0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F372RCT6

STM32F372RCT6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    IC MCU 32BIT 256KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
STM32F372RCT6 数据手册
STM32F372xx STM32F373xx ARM Cortex-M4F 32b MCU+FPU, up to 256KB Flash+32KB SRAM timers, 4 ADCs (12/16-bit), 3 DACs, 2 comp., 2.0-3.6 V operation Datasheet  production data Features FBGA ■ Core: ARM 32-bit Cortex™-M4F CPU (72 MHz max), single-cycle multiplication and HW division, DSP instruction with FPU (floatingpoint unit) and MPU (memory protection unit) ■ Memories – 64 to 256 Kbytes of Flash memory – 32 Kbytes of SRAM with HW parity check ■ CRC calculation unit ■ Reset and power management – Voltage range: 2.0 to 3.6 V – Power-on/Power down reset (POR/PDR) – Programmable voltage detector (PVD) – Low power modes: Sleep, Stop, Standby – VBAT supply for RTC and backup registers LQFP48 (7 × 7 mm) LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) UFBGA100 (7 x 7 mm) ■ 17 timers – Two 32-bit timer and three 16-bit timers with up to 4 IC/OC/PWM or pulse counter – Two 16-bit timers with up to 2 IC/OC/PWM or pulse counter – Four 16-bit timers with up to 1 IC/OC/PWM or pulse counter – Independent and system watchdog timers – SysTick timer: 24-bit downcounter – Three 16-bit basic timers to drive the DAC ■ Calendar RTC with Alarm and periodic wakeup from Stop/Standby ■ Communication interfaces – CAN interface (2.0B Active) – Two I2C interfaces; supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP – Three USARTs supporting master synchronous SPI and modem control; with ISO7816 interface, LIN, IrDA capability, auto baud rate detection, wakeup feature – Three SPIs (18 Mbit/s) with 4 to 16 programmable bit frame, muxed I2S – HDMI-CEC bus interface – USB 2.0 full speed interface ■ Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x16 PLL option – Internal 40 kHz oscillator ■ Up to 84 fast I/Os – All mappable on external interrupt vectors – Up to 45 I/Os with 5 V tolerant capability ■ 12-channel DMA controller ■ One 12-bit, 1.0 µs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply from 2.4 up to 3.6 ■ Up to three 16-bit Sigma Delta ADC – Separate analog supply from 2.2 to 3.6 V, up to 21 single/ 11 diff channels ■ Serial wire devices, JTAG, Cortex-M4F ETM ■ 96-bit unique ID ■ Up to three 12-bit DAC channels Table 1. ■ Two fast rail-to-rail analog comparators with programmable input and output ■ Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touchsensors December 2012 Reference Device summary Part number STM32F372xx STM32F372C8, STM32F372R8, STM32F372V8, STM32F372CB, STM32F372RB, STM32F372VB, STM32F372CC, STM32F372RC, STM32F372VC STM32F373xx STM32F373C8, STM32F373R8, STM32F373V8, STM32F373CB, STM32F373RB, STM32F373VB, STM32F373CC, STM32F373RC, STM32F373VC Doc ID 022691 Rev 3 1/128 www.st.com 1 Contents STM32F37x Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . . 12 3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 13 3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.9 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.11 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.12 3.11.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.11.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16 12-bit analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.13 16-bit sigma delta analog-to-digital converters (SDADC) . . . . . . . . . . . . . 18 3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.15 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.16 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.17.1 2/128 General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19) . . . . . 22 Doc ID 022691 Rev 3 STM32F37x Contents 3.17.2 Basic timers (TIM6, TIM7, TIM18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.17.3 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.4 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.19 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 25 3.21 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 25 3.22 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.24 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.25 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.26 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 56 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 57 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Doc ID 022691 Rev 3 3/128 Contents 7 STM32F37x 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.15 NRST characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.19 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.21 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.22 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.23 USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.24 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.25 SDADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 122 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4/128 Doc ID 022691 Rev 3 STM32F37x List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Capacitive sensing GPIOs available on STM32F37x devices . . . . . . . . . . . . . . . . . . . . . . 20 No. of capacitive sensing channels available on STM32F37x devices. . . . . . . . . . . . . . . . 21 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F37x I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F37x USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F37x SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32F37x pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Alternate functions for port PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Alternate functions for port PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Alternate functions for port PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Alternate functions for port PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Alternate functions for port PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Alternate functions for port PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 STM32F37x peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57 Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 59 Typical and maximum current consumption from VDDA supply . . . . . . . . . . . . . . . . . . . . . 61 Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 61 Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 62 Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 62 Typical current consumption in Run mode, code with data processing running from Flash 64 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 65 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Doc ID 022691 Rev 3 5/128 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. 6/128 STM32F37x ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 RSRC max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 SDADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 VREFSD+ pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 LQPF100 – 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . 115 LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 117 LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 119 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Doc ID 022691 Rev 3 STM32F37x List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 STM32F37x LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 STM32F37x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STM32F37x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STM32F37x BGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32F37x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00') . . . . . . . . . . . . 