STM32F205xx
STM32F207xx
Arm®-based 32-bit MCU, 150 DMIPs, up to 1 MB Flash/128+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces and camera
Datasheet - production data
Features
&"'!
Core: Arm® 32-bit Cortex®-M3 CPU (120 MHz
max) with Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
performance from Flash memory, MPU,
150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1)
Memories
– Up to 1 Mbyte of Flash memory
– 512 bytes of OTP memory
– Up to 128 + 4 Kbytes of SRAM
– Flexible static memory controller that
supports Compact Flash, SRAM, PSRAM,
NOR and NAND memories
– LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
– From 1.8 to 3.6 V application supply + I/Os
– POR, PDR, PVD and BOR
– 4 to 26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
Low-power modes
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 20 × 32 bit backup
registers, and optional 4 Kbytes backup
SRAM
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
WLCSP64+2
(0.400 mm pitch)
UFBGA176
(10 × 10 mm)
LQFP144 (20 × 20mm)
LQFP176 (24 × 24 mm)
Up to 140 I/O ports with interrupt capability:
– Up to 136 fast I/Os up to 60 MHz
– Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
– Up to three I2C interfaces (SMBus/PMBus)
– Up to four USARTs and two UARTs
(7.5 Mbit/s, ISO 7816 interface, LIN, IrDA,
modem control)
– Up to three SPIs (30 Mbit/s), two with
muxed I2S to achieve audio class accuracy
via audio PLL or external PLL
– 2 × CAN interfaces (2.0B Active)
– SDIO interface
2 × 12-bit D/A converters
Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
General-purpose DMA: 16-stream controller
with centralized FIFOs and burst support
8- to 14-bit parallel camera interface
(48 Mbyte/s max.)
Up to 17 timers
– Up to twelve 16-bit and two 32-bit timers,
up to 120 MHz, each with up to four
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
CRC calculation unit
3 × 12-bit, 0.5 µs ADCs with up to 24 channels
and up to 6 MSPS in triple interleaved mode
96-bit unique ID
Debug mode: Serial wire debug (SWD), JTAG,
and Cortex®-M3 Embedded Trace Macrocell™
July 2020
This is information on a product in full production.
DS6329 Rev 18
1/181
www.st.com
STM32F20xxx
Table 1. Device summary
Reference
Part numbers
STM32F205xx
STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG
STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF, STM32F205VG
STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG
STM32F207xx
STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG
STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG
STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG
2/181
DS6329 Rev 18
STM32F20xxx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1
3
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1
Arm® Cortex®-M3 core with embedded Flash and SRAM . . . . . . . . . . . . 20
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 20
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 21
3.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23
3.11
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.12
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.13
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16.1
Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16.2
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16.3
Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 29
3.17
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 30
3.18
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.20
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.20.1
Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.20.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.20.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DS6329 Rev 18
3/181
6
Contents
STM32F20xxx
3.20.4
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.20.5
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.20.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.21
Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22
Universal synchronous/asynchronous receiver transmitters
(UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.23
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.25
SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.26
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 36
3.27
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.28
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 36
3.29
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 37
3.30
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.31
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.32
True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.33
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.34
ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.35
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.36
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.37
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.38
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1
4/181
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
DS6329 Rev 18
STM32F20xxx
Contents
6.1.7
7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.2
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . . 74
6.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 74
6.3.5
Embedded reset and power control block characteristics . . . . . . . . . . . 75
6.3.6
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.7
Wakeup time from Low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.11
PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 95
6.3.12
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.14
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 100
6.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.18
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.20
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.21
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.22
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.23
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.24
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.25
FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.26
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 146
6.3.27
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 146
6.3.28
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.1
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2
WLCSP64+2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
DS6329 Rev 18
5/181
6
Contents
STM32F20xxx
7.4
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5
LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.6
UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.7
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6/181
DS6329 Rev 18
STM32F20xxx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32F205xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
STM32F207xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 29
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 72
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 74
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 74
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . . 77
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 81
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 84
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 84
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DS6329 Rev 18
7/181
8
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
8/181
STM32F20xxx
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 108
Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 108
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 119
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 119
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 120
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 129
