0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F303C8Y6TR

STM32F303C8Y6TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFBGA49

  • 描述:

    IC MCU 32BIT 64KB FLASH 49WLCSP

  • 数据手册
  • 价格&库存
STM32F303C8Y6TR 数据手册
STM32F303x6/x8 Arm®Cortex®-M4 32b MCU+FPU, up to 64KB Flash, 16KB SRAM, 2 ADCs, 3 DACs, 3 comp., op-amp 2.0 - 3.6 V Datasheet - production data Features • Core: Arm® Cortex®-M4 32-bit CPU with FPU (72 MHz max), single-cycle multiplication and HW division, 90 DMIPS (from CCM), DSP instruction • Memories – Up to 64 Kbytes of Flash memory UFQFPN32 (5 x 5 mm) LQFP32 (7 x 7 mm) LQFP48 (7 x 7 mm) LQFP64 (10 x 10 mm) WLCSP49 (3.89x3.74 mm) – 12 Kbytes of SRAM with HW parity check • Three ultra-fast rail-to-rail analog comparators with analog supply from 2 to 3.6 V – Routine booster: 4 Kbytes of SRAM on instruction and data bus with HW parity check (CCM) • One operational amplifiers that can be used in PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V • CRC calculation unit • Reset and supply management – Low-power modes: Sleep, Stop, Standby – VDD,VDDA voltage range: 2.0 to 3.6 V – Power-on/Power-down reset (POR/PDR) – Programmable voltage detector (PVD) – VBAT supply for RTC and backup registers • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC (up to 64 MHz with PLL option) – Internal 40 kHz oscillator • Up to 18 capacitive sensing channels supporting touchkeys, linear and rotary touch sensors • Up to 11 timers – One 32-bit timer and one 16-bit timer with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – One 16-bit 6-channel advanced-control timer, with up to 6 PWM channels, deadtime generation and emergency stop – One 16-bit timer with 2 IC/OCs, 1 OCN/PWM, deadtime generation, emergency stop – Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop • Up to 51 fast I/O ports, all mappable on external interrupt vectors, several 5 V-tolerant – Two watchdog timers (independent, window) • Interconnect matrix – SysTick timer: 24-bit downcounter • 7-channel DMA controller – Up to two 16-bit basic timers to drive DAC • Up to two ADC 0.20 µs (up to 21 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, single-ended / differential mode, separate analog supply from 2.0 to 3.6 V • Temperature sensor • Up to three 12-bit DAC channels with analog supply from 2.4 V to 3.6 V July 2018 This is information on a product in full production. • Calendar RTC with alarm, periodic wakeup from Stop • Communication interfaces – CAN interface (2.0 B Active) and one SPI – One I2C with 20 mA current sink to support Fast mode plus, SMBus/PMBus DS9866 Rev 8 1/124 www.st.com STM32F303x6/x8 – Up to 3 USARTs, one with ISO/IEC 7816 interface, LIN, IrDA, modem control • All packages ECOPACK®2 compliant • Debug mode: serial wire debug (SWD), JTAG • 96-bit unique ID Table 1. Device summary 2/124 Reference Part number STM32F303x6 STM32F303K6/C6/R6 STM32F303x8 STM32F303K8/C8/R8 DS9866 Rev 8 STM32F303x6/x8 Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Arm® Cortex®-M4 core with FPU with embedded Flash memory and SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 15 3.4 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.10 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 20 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.10.4 OPAMP2 reference voltage (VOPAMP2) . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.12 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13 Ultra-fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DS9866 Rev 8 3/124 5 Contents STM32F303x6/x8 3.14.1 Advanced timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.14.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16 and TIM17) . . . . . 24 3.14.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.14.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.14.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25 3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.16.1 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.16.2 Universal synchronous / asynchronous receivers / transmitters (USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.16.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.16.4 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.19.1 Serial-wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Pinout and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1 4/124 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.5 Input voltage on a pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.6 Power-supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.7 Measurement of the current consumption . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 52 6.3.3 Characteristics of the embedded reset and power-control block . . . . . . 52 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DS9866 Rev 8 STM32F303x6/x8 7 Contents 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.17 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.22 Temperature sensor (TS) characteristics . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.5 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.6 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 7.7.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.7.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 119 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 DS9866 Rev 8 5/124 5 List of tables STM32F303x6/x8 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. 6/124 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 STM32F303x6/8 family device features and peripherals count . . . . . . . . . . . . . . . . . . . . . 12 VDDA ranges for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32F303x6/8 peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM32F303x6/8 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F303x6/8 SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Capacitive sensing GPIOs available on STM32F303x6/8 devices . . . . . . . . . . . . . . . . . . . 29 No. of capacitive sensing channels available on STM32F303x6/8 devices . . . . . . . . . . . . 30 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32F303x6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STM32F303x6/8 peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . 44 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 52 Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 55 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 56 Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 56 Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 57 Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 57 Typical current consumption in Run mode, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Typical current consumption in Run mode, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Typical current consumption in Sleep mode, code running from Flash memory or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Wakeup time using USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 DS9866 Rev 8 STM32F303x6/x8 Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. List of tables EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 IWDG min./max. timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 WWDG min./max. timeout value at 72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Temperature sensor (TS) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Temperature sensor (TS) calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 DS9866 Rev 8 7/124 7 List of figures STM32F303x6/x8 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. 8/124 STM32F303x6/8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32F303x6/8 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Power-supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Scheme of the current-consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 58 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 71 TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5V- tolerant (FT and FTf) I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . 79 5V-tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . 79 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 ADC typical current consumption in single-ended and differential modes . . . . . . . . . . . . . 90 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Maximum VREFINT scaler startup time from power-down . . . . . . . . . . . . . . . . . . . . . . . . . . 99 OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Recommended footprint for the LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Recommended footprint for the LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Recommended footprint for the LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 DS9866 Rev 8 STM32F303x6/x8 Figure 47. Figure 48. Figure 49. List of figures UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 DS9866 Rev 8 9/124 9 Introduction 1 STM32F303x6/x8 Introduction This datasheet provides the ordering information and the mechanical device characteristics of the STM32F303x6/8 microcontrollers. This document must be read in conjunction with the STM32F303xx, STM32F358xx and STM32F328xx advanced Arm®-based 32-bit MCUs reference manual (RM0316) available from the STMicroelectronics website www.st.com. For information on the Cortex®-M4 core with FPU, refer to: • Arm®(a) Cortex®-M4 Processor Technical Reference Manual available from the www.arm.com website. • STM32F3xxx and STM32F4xxx Cortex®-M4 programming manual (PM0214) available from the www.st.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 10/124 DS9866 Rev 8 STM32F303x6/x8 2 Description Description The STM32F303x6/8 family incorporates the high-performance Arm® Cortex®-M4 32-bit RISC core operating at up to 72 MHz frequency embedding a floating point unit (FPU), high-speed embedded memories (up to 64 Kbytes of Flash memory, 12 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. The STM32F303x6/8 microcontrollers offer up to two fast 12-bit ADCs (5 Msps), up to three ultra-fast comparators, an operational amplifier, three DAC channels, a low-power RTC, one general-purpose 32-bit timer, one timer dedicated to motor control, and four general-purpose 16-bit timers. They also feature standard and advanced communication interfaces: one I2C, one SPI, up to three USARTs and one CAN. The STM32F303x6/8 family operates in the –40 to +85 °C and –40 to +105 °C temperature ranges from 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allow the design of low-power applications. The STM32F303x6/8 family offers devices in 32 and 64-pin packages. Depending on the device chosen, different sets of peripherals are included. DS9866 Rev 8 11/124 45 Description STM32F303x6/x8 Table 2. STM32F303x6/8 family device features and peripherals count Peripheral Flash (Kbytes) STM32F303Kx STM32F303Cx STM32F303Rx 32 32 32 64 64 SRAM on data bus (Kbytes) 12 Core coupled memory SRAM on instruction bus (CCM SRAM) (Kbytes) 4 Timers Comm. interfaces Advanced control 1 (16-bit) General purpose 4 (16-bit) 1 (32 bit) Basic 2 (16-bit) SysTick timer 1 Watchdog timers (independent, window) 2 PWM channels (all)(1) 20 22 22 PWM channels (except complementary) 14 16 16 SPI 1 2C 1 I USART 2 CAN GPIOs 3 1 10 20 26 5-Volt tolerant I/Os (FT,FTf) 15 17 25 14 17 18 DMA channels 12-bit ADCs Number of channels 7 2 9 12-bit DAC channels Ultra-fast analog comparator 2 2 21 3 1 CPU frequency 72 MHz Operating voltage Operating temperature 2 15 3 Operational amplifiers 2.0 to 3.6 V Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C Junction temperature: - 40 to 125 °C LQFP32, UFQFPN32 LQFP48, WLCSP49 1. This total considers also the PWMs generated on the complementary output channels. 12/124 3 Normal I/Os (TC, TTa) Capacitive sensing channels Packages 64 DS9866 Rev 8 LQFP64 STM32F303x6/x8 Description Figure 1. STM32F303x6/8 block diagram @VDD33 Obl Flash interface TPIU SWJTAG FPU Ibus CORTEX M4 CPU Dbus F max = 72MHz System bus NVIC BusMatrix JTRST JTDI JTCK-SWCLK JTMS-SWDAT JTDO-TRACESWO as AF Dbus POWER VDD18 Flash 64KB 64 bits VOLT. REG. 3.3V TO 1.8V V DD33 = 2 to 3.6V V SS @VDDA SRAM 12KB @VDDA CCM SRAM 4KB SUPPLY SUPERVISION POR Reset Int POR / PDR RC HS 8MHz PVD RC LS GP DMA1 7 channels NRESET VDDA VSSA @VDD33 XTAL OSC 4-32MHz PLL OSC_IN OSC_OUT Ind. WDG32K Temp sensor 12bitADC1 IF IF 12bitADC2 IF IF AHB DECODER @VDDA PA[15:0] GPIOPORTA PB[15:0] GPIOPORTB PC[15:0] GPIOPORTC PD2 GPIOPORTD PF[1:0] GPIOPORTF 6 Groups of 4 Channels as AF Touch Sensing Controller VBAT = 1.65 to 3.6V XTAL 32kHz RTC AWU OSC32_IN OSC32_OUT ANTI-TAMP Backup interface TIM2 (32-bit/PWM) CRC 4 Channels, ETR as AF 4 Channels, ETR as AF USART2 RX,TX, CTS, RTS, SmartCard as AF USART3 RX,TX, CTS, RTS, SmartCard as AF I2C1 SCL,SDA,SMBA as AF AHB2 APB1 EXT.IT WKUP WinWATCHDOG 15 TIM15 1 channel, 1 compl. channel, BRK as AF TIM16 1 channel, 1 compl. channel, BRK as AF TIM17 4 channels, 3 compl. channel, ETR, BRK as AF TIM1 MOSI,MISO, SCK,NSS as AF SPI1 APB2: Fmax = 72 MHz 2 channels, 1 compl. channel, BRK as AF BxCAN 12-bit DAC1 channel 1 IF DAC1_OUT1 as AF IF 12-bit DAC1 channel 2 IF DAC1_OUT2 as AF IF 12-bit DAC2 channel 1 DAC2_OUT1 as AF USART1 SYSCFG CTL @VDDA CAN_TX CAN_RX IF TIM6 TIM7 RX,TX, CTS, RTS, SmartCard as AF Backup reg (20B) TIM3 AHB2 APB2 Up to 16 lines Standby interface APB1: Fmax = 36 MHz VREF+ VREF- RESET& CLOCK CTRL AHBPCLK APBP1CLK APBP2CLK HCLK FCLK USARTCLK CECCLK ADC1/ADC2 IF Op-amp2IF INM, INP, OUT as AF @VDDA GP Comparator 6 GP Comparator 4 GP Comparator 2 INM, INP, OUT as AF MSv31958V2 1. AF: alternate function on I/O pins. DS9866 Rev 8 13/124 45 Functional overview STM32F303x6/x8 3 Functional overview 3.1 Arm® Cortex®-M4 core with FPU with embedded Flash memory and SRAM The Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm 32-bit Cortex-M4 RISC processor with FPU features exceptional code-efficiency, delivering the high performance expected from an Arm core, with memory sizes usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions that allows efficient signal processing and complex algorithm execution. Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation. With its embedded Arm core, the STM32F303x6/8 family is compatible with all Arm tools and software. Figure 1 shows the general block diagram of the STM32F303x6/8 family devices. 3.2 Memories 3.2.1 Embedded Flash memory All STM32F303x6/8 devices feature up to 64 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). 3.2.2 Embedded SRAM The STM32F303x6/8 devices feature 12 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz when running code from CCM (core coupled memory) RAM. The SRAM is organized as follows: 14/124 • 4 Kbytes of SRAM on instruction and data bus with parity check (core coupled memory or CCM) and used to execute critical routines or to access data • 12 Kbytes of SRAM with parity check mapped on the data bus DS9866 Rev 8 STM32F303x6/x8 3.2.3 Functional overview Boot modes At startup, BOOT0 pin and BOOT1 option bit are used to select one of the three boot options: • Boot from user Flash memory • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PA2/PA3), I2C1 (PB6/PB7). 