63 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 84 Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 84 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 106 UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 LQFP100 –14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 115 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 117 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 119 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Doc ID 022691 Rev 3 7/128 Introduction 1 STM32F37x Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F37x microcontrollers. This STM32F37x datasheet should be read in conjunction with the STM32F37x reference manual. The reference manual is available from the STMicroelectronics website www.st.com. For information on the Cortex™-M4F core please refer to the Cortex™-M4F Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m4/index.html and also refer to the STM32F3xxx and STM32F4xxx Cortex-M4 programming manual (PM0214) at address: http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/ PROGRAMMING_MANUAL/DM00046982.pdf 8/128 Doc ID 022691 Rev 3 STM32F37x 2 Description Description The STM32F37x family is based on the high-performance ARM® Cortex™-M4F 32-bit RISC core operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbyte of Flash memory, up to 32 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. The STM32F37x devices offer one fast 12-bit ADC (1 Msps), up to three 16-bit Sigma delta ADCs, up to two comparators, up to two DACs (DAC1 with 2 channels and DAC2 with 1 channel), a low-power RTC, 9 general-purpose 16-bit timers, two general-purpose 32-bit timers, three basic timers. They also feature standard and advanced communication interfaces: up to two I2Cs, three SPIs, all with muxed I2Ss, three USARTs, CAN and USB. The STM32F37x family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F37x family offers devices in five packages ranging from 48 pins to 100 pins. The set of included peripherals changes with the device chosen. Doc ID 022691 Rev 3 9/128 Description Table 2. STM32F37x Device overview STM32F 372Cx Peripheral STM32F 372Rx STM32F 372Vx STM32F 373Cx STM32F 373Rx STM32F 373Vx Flash (Kbytes) 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 SRAM (Kbytes) 16 Timers 24 32 24 32 16 24 32 16 24 32 16 24 32 General purpose 9 (16-bit) 2 (32 bit) 9 (16-bit) 2 (32 bit) Basic 3 (16-bit) 3 (16-bit) 3 3 2 2 3 3 1 1 1 1 SPI/I2S 2 I C Comm. USART interfaces CAN USB GPIOs 16 16 24 Normal I/Os (TC, TTa) 36 52 84 36 52 84 5 volts Tolerant I/Os (FT, Ftf) 20 28 45 20 28 45 12-bit ADCs 1 1 16-bit ADCs Sigma- Delta 1 (SDADC1) 3 12-bit DACs outputs 1 (DAC2) 3 Analog comparator 1 (COMP1) 2 Capacitive sensing channels 14 Max. CPU frequency 17 24 14 17 24 72 MHz 72 MHz Main operating voltage 2.0 to 3.6 V 2.0 to 3.6 V 16-bit SDADC operating voltage 2.2 to 3.6 V 2.2 to 3.6 V Ambient operating temperature: 40 to 85 °C / 40 to 105 °C Junction temperature: 40 to 125 °C Ambient operating temperature: 40 to 85 °C / 40 to 105 °C Junction temperature: 40 to 125 °C Operating temperature Packages LQFP48 LQFP64 LQFP100, UFBGA100(1) 1. UFBGA100 package available on 256-KB versions only. 10/128 Doc ID 022691 Rev 3 LQFP48 LQFP64 32 LQFP100, UFBGA100(1) STM32F37x Block diagram *4234 *4$) *4#+37#,+ *4-337$!4 *4$/ AS!& 4RACE #ONTROLLER 0BUS &LASH OBL )NTERFACE *4!'37 )BUS #/24%8- Fmax -(Z .6)# .6)# $BUS 3YSTEM "US-ATRIX Figure 1. Description 6DD18 &LASHUPTO+" 0/2 3500,9 2ESET 350%26)3)/. )NT 0/20$2 32!- UPTO+" @VDDA $-! 2#,3 0"; = '0)/ 0/24 " 0#;= '0)/ 0/24 # 0$;= '0)/ 0/24 $ 0&;BITS= 88!& '0)/ 0/24 % 4)- 4 CHANNEls, ETR as AF TIM 19 28 48 #43 243 3MART#ARDAS!& 3$!$#).S 3$!$#).S SHAREDW 3$!$# 62%&3$ 62%&3$ 3$!$#).S SHAREDW3$ 6333$ 84!,K(Z /3#?). /3#?/54 "ACKUP REG !.4) 4!-0 24# !75 "ACKUPINTERFACE CRC !("TO !0" 4)- 4)- 4)- #HANNELS %42 AS!& 4)- #HANNELS %42 AS!& 4)- #HANNELS %42 AS!& 4)- #HANNELS %42 AS!& 4)-2 2 CHANNEL ETR as AF 4)- #HANNELAS!& 4)- #HANNELAS!& 53!24 28 48 #43 243 3MART#ARDAS!& 53!24 28 48 #43 243 3MART#ARDAS!& 77$' 4)- 30))3 4)- 53!24  BIT3$!$# )&  BIT3$!$# )& @VDDSD12 6"!4 @VSW 3$!$# #,+ !0"&max-(Z -/3) -)3/ 3#+ .33AS!& 3TANDBY INTERFACE 53!24#,+ #%##,+ !$##,+ %84)4 7+50 #HANNELS #OMP#HANNEL "2+AS!& #HANNEL #OMP#HANNEL "2+AS!& #HANNELS #OMP#HANNEL "2+AS!& /3#?). /3#?/54 )7$' !0"0#,+ !0"0#,+ (#,+ &#,+ '0)/ 0/24 & !("TO !0" @VDDIO 84!,/3#  -(Z !0"&max-(Z 0%;= !(" '0)/ 0/24 ! !("&MAX-(Z 4OUCH3ENSING #ONTROLLER 0!;= @VDDA 0,, 2%3%4 #,/#+ -!.!'4 #42, .2%3%4 6$$! 633! 06$ 2#(3-(Z $-! CHANNELS 6$$TO6 6SS @VDDIO BIT CHANNELS 'ROUPSOF CHANNELSMAX AS!& 0/7%2 6/,42%' 64/6 30))3 2x(8x16bit) -/3) -)3/ 3#+ .33AS!& 30))3 2x(8x16bit) -/3) -)3/ 3#+ .33AS!& )# 3#, 3$! 3-"! AS!& )# 3#, 3$! 3-"! AS!& BX#!. #!.48#!.28 4)- 32!-" 53"&3 53"?$-53"?$0 ($-)#%# ($-)#%#AS!& )&  BIT $!#?/54 $!#?/54AS!& )&  BIT $!#?/54 $!#?/54AS!& )&  BIT $!#?/54 $!#?/54AS!&  BIT3$!$# )& @VDDSD3 6$$3$ 6$$3$ @VDDA 4EMPSENSOR !).S 62%& 62%&  BIT !$# )& 393#&' #4, @VDD #/-0 #/-0 ).S /54SAS!& 1. AF: alternate function on I/O pins. 2. Example given for STM32F373xx device. @VDDA Doc ID 022691 Rev 3 .47 11/128 Functional overview STM32F37x 3 Functional overview 3.1 ARM® Cortex™-M4F core with embedded Flash and SRAM The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation. With its embedded ARM core, the STM32F37x family is compatible with all ARM tools and software. Figure 1 shows the general block diagram of the STM32F37x family. 3.2 Memory protection unit The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. The Cortex-M4F processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to developers, including: ● Outstanding processing performance combined with fast interrupt handling ● Enhanced system debug with extensive breakpoint and trace capabilities ● Efficient processor core, system and memories ● Ultralow power consumption with integrated sleep modes ● Platform security robustness with optional integrated memory protection unit (MPU). With its embedded ARM core, the STM32F37x devices are compatible with all ARM development tools and software. 12/128 Doc ID 022691 Rev 3 STM32F37x 3.3 Functional overview Embedded Flash memory All STM32F37x devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). 3.4 Cyclic redundancy check (CRC) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Embedded SRAM All STM32F37x devices feature up to 32 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states. 3.6 Boot modes At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options: ● Boot from user Flash ● Boot from system memory ● Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade). Doc ID 022691 Rev 3 13/128 Functional overview STM32F37x 3.7 Power management 3.7.1 Power supply schemes 3.7.2 ● VDD: external power supply for I/Os and the internal regulator. It is provided externally through VDD pins, and can be 2.0 to 3.6 V. ● VDDA = 2.0 to 3.6 V: – external analog power supplies for Reset blocks, RCs and PLL – supply voltage for 12-bit ADC, DACs and comparators (minimum voltage to be applied to VDDA is 2.4 V when the 12-bit ADC and DAC are used). ● VDDSD12 and VDDSD3 = 2.2 to 3.6 V: supply voltages for SDADC1/2 and SDADCD3 sigma delta ADCs. Independent from VDD/VDDA. ● VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers when VDD is not present. Power supply supervisor ● The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD. ● The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.7.3 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR), and power-down. ● The MR mode is used in the nominal regulation mode (Run) ● The LPR mode is used in Stop mode. ● The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. The voltage regulator is always enabled after reset. It is disabled in Standby mode. 14/128 Doc ID 022691 Rev 3 STM32F37x 3.7.4 Functional overview Low-power modes The STM32F37x supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. ● Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USARTs, the I2Cs, the CEC, the USB wakeup, and the RTC alarm. ● Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.8 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz. 3.9 General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. Doc ID 022691 Rev 3 15/128 Functional overview STM32F37x Do not reconfigure GPIO pins which are not present on 48 and 64 pin packages to the analog mode. Additional current consumption in the range of tens of µA per pin can be observed if VDDA is higher than VDDIO. 3.10 Direct memory access (DMA) The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The two DMAs can be used with the main peripherals: SPIs, I2Cs, USARTs, DACs, ADC, SDADCs, general-purpose timers. 3.11 Interrupts and events 3.11.1 Nested vectored interrupt controller (NVIC) The STM32F37x devices embed a nested vectored interrupt controller (NVIC) able to handle up to 60 maskable interrupt channels and 16 priority levels. The NVIC benefits are the following: ● Closely coupled NVIC gives low latency interrupt processing ● Interrupt entry vector table address passed directly to the core ● Closely coupled NVIC core interface ● Allows early processing of interrupts ● Processing of late arriving higher priority interrupts ● Support for tail chaining ● Processor state automatically saved ● Interrupt entry restored on interrupt exit with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.11.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 84 GPIOs can be connected to the 16 external interrupt lines. 16/128 Doc ID 022691 Rev 3 STM32F37x 3.12 Functional overview 12-bit analog-to-digital converter (ADC) The 12-bit analog-to-digital converter is based on a successive approximation register (SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels (temperature sensor, voltage reference, VBAT voltage measurement) performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the timers (TIMx) can be internally connected to the ADC start and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 3.12.