STM32F303xB STM32F303xC
Arm®-based Cortex®-M4 32b MCU+FPU, up to 256KB Flash+
48KB SRAM, 4 ADCs, 2 DAC ch., 7 comp, 4 PGA, timers, 2.0-3.6 V
Datasheet - production data
Features
• Core: Arm® Cortex®-M4 32-bit CPU with FPU
(72 MHz max), single-cycle multiplication and
HW division, 90 DMIPS (from CCM), DSP
instruction and MPU (memory protection unit)
LQFP48 (7 × 7 mm)
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
• Operating conditions:
– VDD, VDDA voltage range: 2.0 V to 3.6 V
• Memories
– 128 to 256 Kbytes of Flash memory
– Up to 40 Kbytes of SRAM, with HW parity
check implemented on the first 16 Kbytes.
– Routine booster: 8 Kbytes of SRAM on
instruction and data bus, with HW parity
check (CCM)
• CRC calculation unit
• Reset and supply management
– Power-on/power-down reset (POR/PDR)
– Programmable voltage detector (PVD)
– Low-power modes: Sleep, Stop and
Standby
– VBAT supply for RTC and backup registers
• Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x 16 PLL option
– Internal 40 kHz oscillator
• Up to 87 fast I/Os
– All mappable on external interrupt vectors
– Several 5 V-tolerant
• Interconnect matrix
• 12-channel DMA controller
• Four ADCs 0.20 µS (up to 39 channels) with
selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, single
ended/differential input, separate analog
supply from 2 to 3.6 V
• Two 12-bit DAC channels with analog supply
from 2.4 to 3.6 V
October 2018
This is information on a product in full production.
WLCSP100 (0.4 mm pitch)
• Seven fast rail-to-rail analog comparators with
analog supply from 2 to 3.6 V
• Four operational amplifiers that can be used in
PGA mode, all terminals accessible with
analog supply from 2.4 to 3.6 V
• Up to 24 capacitive sensing channels supporting
touchkey, linear and rotary touch sensors
• Up to 13 timers
– One 32-bit timer and two 16-bit timers with
up to 4 IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
– Two 16-bit 6-channel advanced-control
timers, with up to 6 PWM channels,
deadtime generation and emergency stop
– One 16-bit timer with 2 IC/OCs, 1
OCN/PWM, deadtime generation and
emergency stop
– Two 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop
– Two watchdog timers (independent,
window)
– SysTick timer: 24-bit downcounter
– Two 16-bit basic timers to drive the DAC
• Calendar RTC with Alarm, periodic wakeup
from Stop/Standby
• Communication interfaces
– CAN interface (2.0B Active)
– Two I2C Fast mode plus (1 Mbit/s) with
20 mA current sink, SMBus/PMBus,
wakeup from STOP
DS9118 Rev 14
1/149
www.st.com
STM32F303xB STM32F303xC
– Up to five USART/UARTs (ISO 7816
interface, LIN, IrDA, modem control)
– Up to three SPIs, two with multiplexed
half/full duplex I2S interface, 4 to 16
programmable bit frames
– USB 2.0 full speed interface
– Infrared transmitter
• Serial wire debug, Cortex®-M4 with FPU ETM,
JTAG
• 96-bit unique ID
Table 1. Device summary
Reference
Part number
STM32F303xB
STM32F303CB, STM32F303RB, STM32F303VB
STM32F303xC
STM32F303CC, STM32F303RC, STM32F303VC
2/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
Arm® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . . 14
3.2
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6
Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.2
Power supply supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11
Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1
3.13
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20
Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.13.4
OPAMP reference voltage (VREFOPAMP) . . . . . . . . . . . . . . . . . . . . . . 22
3.14
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16
Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17.1
Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DS9118 Rev 14
3/149
5
Contents
STM32F303xB STM32F303xC
3.17.2
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . . 24
3.17.3
Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.5
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25
3.19
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20
Universal synchronous/asynchronous receiver transmitter (USART) . . . 27
3.21
Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27
3.22
Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28
3.23
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.24
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.25
Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.26
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.27
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.2
Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1
4/149
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 61
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 61
DS9118 Rev 14
STM32F303xB STM32F303xC
7
Contents
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.16
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.17
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.18
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.19
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.20
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.21
Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.22
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.23
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1
LQFP100 – 14 x 14 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2
LQFP64 – 10 x 10 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3
LQFP48 – 7 x 7 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4
WLCSP100 - 0.4 mm pitch wafer level chip scale package information 135
7.5
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 140
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DS9118 Rev 14
5/149
5
List of tables
STM32F303xB STM32F303xC
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/149
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32F303xB/STM32F303xC family device features and peripheral counts . . . . . . . . . . 12
External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
STM32F303xB/STM32F303xC peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . 17
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM32F303xB/STM32F303xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM32F303xB/STM32F303xC SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC devices . . . . . . . 30
No. of capacitive sensing channels available on STM32F303xB/STM32F303xC devices . 30
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32F303xB/STM32F303xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM32F303xB/STM32F303xC memory map, peripheral register boundary addresses . . 54
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 61
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 64
Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 65
Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 66
Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 66
Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 67
Typical current consumption in Run mode, code with data processing running from Flash 68
Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 69
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DS9118 Rev 14
STM32F303xB STM32F303xC
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
List of tables
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
I2C timings specification (see I2C specification, rev.03, June 2007) . . . . . . . . . . . . . . . . . 95
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ADC accuracy - limited test conditions, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . 109
ADC accuracy, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ADC accuracy - limited test conditions, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . 113
ADC accuracy, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 126
LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . 129
LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 132
WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 137
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DS9118 Rev 14
7/149
7
List of figures
STM32F303xB STM32F303xC
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
8/149
STM32F303xB/STM32F303xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STM32F303xB/STM32F303xC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32F303xB/STM32F303xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32F303xB/STM32F303xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32F303xB/STM32F303xC WLCSP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32F303xB/STM32F303xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 67
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 81
TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 89
Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 89
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . 121
OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LQFP100 – 14 x 14 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 126
LQFP100 – 14 x 14 mm, low-profile quad flat package recommended footprint . . . . . . . 127
LQFP100 – 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 128
LQFP64 – 10 x 10 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . 129
LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint . . . . . . . . 130
LQFP64 – 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 131
LQFP48 – 7 x 7 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . 132
LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint. . . . . . . . . . . 133
LQFP48 - 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . 134
WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
DS9118 Rev 14
STM32F303xB STM32F303xC
Figure 49.
Figure 50.
List of figures
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
WLCSP100, 0.4 mm pitch wafer level chip scale package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DS9118 Rev 14
9/149
9
Introduction
1
STM32F303xB STM32F303xC
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F303xB/STM32F303xC microcontrollers.
This STM32F303xB/STM32F303xC datasheet should be read in conjunction with the
STM32F303x, STM32F358xC and STM32F328x4/6/8 reference manual (RM0316). The
reference manual is available from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core with FPU, refer to:
•
Cortex®-M4 with FPU Technical Reference Manual, available from the
http://www.arm.com website.
•
STM32F3xxx and STM32F4xxx Cortex®-M4 programming manual (PM0214)
available from our website www.st.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
10/149
DS9118 Rev 14
STM32F303xB STM32F303xC
2
Description
Description
The STM32F303xB/STM32F303xC family is based on the high-performance Arm® Cortex®M4 32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a
floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell
(ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash
memory, up to 40 Kbytes of SRAM) and an extensive range of enhanced I/Os and
peripherals connected to two APB buses.
The devices offer up to four fast 12-bit ADCs (5 Msps), seven comparators, four operational
amplifiers, up to two DAC channels, a low-power RTC, up to five general-purpose 16-bit
timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They
also feature standard and advanced communication interfaces: up to two I2Cs, up to three
SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN
and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an
external PLL.
The STM32F303xB/STM32F303xC family operates in the -40 to +85 °C and -40 to +105 °C
temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F303xB/STM32F303xC family offers devices in four packages ranging from
48 pins to 100 pins.
The set of included peripherals changes with the device chosen.
DS9118 Rev 14
11/149
55
Description
STM32F303xB STM32F303xC
Table 2. STM32F303xB/STM32F303xC family device features and peripheral counts
Peripheral
STM32F303Cx
STM32F303Rx
STM32F303Vx
Flash (Kbytes)
128
256
128
256
128
256
SRAM (Kbytes) on data bus
32
40
32
40
32
40
CCM (Core Coupled Memory)
RAM (Kbytes)
Timers
8
Advanced
control
2 (16-bit)
General purpose
5 (16-bit)
1 (32-bit)
Basic
2 (16-bit)
PWM channels (all) (1)
31
33
PWM channels (except
complementary)
22
24
SPI (I2S)(2)
I
Communication USART
interfaces
UART
GPIOs
3(2)
2C
2
3
0
2
CAN
1
USB
1
Normal I/Os
(TC, TTa)
20
27
45 in LQFP100
37 in WLCSP100
5-volt tolerant
I/Os (FT, FTf)
17
25
42 in LQFP100
40 in WLCSP100
DMA channels
Capacitive sensing channels
12
17
15
22
12-bit DAC channels
2
Analog comparator
7
Operational amplifiers
4
CPU frequency
Packages
39 in LQFP100
32 in WLCSP100
72 MHz
Operating voltage
Operating temperature
24
4
12-bit ADCs
Number of channels
18
2.0 to 3.6 V
Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Junction temperature: - 40 to 125 °C
LQFP48
LQFP64
LQFP100
WLCSP100
1. This total number considers also the PWMs generated on the complementary output channels
2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
12/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Description
Figure 1. STM32F303xB/STM32F303xC block diagram
TPIU
ETM
SWJTAG Trace/Trig
OBL
Ibus
Cortex M4 CPU
Flash
interface
Voltage reg.
3.3 V to 1.8V
MPU/FPU
Fmax: 72 MHz
System
NVIC
CCM RAM
8KB
POR
Supply
Supervision
Reset
Int.
POR /PDR
NRESET
VDDA
VSSA
PVD
SRAM
40 KB
@VDDA
@VDDA
GP DMA1
7 channels
RC HS 8MHz
GP DMA2
5 channels
PLL
@VDDIO
RC LS
XTAL OSC
4 -32 MHz
Ind. WDG32K
Standby
interface
AHBPCLK
Temp. sensor
APBP1CLK
12-bit ADC1
IF
Reset &
clock
control
AHB3
VREF+
VREF-
VDDIO = 2 to 3.6 V
VSS
@VDDIO
FLASH 256 KB
64 bits
Dbus
12-bit ADC2
Power
VDD18
BusMatrix
TRADECLK
TRACED[0-3]
as AF
JTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO
As AF
12-bit ADC3
IF
12-bit ADC4
APBP2CLK
HCLK
FCLK
OSC_IN
OSC_OUT
VBAT = 1.65V to 3.6V
@VSW
XTAL 32kHz
Backup
RTC
Reg
AWU (64Byte)
Backup
interface
USARTCLK
I2CCLK
ADC SAR
1/2/3/4 CLK
OSC32_IN
OSC32_OUT
ANTI-TAMP
TIMER2
(32-bit/PWM)
4 Channels, ETR as AF
GPIO PORT B
TIMER 3
4 Channels, ETR as AF
PC[15:0]
GPIO PORT C
TIMER 4
4 Channels, ETR as AF
PD[15:0]
GPIO PORT D
SPI2/I2S
MOSI/SD, MISO/ext_SD,
SCK/CK, NSS/WS, MCLK as AF
PE[15:0]
GPIO PORT E
SPI3/I2S
PF[7:0]
GPIO PORT F
MOSI/SD, MISO/ext_SD,
SCK/CK, NSS/WS, MCLK as AF
USART2
RX, TX, CTS, RTS, as AF
USART3
RX, TX, CTS, RTS, as AF
PB[15:0]
XX Groups of
4 channels as AF
CRC
APB1 Fmax = 36 MHz
GPIO PORT A
AHB2
PA[15:0]
Touch Sensing
Controller
AHB2
APB2
AHB2
APB1
UART4
RX, TX as AF
UART5
RX, TX as AF
I2C1
SCL, SDA, SMBA as AF
I2C2
SCL, SDA, SMBA as AF
WinWATCHDOG
EXT.IT
WKUP
TIMER 15
1 Channel, 1 Comp
Channel, BRK as AF
TIMER 16
1 Channel, 1 Comp
Channel, BRK as AF
TIMER 17
4 Channels,
4 Comp channels,
ETR, BRK as AF
4 Channels,
4 Comp channels,
ETR, BRK as AF
TIMER 1 / PWM
TIMER7
RX, TX, CTS, RTS,
SmartCard as AF
USART1
DAC1_CH1 as AF
IF 12bit DAC1
@VDDA
SYSCFG CTL
SPI1
USB_DP, USB_DM
TIMER6
TIMER 8 / PWM
MOSI, MISO,
SCK,NSS as AF
CAN TX, CAN RX
USB 2.0 FS
INTERFACE
2 Channels,1 Comp
Channel, BRK as AF
bx CAN &
512B SRAM
USB SRAM 512B
APB2 fmax = 72 MHz
XX AF
DAC1_CH2 as AF
OpAmp1
INxx / OUTxx
OpAmp2
INxx / OUTxx
OpAmp3
INxx / OUTxx
OpAmp4
INxx / OUTxx
@VDDA
GP Comparator
p
7
GP Comparator...
GP Comparator 1
Xx Ins, 7 OUTs as AF
@VDDA
MS18960V4
1. AF: alternate function on I/O pins.
DS9118 Rev 14
13/149
55
Functional overview
STM32F303xB STM32F303xC
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU with embedded Flash and
SRAM
The Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency,
delivering the high-performance expected from an Arm core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm core, the STM32F303xB/STM32F303xC family is compatible with
all Arm tools and software.
Figure 1 shows the general block diagram of the STM32F303xB/STM32F303xC family
devices.
3.2
Memory protection unit (MPU)
The memory protection unit (MPU) is used to separate the processing of tasks from the data
protection. The MPU can manage up to 8 protection areas that can all be further divided up
into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes
of addressable memory.
The memory protection unit is especially helpful for applications where some critical or
certified code has to be protected against the misbehavior of other tasks. It is usually
managed by an RTOS (real-time operating system). If a program accesses a memory
location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS
environment, the kernel can dynamically update the MPU area setting, based on the
process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3
Embedded Flash memory
All STM32F303xB/STM32F303xC devices feature up to 256 Kbytes of embedded Flash
memory available for storing programs and data. The Flash memory access time is adjusted
to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz
and 2 wait states above).
14/149
DS9118 Rev 14
STM32F303xB STM32F303xC
3.4
Functional overview
Embedded SRAM
STM32F303xB/STM32F303xC devices feature up to 48 Kbytes of embedded SRAM with
hardware parity check. The memory can be accessed in read/write at CPU clock speed with
0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running
code from the CCM (Core Coupled Memory) RAM).
•
8 Kbytes of CCM RAM mapped on both instruction and data bus, used to execute
critical routines or to access data (parity check on all of CCM RAM).