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 130
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 136
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Switching characteristics for PC Card/CF read and write cycles
in attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 143
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
SD/MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
WLCSP64+2 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
WLCSP64+2 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . 152
LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
UFBGA176+25 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 164
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
DS6329 Rev 18
STM32F20xxx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Compatible board design between STM32F10x and STM32F2xx
for LQFP64 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Compatible board design between STM32F10x and STM32F2xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Compatible board design between STM32F10x and STM32F2xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STM32F20x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Regulator OFF / internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Regulator OFF / internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Startup in regulator OFF: slow VDD slope,
power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 29
Startup in regulator OFF: fast VDD slope,
power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 29
STM32F20x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32F20x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
STM32F20x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32F20x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32F20x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Number of wait states versus fCPU and VDD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical current consumption vs. temperature, Run mode, code with data
processing running from RAM, and peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typical current consumption vs. temperature, Run mode, code with data
processing running from RAM, and peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typical current consumption vs. temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals ON . . . . . . . . . . . . . . . 80
Typical current consumption vs. temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals OFF . . . . . . . . . . . . . . 80
Typical current consumption vs. temperature in Sleep mode,
peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Typical current consumption vs. temperature in Sleep mode,
peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Typical current consumption vs. temperature in Stop mode. . . . . . . . . . . . . . . . . . . . . . . . 83
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DS6329 Rev 18
9/181
11
List of figures
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
10/181
STM32F20xxx
FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 117
ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 124
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 125
12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 129
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 130
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 131
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 132
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 136
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
PC Card/CompactFlash controller waveforms
for common memory read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
PC Card/CompactFlash controller waveforms
for common memory write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
PC Card/CompactFlash controller waveforms
for attribute memory read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
PC Card/CompactFlash controller waveforms
for attribute memory write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 141
PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 142
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 145
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 145
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Device marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
WLCSP64+2 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
WLCSP64+2 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
DS6329 Rev 18
STM32F20xxx
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
List of figures
LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
LQFP176 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
UFBGA176+25 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
UFBGA176+25 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
UFBGA176+25 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
DS6329 Rev 18
11/181
11
Introduction
1
STM32F20xxx
Introduction
This datasheet provides the description of the STM32F205xx and STM32F207xx lines of
microcontrollers, based on Arm®(a) cores. For more details on the whole STMicroelectronics
STM32 family refer to Section 2.1: Full compatibility throughout the family.
The STM32F205xx and STM32F207xx datasheet must be read in conjunction with the
STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices
throughout the document.
For information on programming, erasing and protection of the internal Flash memory, refer
to the STM32F20x/STM32F21x Flash programming manual (PM0059).
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex®-M3 core refer to the Cortex®-M3 Technical Reference
Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/181
DS6329 Rev 18
STM32F20xxx
2
Description
Description
The STM32F20x family is based on the high-performance Arm® Cortex®-M3 32-bit RISC
core operating at a frequency of up to 120 MHz. The family incorporates high-speed
embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up
to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
The devices also feature an adaptive real-time memory accelerator (ART Accelerator™)
that allows to achieve a performance equivalent to 0 wait state program execution from
Flash memory at a CPU frequency up to 120 MHz. This performance has been validated
using the CoreMark® benchmark.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true number random generator (RNG). They also feature standard and advanced
communication interfaces. New advanced peripherals include an SDIO, an enhanced
flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins
and more), and a camera interface for CMOS sensors. The devices also feature standard
peripherals.
Up to three I2Cs
Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be
clocked via a dedicated internal audio PLL or via an external PLL to allow
synchronization.
Four USARTs and two UARTs
A USB OTG high-speed with full-speed capability (with the ULPI)
A second USB OTG (full-speed)
Two CANs
An SDIO interface
Ethernet and camera interface available on STM32F207xx devices only.
The STM32F205xx and STM32F207xx devices operate in the –40 to +105 °C temperature
range from a 1.8 V to 3.6 V power supply. On devices in WLCSP64+2 package, if IRROFF
is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to
70 °C temperature range using an external power supply supervisor (see Section 3.16).
A comprehensive set of power-saving modes enables the design of low-power applications.
STM32F205xx and STM32F207xx devices are offered in various packages, ranging from 64
to 176 pins. The set of included peripherals changes with the chosen device.These features
make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range
of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Figure 4 shows the general block diagram of the device family.