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See Table 65: Temperature sensor calibration values on page 103. 3.12.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. 3.12.3 VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a divider by 2. As a consequence, the converted digital value is half the VBAT voltage. Doc ID 022691 Rev 3 17/128 Functional overview 3.13 STM32F37x 16-bit sigma delta analog-to-digital converters (SDADC) Up to three 16-bit sigma-delta analog-to-digital converters are embedded in the STM32F37x. They have up to two separate supply voltages allowing the analog function voltage range to be independent from the STM32F37x power supply. They share up to 21 input pins which may be configured in any combination of single-ended (up to 21) or differential inputs (up to 11). The conversion speed is up to 16.6 ksps for each SDADC when converting multiple channels and up to 50 ksps per SDADC if single channel conversion is used. There are two conversion modes: single conversion mode or continuous mode, capable of automatically scanning any number of channels. The data can be automatically stored in a system RAM buffer, reducing the software overhead. A timer triggering system can be used in order to control the start of conversion of the three SDADCs and/or the 12-bit fast ADC. This timing control is very flexible, capable of triggering simultaneous conversions or inserting a programmable delay between the ADCs. Up to two external reference pins (VREFSD+, VREFSD-) and an internal 1.2/1.8 V reference can be used in conjunction with a programmable gain (x0.5 to x32) in order to fine-tune the input voltage range of the SDADC. 18/128 Doc ID 022691 Rev 3 STM32F37x 3.14 Functional overview Digital-to-analog converter (DAC) The devices feature up to two 12-bit buffered DACs with three output channels that can be used to convert three digital signals into three analog voltage signal outputs. The internal structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital Interface supports the following features: ● 3.15 Up to two DAC converters with three output channels: – DAC1 with two output channels – DAC2 with one output channel. ● 8-bit or 10-bit monotonic output ● Left or right data alignment in 12-bit mode ● Synchronized update capability ● Noise-wave generation ● triangular-wave generation ● Dual DAC channel independent or simultaneous conversions (DAC1 only) ● DMA capability for each channel ● External triggers for conversion Fast comparators (COMP) The STM32F37x embeds up to 2 comparators with rail-to-rail inputs and high-speed output. The reference voltage can be internal or external (delivered by an I/O). The threshold can be one of the following: ● DACs channel outputs ● External I/O ● Internal reference voltage (VREFINT) or submultiple (1/4 VREFINT, 1/2 VREFINT and 3/4 VREFINT) The comparators can be combined into a window comparator. Both comparators can wake up the device from Stop mode and generate interrupts and breaks for the timers. Doc ID 022691 Rev 3 19/128 Functional overview 3.16 STM32F37x Touch sensing controller (TSC) The devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. Up to 24 touch sensing electrodes can be controlled by the TSC. The touch sensing I/Os are organized in 8 acquisition groups, with up to 4 I/Os in each group. Table 3. Group Capacitive sensing GPIOs available on STM32F37x devices Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G1_IO2 PA1 1 Capacitive sensing signal name Pin name TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 5 TSC_G1_IO3 PA2 TSC_G5_IO3 PB6 TSC_G1_IO4 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB14 TSC_G2_IO2 PA5 TSC_G6_IO2 PB15 2 6 TSC_G2_IO3 PA6 TSC_G6_IO3 PD8 TSC_G2_IO4 PA7 TSC_G6_IO4 PD9 TSC_G3_IO1 PC4 TSC_G7_IO1 PE2 TSC_G3_IO2 PC5 TSC_G7_IO2 PE3 3 7 TSC_G3_IO3 PB0 TSC_G7_IO3 PE4 TSC_G3_IO4 PB1 TSC_G7_IO4 PE5 TSC_G4_IO1 PA9 TSC_G8_IO1 PD12 TSC_G4_IO2 PA10 TSC_G8_IO2 PD13 4 20/128 Group 8 TSC_G4_IO3 PA13 TSC_G8_IO3 PD14 TSC_G4_IO4 PA14 TSC_G8_IO4 PD15 Doc ID 022691 Rev 3 STM32F37x Functional overview Table 4. No. of capacitive sensing channels available on STM32F37x devices Number of capacitive sensing channels Analog I/O group 3.17 STM32F37xCx STM32F37xRx STM32F37xVx G1 3 3 3 G2 2 3 3 G3 1 3 3 G4 3 3 3 G5 3 3 3 G6 2 2 3 G7 0 0 3 G8 0 0 3 Number of capacitive sensing channels 14 17 24 Timers and watchdogs The STM32F37x includes two 32-bit and nine 16-bit general-purpose timers, three basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare Channels Complementary outputs Generalpurpose TIM2 TIM5 32-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 0 Generalpurpose TIM3, TIM4, TIM19 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 0 Generalpurpose TIM12 16-bit Up Any integer between 1 and 65536 No 2 0 Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 0 Doc ID 022691 Rev 3 21/128 Functional overview Table 5. STM32F37x Timer feature comparison (continued) Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare Channels Complementary outputs Generalpurpose TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7, TIM18 16-bit Up Any integer between 1 and 65536 Yes 0 0 3.17.1 General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19) There are eleven synchronizable general-purpose timers embedded in the STM32F37x (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. ● TIM2, 3, 4, 5 and 19 These five timers are full-featured general-purpose timers: – TIM2 and TIM5 have 32-bit auto-reload up/downcounters and 32-bit prescalers – TIM3, 4, and 19 have 16-bit auto-reload up/downcounters and 16-bit prescalers These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. ● TIM12, 13, 14, 15, 16, 17 These six timers general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM12 has 2 channels – TIM13 and TIM14 have 1 channel – TIM15 has 2 channels and 1 complementary channel – TIM16 and TIM17 have 1 channel and 1 complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.17.2 Basic timers (TIM6, TIM7, TIM18) These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. 22/128 Doc ID 022691 Rev 3 STM32F37x 3.17.3 Functional overview Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.17.4 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB1 clock (PCLK1) derived from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.17.5 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.18 ● A 24-bit down counter ● Autoreload capability ● Maskable system interrupt generation when the counter reaches 0 ● Programmable clock source Real-time clock (RTC) and backup registers The RTC and the backup registers are supplied through a switch that takes power either from VDD supply when present or through the VBAT pin. The backup registers are thirty two 32-bit registers used to store 128 bytes of user application data. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode. The RTC is an independent BCD timer/counter. Its main features are the following: ● Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. ● Automatic correction for 28th, 29th (leap year), 30th and 31st day of the month. ● 2 programmable alarms with wake up from Stop and Standby mode capability. ● Periodic wakeup unit with programmable resolution and period. ● On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. ● Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. ● 3 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. ● Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. Doc ID 022691 Rev 3 23/128 Functional overview STM32F37x The RTC clock sources can be: 3.19 ● A 32.768 kHz external crystal ● A resonator or oscillator ● The internal low-power RC oscillator (typical frequency of 40 kHz) ● The high-speed external clock divided by 32 Inter-integrated circuit interface (I2C) Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes with 20 mA output drive. They support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes  50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeout verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the application to wake up the MCU from Stop mode on address match. The I2C interfaces can be served by the DMA controller Refer to Table 7 for the differences between I2C1 and I2C2. Table 7. STM32F37x I2C implementation I2C features(1) I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X Independent clock X X SMBus X X Wakeup from STOP X X 1. X = supported. 