3.3 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.4 Power management 3.4.1 Power supply schemes • VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is provided externally through VDD pins. • VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators operational amplifiers, reset blocks, RCs and PLL.The minimum voltage to be applied to VDDA differs from one analog peripherals to another. See Table 3 below, summarizing the VDDA ranges for analog peripherals. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. • VDD18 = 1.65 to 1.95 V (VDD18 domain): power supply for digital core, SRAM and Flash memory. VDD18 is internally generated through an internal voltage regulator. Table 3. VDDA ranges for analog peripherals Analog peripheral Min. VDDAsupply Max. VDDAsupply ADC/COMP 2V 3.6 V DAC/OPAMP 2.4 V 3.6 V • 3.4.2 VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Power supply supervisor The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device DS9866 Rev 8 15/124 45 Functional overview STM32F303x6/x8 remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. • The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA must arrive first and be greater than or equal to VDD. • The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.4.3 Voltage regulator The regulator has three operation modes: main (MR), low-power (LPR), and power-down. • The MR mode is used in the nominal regulation mode (Run) • The LPR mode is used in Stop mode. • The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. The voltage regulator is always enabled after reset. It is disabled in Standby mode. 3.4.4 Low-power modes The STM32F303x6/8 supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm, COMPx, I2C or USARTx. • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: 16/124 The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. DS9866 Rev 8 STM32F303x6/x8 3.5 Functional overview Interconnect matrix Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency. Table 4. STM32F303x6/8 peripheral interconnect matrix Interconnect source Interconnect destination Interconnect action TIMx Timers synchronization or chaining ADCx DACx Conversion triggers DMA Memory to memory transfer trigger COMPx Comparator output blanking COMPx TIMx Timer input: ocrefclear input, input capture ADCx TIM1 Timer triggered by analog watchdog GPIO RTCCLK HSE/32 MC0 TIM16 Clock source used as input channel for HSI and LSI calibration CSS CPU (hard fault) RAM (parity error) COMPx PVD GPIO TIM1 TIM15, 16, 17 Timer break TIMx External trigger, timer break GPIO ADCx DACx Conversion external trigger DACx COMPx Comparator inverting input TIMx Note: For more details about the interconnect actions, refer to the corresponding sections in the RM0364 reference manual. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected on reset as default CPU clock. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow to configure the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the DS9866 Rev 8 17/124 45 Functional overview STM32F303x6/x8 high-speed APB domains is 72 MHz, while the maximum allowed frequency of the lowspeed APB domain is 36 MHz. TIM1 maximum frequency is 144 MHz. 18/124 DS9866 Rev 8 STM32F303x6/x8 Functional overview Figure 2. Clock tree FLITFCLK to Flash programming interface HSI to I2C1 SYSCLK 8 MHz HSI HSI RC /2 HCLK PLLSRC to cortex System timer /8 SW PLLMUL to AHB bus, core, memory and DMA FHCLK Cortex free HSI x2,x3,.. AHB AHB prescaler prescaler x16 /1,2,..512 /1,2,4,8,16 PLL PLLCLK APB1 running clock PCLK1 to APB1 peripherals HSE SYSCLK If (APB1 prescaler CSS /2,/3,... to TIM 2, 3, 6, 7 =1) x1 else x2 /16 PCLK1 SYSCLK HSI OSC_OUT 4-32 MHz OSC_IN LSE HSE OSC APB2 PCLK2 to APB2 peripherals prescaler /1,2,4,8,16 /32 RTCCLK OSC32_IN to RTC LSE OSC 32.768kHz OSC32_OUT to USART1 If (APB2 prescaler LSE to TIM 15,16,17 =1) x1 else x2 RTCSEL[1:0] LSI RC LSI IWDGCLK to IWDG 40kHz PLLNODIV MCOPRE /2 MCO PLLCLK x2 HSI /1,2,4, ...128 TIM1/ HRTIM1 LSI HSE SYSCLK Main clock output MCO ADC Prescaler /1,2,4 to ADCx (x = 1, 2) ADC Prescaler /1,2,4,6,8,10,12,16, 32,64,128,256 MSv31933V6 DS9866 Rev 8 19/124 45 Functional overview 3.7 STM32F303x6/x8 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs. The I/Os alternate function configuration can be locked if needed, following a specific sequence to avoid spurious writing to the I/Os registers. Fast I/O handling allows I/O toggling up to 36 MHz. 3.8 Direct memory access (DMA) The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each of the 7 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F303x6/8 devices embed a nested vectored interrupt controller (NVIC) able to handle up to 60 interrupt channels that can be masked and 16 priority levels. The NVIC benefits are the following: • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail chaining • Processor state automatically saved on interrupt entry and restored on interrupt exit with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The external interrupt/event controller consists of 27 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked 20/124 DS9866 Rev 8 STM32F303x6/x8 Functional overview independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 51 GPIOs can be connected to the 16 external interrupt lines. 3.10 Fast analog-to-digital converter (ADC) Two 5 MSPS fast analog-to-digital converters, with selectable resolution between 12 and 6 bit, are embedded in the STM32F303x6/8 family devices. The ADCs have up to 21 external channels. Some of the external channels are shared between ADC1 and ADC2, performing conversions in single-shot or scan modes. The channels can be configured to be either single-ended input or differential input. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADCs also have internal channels: temperature sensor connected to ADC1 channel 16, VBAT/2 connected to ADC1 channel 17, voltage reference VREFINT connected to both ADC1 and ADC2 channel 18 and VOPAMP2 connected to ADC2 channel 17. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold • Single-shunt phase current reading techniques. Three analog watchdogs are available per ADC. The ADC can be served by the DMA controller. The analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIM2, TIM3, TIM6, TIM15) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN16 input channel that is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. 3.10.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN18 and ADC2_IN18 DS9866 Rev 8 21/124 45 Functional overview STM32F303x6/x8 input channels. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. 3.10.3 VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC1_IN17. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage. 3.10.4 OPAMP2 reference voltage (VOPAMP2) OPAMP2 reference voltage can be measured using ADC2 internal channel 17. 3.11 Digital-to-analog converter (DAC) One 12-bit buffered DAC channel (DAC1_OUT1) and two 12-bit unbuffered DAC channels (DAC1_OUT2 and DAC2_OUT1) can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital interface supports the following features: 3.12 • Three DAC output channels • 8-bit or 12-bit monotonic output • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation (only on DAC1) • Triangular-wave generation (only on DAC1) • Dual DAC channel independent or simultaneous conversions • DMA capability for each channel • External triggers for conversion Operational amplifier (OPAMP) The STM32F303x6/8 embeds an operational amplifier (OPAMP2) with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement. The operational amplifier features: 22/124 • 8 MHz GBP • • • 0.5 mA output capability Rail-to-rail input/output In PGA mode, the gain can be programmed to 2, 4, 8 or 16. DS9866 Rev 8 STM32F303x6/x8 3.13 Functional overview Ultra-fast comparators (COMP) The STM32F303x6/8 devices embed three ultra-fast rail-to-rail comparators (COMP2/4/6) that offer the features below: • Programmable internal or external reference voltage • Selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output • Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 23: Embedded internal reference voltage for values and parameters of the internal reference voltage. All comparators can wake up from STOP mode, generate interrupts and breaks for the timers. 3.14 Timers and watchdogs The STM32F303x6/8 includes advanced control timer, 5 general-purpose timers, basic timer, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Advanced control TIM1(1) 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 Yes Generalpurpose TIM2 32-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM3 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 1. TIM1 can be clocked from the PLL x 2 running at up to 144 MHz when the system clock source is the PLL and AHB or APB2 subsystem clocks are not divided by more than 2 cumulatively. DS9866 Rev 8 23/124 45 Functional overview 3.14.1 STM32F303x6/x8 Advanced timer (TIM1) The advanced-control timer can be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) with full modulation capability (0-100%) • One-pulse mode output In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs. Many features are shared with those of the general-purpose TIM timers (described in Section 3.14.2) using the same architecture, so the advanced-control timers can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. 3.14.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16 and TIM17) There are up to three general-purpose timers embedded in the STM32F303x6/8 (see Table 5 for differences) that can be synchronized. Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. • TIM2 and TIM3 They are full-featured general-purpose timers: – TIM2 has a 32-bit auto-reload up/down counter and 32-bit prescaler – TIM3 has a 16-bit auto-reload up/down counter and 16-bit prescaler These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. • TIM15, 16 and 17 They are three general-purpose timers with mid-range features. They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has two channels and one complementary channel – TIM16 and TIM17 have one channel and one complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.14.3 Basic timers (TIM6 and TIM7) The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases. 24/124 DS9866 Rev 8 STM32F303x6/x8 3.14.4 Functional overview Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.14.5 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.14.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.15 • A 24-bit down counter • Auto reload capability • Maskable system interrupt generation when the counter reaches 0. • Programmable clock source Real-time clock (RTC) and backup registers The RTC and the 5 backup registers are supplied through a switch that takes power from either the VDD supply when present or the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. • Two programmable alarms with wakeup from Stop and Standby mode capability. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. • Two anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. • Timestamp feature, which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be DS9866 Rev 8 25/124 45 Functional overview STM32F303x6/x8 woken up from Stop and Standby modes on timestamp event detection. • 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability. The RTC clock sources can be: • A 32.768 kHz external crystal • A resonator or oscillator • The internal low-power RC oscillator (typical frequency of 40 kHz) • The high-speed external clock divided by 32. 3.16 Communication interfaces 3.16.1 Inter-integrated circuit interface (I2C) The devices feature an I2C bus interface that can operate in multimaster and slave mode. It can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes. It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). It also includes programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters - Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, it provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. It also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. The I2C interface can be served by the DMA controller. The features available in I2C1 are showed below in Table 7. Table 7. STM32F303x6/8 I2C implementation I2C features(1) 26/124 I2C1 7-bit addressing mode X 10-bit addressing mode X Standard mode (up to 100 kbit/s) X Fast mode (up to 400 kbit/s) X DS9866 Rev 8 STM32F303x6/x8 Functional overview Table 7. STM32F303x6/8 I2C implementation (continued) I2C features(1) I2C1 Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X Independent clock X SMBus X Wakeup from STOP X 1. X = supported. 3.16.2 Universal synchronous / asynchronous receivers / transmitters (USARTs) The STM32F303x6/8 devices have three embedded universal synchronous receivers/transmitters (USART1, USART2 and USART3). The USART interfaces are able to communicate at speeds of up to 9 Mbits/s. USART1 provides hardware management of the CTS and RTS signals. It supports IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and has LIN Master/Slave capability. All USART interfaces can be served by the DMA controller. The features available in the USART interfaces are showed below in Table 8. Table 8. USART features USART1 USART2 USART3 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X - LIN mode X - Dual clock domain and wake up from Stop mode X - Receiver timeout interrupt X - Modbus communication X - Auto baud rate detection X - Driver Enable X X USART modes/features(1) 1. X = supported. DS9866 Rev 8 27/124 45 Functional overview 3.16.3 STM32F303x6/x8 Serial peripheral interface (SPI) A SPI interface allows to communicate up to 18 Mbits/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The features available in SPI1 are showed below in Table 9. Table 9. STM32F303x6/8 SPI implementation SPI features(1) SPI1 Hardware CRC calculation X Rx/Tx FIFO X NSS pulse mode X TI mode X 1. X = supported. 3.16.4 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 3.17 Infrared transmitter The STM32F303x6/8 devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below. TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13. To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes is obtained by programming the two timers of the output compare channels (see Figure 3). Figure 3. Infrared transmitter TIMER 16 OC (for envelop) TIMER 17 PB9/PA13 OC (for carrier) MSv30365V1 28/124 DS9866 Rev 8 STM32F303x6/x8 3.18 Functional overview Touch sensing controller (TSC) The STM32F303x6/8 devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 18 capacitive sensing channels distributed over 6 analog I/Os group. Capacitive sensing technology is able to detect the presence of a finger near an electrode that is protected from direct touch by a dielectric (glass, plastic and others). