) ,& 6&/6'$60%$ DV $) ,& 6&/6'$60%$ DV $) 86$57 65$0 % 7HPS VHQVRU  $',1V FRPPRQ WR WKH  $'&V E[&$1 GHYLFH 86%)6GHYLFH 86%B'3&$1B7; 86%B'0&$1B5; ELW $'& ,)  $',1V FRPPRQ WR WKH $'&   $',1V RQ $'& 95()± 95() 32:(5 9'' )ODVK.% 6\VWHP 19,& $>@ '>@ &/. 12( 1:( 1(>@ 1%/>@ 1:$,7 1/ DV$) '>@ &0' &. DV $)  ELW 038 )ODVK REO LQWHUIDFH 75$&(&/. 75$&(>@ DV$) )ODVK REO LQWHUIDFH Figure 1. STM32F103xF and STM32F103xG performance line block diagram ELW $'& ,) 7,0 ELW $'& ,) 7,0 #9''$ ,) ELW '$& ,) ELW '$& '$&B287DV$) '$&B287DV$) #9''$ DL9 1. TA = –40 °C to +85 °C (suffix 6, see Table 73) or –40 °C to +105 °C (suffix 7, see Table 73), junction temperature up to 105 °C or 125 °C, respectively. 2. AF = alternate function on I/O port pin.9 12/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Description Figure 2. Clock tree )/,7)&/. WR)ODVKSURJUDPPLQJLQWHUIDFH 86% 3UHVFDOHU  86%&/. WR86%LQWHUIDFH 0+] ,6&/. 3HULSKHUDOFORFN HQDEOH 0+] +6,5& ,6&/.  6: 3//08/ +6, [ [[[ 3// 6@ /6,5& N+] 0+]PD[ 7,0 ,I $3%SUHVFDOHU  [ HOVH[  26&B287 WR&RUWH[6\VWHPWLPHU )&/.&RUWH[ IUHHUXQQLQJFORFN 3HULSKHUDO&ORFN (QDEOH 0+] /6(26& N+] WR)60& (QDEOH 3//;735( 26&B,1 WR6',2 +&/. WR$+%EXVFRUH PHPRU\DQG'0$ 7,0 ,I $3%SUHVFDOHU  [ HOVH[ &66 26&B,1 )60&&/. &ORFN (QDEOH +6( +6(26& 6',2&/. 3HULSKHUDOFORFN HQDEOH 0+]PD[  26&B287 WR,6 3HULSKHUDOFORFN HQDEOH 3HULSKHUDOFORFN HQDEOH +6, 3//65& WR,6 7R 6',2$+%LQWHUIDFH 3HULSKHUDOFORFN HQDEOH ,:'*&/. 0DLQ &ORFN2XWSXW  0&2 3//&/. /HJHQG +6( +LJKVSHHGH[WHUQDOFORFNVLJQDO +6, +6, +6( /6,  /RZVSHHGLQWHUQDOFORFNVLJQDO 6Y&Wϲϰ ϰϬ ϵ ϯϵ ϭϬ ϯϴ ϭϭ ϯϳ ϭϮ ϯϲ ϭϯ ϯϱ ϭϰ ϯϰ ϭϱ ϯϯ ϭϲ ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϱ Ϯϲ Ϯϳ Ϯϴ Ϯϵ ϯϬ ϯϭ ϯϮ sͺϮ s ^^ͺϮ W ϭϯ W ϭϮ W ϭϭ W ϭϬ W ϵ W ϴ Wϵ Wϴ Wϳ Wϲ W ϭϱ W ϭϰ W ϭϯ W ϭϮ W ϯ s ^^ͺϰ sͺϰ W ϰ W ϱ W ϲ W ϳ Wϰ Wϱ W Ϭ W ϭ W Ϯ Wϭ Ϭ Wϭ ϭ s ^^ͺϭ sͺϭ sd WϭϯͲdDWZͲZd W ϭϰͲK ^ ϯϮͺ/E W ϭϱͲK ^ ϯϮͺKh d W  ϬͲK^ ͺ/E W  ϭͲK^ ͺKhd EZ^d WϬ Wϭ WϮ Wϯ s^^ s W ϬͲt< hW W ϭ W Ϯ DL 1. The above figure shows the package top view. 28/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Pinouts and pin descriptions Table 5. STM32F103xF and STM32F103xG pin definitions Alternate functions(4) I / O level(2) LQFP144 Remap LQFP100 Default LQFP64 Main function(3) (after reset) LFBGA144 Type(1) Pins Pin name A3 - 1 1 PE2 I/O FT PE2 TRACECK / FSMC_A23 - A2 - 2 2 PE3 I/O FT PE3 TRACED0 / FSMC_A19 - B2 - 3 3 PE4 I/O FT PE4 TRACED1/ FSMC_A20 - B3 - 4 4 PE5 I/O FT PE5 TRACED2/ FSMC_A21 TIM9_CH1 B4 - 5 5 PE6 I/O FT PE6 TRACED3 / FSMC_A22 TIM9_CH2 C2 1 6 6 VBAT S VBAT - - A1 2 7 7 PC13-TAMPERRTC(5) I/O PC13(6) TAMPER-RTC - B1 3 8 8 PC14-OSC32_IN(5) I/O PC14(6) OSC32_IN - C1 4 9 9 PC15OSC32_OUT(5) PC15(6) OSC32_OUT - C3 - - 10 PF0 I/O FT PF0 FSMC_A0 - C4 - - 11 PF1 I/O FT PF1 FSMC_A1 - D4 - - 12 PF2 I/O FT PF2 FSMC_A2 - E2 - - 13 PF3 I/O FT PF3 FSMC_A3 - E3 - - 14 PF4 I/O FT PF4 FSMC_A4 - E4 - - 15 PF5 I/O FT PF5 FSMC_A5 - D2 - 10 16 VSS_5 S VSS_5 - - D3 - 11 17 VDD_5 S VDD_5 - - F3 - - 18 PF6 I/O PF6 ADC3_IN4 / FSMC_NIORD TIM10_CH1 F2 - - 19 PF7 I/O PF7 ADC3_IN5 / FSMC_NREG TIM11_CH1 G3 - - 20 PF8 I/O PF8 ADC3_IN6 / FSMC_NIOWR TIM13_CH1 G2 - - 21 PF9 I/O PF9 ADC3_IN7 / FSMC_CD TIM14_CH1 G1 - - 22 PF10 I/O PF10 ADC3_IN8 / FSMC_INTR - D1 5 12 23 OSC_IN I OSC_IN - PD0(7) E1 6 13 24 OSC_OUT O OSC_OUT - PD1(7) F1 7 14 25 NRST I/O NRST - - H1 8 15 26 PC0 I/O PC0 ADC123_IN10 - H2 9 16 27 PC1 I/O PC1 ADC123_IN11 - I/O DocID16554 Rev 4 29/136 132 Pinouts and pin descriptions STM32F103xF, STM32F103xG Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Alternate functions(4) I / O level(2) Pin name Type(1) LQFP144 LQFP100 LQFP64 LFBGA144 Pins Main function(3) (after reset) Default Remap H3 10 17 28 PC2 I/O PC2 ADC123_IN12 - H4 11 18 29 PC3 I/O PC3 ADC123_IN13 - J1 VSSA S VSSA - - 12 19 30 K1 - 20 31 VREF- S VREF- - - L1 - 21 32 VREF+ S VREF+ - - M1 13 22 33 VDDA S VDDA - - WKUP/USART2_CTS(8) PA0-WKUP I/O PA0 / ADC123_IN0 / TIM2_CH1_ETR / TIM5_CH1 / TIM8_ETR - K2 15 24 35 PA1 I/O PA1 USART2_RTS(7) / ADC123_IN1 / TIM5_CH2 / TIM2_CH2(7) - L2 16 25 36 PA2 I/O PA2 USART2_TX(7) / TIM5_CH3 / ADC123_IN2 / TIM9_CH1 / TIM2_CH3 (7) - - J2 14 23 34 M2 17 26 37 PA3 I/O PA3 USART2_RX(7) / TIM5_CH4 / ADC123_IN3 / TIM2_CH4(7)/ TIM9_CH2 G4 18 27 38 VSS_4 S VSS_4 - - F4 19 28 39 VDD_4 S VDD_4 - - 20 29 40 PA4 I/O PA4 SPI1_NSS(7) / USART2_CK(7) / DAC_OUT1 / ADC12_IN4 - K3 21 30 41 PA5 I/O PA5 SPI1_SCK(7) / DAC_OUT2 / ADC12_IN5 - L3 22 31 42 PA6 I/O PA6 SPI1_MISO(7) / TIM8_BKIN / ADC12_IN6 / TIM3_CH1(7)/ TIM13_CH1 TIM1_BKIN TIM1_CH1N J3 M3 23 32 43 PA7 I/O PA7 SPI1_MOSI(7)/ TIM8_CH1N / ADC12_IN7 / TIM3_CH2(7) / TIM14_CH1 J4 24 33 44 PC4 I/O PC4 ADC12_IN14 - K4 25 34 45 PC5 I/O PC5 ADC12_IN15 - L4 26 35 46 PB0 I/O PB0 ADC12_IN8 / TIM3_CH3 / TIM8_CH2N TIM1_CH2N 30/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Pinouts and pin descriptions Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Alternate functions(4) I / O level(2) Pin name Type(1) LQFP144 LQFP100 LQFP64 LFBGA144 Pins Main function(3) (after reset) M4 27 36 47 PB1 I/O J5 PB2 I/O FT PB2/BOOT1 28 37 48 PB1 Default Remap ADC12_IN9 / TIM3_CH4(7) / TIM8_CH3N TIM1_CH3N - - M5 - - 49 PF11 I/O FT PF11 FSMC_NIOS16 - L5 - - 50 PF12 I/O FT PF12 FSMC_A6 - H5 - - 51 VSS_6 S VSS_6 - - G5 - - 52 VDD_6 S VDD_6 - - K5 - - 53 PF13 I/O FT PF13 FSMC_A7 - M6 - - 54 PF14 I/O FT PF14 FSMC_A8 - L6 - - 55 PF15 I/O FT PF15 FSMC_A9 - K6 - - 56 PG0 I/O FT PG0 FSMC_A10 - J6 - - 57 PG1 I/O FT PG1 FSMC_A11 - M7 - 38 58 PE7 I/O FT PE7 FSMC_D4 TIM1_ETR L7 - 39 59 PE8 I/O FT PE8 FSMC_D5 TIM1_CH1N K7 - 40 60 PE9 I/O FT PE9 FSMC_D6 TIM1_CH1 H6 - - 61 VSS_7 S VSS_7 - - G6 - - 62 VDD_7 S VDD_7 - - J7 - 41 63 PE10 I/O FT PE10 FSMC_D7 TIM1_CH2N H8 - 42 64 PE11 I/O FT PE11 FSMC_D8 TIM1_CH2 J8 - 43 65 PE12 I/O FT PE12 FSMC_D9 TIM1_CH3N K8 - 44 66 PE13 I/O FT PE13 FSMC_D10 TIM1_CH3 L8 - 45 67 PE14 I/O FT PE14 FSMC_D11 TIM1_CH4 M8 - 46 68 PE15 I/O FT PE15 FSMC_D12 TIM1_BKIN USART3_TX(7) TIM2_CH3 M9 29 47 69 PB10 I/O FT PB10 I2C2_SCL / M10 30 48 70 PB11 I/O FT PB11 I2C2_SDA / USART3_RX(7) TIM2_CH4 H7 31 49 71 VSS_1 S VSS_1 - - G7 32 50 72 VDD_1 S VDD_1 - - M11 33 51 73 PB12 PB12 SPI2_NSS / I2S2_WS / I2C2_SMBA / USART3_CK(7) / TIM1_BKIN(7) - I/O FT DocID16554 Rev 4 31/136 132 Pinouts and pin descriptions STM32F103xF, STM32F103xG Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Alternate functions(4) I / O level(2) Pin name Type(1) LQFP144 LQFP100 LQFP64 LFBGA144 Pins Main function(3) (after reset) Default Remap M12 34 52 74 PB13 I/O FT PB13 SPI2_SCK / I2S2_CK / USART3_CTS(7) / TIM1_CH1N - L11 35 53 75 PB14 I/O FT PB14 SPI2_MISO / TIM1_CH2N / USART3_RTS(7)/ TIM12_CH1 - L12 36 54 76 PB15 I/O FT PB15 SPI2_MOSI / I2S2_SD / TIM1_CH3N(7) / TIM12_CH2 - L9 - 55 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX K9 - 56 78 PD9 I/O FT PD9 FSMC_D14 USART3_RX J9 - 57 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK H9 - 58 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS L10 - 59 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1 / USART3_RTS K10 - 60 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 G8 - - 83 VSS_8 S VSS_8 - - F8 - - 84 VDD_8 S VDD_8 - - K11 - 61 85 PD14 I/O FT PD14 FSMC_D0 TIM4_CH3 K12 - 62 86 PD15 I/O FT PD15 FSMC_D1 TIM4_CH4 J12 - - 87 PG2 I/O FT PG2 FSMC_A12 - J11 - - 88 PG3 I/O FT PG3 FSMC_A13 - J10 - - 89 PG4 I/O FT PG4 FSMC_A14 - H12 - - 90 PG5 I/O FT PG5 FSMC_A15 - H11 - - 91 PG6 I/O FT PG6 FSMC_INT2 - H10 - - 92 PG7 I/O FT PG7 FSMC_INT3 - G11 - - 93 PG8 I/O FT PG8 - - G10 - - 94 VSS_9 S VSS_9 - - F10 - - 95 VDD_9 S VDD_9 - - G12 37 63 96 