24/128 Doc ID 022691 Rev 3 STM32F37x 3.20 Functional overview Universal synchronous/asynchronous receiver transmitter (USART) The STM32F37x embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3). All USARTs interfaces are able to communicate at speeds of up to 9 Mbit/s. They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode, Smart Card mode (ISO 7816 compliant), autobaudrate feature and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. Refer to Table 8 for the features of USART1, USART2 and USART3. Table 8. STM32F37x USART implementation USART modes/features(1) USART1 USART2 USART3 Hardware flow control for modem X X X Continuous communication using DMA X X X Multiprocessor communication X X X Synchronous mode X X X Smartcard mode X X X Single-wire half-duplex communication X X X IrDA SIR ENDEC block X X X LIN mode X X X Dual clock domain and wakeup from Stop mode X X X Receiver timeout interrupt X X X Modbus communication X X X Auto baud rate detection X X X Driver Enable X X X 1. X = supported. 3.21 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) Up to three SPIs are able to communicate at up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. The SPIs can be served by the DMA controller. Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in Doc ID 022691 Rev 3 25/128 Functional overview STM32F37x master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. Refer to Table 9 for the features between SPI1 and SPI2. Table 9. STM32F37x SPI/I2S implementation SPI features(1) SPI1 SPI2 SPI3 Hardware CRC calculation X X X Rx/Tx FIFO X X X NSS pulse mode X X X I2S mode X X X TI mode X X X 1. X = supported. 3.22 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception. 3.23 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 3.24 Universal serial bus (USB) The STM32F37x embeds an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). 26/128 Doc ID 022691 Rev 3 STM32F37x 3.25 Functional overview Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.26 Embedded trace macrocell™ The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F37x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. Doc ID 022691 Rev 3 27/128 Pinouts and pin description STM32F37x Pinouts and pin description Figure 2. STM32F37x LQFP48 pinout VDD_1 VSS_1 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 4 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 4 32 5 31 6 ,1&0 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 PA3 PA4 PA5 PA6 VDD_2 PB0 PB1 PB2 PE8 PE9 VSSSD/VREFSDVDDSD VBAT PC13 PC14 - OSC32_IN PC15 - OSC32_OUT PF0-OSC_IN PF1-OSC_OUT NRST VSSA/VREFVDDA/VREF+ PA0 PA1 PA2 28/128 Doc ID 022691 Rev 3 PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PD8 PB15 PB14 VREFSD+ .47 STM32F37x STM32F37x LQFP64 pinout VDD_1 VSS_1 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 3. Pinouts and pin description 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 ,1&0 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD8 PB15 PB14 VREFSD+ VREF+ PA3 VDD_2 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE8 PE9 VSSSD/VREFSDVDDSD VBAT PC13 PC14 - OSC32_IN PC15 - OSC32_OUT PF0 - OSC_IN PF1 - OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA/VREFVDDA PA0 PA1 PA2 -36 Doc ID 022691 Rev 3 29/128 Pinouts and pin description STM32F37x LQFP100 pinout                          6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 4. STM32F37x                          ,1&0                          6$$? 633? 0& 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 62%&3$ 6$$3$ 0! 0& 6$$? 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 62%&3$ 6333$ 6$$3$                          0% 0% 0% 0% 0% 6"!4 0# 0# /3#?). 0# /3#?/54 0& 0& 0& /3#?). 0& /3#?/54 .234 0# 0# 0# 0# 0& 633!62%& 6$$! 62%& 0! 0! 0! -36 30/128 Doc ID 022691 Rev 3 STM32F37x Figure 5. Pinouts and pin description STM32F37x BGA100 pinout             ! 0% 0% 0" "//4 0$ 0$ 0" 0" 0! 0! 0! 0! " 0% 0% 0" 0" 0" 0$ 0$ 0$ 0$ 0# 0# 0! # 0# 0% 0% 0$ 0$ 0# 0& 0! $ 0# 0% 633? 0! 0! 0# 0# 6"!4 0# 0# 0# & 0& 0& 633? 6333$ ' 0& 0& 6$$? 6$$3$ ( 0# .234 * 0& + % 6$$? 0" 0& 6$$? 0$ 0$ 0$ 0# 0# 0$ 0$ 0$ 633! 62%& 0# 0! 0! 0# 0" 62%&3$ , 62%& 0! 0! 0! 0# 0" - 6$$! 0! 0! 0! 0" 0" 0$ 0$ 0" 0% 0% 0% 0" 0% 0% 0% 0% 62%&3$ 6$$3$ 0% 0% -36 Doc ID 022691 Rev 3 31/128 Pinouts and pin description Table 10. STM32F37x Legend/abbreviations used in the pinout table Name Pin name Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3 V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Pin type I/O structure Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate Functions selected through GPIOx_AFR registers functions Pin functions BGA100 I/O structure Notes STM32F37x pin definitions LQFP100 Table 11. Additional Functions directly selected/enabled through peripheral registers functions 1 B2 PE2 I/O FT (1) TSC_G7_IO1, TRACECLK 2 A1 PE3 I/O FT (1) TSC_G7_IO2, TRACED0 FT (1) TSC_G7_IO3, TRACED1 TSC_G7_IO4, TRACED2 TRACED3 Pin numbers 3 LQFP48 LQFP64 Pin name B1 (function after reset) PE4 Pin type I/O Pin functions Alternate function Additional functions 4 C2 PE5 I/O FT (1) 5 D2 PE6 I/O FT (1) 6 E2 1 1 VBAT S 7 C1 2 2 PC13 I/O TC WKUP2_ALARM_OUT_ CALIB_OUT_TIMESTAMP, RTC_TAMPER1 8 D1 3 3 PC14 OSC32_IN I/O TC OSC32_IN 9 E1 4 4 PC15 OSC32_OUT I/O TC OSC32_OUT 10 F2 PF9 I/O FT 32/128 WKUP3, RTC_TAMPER3 Backup power supply (1) TIM14_CH1 Doc ID 022691 Rev 3 STM32F37x Pin type Notes STM32F37x pin definitions (continued) I/O structure Table 11. Pinouts and pin description PF10 I/O FT (1) Pin numbers G2 12 F1 5 5 PF0 OSC_IN I/O FTf I2C2_SDA OSC_IN 13 G1 6 6 PF1 OSC_OUT I/O FTf I2C2_SCL OSC_OUT 14 H2 7 7 NRST I/O RST 15 H1 LQFP48 11 LQFP64 BGA100 Pin functions LQFP100 Pin name 8 (function after reset) PC0 I/O Alternate function Additional functions Device reset input / internal reset output (active low) TTa (1) TIM5_CH1_ETR ADC_IN10 TIM5_CH2 ADCIN11 16 J2 9 PC1 I/O TTa (1) 17 J3 10 PC2 I/O TTa (1) SPI2_MISO/I2S2_MCK, TIM5_CH3 ADC_IN12 18 K2 11 PC3 I/O TTa (1) SPI2_MOSI/I2S2_SD, TIM5_CH4 ADC_IN13 19 J1 PF2 I/O FT (1) I2C2_SMBA 20 K1 8 VSSA/VREF- S 9 VDDA/VREF+ S (1) Analog power supply / Reference voltage for ADC, COMP, DAC VDDA S (1) Analog power supply S (1) Reference voltage for ADC, COMP, DAC 21 22 23 24 25 M1 L1 L2 M2 K3 26 L3 27 E3 28 H3 12 13 17 14 10 15 11 16 12 18 13 19 17 VREF+ PA0 PA1 PA2 I/O I/O I/O Analog ground TTa USART2_CTS, TIM2_CH1_ETR, TIM5_CH1_ETR, TIM19_CH1, TSC_G1_IO1, COMP1_OUT RTC_ TAMPER2, WKUP1, ADC_IN0, COMP1_INM TTa SPI3_SCK/I2S3_CK, USART2_RTS, TIM2_CH2, TIM15_CH1N, TIM5_CH2, TIM19_CH2, TSC_G1_IO2, ADC_IN1, COMP1_INP, RTC_REF_CLK_IN TTa COMP2_OUT, SPI3_MISO/I2S3_MCK, USART2_TX, TIM2_CH3, TIM15_CH1, TIM5_CH3, TIM19_CH3, TSC_G1_IO3 ADC_IN2, COMP2_INM SPI3_MOSI/I2S3_SD, USART2_RX, TIM2_CH4, TIM15_CH2, TIM5_CH4, TIM19_CH4, TSC_G1_IO4 ADC_IN3, COMP2_INP PA3 I/O TTa PF4 I/O FT VDD_2 S (1) Digital power supply Doc ID 022691 Rev 3 33/128 Pinouts and pin description STM32F37x pin definitions (continued) (function after reset) Pin type Pin functions Notes LQFP48 LQFP64 Pin name BGA100 LQFP100 Pin numbers I/O structure Table 11. STM32F37x Alternate function Additional functions 29 M3 20 14 PA4 I/O TTa SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, TIM3_CH2, TIM12_CH1, TSC_G2_IO1, 30 K4 21 15 PA5 I/O TTa SPI1_SCK/I2S1_CK, CEC, TIM2_CH1_ETR, TIM14_CH1, TIM12_CH2, TSC_G2_IO2 ADC_IN5, DAC1_OUT2 TTa SPI1_MISO/I2S1_MCK, COMP1_OUT, TIM3_CH1, TIM13_CH1, TIM16_CH1, TSC_G2_IO3 ADC_IN6, DAC2_OUT1, 31 L4 22 16 PA6 I/O ADC_IN4, DAC1_OUT1 32 M4 23 PA7 I/O TTa TSC_G2_IO4, TIM14_CH1, (1) SPI1_MOSI/I2S1_SD, TIM17_CH1, TIM3_CH2, COMP2_OUT 33 K5 24 PC4 I/O TTa (1) TIM13_CH1, TSC_G3_IO1, USART1_TX ADC_IN14 34 L5 25 PC5 I/O TTa (1) TSC_G3_IO2, USART1_RX ADC_IN15 35 M5 26 18 PB0 I/O TTa SPI1_MOSI/I2S1_SD, TIM3_CH3, TSC_G3_IO3, TIM3_CH2 ADC_IN8, SDADC1_AIN6P 36 M6 27 19 PB1 I/O TTa TIM3_CH4, TSC_G3_IO4 ADC_IN9, SDADC1_AIN5P, SDADC1_AIN6M 37 L6 28 20 PB2 I/O TC (2) M7 39 L7 40 M8 41 42 29 21 30 22 SDADC1_AIN4P, SDADC2_AIN6P PE7 I/O TC (1) SDADC1_AIN3P, SDADC1_AIN4M, SDADC2_AIN5P, SDADC2_AIN6M PE8 I/O TC (2) SDADC1_AIN8P, SDADC2_AIN8P (2) SDADC1_AIN7P, SDADC1_AIN8M, SDADC2_AIN7P, SDADC2_AIN8M (2) 38 ADC_IN7 PE9 I/O TC L8 PE10 I/O TC M9 PE11 I/O TC (2) 34/128 (1) SDADC1_AIN2P (2) SDADC1_AIN1P, SDADC1_AIN2M, SDADC2_AIN4P (1) Doc ID 022691 Rev 3 STM32F37x STM32F37x pin definitions (continued) Pin numbers Pin functions L9 PE12 I/O TC 44 M10 PE13 I/O TC 45 M11 PE14 I/O TC 46 M12 PE15 I/O TC 47 L10 PB10 I/O TC 48 L11 VREFSD- S (1) External reference voltage for SDADC1, SDADC2, SDADC3 (negative input) 49 F12 VSSSD S (1) SDADC1, SDADC2, SDADC3 ground VSSSD/ VREFSD- S VDDSD12 S VDDSD S LQFP48 BGA100 43 LQFP64 LQFP100 Pin name Notes Pin type I/O structure Table 11. Pinouts and pin description (function after reset) Alternate function Additional functions SDADC1_AIN0P, SDADC2_AIN3P, SDADC2_AIN4M (2) (1) (2) SDADC1_AIN0M , SDADC2_AIN2P (1) (2) SDADC2_AIN1P, SDADC2_AIN2M (1) (2) (1) USART3_RX SDADC2_AIN0P SPI2_SCK/I2S2_CK, (1) USART3_TX, CEC, TSC_SYNC, TIM2_CH3 (2) 31 23 50 G12 32 24 SDADC2_AIN0M SDADC1, SDADC2, SDADC3 ground / External reference voltage for SDADC1, SDADC2, SDADC3 (negative input) (1) SDADC1 and SDADC2 power supply SDADC1, SDADC2, SDADC3 power supply (1) 51 L12 VDDSD3 S 52 K12 33 25 VREFSD+ S 53 K11 34 26 PB14 I/O TC (3) SPI2_MISO/I2S2_MCK, USART3_RTS, TIM15_CH1, TIM12_CH1, TSC_G6_IO1 SDADC3_AIN8P 54 K10 35 27 PB15 I/O TC (3) SPI2_MOSI/I2S2_SD, TIM15_CH1N, TIM15_CH2, TIM12_CH2, TSC_G6_IO2 SDADC3_AIN7P, SDADC3_AIN8M, RTC_REFCLKIN 55 K9 PD8 I/O TC (3) SPI2_SCK/I2S2_CK, USART3_TX, TSC_G6_IO3 SDADC3_AIN6P 56 K8 PD9 I/O TC USART3_RX, TSC_G6_IO4 SDADC3_AIN5P, SDADC3_AIN6M 57 J12 PD10 I/O TC USART3_CK SDADC3_AIN4P 58 J11 PD11 I/O TC (1) USART3_CTS SDADC3_AIN3P, SDADC3_AIN4M (3) 59 J10 PD12 I/O TC USART3_RTS, TIM4_CH1, TSC_G8_IO1 SDADC3_AIN2P 36 28 SDADC3 power supply External reference voltage for SDADC1, SDADC2, SDADC3 (positive input) (3) (1) (3) (1) (3) (1) Doc ID 022691 Rev 3 35/128 Pinouts and pin description STM32F37x pin definitions (continued) Pin numbers H12 PD13 I/O TC 61 H11 PD14 I/O TC 62 H10 PD15 I/O TC 63 E12 37 PC6 I/O 64 E11 38 PC7 65 E10 39 66 D12 40 LQFP48 BGA100 60 LQFP64 LQFP100 Pin name (function after reset) Pin functions Notes Pin type I/O structure Table 11. STM32F37x Alternate function (3) Additional functions TIM4_CH2, TSC_G8_IO2 SDADC3_AIN1P, SDADC3_AIN2M TIM4_CH3, TSC_G8_IO3 SDADC3_AIN0P (1) TIM4_CH4, TSC_G8_IO4 SDADC3_AIN0M FT (1) TIM3_CH1, SPI1_NSS/I2S1_WS I/O FT (1) TIM3_CH2, SPI1_SCK/I2S1_CK, PC8 I/O FT (1) SPI1_MISO/I2S1_MCK, TIM3_CH3 PC9 I/O FT (1) SPI1_MOSI/I2S1_SD, TIM3_CH4 (1) (3) (1) (3) 67 68 69 70 71 72 D11 41 29 D10 42 30 C12 43 31 B12 44 32 A12 45 33 A11 46 34 36/128 PA8 PA9 PA10 PA11 PA12 PA13 I/O I/O I/O I/O I/O I/O FT SPI2_SCK/I2S2_CK, I2C2_SMBA, USART1_CK, TIM4_ETR, TIM5_CH1_ETR, MCO FTf SPI2_MISO/I2S2_MCK, I2C2_SCL, USART1_TX, TIM2_CH3, TIM15_BKIN, TIM13_CH1, TSC_G4_IO1 FTf SPI2_MOSI/I2S2_SD, I2C2_SDA, USART1_RX, TIM2_CH4, TIM17_BKIN, TIM14_CH1, TSC_G4_IO2 FT SPI2_NSS/I2S2_WS, SPI1_NSS/I2S1_WS, USART1_CTS, CAN_RX, TIM4_CH1, USB_DM, TIM5_CH2, COMP1_OUT FT SPI1_SCK/I2S1_CK, USART1_RTS, CAN_TX, USB_DP, TIM16_CH1, TIM4_CH2, TIM5_CH3, COMP2_OUT FT SPI1_MISO/I2S1_MCK, USART3_CTS, IR_OUT, TIM16_CH1N, TIM4_CH3, TIM5_CH4, TSC_G4_IO3, SWDIO-JTMS Doc ID 022691 Rev 3 STM32F37x STM32F37x pin definitions (continued) Pin type I/O structure PF6 I/O FTf LQFP48 LQFP64 Pin name BGA100 LQFP100 Pin numbers (function after reset) Pin functions Notes Table 11. Pinouts and pin description Alternate function Additional functions SPI1_MOSI/I2S1_SD, USART3_RTS, TIM4_CH4, I2C2_SCL 73 C11 47 35 74 F11 VSS_3 S (1) Ground 75 G11 VDD_3 S (1) Digital power supply 48 36 PF7 I/O FTf I2C2_SDA, USART2_CK A10 49 37 PA14 I/O FTf I2C1_SDA, TIM12_CH1, TSC_G4_IO4, SWCLK-JTCK SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, I2C1_SCL, TIM2_CH1_ETR, TIM12_CH2, TSC_SYNC, JTDI 76 77 A9 78 PA15 I/O FTf B11 51 PC10 I/O FT (1) SPI3_SCK/I2S3_CK, USART3_TX, TIM19_CH1 79 C10 52 PC11 I/O FT (1) SPI3_MISO/I2S3_MCK, USART3_RX, TIM19_CH2 80 B10 53 PC12 I/O FT (1) SPI3_MOSI/I2S3_SD, USART3_CK, TIM19_CH3 81 C9 PD0 I/O FT (1) CAN_RX, TIM19_CH4 FT (1) CAN_TX, TIM19_ETR TIM3_ETR 82 50 38 B9 PD1 I/O PD2 I/O FT (1) B8 PD3 I/O FT (1) SPI2_MISO/I2S2_MCK, USART2_CTS 85 B7 PD4 I/O FT (1) SPI2_MOSI/I2S2_SD, USART2_RTS 86 A6 PD5 I/O FT (1) USART2_TX 87 B6 PD6 I/O FT (1) SPI2_NSS/I2S2_WS, USART2_RX 88 A5 PD7 I/O FT (1) SPI2_SCK/I2S2_CK, USART2_CK 83 C8 84 89 A8 54 55 39 PB3 I/O FT SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TIM13_CH1, TSC_G5_IO1, JTDO-TRACESWO Doc ID 022691 Rev 3 37/128 Pinouts and pin description STM32F37x pin definitions (continued) 90 91 92 A7 C5 B5 56 40 57 41 58 42 (function after reset) Pin type PB4 PB5 PB6 I/O I/O I/O Pin functions Notes LQFP48 LQFP64 Pin name BGA100 LQFP100 Pin numbers I/O structure Table 11. STM32F37x FT FT SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, I2C1_SMBAl, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM17_CH1, TIM19_ETR FTf I2C1_SCL, USART1_TX, TIM16_CH1N, TIM3_CH3, TIM4_CH1, TIM19_CH1, TIM15_CH1, TSC_G5_IO3 I2C1_SDA, USART1_RX, TIM17_CH1N, TIM3_CH4, TIM4_CH2, TIM19_CH2, TIM15_CH2, TSC_G5_IO4 B4 59 43 PB7 I/O FTf 94 A4 60 44 BOOT0 I B A3 96 B3 97 C3 98 A2 99 D3 100 C4 61 45 62 46 PB8 I/O Additional functions SPI1_MISO/I2S1_MCK, SPI3_MISO/I2S3_MCK, USART2_RX, TIM16_CH1, TIM3_CH1, TIM17_BKIN, TIM15_CH1N, TSC_G5_IO2, JNTRST 93 95 Alternate function Boot memory selection FTf SPI2_SCK/I2S2_CK, I2C1_SCL, USART3_TX, CAN_RX, CEC, TIM16_CH1, TIM4_CH3, TIM19_CH3, COMP1_OUT, TSC_SYNC SPI2_NSS/I2S2_WS, I2C1_SDA, USART3_RX, CAN_TX, IR_OUT, TIM17_CH1, TIM4_CH4, TIM19_CH4, COMP2_OUT PB9 I/O FTf PE0 I/O FT (1) USART1_TX, TIM4_ETR FT (1) USART1_RX PE1 I/O 63 47 VSS_1 S Ground 64 48 VDD_1 S Digital power supply 1. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode. 2. these pins are powered by VDDSD12. 3. these pins are powered by VDDSD3. 38/128 Doc ID 022691 Rev 3 Pin Name Alternate functions for port PA AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 USART2_CTS COMP1 _OUT Doc ID 022691 Rev 3 PA0 TIM2_ CH1_ ETR TIM5_ TSC_ CH1_ G1_IO1 ETR PA1 TIM2_ CH2 TIM5_ TSC_ CH2 G1_IO2 SPI3_SCK/ I2S3_CK PA2 TIM2_ CH3 TIM5_ TSC_ CH3 G1_IO3 SPI3_MISO/ USART2_TX I2S3_MCK PA3 TIM2_ CH4 TIM5_ TSC_ CH4 G1_IO4 SPI3_MOSI /I2S3_SD USART2_RX SPI3_NSS/ I2S3_WS USART2_CK PA4 TIM3_ TSC_ CH2 G2_IO1 SPI1_NSS/ I2S1_WS TSC_ G2_IO2 SPI1_SCK/ I2S1_CK USART2_RTS AF9 AF10 AF11 AF14 AF15 TIM19 _CH1 EVENT OUT TIM15_ CH1N TIM19 _CH2 EVENT OUT COMP2 TIM15_ _OUT CH1 TIM19 _CH3 EVENT OUT TIM15_ CH2 TIM19 _CH4 EVENT OUT TIM12 _CH1 EVENT OUT TIM12 _CH2 EVENT OUT PA5 TIM2_ CH1_ ETR PA6 TIM16_ CH1 TIM3_ TSC_ G2_IO3 CH1 SPI1_MISO /I2S1_MCK COMP1 TIM13_ _OUT CH1 EVENT OUT PA7 TIM17_ CH1 TIM3_ TSC_ CH2 G2_IO4 SPI1_MOSI /I2S1_SD COMP2 TIM14_ _OUT CH1 EVENT OUT TIM5_ CH1_ ETR MCO PA9 PA10 SPI2_SCK/ I2S2_CK USART1_CK TIM13 TSC_ I2C2_ _CH1 G4_IO1 SCL SPI2_MISO /I2S2_MCK USART1_TX TSC_ I2C2_ G4_IO2 SDA SPI2_MOSI /I2S2_SD USART1_RX TIM17_ BKIN TIM5_ CH2 PA11 39/128 PA12 I2C2_ SMBA TIM16_ CH1 TIM5_ CH3 SPI2_NSS/ I2S2_WS TIM14_ CH1 TIM4_ ETR EVENT OUT TIM15_ BKIN TIM2_ CH3 EVENT OUT TIM14_ CH1 TIM2_ CH4 EVENT OUT SPI1_NSS/ I2S1_WS USART1_CTS COMP1 CAN_ _OUT RX TIM4_ CH1 USB_ DM EVENT OUT SPI1_SCK/ I2S1_CK USART1_RTS COMP2 TIM4_ CAN_TX _OUT CH2 USB_ DP EVENT OUT Pinouts and pin description PA8 CEC STM32F37x Table 12. Pin Name Alternate functions for port PA (continued) AF0 AF1 PA13 JTMS- TIM16_ SWDIO CH1N PA14 JTCKSWCLK PA15 JTDI AF2 AF3 AF4 TIM5_ TSC_ CH4 G4_IO3 AF5 IR-OUT AF6 AF7 SPI1_MISO /I2S1_MCK USART3_CTS TSC_ I2C1_ G4_IO4 SDA TIM2_ CH1_ETR TSC_ SYNC I2C1_ SCL SPI1_NSS/ I2S1_WS SPI3_NSS/ I2S3_WS AF8 AF9 AF10 AF11 AF14 AF15 TIM4_ CH3 EVENT OUT TIM12 _CH1 EVENT OUT TIM12 _CH2 EVENT OUT Pinouts and pin description 40/128 Table 12. Doc ID 022691 Rev 3 STM32F37x Pin Name Alternate functions for port PB AF0 AF1 AF2 AF3 PB0 TIM3_CH3 TSC_ G3_IO3 PB1 TIM3_CH4 TSC_ G3_IO4 AF4 AF5 AF6 AF7 AF8 AF9 SPI_MOSI/ I2S1_SD AF10 TIM3_ CH2 AF11 AF15 STM32F37x Table 13. EVENTOUT EVENTOUT PB2 EVENTOUT PB3 JTDO/ TIM2_ TRACESWO CH2 PB4 JTRST TIM4_ETR TSC_ G5_IO1 SPI1_SCK/ I2S1_CK TIM16_ TSC_ TIM3_CH1 CH1 G5_IO2 SPI3_SCK/ I2S3_CK USART2_TX TIM13_ TIM3_ CH1 ETR EVENTOUT SPI1_MISO SPI3_MISO/ USART2_RX /I2S1_MCK I2S3_MCK TIM15_ TIM17 CH1N _BKIN EVENTOUT Doc ID 022691 Rev 3 TIM16_ TIM3_CH2 BKIN I2C1_ SMBA SPI1_MOSI SPI3_MOSI USART2_CK /I2S1_SD /I2S3_SD TIM17 _CH1 TIM19 EVENTOUT _ETR PB6 TIM16_ TSC_ I2C1_ TIM4_CH1 CH1N G5_IO3 SCL USART1_TX TIM15_ TIM3_ CH1 CH3 TIM19 EVENTOUT _CH1 PB7 TIM17_ TSC_ I2C1_ TIM4_CH2 CH1N G5_IO4 SDA USART1_RX TIM15_ TIM3_ CH2 CH4 TIM19 EVENTOUT _CH2 PB8 TSC_ TIM16_ TIM4_CH3 CH1 SYNC I2C1_ SCL SPI2_SCK/ I2S2_CK CEC USART3_TX COMP1 CAN_ _OUT RX TIM19 EVENTOUT _CH3 PB9 TIM17_ TIM4_CH4 CH1 I2C1_ SDA SPI2_NSS/ I2S2_WS IR-OUT USART3_RX COMP2 CAN_ _OUT TX TIM19 EVENTOUT _CH4 PB10 TIM2_ CH3 TSC_ SYNCH SPI2_SCK/ I2S2_CK CEC USART3_TX PB14 TIM15_ CH1 TSC_ G6_IO1 SPI2_MISO /I2S2_MCK PB15 TIM15_ TIM15_ CH2 CH1N TSC_ G6_IO2 SPI2_MOSI /I2S2_SD USART3_RTS EVENTOUT TIM12_ CH1 EVENTOUT TIM12_ CH2 EVENTOUT 41/128 Pinouts and pin description PB5 Pin Name Alternate functions for port PC AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 Doc ID 022691 Rev 3 PC0 EVENTOUT TIM5_CH1_ETR PC1 EVENTOUT TIM5_CH2 PC2 EVENTOUT TIM5_CH3 SPI2_MISO/I2S2_MCK PC3 EVENTOUT TIM5_CH4 SPI2_MOSI/I2S2_SD PC4 EVENTOUT TIM13_CH1 PC5 EVENTOUT PC6 EVENTOUT TIM3_CH1 SPI1_NSS/I2S1_WS PC7 EVENTOUT TIM3_CH2 SPI1_SCK/I2S1_CK PC8 EVENTOUT TIM3_CH3 SPI1_MISO/I2S1_MCK PC9 EVENTOUT TIM3_CH4 SPI1_MOSI/I2S1_SD PC10 EVENTOUT TIM19_CH1 SPI3_SCK/I2S3_CK USART3_TX PC11 EVENTOUT TIM19_CH2 SPI3_MISO/I2S3_MCK USART3_RX PC12 EVENTOUT TIM19_CH3 SPI3_MOSI/I2S3_SD USART3_CK TSC_G3_IO1 USART1_TX TSC_G3_IO2 USART1_RX Pinouts and pin description 42/128 Table 14. PC13 PC14 PC15 STM32F37x Pin Name Alternate functions for port PD AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 Doc ID 022691 Rev 3 PD0 EVENTOUT TIM19_CH4 CAN_RX PD1 EVENTOUT TIM19_ETR CAN_TX PD2 EVENTOUT TIM3_ETR PD3 EVENTOUT SPI2_MISO/I2S2_MCK USART2_CTS PD4 EVENTOUT SPI2_MOSI/I2S2_SD USART2_RTS PD5 EVENTOUT PD6 EVENTOUT SPI2_NSS/I2S2_WS