•
3.5
40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM).
Boot modes
At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in the system memory. It is used to reprogram the Flash memory
by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU
(device firmware upgrade).
3.6
Cyclic redundancy check (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
DS9118 Rev 14
15/149
55
Functional overview
STM32F303xB STM32F303xC
3.7
Power management
3.7.1
Power supply schemes
•
VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
provided externally through VDD pins.
•
VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators
operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied
to VDDA differs from one analog peripheral to another. Table 3 provides the summary of
the VDDA ranges for analog peripherals. The VDDA voltage level must be always
greater or equal to the VDD voltage level and must be provided first.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Table 3. External analog supply values for analog peripherals
3.7.2
Analog peripheral
Minimum VDDA supply
Maximum VDDA supply
ADC / COMP
2.0 V
3.6 V
DAC / OPAMP
2.4 V
3.6V
Power supply supervision
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
•
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
•
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.7.3
Voltage regulator
The regulator has three operation modes: main (MR), low-power (LPR), and power-down.
•
The MR mode is used in the nominal regulation mode (Run)
•
The LPR mode is used in Stop mode.
•
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
16/149
DS9118 Rev 14
STM32F303xB STM32F303xC
3.7.4
Functional overview
Low-power modes
The STM32F303xB/STM32F303xC supports three low-power modes to achieve the best
compromise between low-power consumption, short startup time and available wakeup
sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC
alarm, COMPx, I2Cx or U(S)ARTx.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin or an RTC alarm occurs.
Note:
The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.8
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix
Interconnect source
Interconnect
destination
Interconnect action
TIMx
Timers synchronization or chaining
ADCx
DAC1
Conversion triggers
DMA
Memory to memory transfer trigger
Compx
Comparator output blanking
COMPx
TIMx
Timer input: OCREF_CLR input, input capture
ADCx
TIMx
Timer triggered by analog watchdog
TIMx
DS9118 Rev 14
17/149
55
Functional overview
STM32F303xB STM32F303xC
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix (continued)
Interconnect source
Interconnect
destination
Interconnect action
GPIO
RTCCLK
HSE/32
MC0
TIM16
Clock source used as input channel for HSI and
LSI calibration
CSS
CPU (hard fault)
COMPx
PVD
GPIO
TIM1, TIM8,
TIM15, 16, 17
Timer break
TIMx
External trigger, timer break
GPIO
ADCx
DAC1
Conversion external trigger
DAC1
COMPx
Comparator inverting input
Note:
For more details about the interconnect actions, please refer to the corresponding sections
in the reference manual (RM0316).
3.9
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the high
speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed
APB domain is 36 MHz.
18/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Functional overview
Figure 2. Clock tree
FLITFCLK
to Flash programming interface
HSI
to I2Cx (x = 1,2)
SYSCLK
I2SSRC
SYSCLK
to I2Sx (x = 2,3)
Ext. clock
I2S_CKIN
USB
prescaler
/1,1.5
8 MHz HSI
HSI RC
USBCLK
to USB interface
/2
HCLK
PLLSRC
PLLMUL
PLL
x2,x3,..
x16
SW
HSI
PLLCLK
HSE
/8
AHB
AHB
prescaler
/1,2,..512
APB1
prescaler
/1,2,4,8,16
SYSCLK
OSC_OUT
OSC_IN
OSC32_IN
OSC32_OUT
PCLK1
SYSCLK
HSI
LSE
4-32 MHz
HSE OSC
APB2
prescaler
/1,2,4,8,16
/32
LSE OSC
32.768kHz
RTCCLK
LSI
MCO
Main clock
output
MCO
PLLCLK
HSI
LSI
HSE
SYSCLK
to U(S)ARTx (x = 2..5)
to APB2 peripherals
If (APB2 prescaler
=1) x1 else x2
PCLK2
SYSCLK
HSI
LSE
IWDGCLK
to IWDG
/2
PCLK2
to TIM 2,3,4,6,7
to RTC
LSE
RTCSEL[1:0]
LSI RC
40kHz
PCLK1
If (APB1 prescaler
=1) x1 else x2
CSS
/2,/3,...
/16
to AHB bus, core,
memory and DMA
to cortex System timer
FHCLK Cortex free
running clock
to APB1 peripherals
x2
ADC
Prescaler
/1,2,4
ADC
Prescaler
/1,2,4,6,8,10,12,16,
32,64,128,256
DS9118 Rev 14
to TIM 15,16,17
to USART1
TIM1/8
to ADCxy
(xy = 12, 34)
MS19989V5
19/149
55
Functional overview
3.10
STM32F303xB STM32F303xC
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.
3.11
Direct memory access (DMA)
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer
management, avoiding the generation of interrupts when the controller reaches the end of
the buffer.
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with
software trigger support for each channel. Configuration is done by software and transfer
sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,
DAC and ADC.
3.12
Interrupts and events
3.12.1
Nested vectored interrupt controller (NVIC)
The STM32F303xB/STM32F303xC devices embed a nested vectored interrupt controller
(NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Closely coupled NVIC core interface
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
20/149
DS9118 Rev 14
STM32F303xB STM32F303xC
3.13
Functional overview
Fast analog-to-digital converter (ADC)
four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6
bit, are embedded in the STM32F303xB/STM32F303xC family devices. The ADCs have up
to 39 external channels. Some of the external channels are shared between ADC1&2 and
between ADC3&4. Channels can be configured to be either single-ended input or differential
input. The ADCs can perform conversions in single-shot or scan modes. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel
16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 4
ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to
ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17 and VREFOPAMP4
connected to ADC4 channel 17.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
•
Single-shunt phase current reading techniques.
The ADC can be served by the DMA controller. 3 analog watchdogs per ADC are available.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers and the advanced-control timers
(TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger,
respectively, to allow the application to synchronize A/D conversion and timers.
3.13.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.13.2
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADCx_IN18, x=1...4 input
channel. The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
DS9118 Rev 14
21/149
55
Functional overview
3.13.3
STM32F303xB STM32F303xC
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN17. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.13.4
OPAMP reference voltage (VREFOPAMP)
Every OPAMP reference voltage can be measured using a corresponding ADC internal
channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to
ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17, VREFOPAMP4
connected to ADC4 channel 17.
3.14
Digital-to-analog converter (DAC)
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
This digital interface supports the following features:
3.15
•
Two DAC output channels
•
8-bit or 10-bit monotonic output
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability (for each channel)
•
External triggers for conversion
Operational amplifier (OPAMP)
The STM32F303xB/STM32F303xC embeds four operational amplifiers with external or
internal follower routing and PGA capability (or even amplifier and filter capability with
external components). When an operational amplifier is selected, an external ADC channel
is used to enable output measurement.
The operational amplifier features:
22/149
•
8.2 MHz bandwidth
•
0.5 mA output capability
•
Rail-to-rail input/output
•
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.
DS9118 Rev 14
STM32F303xB STM32F303xC
3.16
Functional overview
Fast comparators (COMP)
The STM32F303xB/STM32F303xC devices embed seven fast rail-to-rail comparators with
programmable reference voltage (internal or external), hysteresis and speed (low speed for
low-power) and with selectable output polarity.
The reference voltage can be one of the following:
•
External I/O
•
DAC output pin
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 28: Embedded
internal reference voltage on page 63 for the value and precision of the internal
reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the
timers and can be also combined per pair into a window comparator
3.17
Timers and watchdogs
The STM32F303xB/STM32F303xC includes two advanced control timers, up to six generalpurpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below
compares the features of the advanced control, general purpose and basic timers.
Table 5. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Advanced
TIM1,
TIM8
16-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
Yes
Generalpurpose
TIM2
32-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM3, TIM4
16-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
Generalpurpose
TIM16, TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
Note:
Capture/
Complementary
compare
outputs
Channels
TIM1/8 can have PLL as clock source, and therefore can be clocked at 144 MHz.
DS9118 Rev 14
23/149
55
Functional overview
3.17.1
STM32F303xB STM32F303xC
Advanced timers (TIM1, TIM8)
The advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM
multiplexed on six channels. They have complementary PWM outputs with programmable
inserted dead-times. They can also be seen as complete general-purpose timers. The four
independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability (0100%)
•
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.17.2 using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.
3.17.2
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)
There are up to six synchronizable general-purpose timers embedded in the
STM32F303xB/STM32F303xC (see Table 5 for differences). Each general-purpose timer
can be used to generate PWM outputs, or act as a simple time base.
•
TIM2, 3, and TIM4
These are full-featured general-purpose timers:
–
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
–
TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.
These timers all feature 4 independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
•
TIM15, 16 and 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.17.3
Basic timers (TIM6, TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
24/149
DS9118 Rev 14
STM32F303xB STM32F303xC
3.17.4
Functional overview
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
3.17.5
Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.17.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
3.18
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0.
•
Programmable clock source
Real-time clock (RTC) and backup registers
The RTC and the 16 backup registers are supplied through a switch that takes power from
either the VDD supply when present or the VBAT pin. The backup registers are sixteen 32-bit
registers used to store 64 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or when the device wakes up from Standby
mode.
The RTC is an independent BCD timer/counter.It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
•
Two programmable alarms with wake up from Stop and Standby mode capability.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stopand Standby modes on tamper event detection.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
DS9118 Rev 14
25/149
55
Functional overview
•
STM32F303xB STM32F303xC
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY
capability.
The RTC clock sources can be:
3.19
•
A 32.768 kHz external crystal
•
A resonator or oscillator
•
The internal low-power RC oscillator (typical frequency of 40 kHz)
•
The high-speed external clock divided by 32.
Inter-integrated circuit interface (I2C)
Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support
standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses
(2 addresses, 1 with configurable mask). They also include programmable analog and
digital noise filters.
Table 6. Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and
ALERT protocol management. They also have a clock domain independent from the CPU
clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the features available in I2C1 and I2C2.
Table 7. STM32F303xB/STM32F303xC I2C implementation
I2C features(1)
26/149
I2C1
I2C2
7-bit addressing mode
X
X
10-bit addressing mode
X
X
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
Independent clock
X
X
DS9118 Rev 14
STM32F303xB STM32F303xC
Functional overview
Table 7. STM32F303xB/STM32F303xC I2C implementation (continued)
I2C features(1)
I2C1
I2C2
SMBus
X
X
Wakeup from STOP
X
X
1. X = supported.
3.20
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32F303xB/STM32F303xC devices have three embedded universal
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR
ENDEC, the multiprocessor communication mode, the single-wire half-duplex
communication mode and have LIN Master/Slave capability. The USART interfaces can be
served by the DMA controller.
3.21
Universal asynchronous receiver transmitter (UART)
The STM32F303xB/STM32F303xC devices have 2 embedded universal asynchronous
receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR
ENDEC, multiprocessor communication mode and single-wire half-duplex communication
mode. The UART4 interface can be served by the DMA controller.
Refer to Table 8 for the features available in all U(S)ART interfaces.
Table 8. USART features
USART
modes/features(1)
USART1
USART2
USART3
UART4
UART5
Hardware flow control for modem
X
X
X
-
-
Continuous communication using DMA
X
X
X
X
-
Multiprocessor communication
X
X
X
X
X
Synchronous mode
X
X
X
-
-
Smartcard mode
X
X
X
-
-
Single-wire half-duplex communication
X
X
X
X
X
IrDA SIR ENDEC block
X
X
X
X
X
LIN mode
X
X
X
X
X
Dual clock domain and wakeup from Stop mode
X
X
X
X
X
Receiver timeout interrupt
X
X
X
X
X
Modbus communication
X
X
X
X
X
Auto baud rate detection
X
X
X
-
-
Driver Enable
X
X
X
-
-
1. X = supported.
DS9118 Rev 14
27/149
55
Functional overview
3.22
STM32F303xB STM32F303xC
Serial peripheral interface (SPI)/Inter-integrated sound
interfaces (I2S)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different
audio standards can operate as master or slave at half-duplex and full duplex
communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit
or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency
from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When
operating in master mode it can output a clock for an external audio component at 256 times
the sampling frequency.
Refer to Table 9 for the features available in SPI1, SPI2 and SPI3.
Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation
SPI features(1)
SPI1
SPI2
SPI3
Hardware CRC calculation
X
X
X
Rx/Tx FIFO
X
X
X
NSS pulse mode
X
X
X
I2S mode
-
X
X
TI mode
X
X
X
1. X = supported.
3.23
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.24
Universal serial bus (USB)
The STM32F303xB/STM32F303xC devices embed an USB device peripheral compatible
with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s)
function interface. It has software-configurable endpoint setting and suspend/resume
support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock
source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM
memory for data transmission and reception.
28/149
DS9118 Rev 14
STM32F303xB STM32F303xC
3.25
Functional overview
Infrared Transmitter
The STM32F303xB/STM32F303xC devices provide an infrared transmitter solution. The
solution is based on internal connections between TIM16 and TIM17 as shown in the figure
below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be
sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must
be properly configured to generate correct waveforms. All standard IR pulse modulation
modes can be obtained by programming the two timers output compare channels.
Figure 3. Infrared transmitter
TIMER 16
OC
(for envelop)
TIMER 17
PB9/PA13
OC
(for carrier)
MSv30365V1
3.26
Touch sensing controller (TSC)
The STM32F303xB/STM32F303xC devices provide a simple solution for adding capacitive
sensing functionality to any application. These devices offer up to 24 capacitive sensing
channels distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
DS9118 Rev 14
29/149
55
Functional overview
STM32F303xB STM32F303xC
Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC
devices
Group
1
2
3
4
Capacitive sensing
signal name
Pin
name
TSC_G5_IO1
PB3
TSC_G5_IO2
PB4
TSC_G5_IO3
PB6
PA3
TSC_G5_IO4
PB7
TSC_G2_IO1
PA4
TSC_G6_IO1
PB11
TSC_G2_IO2
PA5
TSC_G6_IO2
PB12
TSC_G2_IO3
PA6
TSC_G6_IO3
PB13
TSC_G2_IO4
PA7
TSC_G6_IO4
PB14
TSC_G3_IO1
PC5
TSC_G7_IO1
PE2
TSC_G3_IO2
PB0
TSC_G7_IO2
PE3
TSC_G3_IO3
PB1
TSC_G7_IO3
PE4
TSC_G3_IO4
PB2
TSC_G7_IO4
PE5
TSC_G4_IO1
PA9
TSC_G8_IO1
PD12
TSC_G4_IO2
PA10
TSC_G8_IO2
PD13
TSC_G4_IO3
PA13
TSC_G8_IO3
PD14
TSC_G4_IO4
PA14
TSC_G8_IO4
PD15
Capacitive sensing
signal name
Pin
name
TSC_G1_IO1
PA0
TSC_G1_IO2
PA1
TSC_G1_IO3
PA2
TSC_G1_IO4
Group
5
6
7
8
Table 11. No. of capacitive sensing channels available on
STM32F303xB/STM32F303xC devices
Number of capacitive sensing channels
Analog I/O group
30/149
STM32F303Vx
STM32F303Rx
STM32F303Cx
G1
3
3
3
G2
3
3
3
G3
3
3
2
G4
3
3
3
G5
3
3
3
G6
3
3
3
G7
3
0
0
G8
3
0
0
Number of capacitive
sensing channels
24
18
17
DS9118 Rev 14
STM32F303xB STM32F303xC
Functional overview
3.27
Development support
3.27.1
Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
3.27.2
Embedded trace macrocell™
The Arm embedded trace macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F303xB/STM32F303xC through a small number of ETM pins to an external
hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using
a high-speed channel. Real-time instruction and data flow activity can be recorded and then
formatted for display on the host computer running debugger software. TPA hardware is
commercially available from common development tool vendors. It operates with third party
debugger software tools.