PC6 I/O FT PC6 I2S2_MCK / TIM8_CH1 / SDIO_D6 TIM3_CH1 F12 38 64 97 PC7 I/O FT PC7 I2S3_MCK / TIM8_CH2 / SDIO_D7 TIM3_CH2 F11 39 65 98 PC8 I/O FT PC8 TIM8_CH3 / SDIO_D0 TIM3_CH3 32/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Pinouts and pin descriptions Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Alternate functions(4) E11 40 66 99 PC9 I / O level(2) Pin name Type(1) LQFP144 LQFP100 LQFP64 LFBGA144 Pins I/O FT Main function(3) (after reset) Default Remap PC9 TIM8_CH4 / SDIO_D1 TIM3_CH4 TIM1_CH1(7) E12 41 67 100 PA8 I/O FT PA8 USART1_CK / MCO D12 42 68 101 PA9 I/O FT PA9 USART1_TX(7) / TIM1_CH2(7) - USART1_RX(7) - / TIM1_CH3(7) - D11 43 69 102 PA10 I/O FT PA10 C12 44 70 103 PA11 I/O FT PA11 USART1_CTS / USB_DM / CAN_RX(7) / TIM1_CH4(7) - B12 45 71 104 PA12 I/O FT PA12 USART1_RTS / USB_DP / CAN_TX(7) / TIM1_ETR(7) - A12 46 72 105 PA13 I/O FT JTMSSWDIO - PA13 C11 - 73 106 / Not connected G9 47 74 107 VSS_2 S VSS_2 - - F9 48 75 108 VDD_2 S VDD_2 - - A11 49 76 109 PA14 I/O FT JTCKSWCLK - PA14 A10 50 77 110 PA15 I/O FT JTDI SPI3_NSS / I2S3_WS TIM2_CH1_ETR PA15/ SPI1_NSS B11 51 78 111 PC10 I/O FT PC10 UART4_TX / SDIO_D2 USART3_TX B10 52 79 112 PC11 I/O FT PC11 UART4_RX / SDIO_D3 USART3_RX C10 53 80 113 PC12 I/O FT PC12 UART5_TX / SDIO_CK USART3_CK E10 - 81 114 PD0 I/O FT PD0 FSMC_D2(9) CAN_RX D10 - 82 115 PD1 I/O FT PD1 FSMC_D3(9) CAN_TX E9 54 83 116 PD2 I/O FT PD2 TIM3_ETR / UART5_RX / SDIO_CMD - D9 - 84 117 PD3 I/O FT PD3 FSMC_CLK USART2_CTS C9 - 85 118 PD4 I/O FT PD4 FSMC_NOE USART2_RTS B9 - 86 119 PD5 I/O FT PD5 FSMC_NWE USART2_TX E7 - - 120 VSS_10 S VSS_10 - - F7 - - 121 VDD_10 S VDD_10 - - A8 - 87 122 PD6 PD6 FSMC_NWAIT USART2_RX I/O FT DocID16554 Rev 4 33/136 132 Pinouts and pin descriptions STM32F103xF, STM32F103xG Table 5. STM32F103xF and STM32F103xG pin definitions (continued) Alternate functions(4) I / O level(2) Default Remap - 88 123 PD7 I/O FT PD7 FSMC_NE1 / FSMC_NCE2 USART2_CK E8 - - 124 PG9 I/O FT PG9 FSMC_NE2 / FSMC_NCE3 - D8 - - 125 PG10 I/O FT PG10 FSMC_NCE4_1 / FSMC_NE3 - C8 - - 126 PG11 I/O FT PG11 FSMC_NCE4_2 - B8 - - 127 PG12 I/O FT PG12 FSMC_NE4 - D7 - - 128 PG13 I/O FT PG13 FSMC_A24 - C7 - - 129 PG14 I/O FT PG14 FSMC_A25 - E6 - - 130 VSS_11 S VSS_11 - - F6 - - 131 VDD_11 S VDD_11 - - B7 - - 132 PG15 I/O FT PG15 - - A7 55 89 133 PB3 I/O FT JTDO SPI3_SCK / I2S3_CK/ PB3/TRACESWO TIM2_CH2 / SPI1_SCK A6 56 90 134 PB4 I/O FT NJTRST SPI3_MISO PB4/ TIM3_CH1 SPI1_MISO B6 57 91 135 PB5 I/O PB5 I2C1_SMBA / SPI3_MOSI / I2S3_SD TIM3_CH2 / SPI1_MOSI C6 58 92 136 PB6 I/O FT PB6 I2C1_SCL(8)/ TIM4_CH1(8) USART1_TX D6 59 93 137 PB7 I/O FT PB7 I2C1_SDA(8) / FSMC_NADV / TIM4_CH2(8) USART1_RX D5 60 94 138 BOOT0 - - LQFP144 A9 LQFP100 LQFP64 Main function(3) (after reset) LFBGA144 Type(1) Pins Pin name I BOOT0 (8) C5 61 95 139 PB8 I/O FT PB8 TIM4_CH3 / SDIO_D4 / TIM10_CH1 I2C1_SCL/ CAN_RX B5 62 96 140 PB9 I/O FT PB9 TIM4_CH4(8) / SDIO_D5 / TIM11_CH1 I2C1_SDA / CAN_TX A5 - 97 141 PE0 I/O FT PE0 TIM4_ETR / FSMC_NBL0 - A4 - 98 142 PE1 I/O FT PE1 FSMC_NBL1 - E5 63 99 143 VSS_3 S VSS_3 - - F5 64 100 144 VDD_3 S VDD_3 - - 1. I = input, O = output, S = supply. 2. FT = 5 V tolerant. 3. Function availability depends on the chosen device. 34/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Pinouts and pin descriptions 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). 5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 9. For devices delivered in LQFP64 packages, the FSMC function is not available. DocID16554 Rev 4 35/136 132 Pinouts and pin descriptions STM32F103xF, STM32F103xG Table 6. FSMC pin definition FSMC Pins 36/136 NOR/PSRAM/ NOR/PSRAM Mux NAND 16 bit SRAM LQFP100(1) CF CF/IDE PE2 - - A23 A23 - Yes PE3 - - A19 A19 - Yes PE4 - - A20 A20 - Yes PE5 - - A21 A21 - Yes PE6 - - A22 A22 - Yes PF0 A0 A0 A0 - - - PF1 A1 A1 A1 - - - PF2 A2 A2 A2 - - - PF3 A3 - A3 - - - PF4 A4 - A4 - - - PF5 A5 - A5 - - - PF6 NIORD NIORD - - - PF7 NREG NREG - - - PF8 NIOWR NIOWR - - - PF9 CD CD - - - PF10 INTR INTR - - - PF11 NIOS16 NIOS16 - - - PF12 A6 - A6 - - - PF13 A7 - A7 - - - PF14 A8 - A8 - - - PF15 A9 - A9 - - - PG0 A10 - A10 - - - PG1 - - A11 - - - PE7 D4 D4 D4 DA4 D4 Yes PE8 D5 D5 D5 DA5 D5 Yes PE9 D6 D6 D6 DA6 D6 Yes PE10 D7 D7 D7 DA7 D7 Yes PE11 D8 D8 D8 DA8 D8 Yes PE12 D9 D9 D9 DA9 D9 Yes PE13 D10 D10 D10 DA10 D10 Yes PE14 D11 D11 D11 DA11 D11 Yes PE15 D12 D12 D12 DA12 D12 Yes PD8 D13 D13 D13 DA13 D13 Yes DocID16554 Rev 4 STM32F103xF, STM32F103xG Pinouts and pin descriptions Table 6. FSMC pin definition (continued) FSMC Pins NOR/PSRAM/ NOR/PSRAM Mux NAND 16 bit SRAM LQFP100(1) CF CF/IDE PD9 D14 D14 D14 DA14 D14 Yes PD10 D15 D15 D15 DA15 D15 Yes PD11 - - A16 A16 CLE Yes PD12 - - A17 A17 ALE Yes PD13 - - A18 A18 PD14 D0 D0 D0 DA0 D0 Yes PD15 D1 D1 D1 DA1 D1 Yes PG2 - - A12 - - - PG3 - - A13 - - - PG4 - - A14 - - - PG5 - - A15 - - - PG6 - - - - INT2 - PG7 - - - - INT3 - PD0 D2 D2 D2 DA2 D2 Yes PD1 D3 D3 D3 DA3 D3 Yes PD3 - - CLK CLK - Yes PD4 NOE NOE NOE NOE NOE Yes PD5 NWE NWE NWE NWE NWE Yes PD6 NWAIT NWAIT NWAIT NWAIT NWAIT Yes PD7 - - NE1 NE1 NCE2 Yes PG9 - - NE2 NE2 NCE3 - PG10 NCE4_1 NCE4_1 NE3 NE3 - - PG11 NCE4_2 NCE4_2 - - - - PG12 - - NE4 NE4 - - PG13 - - A24 A24 - - PG14 - - A25 A25 - - PB7 - - NADV NADV - Yes PE0 - - NBL0 NBL0 - Yes PE1 - - NBL1 NBL1 - Yes Yes 1. Ports F and G are not available in devices delivered in 100-pin packages. DocID16554 Rev 4 37/136 132 Memory mapping 4 STM32F103xF, STM32F103xG Memory mapping The memory map is shown in Figure 7. 38/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Memory mapping Figure 7. Memory map 2ESERVED X! X"&&&&&&& X! X!&&& &3-#REGISTER &3-#BANK0##!2$ X X&&&&&&& &3-#BANK.!.$.!.$ X X&&&&&&& &3-#BANK.!.$.!.$ X X&&&&&&& &3-#BANK./2032!-X# X&&&&&&& &3-#BANK./2032!-X X"&&&&&& &3-#BANK./2032!-X X&&&&&& &3-#BANK./2032!-X X&&&&&& 2ESERVED X X&&&&&&& #2# X X&& 2ESERVED X X&&& X X&& &LASHINTERFACES 2ESERVED X X&&& 2## X X&& X X&&& 2ESERVED X X&& $-! X X&& $-! X X&&&& 2ESERVED X X&& 3$)/ X X&&& 2ESERVED X X&& 4)- 4)- X X&& X# X&&& 4)- X&&&&&&&& X% X$&&&&&&&  -BYTE BLOCK #ORTEX -gS INTERNAL PERIPHERALS  -BYTE BLOCK .OTUSED X# X"&&&&&&&  -BYTE BLOCK &3-#REGISTER X! X&&&&&&&  -BYTE BLOCK &3-#BANK BANK X X&&&&&&&  -BYTE BLOCK &3-#BANK BANK X X&&&&&&&  -BYTE BLOCK 0ERIPHERALS X X&&&&&&&  -BYTE BLOCK 32!X X&&&&&&&  -BYTE BLOCK #ODE 2ESERVED X 32!-+"ALIASED BYBIT BANDING /PTIONBYTES 3YSTEMMEMORY 2ESERVED &LASHMEMORYBANK +"OR+" &LASHMEMORYBANK +" 2ESERVED !LIASEDTO&LASHORSYSTEM MEMORYDEPENDINGON "//4PINS X&&&&&&& X X&&& X X X"&& 2ESERVED X# X&&& !$# X X"&& 53!24 X X&& 4)- X X&& 30) X# X&&& 4)- X X"&& !$# X X&& !$# X X&& 0ORT' X# X&&& 0ORT& X X"&& 0ORT% X X&& 0ORT$ X X&& 0ORT# 0ORT" X# X&&& X X"&& 0ORT! X X&& %84) X X&& !&)/ X X&&&& 2ESERVED $!# X X&& 072 X X&& X# X&&& "+0 X X"&& 2ESERVED X X&& "X#!. 3HARED53"#!.32!-X X&& BYTES X# X&&& 53"REGISTERS X X"&& )# X X&& )# X X&& 5!24 X# X&&& 5!24 X X"&& 53!24 X X&& 53!24 X X&& 2ESERVED X# X&&& 30))3 X X"&& 30))3 X X&& 2ESERVED X X&& )7$' X# X&&& 77$' X X"&& 24# X X&& 2ESERVED X X&& 4)- X# X&&& 4)- X X"&& 4)- X X&& 4)- X X&& 4)- X# X&&& 4)- X X"&& 4)- X X&& 4)- X X&& 4)- X&&&& X&&&&& X&&&% X&&&&&& X X&&&$&&& X&&&&& X X&&&& X X X&&&&&& X&&&&& X DocID16554 Rev 4 AI 39/136 132 Electrical characteristics STM32F103xF, STM32F103xG 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2 V £ VDD £ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage -#5PIN -#5PIN #P& 6). -36 40/136 DocID16554 Rev 4 -36 STM32F103xF, STM32F103xG 5.1.6 Electrical characteristics Power supply scheme Figure 10. Power supply scheme 9%$7  9 %DFNXSFLUFXLWU\ 26&.57& :DNHXSORJLF %DFNXSUHJLVWHUV 287 *3,2V ,1 /HYHOVKLIWHU 3R ZHUVZL WFK ,2 /RJLF .HUQHOORJLF &38 'LJLWDO 0HPRULHV  9'' 9'' 5HJXODWRU îQ) î—) 966 9'' 9''$ 95() Q) —) Q) —) 95() 95() $'& '$& $QDORJ 5&V3//  966$ DL Caution: In Figure 10, the 4.7 µF capacitor must be connected to VDD3. DocID16554 Rev 4 41/136 132 Electrical characteristics 5.1.7 STM32F103xF, STM32F103xG Current consumption measurement Figure 11. Current consumption measurement scheme )$$?6"!4 6"!4 )$$ 6$$ 6$$! AI 42/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG 5.