USART2_RX PD7 EVENTOUT SPI2_SCK/I2S2_CK USART2_CK PD8 EVENTOUT TSC_G6_IO3 SPI2_SCK/I2S2_CK USART3_TX PD9 EVENTOUT TSC_G6_IO4 PD10 EVENTOUT USART3_CK PD11 EVENTOUT USART3_CTS PD12 EVENTOUT TIM4_CH1 TSC_G8_IO1 PD13 EVENTOUT TIM4_CH2 TSC_G8_IO2 PD14 EVENTOUT TIM4_CH3 TSC_G8_IO3 PD15 EVENTOUT TIM4_CH4 TSC_G8_IO4 STM32F37x Table 15. USART2_TX USART3_RX USART3_RTS Pinouts and pin description 43/128 Pin Name Alternate functions for port PE AF0 AF1 PE0 EVENTOUT PE1 EVENTOUT AF2 AF3 TIM4_ETR EVENTOUT TSC_G7_IO1 PE3 TRACED0 EVENTOUT TSC_G7_IO2 PE4 TRACED1 EVENTOUT TSC_G7_IO3 PE5 TRACED2 EVENTOUT TSC_G7_IO4 PE6 TRACED3 EVENTOUT Doc ID 022691 Rev 3 PE8 EVENTOUT PE9 EVENTOUT PE10 EVENTOUT PE11 EVENTOUT PE12 EVENTOUT PE13 EVENTOUT PE14 EVENTOUT PE15 EVENTOUT AF6 AF7 USART1_RX TRACECLK EVENTOUT AF5 USART1_TX PE2 PE7 AF4 Pinouts and pin description 44/128 Table 16. USART3_RX STM32F37x Pin Name Alternate functions for port PF AF0 AF1 AF2 AF3 AF4 PF0 I2C2_SDA PF1 I2C2_SCL PF2 EVENTOUT PF4 EVENTOUT PF6 EVENTOUT PF7 EVENTOUT PF9 EVENTOUT PF10 EVENTOUT AF5 AF6 AF7 STM32F37x Table 17. I2C2_SMBA TIM4_CH4 I2C2_SCL I2C2_SDA SPI1_MOSI/I2S1_SD USART3_RTS USART2_CK TIM14_CH1 Doc ID 022691 Rev 3 Pinouts and pin description 45/128 Memory mapping 5 STM32F37x Memory mapping Figure 6. STM32F37x memory map 0xFFFF FFFF 7 0x4800 17FF Cortex-M4F Internal Peripherals 0xE000 0000 AHB2 0x4800 0000 Reserved 0x4002 43FF AHB1 6 0x4002 0000 Reserved 0xC000 0000 0x4001 6C00 APB2 5 0x4001 0000 Reserved 0xA000 0000 0x4000 A000 APB1 4 0x4000 0000 0x8000 0000 3 0x1FFF FFFF 0x6000 0000 Option bytes 0x1FFF F800 2 System memory 0x1FFF D800 0x4000 0000 Peripherals Reserved 1 0x2000 0000 0 0x0804 0000 SRAM Flash memory 0x0800 0000 CODE Reserved 0x0004 0000 0x0000 0000 Reserved Flash, system memory or SRAM, depending on BOOT configuration 0x0000 0000 MS30360V1 46/128 Doc ID 022691 Rev 3 STM32F37x Memory mapping Table 18. Bus STM32F37x peripheral register boundary addresses Boundary address Size Peripheral 0x4800 1400 - 0x4800 17FF 1KB GPIOF 0x4800 1000 - 0x4800 13FF 1KB GPIOE 0x4800 0C00 - 0x4800 0FFF 1KB GPIOD 0x4800 0800 - 0x4800 0BFF 1KB GPIOC 0x4800 0400 - 0x4800 07FF 1KB GPIOB 0x4800 0000 - 0x4800 03FF 1KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 4000 - 0x4002 43FF 1 KB TSC 0x4002 3400 - 0x4002 3FFF 3 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH memory interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0800- 0x4002 0FFF 2 KB Reserved 0x4002 0400 - 0x4002 07FF 1 KB DMA2 0x4002 0000 - 0x4002 03FF 1 KB DMA1 0x4001 6C00 - 0x4001 FFFF 37 KB Reserved AHB2 AHB1 Doc ID 022691 Rev 3 47/128 Memory mapping Table 18. Bus APB2 APB1 48/128 STM32F37x STM32F37x peripheral register boundary addresses (continued) Boundary address Size Peripheral 0x4001 6800 - 0x4001 6BFF 1 KB SDADC3 0x4001 6400 - 0x4001 67FF 1 KB SDADC2 0x4001 6000 - 0x4001 63FF 1 KB SDADC1 0x4001 5C00 - 0x4001 5FFF 1 KB TIM19 0x4001 4C00 - 0x4001 5BFF 4 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1 0x4001 2800 - 0x4001 2FFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG 0x4000 4000 - 0x4000 FFFF 24 KB Reserved 0x4000 9C00 – 0x4000 9FFF 1 KB TIM18 0x4000 9800 - 0x4000 9BFF 1 KB DAC2 0x4000 7C00 - 0x4000 97FF 8 KB Reserved 0x4000 7800 - 0x4000 7BFF 1 KB CEC 0x4000 7400 - 0x4000 77FF 1 KB DAC1 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6800 - 0x4000 6FFF 2 KB Reserved 0x4000 6400 - 0x4000 67FF 1 KB CAN 0x4000 6000 - 0x4000 63FF 1 KB USB packet SRAM 0x4000 5C00 - 0x4000 5FFF 1 KB USB FS Doc ID 022691 Rev 3 STM32F37x Memory mapping Table 18. Bus STM32F37x peripheral register boundary addresses (continued) Boundary address Size Peripheral 0x4000 5800 - 0x4000 5BFF 1 KB I2C2 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 4C00 - 0x4000 53FF 2 KB Reserved 0x4000 4800 - 0x4000 4BFF 1 KB USART3 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 4000 - 0x4000 43FF 1 KB Reserved 0x4000 3C00 - 0x4000 3FFF 1 KB SPI3/I2S3 0x4000 3800 - 0x4000 3BFF 1 KB SPI2/I2S2 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1C00 - 0x4000 1FFF 1 KB TIM13 0x4000 1800 - 0x4000 1BFF 1 KB TIM12 0x4000 1400 - 0x4000 17FF 1 KB TIM7 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0C00 - 0x4000 0FFF 1 KB TIM5 0x4000 0800 - 0x4000 0BFF 1 KB TIM4 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB TIM2 APB1 Doc ID 022691 Rev 3 49/128 Electrical characteristics STM32F37x 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = VDDSDx = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC and SDADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 7. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 8. Figure 7. Pin loading conditions Figure 8. Pin input voltage -#5PIN -#5PIN C = 50 pF 6). -36 50/128 Doc ID 022691 Rev 3 -36 STM32F37x Power supply scheme Figure 9. Power supply scheme VBAT Backup circuitry (LSE,RTC, Wakeup logic Backup registers) Level shifter Po wer swi tch 1.65 - 3.6 V OUT GP I/Os @VDD IN IO Logic VDD 3 × VDD 2 × 100 nF + 1 × 4.7 μF Regulator 1.8 V Kernel logic (CPU, Digital & Memories) OUT GP I/Os @VDDSD3 IN OUT GP I/Os @VDDSD12 VDDSD12 IN Level shifter 2 × VSS IO Logic Level shifter 6.1.6 Electrical characteristics IO Logic VDDSD12 VDDSD3 VDDSD3 10 nF + 1 μF 10 nF + 1 μF Sigma Delta ADCs VSSSD VREFSD+ VREFSD+ 10 nF + 1 μF VREFSD- VDDA VDDA VREF 10 nF + 1 μF VREF+ VREF+ VREF- 10 nF + 1 μF ADC/ DAC Analog: RCs, PLL, COMP, ... VSSA MS19232V3 1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins. Doc ID 022691 Rev 3 51/128 Electrical characteristics STM32F37x Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 6.1.7 Current consumption measurement Figure 10. Current consumption measurement scheme )$$?6"!4 6"!4 )$$ 6$$ )$$! 6$$! )$$3$ 6$$3$ )$$3$ 6$$3$ -36 52/128 Doc ID 022691 Rev 3 STM32F37x 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics, Table 20: Current characteristics, and Table 21: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 19. Voltage characteristics(1) Symbol Ratings Min Max 0.3 4.0 VDD–VSS External main supply voltage (including VDDA, VDDSDx, VBAT and VDD) VDD–VDDA Allowed voltage difference for VDD > VDDA 0.4 Allowed voltage difference for VDDSDx > VDDA 0.4 Allowed voltage difference for VREFSD+ > VDDSD3 0.4 Allowed voltage difference for VREF+ > VDDA 0.4 VDDSDx – VDDA VREFSD+ – VDDSD3 VREF+ – VDDA V Input voltage on FT and FTf pins Input voltage on TTa pins VIN(2) Input voltage on TC pins on SDADCx channels inputs Input voltage on any other pin |VSSX VSS| VESD(HBM) Unit Variations between all the different ground pins Electrostatic discharge voltage (human body model) (3) VSS  0.3 VDD + 4.0 VSS  0.3 4.0 VSS 0.3 4.0 VSS 0.3 4.0 50 mV see Section 6.3.12: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected current values. 3. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (I/O ground pin is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (I/O ground pin is internally connected to VSS). All main power (VDD, VDDSD12, VDDSD3 and VDDA) and ground (VSS, VSSSD, and VSSA) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between VDDA and VDD: VDDA must power on before or at the same time as VDD in the power up sequence. VDDA must be greater than or equal to VDD. The following relationship must be respected between VDDA and VDDSD12: VDDA must power on before or at the same time as VDDSD12 or VDDSD3 in the power up sequence. VDDA must be greater than or equal to VDDSD12 or VDDSD3. The following relationship must be respected between VDDSD12 and VDDSD3: VDDSD3 must power on before or at the same time as VDDSD12 in the power up sequence. After power up (VDDSD12 > Vrefint = 1.2 V) VDDSD3 can be higher or lower than VDDSD12. The following relationship must be respected between VREFSD+ and VDDSD12, VDDSD3: VREFSD+ must be lower than VDDSD3. Doc ID 022691 Rev 3 53/128 Electrical characteristics STM32F37x Depending on the SDADCx operation mode, there can be more constraints between VREFSD+, VDDSD12 and VDDSD3 which are described in reference manual RM0313. Table 20. Current characteristics Symbol Ratings Max. IVDD( Total current into sum of all VDD_x and VDDSDx power lines (source)(1) 160 IVSS( Total current out of sum of all VSS_x and VSSSD ground lines (sink)(1) -160 IVDD(PIN) Maximum current into each VDD_x or VDDSDx power pin (source)(1) 100 IVSS(PIN) Maximum current out of each VSS_x or VSSSD ground pin (sink)(1) -100 Output current sunk by any I/O and control pin IIO(PIN) Output current source by any I/O and control pin IIO(PIN) IINJ(PIN) - 25 80 Total output current sourced by sum of all IOs and control pins(2) -80 pins(3) -5/+0 (4) ±5 Injected current on TC and RST pin pins(5) ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 Injected current on TTa IINJ(PIN) 25 Total output current sunk by sum of all IOs and control pins(2) Injected current on FT, FTf and B Unit mA 1. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). VDD (VDD_x) is the external power supply for all remaining I/O pins (the I/O pin ground is internally connected to VSS). 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 19: Voltage characteristics for the maximum allowed input voltage values. 5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note (2) below Table 62. 6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 21. Thermal characteristics Symbol TSTG TJ 54/128 Ratings Storage temperature range Maximum junction temperature Doc ID 022691 Rev 3 Value Unit –65 to +150 °C 150 °C STM32F37x Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 22. Symbol General operating conditions Parameter Conditions Min Max fHCLK Internal AHB clock frequency 0 72 fPCLK1 Internal APB1 clock frequency 0 36 fPCLK2 Internal APB2 clock frequency 0 72 2 3.6 2.4 3.6 2 3.6 2.2 3.6 2.0 3.6 2.2 3.6 2.0 3.6 Backup operating voltage 1.65 3.6 Input voltage on FT and FTf pins(2) - 0.3 5.5 Input voltage on TTa pins - 0.3 VDDA + 0.3 Input voltage on TC pins on SDADCx channels inputs(3) - 0.3 VDDSDx + 0.3 Input voltage on BOOT0 pin 0 5.5 - 0.3 VDD + 0.3 VDD VDDA(1) Standard operating voltage Analog operating voltage (ADC and DAC used) Analog operating voltage (ADC and DAC not used) VDDSD12 operating voltage (SDADC used) VDDSD12 VDDSD12 operating voltage (SDADC not used) VDDSD3 operating voltage (SDADC used) VDDSD3 VBAT VIN VDDSD3 operating voltage (SDADC not used) Must have a potential equal to or lower than VDDA Must have a potential equal to or higher than VDD Must have a potential equal to or lower than VDDA Must have a potential equal to or lower than VDDA Input voltage on any other pin PD Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(4) Unit MHz V V V V LQFP100 434 LQFP64 444 LQFP48 364 BGA100 338 V V mW Ambient temperature for 6 suffix version Maximum power dissipation Ambient temperature for 7 suffix version Maximum power dissipation Low power dissipation (5) –40 85 –40 105 –40 105 –40 125 °C TA Low power dissipation Doc ID 022691 Rev 3 (5) °C 55/128 Electrical characteristics Table 22. Symbol TJ STM32F37x General operating conditions (continued) Parameter Conditions Min Max 6 suffix version –40 105 7 suffix version –40 125 Unit Junction temperature range °C 1. When the ADC is used, refer to Table 60: ADC characteristics. 2. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled. 3. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 21: Thermal characteristics). 5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 21: Thermal characteristics). 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 23 are derived from tests performed under the ambient temperature condition summarized in Table 22. Table 23. Symbol tVDD tVDDA 56/128 Operating conditions at power-up / power-down Parameter Conditions Min VDD rise time rate 0 VDD fall time rate 20 VDDA rise time rate 0 VDDA fall time rate 20 Doc ID 022691 Rev 3 Max Unit     µs/V STM32F37x 6.3.3 Electrical characteristics Embedded reset and power control block characteristics The parameters given in Table 24 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 24. Embedded reset and power control block characteristics Symbol Parameter Conditions VPOR/PDR(1) Power on/power down reset Falling edge threshold Rising edge VPDRhyst(3) PDR hysteresis tRSTTEMPO (3) Min Typ Max Unit 1.8(2) 1.88 1.96 V 1.84 1.92 2.0 V 40 POR reset temporization 1.5 2.5 mV 4.5 ms 1. The PDR detector monitors VDD, VDDA and VDDSD12 (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Guaranteed by design, not tested in production. Table 25. Symbol Programmable voltage detector characteristics Min(1) Typ Max(1) Unit Rising edge 2.1 2.18 2.26 V Falling edge 2 2.08 2.16 V Rising edge 2.19 2.28 2.37 V Falling edge 2.09 2.18 2.27 V Rising edge 2.28 2.38 2.48 V Falling edge 2.18 2.28 2.38 V Rising edge 2.38 2.48 2.58 V Falling edge 2.28 2.38 2.48 V Rising edge 2.47 2.58 2.69 V Falling edge 2.37 2.48 2.59 V Rising edge 2.57 2.68 2.79 V Falling edge 2.47 2.58 2.69 V Rising edge 2.66 2.78 2.9 V Falling edge 2.56 2.68 2.8 V Rising edge 2.76 2.88 3 V Falling edge 2.66 2.78 2.9 V Parameter Conditions VPVD0 PVD threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 VPVD7 PVD threshold 7 VPVDhyst(2) PVD hysteresis 100 PVD current consumption 0.15 IDD(PVD)(2) mV 0.26 µA 1. Data based on characterization results only, not tested in production. 2. Guaranteed by design, not tested in production. Doc ID 022691 Rev 3 57/128 Electrical characteristics 6.3.4 STM32F37x Embedded reference voltage The parameters given in Table 27 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 26. Embedded internal reference voltage calibration values Calibration value name Raw data acquired at temperature of 30 °C VDDA= 3.3 V VREFINT_CAL Table 27. TS_vrefint(2) VREFINT_s(3) Memory address 0x1FFF F7BA - 0x1FFF F7BB Embedded internal reference voltage Symbol VREFINT Description Parameter Internal reference voltage Conditions Min Typ Max –40 °C < TA < +105 °C 1.16 1.21 1.26 –40 °C < TA < +85 °C 1.16 1.2 1.24(1) 17.1 - - µs - 10 mV ADC sampling time when reading the internal reference voltage Internal reference voltage spread over the temperature range VDD = 3 V ±10 mV Unit V TCoeff(3) Temperature coefficient - 100 ppm/°C tSTART(3) Startup time - 10 µs 1. Data based on characterization results, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 3. Guaranteed by design, not tested in production. 58/128 Doc ID 022691 Rev 3 STM32F37x 6.3.5 Electrical characteristics Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Typical and maximum current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except when explicitly mentioned ● The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz) ● Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) ● When the peripherals are enabled fAPB1 = fAHB/2 , fAPB2 = fAHB ● When fHCLK > 8 MHz PLL is ON and PLL inputs is equal to HSI/2 = 4 MHz (if internal clock is used) or HSE = 8 MHz (if HSE bypass mode is used) The parameters given in Table 28 to Table 34 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. Table 28. Typical and maximum current consumption from VDD supply at VDD = 3.6 V All peripherals enabled Symbol Parameter Conditions Max @ TA(1) fHCLK Max @ TA(1) Typ HSE bypass, PLL on IDD Supply current in Run mode, code executing from Flash HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off All peripherals disabled Unit Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 72 MHz 63.1 70.7 71.5 73.4 29.2 31.1 31.7 34.2 64 MHz 56.3 63.3 64.1 64.9 26.1 27.8 28.4 30.4 48 MHz 42.5 48.5 48.0 50.1 19.9 22.6 21.9 23.1 32 MHz 28.8 31.4 32.2 34.3 13.1 16.1 14.9 16.2 24 MHz 21.9 24.4 24.4 25.8 10.1 10.9 11.9 12.4 8 MHz 7.3 8.0 9.3 9.3 3.7 4.1 4.4 5.0 1 MHz 1.1 1.5 1.8 2.3 0.8 1.1 1.4 1.9 64 MHz 51.7 57.7 58.0 60.4 25.8 27.6 28.1 30.1 48 MHz 38.6 45.9 43.5 46.9 19.8 21.9 21.7 22.8 32 MHz 26.4 31.1 29.7 31.9 13.1 15.7 14.8 16.2 24 MHz 20.3 22.6 22.6 23.7 6.9 7.5 8.1 8.8 8 MHz 7.6 8.8 8.8 3.7 4.1 4.4 5.0 7.0 Doc ID 022691 Rev 3 mA 59/128 Electrical characteristics Table 28. STM32F37x Typical and maximum current consumption from VDD supply at VDD = 3.6 V All peripherals enabled Symbol Parameter Conditions Max @ TA(1) fHCLK Max @ TA(1) Typ HSE bypass, PLL on Supply current in Run mode, code executing from RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off IDD HSE bypass, PLL on Supply current in Sleep mode, code executing from Flash or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off 63.6 (2) 85 °C 105 °C 25 °C 70.7(2) 75.7(2) 72.3(2) 30.0 (2) 85 °C 105 °C 31.9(2) 32.6(2) 33.8(2) 64 MHz 56.7 62.5 67.1 64.0 26.7 28.6 29.3 30.0 48 MHz 42.0 50.5 47.4 50.1 20.2 21.5 22.1 22.7 32 MHz 28.3 32.1 31.8 33.7 13.4 14.6 14.8 15.7 24 MHz 21.1 25.0 24.2 25.9 10.0 11.3 11.2 12.6 8 MHz 6.9 7.4 8.3 8.7 3.4 3.7 4.1 4.8 1 MHz 0.8 1.2 1.5 2.0 0.4 0.6 1.0 1.5 64 MHz 51.9 59.5 59.4 58.6 26.4 28.1 28.7 29.5 48 MHz 38.1 44.7 43.8 45.4 20.0 21.3 21.9 22.3 32 MHz 25.9 31.2 29.4 30.5 13.2 14.3 14.6 15.5 24 MHz 19.6 22.7 22.6 23.2 6.5 7.0 7.9 8.2 8 MHz 7.1 8.0 8.4 3.3 3.7 4.0 4.7 6.6 mA 72 MHz 43.2 46.9 48.7 52.5 6.7 7.2 7.6 8.3 64 MHz 38.5 41.6 43.7 46.6 5.9 6.5 6.8 7.5 48 MHz 29.1 31.3 32.5 34.1 4.5 4.9 5.3 5.9 32 MHz 19.4 21.1 24.6 23.0 3.0 3.4 3.8 4.4 24 MHz 14.7 16.1 18.5 17.6 2.4 2.6 3.0 3.6 8 MHz 4.9 5.3 6.1 6.6 0.8 1.0 1.4 1.9 1 MHz 0.6 0.9 1.3 1.8 0.1 0.3 0.6 1.2 64 MHz 34.5 37.1 39.6 42.0 5.6 6.1 6.5 7.1 48 MHz 26.1 28.0 29.0 30.7 4.2 4.6 5.0 5.6 32 MHz 17.4 19.1 21.1 20.8 2.9 3.2 3.6 4.2 24 MHz 13.3 14.6 16.1 16.0 1.5 1.8 2.2 2.6 8 MHz 4.9 5.5 6.1 0.7 0.9 1.3 1.8 4.5 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production with code executing from RAM. 60/128 Unit Typ 25 °C 72 MHz All peripherals disabled Doc ID 022691 Rev 3 STM32F37x Table 29. Electrical characteristics Typical and maximum current consumption