DS9118 Rev 14
31/149
55
Pinouts and pin description
4
STM32F303xB STM32F303xC
Pinouts and pin description
PC14/OSC32_IN
1
2
3
PC15/OSC32_OUT
4
PF0/OSC_IN
5
6
PA14
PB4
PB3
PA15
PB5
PB6
BOOT0
PB7
PB8
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
PB11
VSS
PA3
PA4
PA2
10
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
PB10
PA1
28
27
26
9
PB2
PA0
8
PB1
VDDA
30
29
7
PA7
PB0
NRST
VSSA/VREF-
33
32
31
LQFP48
PA6
PF1/OSC_OUT
48 47 46 45 44 43 42 41 40 39 38 37
36
35
34
PA5
VBAT
PC13
PB9
VDD
Figure 4. STM32F303xB/STM32F303xC LQFP48 pinout
MSv40448V1
32/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Pinouts and pin description
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PA3
PF4
VBAT
PC13
PC14/OSC32_IN
PC15/OSC32_OUT
PF0/OSC_IN
PF1/OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREFVDDA
PA0
PA1
PA2
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PB9
PB8
Figure 5. STM32F303xB/STM32F303xC LQFP64 pinout
MS40449V2
DS9118 Rev 14
33/149
55
Pinouts and pin description
STM32F303xB STM32F303xC
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 6. STM32F303xB/STM32F303xC LQFP100 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD
VSS
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
PF4
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14/OSC32_IN
PC15/OSC32_OUT
PF9
PF10
PF0/OSC_IN
PF1/OSC_OUT
NRST
PC0
PC1
PC2
PC3
PF2
VSSA/VREFVREF+
VDDA
PA0
PA1
PA2
MS40450V1
34/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Pinouts and pin description
Figure 7. STM32F303xB/STM32F303xC WLCSP100 pinout
1
2
3
4
5
6
7
8
9
10
PE1
VDD
VDD
A
VSS
VSS
PC12
PD2
PB3
PB5
B
VSS
PA15
PD0
PD3
PB4
PB6
PE0
VDD
PE5
VDD
C
PF6
PA14
PD1
PD4
PB7
PB9
VSS
PE4
PC13
PC14
OSC32IN
D
PA12
VDD
PC11
PD7
PB8
PE2
PE3
VBAT
PC15
OSC32OUT
PF9
E
PA10
PA11
PA13
PC10
PA9
PE8
PE6
PF2
NRST
PF10
F
PC8
PC7
PC9
PC6
PA8
PC5
PA2
PE7
PF1
OSCOUT
PF0
OSCIN
G
PD15
PD14
PD13
PD9
PE12
PC4
PA3
PC2
PC1
PC0
H
PD12
PD11
PD10
PB15
PE11
PA6
PA5
VSSA
PA0
PC3
J
VSS
PB14
PB13
PB12
VDD
PB0
PA4
VREF+
PA1
VDDA
VSS
VSS
PB11
PB10
PB2
PB1
PA7
VDD
VSS
VSS
K
BOOT0
MSv40453V1
DS9118 Rev 14
35/149
55
Pinouts and pin description
STM32F303xB STM32F303xC
Table 12. Legend/abbreviations used in the pinout table
Name
Abbreviation
Pin name
Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
Pin type
I/O structure
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3V I/O
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Notes
Pin
functions
Definition
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
Table 13. STM32F303xB/STM32F303xC pin definitions
LQFP64
LQFP48
I/O structure
Notes
D6
1
-
-
PE2
I/O FT
(1)
TRACECK, TIM3_CH1,
TSC_G7_IO1, EVENTOUT
-
D7
2
-
-
PE3
I/O FT
(1)
TRACED0, TIM3_CH2,
TSC_G7_IO2, EVENTOUT
-
C8
3
-
-
PE4
I/O FT
(1)
TRACED1, TIM3_CH3,
TSC_G7_IO3, EVENTOUT
-
B9
4
-
-
PE5
I/O FT
(1)
TRACED2, TIM3_CH4,
TSC_G7_IO4, EVENTOUT
-
E7
5
-
-
PE6
I/O FT
(1)
TRACED3, EVENTOUT
D8
6
1
1
VBAT
36/149
Pin name
(function
after
reset)
Pin type
LQFP100
Pin functions
WLCSP100
Pin number
S
-
Alternate functions
-
DS9118 Rev 14
Additional functions
WKUP3, RTC_TAMP3
Backup power supply
STM32F303xB STM32F303xC
Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
2
2
C10
8
3
3
PC13(2)
Notes
LQFP48
7
I/O structure
LQFP64
C9
Pin name
(function
after
reset)
Pin type
LQFP100
Pin functions
WLCSP100
Pin number
Alternate functions
Additional functions
WKUP2, RTC_TAMP1,
RTC_TS, RTC_OUT
I/O TC
-
TIM1_CH1N
PC14(2)
OSC32_IN I/O TC
(PC14)
-
-
OSC32_IN
-
OSC32_OUT
D9
9
4
4
PC15(2)
OSC32_
OUT
(PC15)
D10
10
-
-
PF9
I/O FT
(1)
TIM15_CH1, SPI2_SCK,
EVENTOUT
-
E10
11
-
-
PF10
I/O FT
(1)
TIM15_CH2, SPI2_SCK,
EVENTOUT
-
F10
12
5
5
PF0OSC_IN
(PF0)
I/O FTf
-
TIM1_CH3N, I2C2_SDA,
OSC_IN
F9
13
6
6
PF1OSC_OUT I/O FTf
(PF1)
-
I2C2_SCL
OSC_OUT
E9
14
7
7
NRST
G10
15
8
-
PC0
G9
16
9
-
PC1
G8
17
10
-
PC2
H10
18
11
-
PC3
I/O TC
-
I/O
RS
T
Device reset input / internal reset output (active low)
I/O TTa (1) EVENTOUT
I/O TTa
(1)
ADC12_IN6, COMP7_INM
EVENTOUT
(1)
ADC12_IN7, COMP7_INP
COMP7_OUT, EVENTOUT
I/O TTa
I/O TTa (1) TIM1_BKIN2, EVENTOUT
EVENTOUT
ADC12_IN9
ADC12_IN10
E8
19
-
-
PF2
H8
20
12
8
VSSA/
VREF-
S
-
-
Analog ground/Negative reference voltage
J8
21
-
-
VREF+(3)
S
-
-
Positive reference voltage
J10
22
-
-
VDDA
S
-
-
Analog power supply
-
-
13
9
VDDA/
VREF+
S
-
-
Analog power supply/Positive reference voltage
H9
23
14
10
PA0
I/O TTa
(1)
ADC12_IN8
USART2_CTS,
ADC1_IN1, COMP1_INM,
TIM2_CH1_ETR,TIM8_BKIN,
I/O TTa (4)
RTC_ TAMP2, WKUP1,
TIM8_ETR,TSC_G1_IO1,
COMP7_INP
COMP1_OUT, EVENTOUT
DS9118 Rev 14
37/149
55
Pinouts and pin description
STM32F303xB STM32F303xC
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
Pin functions
LQFP48
LQFP64
LQFP100
WLCSP100
Pin number
Alternate functions
Additional functions
J9
24
15
11
PA1
USART2_RTS_DE,
TIM2_CH2, TSC_G1_IO2,
I/O TTa (4)
TIM15_CH1N, RTC_REFIN,
EVENTOUT
F7
25
16
12
PA2
(4) USART2_TX, TIM2_CH3,
I/O TTa (5) TIM15_CH1, TSC_G1_IO3,
COMP2_OUT, EVENTOUT
ADC1_IN3, COMP2_INM,
OPAMP1_VOUT
G7
26
17
13
PA3
USART2_RX, TIM2_CH4,
I/O TTa (4) TIM15_CH2, TSC_G1_IO4,
EVENTOUT
ADC1_IN4, OPAMP1_VINP,
COMP2_INP,
OPAMP1_VINM
-
27
18
-
PF4
I/O TTa (4) COMP1_OUT, EVENTOUT
K9,
K10
-
-
-
VSS
S
-
-
Digital ground
K8
28
19
-
VDD
S
-
-
Digital power supply
J7
H7
H6
29
30
31
20
21
22
14
15
16
(1)
ADC1_IN5
ADC2_IN1, DAC1_OUT1,
OPAMP4_VINP,
COMP1_INM, COMP2_INM,
COMP3_INM, COMP4_INM,
COMP5_INM, COMP6_INM,
COMP7_INM
PA4
SPI1_NSS,
(4) SPI3_NSS,I2S3_WS,
I/O TTa (5)
USART2_CK, TSC_G2_IO1,
TIM3_CH2, EVENTOUT
PA5
ADC2_IN2, DAC1_OUT2
OPAMP1_VINP,
OPAMP2_VINM,
(4) SPI1_SCK, TIM2_CH1_ETR,
OPAMP3_VINP
I/O TTa (5)
TSC_G2_IO2, EVENTOUT
COMP1_INM, COMP2_INM,
COMP3_INM, COMP4_INM,
COMP5_INM, COMP6_INM,
COMP7_INM
PA6
SPI1_MISO, TIM3_CH1,
TIM8_BKIN, TIM1_BKIN,
I/O TTa (5)
TIM16_CH1, COMP1_OUT,
TSC_G2_IO3, EVENTOUT
(4)
(4)
SPI1_MOSI, TIM3_CH2,
TIM17_CH1, TIM1_CH1N,
TIM8_CH1N, TSC_G2_IO4,
COMP2_OUT, EVENTOUT
K7
32
23
17
PA7
I/O TTa
G6
33
24
-
PC4
I/O TTa (4) USART1_TX, EVENTOUT
38/149
ADC1_IN2, COMP1_INP,
OPAMP1_VINP,
OPAMP3_VINP
(1)
DS9118 Rev 14
ADC2_IN3, OPAMP2_VOUT
ADC2_IN4, COMP2_INP,
OPAMP2_VINP,
OPAMP1_VINP
ADC2_IN5
STM32F303xB STM32F303xC
Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
LQFP100
LQFP64
LQFP48
F6
34
25
-
PC5
USART1_RX, TSC_G3_IO1,
I/O TTa (1)
EVENTOUT
J6
35
26
18
PB0
I/O TTa
K6
36
27
19
PB1
(4) TIM3_CH4, TIM1_CH3N,
I/O TTa (5) TIM8_CH3N, COMP4_OUT,
TSC_G3_IO3, EVENTOUT
ADC3_IN1, OPAMP3_VOUT-
K5
37
28
20
PB2
I/O TTa
ADC2_IN12, COMP4_INM,
OPAMP3_VINM
F8
38
-
-
PE7
I/O TTa (1) TIM1_ETR, EVENTOUT
E6
39
-
-
PE8
I/O TTa
Notes
WLCSP100
Pin name
(function
after
reset)
I/O structure
Pin functions
Pin type
Pin number
-
-
(1)
Alternate functions
TIM3_CH3, TIM1_CH2N,
TIM8_CH2N,TSC_G3_IO2,
EVENTOUT
TSC_G3_IO4, EVENTOUT
TIM1_CH1N, EVENTOUT
(4)
Additional functions
ADC2_IN11, OPAMP2_VINM,
OPAMP1_VINM
ADC3_IN12, COMP4_INP,
OPAMP3_VINP,
OPAMP2_VINP
ADC3_IN13, COMP4_INP
COMP4_INM, ADC34_IN6
-
40
-
-
PE9
I/O TTa (1) TIM1_CH1, EVENTOUT
ADC3_IN2
-
41
-
-
PE10
I/O TTa (1) TIM1_CH2N, EVENTOUT
ADC3_IN14
(1)
H5
42
-
-
PE11
G5
43
-
-
PE12
TIM1_CH2, EVENTOUT
I/O TTa
I/O TTa (1) TIM1_CH3N, EVENTOUT
ADC3_IN16
-
44
-
-
PE13
I/O TTa (1) TIM1_CH3, EVENTOUT
ADC3_IN3
(4)
ADC3_IN15
-
45
-
-
PE14
TIM1_CH4, TIM1_BKIN2,
I/O TTa (1)
EVENTOUT
ADC4_IN1
-
46
-
-
PE15
(4) USART3_RX, TIM1_BKIN,
I/O TTa (1)
EVENTOUT
ADC4_IN2
K4
47
29
21
PB10
I/O TTa
-
USART3_TX, TIM2_CH3,
TSC_SYNC, EVENTOUT
COMP5_INM,
OPAMP4_VINM,
OPAMP3_VINM
K3
48
30
22
PB11
I/O TTa
-
USART3_RX, TIM2_CH4,
TSC_G6_IO1, EVENTOUT
COMP6_INP, OPAMP4_VINP
K1,
J1,
K2
49
31
23
VSS
S
-
-
Digital ground
J5
50
32
24
VDD
S
-
-
Digital power supply
J4
51
33
25
PB12
SPI2_NSS,I2S2_WS,I2C2_S
MBA, USART3_CK,
I/O TTa (5)
TIM1_BKIN, TSC_G6_IO2,
EVENTOUT
(4)
DS9118 Rev 14
ADC4_IN3, COMP3_INM,
OPAMP4_VOUT
39/149
55
Pinouts and pin description
STM32F303xB STM32F303xC
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
34
26
J2
53
35
27
PB13
PB14
Notes
LQFP48
52
I/O structure
LQFP64
J3
Pin name
(function
after
reset)
Pin type
LQFP100
Pin functions
WLCSP100
Pin number
Alternate functions
SPI2_SCK,I2S2_CK,USART3 ADC3_IN5, COMP5_INP,
I/O TTa (4) _CTS, TIM1_CH1N,
OPAMP4_VINP,
TSC_G6_IO3, EVENTOUT
OPAMP3_VINP
I/O TTa
(4)