DS6329 Rev 18
13/181
180
Peripherals
Flash memory in Kbytes
System
SRAM in Kbytes (SRAM1+SRAM2)
Backup
FSMC memory controller
STM32F205Rx
128
256
64
(48+16)
96
(80+16)
512
1024
128
256
64
(48+16)
96
(80+16)
4
512
STM32F205Zx
768
1024
128
(112+16)
4
256
512
96
(80+16)
768
1024
128
(112+16)
4
Yes(1)
No
No
General-purpose
10
Advanced-control
2
Basic
2
IWDG
Yes
WWDG
Yes
RTC
Yes
DS6329 Rev 18
Random number generator
Yes
2
3/(2)(2)
SPI/(I S)
2
I C
3
USART
4
2
Comm. interfaces UART
USB OTG FS
Yes
USB OTG HS
Yes
CAN
2
Camera interface
GPIOs
No
51
SDIO
12-bit ADC
Number of channels
12-bit DAC
Number of channels
82
114
16
24
Yes
3
16
Yes
2
120 MHz
1.8 V to 3.6 V(3)
STM32F20xxx
Maximum CPU frequency
Operating voltage
768
128
(112+16)
Ethernet
Timers
STM32F205Vx
Description
14/181
Table 2. STM32F205xx features and peripheral counts
Peripherals
STM32F205Rx
STM32F205Zx
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Operating temperatures
Package
STM32F205Vx
STM32F20xxx
Table 2. STM32F205xx features and peripheral counts (continued)
Junction temperature: –40 to + 125 °C
LQFP64
LQFP64
LQFP64
LQFP64
WLCSP64+2
WLCSP64+2
LQFP100
LQFP144
1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not
available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature
range using an external power supply supervisor (see Section 3.16).
Table 3. STM32F207xx features and peripheral counts
Peripherals
DS6329 Rev 18
Flash memory in Kbytes
SRAM in Kbytes
System
(SRAM1+SRAM2)
Backup
FSMC memory controller
Ethernet
Timers
STM32F207Vx
256
512
768
STM32F207Zx
1024
256
512
STM32F207Ix
768
1024
256
512
768
1024
128
(112+16)
4
Yes(1)
Yes
General-purpose
10
Advanced-control
2
Basic
2
IWDG
Yes
WWDG
Yes
RTC
Yes
Random number generator
Yes
Description
15/181
Peripherals
STM32F207Vx
STM32F207Zx
2
SPI/(I S)
3/(2)
I2C
3
USART
Comm. interfaces UART
4
2
USB OTG FS
Yes
USB OTG HS
Yes
CAN
2
Camera interface
GPIOs
Yes
82
114
140
SDIO
12-bit ADC
Number of channels
Yes
3
16
24
24
DS6329 Rev 18
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency
120 MHz
1.8 V to 3.6 V(3)
Operating voltage
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Operating temperatures
Package
STM32F207Ix
(2)
Description
16/181
Table 3. STM32F207xx features and peripheral counts (continued)
Junction temperature: –40 to + 125 °C
LQFP100
LQFP144
LQFP176/
UFBGA176
1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not
available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature
range using an external power supply supervisor (see Section 3.16).
STM32F20xxx
STM32F20xxx
2.1
Description
Full compatibility throughout the family
The STM32F205xx and STM32F207xx constitute the STM32F20x family, whose members
are fully pin-to-pin, software and feature compatible, allowing the user to try different
memory densities and peripherals for a greater degree of freedom during the development
cycle.
The STM32F205xx and STM32F207xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F205xx and STM32F207xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x
family remains simple as only a few pins are impacted.
Figure 1, Figure 2 and Figure 3 provide compatible board designs between the STM32F20x
and the STM32F10xxx family.
Figure 1. Compatible board design between STM32F10x and STM32F2xx
for LQFP64 package
VSS
48
49
VSS
0 Ω resistor or soldering bridge
present for the STM32F10x
configuration, not present in the
STM32F2xx configuration
33
32
47
31
LQFP64
VSS
64
VSS
17
1
16
MS41486V1
DS6329 Rev 18
17/181
180
Description
STM32F20xxx
Figure 2. Compatible board design between STM32F10x and STM32F2xx
for LQFP100 package
0 Ω resistor or soldering bridge
present for the STM32F10x
configuration, not present in the
STM32F2xx configuration
VSS
51
75
76
50
73
Two 0 Ω resistors connected to
- VSS for STM32F10x
- VDD, VSS or NC for STM32F2xx
49
LQFP100
VSS
VSS
99 (RFU)