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor, until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. Table 10. Capacitive sensing GPIOs available on STM32F303x6/8 devices Group 1 2 3 4 5 Capacitive sensing group name Pin name TSC_G1_IO1 PA0 TSC_G1_IO2 PA1 TSC_G1_IO3 PA2 TSC_G1_IO4 PA3 TSC_G2_IO1 PA4 TSC_G2_IO2 PA5 TSC_G2_IO3 PA6 TSC_G2_IO4 PA7 TSC_G3_IO1 PC5 TSC_G3_IO2 PB0 TSC_G3_IO3 PB1 TSC_G3_IO4 PB2 TSC_G4_IO1 PA9 TSC_G4_IO2 PA10 TSC_G4_IO3 PA13 TSC_G4_IO4 PA14 TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 TSC_G5_IO3 PB6 TSC_G5_IO4 PB7 DS9866 Rev 8 29/124 45 Functional overview STM32F303x6/x8 Table 10. Capacitive sensing GPIOs available on STM32F303x6/8 devices (continued) Group Capacitive sensing group name Pin name TSC_G6_IO1 PB11 TSC_G6_IO2 PB12 TSC_G6_IO3 PB13 TSC_G6_IO4 PB14 6 Table 11. No. of capacitive sensing channels available on STM32F303x6/8 devices Number of capacitive sensing channels Analog I/O group STM32F303xRx STM32F303xCx STM32F303xKx G1 3 3 3 G2 3 3 3 G3 3 2 2 G4 3 3 3 G5 3 3 3 G6 3 3 0 Total number of capacitive sensing channels 18 17 14 3.19 Development support 3.19.1 Serial-wire JTAG debug port (SWJ-DP) The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 30/124 DS9866 Rev 8 STM32F303x6/x8 Pinout and pin descriptions PA15 PB3 PB4 PB5 PB6 PB7 BOOT0 VSS Figure 4. LQFP32 pinout 32 31 30 29 28 27 26 25 VDD 1 24 PF0/OSC_IN 2 23 PA13 PF1/OSC_OUT 3 22 PA12 PA14 NRST 4 21 PA11 VDDA/VREF+ 5 20 PA10 PA0 6 19 PA9 PA1 7 18 PA8 PA2 8 17 VDD VSS PB1 PA7 PB0 PA4 PA6 10 11 12 13 14 15 16 PA5 9 PA3 LQFP32 MS31949V3 1. The above figure shows the package top view. 43 42 41 40 39 38 PA14 PA15 44 PB3 45 PB4 BOOT0 46 PB5 PB8 47 PB6 PB9 48 PB7 VDD VSS Figure 5. LQFP48 pinout 37 VBAT 1 36 VDD PC13 2 35 VSS PC14/OSC32_IN 3 34 PA13 PC15/OSC32_OUT 4 33 PA12 PF0/OSC_IN 5 32 PF1/OSC_OUT 6 31 PA11 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 PA7 20 21 22 23 24 VDD PA6 19 VSS PA5 18 PB11 17 PB10 16 PB2 15 PB1 14 PB0 13 PA4 LQFP48 PA3 4 Pinout and pin descriptions MSv36901V2 1. The above figure shows the package top view. DS9866 Rev 8 31/124 45 Pinout and pin descriptions STM32F303x6/x8 PA14 PA15 PC10 PC11 PC12 PD2 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 VSS PB9 VDD Figure 6. LQFP64 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VBAT 1 48 PC13 2 47 VSS PC14/OSC32_IN 3 46 PA13 PC15/OSC32_OUT 4 45 PA12 PF0/OSC_IN 5 6 44 43 PA11 42 PA9 PF1/OSC_OUT NRST 7 PC0 8 PC1 9 LQFP64 VDD PA10 41 PA8 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA/VREF- 12 37 PC6 PB15 13 36 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 VDDA/VREF+ VDD VSS PB11 PB2 PB10 PB1 PB0 PC5 PC4 PA7 PA6 PA5 PA4 VDD VSS PA3 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 MS31951V2 1. The above figure shows the package top view. 32/124 DS9866 Rev 8 STM32F303x6/x8 Pinout and pin descriptions Figure 7. WLCSP49 ballout 5 6 7 1 2 3 4 A PA14 PA15 PB3 PB6 B VSS VDD PB4 PB5 PB7 C PA11 PA13 PA12 PA10 PC3 D PA8 PA9 PB15 PC7 PA2 PA0 NRST E PB14 PB13 PC5 PA6 PA3 VDDA VSSA VREF- F PB12 PB2 PB0 PA7 PA4 VSS VREF+ G PB11 PB10 PB1 PC4 PA5 VDD PA1 BOOT0 PB9 VDD PB8 VSS PF1 OSC_OUT PF0 OSC_IN MSv44311V1 1. The above figure shows the package top view. DS9866 Rev 8 33/124 45 Pinout and pin descriptions STM32F303x6/x8 32 31 30 29 28 27 26 PA15 PB3 PB4 PB5 PB6 PB7 BOOT0 VSS Figure 8. UFQFPN32 pinout 25 VDD 1 24 PA14 PF0/OSC_IN 2 23 PA13 PF1/OSC_OUT 3 22 PA12 NRST 4 21 PA11 VDDA/VREF+ 5 20 PA10 VSSA/VREF- 6 19 PA9 PA0 7 18 PA8 PA1 8 17 VDD 12 13 14 15 16 PA6 PA7 PB0 VSS 11 PA4 10 PA3 PA2 9 PA5 UFQFPN32 MSv44312V2 34/124 DS9866 Rev 8 STM32F303x6/x8 Pinout and pin descriptions Table 12. Legend/abbreviations used in the pinout table Name Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TT 3.3 V tolerant I/O TC Standard 3.3 V I/O B Dedicated BOOT0 pin RST Bi-directional reset pin with embedded weak pull-up resistor POR External power-on reset pin with embedded weak pull-up resistor, powered from VDDA. Pin type I/O structure Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Notes Alternate functions Pin functions Definition Functions selected through GPIOx_AFR registers Additional Functions directly selected/enabled through peripheral registers functions Table 13. STM32F303x6/8 pin definitions LQFP32 LQFP48 LQFP64 WLCSP49 Pin type I/O structure Pin functions UFQFPN32 Pin Number - - 1 1 - VBAT S - - - 2 2 - PC13(1) I/O TC TIM1_CH1N RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2 - - 3 3 - PC14 / OSC32_IN(1) I/O TC - OSC32_IN - - 4 4 - PC15 / OSC32_OUT(1) I/O TC - OSC32_OUT 2 2 5 5 C7 PF0 / OSC_IN I/O FT TIM1_CH3N OSC_IN 3 3 6 6 C6 PF1 / OSC_OUT I/O FT - OSC_OUT 4 4 7 7 D7 NRST I/O RST Pin name (function after reset) DS9866 Rev 8 Alternate functions Additional functions Backup power supply Device reset input / internal reset output (active low) 35/124 45 Pinout and pin descriptions STM32F303x6/x8 Table 13. STM32F303x6/8 pin definitions (continued) LQFP32 LQFP48 LQFP64 WLCSP49 Pin type I/O structure Pin functions UFQFPN32 Pin Number - - - 8 - PC0 I/O TTa EVENTOUT, TIM1_CH1 ADC12_IN6 - - - 9 - PC1 I/O TTa EVENTOUT, TIM1_CH2 ADC12_IN7 - - - 10 - PC2 I/O TTa EVENTOUT, TIM1_CH3 ADC12_IN8 - - - 11 C5 PC3 I/O TTa EVENTOUT, TIM1_CH4, TIM1_BKIN2 ADC12_IN9 6 - 8 12 E7 VSSA/VREF- S - - - - F7 VREF+ S - - - E6 VDDA S - - - - VDDA/VREF+ S - 5 7 8 9 5 6 7 8 9 10 11 12 13 14 15 16 D6 G7 D5 Pin name (function after reset) PA0 PA1 PA2 I/O I/O I/O Alternate functions Additional functions Analog ground/Negative reference voltage Analog power supply/Positive reference voltage TTa TIM2_CH1/ TIM2_ETR, TSC_G1_IO1, USART2_CTS, EVENTOUT ADC1_IN1(2), RTC_TAMP2/WKUP1 TTa TIM2_CH2, TSC_G1_IO2, USART2_RTS_DE, TIM15_CH1N, EVENTOUT ADC1_IN2(2), RTC_REFIN TTa TIM2_CH3, TSC_G1_IO3, USART2_TX, COMP2_OUT, TIM15_CH1, EVENTOUT ADC1_IN3(2), COMP2_INM ADC1_IN4(2) 10 9 13 17 E5 PA3 I/O TTa TIM2_CH4, TSC_G1_IO4, USART2_RX, TIM15_CH2, EVENTOUT - - - 18 F6 VSS S - - - - - - 19 G6 VDD S - - - TTa TIM3_CH2, TSC_G2_IO1, SPI1_NSS, USART2_CK, EVENTOUT ADC2_IN1(2), DAC1_OUT1, COMP2_INM, COMP4_INM, COMP6_INM TTa TIM2_CH1/ TIM2_ETR, TSC_G2_IO2, SPI1_SCK, EVENTOUT ADC2_IN2(2), DAC1_OUT2, OPAMP2_VINM 11 12 36/124 10 11 14 15 20 21 F5 PA4(3) G5 (3) PA5 I/O I/O DS9866 Rev 8 STM32F303x6/x8 Pinout and pin descriptions 13 12 16 22 E4 Pin name (function after reset) PA6(3) Pin type WLCSP49 LQFP64 LQFP48 LQFP32 UFQFPN32 Pin Number I/O I/O structure Table 13. STM32F303x6/8 pin definitions (continued) Pin functions Alternate functions Additional functions TTa TIM16_CH1, TIM3_CH1, TSC_G2_IO3, SPI1_MISO, TIM1_BKIN EVENTOUT ADC2_IN3(2), DAC2_OUT1, OPAMP2_VOUT ADC2_IN4(2), COMP2_INP, OPAMP2_VINP 14 13 17 23 F4 PA7 I/O TTa TIM17_CH1, TIM3_CH2, TSC_G2_IO4, SPI1_MOSI, TIM1_CH1N, EVENTOUT - - - 24 G4 PC4 I/O TTa EVENTOUT, TIM1_ETR, USART1_TX ADC2_IN5(2) - - - 25 E3 PC5 I/O TTa EVENTOUT, TIM15_BKIN, TSC_G3_IO1, USART1_RX ADC2_IN11, OPAMP2_VINM 15 14 18 26 F3 PB0 I/O TTa TIM3_CH3, TSC_G3_IO2, TIM1_CH2N, EVENTOUT ADC1_IN11, COMP4_INP, OPAMP2_VINP ADC1_IN12 - 15 19 27 G3 PB1 I/O TTa TIM3_CH4, TSC_G3_IO3, TIM1_CH3N, COMP4_OUT, EVENTOUT - - 20 28 F2 PB2 I/O TTa TSC_G3_IO4, EVENTOUT ADC2_IN12, COMP4_INM - - 21 29 G2 PB10 I/O TT TIM2_CH3, TSC_SYNC, USART3_TX, EVENTOUT - - - 22 30 G1 PB11 I/O TTa TIM2_CH4, TSC_G6_IO1, USART3_RX, EVENTOUT COMP6_INP 16 16 23 31 - VSS S - Digital ground 17 17 24 32 B2 VDD S - Digital power supply - 25 33 F1 PB12 I/O TTa TSC_G6_IO2, TIM1_BKIN, USART3_CK, EVENTOUT ADC2_IN13 - 26 34 E2 PB13 I/O TTa TSC_G6_IO3, TIM1_CH1N, USART3_CTS, EVENTOUT ADC1_IN13 TTa TIM15_CH1, TSC_G6_IO4, TIM1_CH2N, USART3_RTS_DE,E VENTOUT ADC2_IN14, OPAMP2_VINP - - - 27 35 E1 PB14 I/O DS9866 Rev 8 37/124 45 Pinout and pin descriptions STM32F303x6/x8 Table 13. STM32F303x6/8 pin definitions (continued) LQFP32 LQFP48 LQFP64 WLCSP49 Pin type I/O structure Pin functions UFQFPN32 Pin Number - - 28 36 D3 PB15 I/O TTa TIM15_CH2, TIM15_CH1N, TIM1_CH3N, EVENTOUT ADC2_IN15, COMP6_INM, RTC_REFIN - - - 37 - PC6 I/O FT EVENTOUT, TIM3_CH1, COMP6_OUT - - - - 38 D4 PC7 I/O FT EVENTOUT, TIM3_CH2 - - - - 39 - PC8 I/O FT EVENTOUT, TIM3_CH3 - - - - 40 - PC9 I/O FT EVENTOUT, TIM3_CH4 - 18 18 29 41 D1 PA8 I/O FT MCO, TIM1_CH1, USART1_CKEVENT OUT - FT TSC_G4_IO1, TIM1_CH2, USART1_TX, TIM15_BKIN, TIM2_CH3, EVENTOUT - FT TIM17_BKIN, TSC_G4_IO2, TIM1_CH3, USART1_RX, COMP6_OUT, TIM2_CH4, EVENTOUT - FT TIM1_CH1N, USART1_CTS, CAN_RX, TIM1_CH4, TIM1_BKIN2, EVENTOUT - FT TIM16_CH1, TIM1_CH2N, USART1_RTS_DE, COMP2_OUT, CAN_TX, TIM1_ETR,EVENTO UT - - 19 20 21 22 19 20 21 22 30 31 32 33 42 43 44 45 D2 C4 C1 C3 Pin name (function after reset) PA9 PA10 PA11 PA12 I/O I/O I/O I/O Alternate functions Additional functions 23 23 34 46 C2 PA13 I/O FT JTMS/SWDAT, TIM16_CH1N, TSC_G4_IO3, IR_OUT, USART3_CTS, EVENTOUT - - 35 47 B1 VSS S - - - - - 36 48 - VDD S - - - 38/124 DS9866 Rev 8 STM32F303x6/x8 Pinout and pin descriptions 24 24 37 49 A1 Pin name (function after reset) PA14 Pin type WLCSP49 LQFP64 LQFP48 LQFP32 UFQFPN32 Pin Number I/O I/O structure Table 13. STM32F303x6/8 pin definitions (continued) Pin functions Alternate functions Additional functions FTf JTCK/SWCLK, TSC_G4_IO4, I2C1_SDA, TIM1_BKIN, USART2_TX, EVENTOUT - - 25 25 38 50 A2 PA15 I/O FTf JTDI, TIM2_CH1/TIM2_ET R, TSC_SYNC, I2C1_SCL, SPI1_NSS, USART2_RX, TIM1_BKIN, EVENTOUT - - - 51 - PC10 I/O FT EVENTOUT, USART3_TX - - - - 52 - PC11 I/O FT EVENTOUT, USART3_RX - - - - 53 - PC12 I/O FT EVENTOUT, USART3_CK - - - - 54 - PD2 I/O FT EVENTOUT, TIM3_ETR - FT JTDO/TRACE SWO, TIM2_CH2, TSC_G5_IO1, SPI1_SCK, USART2_TX, TIM3_ETR, EVENTOUT - FT NJTRST, TIM16_CH1, TIM3_CH1, TSC_G5_IO2, SPI1_MISO, USART2_RX, TIM17_BKIN, EVENTOUT - FT TIM16_BKIN, TIM3_CH2, I2C1_SMBA, SPI1_MOSI, USART2_CK, TIM17_CH1, EVENTOUT - FTf TIM16_CH1N, TSC_G5_IO3, I2C1_SCL, USART1_TX, EVENTOUT - - - 26 27 28 29 26 27 28 29 39 40 41 42 55 56 57 58 A3 B3 B4 A4 PB3 PB4 PB5 PB6 I/O I/O I/O I/O 30 30 43 59 B5 PB7 I/O FTf TIM17_CH1N, TSC_G5_IO4, I2C1_SDA, USART1_RX, TIM3_CH4, EVENTOUT 31 31 44 60 A5 BOOT0 I B - DS9866 Rev 8 39/124 45 Pinout and pin descriptions STM32F303x6/x8 - - 45 61 B6 Pin name (function after reset) PB8 Pin type WLCSP49 LQFP64 LQFP48 LQFP32 UFQFPN32 Pin Number I/O I/O structure Table 13. STM32F303x6/8 pin definitions (continued) Pin functions Alternate functions Additional functions FTf TIM16_CH1, TSC_SYNC, I2C1_SCL, USART3_RX, CAN_RX, TIM1_BKIN,EVENTO UT - - - - 46 62 A6 PB9 I/O FTf TIM17_CH1, I2C1_SDA, IR_OUT, USART3_TX, COMP2_OUT, CAN_TX, EVENTOUT 32 32 47 63 B7 VSS S - - - 1 1 48 64 A7 VDD S - - - 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED). After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the reference manual. 2. Fast ADC channel. 3. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O. 40/124 DS9866 Rev 8 AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 SYS_AF TIM2/TIM15/ TIM16/TIM17/ EVENT TIM1/TIM3/ TIM15/ TIM16 TSC I2C1/TIM1 SPI1/ Infrared TIM1/ Infrared USART1/USA RT2/USART3/ GPCOMP6 GPCOMP2/ GPCOMP4/ GPCOMP6 CAN/TIM1/ TIM15 TIM2/TIM3/TI M17 TIM1 PA0 - TIM2_CH1/TI M2_ETR - TSC_G1_IO1 - - - USART2_CTS - - - PA1 - TIM2_CH2 - TSC_G1_IO2 - - - USART2_RTS _DE - TIM15_CH1N - Port DS9866 Rev 8 AF14 AF15 TIM1 OPAMP2 - EVENT - - - - EVENTOUT - - - - EVENTOUT - TIM2_CH3 - TSC_G1_IO3 - - - USART2_TX COMP2_OUT TIM15_CH1 - - - - - EVENTOUT PA3 - TIM2_CH4 - TSC_G1_IO4 - - - USART2_RX - TIM15_CH2 - - - - - EVENTOUT PA4 - - TIM3_CH2 TSC_G2_IO1 - SPI1_NSS - USART2_CK - - - - - - - EVENTOUT - TIM2_CH1/TI M2_ETR - TSC_G2_IO2 - SPI1_SCK - - - - - - - - - EVENTOUT PA6 - TIM16_CH1 TIM3_CH1 TSC_G2_IO3 - SPI1_MISO TIM1_BKIN - - - - - - - - EVENTOUT PA7 - TIM17_CH1 TIM3_CH2 TSC_G2_IO4 - SPI1_MOSI TIM1_CH1N - - - - - - - - EVENTOUT PA8 MCO - - - - - TIM1_CH1 USART1_CK - - - - - - - EVENTOUT PA9 - - - TSC_G4_IO1 - - TIM1_CH2 USART1_TX - TIM15_BKIN TIM2_CH3 - - - - EVENTOUT PA10 - TIM17_BKIN - TSC_G4_IO2 - - TIM1_CH3 USART1_RX COMP6_OUT - TIM2_CH4 - - - - EVENTOUT PA11 - - - - - - TIM1_CH1N USART1_CTS - CAN_RX - TIM1_CH4 TIM1_BKIN2 - - EVENTOUT PA12 - TIM16_CH1 - - - - TIM1_CH2N USART1_RTS _DE COMP2_OUT CAN_TX - TIM1_ETR - - - EVENTOUT PA13 JTMS/SWDAT TIM16_CH1N - TSC_G4_IO3 - IR_OUT - USART3_CTS - - - - - - - EVENTOUT PA14 JTCK/SWCLK - - TSC_G4_IO4 I2C1_SDA - TIM1_BKIN USART2_TX - - - - - - - EVENTOUT PA15 JTDI TIM2_CH1/ TIM2_ETR - TSC_SYNC I2C1_SCL SPI1_NSS - USART2_RX - TIM1_BKIN - - - - - EVENTOUT PB0 - - TIM3_CH3 TSC_G3_IO2 - - TIM1_CH2N - - - - - - - - EVENTOUT PB1 - - TIM3_CH4 TSC_G3_IO3 - - TIM1_CH3N - COMP4_OUT - - - - - - EVENTOUT PB2 - - - TSC_G3_IO4 - - - - - - - - - - - EVENTOUT PB3 JTDO/TRACE SWO TIM2_CH2 - TSC_G5_IO1 - SPI1_SCK - USART2_TX - - TIM3_ETR - - - - EVENTOUT PB4 NJTRST TIM16_CH1 TIM3_CH1 TSC_G5_IO2 - SPI1_MISO - USART2_RX - - TIM17_BKIN - - - - EVENTOUT PB5 - TIM16_BKIN TIM3_CH2 - I2C1_SMBA SPI1_MOSI - USART2_CK - - TIM17_CH1 - - - - EVENTOUT PB6 - TIM16_CH1N - TSC_G5_IO3 I2C1_SCL - - USART1_TX - - - - - - - EVENTOUT PB7 - TIM17_CH1N - TSC_G5_IO4 I2C1_SDA - - USART1_RX - - TIM3_CH4 - - - - EVENTOUT PB8 - TIM16_CH1 - TSC_SYNC I2C1_SCL - - USART3_RX - CAN_RX - - TIM1_BKIN - - EVENTOUT PB9 - TIM17_CH1 - - I2C1_SDA - IR_OUT USART3_TX COMP2_OUT CAN_TX - - - - - EVENTOUT 41/124 Pinout and pin descriptions Port B AF13 PA2 PA5 Port A AF12 STM32F303x6/x8 Table 14. Alternate functions AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 SYS_AF TIM2/TIM15/ TIM16/TIM17/ EVENT TIM1/TIM3/ TIM15/ TIM16 TSC I2C1/TIM1 SPI1/ Infrared TIM1/ Infrared USART1/USA RT2/USART3/ GPCOMP6 GPCOMP2/ GPCOMP4/ GPCOMP6 CAN/TIM1/ TIM15 TIM2/TIM3/TI M17 TIM1 PB10 - TIM2_CH3 - TSC_SYNC - - - USART3_TX - - - - - - - EVENTOUT PB11 - TIM2_CH4 - TSC_G6_IO1 - - - USART3_RX - - - - - - - EVENTOUT PB12 - - - TSC_G6_IO2 - - TIM1_BKIN USART3_CK - - - - - - - EVENTOUT PB13 - - - TSC_G6_IO3 - - TIM1_CH1N USART3_CTS - - - - - - - EVENTOUT PB14 - TIM15_CH1 - TSC_G6_IO4 - - TIM1_CH2N USART3_RTS _DE - - - - - - - EVENTOUT PB15 - TIM15_CH2 TIM15_CH1N - TIM1_CH3N - - - - - - - - - - EVENTOUT PC0 - EVENTOUT TIM1_CH1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PC2 - EVENTOUT TIM1_CH3 - - - - - - - - - - - - - PC3 - EVENTOUT TIM1_CH4 - - - TIM1_BKIN2 - - - - - - - - - Port Port B AF12 AF13 TIM1 OPAMP2 AF14 AF15 - EVENT DS9866 Rev 8 PC4 - EVENTOUT TIM1_ETR - - - - USART1_TX - - - - - - - - PC5 - EVENTOUT TIM15_BKIN TSC_G3_IO1 - - - USART1_RX - - - - - - - - PC6 - EVENTOUT TIM3_CH1 - - - - COMP6_OUT - - - - - - - - PC7 - EVENTOUT TIM3_CH2 - - - - - - - - - - - - - PC8 - EVENTOUT TIM3_CH3 - - - - - - - - - - - - - PC9 - EVENTOUT TIM3_CH4 - - - - - - - - - - - - - PC10 - EVENTOUT - - - - - USART3_TX - - - - - - - - PC11 - EVENTOUT - - - - - USART3_RX - - - - - - - - PC12 - EVENTOUT - - - - - USART3_CK - - - - - - - - PC13 - - - - TIM1_CH1N - - - - - - - - - - - PC14 - - - - - - - - - - - - - - - - PC15 - - - - - - - - - - - - - - - - Pinout and pin descriptions 42/124 Table 14. Alternate functions (continued) Port C Port D PD2 - EVENTOUT TIM3_ETR - - - - - - - - - - - - - PF0 - - - - - - TIM1_CH3N - - - - - - - - - PF1 - - - - - - - - - - - - - - - - Port F STM32F303x6/x8 STM32F303x6/x8 5 Memory mapping Memory mapping Figure 9. STM32F303x6/8 memory map 0x5000 03FF AHB3 0xFFFF FFFF 7 Cortex-M4 with FPU Internal Peripherals 0xE000 0000 0x5000 0000 Reserved 0x4800 1800 AHB2 0x4800 0000 Reserved 6 0x4002 43FF AHB1 0xC000 