SPI2_MISO,I2S2ext_SD,
USART3_RTS_DE,
TIM1_CH2N, TIM15_CH1,
TSC_G6_IO4, EVENTOUT
COMP3_INP, ADC4_IN4,
OPAMP2_VINP
(4)
SPI2_MOSI, I2S2_SD,
TIM1_CH3N, RTC_REFIN,
TIM15_CH1N, TIM15_CH2,
EVENTOUT
ADC4_IN5, COMP6_INM
H4
54
36
28
PB15
I/O TTa
-
55
-
-
PD8
I/O TTa (1) USART3_TX, EVENTOUT
G4
H3
56
57
-
-
PD9
PD10
Additional functions
I/O TTa
(1)
USART3_RX, EVENTOUT
I/O TTa
(1)
USART3_CK, EVENTOUT
ADC4_IN12, OPAMP4_VINM
ADC4_IN13
ADC34_IN7, COMP6_INM
H2
58
-
-
PD11
I/O TTa (1) USART3_CTS, EVENTOUT
ADC34_IN8, COMP6_INP,
OPAMP4_VINP
H1
59
-
-
PD12
USART3_RTS_DE,
I/O TTa (1) TIM4_CH1, TSC_G8_IO1,
EVENTOUT
ADC34_IN9, COMP5_INP
G3
60
-
-
PD13
TIM4_CH2, TSC_G8_IO2,
I/O TTa (1)
EVENTOUT
ADC34_IN10, COMP5_INM
G2
61
-
-
PD14
TIM4_CH3, TSC_G8_IO3,
I/O TTa (1)
EVENTOUT
COMP3_INP, ADC34_IN11,
OPAMP2_VINP
G1
62
-
-
PD15
SPI2_NSS, TIM4_CH4,
I/O TTa (1)
TSC_G8_IO4, EVENTOUT
COMP3_INM
F4
63
37
-
PC6
I/O FT
(1)
I2S2_MCK, COMP6_OUT,
TIM8_CH1, TIM3_CH1,
EVENTOUT
-
F2
64
38
-
PC7
I/O FT
(1)
I2S3_MCK, TIM8_CH2,
TIM3_CH2, COMP5_OUT,
EVENTOUT
-
F1
65
39
-
PC8
I/O FT
(1)
TIM8_CH3, TIM3_CH3,
COMP3_OUT, EVENTOUT
-
F3
66
40
-
PC9
I/O FT
(1)
TIM8_CH4,
TIM8_BKIN2,TIM3_CH4,
I2S_CKIN, EVENTOUT
-
40/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
F5
E5
E1
E2
D1
67
68
69
70
71
41
42
43
44
45
29
30
31
32
33
PA8
PA9
PA10
PA11
PA12
I/O FT
I/O FTf
I/O FTf
I/O FT
I/O FT
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
Pin functions
LQFP48
LQFP64
LQFP100
WLCSP100
Pin number
Alternate functions
Additional functions
-
I2C2_SMBA,I2S2_MCK,
USART1_CK, TIM1_CH1,
TIM4_ETR, MCO,
COMP3_OUT, EVENTOUT
-
-
I2C2_SCL,I2S3_MCK,
USART1_TX, TIM1_CH2,
TIM2_CH3, TIM15_BKIN,
TSC_G4_IO1, COMP5_OUT,
EVENTOUT
-
-
I2C2_SDA, USART1_RX,
TIM1_CH3, TIM2_CH4,
TIM8_BKIN, TIM17_BKIN,
TSC_G4_IO2, COMP6_OUT,
EVENTOUT
-
-
USART1_CTS, USB_DM,
CAN_RX, TIM1_CH1N,
TIM1_CH4, TIM1_BKIN2,
TIM4_CH1, COMP1_OUT,
EVENTOUT
-
-
USART1_RTS_DE, USB_DP,
CAN_TX, TIM1_CH2N,
TIM1_ETR, TIM4_CH2,
TIM16_CH1, COMP2_OUT,
EVENTOUT
-
-
USART3_CTS, TIM4_CH3,
TIM16_CH1N, TSC_G4_IO3,
IR_OUT, SWDIO-JTMS,
EVENTOUT
-
E3
72
46
34
PA13
I/O FT
C1
73
-
-
PF6
I2C2_SCL,
I/O FTf (1) USART3_RTS_DE,
TIM4_CH4, EVENTOUT
A1,
A2,
B1
74
47
35
VSS
S
-
-
Ground
D2
75
48
36
VDD
S
-
-
Digital power supply
C2
76
49
37
PA14
I/O FTf
-
-
I2C1_SDA, USART2_TX,
TIM8_CH2,TIM1_BKIN,
TSC_G4_IO4, SWCLK-JTCK,
EVENTOUT
DS9118 Rev 14
-
41/149
55
Pinouts and pin description
STM32F303xB STM32F303xC
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
Pin functions
LQFP48
LQFP64
LQFP100
WLCSP100
Pin number
Alternate functions
Additional functions
I2C1_SCL, SPI1_NSS,
SPI3_NSS, I2S3_WS, JTDI,
USART2_RX, TIM1_BKIN,
TIM2_CH1_ETR, TIM8_CH1,
EVENTOUT
-
B2
77
50
38
PA15
I/O FTf
-
E4
78
51
-
PC10
I/O FT
(1)
SPI3_SCK, I2S3_CK,
USART3_TX, UART4_TX,
TIM8_CH1N, EVENTOUT
-
D3
79
52
-
PC11
I/O FT
(1)
SPI3_MISO, I2S3ext_SD,
USART3_RX, UART4_RX,
TIM8_CH2N, EVENTOUT
-
A3
80
53
-
PC12
I/O FT
(1)
SPI3_MOSI, I2S3_SD,
USART3_CK, UART5_TX,
TIM8_CH3N, EVENTOUT
-
B3
81
-
-
PD0
I/O FT
(1)
CAN_RX, EVENTOUT
-
C3
82
-
-
PD1
I/O FT
(1)
CAN_TX, TIM8_CH4,
TIM8_BKIN2,EVENTOUT
-
A4
83
54
-
PD2
I/O FT
(1)
UART5_RX, TIM3_ETR,
TIM8_BKIN, EVENTOUT
-
B4
84
-
-
PD3
I/O FT
(1)
USART2_CTS,
TIM2_CH1_ETR,
EVENTOUT
-
C4
85
-
-
PD4
I/O FT
(1)
USART2_RTS_DE,
TIM2_CH2, EVENTOUT
-
-
86
-
-
PD5
I/O FT
(1)
USART2_TX, EVENTOUT
-
-
87
-
-
PD6
I/O FT
(1)
USART2_RX, TIM2_CH4,
EVENTOUT
-
D4
88
-
-
PD7
I/O FT
(1)
USART2_CK, TIM2_CH3,
EVENTOUT
-
-
SPI3_SCK, I2S3_CK,
SPI1_SCK, USART2_TX,
TIM2_CH2, TIM3_ETR,
TIM4_ETR, TIM8_CH1N,
TSC_G5_IO1, JTDOTRACESWO, EVENTOUT
-
A5
42/149
89
55
39
PB3
I/O FT
DS9118 Rev 14
STM32F303xB STM32F303xC
Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
B5
A6
B6
90
91
92
56
57
58
40
41
42
PB4
PB5
PB6
C5
93
59
43
PB7
A7
94
60
44
BOOT0
D5
95
61
45
PB8
I/O FT
I/O FT
I/O FTf
I/O FTf
I
B
I/O FTf
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
Pin functions
LQFP48
LQFP64
LQFP100
WLCSP100
Pin number
Alternate functions
Additional functions
-
SPI3_MISO, I2S3ext_SD,
SPI1_MISO, USART2_RX,
TIM3_CH1, TIM16_CH1,
TIM17_BKIN, TIM8_CH2N,
TSC_G5_IO2, NJTRST,
EVENTOUT
-
-
SPI3_MOSI, SPI1_MOSI,
I2S3_SD, I2C1_SMBA,
USART2_CK, TIM16_BKIN,
TIM3_CH2, TIM8_CH3N,
TIM17_CH1, EVENTOUT
-
-
I2C1_SCL, USART1_TX,
TIM16_CH1N, TIM4_CH1,
TIM8_CH1,TSC_G5_IO3,
TIM8_ETR, TIM8_BKIN2,
EVENTOUT
-
-
I2C1_SDA, USART1_RX,
TIM3_CH4, TIM4_CH2,
TIM17_CH1N, TIM8_BKIN,
TSC_G5_IO4, EVENTOUT
-
-
Boot memory selection
-
I2C1_SCL, CAN_RX,
TIM16_CH1, TIM4_CH3,
TIM8_CH2, TIM1_BKIN,
TSC_SYNC, COMP1_OUT,
EVENTOUT
-
I2C1_SDA, CAN_TX,
TIM17_CH1, TIM4_CH4,
TIM8_CH3, IR_OUT,
COMP2_OUT, EVENTOUT
-
C6
96
62
46
PB9
I/O FTf
-
B7
97
-
-
PE0
I/O FT
(1)
USART1_TX, TIM4_ETR,
TIM16_CH1, EVENTOUT
-
A8
98
-
-
PE1
I/O FT
(1)
USART1_RX, TIM17_CH1,
EVENTOUT
-
C7
99
63
47
VSS
S
-
-
Ground
A9,
A10,
100
B10,
B8
64
48
VDD
S
-
-
Digital power supply
DS9118 Rev 14
43/149
55
Pinouts and pin description
STM32F303xB STM32F303xC
1. Function availability depends on the chosen device.
When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must
not be configured in analog mode.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current
(3 mA), the use of GPIO PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to
the Battery backup domain and BKP register description sections in the RM0316 reference manual.
3. The VREF+ functionality is available only on the 100 pin package. On the 64-pin and 48-pin packages, the VREF+ is
internally connected to VDDA.
4. Fast ADC channel.
5. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.
44/149
DS9118 Rev 14
Port
&
Pin
Name
AF0
PA0
-
PA1
RTC_
REFIN
AF1
AF2
AF3
AF4
AF5
AF6
TIM2_
CH1_
ETR
-
TSC_
G1_IO1
-
-
TIM2_
CH2
-
TSC_
G1_IO2
-
AF7
AF8
AF9
AF10
AF11
AF12
AF14
AF15
-
USART2_ COMP1 TIM8_
CTS
_OUT
BKIN
TIM8_
ETR
-
-
-
EVENT
OUT
-
-
USART2_
RTS_DE
TIM15_
CH1N
-
-
-
-
EVENT
OUT
DS9118 Rev 14
-
TIM2_
CH3
-
TSC_
G1_IO3
-
-
-
USART2_ COMP2 TIM15_
TX
_OUT
CH1
-
-
-
-
EVENT
OUT
PA3
-
TIM2_
CH4
-
TSC_
G1_IO4
-
-
-
USART2_
RX
-
-
-
-
-
EVENT
OUT
PA4
-
TIM3_ TSC_
CH2
G2_IO1
-
SPI1_
NSS
USART2_
CK
-
-
-
-
-
-
EVENT
OUT
PA5
-
TIM2_
CH1_
ETR
TSC_
G2_IO2
-
SPI1_
SCK
-
-
-
-
-
-
-
EVENT
OUT
PA6
-
TIM16_ TIM3_ TSC_
TIM8_
CH1
CH1
G2_IO3 BKIN
SPI1_
MISO
TIM1_BKIN
-
COMP1
_OUT
-
-
-
-
-
EVENT
OUT
PA7
-
TIM17_ TIM3_ TSC_
TIM8_
CH1
CH2
G2_IO4 CH1N
SPI1_
MOSI
TIM1_CH1N
-
COMP2
_OUT
-
-
-
-
-
EVENT
OUT
I2C2_
SMBA
I2S2_
MCK
TIM1_CH1
USART1_ COMP3
CK
_OUT
-
TIM4_
ETR
-
-
-
EVENT
OUT
PA8
MCO
-
-
-
-
-
SPI3_NSS,
I2S3_WS
-
TIM15_
CH2
PA9
-
-
-
I2C2_
TSC_
G4_IO1 SCL
I2S3_
MCK
TIM1_CH2
USART1_ COMP5 TIM15_
TX
_OUT
BKIN
TIM2_
CH3
-
-
-
EVENT
OUT
PA10
-
TIM17_
BKIN
-
TSC_
I2C2_
G4_IO2 SDA
-
TIM1_CH3
USART1_ COMP6
RX
_OUT
TIM2_
CH4
TIM8_BKIN
-
-
EVENT
OUT
PA11
-
-
-
-
TIM1_CH1N
USART1_ COMP1
TIM4_
CAN_RX
CTS
_OUT
CH1
-
-
-
TIM1_CH4
TIM1_ USB_
BKIN2 DM
EVENT
OUT
45/149
Pinouts and pin description
PA2
STM32F303xB STM32F303xC
Table 14. Alternate functions for port A
Port
&
Pin
Name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
PA12
-
TIM16_
CH1
-
-
-
-
TIM1_CH2N
PA13
SWDIO TIM16_
-JTMS CH1N
-
TSC_
G4_IO3
-
PA14
SWCLK
-JTCK
-
TSC_
I2C1_
G4_IO4 SDA
PA15 JTDI
TIM2_
CH1_
ETR
TIM8_
CH1
-
I2C1_
SCL
IR_
OUT
AF7
AF8
AF9
AF10
USART1_ COMP2
TIM4_
CAN_TX
RTS_DE _OUT
CH2
AF11
TIM1_ETR
AF12
-
AF14
AF15
USB_
DP
EVENT
OUT
USART3_
CTS
-
-
TIM4_
CH3
-
-
-
EVENT
OUT
TIM8_
TIM1_BKIN
CH2
USART2_
TX
-
-
-
-
-
-
EVENT
OUT
SPI1_
NSS
USART2_
RX
-
-
-
-
-
EVENT
OUT
-
SPI3_NSS,
I2S3_WS
TIM1_
BKIN
Pinouts and pin description
46/149
Table 14. Alternate functions for port A (continued)
DS9118 Rev 14
STM32F303xB STM32F303xC
Port
&
Pin
Name
AF0
AF1
PB0
-
-
TIM3_
CH3
TSC_
G3_IO2
PB1
-
-
TIM3_
CH4
PB2
-
-
AF2
AF5
AF6
AF7
AF8
AF9
AF10
AF12
AF15
TIM8_
CH2N
-
TIM1_CH2N
-
-
-
-
-
EVENT
OUT
TSC_
G3_IO3
TIM8_
CH3N
-
TIM1_CH3N
-
COMP4_
OUT
-
-
-
EVENT
OUT
TSC_
G3_IO4
-
-
-
-
-
-
-
-
EVENT
OUT
TIM4_
ETR
TSC_
G5_IO1
TIM8_
CH1N
SPI1_
SCK
SPI3_SCK,
I2S3_CK
USART2_
TX
-
-
TIM3_
ETR
-
EVENT
OUT
-
AF3
AF4
DS9118 Rev 14
JTDOTIM2_
TRACES
CH2
WO
PB4
NJTRST
TIM16_ TIM3_
CH1
CH1
TSC_
G5_IO2
TIM8_
CH2N
SPI1_
MISO
SPI3_MISO,
I2S3ext_SD
USART2_
RX
-
-
TIM17_
BKIN
-
EVENT
OUT
PB5
-
TIM16_ TIM3_
BKIN
CH2
TIM8_
CH3N
I2C1_
SMBA
SPI1_
MOSI
SPI3_MOSI,
I2S3_SD
USART2_
CK
-