19
100
20
26
1
VDD
25
VSS
VSS
VDD
VSS for STM32F10x,
VDD for STM32F2xx
VSS
MS41487V1
1. RFU = reserved for future use.
Figure 3. Compatible board design between STM32F10x and STM32F2xx
for LQFP144 package
0 Ω resistor or soldering bridge
present for the STM32F10x
configuration, not present in the
STM32F2xx configuration
VSS
108
109 106
73
72
71
LQFP144
VSS
VSS
143 (RFU)
30
144
VDD
31
37
1
36
VSS
Two 0 Ω resistors connected to
- VSS for STM32F10x
- VDD, VSS or NC for STM32F2xx
VSS
VDD
VSS
MS41488V1
1. RFU = reserved for future use.
18/181
DS6329 Rev 18
STM32F20xxx
Description
Figure 4. STM32F20x block diagram
DP, DM
ULPI: CK, D(7:0), DIR, STP, NXT
SCL/SDA, INTN, ID, VBUS, SOF
Ethernet MAC DMA/
FIFO
10/100
PHY
MII or RMII as AF
MDIO as AF
DMA/
FIFO
USB
OTG HS
8 Streams
DMA2
FIFO
Flash
1 Mbyte
RNG
SRAM 112 KB
SRAM 16 KB
AHB2 120 MHz
VDD12
FIFO
RC HS
GPIO PORT A
RC LS
PB[15:0]
GPIO PORT B
Power managmt
Voltage
regulator
3.3 V to 1.2 V
DP
DM
SCL, SDA, INTN, ID, VBUS, SOF
POR
Reset
Int
Supply
supervision
POR/PDR/
BOR
PVD
GPIO PORT C
PD[15:0]
GPIO PORT D
PE[15:0]
GPIO PORT E
Reset &
GPIO PORT F
clock
MANAGT
control
VSS
VDDA, VSSA
NRST
PLL1&2
PC[15:0]
VDD = 1.8 to 3.6 V
VCAP1, VCAP2
@VDD
@VDDA
PA[15:0]
USB
OTG FS
HSYNC, VSYNC
PIXCLK, D[13:0]
AHB1 120 MHz
8 Streams
DMA1
Camera
interface
PHY
S-BUS
SRAM, PSRAM, NOR Flash,
PC Card (ATA), NAND Flash
FIFO
AHB3
Arm Cortex-M3
I-BUS
120 MHz
ART accelerator D-BUS
FIFO
ETM
CLK, NE [3:0], A[23:0]
D[31:0], OEN, WEN,
NBL[3:0], NL, NREG
NWAIT/IORDY, CD
NIORD, IOWR, INT[2:3]
INTN, NIIS16 as AF
External memory
controller (FSMC)
MPU
NVIC
ACCEL/
CACHE
JTAG & SW
AHB bus-matrix 8S7M
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD
JTDO/TRACESWO
TRACECLK
TRACED[3:0]
@VDDA @VDD
OSC_IN
OSC_OUT
VBAT = 1.65 to 3.6 V
@VBAT
LS
XTAL 32 kHz
RTC
GPIO PORT I
LS
PI[11:0]
GPIO PORT H
PWR
interface
PCLKx
PH[15:0]
GPIO PORT G
FCLK
PG[15:0]
HCLKx
PF[15:0]
XTAL OSC
4- 26 MHz
IWDG
AWU
Backup register
OSC32_IN
OSC32_OUT
RTC_AF1
RTC_AF1
4 KB BKSPRAM
TIM2 32b
TIM3
DMA1
DMA2
1 channel as AF
SDIO / MMC
TIM13 16b
TIM8 / PWM 16b
TIM9
TIM10 16b
TIM11
16b
smcard
USART 1
irDA
RX, TX, CK,
CTS, RTS as AF
smcard
USART 6
irDA
MOSI, MISO
SCK, NSS as AF
SPI1
TIM6
TIM7
16b
16b
@VDDA
VDDREF_ADC
8 analog inputs common
to the 3 ADCs
8 analog inputs common
to the ADC1 & 2
8 analog inputs to ADC3
USART 2MBps
Temperature
sensor
ADC1
@VDDA
ADC2
DAC1
ADC 3
IF
ITF
smcard
irDA
RX, TX, CK,
CTS, RTS as AF
USART3
smcard
irDA
RX, TX, CK
CTS, RTS as AF
UART4
RX, TX as AF
UART5
RX, TX as AF
SPI2/I2S2
MOSI/DOUT, MISO/DIN, SCK/CK
NSS/WS, MCK as AF
SPI3/I2S3
MOSI/DOUT, MISO/DIN, SCK/CK
NSS/WS, MCK as AF
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
bxCAN1
DAC2
bxCAN2
DAC1_OUT
as AF
DAC2_OUT
as AF
1 channel as AF
USART2
WWDG
16b
RX, TX, CK,
CTS, RTS as AF
1 channel as AF
TIM14 16b
16b
TIM1 / PWM
2 channels as AF
FIFO
1 channel as AF
TIM12
APB1 30MHz
APB1 30MHz
4 compl. channels (TIM1_CH[1:4]N)
4 channels (TIM1_CH[1:4]), ETR,
BKIN as AF
4 compl. channels (TIM1_CH[1:4]N)
4 channels (TIM1_CH[1:4]), ETR,
BKIN as AF
2 channels as AF
4 channels
16b
EXT IT. WKUP
APB2
60MHz
APB2
60MHz
D[7:0]
CMD, CK as AF
4 channels, ETR as AF
TIM5 32b
FIFO
140 AF
4 channels, ETR as AF
16b
TIM4
AHB/APB2 AHB/APB1
4 channels, ETR as AF
16b
TX, RX
TX, RX
ai17614d
1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 60 MHz.