0000 0x4002 0000 Reserved 5 0x4001 6C00 APB2 0xA000 0000 0x4001 0000 Reserved 4 0x4000 A000 APB1 0x8000 0000 0x4000 0000 3 0x1FFF FFFF Option bytes 0x6000 0000 0x1FFF F800 System memory 2 0x1FFF D800 Reserved 0x4000 0000 Peripherals 0x1000 1000 CCM RAM 0x1000 0000 Reserved 1 0x2000 0000 0 0x0801 0000 SRAM Flash memory 0x0800 0000 CODE Reserved 0x0001 0000 0x0000 0000 Reserved 0x0000 0000 Flash, system memory or SRAM, depending on BOOT configuration MSv33150V1 DS9866 Rev 8 43/124 45 Memory mapping - Table 15. STM32F303x6/8 peripheral register boundary addresses Bus Boundary address Size (bytes) Peripheral AHB3 0x5000 0000 - 0x5000 03FF 1K - 0x4800 1800 - 0x4FFF FFFF ~132 M AHB2 0x4800 1400 - 0x4800 17FF 1K GPIOF - 0x4800 1000 - 0x4800 13FF 1K Reserved 0x4800 0C00 - 0x4800 0FFF 1K GPIOD 0x4800 0800 - 0x4800 0BFF 1K GPIOC 0x4800 0400 - 0x4800 07FF 1K GPIOB 0x4800 0000 - 0x4800 03FF 1K GPIOA 0x4002 4400 - 0x47FF FFFF ~128 M 0x4002 4000 - 0x4002 43FF 1K TSC 0x4002 3400 - 0x4002 3FFF 3K Reserved 0x4002 3000 - 0x4002 33FF 1K CRC 0x4002 2400 - 0x4002 2FFF 3K Reserved 0x4002 2000 - 0x4002 23FF 1K Flash interface 0x4002 1400 - 0x4002 1FFF 3K Reserved 0x4002 1000 - 0x4002 13FF 1K RCC 0x4002 0400 - 0x4002 0FFF 3K Reserved 0x4002 0000 - 0x4002 03FF 1K DMA1 0x4001 8000 - 0x4001 FFFF 32 K Reserved 0x4001 4C00 - 0x4001 73FF 12 K Reserved 0x4001 4800 - 0x4001 4BFF 1K TIM17 0x4001 4400 - 0x4001 47FF 1K TIM16 0x4001 4000 - 0x4001 43FF 1K TIM15 0x4001 3C00 - 0x4001 3FFF 1K Reserved 0x4001 3800 - 0x4001 3BFF 1K USART1 0x4001 3400 - 0x4001 37FF 1K Reserved 0x4001 3000 - 0x4001 33FF 1K SPI1 0x4001 2C00 - 0x4001 2FFF 1K TIM1 0x4001 0800 - 0x4001 2BFF 9K Reserved 0x4001 0400 - 0x4001 07FF 1K EXTI 0x4001 0000 - 0x4001 03FF 1K SYSCFG + COMP + OPAMP 0x4000 9C00 - 0x4000 FFFF 25 K Reserved AHB2 - AHB1 - APB2 - 44/124 STM32F303x6/x8 DS9866 Rev 8 ADC1 - ADC2 Reserved Reserved STM32F303x6/x8 Memory mapping Table 15. STM32F303x6/8 peripheral register boundary addresses (continued) Bus APB1 Boundary address Size (bytes) Peripheral 0x4000 9800 - 0x4000 9BFF 1K DAC2 0x4000 7800 - 0x4000 97FF 8K Reserved 0x4000 7400 - 0x4000 77FF 1K DAC1 0x4000 7000 - 0x4000 73FF 1K PWR 0x4000 6800 - 0x4000 6FFF 2K Reserved 0x4000 6400 - 0x4000 67FF 1K bxCAN 0x4000 5800 - 0x4000 63FF 3K Reserved 0x4000 5400 - 0x4000 57FF 1K I2C1 0x4000 4C00 - 0x4000 53FF 2K Reserved 0x4000 4800 - 0x4000 4BFF 1K USART3 0x4000 4400 - 0x4000 47FF 1K USART2 0x4000 3400 - 0x4000 43FF 2K Reserved 0x4000 3000 - 0x4000 33FF 1K IWDG 0x4000 2C00 - 0x4000 2FFF 1K WWDG 0x4000 2800 - 0x4000 2BFF 1K RTC 0x4000 1800 - 0x4000 27FF 4K Reserved 0x4000 1400 - 0x4000 17FF 1K TIM7 0x4000 1000 - 0x4000 13FF 1K TIM6 0x4000 0800 - 0x4000 0FFF 2K Reserved 0x4000 0400 - 0x4000 07FF 1K TIM3 0x4000 0000 - 0x4000 03FF 1K TIM2 - 0x2000 3000 - 3FFF FFFF - 0x2000 0000 - 0x2000 2FFF 12 K SRAM - 0x1FFF F800 - 0x1FFF FFFF 2K Option bytes - 0x1FFF D800 - 0x1FFF F7FF 8K System memory - 0x1000 2000 - 0x1FFF D7FF ~256 M Reserved - 0x1000 0000 - 0x1000 0FFF 4K CCM RAM - 0x0804 0000 - 0x0FFF FFFF ~128 M Reserved - 0x0800 0000 - 0x0800 FFFF 64 K - 0x0004 0000 - 0x07FF FFFF ~128 M - 0x0000 000 - 0x0000 FFFF DS9866 Rev 8 ~512 M 64 K Reserved Main Flash memory Reserved Main Flash memory, system memory or SRAM depending on BOOT configuration 45/124 45 Electrical characteristics STM32F303x6/x8 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3 σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V, VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. 6.1.5 Input voltage on a pin The input voltage measurement on a pin of the device is described in Figure 11. Figure 10. Pin loading conditions Figure 11. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19210V1 46/124 DS9866 Rev 8 MS19211V1 STM32F303x6/x8 6.1.6 Electrical characteristics Power-supply scheme Figure 12. Power-supply scheme VBAT GPIOs IN VDD 4xV DD VDDA Level shifter OUT 4 x 100 nF + 1 x 4.7 μF Backup circuitry (LSE, RTC, Wake-up logic Backup registers) Power switch 1.65 - 3.6V I/O Logic Kernel logic (CPU, digital & memories) Regulator 4xV SS VDDA 10 nF + 1 μF VREF+ VREF- ADC/ DAC Analog such as RCs, PLL, comparators, OPAMP VSSA MS31954V1 Caution: Each power-supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to or below the appropriate pins on the underside of the PCB, to ensure the good functionality of the device. DS9866 Rev 8 47/124 102 Electrical characteristics 6.1.7 STM32F303x6/x8 Measurement of the current consumption Figure 13. Scheme of the current-consumption measurement I DD_VBAT VBAT IDD VDD IDDA VDDA MS19213V1 48/124 DS9866 Rev 8 STM32F303x6/x8 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 16: Voltage characteristics, Table 17: Current characteristics, and Table 18: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device reliability. Table 16. Voltage characteristics(1) Symbol Ratings Min. VDD–VSS External main supply voltage (including VDDA, VBAT and VDD) -0.3 VDD–VDDA VIN (2) |ΔVDDx| |VSSX − VSS| VESD(HBM) Allowed voltage difference for VDD > VDDA Max. - 0.4 Input voltage on FT and FTf pins VSS −0.3 VDD + 4.0 Input voltage on TTa VSS −0.3 4.0 Input voltage on any other pin VSS − 0.3 4.0 Input voltage on Boot0 pin 0 9 Variations between different VDD power pins - 50 Variations between all the different ground pins(3) - 50 Electrostatic discharge voltage (human body model) Unit V mV see Section 6.3.12: Electrical sensitivity characteristics - 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between VDDA and VDD: VDDA must power on before or at the same time as VDD in the power up sequence. VDDA must be greater than or equal to VDD. 2. VIN maximum must always be respected. Refer to Table 17: Current characteristics for the maximum allowed injected current values. 3. Include VREF- pin. DS9866 Rev 8 49/124 102 Electrical characteristics STM32F303x6/x8 Table 17. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD power lines (source)(1) 140 ΣIVSS (1) -140 Total current out of sum of all VSS ground lines (sink) (1) IVDD Maximum current into each VDD power line (source) IVSS Maximum current out of each VSS _x ground line (sink)(1) 100 Output current sunk by any I/O and control pin 25 IIO(PIN) ΣIIO(PIN) Injected current on TC and RST Injected current on TTa pins ΣIINJ(PIN) -25 (2) mA 80 Total output current sourced by sum of all I/Os and control pins(2) Injected current on TT, FT, FTf and B IINJ(PIN) 100 Output current source by any I/O and control pin Total output current sunk by sum of all I/Os and control pins Unit -80 pins(3) -5 /+0 pin(4) ±5 (5) ±5 Total injected current (sum of all I/O and control pins)(6) ±25 1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be exceeded. Refer to Table 16: Voltage characteristics for the maximum allowed input voltage values. 5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be exceeded. Refer also to Table 16: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note 2. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 18. Thermal characteristics Symbol TSTG TJ 50/124 Ratings Storage temperature range Maximum junction temperature DS9866 Rev 8 Value Unit –65 to +150 °C 150 °C STM32F303x6/x8 Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 19. General operating conditions Symbol Parameter Conditions Min. Max. Unit fHCLK Internal AHB clock frequency - 0 72 fPCLK1 Internal APB1 clock frequency - 0 36 fPCLK2 Internal APB2 clock frequency - 0 72 Standard operating voltage - 2 3.6 2 3.6 2.4 3.6 1.65 3.6 TC I/O –0.3 VDD+0.3 TT I/O -0.3 3.6 –0.3 VDDA+0.3 –0.3 5.5 BOOT0 0 5.5 LQFP64 - 444 mW - 364 mW - 333 mW - 540 mW - 414 mW –40 85 –40 105 –40 105 –40 125 6 suffix version –40 105 7 suffix version –40 125 VDD VDDA VBAT VIN PD Analog operating voltage (OPAMP and DAC not used) Analog operating voltage (OPAMP and DAC used) Must have a potential equal to or higher than VDD Backup operating voltage I/O input voltage - TTa I/O (1) FT and FTf I/O LQFP48 Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix LQFP32 7(2) UFQFPN32 WLCSP49 Ambient temperature for 6 suffix version Maximum power dissipation Ambient temperature for 7 suffix version Maximum power dissipation TA TJ Junction temperature range Low power dissipation Low power dissipation (3) (3) MHz V V V °C °C °C 1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 77: Package thermal characteristics). 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.7: Thermal characteristics). DS9866 Rev 8 51/124 102 Electrical characteristics 6.3.2 STM32F303x6/x8 Operating conditions at power-up / power-down The parameters given in Table 20 are derived from tests performed under the ambient temperature condition summarized in Table 19. Table 20. Operating conditions at power-up / power-down Symbol Parameter VDD rise time rate tVDD - VDD fall time rate VDDA rise time rate tVDDA 6.3.3 Conditions Max. Unit 0 ∞ ∞ ∞ ∞ µs/V 20 0 - VDDA fall time rate Min. 20 Characteristics of the embedded reset and power-control block The parameters given in Table 21 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 19. Table 21. Embedded reset and power control block characteristics Symbol VPOR/PDR(1) VPDRhyst (1) tRSTTEMPO(3) Parameter Conditions Power on/power down reset threshold Min. Typ. Max. Falling edge 1.8(2) 1.88 1.96 V Rising edge 1.84 1.92 2.0 V PDR hysteresis - - 40 - mV POR reset temporization - 1.5 2.5 4.5 ms 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Guaranteed by design, not tested in production. 52/124 Unit DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 22. Programmable voltage detector characteristics Symbol Parameter VPVD0 PVD threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 Conditions Min.(1) Typ. Max.(1) Rising edge 2.1 2.18 2.26 Falling edge 2 2.08 2.16 Rising edge 2.19 2.28 2.37 Falling edge 2.09 2.18 2.27 Rising edge 2.28 2.38 2.48 Falling edge 2.18 2.28 2.38 Rising edge 2.38 2.48 2.58 Falling edge 2.28 2.38 2.48 Rising edge 2.47 2.58 2.69 Falling edge 2.37 2.48 2.59 Rising edge 2.57 2.68 2.79 Falling edge 2.47 2.58 2.69 Rising edge 2.66 2.78 2.9 Falling edge 2.56 2.68 2.8 Rising edge 2.76 2.88 3 Falling edge 2.66 2.78 2.9 Unit V VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 VPVD7 PVD threshold 7 VPVDhyst(2) PVD hysteresis - - 100 - mV IDD(PVD) PVD current consumption - - 0.15 0.26 µA 1. Data based on characterization results only, not tested in production. 2. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 23 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 19. Table 23. Embedded internal reference voltage Symbol Parameter Conditions Min. Typ. Max. Unit VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.20 1.23 1.25 V TS_vrefint ADC sampling time when reading the internal reference voltage - 2.2 - - µs VRERINT Internal reference voltage spread over the temperature range VDD = 31.8 V ±10 mV - - 10(1) mV - - - 100(1) ppm/°C TCoeff Temperature coefficient 1. Guaranteed by design, not tested in production. DS9866 Rev 8 53/124 102 Electrical characteristics STM32F303x6/x8 Table 24. Internal reference voltage calibration values Calibration value name VREFINT_CAL 6.3.5 Description Raw data acquired at temperature of 30 °C VDDA= 3.3 V Memory address 0x1FFF F7BA - 0x1FFF F7BB Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 13: Scheme of the currentconsumption measurement. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Note: The total current consumption is the sum of the IDD and IDDA values. Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in input mode with a static value at VDD or VSS (no load) • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz) • Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) • When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2 • When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode. The parameters given in Table 25 to Table 29 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 19. 54/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6V All peripherals enabled Symbol Parameter Conditions Supply current in Run mode, executing from Flash External clock (HSE bypass) Internal clock (HSI) IDD Supply current in Run mode, executing from RAM External clock (HSE bypass) Internal clock (HSI) IDD Supply current in Sleep mode, executing from Flash or RAM External clock (HSE bypass) Internal clock (HSI) fHCLK Typ. Max. @ TA(1) 25 °C 85 °C 105 °C All peripherals disabled Typ. Max. @ TA(1) Unit 25 °C 85 °C 105 °C 72 MHz 71.4 77.9 79.1 80.0 27.1 32.2 32.4 32.4 64 MHz 63.9 70.6 71.3 71.5 24.2 27.0 27.5 27.7 48 MHz 49.5 56.6 57.1 57.7 18.7 21.4 21.6 21.9 32 MHz 34.0 38.6 38.9 39.2 12.9 14.6 14.9 15.9 24 MHz 25.9 30.2 30.4 30.6 10.0 11.1 11.2 12.3 8 MHz 9.3 14.1 14.3 14.4 3.3 4.0 4.4 5.1 1 MHz 3.5 8.9 9.1 9.5 0.7 0.9 1.0 1.2 64 MHz 61.6 68.1 68.8 70.1 24.1 27.0 27.1 27.2 48 MHz 48.1 54.6 54.8 55.1 18.6 21.6 21.7 21.9 32 MHz 33.3 37.8 37.9 38.0 12.7 14.4 14.9 16.0 24 MHz 25.7 29.8 29.8 30.0 10.0 11.1 11.2 12.3 8 MHz 9.7 12.2 12.3 12.8 3.4 3.8 4.2 5.0 72 MHz 71.3 77.8 78.7 78.9 27.6 32.1 32.2 32.3 64 MHz 63.8 70.5 70.7 70.9 24.5 27.2 27.6 27.7 48 MHz 49.3 56.5 56.9 57.4 18.1 21.6 21.8 21.8 32 MHz 33.9 37.7 37.9 38.0 12.9 14.9 14.9 15.9 24 MHz 25.8 28.8 29.0 29.2 9.8 11.1 11.3 11.5 8 MHz 9.0 13.2 13.3 13.8 3.2 3.6 4.0 4.6 1 MHz 3.2 7.6 7.8 8.0 0.3 0.4 0.8 1.2 64 MHz 61.3 66.9 67.3 67.8 24.1 26.9 27.0 27.1 48 MHz 48.0 52.4 52.6 53.1 19.1 21.6 21.6 22.1 32 MHz 33.1 35.6 35.8 36.6 12.6 14.8 14.9 15.9 24 MHz 25.6 28.5 28.7 28.8 9.8 11.1 11.3 11.5 8 MHz 9.7 11.6 11.6 11.7 3.0 3.1 4.1 4.7 72 MHz 55.5 58.7 61.1 61.9 7.0 7.3 8.4 8.5 64 MHz 49.8 52.7 54.5 54.8 6.3 6.7 7.0 7.8 48 MHz 38.5 40.6 41.7 41.8 4.6 5.1 5.6 5.9 32 MHz 26.9 28.8 29.2 29.5 3.0 3.3 4.0 4.5 24 MHz 19.1 23.2 23.7 23.9 2.4 2.5 3.2 3.8 8 MHz 7.1 11.5 11.7 11.9 0.6 0.9 1.2 2.1 1 MHz 3.0 7.4 7.7 7.9 0.3 0.3 0.4 1.2 64 MHz 47.7 52.4 52.6 52.8 5.4 6.5 6.8 7.5 48 MHz 35.0 40.4 40.6 40.8 4.3 4.7 5.2 5.7 32 MHz 23.7 27.7 28.3 28.8 2.9 3.1 3.2 4.4 24 MHz 18.5 23.8 24.0 24.2 1.3 1.7 2.2 2.7 8 MHz 7.5 9.6 9.7 9.7 0.5 0.7 1.1 2.0 mA mA 1. Data based on characterization results, not tested in production unless otherwise specified. DS9866 Rev 8 55/124 102 Electrical characteristics STM32F303x6/x8 Table 26. Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Symbol Parameter IDDA Supply current in Run/Sleep mode, code executing from Flash or RAM Conditions (1) HSE bypass HSI clock fHCLK Typ. Max. @ 25 °C VDDA = 3.6 V TA(2) 85 °C 105 °C Typ. Max. @ TA(2) 25 °C Unit 85 °C 105 °C 72 MHz 224 252 265 269 245 272 288 295 64 MHz 196 225 237 241 214 243 257 263 48 MHz 147 174 183 186 159 186 196 201 32 MHz 100 126 133 135 109 133 142 145 24 MHz 79 102 107 108 85 108 113 116 8 MHz 3 5 5 6 4 6 6 7 1 MHz 3 5 5 6 3 5 6 6 64 MHz 259 288 304 309 285 315 332 338 48 MHz 208 239 251 254 230 258 271 277 32 MHz 162 190 198 202 179 206 216 219 24 MHz 140 168 175 178 155 181 188 191 8 MHz 62 85 88 89 71 94 96 98 µA 1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production. Table 27. Typical and maximum VDD consumption in Stop and Standby modes Symbol Parameter Typ. @VDD (VDD=VDDA) Max.