-
TIM17_
CH1
-
EVENT
OUT
PB6
-
TIM16_ TIM4_
CH1N
CH1
TSC_
G5_IO3
I2C1_SCL
TIM8_CH1
TIM8_
ETR
USART1_
TX
-
-
TIM8_
BKIN2
-
EVENT
OUT
PB7
-
TIM17_ TIM4_
CH1N
CH2
TSC_
G5_IO4
I2C1_
SDA
TIM8_
BKIN
-
USART1_
RX
-
-
TIM3_
CH4
-
EVENT
OUT
PB8
-
TIM16_ TIM4_
CH1
CH3
TSC_
SYNC
I2C1_SCL
-
-
-
COMP1_
CAN_RX
OUT
TIM8_
CH2
PB9
-
TIM17_ TIM4_
CH1
CH4
I2C1_
SDA
-
-
COMP2_
CAN_TX
OUT
TIM8_
CH3
PB10
-
TIM2_
CH3
-
TSC_
SYNC
-
-
-
USART3_
TX
-
-
PB11
-
TIM2_
CH4
-
TSC_
G6_IO1
-
-
-
USART3_
RX
-
PB12
-
-
TSC_
G6_IO2
I2C2_
SMBA
USART3_
CK
-
-
SPI2_NSS,
I2S2_WS
IR_OUT
TIM1_
BKIN
TIM1_
BKIN
EVENT
OUT
-
EVENT
OUT
-
-
EVENT
OUT
-
-
-
EVENT
OUT
-
-
-
EVENT
OUT
Pinouts and pin description
47/149
PB3
STM32F303xB STM32F303xC
Table 15. Alternate functions for port B
Port
&
Pin
Name
AF0
AF1
AF2
AF3
AF4
PB13
-
-
-
TSC_
G6_IO3
-
SPI2_SCK,
I2S2_CK
PB14
-
TIM15_
CH1
-
TSC_
G6_IO4
-
PB15
RTC_
REFIN
TIM15_ TIM15_
CH2
CH1N
-
TIM1_
CH3N
AF5
AF7
AF8
AF9
AF10
AF12
AF15
TIM1_
CH1N
USART3_
CTS
-
-
-
-
EVENT
OUT
SPI2_MISO, TIM1_
I2S2ext_SD CH2N
USART3_
RTS_DE
-
-
-
-
EVENT
OUT
-
-
-
-
-
EVENT
OUT
SPI2_MOSI,
I2S2_SD
AF6
-
Pinouts and pin description
48/149
Table 15. Alternate functions for port B (continued)
DS9118 Rev 14
STM32F303xB STM32F303xC
Port &
Pin
Name
AF1
AF2
AF3
AF4
AF5
AF6
AF7
DS9118 Rev 14
PC0
EVENTOUT
-
-
-
-
-
-
PC1
EVENTOUT
-
-
-
-
-
-
PC2
EVENTOUT
-
-
-
-
-
PC3
EVENTOUT
-
-
-
-
PC4
EVENTOUT
-
-
-
-
-
USART1_TX
PC5
EVENTOUT
-
-
-
-
USART1_RX
PC6
EVENTOUT
TIM3_CH1
-
TIM8_CH1
-
I2S2_MCK
COMP6_OUT
PC7
EVENTOUT
TIM3_CH2
-
TIM8_CH2
-
I2S3_MCK
COMP5_OUT
PC8
EVENTOUT
TIM3_CH3
-
TIM8_CH3
-
PC9
EVENTOUT
TIM3_CH4
-
TIM8_CH4
I2S_CKIN
TIM8_BKIN2
PC10
EVENTOUT
-
-
TIM8_CH1N
UART4_TX
SPI3_SCK, I2S3_CK
USART3_TX
PC11
EVENTOUT
-
-
TIM8_CH2N
UART4_RX
SPI3_MISO, I2S3ext_SD
USART3_RX
PC12
EVENTOUT
-
-
TIM8_CH3N
UART5_TX
SPI3_MOSI, I2S3_SD
USART3_CK
TIM1_CH1N
COMP7_OUT
TSC_G3_IO1
-
-
-
PC14
-
-
-
PC15
-
-
-
-
-
COMP3_OUT
-
-
-
-
-
-
-
-
-
-
-
-
49/149
Pinouts and pin description
PC13
TIM1_BKIN2
STM32F303xB STM32F303xC
Table 16. Alternate functions for port C
Port &
Pin Name
AF1
AF2
AF3
AF4
AF5
AF6
-
-
-
AF7
DS9118 Rev 14
EVENTOUT
-
-
PD1
EVENTOUT
-
-
TIM8_CH4
PD2
EVENTOUT
TIM3_ETR
-
TIM8_BKIN
PD3
EVENTOUT
TIM2_CH1_ETR
-
-
-
-
USART2_CTS
PD4
EVENTOUT
TIM2_CH2
-
-
-
-
USART2_RTS_DE
PD5
EVENTOUT
-
-
-
-
-
USART2_TX
PD6
EVENTOUT
TIM2_CH4
-
-
-
-
USART2_RX
PD7
EVENTOUT
TIM2_CH3
-
-
-
-
USART2_CK
PD8
EVENTOUT
-
-
-
-
-
USART3_TX
PD9
EVENTOUT
-
-
-
-
-
USART3_RX
PD10
EVENTOUT
-
-
-
-
-
USART3_CK
PD11
EVENTOUT
-
-
-
-
-
USART3_CTS
PD12
EVENTOUT
TIM4_CH1
TSC_G8_IO1
-
-
-
USART3_RTS_DE
PD13
EVENTOUT
TIM4_CH2
TSC_G8_IO2
-
-
-
-
PD14
EVENTOUT
TIM4_CH3
TSC_G8_IO3
-
-
-
-
PD15
EVENTOUT
TIM4_CH4
TSC_G8_IO4
-
-
UART5_RX
TIM8_BKIN2
-
SPI2_NSS
CAN_RX
CAN_TX
-
-
STM32F303xB STM32F303xC
PD0
Pinouts and pin description
50/149
Table 17. Alternate functions for port D
Port &
Pin Name
AF0
PE0
-
EVENTOUT
TIM4_ETR
-
TIM16_CH1
-
USART1_TX
PE1
-
EVENTOUT
-
-
TIM17_CH1
-
USART1_RX
AF1
AF2
AF3
AF4
AF6
AF7
PE2
TRACECK
EVENTOUT
TIM3_CH1
TSC_G7_IO1
-
-
-
PE3
TRACED0
EVENTOUT
TIM3_CH2
TSC_G7_IO2
-
-
-
PE4
TRACED1
EVENTOUT
TIM3_CH3
TSC_G7_IO3
-
-
-
PE5
TRACED2
EVENTOUT
TIM3_CH4
TSC_G7_IO4
-
-
-
PE6
TRACED3
EVENTOUT
-
-
-
-
DS9118 Rev 14
PE7
-
EVENTOUT
TIM1_ETR
-
-
-
-
PE8
-
EVENTOUT
TIM1_CH1N
-
-
-
-
PE9
-
EVENTOUT
TIM1_CH1
-
-
-
-
PE10
-
EVENTOUT
TIM1_CH2N
-
-
-
-
PE11
-
EVENTOUT
TIM1_CH2
-
-
-
-
PE12
-
EVENTOUT
TIM1_CH3N
-
-
-
-
PE13
-
EVENTOUT
TIM1_CH3
-
-
-
-
PE14
-
EVENTOUT
TIM1_CH4
-
-
PE15
-
EVENTOUT
TIM1_BKIN
-
-
TIM1_BKIN2
-
STM32F303xB STM32F303xC
Table 18. Alternate functions for port E
USART3_RX
Pinouts and pin description
51/149
Port &
Pin Name
AF1
AF2
AF3
PF0
-
-
-
I2C2_SDA
-
PF1
-
-
-
I2C2_SCL
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AF4
AF5
AF6
TIM1_CH3N
AF7
-
PF2
EVENTOUT
PF4
EVENTOUT
COMP1_OUT
-
PF6
EVENTOUT
TIM4_CH4
-
PF9
EVENTOUT
-
TIM15_CH1
-
SPI2_SCK
-
-
PF10
EVENTOUT
-
TIM15_CH2
-
SPI2_SCK
-
-
I2C2_SCL
USART3_RTS_DE
Pinouts and pin description
52/149
Table 19. Alternate functions for port F
DS9118 Rev 14
STM32F303xB STM32F303xC
STM32F303xB STM32F303xC
5
Memory mapping
Memory mapping
Figure 8. STM32F303xB/STM32F303xC memory map
0x5000 07FF
AHB3
0xFFFF FFFF
7
Cortex-M4
with FPU
Internal
Peripherals
0xE000 0000
0x5000 0000
Reserved
0x4800 1800
AHB2
0x4800 0000
Reserved
6
0x4002 43FF
AHB1
0xC000 0000
0x4002 0000
Reserved
5
0x4001 6C00
APB2
0xA000 0000
0x4001 0000
Reserved
4
0x4000 A000
APB1
0x8000 0000
0x4000 0000
3
0x1FFF FFFF
Option bytes
0x6000 0000
0x1FFF F800
System memory
2
0x1FFF D800
Reserved
0x4000 0000
Peripherals
0x1000 2000
CCM RAM
0x1000 0000
Reserved
1
0x2000 0000
0
0x0804 0000
SRAM
Flash memory
0x0800 0000
CODE
Reserved
0x0004 0000
0x0000 0000
Reserved
0x0000 0000
Flash, system
memory or SRAM,
depending on BOOT
configuration
MSv30355V2
DS9118 Rev 14
53/149
55
Memory mapping
STM32F303xB STM32F303xC
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary
addresses(1)
Bus
AHB3
AHB2
AHB1
APB2
54/149
Boundary address
Size
(bytes)
Peripheral
0x5000 0400 - 0x5000 07FF
1K
ADC3 - ADC4
0x5000 0000 - 0x5000 03FF
1K
ADC1 - ADC2
0x4800 1800 - 0x4FFF FFFF
~132 M
0x4800 1400 - 0x4800 17FF
1K
GPIOF
0x4800 1000 - 0x4800 13FF
1K
GPIOE
0x4800 0C00 - 0x4800 0FFF
1K
GPIOD
0x4800 0800 - 0x4800 0BFF
1K
GPIOC
0x4800 0400 - 0x4800 07FF
1K
GPIOB
0x4800 0000 - 0x4800 03FF
1K
GPIOA
0x4002 4400 - 0x47FF FFFF
~128 M
0x4002 4000 - 0x4002 43FF
1K
TSC
0x4002 3400 - 0x4002 3FFF
3K
Reserved
0x4002 3000 - 0x4002 33FF
1K
CRC
0x4002 2400 - 0x4002 2FFF
3K
Reserved
0x4002 2000 - 0x4002 23FF
1K
Flash interface
0x4002 1400 - 0x4002 1FFF
3K
Reserved
0x4002 1000 - 0x4002 13FF
1K
RCC
0x4002 0800 - 0x4002 0FFF
2K
Reserved
0x4002 0400 - 0x4002 07FF
1K
DMA2
0x4002 0000 - 0x4002 03FF
1K
DMA1
0x4001 8000 - 0x4001 FFFF
32 K
Reserved
0x4001 4C00 - 0x4001 7FFF
13 K
Reserved
0x4001 4800 - 0x4001 4BFF
1K
TIM17
0x4001 4400 - 0x4001 47FF
1K
TIM16
0x4001 4000 - 0x4001 43FF
1K
TIM15
0x4001 3C00 - 0x4001 3FFF
1K
Reserved
0x4001 3800 - 0x4001 3BFF
1K
USART1
0x4001 3400 - 0x4001 37FF
1K
TIM8
0x4001 3000 - 0x4001 33FF
1K
SPI1
0x4001 2C00 - 0x4001 2FFF
1K
TIM1
0x4001 0800 - 0x4001 2BFF
9K
Reserved
0x4001 0400 - 0x4001 07FF
1K
EXTI
0x4001 0000 - 0x4001 03FF
1K
SYSCFG + COMP + OPAMP
DS9118 Rev 14
Reserved
Reserved
STM32F303xB STM32F303xC
Memory mapping
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary
addresses(1) (continued)
Bus
APB1
Boundary address
Size
(bytes)
Peripheral
0x4000 8000 - 0x4000 FFFF
32 K
Reserved
0x4000 7800 - 0x4000 7FFF
2K
Reserved
0x4000 7400 - 0x4000 77FF
1K
DAC (dual)
0x4000 7000 - 0x4000 73FF
1K
PWR
0x4000 6800 - 0x4000 6FFF
2K
Reserved
0x4000 6400 - 0x4000 67FF
1K
bxCAN
0x4000 6000 - 0x4000 63FF
1K
USB SRAM 512 bytes
0x4000 5C00 - 0x4000 5FFF
1K
USB device FS
0x4000 5800 - 0x4000 5BFF
1K
I2C2
0x4000 5400 - 0x4000 57FF
1K
I2C1
0x4000 5000 - 0x4000 53FF
1K
UART5
0x4000 4C00 - 0x4000 4FFF
1K
UART4
0x4000 4800 - 0x4000 4BFF
1K
USART3
0x4000 4400 - 0x4000 47FF
1K
USART2
0x4000 4000 - 0x4000 43FF
1K
I2S3ext
0x4000 3C00 - 0x4000 3FFF
1K
SPI3/I2S3
0x4000 3800 - 0x4000 3BFF
1K
SPI2/I2S2
0x4000 3400 - 0x4000 37FF
1K
I2S2ext
0x4000 3000 - 0x4000 33FF
1K
IWDG
0x4000 2C00 - 0x4000 2FFF
1K
WWDG
0x4000 2800 - 0x4000 2BFF
1K
RTC
0x4000 1800 - 0x4000 27FF
4K
Reserved
0x4000 1400 - 0x4000 17FF
1K
TIM7
0x4000 1000 - 0x4000 13FF
1K
TIM6
0x4000 0C00 - 0x4000 0FFF
1K
Reserved
0x4000 0800 - 0x4000 0BFF
1K
TIM4
0x4000 0400 - 0x4000 07FF
1K
TIM3
0x4000 0000 - 0x4000 03FF
1K
TIM2
1. The gray color is used for reserved Flash memory addresses.
DS9118 Rev 14
55/149
55
Electrical characteristics
STM32F303xB STM32F303xC
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions
Figure 10. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
56/149
DS9118 Rev 14
MS19211V1
STM32F303xB STM32F303xC
6.1.6
Electrical characteristics
Power supply scheme
Figure 11. Power supply scheme
VBAT
Backup circuitry
(LSE, RTC,
Wakeup logic,
Backup registers)
OUT
GP I/Os
IN
Level shifter
Power
switch
1.65 – 3.6 V
VDD
I/O logic
Kernel logic
(CPU,
digital
& memories)
4 x VDD
Regulator
4 x 100 nF
+ 1 x 4.7 μF
4 x VSS
VDDA
VDDA
VREF+
10 nF
+ 1 μF
ADC/DAC
VREF-
Analog: RCs,
PLL,comparators, OPAMP,
....