2. The camera interface and Ethernet are available only in STM32F207xx devices.
DS6329 Rev 18
19/181
180
Functional overview
STM32F20xxx
3
Functional overview
3.1
Arm® Cortex®-M3 core with embedded Flash and SRAM
The Arm® Cortex®-M3 processor is the latest generation of processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an Arm core in the memory size usually
associated with 8- and 16-bit devices.
With its embedded Arm® core, the STM32F20x family is compatible with all Arm® tools and
software.
Figure 4 shows the general block diagram of the STM32F20x family.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M3 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M3 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher operating frequencies.
To release the processor full 150 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark® benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 120 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
20/181
DS6329 Rev 18
STM32F20xxx
3.4
Functional overview
Embedded Flash memory
The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes,
512 Kbytes, 768 Kbytes or 1 Mbyte available for storing programs and data.
The devices also feature 512 bytes of OTP memory that can be used to store critical user
data such as Ethernet MAC addresses or cryptographic keys.
3.5
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6
Embedded SRAM
All STM32F20x products embed:
Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0
wait states
4 Kbytes of backup SRAM.
The content of this area is protected against possible unwanted write accesses, and is
retained in Standby or VBAT mode.
3.7
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
DS6329 Rev 18
21/181
180
Functional overview
STM32F20xxx
Figure 5. Multi-AHB matrix
S1
S2
S3
S4
DMA_P2
S5
S6
USB_HS_M
MAC
USB OTG
Ethernet
HS
ETHERNET_M
GP
DMA2
DMA_MEM2
DMA_MEM1
DMA_P1
S-bus
GP
DMA1
S7
M0
ICODE
M1 DCODE
ART
ACCEL.
S0
D-bus
I-bus
ARM
Cortex-M3
Flash
memory
M2
SRAM
112 Kbyte
M3
SRAM
16 Kbyte
AHB1
periph
AHB2
periph
M4
M5
M6
APB1
APB2
FSMC
Static MemCtl
Bus matrix-S
ai15963c
3.8
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB
peripherals, support burst transfer and are designed to provide the maximum peripheral
bandwidth (AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
22/181
DS6329 Rev 18
STM32F20xxx
Functional overview
The DMA can be used with the main peripherals:
3.9
SPI and I2S
I2C
USART and UART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Camera interface (DCMI)
ADC.
Flexible static memory controller (FSMC)
The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs
supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and
NAND Flash.
Functionality overview:
Write FIFO
Code execution from external memory except for NAND Flash and PC Card
Maximum frequency (fHCLK) for external access is 60 MHz
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.10
Nested vectored interrupt controller (NVIC)
The STM32F20x devices embed a nested vectored interrupt controller able to manage 16
priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of
the Cortex®-M3.
The NVIC main features are the following:
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
DS6329 Rev 18
23/181
180
Functional overview
3.11
STM32F20xxx
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
3.12
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly,
full interrupt management of the PLL clock entry is available when necessary (for example if
an indirectly used external oscillator fails).
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the
system clock.
Several prescalers and PLLs allow the configuration of the three AHB buses, the highspeed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of
the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains
is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.
The devices embed a dedicate PLL (PLLI2S) that allow them to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.13
Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash memory
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
3.14
Power supply schemes
24/181
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins. On devices in WLCSP64+2 package, if
IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates
DS6329 Rev 18
STM32F20xxx
Functional overview
in the 0 to 70 °C temperature range using an external power supply supervisor (see
Section 3.16).
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 19: Power supply scheme for more details.
3.15
Power supply supervisor
The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry.