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics, Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Voltage characteristics Symbol VDD–VSS VIN(2) |ΔVDDx| |VSSX − VSS| VESD(HBM) Ratings Min Max –0.3 4.0 Input voltage on five volt tolerant pin VSS − 0.3 VDD + 4.0 Input voltage on any other pin VSS − 0.3 4.0 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 External main supply voltage (including VDDA and VDD)(1) Electrostatic discharge voltage (human body model) Unit V mV see Section 5.3.12: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 8: Current characteristics for the maximum allowed injected current values. Table 8. Current characteristics Symbol IVDD IVSS IIO IINJ(PIN)(2) ΣIINJ(PIN) Ratings Max. Total current into VDD/VDDA power lines (source)(1) Total current out of VSS ground lines 150 (sink)(1) 150 Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin − 25 Injected current on five volt tolerant pins(3) -5/+0 Injected current on any other pin(4) Total injected current (sum of all I/O and control pins) Unit mA ±5 (5) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. Negative injection disturbs the analog performance of the device. See note 3 below Table 65 on page 110. 3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 8 MHz. CIAO Table 15. Maximum current consumption in Run mode, code with data processing running from RAM Max(1) Symbol Parameter Conditions External clock(2), all peripherals enabled IDD Supply current in Run mode fHCLK Unit TA = 85 °C TA = 105 °C 72 MHz 65 65.5 48 MHz 46.5 47 36 MHz 37 37 24 MHz 26.5 27 16 MHz 19 20 8 MHz 11.5 13 72 MHz 34.5 36 48 MHz 25 26 20.5 21 15 16 16 MHz 11 13 8 MHz 7.5 9 External clock(2), all 36 MHz peripherals disabled 24 MHz mA 1. Guaranteed by characterization results, not tested in production at VDD max, fHCLK max. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. DocID16554 Rev 4 47/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled   #ONSUMPTIONM!  -(Z  -(Z -(Z  -(Z -(Z -(Z         4EMPERATURE # AI Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V)code with data processing running from RAM, peripherals disabled    #ONSUMPTIONM! -(Z -(Z  -(Z -(Z  -(Z  -(Z         4EMPERATURE # AI 48/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM Max(1) Symbol Parameter Conditions External clock(2), all peripherals enabled IDD Supply current in Sleep mode External clock(2), all peripherals disabled fHCLK Unit TA = 85 °C TA = 105 °C 72 MHz 47.5 48.5 48 MHz 34 35 36 MHz 27.5 27.5 24 MHz 20 20.5 16 MHz 15 16 8 MHz 9 11 72 MHz 9.5 11.2 48 MHz 7.7 9.5 36 MHz 6.9 8.5 24 MHz 5.9 7.8 16 MHz 5.4 7.2 8 MHz 4.7 6.4 mA 1. Guaranteed by characterization results, not tested in production at VDD max, fHCLK max with peripherals enabled. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. DocID16554 Rev 4 49/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 17. Typical and maximum current consumptions in Stop and Standby modes Typ(1) Symbol Parameter Conditions Max VDD/VBA VDD/VBA VDD/VBA TA = TA = T = 2.0 V T = 2.4 V T = 3.3 V 85 °C 105 °C Regulator in run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog), Supply current in f =8 MHz CK Stop mode Regulator in low-power mode, lowspeed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 44.8 45.3 46.4 810 1680 37.4 37.8 38.7 790 1660 Low-speed internal RC oscillator Supply current in and independent watchdog OFF, Standby mode low-speed oscillator and RTC OFF 1.8 2.0 2.5 5(2) 8(2) IDD_VBA Backup domain Low-speed oscillator and RTC ON supply current T 1.05 1.1 1.4 2(2) 2.3(2) IDD Unit µA 1. Typical values are measured at TA = 25 °C. 2. Guaranteed by characterization results, not tested in production.. Figure 14. Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values  &RQVXPSWLRQ —$  9  9 9 9  9   ±   7HPSHUDWXUH ƒ& 50/136 DocID16554 Rev 4  DL STM32F103xF, STM32F103xG Electrical characteristics Figure 15. Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values  #ONSUMPTIONȝ!   6 6  6 6  6   # # # # 4EMPERATURE # AI DocID16554 Rev 4 51/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 16. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values   #ONSUMPTION ȝ!  6  6 6 6  6   # # # # 4EMPERATURE # AI Figure 17. Typical current consumption in Standby mode versus temperature at different VDD values   #ONSUMPTIONȝ!   6  6  6  6 6    # # # 4EMPERATURE # 52/136 DocID16554 Rev 4 # AI STM32F103xF, STM32F103xG Electrical characteristics Typical current consumption The MCU is placed under the following conditions: • All I/O pins are in input mode with a static value at VDD or VSS (no load). • All peripherals are disabled except if it is explicitly mentioned. • The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHZ and 2 wait states above). • Ambient temperature and VDD supply voltage conditions summarized in Table 10. • Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling) When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 Table 18. Typical current consumption in Run mode, code with data processing running from Flash Typ(1) Symbol Parameter Conditions (3) External clock IDD Supply current in Run mode Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency fHCLK All peripherals All peripherals disabled enabled(2) 72 MHz 52.5 33.5 48 MHz 36.6 23.8 36 MHz 28.5 18.7 24 MHz 24.1 12.8 16 MHz 14 9.2 8 MHz 7.7 5.4 4 MHz 4.6 3.4 2 MHz 3 2.3 1 MHz 2.2 1.8 500 kHz 1.7 1.5 125 kHz 1.4 1.3 64 MHz 45.5 28.6 48 MHz 35.1 22.4 36 MHz 27.5 17.5 24 MHz 18.9 11.6 16 MHz 12.2 8.2 8 MHz 7.2 4.8 4 MHz 4 2.7 2 MHz 2.3 1.7 1 MHz 1.5 1.2 500 kHz 1.1 0.9 125 kHz 0.75 0.7 Unit mA mA 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. DocID16554 Rev 4 53/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM Typ(1) Symbol Parameter Conditions (3) External clock IDD Supply current in Sleep mode fHCLK All peripherals All peripherals enabled(2) disabled 72 MHz 32.5 7 48 MHz 23 5 36 MHz 17.7 4 24 MHz 12.2 3.1 16 MHz 8.4 2.3 8 MHz 4.6 1.5 4 MHz 3 1.3 2 MHz 2.15 1.25 1 MHz 1.7 1.2 500 kHz 1.5 1.15 125 kHz 1.35 1.15 64 MHz 28.7 5.7 48 MHz 22 4.4 36 MHz 17 3.35 11.6 2.3 7.7 1.6 3.9 0.8 2.3 0.7 1.5 0.6 1 MHz 1.1 0.5 500 kHz 0.9 0.5 125 kHz 0.7 0.5 24 MHz Running on high 16 MHz speed internal RC (HSI), AHB prescaler 8 MHz used to reduce the 4 MHz frequency 2 MHz 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 54/136 DocID16554 Rev 4 Unit mA STM32F103xF, STM32F103xG Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 20. The MCU is placed under the following conditions: • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption • – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature and VDD supply voltage conditions summarized in Table 7 Table 20. Peripheral current consumption(1) Peripheral Current consumption DMA1 23,06 DMA2 18,47 FSMC 55,14 CRC 2,08 SDIO 32,22 BusMatrix(2) 11,67 AHB (up to 72 MHz) DocID16554 Rev 4 55/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 20. Peripheral current consumption(1) (continued) Peripheral Current consumption APB1-Bridge 8,61 TIM2 37,22 TIM3 36,39 TIM4 35,56 TIM5 33,61 TIM6 7,78 TIM7 7,78 TIM12 19,17 TIM13 12,22 TIM14 13,33 (3) 8,33 (3) SPI3/I2S3 8,33 USART2 12,22 USART3 12,22 UART4 12,22 UART5 12,22 I2C1 10,28 I2C2 10,28 USB 18,89 CAN1 18,89 SPI2/I2S2 APB1 (up to 36 MHz) 56/136 DocID16554 Rev 4 (4) DAC 9,17 WWDG 3,06 PWR 2,50 BKP 2,78 IWDG 4,44 STM32F103xF, STM32F103xG Electrical characteristics Table 20. Peripheral current consumption(1) (continued) Peripheral APB2 (up to 72 MHz) Current consumption APB2-Bridge 2,78 GPIOA 7,64 GPIOB 7,64 GPIOC 7,64 GPIOD 8,47 GPIOE 8,47 GPIOF 8,19 GPIOG 8,19 SPI1 5,14 USART1 16,67 TIM1 28,47 TIM8 24,31 TIM9 11,81 TIM10 8,47 TIM11 8,47 (5)(6) 17,68 (5)(6) ADC2 15,54 ADC3(5)(6) 16,43 ADC1 1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. 