VSSA
MS19875V5
1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply
pins.
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
DS9118 Rev 14
57/149
125
Electrical characteristics
6.1.7
STM32F303xB STM32F303xC
Current consumption measurement
Figure 12. Current consumption measurement scheme
I DD_VBAT
VBAT
IDD
VDD
IDDA
VDDA
MS19213V1
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics,
Table 22: Current characteristics, and Table 23: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 21. Voltage characteristics(1)
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VBAT
and VDD)
-0.3
4.0
Allowed voltage difference for VDD > VDDA
-
0.4
Allowed voltage difference for VREF+ > VDDA
-
0.4
Input voltage on FT and FTf pins
VSS −0.3
VDD + 4.0
Input voltage on TTa pins
VSS −0.3
4.0
Input voltage on any other pin
VSS − 0.3
4.0
Input voltage on Boot0 pin
0
9
Variations between different VDD power pins
-
50
Variations between all the different ground pins(4)
-
50
VDD–VDDA
VREF+–VDDA(2)
VIN(3)
|ΔVDDx|
|VSSX − VSS|
VESD(HBM)
Electrostatic discharge voltage (human body
model)
Unit
V
mV
see Section 6.3.12: Electrical
sensitivity characteristics
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range. The following relationship must be respected between VDDA and VDD:
VDDA must power on before or at the same time as VDD in the power up sequence.
VDDA must be greater than or equal to VDD.
58/149
DS9118 Rev 14
-
STM32F303xB STM32F303xC
Electrical characteristics
2. VREF+ must be always lower or equal than VDDA (VREF+ ≤VDDA). If unused then it must be connected to VDDA.
3. VIN maximum must always be respected. Refer to Table 22: Current characteristics for the maximum allowed injected
current values.
4. Include VREF- pin.
Table 22. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD power lines (source)
160
ΣIVSS
Total current out of sum of all VSS ground lines (sink)
− 160
IVDD
Maximum current into each VDD power line (source)(1)
100
IVSS
(sink)(1)
− 100
IIO(PIN)
ΣIIO(PIN)
Maximum current out of each VSS ground line
Output current sunk by any I/O and control pin
25
Output current source by any I/O and control pin
−25
Total output current sunk by sum of all IOs and control pins(2)
80
Total output current sourced by sum of all IOs and control pins(2)
− 80
Injected current on FT, FTf and B
IINJ(PIN)
pins(3)
-5/+0
(4)
±5
Injected current on TC and RST pin
Injected current on TTa pins(5)
ΣIINJ(PIN)
Unit
mA
±5
Total injected current (sum of all I/O and control
pins)(6)
± 25
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 21: Voltage characteristics for the maximum allowed input voltage values. Negative injection
disturbs the analog performance of the device. See note (2) below Table 70.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 23. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
DS9118 Rev 14
Value
Unit
–65 to +150
°C
150
°C
59/149
125
Electrical characteristics
STM32F303xB STM32F303xC
6.3
Operating conditions
6.3.1
General operating conditions
Table 24. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
72
fPCLK1
Internal APB1 clock frequency
-
0
36
fPCLK2
Internal APB2 clock frequency
-
0
72
Standard operating voltage
-
2
3.6
2
3.6
VDD
VDDA
VBAT
Analog operating voltage
(OPAMP and DAC not used)
Analog operating voltage
(OPAMP and DAC used)
Must have a potential
equal to or higher than
VDD
3.6
1.65
3.6
–0.3
VDD+0.3
–0.3
VDDA+0.3
–0.3
5.5
BOOT0
0
5.5
WLCSP100
-
500
LQFP100
-
488
LQFP64
-
444
LQFP48
-
364
–40
85
Low-power dissipation
–40
105
Maximum power
dissipation
–40
105
–40
125
6 suffix version
–40
105
7 suffix version
–40
125
TC I/O
VIN
PD
TTa I/O
I/O input voltage
FT and FTf
Power dissipation at TA =
85 °C for suffix 6 or TA =
105 °C for suffix 7(2)
Ambient temperature for 6
suffix version
TA
Ambient temperature for 7
suffix version
TJ
Junction temperature range
I/O(1)
Maximum power
dissipation
(3)
Low-power
dissipation(3)
MHz
V
V
2.4
Backup operating voltage
Unit
V
V
mW
°C
°C
°C
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.5: Thermal
characteristics).
3. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Section 7.5: Thermal characteristics).
60/149
DS9118 Rev 14
STM32F303xB STM32F303xC
6.3.2
Electrical characteristics
Operating conditions at power-up / power-down
The parameters given in Table 25 are derived from tests performed under the ambient
temperature condition summarized in Table 24.
Table 25. Operating conditions at power-up / power-down
Symbol
Parameter
VDD rise time rate
tVDD
-
VDD fall time rate
VDDA rise time rate
tVDDA
6.3.3
Conditions
-
VDDA fall time rate
Min
Max
0
∞
20
∞
0
∞
20
∞
Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 26 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 24.
Table 26. Embedded reset and power control block characteristics
Symbol
VPOR/PDR(1)
VPDRhyst
(1)
tRSTTEMPO(3)
Parameter
Conditions
Power on/power down
reset threshold
Min
Typ
Max
Unit
Falling edge
1.8(2)
1.88
1.96
V
Rising edge
1.84
1.92
2.0
V
PDR hysteresis
-
-
40
-
mV
POR reset
temporization
-
1.5
2.5
4.5
ms
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Guaranteed by design.
DS9118 Rev 14
61/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Table 27. Programmable voltage detector characteristics
Symbol
Parameter
VPVD0
PVD threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
Min(1)
Typ
Max(1)
Rising edge
2.1
2.18
2.26
Falling edge
2
2.08
2.16
Rising edge
2.19
2.28
2.37
Falling edge
2.09
2.18
2.27
Rising edge
2.28
2.38
2.48
Falling edge
2.18
2.28
2.38
Rising edge
2.38
2.48
2.58
Falling edge
2.28
2.38
2.48
Rising edge
2.47
2.58
2.69
Falling edge
2.37
2.48
2.59
Rising edge
2.57
2.68
2.79
Falling edge
2.47
2.58
2.69
Rising edge
2.66
2.78
2.9
Falling edge
2.56
2.68
2.8
Rising edge
2.76
2.88
3
Falling edge
2.66
2.78
2.9
Conditions
V
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
VPVD7
PVD threshold 7
VPVDhyst(2)
PVD hysteresis
-
-
100
-
mV
IDD(PVD)
PVD current
consumption
-
-
0.15
0.26
µA
1. Guaranteed by characterization results.
2. Guaranteed by design.
62/149
Unit
DS9118 Rev 14
STM32F303xB STM32F303xC
6.3.4
Electrical characteristics
Embedded reference voltage
The parameters given in Table 28 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 24.
Table 28. Embedded internal reference voltage
Symbol
Parameter
VREFINT
Internal reference voltage
TS_vrefint
VRERINT
TCoeff
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.2
1.23
1.25
V
(1)
–40 °C < TA < +85 °C
1.2
1.23
ADC sampling time when
reading the internal
reference voltage
-
2.2
-
-
µs
Internal reference voltage
spread over the
temperature range
VDD = 3 V ±10 mV
-
-
10(2)
mV
-
-
-
100(2) ppm/°C
Temperature coefficient
1.24
V
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 29. Internal reference voltage calibration values
Calibration value name
VREFINT_CAL
6.3.5
Description
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
Memory address
0x1FFF F7BA - 0x1FFF F7BB
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in input mode with a static value at VDD or VSS (no load)
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
•
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
•
When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2
•
When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or
HSE (8 MHz) in bypass mode.
DS9118 Rev 14
63/149
125
Electrical characteristics
STM32F303xB STM32F303xC
The parameters given in Table 30 to Table 34 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 24.
Table 30. Typical and maximum current consumption from VDD supply at VDD = 3.6V
All peripherals enabled
Symbol Parameter Conditions
Supply
current in
Run mode,
executing
from Flash
External
clock (HSE
bypass)
Internal
clock (HSI)
IDD
Max @ TA(1)
Typ
External
clock (HSE
bypass)
Internal
clock (HSI)
Max @ TA(1)
Typ
25 °C
85 °C
105 °C
72 MHz 61.2
65.8
67.6
68.5
64 MHz 54.7
59.1
60.2
48 MHz 41.7
45.1
32 MHz 28.1
Unit
25 °C
85 °C
105 °C
27.8
30.3
30.7
31.5
61.1
24.6
27.2
27.6
28.3
46.2
47.2
19.2
21.1
21.4
21.8
31.5
32.5
32.7
12.9
14.6
14.8
15.3
24 MHz 21.4
23.7
24.4
25.2
10.0
11.4
11.4
12.1
8 MHz
7.4
8.4
8.6
9.4
3.6
4.1
4.4
5.0
1 MHz
1.3
1.6
1.8
2.6
0.8
1.0
1.2
2.1
64 MHz 49.7
54.4
55.4
56.3
24.5
27.2
27.4
28.1
48 MHz 37.9
42.2
43.0
43.5
18.9
21.4
21.5
21.6
32 MHz 25.8
29.2
29.2
30.0
12.7
14.2
14.6
15.2
24 MHz 19.7
22.3
22.6
23.2
6.7
7.7
7.9
8.5
8 MHz
7.8
8.3
8.8
3.5
4.0
4.4
5.0
72 MHz 60.8 66.2
69.7
70.4(2)
27.4
31.7(2)
32.2
32.5(2)
64 MHz 54.3
59.1
62.2
63.3
24.3
28.3
28.7
28.8
48 MHz 41.0
45.6
47.3
47.9
18.3
21.6
21.9
22.1
32 MHz 27.6
32.4
32.4
32.9
12.3
15.0
15.2
15.4
24 MHz 20.8
23.9
24.3
25.0
9.3
11.3
11.4
12.0
8 MHz
6.9
7.8
8.7
9.0
3.1
3.7
4.2
4.9
1 MHz
0.9
1.2
1.5
2.3
0.4
0.6
1.0
1.8
64 MHz 49.2
53.9
55.2
57.4
23.9
27.8
28.2
28.4
48 MHz 37.3
40.8
41.4
44.1
18.2
21.0
21.6
21.9
32 MHz 25.1
27.6
29.1
30.1
12.0
14.0
14.5
15.1
24 MHz 19.0
21.6
22.1
22.9
6.3
7.2
7.7
8.1
8 MHz
7.3
7.9
8.4
3.0
3.5
4.0
4.7
6.9
(2)
Supply
current in
Run mode,
executing
from RAM
64/149
fHCLK
All peripherals disabled
6.4
DS9118 Rev 14
mA
STM32F303xB STM32F303xC
Electrical characteristics
Table 30. Typical and maximum current consumption from VDD supply at VDD = 3.6V (continued)
All peripherals enabled
Symbol Parameter Conditions
IDD
Supply
current in
Sleep
mode,
executing
from Flash
or RAM
External
clock (HSE
bypass)
Internal
clock (HSI)
fHCLK
Max @ TA(1)
Typ
All peripherals disabled
Max @ TA(1)
Typ
25 °C
85 °C
105 °C
72 MHz 44.0
48.4
49.4
50.5
64 MHz 39.2
43.3
44.0
48 MHz 29.6
32.7
32 MHz 19.7
Unit
25 °C
85 °C
105 °C
6.6
7.5
7.9
8.7
45.2
6.0
6.8
7.2
7.9
33.3
34.3
4.5
5.2
5.6
6.3
23.3
23.3
23.5
3.1
3.5
4.0
4.8
24 MHz 14.9
17.6
17.8
18.3
2.4
2.8
3.3
3.9
8 MHz
4.9
5.7
6.1
6.9
0.8
1.0
1.4
2.2
1 MHz
0.6
0.9
1.2
2.1
0.1
0.3
0.6
1.5
64 MHz 34.2
38.1
39.2
40.3
5.7
6.3
6.8
7.5
48 MHz 25.8
28.7
29.6
30.3
4.3
4.8
5.2
5.9
32 MHz 17.4
19.4
19.9
20.7
2.9
3.2
3.7
4.5
24 MHz 13.2
15.1
15.6
15.9
1.5
1.8
2.2
2.9
8 MHz
5.0
5.6
6.2
0.7
0.9
1.2
2.1
4.5
mA
1. Guaranteed by characterization results unless otherwise specified.
2. Data based on characterization results and tested in production with code executing from RAM.
Table 31. Typical and maximum current consumption from the VDDA supply
VDDA = 2.4 V
Symbol Parameter
IDDA
Supply
current in
Run/Sleep
mode,
code
executing
from Flash
or RAM
Conditions
(1)
HSE
bypass
HSI clock
fHCLK
Typ
VDDA = 3.6 V
Max @ TA(2)
25 °C
85 °C 105 °C
Typ
Max @ TA(2)
25 °C
Unit
85 °C 105 °C
72 MHz
225
276
289
297
245
302
319
329
64 MHz
198
249
261
268
216
270
284
293
48 MHz
149
195
204
211
159
209
222
230
32 MHz
102
145
152
157
110
154
162
169
24 MHz
80
119
124
128
86
126
131
135
8 MHz
2
3
4
6
3
4
5
9
1 MHz
2
3
5
7
3
4
6
9
64 MHz
270
323
337
344
299
354
371
381
48 MHz
220
269
280
286
244
293
309
318
32 MHz
173
218
228
233
193
239
251
257
24 MHz
151
194
200
204
169
211
219
225
8 MHz
73
97
99
103
88
105
110
116
µA
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the
PLL is off, IDDA is independent from the frequency.
2. Guaranteed by characterization results.
DS9118 Rev 14
65/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Table 32. Typical and maximum VDD consumption in Stop and Standby modes
Symbol Parameter
IDD
Typ @VDD (VDD=VDDA)
Max(1)
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
TA = TA = TA =
25 °C 85 °C 105 °C
Conditions
Regulator in run mode,
20.05 20.33 20.42 20.50 20.67 20.80 44.2(2) 350
Supply
all oscillators OFF
current in
Stop mode Regulator in low-power 7.63 7.77 7.90 8.07 8.17 8.33 30.6(2) 335
mode, all oscillators OFF
Supply
current in
Standby
mode
LSI ON and IWDG ON
0.80
0.96
1.09
1.23
1.37
1.51
-
LSI OFF and IWDG OFF 0.60
0.74
0.83
0.93
1.02
1.11 5.0(2)
Unit
735(2)
720(2)
µA
-
-
7.8
13.3(2)
1. Guaranteed by characterization results unless otherwise specified.
2. Data based on characterization results and tested in production.
Table 33. Typical and maximum VDDA consumption in Stop and Standby modes
IDDA
Supply
current in
Standby
mode
Supply
current in
Stop mode
Supply
current in
Standby
mode
VDDA monitoring OFF
Supply
current in
Stop mode
Max(1)
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
TA = TA = TA =
25 °C 85 °C 105 °C
Conditions
VDDA monitoring ON
Symbol Parameter
Typ @VDD (VDD = VDDA)
Regulator in run mode,
1.81 1.95 2.07 2.20 2.35 2.52
all oscillators OFF
3.7
5.5
8.8
Regulator in low-power
mode, all oscillators
1.81 1.95 2.07 2.20 2.35 2.52
OFF
3.7
5.5
8.8
-
-
-
3.5
5.4
9.2
Regulator in run mode,
1.05 1.08 1.10 1.15 1.22 1.29
all oscillators OFF
-
-
-
Regulator in low-power
mode, all oscillators
1.05 1.08 1.10 1.15 1.22 1.29
OFF
-
-
-
LSI ON and IWDG ON 1.44 1.52 1.60 1.71 1.84 1.98
-
-
-
LSI OFF and IWDG
OFF
-
-
-
LSI ON and IWDG ON 2.22 2.42 2.59 2.78
LSI OFF and IWDG
OFF
3.24
1.69 1.82 1.94 2.08 2.23 2.40
0.93 0.95 0.98 1.02 1.08 1.15
1. Guaranteed by characterization results.
The total consumption is the sum of IDD and IDDA.