At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V.
After the 1.8 V POR threshold level is reached, the option byte loading process starts, either
to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three
BOR thresholds are available through option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit. On devices in WLCSP64+2 package,
the BOR, POR and PDR features can be disabled by setting IRROFF pin to VDD. In this
mode an external power supply supervisor is required (see Section 3.16).
The devices also feature an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.16
Voltage regulator
The regulator has five operating modes:
3.16.1
Regulator ON
–
Main regulator mode (MR)
–
Low-power regulator (LPR)
–
Power-down
Regulator OFF
–
Regulator OFF / internal reset ON
–
Regulator OFF / internal reset OFF
Regulator ON
The regulator ON modes are activated by default on LQFP packages.On WLCSP64+2
package, they are activated by connecting both REGOFF and IRROFF pins to VSS, while
only REGOFF must be connected to VSS on UFBGA176 package (IRROFF is not available).
VDD minimum value is 1.8 V.
DS6329 Rev 18
25/181
180
Functional overview
STM32F20xxx
There are three power modes configured by software when the regulator is ON:
MR is used in the nominal regulation mode
LPR is used in Stop modes
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost).
Two external ceramic capacitors must be connected on VCAP_1 and VCAP_2 pin. Refer to
Figure 19: Power supply scheme and Table 16: VCAP1/VCAP2 operating conditions.
All packages have the regulator ON feature.
3.16.2
Regulator OFF
This feature is available only on packages featuring the REGOFF pin. The regulator is
disabled by holding REGOFF high. The regulator OFF mode allows to supply externally a
V12 voltage source through VCAP_1 and VCAP_2 pins.
The two 2.2 µF ceramic capacitors must be replaced by two 100 nF decoupling capacitors.
Refer to Figure 19: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor must be used to monitor the V12 of the logic power domain. PA0 pin must
be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic
power domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used at power-on reset. As a
consequence, PA0 and NRST pins must be managed separately if the debug
connection at reset or pre-reset is required.
Regulator OFF / internal reset ON
On WLCSP64+2 package, this mode is activated by connecting REGOFF pin to VDD and
IRROFF pin to VSS. On UFBGA176 package, only REGOFF must be connected to VDD
(IRROFF not available). In this mode, VDD/VDDA minimum value is 1.8 V.
The regulator OFF / internal reset ON mode allows the user to supply externally a 1.2 V
voltage source through VCAP_1 and VCAP_2 pins, in addition to VDD.
26/181
DS6329 Rev 18
STM32F20xxx
Functional overview
Figure 6. Regulator OFF / internal reset ON
Power-down reset risen
before VCAP_1/VCAP_2 stabilization
External VCAP_1/2
power supply supervisor Application reset
signal (optional)
Ext. reset controller active
when VCAP_1/2 < 1.08 V
VDD
(1.8 to 3.6 V)
PA0
VDD
NRST
REGOFF
1.2 V
VCAP_1
IRROFF
VCAP_2
ai18476b
The following conditions must be respected:
VDD must always be higher than VCAP_1 and VCAP_2 to avoid current injection between
power domains.
If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to
reach 1.8 V, then PA0 must be kept low to cover both conditions: until VCAP_1 and
VCAP_2 reach 1.08 V and until VDD reaches 1.8 V (see Figure 8).
Otherwise, If the time for VCAP_1 and VCAP_2 to reach 1.08 V is slower than the time for
VDD to reach 1.8 V, then PA0 must be asserted low externally (see Figure 9).
If VCAP_1 and VCAP_2 go below 1.08 V and VDD is higher than 1.8 V, then a reset must
be asserted on PA0 pin.
Regulator OFF / internal reset OFF
On WLCSP64+2 package, this mode activated by connecting REGOFF to VSS and IRROFF
to VDD. IRROFF cannot be activated in conjunction with REGOFF. This mode is available
only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source
through VCAP_1 and VCAP_2 pins. In this mode, the integrated power-on reset (POR)/ powerdown reset (PDR) circuitry is disabled.
An external power supply supervisor must monitor both the external 1.2 V and the external
VDD supply voltage, and must maintain the device in reset mode as long as they remain
below a specified threshold. The VDD specified threshold, below which the device must be
maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes
allows the design of low-power applications.
DS6329 Rev 18
27/181
180
Functional overview
STM32F20xxx
Figure 7. Regulator OFF / internal reset OFF
VDD
1.2 V
External VDD/VCAP_1/2
power supply supervisor
Ext. reset controller active
when VDD