2. The BusMatrix is automatically active when at least one master peripheral is ON. 3. When the I2S is enabled, a current consumption equal to 0.02 mA must be added. 4. When DAC_OU1 or DAC_OUT2 is enabled, a current consumption equal to 0.36 mA must be added. 5. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4/ When ADON bit in the ADC_CR2 register is set to 1, a current consumption equal to 0.59 mA must be added. 6. When the ADC is enabled, a current consumption equal to 0.1 mA must be added. 5.3.6 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 21 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. DocID16554 Rev 4 57/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 21. High-speed external user clock characteristics Symbol Parameter Conditions fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage tw(HSE) tw(HSE) OSC_IN high or low time(1) tr(HSE) tf(HSE) Cin(HSE) Typ Max Unit 1 8 25 MHz 0.7VDD - VDD VSS - 0.3VDD 5 - - - V ns OSC_IN rise or fall time (1) - - 20 - - 5 - pF - 45 - 55 % VSS ≤ VIN ≤ VDD - - ±1 µA OSC_IN input capacitance(1) DuCy(HSE) Duty cycle IL Min OSC_IN Input leakage current 1. Guaranteed by design, not tested in production. Low-speed external user clock generated from an external source The characteristics given in Table 22 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Table 22. Low-speed external user clock characteristics Symbol Parameter Conditions Typ Max Unit - 32.768 1000 kHz 0.7VDD - VDD VSS - 0.3VDD fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 - - tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 - - 5 - pF - 30 - 70 % VSS ≤ VIN ≤ VD - - ±1 µA Cin(LSE) V - ns OSC32_IN input capacitance(1) DuCy(LSE) Duty cycle IL OSC32_IN Input leakage current 1. Guaranteed by design, not tested in production. 58/136 Min DocID16554 Rev 4 D STM32F103xF, STM32F103xG Electrical characteristics Figure 18. High-speed external clock source AC timing diagram 6(3%(     6(3%, TR(3% TF(3% T7(3% T T7(3% 4(3% %XTERNAL CLOCKSOURCE F(3%?EXT /3#?). ), 34-& AI Figure 19. Low-speed external clock source AC timing diagram 9/6(+ 9/6(/   WU /6( WI /6( W: /6( 26&B,1 ,/ W: /6( W 7/6( ([WHUQDO FORFNVRXUFH I/6(BH[W 670) DL DocID16554 Rev 4 59/136 132 Electrical characteristics STM32F103xF, STM32F103xG High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 23. HSE 4-16 MHz oscillator characteristics(1)(2) Symbol Conditions Min Typ Max Unit Oscillator frequency - 4 8 16 MHz RF Feedback resistor - - 200 - kΩ C Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 Ω - 30 - pF i2 HSE driving current VDD= 3.3 V, VIN = VSS with 30 pF load - - 1 mA gm Oscillator transconductance Startup 25 - - mA/V VDD is stabilized - 2 - ms fOSC_IN tSU(HSE)(4) Parameter Startup time 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by characterization results, not tested in production. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. 60/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 20. Typical application with an 8 MHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ 0+] UHVRQDWRU &/ I+6( 26&B,1 5(;7   5) 26&B28 7 %LDV FRQWUROOHG JDLQ 670) DL 1. REXT value depends on the crystal characteristics. DocID16554 Rev 4 61/136 132 Electrical characteristics STM32F103xF, STM32F103xG Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 24. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 24. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)(2) Symbol Parameter RF Feedback resistor C(2) Recommended load capacitance versus equivalent serial resistance of the crystal (RS) I2 LSE driving current gm Oscillator transconductance tSU(LSE)(3) Startup time Conditions Min Typ Max Unit - - 5 - MΩ RS = 30 kΩ - - 15 pF VDD = 3.3 V, VIN = VSS - - 1.4 µA - 5 - - µA/V TA = 50 °C - 1.5 - TA = 25 °C - 2.5 - TA = 10 °C - 4 - TA = 0 °C - 6 - TA = -10 °C - 10 - TA = -20 °C - 17 - TA = -30 °C - 32 - TA = -40 °C - 60 - VDD is stabilized s 1. Guaranteed by characterization results, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer, PCB layout and humidity. Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 21). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. 62/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 21. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ I/6( 26&B,1 %LDV 5) FRQWUROOHG JDLQ N+ ] UHVRQDWRU 26&B28 7 &/ 670) DL 5.3.7 Internal clock source characteristics The parameters given in Table 25 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. High-speed internal (HSI) RC oscillator Table 25. HSI oscillator characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - - 8 DuCy(HSI) Duty cycle - 45 - 55 % - - 1(3) % TA = –40 to 105 °C –2 - 2.5 % TA = –10 to 85 °C –1.5 - 2.2 % TA = 0 to 70 °C –1.3 - 2 % TA = 25 °C –1.1 - 1.8 % User-trimmed with the RCC_CR register(2) ACCHSI Accuracy of the HSI oscillator Factorycalibrated(4) MHz tsu(HSI)(4) HSI oscillator startup time - 1 - 2 µs IDD(HSI)(4) HSI oscillator power consumption - 80 100 µA 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com. 3. Guaranteed by design, not tested in production. 4. Guaranteed by characterization results, not tested in production. DocID16554 Rev 4 63/136 132 Electrical characteristics STM32F103xF, STM32F103xG Low-speed internal (LSI) RC oscillator Table 26. LSI oscillator characteristics (1) Symbol fLSI(2) tsu(LSI) (3) IDD(LSI)(3) Parameter Min Typ Max Unit 30 40 60 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.65 1.2 µA Frequency 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by characterization results, not tested in production. 3. Guaranteed by design, not tested in production. Wakeup time from low-power mode The wakeup times given in Table 27 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: • Stop or Standby mode: the clock source is the RC oscillator • Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 27. Low-power mode wakeup timings Symbol tWUSLEEP(1) tWUSTOP(1) tWUSTDBY(1) Parameter Typ Unit Wakeup from Sleep mode 1.8 µs Wakeup from Stop mode (regulator in run mode) 3.6 Wakeup from Stop mode (regulator in low-power mode) 5.4 Wakeup from Standby mode 50 1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction. 64/136 DocID16554 Rev 4 µs µs STM32F103xF, STM32F103xG 5.3.8 Electrical characteristics PLL characteristics The parameters given in Table 28 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 28. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 1 8.0 25 MHz PLL input clock duty cycle 40 - 60 % fPLL_OUT PLL multiplier output clock 16 - 72 MHz tLOCK PLL lock time - - 200 µs Jitter Cycle-to-cycle jitter - - 300 ps fPLL_IN 1. Guaranteed by characterization results, not tested in production. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 5.3.9 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 29. Flash memory characteristics Symbol tprog tERASE tME IDD Vprog Min Typ Max(1) Unit 16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms Mass erase time TA = –40 to +105 °C 20 - 40 ms Read mode fHCLK = 72 MHz with 2 wait states, VDD = 3.3 V - - 28 mA Write mode fHCLK = 72 MHz, VDD = 3.3 V - - 7 mA Erase mode fHCLK = 72 MHz, VDD = 3.3 V - - 5 mA Power-down mode / Halt, VDD = 3.0 to 3.6 V - - 50 µA - 2 - 3.6 V Parameter Supply current Programming voltage Conditions 1. Guaranteed by design, not tested in production. DocID16554 Rev 4 65/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 30. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle (2) 10 kcycles at TA = 105 °C 10 (2) 20 at TA = 55 °C 1. Guaranteed by characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 66/136 Min(1) DocID16554 Rev 4 Unit kcycles Years STM32F103xF, STM32F103xG 5.3.10 Electrical characteristics FSMC characteristics Asynchronous waveforms and timings Figure 22 through Figure 25 represent asynchronous waveforms and Table 31 through Table 35 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: Note: • AddressSetupTime = 0 • AddressHoldTime = 1 • DataSetupTime = 1 On all tables, the tHCLK is the HCLK clock period. Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms WZ 1( )60&B1( W Y 12(B1( W Z 12( W K 1(B12( )60&B12( )60&B1:( WY $B1( )60&B$>@ W K $B12( $GGUHVV WY %/B1( W K %/B12( )60&B1%/>@ W K 'DWDB1( W VX 'DWDB12( WK 'DWDB12( W VX 'DWDB1( 'DWD )60&B'>@ W Y 1$'9B1( WZ 1$'9 )60&B1$'9  069 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Note: FSMC_BusTurnAroundDuration = 0. DocID16554 Rev 4 67/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) Symbol Parameter Min Max Unit 5tHCLK + 0.5 5tHCLK + 2 ns 0.5 1.5 ns 5tHCLK – 1 5tHCLK + 1 ns tw(NE) FSMC_NE low time tv(NOE_NE) FSMC_NEx low to FSMC_NOE low tw(NOE) FSMC_NOE low time th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns th(A_NOE) Address hold time after FSMC_NOE high 0 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0.5 - ns tsu(Data_NE) Data to FSMC_NEx high setup time 2tHCLK - 1 - ns 2tHCLK - 1 - ns tsu(Data_NOE) Data to FSMC_NOEx high setup time th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns th(Data_NE) Data hold time after FSMC_NEx high 0 - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 ns tw(NADV) FSMC_NADV low time - tHCLK + 2 ns 1. CL = 15 pF. Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms WZ 1( )60&B1([ )60&B12( WY 1:(B1( WZ 1:( W K 1(B1:( )60&B1:( WK $B1:( WY $B1( )60&B$>@ $GGUHVV WY %/B1( )60&B1%/>@ WK %/B1:( 1%/ WY 'DWDB1( WK 'DWDB1:( 'DWD )60&B'>@ W Y 1$'9B1( )60&B1$'9  WZ 1$'9 DL 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. 68/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3tHCLK + 0.5 3tHCLK + 1.5 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low tHCLK + 0.5 tHCLK + 1.5 ns tw(NWE) FSMC_NWE low time tHCLK – 0.5 tHCLK + 1 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time tHCLK – 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns th(A_NWE) Address hold time after FSMC_NWE high tHCLK - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tHCLK – 1.5 - ns tv(Data_NE) FSMC_NEx low to Data valid - tHCLK ns th(Data_NWE) Data hold time after FSMC_NWE high tHCLK - ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 ns tw(NADV) FSMC_NADV low time - tHCLK + 1.5 ns 1. CL = 15 pF. Table 33. Asynchronous multiplexed read timings Symbol Parameter tw(NE) FSMC_NE low time tv(NOE_NE) FSMC_NEx low to FSMC_NOE low tw(NOE) FSMC_NOE low time th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time tv(A_NE) Min 7tHCLK + 0.5 3tHCLK + 0.5 4tHCLK – 1 Max 7tHCLK + 2 3tHCLK + 1.5 4tHCLK + 1 0.5 - FSMC_NEx low to FSMC_A valid - 0 tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 2 th(AD_NADV) FSMC_AD (address) valid hold time after FSMC NADV high tHCLK - th(A_NOE) Address hold time after FSMC_NOE high tHCLK – 2 - th(BL_NOE) FSMC_BL time after FSMC_NOE high 0.5 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 tsu(Data_NE) Data to FSMC_NEx high setup time 4tHCLK – 0.5 - 4tHCLK – 1 - tsu(Data_NOE) Data to FSMC_NOE high setup time th(Data_NE) Data hold time after FSMC_NEx high 0 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - DocID16554 Rev 4 Unit ns 69/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms TW.% &3-#?.% TV./%?.% T H.%?./% &3-#?./% T W./% &3-#?.7% TV!?.% &3-#?!;= T H!?./% !DDRESS TV",?.% TH",?./% &3-#?.",;= .", TH$ATA?.% TSU$ATA?.% T V!?.% TSU$ATA?./% !DDRESS &3-#? !$;= T V.!$6?.% TH$ATA?./% $ATA TH!$?.!$6 TW.!$6 &3-#?.!$6 AIB Table 34. Asynchronous multiplexed PSRAM/NOR read timings(1) Symbol Parameter Max Unit tw(NE) FSMC_NE low time 7tHCLK + 0.5 7tHCLK + 2 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 3tHCLK + 0.5 3tHCLK + 1.5 ns tw(NOE) FSMC_NOE low time 4tHCLK – 1 4tHCLK + 1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0.5 - ns tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 ns tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 2 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high tHCLK - ns th(A_NOE) Address hold time after FSMC_NOE high tHCLK -2 - ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0.5 - ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns tsu(Data_NE) Data to FSMC_NEx high setup time 4tHCLK - 0.5 - ns 4tHCLK - 1 - ns tsu(Data_NOE) Data to FSMC_NOE high setup time 70/136 Min DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Table 34. Asynchronous multiplexed PSRAM/NOR read timings(1) (continued) Symbol Parameter Min Max Unit th(Data_NE) Data hold time after FSMC_NEx high 0 - ns th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns 1. CL = 15 pF. Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms WZ 1( )60&B1([ )60&B12( WY 1:(B1( WZ 1:( W K 1(B1:( )60&B1:( WK $B1:( WY $B1( )60&B$>@ $GGUHVV WY %/B1( WK %/B1:( )60&B1%/>@ 1%/ W Y $B1( W Y 'DWDB1$'9 $GGUHVV )60&B$'>@ W Y 1$'9B1( WK 'DWDB1:( 'DWD WK $'B1$'9 WZ 1$'9 )60&B1$'9 DL% Table 35. Asynchronous multiplexed PSRAM/NOR write timings(1) Symbol Parameter Min Max Unit 5tHCLK + 0.5 5tHCLK + 2 ns tHCLK + 1 tHCLK + 1.5 ns 3tHCLK + 0.5 3tHCLK + 1 ns tHCLK – 0.5 - ns tw(NE) FSMC_NE low time tv(NWE_NE) FSMC_NEx low to FSMC_NWE low tw(NWE) FSMC_NWE low time th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time tv(A_NE) FSMC_NEx low to FSMC_A valid - 3.5 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1 ns tw(NADV) FSMC_NADV low time tHCLK + 0.5 tHCLK + 1.5 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high tHCLK – 0.5 - ns DocID16554 Rev 4 71/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 35. Asynchronous multiplexed PSRAM/NOR write timings(1) Symbol Parameter th(A_NWE) Address hold time after FSMC_NWE high tv(BL_NE) FSMC_NEx low to FSMC_BL valid th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tv(Data_NADV) FSMC_NADV high to Data valid th(Data_NWE) Data hold time after FSMC_NWE high Min Max Unit 4tHCLK – 2 - ns - 0.5 ns tHCLK – 1.5 - ns - tHCLK + 6 ns tHCLK – 0.5 - ns 1. CL = 15 pF. Synchronous waveforms and timings Figure 26 through Figure 29 represent synchronous waveforms and Table 37 through Table 39 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: 72/136 • BurstAccessMode = FSMC_BurstAccessMode_Enable; • MemoryType = FSMC_MemoryType_CRAM; • WriteBurst = FSMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 26. Synchronous multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &3-#?