66/149
3.0
DS9118 Rev 14
Unit
µA
STM32F303xB STM32F303xC
Electrical characteristics
Table 34. Typical and maximum current consumption from VBAT supply
Symbol
Para
meter
Max
@VBAT = 3.6 V(2)
Typ @VBAT
Conditions
(1)
LSE & RTC
ON; "Xtal
mode"
lower
driving
capability;
Backup LSEDRV[1:
domain 0] = '00'
IDD_VBAT
supply LSE & RTC
current ON; "Xtal
mode"
higher
driving
capability;
LSEDRV[1:
0] = '11'
1.65V
1.8V
2V
0.48
0.50
0.52
2.4V 2.7V
0.58
3V
Unit
TA = TA = TA =
3.3V 3.6V
25°C 85°C 105°C
0.65 0.72 0.80 0.90
1.1
1.5
2.0
µA
0.83
0.86
0.90
0.98
1.03 1.10 1.20 1.30
1.5
2.2
2.9
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’)
1.4
1.2
1.65 V
1.8 V
2V
0.8
2.4 V
0.6
2.7 V
0.4
3V
I
VBAT (μA)
1
3.3 V
0.2
3.6 V
0
25°C
60°C
85°C
105°C
TA (°C)
MS31124V1
DS9118 Rev 14
67/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Typical current consumption
The MCU is placed under the following conditions:
•
VDD = VDDA = 3.3 V
•
All I/O pins available on each package are in analog input configuration
•
The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz,
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash
prefetch is ON
•
When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB
•
PLL is used for frequencies greater than 8 MHz
•
AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,
500 kHz and 125 kHz respectively.
Table 35. Typical current consumption in Run mode, code with data processing running from
Flash
Typ
Symbol
IDD
Parameter
Conditions
Supply current in
Run mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash
IDDA(1) (2)
Supply current in
Run mode from
VDDA supply
fHCLK
Peripherals
enabled
Peripherals
disabled
72 MHz
61.3
28.0
64 MHz
54.8
25.4
48 MHz
41.9
19.3
32 MHz
28.5
13.3
24 MHz
21.8
10.4
16 MHz
14.9
7.2
8 MHz
7.7
3.9
4 MHz
4.5
2.5
2 MHz
2.8
1.7
1 MHz
1.9
1.3
500 kHz
1.4
1.1
125 kHz
1.1
0.9
72 MHz
240.3
239.5
64 MHz
210.9
210.3
48 MHz
155.8
155.6
32 MHz
105.7
105.6
24 MHz
82.1
82.0
16 MHz
58.8
58.8
8 MHz
2.4
2.4
4 MHz
2.4
2.4
2 MHz
2.4
2.4
1 MHz
2.4
2.4
500 kHz
2.4
2.4
125 kHz
2.4
2.4
Unit
mA
µA
1. VDDA monitoring is ON.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
68/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
Table 36. Typical current consumption in Sleep mode, code running from Flash or RAM
Typ
Symbol
IDD
Parameter
Conditions
Supply current in
Sleep mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM
IDDA(1) (2)
Supply current in
Sleep mode from
VDDA supply
fHCLK
Peripherals
enabled
Peripherals
disabled
72 MHz
44.1
7.0
64 MHz
39.7
6.3
48 MHz
30.3
4.9
32 MHz
20.5
3.5
24 MHz
15.4
2.8
16 MHz
10.6
2.0
8 MHz
5.4
1.1
4 MHz
3.2
1.0
2 MHz
2.1
0.9
1 MHz
1.5
0.8
500 kHz
1.2
0.8
125 kHz
1.0
0.8
72 MHz
239.7
238.5
64 MHz
210.5
209.6
48 MHz
155.0
155.6
32 MHz
105.3
105.2
24 MHz
81.9
81.8
16 MHz
58.7
58.6
8 MHz
2.4
2.4
4 MHz
2.4
2.4
2 MHz
2.4
2.4
1 MHz
2.4
2.4
500 kHz
2.4
2.4
125 kHz
2.4
2.4
Unit
mA
µA
1. VDDA monitoring is ON.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
DS9118 Rev 14
69/149
125
Electrical characteristics
STM32F303xB STM32F303xC
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (seeTable 38: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
70/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
Table 37. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDD = 3.3 V
Cext = 0 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
Cext = 10 pF
C = CINT + CEXT +CS
ISW
I/O current
consumption
VDD = 3.3 V
Cext = 22 pF
C = CINT + CEXT +CS
VDD = 3.3 V
Cext = 33 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
Cext = 47 pF
C = CINT + CEXT+ CS
I/O toggling
frequency (fSW)
Typ
2 MHz
0.90
4 MHz
0.93
8 MHz
1.16
18 MHz
1.60
36 MHz
2.51
48 MHz
2.97
2 MHz
0.93
4 MHz
1.06
8 MHz
1.47
18 MHz
2.26
36 MHz
3.39
48 MHz
5.99
2 MHz
1.03
4 MHz
1.30
8 MHz
1.79
18 MHz
3.01
36 MHz
5.99
2 MHz
1.10
4 MHz
1.31
8 MHz
2.06
18 MHz
3.47
36 MHz
8.35
2 MHz
1.20
4 MHz
1.54
8 MHz
2.46
18 MHz
4.51
36 MHz
9.98
Unit
mA
1. CS = 5 pF (estimated value).
DS9118 Rev 14
71/149
125
Electrical characteristics
STM32F303xB STM32F303xC
On-chip peripheral current consumption
The MCU is placed under the following conditions:
•
all I/O pins are in analog input configuration
•
all peripherals are disabled unless otherwise mentioned
•
the given value is calculated by measuring the current consumption
•
–
with all peripherals clocked off
–
with only one peripheral clocked on
ambient operating temperature at 25°C and VDD = VDDA = 3.3 V.
Table 38. Peripheral current consumption
Peripheral
Typical consumption(1)
Unit
IDD
BusMatrix (2)
12.6
DMA1
7.6
DMA2
6.1
CRC
2.1
GPIOA
10.0
GPIOB
10.3
GPIOC
2.2
GPIOD
8.8
GPIOE
3.3
GPIOF
3.0
TSC
5.5
ADC1&2
17.3
ADC3&4
18.8
APB2-Bridge (3)
3.6
SYSCFG
7.3
TIM1
40.0
SPI1
8.8
TIM8
36.4
USART1
23.3
TIM15
17.1
TIM16
10.1
TIM17
APB1-Bridge
72/149
11.0
(3)
6.1
TIM2
49.1
TIM3
38.8
TIM4
38.3
DS9118 Rev 14
µA/MHz
STM32F303xB STM32F303xC
Electrical characteristics
Table 38. Peripheral current consumption (continued)
Peripheral
Typical consumption(1)
Unit
IDD
TIM6
9.7
TIM7
12.1
WWDG
6.4
SPI2
40.4
SPI3
40.0
USART2
41.9
USART3
40.2
UART4
36.5
UART5
30.8
I2C1
10.5
I2C2
10.4
USB
26.2
CAN
33.4
PWR
5.7
DAC
15.4
µA/MHz
1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp
etc. is not included. Refer to the tables of characteristics in the subsequent sections.
2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.
DS9118 Rev 14
73/149
125
Electrical characteristics
6.3.6
STM32F303xB STM32F303xC
Wakeup time from low-power mode
The wakeup times given in Table 39 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
•
For Stop or Sleep mode: the wakeup event is WFE.
•
WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 24.
Table 39. Low-power mode wakeup timings
Symbol
tWUSTOP
Parameter
Wakeup from
Stop mode
Typ @VDD, VDD = VDDA
Conditions
2.4 V
2.7 V
3V
3.3 V
3.6 V
Regulator in
run mode
4.1
3.9
3.8
3.7
3.6
3.5
4.5
Regulator in
low-power
mode
7.9
6.7
6.1
5.7
5.4
5.2
9
69.2
60.3
56.4
53.7
51.7
50
100
tWUSTANDBY(1)
Wakeup from LSI and
Standby mode IWDG OFF
tWUSLEEP
Wakeup from
Sleep mode
-
6
1. Guaranteed by characterization results.
74/149
Max
2.0 V
DS9118 Rev 14
-
Unit
µs
CPU
clock
cycles
STM32F303xB STM32F303xC
6.3.7
Electrical characteristics
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 14.
Table 40. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
8
32
MHz
fHSE_ext
User external clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
15
-
-
-
-
20
tw(HSEH)
tw(HSEL)
tr(HSE)
tf(HSE)
OSC_IN high or low
-
time(1)
V
ns
OSC_IN rise or fall time(1)
1. Guaranteed by design.
Figure 14. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tw(HSEL)
t
THSE
MS19214V2
DS9118 Rev 14
75/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 15
Table 41. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time(1)
tr(LSE)
tf(LSE)
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
V
-
VSS
-
0.3VDD
450
-
ns
OSC32_IN rise or fall
time(1)
-
-
50
1. Guaranteed by design.
Figure 15. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
76/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 42. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 42. HSE oscillator characteristics
Symbol
fOSC_IN
RF
Conditions(1)
Min(2)
Typ
Max(2)
Unit
Oscillator frequency
-
4
8
32
MHz
Feedback resistor
-
-
200
-
-
8.5
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@8 MHz
-
0.4
-
VDD=3.3 V, Rm= 45Ω,
CL=10 pF@8 MHz
-
0.5
-
VDD=3.3 V, Rm= 30Ω,
CL=5 pF@32 MHz
-
0.8
-
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@32 MHz
-
1
-
VDD=3.3 V, Rm= 30Ω,
CL=20 pF@32 MHz
-
1.5
-
Startup
10
-
-
mA/V
VDD is stabilized
-
2
-
ms
Parameter
During startup
IDD
gm
tSU(HSE)(4)
HSE current consumption
Oscillator transconductance
Startup time
(3)
kΩ
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
DS9118 Rev 14
77/149
125
Electrical characteristics
STM32F303xB STM32F303xC
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
78/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 43. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 43. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol
IDD
gm
tSU(LSE)(3)
Parameter
LSE current consumption
Oscillator
transconductance
Startup time
Conditions(1)
Min(2)
Typ
Max(2)
LSEDRV[1:0]=00
lower driving capability
-
0.5
0.9
LSEDRV[1:0]=10
medium low driving capability
-
-
1
LSEDRV[1:0]=01
medium high driving capability
-
-
1.3
LSEDRV[1:0]=11
higher driving capability
-
-
1.6
LSEDRV[1:0]=00
lower driving capability
5
-
-
LSEDRV[1:0]=10
medium low driving capability
8
-
-
LSEDRV[1:0]=01
medium high driving capability
15
-
-
LSEDRV[1:0]=11
higher driving capability
25
-
-
VDD is stabilized
-
2
-
Unit
µA
µA/V
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DS9118 Rev 14
79/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Figure 17. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8
Internal clock source characteristics
The parameters given in Table 44 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24.
High-speed internal (HSI) RC oscillator
Table 44. HSI oscillator characteristics(1)
Symbol
fHSI
TRIM
DuCy(HSI)
ACCHSI
Parameter
Conditions
Min
Typ
-
-
Frequency
IDDA(HSI)
-
MHz
(2)
-
1
%
-
45(2)
-
55(2)
%
TA = -40 to
105°C
-2.8(3)
-
3.8(3)
TA = -10 to 85°C
-1.9(3)
-
2.3(3)
TA = 0 to 85°C
-1.9(3)
-
2(3)
TA = 0 to 70°C
-1.3(3)
-
2(3)
TA = 0 to 55°C
-1(3)
-
2(3)
-1
-
1
-
2(2)
µs
80
100(2)
µA
Duty cycle
HSI oscillator startup time
-
1(2)
HSI oscillator power
consumption
-
-
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Factory calibrated, parts not soldered.
80/149
8
-
TA = 25°C(4)
tsu(HSI)
Unit
-
HSI user trimming step
Accuracy of the HSI oscillator
Max
DS9118 Rev 14
%
STM32F303xB STM32F303xC
Electrical characteristics
Figure 18. HSI oscillator accuracy characterization results for soldered parts
4%
MAX
MIN
3%
2%
1%
0%
-40
-20
0
20
40
60
80
100
T [ºC]
120 A
-1%
-2%
-3%
-4%
MS30985V4
Low-speed internal (LSI) RC oscillator
Table 45. LSI oscillator characteristics(1)
Symbol
fLSI
Parameter
Frequency
Min
Typ
Max
Unit
30
40
50
kHz
tsu(LSI)(2)
LSI oscillator startup time
-
-
85
µs
IDD(LSI)(2)
LSI oscillator power consumption
-
0.75
1.2
µA
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design.
DS9118 Rev 14
81/149
125
Electrical characteristics
6.3.9
STM32F303xB STM32F303xC
PLL characteristics
The parameters given in Table 46 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24.
Table 46. PLL characteristics
Value
Symbol
fPLL_IN
fPLL_OUT
tLOCK
Jitter
Parameter
Unit
Min
Typ
Max
PLL input clock(1)
1(2)
-
24(2)
PLL input clock duty cycle
40(2)
-
(2)
PLL multiplier output clock
(2)
16
-
72
MHz
-
-
200(2)
µs
-
300(2)
ps
PLL lock time
Cycle-to-cycle jitter
-
60
MHz
%
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
2. Guaranteed by design.
6.3.10
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 47. Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA = –40 to +105 °C
40
53.5
60
µs
Page (2 KB) erase time
TA = –40 to +105 °C
20
-
40
ms
tME
Mass erase time
TA = –40 to +105 °C
20
-
40
ms
IDD
Supply current
Write mode
-
-
10
mA
Erase mode
-
-
12
mA
Symbol
tprog
tERASE
Parameter
Conditions
1. Guaranteed by design.
Table 48. Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
1 kcycle(2) at TA = 105 °C
10
10 kcycles
(2)
at TA = 55 °C
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
82/149
Min(1)
DS9118 Rev 14
20
Unit
kcycles
Years
STM32F303xB STM32F303xC
6.3.11
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 49. They are based on the EMS levels and classes
defined in the application note AN1709.