(1) 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA = TA = TA = 25 °C 85 °C 105 °C 17.51 17.68 17.84 18.17 18.57 19.39 30.6 232.5 612.2 6.44 6.51 6.60 6.73 6.96 7.20 20.0 246.4 585.0 LSI ON and IWDG ON 0.73 0.89 1.02 1.14 1.28 1.44 - - - LSI OFF and IWDG OFF 0.55 0.66 0.75 0.85 0.93 1.01 4.9 7.0 7.9 Conditions Regulator in run mode, all oscillators OFF IDD Supply current in Stop mode Regulator in lowpower mode, all oscillators OFF Supply current in Standby mode 1. Data based on characterization results, not tested in production unless otherwise specified. 56/124 DS9866 Rev 8 Unit µA STM32F303x6/x8 Electrical characteristics Table 28. Typical and maximum VDDA consumption in Stop and Standby modes Symbo Parameter l Supply current in Standby mode Conditions VDDA supervisor ON Supply current in Stop mode Supply current in Standby mode VDDA supervisor OFF IDDA Supply current in Stop mode Max.(1) Typ. @VDD (VDD = VDDA) TA = TA = TA = 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V 25 °C 85 °C 105 °C Regulator in run/low-power mode, all oscillators OFF 1.67 1.79 1.91 2.04 2.19 2.35 2.5 5.9 6.2 LSI ON and IWDG ON 2.06 2.24 2.41 2.60 2.80 3.04 - - - LSI OFF and IWDG OFF 1.54 1.68 1.78 1.92 2.06 2.22 2.6 3.0 3.8 Regulator in run/low-power mode, all oscillators OFF 0.97 0.99 1.03 1.07 1.14 1.22 - - - LSI ON and IWDG ON 1.36 1.44 1.52 1.62 1.76 1.91 - - - LSI OFF and IWDG OFF 0.86 0.88 0.91 0.95 1.03 1.09 - - - Uni t µA 1. Data based on characterization results, not tested in production. Table 29. Typical and maximum current consumption from VBAT supply Symbol Para meter Max. @VBAT= 3.6V(2) Typ.@VBAT Conditions (1) 1.65V 1.8V LSE & RTC ON; “Xtal mode” lower driving capability; Backup LSEDRV[1:0] domain = '00' IDD_VBAT supply LSE & RTC current ON; “Xtal mode” higher driving capability; LSEDRV[1:0] = '11' 0.42 2V 2.4V 2.7V 0.44 0.47 0.54 3V Unit TA= TA= TA= 3.3V 3.6V 25°C 85°C 105°C 0.60 0.66 0.74 0.82 - - - µA 0.71 0.74 0.77 0.85 0.91 0.98 1.06 1.16 - - - 1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values. 2. Data based on characterization results, not tested in production. DS9866 Rev 8 57/124 102 Electrical characteristics STM32F303x6/x8 Figure 14. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) 1.40 1.20 1.65 V 1.00 I VBAT (μA) 1.8 V 0.80 2V 2.4 V 0.60 2.7 V 0.40 3V 0.20 3.3 V 3.6 V 0.00 25°C 60°C 85°C 105°C TA (°C) MS34525V1 Typical current consumption The MCU is placed under the following conditions: 58/124 • VDD = VDDA = 3.3 V • All I/O pins available on each package are in analog input configuration • The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON • When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8, 16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively. • Typical current consumption in Run mode, code with data processing running from Flash DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory Typ. Symbol IDD Parameter Conditions fHCLK Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash memory IDDA(1) (2) Supply current in Run mode from VDDA supply Peripherals enabled Peripherals disabled 72 MHz 47.2 25.2 64 MHz 39.5 22.6 48 MHz 30.4 17.3 32 MHz 20.9 12.0 24 MHz 17.3 9.3 16 MHz 11.0 6.5 8 MHz 5.8 3.55 4 MHz 3.45 2.21 2 MHz 2.16 1.52 1 MHz 1.50 1.17 500 kHz 1.18 0.94 125 kHz 0.88 0.82 72 MHz 240.0 234.0 64 MHz 209.9 208.6 48 MHz 154.5 153.5 32 MHz 104.1 103.6 24 MHz 80.2 80.0 16 MHz 56.8 56.6 8 MHz 1.14 1.14 4 MHz 1.14 1.14 2 MHz 1.14 1.14 1 MHz 1.14 1.14 500 kHz 1.14 1.14 125 kHz 1.14 1.14 Unit mA µA 1. VDDA supervisor is OFF. 2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. DS9866 Rev 8 59/124 102 Electrical characteristics STM32F303x6/x8 Table 31. Typical current consumption in Run mode, code with data processing running from Flash memory Typ. Symbol IDD Parameter Conditions fHCLK Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash memory IDDA(1) (2) Supply current in Run mode from VDDA supply Peripherals enabled Peripherals disabled 72 MHz 70.6 25.2 64 MHz 60.3 22.6 48 MHz 46.0 17.3 32 MHz 31.3 12.0 24 MHz 25.0 9.3 16 MHz 16.2 6.5 8 MHz 8.4 3.55 4 MHz 4.75 2.21 2 MHz 2.81 1.52 1 MHz 1.82 1.17 500 kHz 1.34 0.94 125 kHz 0.93 0.82 72 MHz 240.0 234.0 64 MHz 209.9 208.6 48 MHz 154.5 153.5 32 MHz 104.1 103.6 24 MHz 80.2 80.0 16 MHz 56.8 56.6 8 MHz 1.14 1.14 4 MHz 1.14 1.14 2 MHz 1.14 1.14 1 MHz 1.14 1.14 500 kHz 1.14 1.14 125 kHz 1.14 1.14 Unit mA µA 1. VDDA supervisor is OFF. 2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp and others, is not included. Refer to the tables of characteristics in the subsequent sections. 60/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 32. Typical current consumption in Sleep mode, code running from Flash memory or RAM Typ. Symbol IDD Parameter Conditions fHCLK Supply current in Sleep mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash memory or RAM IDDA(1) (2) Supply current in Sleep mode from VDDA supply Peripherals enabled Peripherals disabled 72 MHz 28.5 6.3 64 MHz 25.6 5.7 48 MHz 19.5 4.40 32 MHz 13.3 3.13 24 MHz 10.2 2.49 16 MHz 7.1 1.85 8 MHz 3.63 0.99 4 MHz 2.38 0.88 2 MHz 1.61 0.80 1 MHz 1.23 0.76 500 kHz 1.04 0.74 125 kHz 0.85 0.72 72 MHz 239.0 236.7 64 MHz 209.4 207.8 48 MHz 154.0 152.9 32 MHz 103.7 103.2 24 MHz 80.1 79.8 16 MHz 56.7 56.6 8 MHz 1.14 1.14 4 MHz 1.14 1.14 2 MHz 1.14 1.14 1 MHz 1.14 1.14 500 kHz 1.14 1.14 125 kHz 1.14 1.14 Unit mA µA 1. VDDA supervisor is OFF. 2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp is not included. Refer to the tables of characteristics in the subsequent sections. I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. DS9866 Rev 8 61/124 102 Electrical characteristics STM32F303x6/x8 I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 51: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins that must be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption (see Table 34: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD × f SW × C where: ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS 62/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. Table 33. Switching output I/O current consumption Symbol Parameter Conditions(1) VDD =3.3 V Cext = 0 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 10 pF C = CINT + CEXT +CS ISW I/O current consumption VDD = 3.3 V Cext = 22 pF C = CINT + CEXT +CS VDD = 3.3 V Cext = 33 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 47 pF C = CINT + CEXT+ CS I/O toggling frequency (fSW) Typ. 2 MHz 0.90 4 MHz 0.93 8 MHz 1.16 18 MHz 1.60 36 MHz 2.51 2 MHz 0.93 4 MHz 1.06 8 MHz 1.47 18 MHz 2.26 36 MHz 3.39 2 MHz 1.03 4 MHz 1.30 8 MHz 1.79 18 MHz 3.01 36 MHz 5.99 2 MHz 1.10 4 MHz 1.31 8 MHz 2.06 18 MHz 3.47 36 MHz 8.35 2 MHz 1.20 4 MHz 1.54 8 MHz 2.46 18 MHz 4.51 36 MHz 9.98 Unit mA 1. CS = 5 pF (estimated value). DS9866 Rev 8 63/124 102 Electrical characteristics STM32F303x6/x8 On-chip peripheral current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input configuration • All peripherals are disabled unless otherwise mentioned • The given value is calculated by measuring the current consumption: • – With all peripherals clocked off – With only one peripheral clocked on Ambient operating temperature at 25°C and VDD = VDDA = 3.3 V Table 34. Peripheral current consumption Typical consumption(1) Peripheral Unit IDD BusMatrix (2) 11.1 DMA1 8.0 CRC 2.1 GPIOA 8.7 GPIOB 8.4 GPIOC 8.4 GPIOD 2.6 GPIOF 1.7 TSC 4.7 ADC1&2 17.4 APB2-Bridge (3) 3.3 SYSCFG 4.2 TIM1 32.3 USART1 20.3 TIM15 13.8 TIM16 9.7 TIM17 APB1-Bridge 64/124 10.3 (3) 5.3 TIM2 43.4 TIM3 34.0 TIM6 9.7 TIM7 10.3 WWDG 6.9 USART2 18.8 USART3 19.1 DS9866 Rev 8 µA/MHz STM32F303x6/x8 Electrical characteristics Table 34. Peripheral current consumption (continued) Typical consumption(1) Peripheral Unit IDD I2C1 13.3 CAN 31.3 PWR 4.7 DAC 15.4 DAC2 8.6 SPI1 8.2 µA/MHz 1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp and others, is not included. Refer to the tables of characteristics in the subsequent sections. 2. BusMatrix is automatically active when at least one master is ON (CPU or DMA1). 3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus. DS9866 Rev 8 65/124 102 Electrical characteristics 6.3.6 STM32F303x6/x8 Wakeup time from low-power mode The wakeup times given in Table 35 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU: • For Stop or Sleep mode: the wakeup event is WFE. • WKUP1 (PA0) pin is used to wake up from Standby, Stop and Sleep modes. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 19. Table 35. Low-power mode wakeup timings Symbol Parameter Wakeup from Stop mode tWUSTOP Typ. @VDD, VDD = VDDA Conditions Max. 2.0 V 2.4 V 2.7 V 3V 3.3 V 3.6 V Regulator in run mode 4.3 4.1 4.0 3.9 3.8 3.7 4.5 Regulator in low-power mode 7.8 6.7 6.1 5.9 5.5 5.3 9 74.4 64.3 60.0 56.9 54.3 51.1 103 tWUSTANDBY(1) Wakeup from LSI and Standby mode IWDG OFF tWUSLEEP Wakeup from Sleep mode - 6 - Unit µs CPU clock cycles 1. Data based on characterization results, not tested in production. Table 36. Wakeup time using USART(1) Symbol Parameter tWUUSART Wakeup time needed to calculate the maximum USART baudrate allowing to wake up from stop mode when USART clock source is HSI Conditions Typ Max Stop mode with main regulator in low power mode - 13.125 Stop mode with main regulator in run mode - Unit µs 3.125 1. Guaranteed by design. 6.3.7 External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 15. 66/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 37. High-speed external user clock characteristics Symbol Parameter Conditions fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high-level voltage VHSEL OSC_IN input pin low-level voltage tw(HSEH) tw(HSEL) tr(HSE) tf(HSE) Min. Typ. Max. Unit 1 8 32 MHz 0.7VDD - VDD VSS - 0.3VDD 15 - - - OSC_IN high or low time(1) V ns (1) OSC_IN rise or fall time - - 20 1. Guaranteed by design, not tested in production. Figure 15. High-speed external clock source AC timing diagram tw(HSEH) VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) t tw(HSEL) THSE MS19214V2 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 16. Table 38. Low-speed external user clock characteristics Symbol Parameter Conditions fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high-level voltage VLSEL OSC32_IN input pin low-level voltage tw(LSEH) tw(LSEL) OSC32_IN high or low time(1) tr(LSE) tf(LSE) Min. Typ. Max. Unit - 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 450 - ns OSC32_IN rise or fall time(1) - - 50 1. Guaranteed by design, not tested in production. DS9866 Rev 8 67/124 102 Electrical characteristics STM32F303x6/x8 Figure 16. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% VLSEL 10% tr(LSE) t tf(LSE) tw(LSEL) TLSE MS19215V2 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 39. HSE oscillator characteristics Conditions(1) Min.(2) Typ. Max.(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - kΩ During startup(3) - - 8.5 VDD= 3.3 V, Rm= 30Ω, CL=10 pF@8 MHz - 0.4 - VDD= 3.3 V, Rm= 45Ω, CL=10 pF@8 MHz - 0.5 - VDD= 3.3 V, Rm= 30Ω, CL=5 pF@32 MHz - 0.8 - VDD= 3.3 V, Rm= 30Ω, CL=10 pF@32 MHz - 1 - VDD= 3.3 V, Rm= 30Ω, CL=20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Symbol Parameter fOSC_IN RF IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 68/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 17. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MHz resonator CL2 fHSE RF Bias controlled gain OSC_OUT REXT (1) MS19876V1 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol IDD Parameter LSE current consumption Conditions(1) Min.(2) Typ. Max.(2) LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]=10 medium low driving capability - - 1 LSEDRV[1:0]=01 medium high-driving capability - - 1.3 LSEDRV[1:0]=11 higher-driving capability - - 1.6 DS9866 Rev 8 Unit µA 69/124 102 Electrical characteristics STM32F303x6/x8 Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) (continued) Symbol gm Conditions(1) Min.(2) Typ. Max.(2) LSEDRV[1:0]=00 lower-driving capability 5 - - LSEDRV[1:0]=10 medium low-driving capability 8 - - LSEDRV[1:0]=01 medium high-driving capability 15 - - LSEDRV[1:0]=11 higher-driving capability 25 - - VDD is stabilized - 2 - Parameter Oscillator transconductance tSU(LSE)(3) Startup time Unit µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. Note: tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer. For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available at the ST website www.st.com. Figure 18. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MHz resonator CL2 REXT (1) fHSE RF Bias controlled gain OSC_OUT MS19876V1 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. 6.3.8 Internal clock source characteristics The parameters given in Table 41 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 19. 70/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics High-speed internal (HSI) RC oscillator Table 41. HSI oscillator characteristics(1) Symbol Parameter fHSI Conditions Min. Typ. - - Frequency TRIM HSI user trimming step DuCy(HSI) Duty cycle Accuracy of the HSI oscillator (factory calibrated) ACCHSI - - - (2) 45 Max. Unit 8 - MHz - (2) - 55 (2) TA = –40 to 105 °C (3) –2.8 - 3.8 TA = –10 to 85 °C –1.9(3) - 2.3(3) TA = 0 to 85 °C -1.9(3) - 2(3) TA = 0 to 70 °C -1.3(3) - 2(3) TA = 0 to 55 °C –1(3) - 2(3) –1 - 1 TA = 25 °C(4) % 1 % (3) % tsu(HSI) HSI oscillator startup time - 1(2) - 2(2) µs IDDA(HSI) HSI oscillator power consumption - - 80 100(2) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. 4. Factory calibrated, parts not soldered Figure 19. HSI oscillator accuracy characterization results for soldered parts 4% MAX MIN 3% 2% 1% 0% -40 -20 0 20 40 60 80 100 T [ºC] 120 A -1% -2% -3% -4% MS30985V4 DS9866 Rev 8 71/124 102 Electrical characteristics STM32F303x6/x8 Low-speed internal (LSI) RC oscillator Table 42. LSI oscillator characteristics(1) Symbol fLSI Parameter Min. Typ. Max. Unit 30 40 50 kHz Frequency tsu(LSI)(2) LSI oscillator startup time - - 85 µs IDD(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 43 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 19. Table 43. PLL characteristics Value Symbol fPLL_IN fPLL_OUT Parameter Unit Min. Typ. Max. 1(2) - 24(2) MHz PLL input clock duty cycle (2) 40 - 60(2) % PLL multiplier output clock 16(2) - 72 MHz PLL input clock(1) tLOCK PLL lock time - - 200(2) µs Jitter Cycle-to-cycle jitter - - 300(2) ps 1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 72/124 DS9866 Rev 8 STM32F303x6/x8 6.3.10 Electrical characteristics Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 44. Flash memory characteristics Min. Typ. Max.(1) Unit 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms tME Mass erase time TA = –40 to +105 °C 20 - 40 ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 45. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 (2) 1 kcycle 10 at TA = 105 °C kcycles(2) at TA = 55 °C Unit Min.(1) 10 kcycles Years 20 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.11 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). The device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 46. They are based on the EMS levels and classes defined in “EMC design guide for ST microcontrollers” application note (AN1709). DS9866 Rev 8 73/124 102 Electrical characteristics STM32F303x6/x8 Table 46. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = Voltage limits to be applied on any I/O pin to +25°C, induce a functional disturbance fHCLK = 72 MHz conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25°C, fHCLK = 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It must be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (for example control registers) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see the “Software techniques for improving microcontrollers EMC performance” application note (AN1015)). 74/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Electromagnetic interference (EMI) The electromagnetic field emitted by the device are monitored, while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with the IEC 61967-2 standard that specifies the test board and the pin loading. Table 47. EMI characteristics Symbol Parameter SEMI 6.3.12 Monitored frequency band Conditions VDD = 3.6 V, TA =25 °C, LQFP64 package Peak level compliant with IEC 61967-2 Max vs. [fHSE/fHCLK] Unit 8/72 MHz 0.1 to 30 MHz 5 30 to 130 MHz 9 130 MHz to 1GHz 31 SAE EMI Level 4 dBµV - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 48. ESD absolute maximum ratings Class Maximum value(1) TA = +25 °C, Electrostatic discharge conforming to JESD22voltage (human body model) A114 2 2000 TA = +25 °C, conforming to JESD22C101 II Symbol VESD (HBM) VESD (CDM) Ratings Electrostatic discharge voltage (charge device model) Conditions Unit V 250 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. DS9866 Rev 8 75/124 102 Electrical characteristics STM32F303x6/x8 Table 49. Electrical sensitivities Symbol LU 6.3.13 Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) must be avoided during normal product operation. However, to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The test results are given in the table below. Table 50. I/O current injection susceptibility Functional susceptibility Symbol IINJ 76/124 Description Negative injection Positive injection Injected current on BOOT0 –0 NA (Injection is not possible) Injected current on PC0, PC1, PC2, PC3 (TTa pins) and PF1 pin (FT pin) -0 +5 mA Injected current on PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PC4, PC5, PB0, PB1, PB2, PB12, PB13, PB14, PB15 with induced leakage current on other pins from this group less than -100 µA or more than +900 µA -5 +5 Injected current on PB11, other TT, FT, and FTf pins –5 Injection is not possible Injected current on all other TC, TTa and RESET pins –5 +5 DS9866 Rev 8 Unit STM32F303x6/x8 Electrical characteristics Table 50. I/O current injection susceptibility (continued) Functional susceptibility Symbol Description Positive injection –5 - - +5 Injected current on any other FT and FTf pins –5 NA (Injection is not possible) Injected current on any other pins –5 +5 Injected current on PB0, PB1, PB2, PB12, PB13, PB14, PB15 with induced leakage current on other pins from this group less than -50 µA IINJ Unit Negative injection Injected current on PC0, PC1, PC2, PC3, PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB0, PB1, PB12, PB13, PB14, PB15 with induced leakage current on other pins from this group less than 400 µA mA Note: It is recommended to add a Schottky diode (pin to ground) to the analog pins that may potentially inject negative currents. 6.3.14 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under the conditions summarized in Table 19. All I/Os are CMOS and TTL compliant. Table 51. I/O static characteristics Symbol VIL VIH Parameter Low-level input voltage High-level input voltage Conditions Min. Vhys Max. Unit (1) TT, TC and TTa I/O - - 0.3 VDD+0.07 FT and FTf I/O - - 0.475 VDD-0.2 (1) BOOT0 - - 0.3 VDD–0.3 (1) All I/Os except BOOT0 - - 0.3 VDD (2) TTa and TT I/O 0.445 VDD+0.398 (1) - - FT and FTf I/O 0.5 VDD+0.2 (1) - - BOOT0 0.2 VDD+0.95 (1) - - All I/Os except BOOT0 Schmitt trigger hysteresis Typ. TT, TC and TTa I/O 0.7 VDD - (2) - - 200 (1) - (1) - FT and FTf I/O - 100 BOOT0 - 300 (1) DS9866 Rev 8 V mV 77/124 102 Electrical characteristics STM32F303x6/x8 Table 51. I/O static characteristics (continued) Symbol Ilkg Parameter Input leakage current (3) Conditions Min. Typ. Max. TC, FT, TT, FTf and TTa I/O in digital mode VSS ≤VIN ≤VDD - - ±0.1 TTa I/O in digital mode VDD ≤VIN ≤VDDA - - 1 TTa I/O in analog mode VSS ≤VIN ≤VDDA - - ±0.2 FT and FTf I/O(4) VDD ≤VIN ≤5 V - - 10 Unit µA RPU Weak pull-up equivalent resistor(5) VIN = VSS 25 40 55 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 25 40 55 kΩ CIO I/O pin capacitance - - 5 - pF 1. Data based on design simulation. 2. Tested in production. 3. Leakage could be higher than the maximum value. If negative current is injected on adjacent pins. Refer to Table 50: I/O current injection susceptibility. 4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 20 and Figure 21 for standard I/Os. Figure 20. TC and TTa I/O input characteristics - CMOS port VIL/VIH (V) VIHmin 2.0 in Tested tion .7VDD in = 0 VIHm 98 ns +0.3 5V DD imulatio 0.44 s n ig es d n ed o e dard r S stan CMO ents quirem V produc = IHmin Bas ns 0.07 latio V DD+ simu = 0.3 design n o d Base V ILmax 1.3 Area not determined CMOS standard requirements VILmax = 0.3VDD VILmax 0.7 0.6 tion roduc ted in p Tes 2.0 VDD (V) 2.7 3.0 3.3 3.6 MS30255V2 78/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Figure 21. TC and TTa I/O input characteristics - TTL port VIL/VIH (V) 98 +0.3 lations 5V DD u 0.44 ign sim = V IHmin on des d Base TTL standard requirements V IHmin = 2V VIHmin 2.0 s 0.07 ulation V DD+ im = 0.3 esign s d d on Base V ILmax 1.3 Area not determined VILmax 0.8 0.7 TTL standard requirements V ILmax = 0.8V VDD (V) 2.0 2.7 3.0 3.6 3.3 MS30256V2 Figure 22. 5V- tolerant (FT and FTf) I/O input characteristics - CMOS port VIL/VIH (V) D .7VD in = 0 S CMO 2.0 ard stand IHm nts V eme requir 0.2 ulations V DD+ = 0.5 sign sim e on d ased V IHmin B -0.2 tions 75V DD simula = 0.4 ign V ILmax on des d Base Area not determined 1.0 rd CMOS standa requirements 3VDD VILmax = 0. 0.5 VDD (V) 2.0 2.7 3.6 MS30257V3 Figure 23. 5V-tolerant (FT and FTf) I/O input characteristics - TTL port VIL/VIH (V) TTL standard requirements VIHmin = 2V 2.0 Area not determined 1.0 0.8 ns 0.2 V DD+ simulatio = 0.5 n V IHmin n desig do Base -0.2 tions 75V DD imula = 0.4design s in m V IL d on Base TTL standard requirements VILmax = 0.8V 0.5 VDD (V) 2.0 2.7 3.6 MS30258V2 DS9866 Rev 8 79/124 102 Electrical characteristics STM32F303x6/x8 Output driving current The GPIOs (general-purpose input/output) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 17). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating ΣIVSS (see Table 17). Output voltage levels Unless otherwise specified, the parameters given in Table 48: ESD absolute maximum ratings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 19. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant. Table 52. Output voltage characteristics Symbol Parameter VOL(1) Low-level output voltage for an I/O pin VOH(3) High- level output voltage for an I/O pin VOL (1) Low-level output voltage for an I/O pin VOH (3) High-level output voltage for an I/O pin VOL(1)(4) Low-level output voltage for an I/O pin VOH(3)(4) High-level output voltage for an I/O pin VOL(1)(4) Low-level output voltage for an I/O pin VOH(3)(4) High-level output voltage for an I/O pin VOLFM+(1)(4) Low-level output voltage for an FTf I/O pin in FM+ mode Conditions Min. Max. CMOS port(2) IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 VDD–0.4 - - 0.4 2.4 - - 1.3 VDD–1.3 - - 0.4 VDD–0.4 - - 0.4 TTL port(2) IIO = +8 mA 2.7 V < VDD < 3.6 V IIO = +20 mA 2.7 V < VDD < 3.6 V IIO = +6 mA 2 V < VDD < 2.7 V IIO = +20 mA 2.7 V < VDD < 3.6 V Unit V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 17 and the sum of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN). 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 17 and the sum of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN). 4. Data based on design simulation. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 24 and 80/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 62, respectively. Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 19. Table 53. I/O AC characteristics(1) OSPEEDRy [1:0] value(1) x0 01 Symbol Parameter Conditions fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low-level fall time tr(IO)out Output low to high-level rise time fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low-level fall time tr(IO)out Output low to high-level rise time CL = 50 pF, VDD = 2 V to 3.6 V fmax(IO)out 11 tf(IO)out tr(IO)out FM+ configuration(4) - Maximum Output high to low-level fall time Output low to high-level rise time fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low-level fall time tr(IO)out Output low to high-level rise time tEXTIpw Pulse width of external signals detected by the EXTI controller Max. Unit - 12(3) MHz - 125(3) - 125(3) - 410(3) CL = 50 pF, VDD = 2 V to 3.6 V CL = 50 pF, VDD = 2 V to 3.6 V ns CL = 50 pF, VDD = 2 V to 3.6 V - MHz 25 (3) ns 25 (3) - 50(3) MHz CL = 50 pF, VDD = 2.7 V to 3.6 V - 30(3) MHz CL = 50 pF, VDD = 2 V to 2.7 V - 20(3) MHz CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) - 2(4) - 12(4) - (4) CL = 30 pF, VDD = 2.7 V to 3.6 V frequency(2) Min. CL = 50 pF, VDD = 2 V to 3.6 V - ns MHz ns 10(3) 34 - ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0364 reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 24. 3. Guaranteed by design, not tested in production. 4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F30x and STM32F301xx reference manual RM0364 for a description of FM+ I/O mode configuration. DS9866 Rev 8 81/124 102 Electrical characteristics STM32F303x6/x8 Figure 24. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXTERNAL OUTPUT ON CL tr(IO)out tf(IO)out T Maximum frequency is achieved if (tr + tf) ≤ (2/3)T and if the duty cycle is (45-55%) when loaded by CL specified in the table “ I/O AC characteristics”. ai14131d 6.3.15 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 51). Unless otherwise specified, the parameters given in Table 54 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 19. Table 54. NRST pin characteristics Symbol VIL(NRST)(1) VIH(NRST) (1) Vhys(NRST) NRST Input low level voltage NRST Input high-level voltage NRST Schmitt trigger voltage hysteresis Weak pull-up equivalent resistor RPU VF(NRST)(1) VNF(NRST) Parameter (1) NRST Input filtered pulse NRST Input not filtered pulse (2) Conditions Min. Typ. Max. - - - 0.3VDD + 0.07(1) - 0.445VDD + 0.398(1) - - - - 200 - mV VIN = VSS 25 40 55 kΩ - - - 100(1) ns - - ns - 500 (1) 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 82/124 DS9866 Rev 8 Unit V STM32F303x6/x8 Electrical characteristics Figure 25. Recommended NRST pin protection ([WHUQDO UHVHWFLUFXLW  9'' 1567  538 ,QWHUQDOUHVHW )LOWHU —)  069 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 54. Otherwise the reset is not be taken into account by the device. 3. The external capacitor on NRST must be placed as close as possible to the device. 4. Place the external capacitor 0.1u F on NRST as close as possible to the chip. DS9866 Rev 8 83/124 102 Electrical characteristics 6.3.16 STM32F303x6/x8 Timer characteristics The parameters given in Table 55 are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 55. TIMx(1)(2) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Timer resolution time Conditions Min. Max. Unit - 1 - tTIMxCLK fTIMxCLK = 72 MHz 13.9 - ns fTIM1CLK = 144 MHz 6.95 - ns 0 fTIMxCLK/2 MHz 0 36 MHz TIMx (except TIM2) - 16 TIM2 - 32 - 1 65536 tTIMxCLK fTIMxCLK = 72 MHz 0.0139 910 µs fTIM1CLK = 144 MHz 0.0069 455 µs - - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.65 s fTIM1CLK = 144 MHz - 29.825 s Timer external clock frequency on CH1 to CH4 f TIMxCLK = 72 MHz Timer resolution 16-bit counter clock period Maximum possible count tMAX_COUNT with 32-bit counter 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM15, TIM16 and TIM17 timers. 2. Guaranteed by design, not tested in production. 84/124 DS9866 Rev 8 bit STM32F303x6/x8 Electrical characteristics Table 56. IWDG min./max. timeout period at 40 kHz (LSI) (1) Prescaler divider PR[2:0] bits Min. timeout (ms) RL[11:0] = 0x000 Max. timeout (ms) RL[11:0] = 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 57. WWDG min./max. timeout value at 72 MHz (PCLK)(1) Prescaler WDGTB Min. timeout value Max. timeout value 1 0 0.05687 3.6409 2 1 0.1137 7.2817 4 2 0.2275 14.564 8 3 0.4551 29.127 1. Guaranteed by design, not tested in production. 6.3.17 Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 Kbit/s • Fast-mode (Fm): with a bit rate up to 400 Kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. Only FTf I/O pins support Fm+ low-level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/O characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: DS9866 Rev 8 85/124 102 Electrical characteristics STM32F303x6/x8 Table 58. I2C analog filter characteristics(1) Symbol tAF Parameter Maximum pulse width of spikes that are suppressed by the analog filter. Min. Max. Unit 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with width below tAF(min.) are filtered. 3. Spikes with width above tAF(max.) are not filtered. SPI characteristics Unless otherwise specified, the parameters given in Table 54 for SPI are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 19: General operating conditions. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 59. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions 24 18 Slave mode 2 < VDD < 3.6 V NSS setup time th(NSS) tsu(SI) th(MI) th(SI) - - Slave mode transmitter/full duplex 2 < VDD < 3.6 V tsu(NSS) tsu(MI) Max. Master mode 2.7 < VDD < 3.6 V Slave mode tw(SCKH) tw(SCKL) Typ. Master mode 2 < VDD < 3.6 V Duty cycle of SPI clock frequency DuCy(SCK) Min. 24 50 70 Slave mode, SPI presc = 2 4*Tpclk - - NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 0 - - Slave mode 3 - - Master mode 5 - - Slave mode 1 - - Data input hold time ta(SO) Data output access time Slave mode 10 - 40 tdis(SO) Data output disable time Slave mode 10 - 17 Slave mode 2.7 < VDD < 3.6 V - 12 20 Slave mode 2 < VDD < 3.6 V - 12 27.5 tv(SO) Data output valid time tv(MO) Master mode - 1.5 5 th(SO) Slave mode 7.5 - - Master mode 0 - - th(MO) Data output hold time MHz 18(2) 30 Data input setup time Unit % ns 1. Data based on characterization results, not tested in production. 2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. 86/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Figure 26. SPI timing diagram - slave mode and CPHA = 0 Figure 27. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) th(SO) tv(SO) ta(SO) MISO OUTPUT MSB OUT BIT6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) tsu(SI) MOSI INPUT th(NSS) tc(SCK) MSB IN BIT 1 IN LSB IN ai14135b 1. Measurement points are done at 0.5VDD and with external CL = 30 pF. DS9866 Rev 8 87/124 102 Electrical characteristics STM32F303x6/x8 Figure 28. SPI timing diagram - master mode(1) High NSS input SCK Output SCK Output tc(SCK) CPHA= 0 CPOL=0 CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) BIT6 IN MSB IN LSB IN th(MI) MOSI OUTPUT B I T1 OUT MSB OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are done at 0.5VDD and with external CL = 30 pF. CAN (controller area network) interface Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). 6.3.18 ADC characteristics Unless otherwise specified, the parameters showed from Table 60 to Table 63 are guaranteed by design, with the conditions summarized in Table 19. Table 60. ADC characteristics Symbol Parameter Conditions Min. Typ. Max. Unit VDDA Analog supply voltage for ADC - 2 - 3.6 V Single ended mode, 5 MSPS - 1011.3 1172.0 Single ended mode, 1 MSPS - 214.7 322.3 ADC current consumption Single ended mode, 200 KSPS (Figure 29) - 54.7 81.1 Differential mode, 5 MSPS - 1061.5 1243.6 Differential mode, 1 MSPS - 246.6 337.6 Differential mode, 200 KSPS - 56.4 83.0 - 0 - IDDA VREF- 88/124 Negative reference voltage - DS9866 Rev 8 µA V STM32F303x6/x8 Electrical characteristics Table 60. ADC characteristics (continued) Symbol fADC fS fTRIG Parameter ADC clock frequency Sampling rate External trigger frequency Conditions Min. Typ. Max. Unit - 0.14 - 72 MHz Resolution = 12 bits, Fast Channel 0.01 - 5.14 Resolution = 10 bits, Fast Channel 0.012 - 6 Resolution = 8 bits, Fast Channel 0.014 - 7.2 Resolution = 6 bits, Fast Channel 0.0175 - 9 fADC = 72 MHz Resolution = 12 bits - - 5.14 MHz Resolution = 12 bits - - 14 1/fADC Msps VAIN Conversion voltage range - 0 - VDDA V RAIN External input impedance - - - 100 κΩ CADC Internal sample and hold capacitor - - 5 - pF tCAL Calibration time tlatr Trigger conversion latency Regular and injected channels without conversion abort tlatrinj tS Trigger conversion latency Injected channels aborting a regular conversion Sampling time tADCVRE ADC Voltage Regulator G_STUP Start-up time tSTAB Power-up time fADC = 72 MHz 1.56 µs - 112 1/fADC CKMODE = 00 1.5 2 2.5 1/fADC CKMODE = 01 - - 2 1/fADC CKMODE = 10 - - 2.25 1/fADC CKMODE = 11 - - 2.125 1/fADC CKMODE = 00 2.5 3 3.5 1/fADC CKMODE = 01 - - 3 1/fADC CKMODE = 10 - - 3.25 1/fADC CKMODE = 11 - - 3.125 1/fADC fADC = 72 MHz 0.021 - 8.35 µs - 1.5 - 601.5 1/fADC - - - 10 µs - DS9866 Rev 8 1 conver sion cycle 89/124 102 Electrical characteristics STM32F303x6/x8 Table 60. ADC characteristics (continued) Symbol tCONV CMIR Parameter Total conversion time (including sampling time) Common Mode Input signal Conditions Min. Typ. Max. Unit fADC = 72 MHz Resolution = 12 bits 0.19 - 8.52 µs 14 to 614 (tS for sampling + 12.5 for successive approximation) Resolution = 12 bits (VSSA+VREF+)/ (VSSA + 2-0.18 VREF+)/2 ADC differential mode 1/fADC (VSSA + VREF+)/2 + 0.18 V ADC current consumption (μA) Figure 29. ADC typical current consumption in single-ended and differential modes Clock frequency (MSPS) MS34994V1 Table 61. Maximum ADC RAIN Resolution 12 bits 90/124 (1) RAIN max. (kΩ) Sampling cycle @ 72 MHz Sampling time [ns] @ 72 MHz Fast channels(2) Slow channels Other channels(3) 1.5 20.83 0.018 NA NA 2.5 34.72 0.150 NA 0.022 4.5 62.50 0.470 0.220 0.180 7.5 104.17 0.820 0.560 0.470 19.5 270.83 2.70 1.80 1.50 61.5 854.17 8.20 6.80 4.70 181.5 2520.83 22.0 18.0 15.0 601.5 8354.17 82.0 68.0 47.0 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 61. Maximum ADC RAIN(1) (continued) Resolution 10 bits 8 bits 6 bits RAIN max. (kΩ) Sampling cycle @ 72 MHz Sampling time [ns] @ 72 MHz Fast channels(2) Slow channels Other channels(3) 1.5 20.83 0.082 NA NA 2.5 34.72 0.270 0.082 0.100 4.5 62.50 0.560 0.390 0.330 7.5 104.17 1.20 0.82 0.68 19.5 270.83 3.30 2.70 2.20 61.5 854.17 10.0 8.2 6.8 181.5 2520.83 33.0 27.0 22.0 601.5 8354.17 100.0 82.0 68.0 1.5 20.83 0.150 NA 0.039 2.5 34.72 0.390 0.180 0.180 4.5 62.50 0.820 0.560 0.470 7.5 104.17 1.50 1.20 1.00 19.5 270.83 3.90 3.30 2.70 61.5 854.17 12.00 12.00 8.20 181.5 2520.83 39.00 33.00 27.00 601.5 8354.17 100.00 100.00 82.00 1.5 20.83 0.270 0.100 0.150 2.5 34.72 0.560 0.390 0.330 4.5 62.50 1.200 0.820 0.820 7.5 104.17 2.20 1.80 1.50 19.5 270.83 5.60 4.7 3.90 61.5 854.17 18.0 15.0 12.0 181.5 2520.83 56.0 47.0 39.0 601.5 8354.17 100.00 100.0 100.0 1. Data based on characterization results, not tested in production. 2. All fast channels, expect channel on PA6. 3. Channels available on PA6. DS9866 Rev 8 91/124 102 Electrical characteristics STM32F303x6/x8 Table 62. ADC accuracy - limited test conditions(1)(2) Symbol Parameter ET EO Total unadjusted error Offset error ±4 ±4.5 Slow channel 4.8 Ms - ±5.5 ±6 Fast channel 5.1 Ms - ±3.5 ±4 Slow channel 4.8 Ms - ±3.5 ±4 Fast channel 5.1 Ms - ±2 ±2 Slow channel 4.8 Ms - ±1.5 ±2 Fast channel 5.1 Ms - ±1.5 ±2 Slow channel 4.8 Ms - ±1.5 ±2 Fast channel 5.1 Ms - ±3 ±4 Slow channel 4.8 Ms - ±5 ±5.5 Fast channel 5.1 Ms - ±3 ±3 Slow channel 4.8 Ms - ±3 ±3.5 Fast channel 5.1 Ms Single ADC clock freq. ≤ 72 MHz ended Slow channel 4.8 Ms Sampling freq. ≤ 5 Msps VDDA = 3.3 V Fast channel 5.1 Ms Differential 25°C Slow channel 4.8 Ms - ±1 ±1 - ±1 ±1 - ±1 ±1 - ±1 ±1 Fast channel 5.1 Ms - ±1.5 ±2 Slow channel 4.8 Ms - ±2 ±3 Fast channel 5.1 Ms - ±1.5 ±1.5 Slow channel 4.8 Ms - ±1.5 ±2 Fast channel 5.1 Ms 10.8 10.8 - Slow channel 4.8 Ms 10.8 10.8 - Fast channel 5.1 Ms 11.2 11.3 - Slow channel 4.8 Ms 11.2 11.3 - Fast channel 5.1 Ms 66 67 - Slow channel 4.8 Ms 66 67 - Fast channel 5.1 Ms 69 70 - Slow channel 4.8 Ms 69 70 - Differential Single ended Gain error Differential ED EL Integral linearity error Effective ENOB(4) number of bits SINAD (4) 92/124 Signal-tonoise and distortion ratio Typ. Max.(3) Unit - Single ended Differential linearity error (3) Fast channel 5.1 Ms Single ended Differential EG Min. Conditions Single ended Differential Single ended Differential Single ended Differential DS9866 Rev 8 LSB bit dB STM32F303x6/x8 Electrical characteristics Table 62. ADC accuracy - limited test conditions(1)(2) (continued) Symbol Parameter SNR(4) THD(4) Signal-tonoise ratio Total harmonic distortion Min. Conditions Typ. Max.(3) Unit (3) Fast channel 5.1 Ms 66 67 - Slow channel 4.8 Ms 66 67 - Fast channel 5.1 Ms ADC clock freq. ≤ 72 MHz Differential Slow channel 4.8 Ms Sampling freq. ≤ 5 Msps VDDA = 3.3 V Fast channel 5.1 Ms Single 25°C ended Slow channel 4.8 Ms 69 70 - 69 70 - - -80 -80 - -78 -77 Fast channel 5.1 Ms - -83 -82 Slow channel 4.8 Ms - -81 -80 Single ended Differential dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Data based on characterization results, not tested in production. 4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal. Table 63. ADC accuracy (1)(2)(3) Symbol Parameter ET EO Single ended Total unadjusted error Differential Single ended Offset error ADC clock freq. ≤ 72 MHz, Sampling freq. ≤ 5 Msps 2.0 V ≤ VDDA ≤ 3.6 V EG Differential Single ended Gain error Differential ED Differential linearity error Min.(4) Max.(4) Fast channel 5.1 Ms - ±6.5 Slow channel 4.8 Ms - ±6.5 Fast channel 5.1 Ms - ±4 Slow channel 4.8 Ms - ±4.5 Conditions Single ended Differential DS9866 Rev 8 Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3 Fast channel 5.1 Ms - ±2.5 Slow channel 4.8 Ms - ±2.5 Fast channel 5.1 Ms - ±6 Slow channel 4.8 Ms - ±6 Fast channel 5.1 Ms - ±3.5 Slow channel 4.8 Ms - ±4 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1.5 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1.5 Unit LSB 93/124 102 Electrical characteristics STM32F303x6/x8 Table 63. ADC accuracy (1)(2)(3) (continued) Symbol Parameter EL ENOB (5) SINAD (5) SNR(5) THD(5) Single ended Integral linearity error Effective number of bits Differential ADC clock freq. ≤ 72 MHz, Sampling freq. ≤ 5 Msps 2.0 V ≤ VDDA ≤ 3.6 V Single ended Differential Single ended Signal-tonoise and distortion ratio Differential Single ended Signal-tonoise ratio Total harmonic distortion Min.(4) Max.(4) Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3.5 Fast channel 5.1 Ms - ±2 Slow channel 4.8 Ms - ±2.5 Conditions ADC clock freq. ≤ 72 MHz, Sampling freq ≤ 5 Msps, 2.0 V ≤ VDDA ≤ 3.6 V Differential Single ended Differential Fast channel 5.1 Ms 10.4 - Slow channel 4.8 Ms 10.4 - Fast channel 5.1 Ms 10.8 - Slow channel 4.8 Ms 10.8 - Fast channel 5.1 Ms 64 - Slow channel 4.8 Ms 63 - Fast channel 5.1 Ms 67 - Slow channel 4.8 Ms 67 - Fast channel 5.1 Ms 64 - Slow channel 4.8 Ms 64 - Fast channel 5.1 Ms 67 - Slow channel 4.8 Ms 67 - Fast channel 5.1 Ms - -75 Slow channel 4.8 Ms - -75 Fast channel 5.1 Ms - -79 Slow channel 4.8 Ms - -78 Unit LSB bits dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. 5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal. 94/124 DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 64. ADC accuracy(1)(2) at 1MSPS Symbol Parameter ET Total unadjusted error EO Offset error Typ. Max(3) Fast channel ±2.5 ±5 Slow channel ±3.5 ±5 Fast channel ±1 ±2.5 Slow channel ±1.5 ±2.5 Fast channel ±2 ±3 Slow channel ±3 ±4 Fast channel ±0.7 ±2 Slow channel ±0.7 ±2 Fast channel ±1 ±3 Slow channel ±1.2 ±3 Test conditions ADC Freq. ≤ 72 MHz Sampling Freq. ≤ 1MSPS 2 V ≤ VDDA = VREF+ ≤ 3.6 V Single-ended mode EG Gain error ED Differential linearity error EL Integral linearity error Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ∑IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC accuracy. 3. Data based on characterization results, not tested in production. Figure 30. ADC accuracy characteristics 1LSBIDEAL = VDDA 4096 EG 4095 4094 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4093 (2) ET (3) 7 (1) 6 5 4 EO EL 3 ED 2 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL =Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 1 L SBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 4093 4094 4095 4096 VDDA DS9866 Rev 8 MS34980V1 95/124 102 Electrical characteristics STM32F303x6/x8 Figure 31. Typical connection diagram using the ADC VDD Sample and hold ADC converter VT 0.6 V RAIN (1) VAIN RADC AINx VT 0.6 V Cparasitic 12-bit converter IL ± 1 μA CADC MS19881V3 1. Refer to Table 60 for the values of RAIN. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC must be reduced. General PCB design guidelines Power supply decoupling must be performed as shown in Figure 12: Power-supply scheme. The 10 nF capacitor must be ceramic (good quality) and it must be placed as close as possible to the chip. 6.3.19 DAC electrical specifications Table 65. DAC characteristics Symbol VDDA RLOAD(1) RO(1) CLOAD(1) Parameter Analog supply voltage Resistive load Conditions Min. Typ. Max. Unit - 2.4 - 3.6 V DAC output buffer ON (to VSSA) 5 DAC output buffer ON (to VDDA) 25 DAC output buffer OFF - - 15 kΩ Capacitive load DAC output buffer ON - - 50 pF 0.2 - VDDA – 0.2 V - 0.5 - mV - - VDDA– 1LSB V With no load, middle code (0x800) on the input - - 380 µA With no load, worst code (0xF1C) on the input. - - 480 µA Corresponds to 12-bit input code (0x0E0) to (0xF1C) at VDDA = 3.6 V and (0x155) and (0xEAB) at VDDA = 2.4 V DAC output buffer OFF IDDA 96/124 kΩ Output impedance VDAC_OUT( Voltage on DAC_OUT 1) output (3) - DAC DC current consumption in quiescent mode(2) DS9866 Rev 8 STM32F303x6/x8 Electrical characteristics Table 65. DAC characteristics (continued) Symbol Min. Typ. Max. Unit Given for a 10-bit input code DAC1 channel 1 - - ±0.5 LSB Given for a 12-bit input code DAC1 channel 1 - - ±2 LSB Given for a 10-bit input code DAC1 channel 2 & DAC2 channel 1 - - -0.75/+0.25 LSB Given for a 12-bit input code DAC1 channel 2 & DAC2 channel 1 - - -3/+1 LSB Integral non linearity Given for a 10-bit input code (difference between measured value at Code i and the value at Code i on a Given for a 12-bit input code line drawn between Code 0 and last Code 4095) - - ±1 LSB - - ±4 LSB Offset error (difference between Given for a 10-bit input code at measured value at Code VDDA = 3.6 V (0x800) and the ideal value Given for a 12-bit input code = VDDA/2) - - ±10 mV - - ±3 LSB - - ±12 LSB Gain error - - ±0.5 % Settling time (full scale: for a 12-bit input code tSETTLING(3 transition between the CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ ) lowest and the highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 µs Max frequency for a correct DAC_OUT change when small variation in the input CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ code (from code i to i+1LSB) - - 1 MS/ s DAC buffer ON Output level higher than 0.2 V 100 - - µA CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ - 6.5 10 µs - –67 –40 dB DNL(3) INL(3) Offset(3) Gain error(3) Update rate(3) Iskink Parameter Differential non linearity Difference between two consecutive code-1LSB) Output sink current Wakeup time from off state tWAKEUP(3) (Setting the ENx bit in the DAC Control register) Conditions Given for a 12-bit input code Power supply rejection ratio PSRR+ (1) (to VDDA) (static DC No RLOAD, CLOAD = 50 pF measurement 1. Guaranteed by design, not tested in production. 2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved. 3. Data based on characterization results, not tested in production. DS9866 Rev 8 97/124 102 Electrical characteristics STM32F303x6/x8 Figure 32. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R L DAC_OUTx 12-bit digital to analog converter C L ai17157V3 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 6.3.20 Comparator characteristics Table 66. Comparator characteristics(1) Symbol Conditions Min. Typ. Max. Unit Analog supply voltage - 2 - 3.6 V VIN Comparator input voltage range - 0 - VDDA - VBG Scaler input voltage - - VREFINIT - - VSC Scaler offset voltage - - ±5 ±10 mV tS_SC First VREFINT scaler activation VREFINT scaler startup time after device power on from power down Next activations - - 1(2) s - - 0.2 ms VDDA < 2.7 V - - 4 VDDA < 2.7 V - - 10 Propagation delay for 200 mV step with 100 mV overdrive VDDA ≥ 2.7 V - 25 28 - 28 30 Propagation delay for full range step with 100 mV overdrive VDDA ≥ 2.7 V - 32 35 - 35 40 VDDA ≥ 2.7 V - ±5 ±10 VDDA < 2.7 V - - ±25 Full temperature range - - 3 mV - 400 600 µA VDDA tSTART Parameter Comparator startup time VDDA < 2.7 V tD ns VOFFSET Comparator offset error TVOFFSET Total offset variation IDD(COMP) COMP current consumption VDDA < 2.7 V - 1. Guaranteed by design, not tested in production. 