#,+ $ATALATENCY TD#,+, .%X, T D#,+, .%X( &3-#?.%X TD#,+, .!$6, TD#,+, .!$6( &3-#?.!$6 TD#,+, !)6 TD#,+, !6 &3-#?!;= TD#,+( ./%, TD#,+, ./%( &3-#?./% TD#,+, !$)6 TSU!$6 #,+( TD#,+, !$6 &3-#?!$;= TH#,+( !$6 !$;= TSU!$6 #,+( $ TSU.7!)46 #,+( TH#,+( !$6 $ $ TH#,+( .7!)46 &3-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 &3-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 AII DocID16554 Rev 4 73/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 36. Synchronous multiplexed NOR/PSRAM read timings(1) Symbol Parameter Max Unit 27.6 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 0.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0.5 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1.5 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 14 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 11 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0.5 - ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 2 - ns th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns 8 - ns 2 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 1. CL = 15 pF. 74/136 Min DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 27. Synchronous multiplexed PSRAM write timings "53452. TW#,+ TW#,+ &3-#?#,+ $ATALATENCY TD#,+, .%X, TD#,+, .%X( &3-#?.%X TD#,+, .!$6, TD#,+, .!$6( &3-#?.!$6 TD#,+, !6 TD#,+, !)6 &3-#?!;= TD#,+, .7%, TD#,+, .7%( &3-#?.7% TD#,+, !$)6 TD#,+, !$6 &3-#?!$;= TD#,+, $ATA TD#,+, $ATA !$;= $ $ &3-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 TD#,+, .",( &3-#?.", AIG DocID16554 Rev 4 75/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 37. Synchronous multiplexed PSRAM write timings(1) Symbol Parameter Max Unit 27.5 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_Nex low (x = 0...2) - 0 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 1 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1.5 - ns td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 10 ns td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 1 - ns td(CLKL-Data) FSMC_A/D[15:0] valid after FSMC_CLK low - 6 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 1 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns 1. CL = 15 pF. 76/136 Min DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &3-#?#,+ TD#,+, .%X, TD#,+, .%X( $ATALATENCY &3-#?.%X TD#,+, .!$6, TD#,+, .!$6( &3-#?.!$6 TD#,+, !)6 TD#,+, !6 &3-#?!;= TD#,+( ./%, TD#,+, ./%( &3-#?./% TSU$6 #,+( TH#,+( $6 TSU$6 #,+( &3-#?$;= $ TSU.7!)46 #,+( TH#,+( $6 $ $ TH#,+( .7!)46 &3-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( T H#,+( .7!)46 &3-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 AIH Table 38. Synchronous non-multiplexed NOR/PSRAM read timings(1) Symbol Parameter Min Max Unit 27.6 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 1.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 2 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 1 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 0...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 0...25) 2 - ns td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - tHCLK + 1 ns td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 3.5 - ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 0 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high 7 - ns 2 - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high DocID16554 Rev 4 77/136 132 Electrical characteristics STM32F103xF, STM32F103xG 1. CL = 15 pF. Figure 29. Synchronous non-multiplexed PSRAM write timings %867851  WZ &/. WZ &/. )60&B&/. 'DWDODWHQF\  WG &/./1([/ W G &/./1([+ )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/./$,9 WG &/./$9 )60&B$>@ WG &/.+12(/ WG &/./12(+ )60&B12( WG &/./$'9 WG &/./$',9 WVX $'9&/.+ )60&B$'>@ $'>@ WK &/.+$'9 WVX $'9&/.+ ' WVX 1:$,79&/.+ WK &/.+$'9 ' WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 DLK Table 39. Synchronous non-multiplexed PSRAM write timings(1) Symbol 78/136 Parameter Min Max Unit 27.6 - ns tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 0.5 ns td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 1.5 - ns td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 ns td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0.5 - ns td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 1.5 - ns td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1.5 - ns td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 2.5 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0.5 - ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 - ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics 1. CL = 15 pF. PC Card/CompactFlash controller waveforms and timings Figure 30 through Figure 35 represent synchronous waveforms and Table 42 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: • COM.FSMC_SetupTime = 0x04; • COM.FSMC_WaitSetupTime = 0x07; • COM.FSMC_HoldSetupTime = 0x04; • COM.FSMC_HiZSetupTime = 0x00; • ATT.FSMC_SetupTime = 0x04; • ATT.FSMC_WaitSetupTime = 0x07; • ATT.FSMC_HoldSetupTime = 0x04; • ATT.FSMC_HiZSetupTime = 0x00; • IO.FSMC_SetupTime = 0x04; • IO.FSMC_WaitSetupTime = 0x07; • IO.FSMC_HoldSetupTime = 0x04; • IO.FSMC_HiZSetupTime = 0x00; • TCLRSetupTime = 0; • TARSetupTime = 0; Figure 30. PC Card/CompactFlash controller waveforms for common memory read access )60&B1&(B  )60&B1&(B WK 1&([$, WY 1&([$ )60&B$>@ WK 1&([15(*  WK 1&([1,25' WK 1&([1,2:5 WG 15(*1&([ WG 1,25'1&([ )60&B15(* )60&B1,2:5 )60&B1,25' )60&B1:( WG 1&(B12( )60&B12( WZ 12( WVX '12( WK 12(' )60&B'>@ DLE 1. FSMC_NCE4_2 remains high (inactive during 8-bit access. DocID16554 Rev 4 79/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 31. PC Card/CompactFlash controller waveforms for common memory write access )60&B1&(B )60&B1&(B +LJK WY 1&(B$ WK 1&(B$, )60&B$>@ WK 1&(B15(* WK 1&(B1,25' WK 1&(B1,2:5 WG 15(*1&(B WG 1,25'1&(B )60&B15(* )60&B1,2:5 )60&B1,25' WG 1&(B1:( WZ 1:( WG 1:(1&(B )60&B1:( )60&B12( 0(0[+,=  WG '1:( WY 1:(' WK 1:(' )60&B'>@ DLE 80/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read access )60&B1&(B WY 1&(B$ WK 1&(B$, )60&B1&(B +LJK )60&B$>@ )60&B1,2:5 )60&B1,25' WG 15(*1&(B WK 1&(B15(* )60&B15(* )60&B1:( WG 1&(B12( WZ 12( WG 12(1&(B )60&B12( WVX '12( WK 12(' )60&B'>@  DLE 1. Only data bits 0...7 are read (bits 8...15 are disregarded). DocID16554 Rev 4 81/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write access )60&B1&(B )60&B1&(B +LJK WY 1&(B$ WK 1&(B$, )60&B$>@ )60&B1,2:5 )60&B1,25' WG 15(*1&(B WK 1&(B15(* )60&B15(* WG 1&(B1:( WZ 1:( )60&B1:( WG 1:(1&(B )60&B12( WY 1:(' )60&B'>@  DLE 1. Only data bits 0...7 are driven (bits 8...15 remains HiZ). Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access )60&B1&(B )60&B1&(B WK 1&(B$, WY 1&([$ )60&B$>@ )60&B15(* )60&B1:( )60&B12( )60&B1,2:5 WZ 1,25' WG 1,25'1&(B )60&B1,25' WVX '1,25' WG 1,25'' )60&B'>@ DL% 82/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access )60&B1&(B )60&B1&(B WY 1&([$ WK 1&(B$, )60&B$>@ )60&B15(* )60&B1:( )60&B12( )60&B1,25' WG 1&(B1,2:5 WZ 1,2:5 )60&B1,2:5 $77[+,=  WY 1,2:5' WK 1,2:5' )60&B'>@ DLF Table 40. Switching characteristics for PC Card/CF read and write cycles in attribute/common space Symbol Parameter Min Max tv(NCEx-A) FSMC_NCEx low to FSMC_Ay valid - 0 th(NCEx-AI) FSMC_NCEx high to FSMC_Ax invalid 0 - td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 2 th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid tHCLK + 4 - td(NCEx_NWE) FSMC_NCEx low to FSMC_NWE low - 5tHCLK + 1 td(NCEx_NOE) FSMC_NCEx low to FSMC_NOE low - 5tHCLK + 1 tw(NOE) FSMC_NOE low width 8tHCLK - 0.5 8tHCLK + 1 td(NOE-NCEx FSMC_NOE high to FSMC_NCEx high 5tHCLK - 0.5 - tsu(D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 32 - th(NOE-D) FSMC_NOE high to FSMC_D[15:0] invalid tHCLK - tw(NWE) FSMC_NWE low width 8tHCLK – 1 8tHCLK + 4 td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5tHCLK + 1.5 - td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5tHCLK + 1 tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 th(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 11tHCLK - td(D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13tHCLK + 2.5 - DocID16554 Rev 4 Unit ns 83/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 41. Switching characteristics for PC Card/CF read and write cycles in I/O space Symbol Parameter tw(NIOWR) FSMC_NIOWR low width tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid Min Max Unit 8 THCLK - ns - 5 THCLK 4 ns 11THCLK 7 - ns td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK + 1 ns th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK 2.5 - ns td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK 0.5 ns th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5 THCLK 0.5 - ns 8THCLK - ns tw(NIORD) FSMC_NIORD low width tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 28 - ns td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 3 - ns NAND controller waveforms and timings Figure 36 through Figure 39 represent synchronous waveforms and Table 43 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: 84/136 • COM.FSMC_SetupTime = 0x00; • COM.FSMC_WaitSetupTime = 0x02; • COM.FSMC_HoldSetupTime = 0x01; • COM.FSMC_HiZSetupTime = 0x00; • ATT.FSMC_SetupTime = 0x00; • ATT.FSMC_WaitSetupTime = 0x02; • ATT.FSMC_HoldSetupTime = 0x01; • ATT.FSMC_HiZSetupTime = 0x00; • Bank = FSMC_Bank_NAND; • MemoryDataWidth = FSMC_MemoryDataWidth_16b; • ECC = FSMC_ECC_Enable; • ECCPageSize = FSMC_ECCPageSize_512Bytes; • TCLRSetupTime = 0; • TARSetupTime = 0; DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 36. NAND controller waveforms for read access )60&B1&([ /RZ $/( )60&B$ &/( )60&B$ )60&B1:( WK 12($/( WG $/(12( )60&B12( 15( WVX '12( WK 12(' )60&B'>@ DLE Figure 37. NAND controller waveforms for write access )60&B1&([ $/( )60&B$ &/( )60&B$ WG $/(1:( WK 1:($/( )60&B1:( )60&B12( 15( WY 1:(' WK 1:(' )60&B'>@ AIC DocID16554 Rev 4 85/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 38. NAND controller waveforms for common memory read access )60&B1&([ /RZ $/( )60&B$ &/( )60&B$ WG $/(12( WK 12($/( )60&B1:( WZ 12( )60&B12( WVX '12( WK 12(' )60&B'>@ DLE Figure 39. NAND controller waveforms for common memory write access )60&B1&([ /RZ $/( )60&B$ &/( )60&B$ WG $/(1:( WZ 1:( WK 1:($/( )60&B1:( )60&B12( WG '1:( WY 1:(' WK 1:(' )60&B'>@ DLE Table 42. Switching characteristics for NAND Flash read cycles(1) Symbol Parameter Max Unit 3tHCLK – 1 3tHCLK + 1 ns tw(NOE) FSMC_NOE low width tsu(D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 13 - ns th(NOE-D) FSMC_D[15:0] valid data after FSMC_NOE high 0 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 2tHCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 2tHCLK - ns 1. CL = 15 pF. 86/136 Min DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Table 43. Switching characteristics for NAND Flash write cycles(1) Symbol Parameter Min Max Unit 3tHCLK 3tHCLK ns - 0 ns tw(NWE) FSMC_NWE low width tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid th(NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 2tHCLK + 2 - ns td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3tHCLK + 1.5 ns th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3tHCLK + 8 - ns td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 2tHCLK ns th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 2tHCLK - ns 1. CL = 15 pF. DocID16554 Rev 4 87/136 132 Electrical characteristics 5.3.11 STM32F103xF, STM32F103xG EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 44. They are based on the EMS levels and classes defined in application note AN1709. Table 44. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP144, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 72 MHz induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP144, TA = +25 °C, fHCLK = 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. 88/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 45. EMI characteristics Symbol Parameter SEMI 5.3.12 Conditions Max vs. [fHSE/fHCLK] Monitored frequency band Unit 8/48 MHz 8/72 MHz 0.1 to 30 MHz VDD = 3.3 V, TA = 25 °C, 30 to 130 MHz LQFP144 package Peak level compliant with IEC 130 MHz to 1GHz 61967-2 SAE EMI Level 8 12 31 21 28 33 4 4 dBµV - Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 46. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions Class Maximum value(1) 2 2000 III 500 Electrostatic discharge TA = +25 °C, conforming voltage (human body model) to JESD22-A114 Electrostatic discharge VESD(CDM) voltage (charge device model) TA = +25 °C, conforming to JESD22-C101 Unit V 1. Guaranteed by characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. DocID16554 Rev 4 89/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 47. Electrical sensitivities Symbol LU 5.3.13 Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 48 Table 48. I/O current injection susceptibility Functional susceptibility Symbol IINJ 90/136 Description Negative injection Positive injection Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13 -0 +0 Injected current on all FT pins -5 +0 Injected current on any other pin -5 +5 DocID16554 Rev 4 Unit mA STM32F103xF, STM32F103xG 5.3.14 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 49. I/O static characteristics Symbol VIL Parameter Standard IO input low level voltage IO FT(1) input low level voltage Standard IO input high level voltage VIH Vhys IO FT(1) input high level voltage Standard IO Schmitt trigger voltage hysteresis(2) Conditions Min Typ Max Unit –0.3 - 0.28*(VDD-2 V)+0.8 V V –0.3 - 0.32*(VDD-2 V)+0.75 V V 0.41*(VDD-2 V)+1.3 V - VDD+0.3 V 0.42*(VDD-2 V)+1 V - 200 - - mV 5% VDD(3) - - mV VSS ≤ VIN ≤ VDD Standard I/Os - - ±1 VIN= 5 V, I/O FT - - 3 - VDD > 2 V VDD ≤ 2 V Input leakage current (4) V 5.2 - IO FT Schmitt trigger voltage hysteresis(2) Ilkg 5.5 µA RPU Weak pull-up equivalent resistor(5) VIN = VSS 30 40 50 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 30 40 50 kΩ CIO I/O pin capacitance - - 5 - pF 1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled. 2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than max. if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 40 and Figure 41 for standard I/Os, and in Figure 42 and Figure 43 for 5 V tolerant I/Os. DocID16554 Rev 4 91/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 40. Standard I/O input characteristics - CMOS port 6)(6),6 /3STAN #- 7)(MIN 6 )(      6  6), $$ T6 ),6 $$ RDREQUIREMEN #-/3STANDA  )NPUTRANGE NOTGUARANTEED         7),MAX  6 $$  6 $$ NT6 )( UIREME DARDREQ    6$$6  AIB Figure 41. Standard I/O input characteristics - TTL port 6)(6),6 7)(MIN 44,REQUIREMENTS 6)( 6    6  6 )( $$ )NPUTRANGE NOTGUARANTEED    7),MAX  6 ),6 $$  44,REQUIREMENTS 6),6   6$$6  AI Figure 42. 5 V tolerant I/O input characteristics - CMOS port 6)(6),6 6 $$ MENTS6 )(             )NPUTRANGE NOTGUARANTEED    6 ),6 $$ 6 $$ IRMENT6 ), DARDREQU #-/3STAN    6 )(6 $$ REQUIRE TANDARD #-/3S    6$$6 6$$ AIB 92/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 43. 