Table 49. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP100, TA = +25°C,
Voltage limits to be applied on any I/O pin to
fHCLK = 72 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
DS9118 Rev 14
83/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 50. EMI characteristics
Symbol Parameter
SEMI
6.3.12
Monitored
frequency band
Conditions
Max vs. [fHSE/fHCLK]
Unit
8/72 MHz
0.1 to 30 MHz
VDD = 3.6 V, TA = 25 °C,
30 to 130 MHz
LQFP100 package
Peak level
compliant with IEC
130 MHz to 1GHz
61967-2
SAE EMI Level
7
20
dBµV
27
4
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.
Table 51. ESD absolute maximum ratings
Symbol
Ratings
Electrostatic
VESD(HBM) discharge voltage
(human body model)
Conditions
TA = +25 °C, conforming
to ANSI/ESDA/JEDEC JS-001
Electrostatic
TA = +25 °C, conforming
VESD(CDM) discharge voltage
to ANSI/ESDA/JEDEC JS-002
(charge device model)
1. Guaranteed by characterization results.
84/149
DS9118 Rev 14
Packages Class
All
2
Maximum
Unit
value(1)
2000
V
All
C2a
500
STM32F303xB STM32F303xC
Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 52. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator
frequency deviation).
The test results are given in Table 53.
DS9118 Rev 14
85/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Table 53. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
Note:
86/149
Description
Negative
injection
Positive
injection
Injected current on BOOT0
–0
NA
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,
PB2 with induced leakage current on other pins from this
group less than -50 µA
–5
-
Injected current on PB0, PB1, PE7, PE8, PE9, PE10,
PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14,
PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with
induced leakage current on other pins from this group
less than -50 µA
–5
-
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,
PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12,
PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8,
PD9, PD10, PD11, PD12, PD13, PD14 with induced
leakage current on other pins from this group less than
400 µA
-
+5
Injected current on any other FT and FTf pins
–5
NA
Injected current on any other pins
–5
+5
mA
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
DS9118 Rev 14
Unit
STM32F303xB STM32F303xC
6.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 54 are derived from tests
performed under the conditions summarized in Table 24. All I/Os are CMOS and TTL
compliant.
Table 54. I/O static characteristics
Symbol
VIL
VIH
Parameter
Low level input
voltage
High level input
voltage
Conditions
Min
Vhys
Ilkg
Input leakage
current (3)
Max
Unit
(1)
TC and TTa I/O
-
-
0.3 VDD+0.07
FT and FTf I/O
-
-
0.475 VDD-0.2 (1)
BOOT0
-
-
0.3 VDD–0.3 (1)
All I/Os except BOOT0
-
-
0.3 VDD (2)
TC and TTa I/O
0.445 VDD+0.398 (1)
-
-
FT and FTf I/O
0.5 VDD+0.2 (1)
-
-
-
-
BOOT0
0.2 VDD+0.95
All I/Os except BOOT0
Schmitt trigger
hysteresis
Typ
0.7 VDD
(2)
(1)
-
V
(1)
-
TC and TTa I/O
-
200
FT and FTf I/O
-
100 (1)
-
BOOT0
-
300
(1)
-
TC, FT and FTf I/O
TTa I/O in digital mode
VSS ≤VIN ≤VDD
-
-
±0.1
TTa I/O in digital mode
VDD ≤VIN ≤VDDA
-
-
1
TTa I/O in analog mode
VSS ≤VIN ≤VDDA
-
-
±0.2
FT and FTf I/O(4)
VDD ≤VIN ≤5 V
-
-
10
mV
µA
RPU
Weak pull-up
equivalent resistor(5)
VIN = VSS
25
40
55
kΩ
RPD
Weak pull-down
equivalent resistor(5)
VIN = VDD
25
40
55
kΩ
CIO
I/O pin capacitance
-
-
5
-
pF
1. Data based on design simulation.
2. Tested in production.
3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 53: I/O
current injection susceptibility.
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
DS9118 Rev 14
87/149
125
Electrical characteristics
STM32F303xB STM32F303xC
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 19 and Figure 20 for standard I/Os.
Figure 19. TC and TTa I/O input characteristics - CMOS port
VIL/VIH (V)
equir
dard r
stan
MOS
VIHmin 2.0
Tested
ts VIH
emen
C
uction
in prod
1.3
min =
D
0.7VD
98
ns
+0.3
5V DD imulatio
0.44
s
=
n
V IHmin on desig
d
Base
ns
0.07imulatio
D+
0.3V Design s
x=
d
a
m
V IL ed on
Bas
Area not determined
CMOS standard requirements VILmax = 0.3VDD
VILmax 0.7
0.6
tion
roduc
ted in p
Tes
2.0
VDD (V)
2.7
3.0
3.3
3.6
MS30255V2
Figure 20. TC and TTa I/O input characteristics - TTL port
VIL/VIH (V)
TTL standard requirements V IHmin = 2V
VIHmin 2.0
ns
7
+0.0
ulatio
.3V DD ign sim
0
=
V ILmax on des
d
Base
1.3
Area not determined
VILmax 0.8
0.7
98
+0.3 lations
5V DD
u
0.44 ign sim
=
V IHmin on des
d
Base
TTL standard requirements V ILmax = 0.8V
VDD (V)
2.0
2.7
3.0
3.3
3.6
MS30256V2
88/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port
VIL/VIH (V)
min
ts VIH
emen
requir
ndard
sta
MOS
0.2 ulations
V DD+
= 0.5 sign sim
e
on d
ased
C
2.0
VDD
= 0.7
V IHmin
B
-0.2 lations
u
75V DD
= 0.4 esign sim
on d
d
e
s
a
V ILmax
B
Area not determined
1.0
ax = 0.3VDD
ments VILm
rd require
CMOS standa
0.5
VDD (V)
2.0
3.6
2.7
MS30257V3
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port
VIL/VIH (V)
TTL standard requirements VIHmin = 2V
2.0
Area not determined
1.0
0.8
ns
0.2
V DD+ simulatio
= 0.5
n
V IHmin n desig
do
Base
-0.2
tions
75V DD imula
= 0.4design s
in
m
V IL d on
Base
TTL standard requirements VILmax = 0.8V
0.5
VDD (V)
2.0
2.7
3.6
MS30258V2
DS9118 Rev 14
89/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 22).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 22).
Output voltage levels
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 24. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL
compliant.
Table 55. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL (1)
Output low level voltage for an I/O pin
VOH (3)
Output high level voltage for an I/O pin
VOL(1)(4)
Output low level voltage for an I/O pin
VOH(3)(4)
Output high level voltage for an I/O pin
VOL(1)(4)
Output low level voltage for an I/O pin
VOH(3)(4)
Output high level voltage for an I/O pin
VOLFM+(1)(4)
Output low level voltage for an FTf I/O pin in
FM+ mode
Conditions
Min
Max
CMOS port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
-
1.3
VDD–1.3
-
-
0.4
VDD–0.4
-
-
0.4
TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2 V < VDD < 2.7 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
Unit
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 22 and the sum of
IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 22 and the sum
of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
4. Data based on design simulation.
90/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 23 and
Table 56, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 24.
Table 56. I/O AC characteristics(1)
OSPEEDRy [1:0]
value(1)
x0
01
Symbol
Parameter
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
Conditions
Min
Max
Unit
-
2(3)
MHz
-
125(3)
-
125
(3)
-
10(3)
-
25(3)
-
(3)
25
-
50(3)
MHz
-
30(3)
MHz
-
20(3)
MHz
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
-
2(4)
-
12(4)
-
34(4)
10(3)
-
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 50 pF, VDD = 2 V to 3.6 V
fmax(IO)out
Maximum
CL = 50 pF, VDD = 2.7 V to 3.6 V
CL = 50 pF, VDD = 2 V to 2.7 V
11
tf(IO)out
tr(IO)out
FM+
configuration(4)
-
Output high to low level
fall time
Output low to high level
rise time
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
MHz
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 30 pF, VDD = 2.7 V to 3.6 V
frequency(2)
ns
CL = 50 pF, VDD = 2 V to 3.6 V
-
ns
ns
MHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of
GPIO Port configuration register.
2. The maximum frequency is defined in Figure 23.
3. Guaranteed by design.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F303x STM32F313xx reference manual
RM0316 for a description of FM+ I/O mode configuration.
DS9118 Rev 14
91/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Figure 23. I/O AC characteristics definition
90%
10%
50%
50%
90%
10%
EXTERNAL
OUTPUT
ON 50pF
tr(IO)out
tf(IO)out
T
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by 50pF
ai14131c
6.3.15
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 54).
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 24.
Table 57. NRST pin characteristics
Symbol
Parameter
VIL(NRST)(1) NRST Input low level voltage
Conditions
Min
Typ
Max
-
-
-
0.3VDD+
0.07(1)
-
-
Unit
V
VIH(NRST)(1)
NRST Input high level voltage
-
0.445VDD+
0.398(1)
Vhys(NRST)
NRST Schmitt trigger voltage hysteresis
-
-
200
-
mV
VIN = VSS
25
40
55
kΩ
-
100(1)
ns
-
-
ns
RPU
VF(NRST)(1)
VNF(NRST)(1)
Weak pull-up equivalent
resistor(2)
NRST Input filtered pulse
NRST Input not filtered pulse
-
(1)
500
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
92/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
Figure 24. Recommended NRST pin protection
VDD
External
reset circuitry (1)
RPU
Internal reset
NRST (2)
Filter
0.1 μF
MS19878V1
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 57. Otherwise the reset will not be taken into account by the device.
6.3.16
Timer characteristics
The parameters given in Table 58 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 58. TIMx(1)(2) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
tMAX_COUNT
Parameter
Timer resolution time
Timer external clock
frequency on CH1 to CH4
Timer resolution
16-bit counter clock period
Maximum possible count
with 32-bit counter
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
fTIMxCLK = 72 MHz
13.9
-
ns
fTIMxCLK = 144 MHz
x=1.8
6.95
-
ns
0
fTIMxCLK/2
MHz
fTIMxCLK = 72 MHz
0
36
MHz
TIMx (except TIM2)
-
16
TIM2
-
32
-
1
65536
tTIMxCLK
fTIMxCLK = 72 MHz
0.0139
910
µs
fTIMxCLK = 144 MHz
x=1.8
0.0069
455
µs
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 72 MHz
-
59.65
s
fTIMxCLK = 144 MHz
x=1.8
-
29.825
s
-
bit
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 and TIM17
timers.
2. Guaranteed by design.
DS9118 Rev 14
93/149
125
Electrical characteristics
STM32F303xB STM32F303xC
Table 59. IWDG min/max timeout period at 40 kHz (LSI) (1)
Prescaler divider
PR[2:0] bits
Min timeout (ms) RL[11:0]=
0x000
Max timeout (ms) RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
7
6.4
26214.4
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Table 60. WWDG min-max timeout value @72 MHz (PCLK)(1)
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.05687
3.6409
2
1
0.1137
7.2817
4
2
0.2275
14.564
8
3
0.4551
29.127
1. Guaranteed by design.
94/149
DS9118 Rev 14
STM32F303xB STM32F303xC
6.3.17
Electrical characteristics
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev.03 for:
•
Standard-mode (Sm) : with a bit rate up to 100 Kbits/s
•
Fast-mode (Fm) : with a bit rate up to 400 Kbits/s
•
Fast-mode Plus (Fm+) : with a bit rate up to 1Mbits/s
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support
Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port
characteristics.
All I2C I/Os embed an analog filter. refer to theTable 62: I2C analog filter characteristics.
Table 61. I2C timings specification (see I2C specification, rev.03, June 2007)(1)
Standard mode
Symbol
Fast mode
Fast Mode Plus
Parameter
Unit
Min
Max
Min
Max
Min
Max
0
100
0
400
0
1000
KHz
-
1.3
-
0.5
-
µs
0.26
-
µs
fSCL
SCL clock frequency
tLOW
Low period of the SCL clock
4.7
tHIGH
High Period of the SCL clock
4
tr
Rise time of both SDA and SCL
signals
-
1000
-
300
-
120
ns
tf
Fall time of both SDA and SCL
signals
-
300
-
300
-
120
ns
Data hold time
0
-
0
-
0
-
µs
-
0.9(2)
-
0.45(2)
µs
tHD;DAT
0.6
tVD;DAT
Data valid time
-
3.45(2)
tVD;ACK
Data valid acknowledge time
-
3.45(2)
-
0.9(2)
-
0.45(2)
µs
tSU;DAT
Data setup time
250
-
100
-
50
-
ns
tHD:STA
Hold time (repeated) START
condition
4.0
-
0.6
-
0.26
-
µs
tSU:STA
Set-up time for a repeated START
condition
4.7
-
0.6
-
0.26
tSU:STO
Set-up time for STOP condition
4.0
-
0.6
-
0.26
-
µs
Bus free time between a
STOP and START condition
4.7
-
1.3
-
0.5
-
µs
tBUF
µs
Cb
Capacitive load for each bus line
-
400
-
400
-
550
pF
tSP
Pulse width of spikes that are
suppressed by the analog filter for
Standard and Fast mode
0
50(3)
0
50(3)
-
-
ns
DS9118 Rev 14
95/149
125
Electrical characteristics
STM32F303xB STM32F303xC
1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when
I2Cx_TIMING register is correctly programmed (Refer to the RM0316 reference manual).
2. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for standard mode, fast mode and fast mode plus, but must
be less than the maximum of tVD;DAT or tVD;ACK by a transition time.
3. The minimum width of the spikes filtered by the analog filter is above tSP(max).
Table 62. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
50
260
ns
Pulse width of spikes that are
suppressed by the analog filter
tAF
1. Guaranteed by design.
Figure 25. I2C bus AC waveforms and measurement circuit
VDD_I2C
VDD_I2C
Rp
MCU
Rp
Rs
SDA
I2C bus
Rs
SCL
tf
SDA
t SU;DAT
tr
70%
30%
70%
30%
tf
t HD;DAT
70%
30%
70%
30%
SCL
t HD;STA
S
continued
tr
t VD;DAT
t HIGH
70%
30%
70%
30%
continued
t LOW
1 / fSCL
9th clock
t BUF
1st clock cycle
SDA
t SU;STA
t HD;STA
t SP
t VD;ACK
t SU;STO
SCL
Sr
9th clock
P
S
MS19879V3
1. Rs: Series protection resistors, Rp: Pull-up resistors, VDD_I2C: I2C bus supply.
96/149
DS9118 Rev 14
STM32F303xB STM32F303xC
Electrical characteristics
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 63 for SPI or in Table 64 for I2S
are derived from tests performed under ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 24.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 63. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Typ
Master mode, SPI1
2.7