2. For more details and conditions see Figure 33: Maximum VREFINT scaler startup time from power-down. 98/124 µs DS9866 Rev 8 mV STM32F303x6/x8 Electrical characteristics Figure 33. Maximum VREFINT scaler startup time from power-down 6.3.21 Operational amplifier characteristics Table 67. Operational amplifier characteristics(1) Symbol Parameter Condition Min. Typ. Max. Unit VDDA Analog supply voltage - 2.4 - 3.6 V CMIR Common mode input range - 0 - VDDA V - - 4 - - 6 25°C, No Load on output. - - 1.6 All voltage/Temp. - - 3 VIOFFSET Input offset voltage 25°C, No Load on output. Maximum calibration range All voltage/Temp. After offset calibration ΔVIOFFSET mV Input offset voltage drift - - 5 - µV/°C ILOAD Drive current - - - 500 µA IDDOPAMP Consumption No load, quiescent mode - 690 1450 µA - - 90 - dB 73 117 - dB CMRR Common mode rejection ratio PSRR Power supply rejection ratio GBW Bandwidth - - 8.2 - MHz SR Slew rate - - 4.7 - V/µs RLOAD Resistive load - 4 - - kΩ CLOAD Capacitive load - - - 50 pF DC DS9866 Rev 8 99/124 102 Electrical characteristics STM32F303x6/x8 Table 67. Operational amplifier characteristics(1) (continued) Symbol VOHSAT VOLSAT ϕm tOFFTRIM tWAKEUP Parameter Condition High saturation voltage(2) Low saturation voltage Min. Typ. Rload = min, Input at VDDA. VDDA-100 - Rload = 20K, Input at VDDA. VDDA-20 - Rnetwork PGA gain error Ibias PGA BW 100/124 Unit mV Rload = min, input at 0 V - - 100 Rload = 20K, input at 0 V. - - 20 Phase margin - - 62 - ° Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy - - - 2 ms - 2.8 5 µs 400 - - ns - 2 - - - 4 - - - 8 - - - 16 - - Gain=2 - 5.4/5.4 - Gain=4 - 16.2/5.4 - Gain=8 - 37.8/5.4 - Gain=16 - 40.5/2.7 - CLOAD ≤50 pf, RLOAD ≥ 4 kΩ, Follower configuration Wakeup time from OFF state. tS_OPAM_VOUT ADC sampling time when reading the OPAMP output PGA gain Max. Non inverting gain value - R2/R1 internal resistance values in PGA mode (3) kΩ PGA gain error - -1% - 1% - OPAMP input bias current - - - ±0.2(4) µA PGA Gain = 2, Cload = 50pF, Rload = 4 KΩ - 4 - PGA Gain = 4, Cload = 50pF, Rload = 4 KΩ - 2 - PGA Gain = 8, Cload = 50pF, Rload = 4 KΩ - 1 - PGA Gain = 16, Cload = 50pF, Rload = 4 KΩ - 0.5 - PGA bandwidth for different non inverting gain DS9866 Rev 8 MHz STM32F303x6/x8 Electrical characteristics Table 67. Operational amplifier characteristics(1) (continued) Symbol en Parameter Voltage noise density Condition Min. Typ. Max. @ 1KHz, Output loaded with 4 KΩ - 109 - @ 10KHz, Output loaded with 4 KΩ - 43 - Unit nV ----------Hz 1. Guaranteed by design, not tested in production. 2. The saturation voltage can also be limited by the Iload. 3. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1 4. Mostly TTa I/O leakage, when used in analog mode. Figure 34. OPAMP voltage noise versus frequency DS9866 Rev 8 101/124 102 Electrical characteristics 6.3.22 STM32F303x6/x8 Temperature sensor (TS) characteristics Table 68. Temperature sensor (TS) characteristics Symbol Parameter TL(1) Min. Typ. Max. Unit - ±1 ±2 °C Average slope 4.0 4.3 4.6 mV/°C Voltage at 25 °C 1.34 1.43 1.52 V 4 - 10 µs 2.2 - - µs VSENSE linearity with temperature (1) Avg_Slope V25 tSTART(1) TS_temp(1)(2) Startup time ADC sampling time when reading the temperature 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. Table 69. Temperature sensor (TS) calibration values Calibration value name 6.3.23 Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 VBAT monitoring characteristics Table 70. VBAT monitoring characteristics Symbol Parameter Min. Typ. Max. Unit R Resistor bridge for VBAT - 50 - KΩ Q Ratio on VBAT measurement - 2 - - Error on Q -1 - +1 % ADC sampling time when reading the VBAT 1mV accuracy 2.2 - - µs Er(1) TS_vbat(1)(2) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 102/124 DS9866 Rev 8 STM32F303x6/x8 Package information 7 Package information 7.1 Package mechanical data To meet the environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DS9866 Rev 8 103/124 120 Package information 7.2 STM32F303x6/x8 LQFP32 package information LQFP32 is a 32-pin, 7 x 7mm low-profile quad flat package. Figure 35. LQFP32 package outline c A1 A A2 SEATING PLANE C 0.25 mm ccc GAUGE PLANE C K D A1 L D1 L1 D3 24 17 16 32 9 PIN 1 IDENTIFICATION 1 E E1 E3 b 25 8 e 5V_ME_V2 1. Drawing is not to scale. Table 71. LQFP32 mechanical data Inches(1) Millimeters Symbol 104/124 Min. Typ. Max. Min. Typ. Max. A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 DS9866 Rev 8 STM32F303x6/x8 Package information Table 71. LQFP32 mechanical data (continued) Inches(1) Millimeters Symbol Min. Typ. Max. Min. Typ. Max. b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 36. Recommended footprint for the LQFP32 package 0.80 1.20 24 17 25 16 0.50 0.30 7.30 6.10 9.70 7.30 32 9 8 1 1.20 6.10 9.70 5V_FP_V2 1. Drawing is not to scale. 2. Dimensions are expressed in millimeters. DS9866 Rev 8 105/124 120 Package information STM32F303x6/x8 Device marking for LQFP32 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 37. LQFP32 marking example (package top view) (1) Product Identification STM32F 303K8T6 Y WW Revision code R Pin 1 indentifier MSv33095V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 106/124 DS9866 Rev 8 STM32F303x6/x8 LQFP48 package information LQFP48 is a 48-pin, 7 x 7mm low-profile quad flat package. Figure 38. LQFP48 package outline SEATING PLANE C c A1 A A2 0.25 mm GAUGE PLANE ccc C K D A1 L D1 L1 D3 36 25 37 24 48 E E1 b E3 7.3 Package information 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2 1. Drawing is not to scale. Table 72. LQFP48 package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - DS9866 Rev 8 107/124 120 Package information STM32F303x6/x8 Table 72. LQFP48 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 39. Recommended footprint for the LQFP48 package 0.50 1.20 9.70 0.30 25 36 37 24 0.20 7.30 5.80 7.30 48 13 12 1 1.20 5.80 9.70 ai14911d 1. Drawing is not to scale. 2. Dimensions are in millimeters. 108/124 DS9866 Rev 8 STM32F303x6/x8 Package information Device marking for LQFP48 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 40. LQFP48 marking example (package top view) (1) Product Identification STM32F 303C6T6 Y WW Revision code R Pin 1 indentifier MSv33096V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS9866 Rev 8 109/124 120 Package information 7.4 STM32F303x6/x8 LQFP64 package information LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package. Figure 41. LQFP64 package outline 0.25 mm GAUGE PLANE c A1 A A2 SEATING PLANE C A1 ccc C D D1 D3 K L L1 33 48 32 49 64 E E1 E3 b 17 PIN 1 IDENTIFICATION 16 1 e 5W_ME_V3 1. Drawing is not to scale. Table 73. LQFP64 package mechanical data inches(1) millimeters Symbol 110/124 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 11.800 12.000 - - 0.4724 - D1 9.800 10.000 - - 0.3937 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - e - 0.500 - - 0.0197 - DS9866 Rev 8 STM32F303x6/x8 Package information Table 73. LQFP64 package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max θ 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - Number of pins N 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 42. Recommended footprint for the LQFP64 package 48 33 0.3 0.5 49 32 12.7 10.3 10.3 17 64 1.2 16 1 7.8 12.7 ai14909c 1. Drawing is not to scale. 2. Dimensions are in millimeters. DS9866 Rev 8 111/124 120 Package information STM32F303x6/x8 Device marking for LQFP64 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 43. LQFP64 marking example (package top view) Revision code R (1) Engineering Sample marking STM32F303 R6T6 Pin 1 indentifier Y WW MSv33094V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 112/124 DS9866 Rev 8 STM32F303x6/x8 7.5 Package information WLCSP49 package information Figure 44. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, package outline bbb Z A1 BALL LOCATION e1 F G 7 A1 1 A DETAIL A E e2 E e G aaa e A TOP VIEW BOTTOM VIEW A3 A2 D D SIDE VIEW A2 BUMP FRONT VIEW A2 SEATING PLANE DETAIL A ROTATED 90 B01F_WLCSP49_ME_V1 1. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 2. Primary datum Z and seating plane are defined by the spherical crowns of the bump. 3. Bump position designation per JESD 95-1, SPP-010. DS9866 Rev 8 113/124 120 Package information STM32F303x6/x8 Table 74. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 0.62 - - 0.0244 A1 - 0.23 - - 0.009 - A2 - 0.36 - - 0.014 - - - 0.001 - 0.025 (2) A3 - b 0.30 0.33 0.36 0.012 0.013 0.014 D 3.87 3.89 3.91 0.152 0.153 0.154 E 3.72 3.74 3.76 0.146 0.147 0.148 e - 0.50 - - 0.020 - e1 - 3.00 - - 0.118 - e2 - 3.00 - - 0.118 - F - 0.445(3) - - 0.017 - G - 0.370(4) - - 0.015 - aaa - - 0.10 - - 0.004 bbb - - 0.10 - - 0.004 ccc - - 0.10 - - 0.004 ddd - - 0.05 - - 0.002 eee - - 0.05 - - 0.002 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. A3 value is guaranteed by technology design value. 3. This value is calculated from over value D and e1. 4. This value is calculated from over value E and e2. Figure 45. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, recommended footprint Dpad Dsm B01F_WLCSP49_FP_V1 1. Dimensions are expressed in millimeters. 114/124 DS9866 Rev 8 STM32F303x6/x8 Package information Table 75. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale, recommended PCB design rules Dimension Recommended values Pitch 0.5 mm Dpad 0.290 mm Dsm 0.350 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.310 mm Stencil thickness 0.100 mm Device marking The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 46. WLCSP49 marking example (package top view) 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS9866 Rev 8 115/124 120 Package information 7.6 STM32F303x6/x8 UFQFPN32 package information Figure 47. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat package outline D1 E1 e Pin 1 identifier e L b BOTTOM VIEW A1 A3 FRONT VIEW DETAIL A Pin 1 identifier LASER MARKING AREA A3 E e b A SEATING PLANE DETAIL A D TOP VIEW 1. Drawing is not in scale. 116/124 A1 DS9866 Rev 8 A09E_ME_V1 STM32F303x6/x8 Package information Table 76. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A(2) 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0 0.020 0.050 0 0.0008 0.0020 A3 - 0.152 - - 0.0060 - b 0.180 0.250 0.280 0.0071 0.0098 0.0110 (3) D 4.900 5.000 5.100 0.1929 0.1969 0.2008 D1 3.400 3.500 3.600 0.1339 0.1378 0.1417 E(3) 4.900 5.000 5.100 0.1929 0.1969 0.2008 E1 3.400 3.500 3.600 0.1339 0.1378 0.1417 e - 0.500 - - 0.0197 - L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. UFQFPN stands for Thermally Enhanced Ultrathin Fine pitch Quad Flat Package No lead. 3. Dimensions D and E do not include mold protrusion, not to exceed 0,15mm. Figure 48. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat recommended footprint 5.30 3.80 0.60 3.80 5.30 0.50 0.30 0.75 3.80 A09E_FP_V1 1. Dimensions are expressed in millimeters. DS9866 Rev 8 117/124 120 Package information STM32F303x6/x8 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 49. UFQFPN32 marking example (package top view) Product identification (1) E303K6U Y WW R Revision code Pin 1 identifier MSv60320V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 118/124 DS9866 Rev 8 STM32F303x6/x8 7.7 Package information Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in ° C, • ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/O max), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 77. Package thermal characteristics Symbol ΘJA Parameter Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP48 - 7 × 7 mm / 0.5 mm pitch 55 Thermal resistance junction-ambient LQFP32 - 7 × 7 mm / 0.8 mm pitch 60 Thermal resistance junction-ambient UFQFN32 - 5 x 5 mm 37 Thermal resistance junction-ambient WLCSP49 - 3.89 x 3.74 mm / 0.5 mm pitch 7.7.1 Value Unit °C/W 48.3 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available at the www.jedec.org website. 7.7.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 78: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and to a specific maximum junction temperature. As applications do not commonly use the STM32F303x6/8 microcontroller at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range is best suited to the application. DS9866 Rev 8 119/124 120 Package information STM32F303x6/x8 The following examples show how to calculate the temperature range needed for a given application. Example: high-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V = 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 77: Package thermal characteristics, TJmax is calculated as follows: – For LQFP48, 55 °C/W TJmax = 82 °C + (55 °C/W × 236.6 mW) = 82 °C + 13.01 °C = 95.01°C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Table 78: Ordering information scheme). 120/124 DS9866 Rev 8 STM32F303x6/x8 8 Ordering information Ordering information Table 78. Ordering information scheme Example: STM32 F 303 C 8 T 6 xxx Device family STM32 = Arm®-based 32-bit microcontroller Product type F = general-purpose Device subfamily 303 = STM32F303 Pin count K = 32 pins C = 48 or 49 pins R = 64 pins Flash memory size 6 = 32 Kbytes of Flash memory 8 = 64 Kbytes of Flash memory Package T = LQFP Y = WLCSP U = UFQFPN Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Options xxx = programmed parts TR = tape and reel DS9866 Rev 8 121/124 121 Revision history 9 STM32F303x6/x8 Revision history Table 79. Document revision history Date Revision 11-Apr-2014 1 Initial release. 2 Updated: – Table 73: Package thermal characteristics: remove Note 1. – Table 17: Voltage characteristics: added line in VIN – Table 35: Low-power mode wakeup timings: updated Max values – Table 40: HSI oscillator characteristics (Accuracy of the oscillator) – Table 40: HSI oscillator characteristics (Accuracy of the oscillator) – Table 54: TIMx characteristics – Table 59: ADC characteristics – Table 34: Peripheral current consumption – Table 2: STM32F303x6/8 family device features and peripherals count – Figure 17: HSI oscillator accuracy characterization results for soldered parts – Notes of Table 31: Typical current consumption in Run mode, code with data processing running from Flash and Table 32: Typical current consumption in Sleep mode, code running from Flash or RAM. 2-Feb-2015 3 Updated: – Figure 1: STM32F334x4/6/8 block diagram – Table 40: HSE oscillator characteristics – Table 45: Flash memory characteristics Added Figure 14: High-speed external clock source AC timing diagram 09-May-2015 4 Updated Table 14: STM32F334x4/6/8 pin definitions and Table 15: Alternate functions 5 Updated: Table 66: DAC characteristics, Table 61: ADC characteristics,Table 55: NRST pin characteristics, Figure 2: Clock tree, Table 14: STM32F334x4/6/8 pin definitions, Table 68: Operational amplifier characteristics, Figure 22: 5Vtolerant (FT and FTf) I/O input characteristics - TTL port, Figure 24: Embedded internal reference voltage, Table 41: LSE oscillator characteristics (fLSE = 32.768 kHz). 9-Dec-2014 05-Oct-2016 122/124 Changes DS9866 Rev 8 STM32F303x6/x8 Revision history Table 79. Document revision history (continued) Date Revision Changes 31-Aug-2017 6 Updated: – Table 14: STM32F334x4/6/8 pin definitions – Table 36: Low-power mode wakeup timings on page 67 – Table 66: DAC characteristics – Figure 7: WLCSP49 ballout – Section 7: Package information – Section 8: Ordering information to add the WLCSP49 package. 22-Nov-2017 7 Updated Table 14: STM32F334x4/6/8 pin definitions 8 Updated: – Table 2: STM32F303x6/8 family device features and peripherals count – Table 13: STM32F303x6/8 pin definitions – Table 19: General operating conditions – Table 77: Package thermal characteristics – Table 78: Ordering information scheme Added: – Figure 8: UFQFPN32 pinout – Section 7.6: UFQFPN32 package information 16-Jul-2018 DS9866 Rev 8 123/124 123 STM32F303x6/x8 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2018 STMicroelectronics – All rights reserved 124/124 DS9866 Rev 8
STM32F303C8Y6TR 价格&库存

很抱歉,暂时无法提供与“STM32F303C8Y6TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货