5 V tolerant I/O input characteristics - TTL port 6)(6),6 44,REQUIREMENT6 )(6    6 $$  6 )( 7)(MIN 7),MAX )NPUTRANGE NOTGUARANTEED    6 ), 6 $$   44,REQUIREMENTS6 ),6   6$$6  AI Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3 mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 8). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 8). Output voltage levels Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 50. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2) Output high level voltage for an I/O pin when 8 pins are sourced at same time VOL (1) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH (2) Output high level voltage for an I/O pin when 8 pins are sourced at same time DocID16554 Rev 4 Conditions Min Max TTL port(3) IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 VDD–0.4 - - 0.4 2.4 - CMOS port(3) IIO =+ 8mA 2.7 V < VDD < 3.6 V Unit V V 93/136 132 Electrical characteristics STM32F103xF, STM32F103xG Table 50. Output voltage characteristics (continued) Symbol Parameter VOL(1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VOL(1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time Conditions IIO = +20 mA 2.7 V < VDD < 3.6 V IIO = +6 mA 2 V < VDD < 2.7 V Min Max - 1.3 Unit V VDD–1.3 - - 0.4 V VDD–0.4 - 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 4. Guaranteed by characterization results, not tested in production. 94/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 44 and Table 51, respectively. Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 51. I/O AC characteristics(1) MODEx[1:0] Symbol bit value(1) Parameter Conditions Min Max Unit - 2 MHz - 125(3) - 125(3) - 10 - 25(3) - 25(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 MHz CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V - 20 MHz CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) 10 - fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 10 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time CL = 50 pF, VDD = 2 V to 3.6 V fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 01 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time Fmax(IO)out Maximum 11 tf(IO)out tr(IO)out - tEXTIpw frequency(2) Output high to low level fall time Output low to high level rise time ns CL = 50 pF, VDD = 2 V to 3.6 V Pulse width of external signals detected by the EXTI controller MHz ns ns ns 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 44. 3. Guaranteed by design, not tested in production. DocID16554 Rev 4 95/136 132 Electrical characteristics STM32F103xF, STM32F103xG Figure 44. I/O AC characteristics definition       (;7(51$/ 287387 21&/ WU ,2 RXW WI ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI ”  7DQGLIWKHGXW\F\FOHLV   ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´  5.3.15 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 49). Unless otherwise specified, the parameters given in Table 52 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 52. NRST pin characteristics Symbol Conditions Min Typ Max VIL(NRST)(1) NRST Input low level voltage - –0.5 - 0.8 VIH(NRST)(1) NRST Input high level voltage - 2 - VDD+0.5 Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV VIN = VSS 30 40 50 kΩ - - - 100 ns - 300 - - ns Weak pull-up equivalent resistor(2) RPU VF(NRST) Parameter (1) NRST Input filtered pulse VNF(NRST)(1) NRST Input not filtered pulse Unit V 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 96/136 DocID16554 Rev 4 STM32F103xF, STM32F103xG Electrical characteristics Figure 45. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLW  1567  538 ,QWHUQDO5HVHW )LOWHU —) 670) DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 52. Otherwise the reset will not be taken into account by the device. 5.3.16 TIM timer characteristics The parameters given in Table 53 are guaranteed by design. Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 53. TIMx(1) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Timer resolution time Conditions fTIMxCLK = 72 MHz Min Max Unit 1 - tTIMxCLK 13.9 - ns Timer external clock frequency on CH1 to CH4 f TIMxCLK = 72 MHz 0 fTIMxCLK/2 MHz 0 36 MHz Timer resolution - 16 bit 16-bit counter clock period 1 when internal clock is fTIMxCLK = 72 MHz 0.0139 selected 65536 tTIMxCLK 910 µs - - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.6 s - tMAX_COUNT Maximum possible count 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. DocID16554 Rev 4 97/136 132 Electrical characteristics 5.3.17 STM32F103xF, STM32F103xG Communications interfaces I2C interface characteristics The STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and STM32F103xG performance line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 54. Refer also to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 54. I2C characteristics Symbol Standard mode I2C(1)(2) Parameter Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time - 3450(3) - 900(3) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF tSP Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode 0 50(4) 0 50(4) μs 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve the fast mode I2C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz. 3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL. 4. The minimum width of the spikes filtered by the analog filter is above tSP(max). 98/136 DocID16554 Rev 4 µs ns µs STM32F103xF, STM32F103xG Electrical characteristics Figure 46. I2C bus AC waveforms and measurement circuit s ͺ/Ϯ s ͺ/Ϯ ZW ZW ^dDϯϮ Z^ ^ /ϸďƵƐ Z^ ^> ^ d Z dZWd ^ d Z d ^ d Z d ƚƐƵ;^dͿ ^  ƚĨ;^Ϳ ƚƌ;^Ϳ ƚŚ;^dͿ ƚƐƵ;^Ϳ ƚŚ;^Ϳ ƚǁ;^>>Ϳ ƚǁ;^dK͗^dͿ ^ dKW ^> ƚƌ;^>Ϳ ƚǁ;^>,Ϳ ƚĨ;^>Ϳ ƚƐƵ;^dKͿ ĂŝϭϰϵϳϵĚ 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 2. Rs: Series protection resistors. 3. Rp: Pull-up resistors. 4. VDD_I2C : I2C bus supply Table 55. SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz) RP = 4.7 kΩ 400 0x801E 300 0x8028 200 0x803C 100 0x00B4 50 0x0168 20 0x0384 1. RP = External pull-up resistance, fSCL = I2C speed. 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. DocID16554 Rev 4 99/136 132 Electrical characteristics STM32F103xF, STM32F103xG I2S - SPI characteristics Unless otherwise specified, the parameters given in Table 56 for SPI or in Table 57 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 56. SPI characteristics Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Max Master mode - 18 Slave mode - 18 - 8 ns % tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 30 pF DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 tsu(NSS)(1) NSS setup time Slave mode 4tPCLK - th(NSS)(1) NSS hold time Slave mode 2tPCLK - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 50 60 Master mode 5 - Slave mode 5 - Master mode 5 - Slave mode 4 - Data output access time Slave mode, fPCLK = 20 MHz 0 3tPCLK tw(SCKH)(1) tw(SCKL)(1) tsu(MI) (1) tsu(SI)(1) (1) th(MI) th(SI)(1) ta(SO)(1)(2) tdis(SO) Data input setup time (1)(3) Data input hold time Data output disable time Slave mode 2 10 (1) Data output valid time Slave mode (after enable edge) - 25 tv(MO)(1) Data output valid time Master mode (after enable edge) - 5 Slave mode (after enable edge) 15 - Master mode (after enable edge) 2 - tv(SO) th(SO)(1) th(MO)(1) Data output hold time Unit MHz 1. Guaranteed by characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 100/136 DocID16554 Rev 4 ns STM32F103xF, STM32F103xG Electrical characteristics Figure 47. SPI timing diagram - slave mode and CPHA = 0 E^^ŝŶƉƵƚ ƚĐ;^
STM32F103ZGH6 价格&库存

很抱歉,暂时无法提供与“STM32F103ZGH6”相匹配的价格&库存,您可以联系我们找货

免费人工找货