from VDDA supply VDDA= 2.4 V Symbol Parameter Conditions (1) VDDA= 3.6 V Max @ TA(2) fHCLK Max @ TA(2) Typ HSE bypass, PLL on IDDA Supply current in Run or Sleep mode, code executing from Flash or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off Unit Typ 25 °C 85 °C 105 °C 72 MHz 228 261 274 280 249 288 304 311 64 MHz 201 235 247 251 220 257 269 275 48 MHz 152 182 190 195 164 196 208 212 32 MHz 104 132 137 141 112 141 147 150 24 MHz 81 108 112 111 87 115 119 119 8 MHz 2 4 4 5 3 5 5 6 1 MHz 2 4 5 5 3 5 5 6 64 MHz 270 307 320 326 298 337 353 361 48 MHz 220 254 264 269 243 276 292 297 32 MHz 172 203 211 214 191 222 232 235 24 MHz 151 181 185 189 166 194 201 204 8 MHz 85 87 87 81 93 96 98 70 25 °C 85 °C 105 °C µA 1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production unless otherwise specified. Table 30. Typical and maximum VDD consumption in Stop and Standby modes Typ@VDD (VDD=VDDA) Symbol Parameter Conditions 3.0 V 3.3 V 3.6 V TA= TA= 25 °C 85 °C Regulators in run mode, all 19.33 19.58 19.68 19.73 oscillators OFF 19.76 19.84 46.5 480 1019 31.8 451.4 966.0 2.7 3.5 5.3 2.0 V 2.4 V 2.7 V IDD Supply current in Regulators in Stop mode low-power mode, all oscillators OFF Supply current in Standby mode Note: Max 7.72 7.88 8.01 8.13 8.25 8.27 LSI ON and IWDG ON 0.78 0.95 1.07 1.21 1.32 1.45 LSI OFF and IWDG OFF 0.61 0.72 0.81 0.90 0.98 1.08 TA= 105 °C Unit µA VDDA monitoring is OFF and VDDSD12 monitoring is OFF Doc ID 022691 Rev 3 61/128 Electrical characteristics Table 31. Typical and maximum VDDA consumption in Stop and Standby modes Parameter Supply current in Stop mode IDDA Supply current in Standby mode Supply current for IDDAmon VDDA and VDDSD12 monitoring Typ@VDD (VDD=VDDA) Max(1) 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA= TA= TA= 25 °C 85 °C 105 °C Conditions VDDA and VDDSD12 Symbol STM32F37x Regulator in run mode, all 1.99 oscillators OFF 2.07 2.19 2.33 2.46 2.64 10.8 11.8 12.4 Regulator in low-power 1.99 mode, all oscillators OFF 2.07 2.18 2.32 2.47 2.63 10.6 11.5 12.5 LSI ON and IWDG ON 2.44 2.53 2.7 2.89 3.09 3.33 LSI OFF and IWDG OFF 1.87 1.94 2.06 2.19 2.35 2.51 0.95 1.02 1.12 1.2 1.27 1.4 - Unit µA 4.1 4.5 4.8 1. Data based on characterization results and tested in production. 2. To obtain data with monitoring OFF is necessary to substract the IDDAmon current. Table 32. Typical and maximum current consumption from VBAT supply(1) Max(2) IDD_ VBAT Backup domain supply current LSE & RTC ON; "Xtal mode" lower 0.50 0.52 0.55 0.63 0.70 0.87 0.95 driving capability; LSEDRV[1:0] = '00' TA= 25 °C 1.1 TA= TA= 85 °C 105 °C 1.6 Unit 2.2 µA LSE & RTC ON; "Xtal mode" higher 0.85 0.90 0.93 1.02 1.10 1.27 1.38 driving capability; LSEDRV[1:0] = '11' 1. Crystal used: Abracon ABS07-120-32.768kHz-T with 6 pF of CL for typical values. 2. Data based on characterization results, not tested in production. 62/128 = 3.6 V = 3.3 V = 2.7 V = 2.4 V = 2.0 V Conditions = 1.8 V Symbol Parameter = 1.65 V Typ @ VBAT Doc ID 022691 Rev 3 1.6 2.4 3.0 STM32F37x Electrical characteristics Figure 11. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00') 1.6 1.4 1.65 V ) 6"!4—! 1.2 1.8 V 1 2V 2.4 V 0.8 2.7 V 0.6 3V 0.4 3.3 V 0.2 3.6 V 0 25°C 60°C 85°C 105°C 4!  # -36 Typical current consumption The MCU is placed under the following conditions: ● VDD = VDDA = VDDSD12 = VDDSD3 = 3.3 V ● All I/O pins are in analog input configuration ● The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz) ● Prefetch is ON ● When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB ● PLL is used for frequencies greater than 8 MHz ● AHB prescaler of 2, 4, 8, 16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively Doc ID 022691 Rev 3 63/128 Electrical characteristics Table 33. STM32F37x Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol Parameter Conditions Running from HSE crystal clock 8 MHz, code executing from Flash, PLL on IDD Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash, PLL on Supply current in Run mode from VDDA supply Running from HSE crystal clock 8 MHz, code executing from Flash, PLL off ISDADC12 + ISDADC3 Peripherals enabled Peripherals disabled 72 MHz 61.4 28.8 64 MHz 55.4 25.9 48 MHz 42.3 20.0 32 MHz 28.7 13.8 24 MHz 21.9 10.7 16 MHz 14.8 7.4 8 MHz 7.8 4.1 4 MHz 4.6 2.6 2 MHz 2.9 1.8 1 MHz 2.0 1.3 500 kHz 1.5 1.1 125 kHz 1.2 1.0 72 MHz 243.3 242.4 64 MHz 214.3 213.3 48 MHz 159.3 158.3 32 MHz 107.7 107.3 24 MHz 82.8 82.6 16 MHz 58.4 58.2 8 MHz 1.2 1.2 4 MHz 1.2 1.2 2 MHz 1.2 1.2 1 MHz 1.2 1.2 500 kHz 1.2 1.2 125 kHz 1.2 1.2 - 2.5 1 Unit mA Running from HSE crystal clock 8 MHz, code executing from Flash, PLL off IDDA(1)(2) fHCLK Supply currents in Run mode from VDDSD12 and VDDSD3 (SDADCs are off) µA 1. VDDA monitoring is off, VDDSD12 monitoring is off. 2. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs, Comparators, etc. is not included. Refer to those peripherals characteristics in the subsequent sections. 64/128 Doc ID 022691 Rev 3 STM32F37x Table 34. Electrical characteristics Typical current consumption in Sleep mode, code running from Flash or RAM Typ Symbol Parameter Conditions Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL on IDD Supply current in Sleep mode from VDD supply Peripherals enabled Peripherals disabled 72 MHz 42.8 6.9 64 MHz 38.2 6.2 48 MHz 28.9 4.8 32 MHz 19.5 3.4 24 MHz 14.7 2.7 16 MHz 10.2 2.0 8 MHz 5.2 1.2 4 MHz 3.4 1.1 2 MHz 2.2 0.9 1 MHz 1.6 0.9 500 kHz 1.4 0.8 125 kHz 1.1 0.8 72 MHz 242.9 241.5 64 MHz 213.7 212.7 48 MHz 158.8 158.0 32 MHz 107.6 107.3 24 MHz 82.7 82.6 16 MHz 58.3 58.2 8 MHz 1.2 1.2 4 MHz 1.2 1.2 2 MHz 1.2 1.2 1 MHz 1.2 1.2 500 kHz 1.2 1.2 125 kHz 1.2 1.2 Unit mA Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL off Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL on IDDA(1) fHCLK Supply current in Sleep mode from VDDA supply µA Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL off 1. VDDA monitoring is off, VDDSD12 monitoring is off. Doc ID 022691 Rev 3 65/128 Electrical characteristics STM32F37x I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 52: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC and SDADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. Under reset conditions all I/Os are configured in input floating mode so if some inputs do not have a defined voltage level then they can generate additional consumption. This consumption is visible on VDD supply and also on VDDSDx supply because some I/Os are powered from SDADCx supply (all I/Os which have SDADC analog input functionality). I/O dynamic current consumption In addition to the internal peripheral current consumption (see Table 36: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD  f SW  C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+ CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. 66/128 Doc ID 022691 Rev 3 STM32F37x Table 35. Symbol Electrical characteristics Switching output I/O current consumption Parameter Conditions(1) I/O toggling frequency (fSW) Typ 2 MHz 0.77 4 MHz 0.87 8 MHz 0.95 18 MHz 1.59 36 MHz 2.57 48 MHz 3.11 2 MHz 0.96 4 MHz 1.0 8 MHz 1.08 18 MHz 2.17 36 MHz 3.42 48 MHz 5.50 2 MHz 0.98 4 MHz 1.23 8 MHz 1.48 18 MHz 2.93 36 MHz 6.59 48 MHz 7.03 2 MHz 1.03 4 MHz 1.3 8 MHz 1.81 18 MHz 3.42 36 MHz 8.27 2 MHz 1.09 4 MHz 1.55 8 MHz 2.18 18 MHz 4.38 36 MHz 9.65 VDD = 3.3 V Cext = 0 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 10 pF C = CINT + CEXT+ CS ISW I/O current consumption VDD = 3.3 V Cext = 22 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 33 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 47 pF C = CINT + CEXT+ CS Unit mA mA 1. CS = 5 pF (estimated value). Doc ID 022691 Rev 3 67/128 Electrical characteristics STM32F37x On-chip peripheral current consumption The MCU is placed under the following conditions: ● all I/O pins are in analog input configuration ● all peripherals are disabled unless otherwise mentioned ● the given value is calculated by measuring the current consumption ● – with all peripherals clocked off – with only one peripheral clocked on Ambient operating temperature at 25°C and VDD = VDDA= 3.3 Volts Table 36. Peripheral current consumption Typical consumption(1) Peripheral Unit AHB peripherals BusMatrix(2) 6.9 DMA1 18.3 DMA2 4.8 CRC 2.6 GPIOA 12.2 GPIOB 11.9 GPIOC 4.3 GPIOD 12.0 GPIOE 4.4 GPIOF 3.7 TSC 5.7 APB2 peripherals µA/MHz (3) 4.2 APB2-Bridge 68/128 SYSCFG 2.8 ADC1 17.7 SPI1 12.3 USART1 22.9 TIM15 15.7 TIM16 12.2 TIM17 12.1 TIM19 18.5 SDAC1 10.8 SDAC2 10.5 SDAC3 10.3 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics Table 36. Peripheral current consumption Peripheral Typical consumption(1) Unit APB1 peripherals APB1-Bridge(3) 6.9 TIM2 47.9 TIM3 36.8 TIM4 36.9 TIM5 45.5 TIM6 8.4 TIM7 8.2 TIM12 21.3 TIM13 14.2 TIM14 14.4 TIM18 10.1 WWDG 4.7 SPI2 24.3 SPI3 25.3 USART2 45.3 USART3 43.1 I2C1 14.0 I2C2 13.9 USB 27.9 CAN 38.1 DAC2 7.7 PWR 5.4 DAC1 14.8 CEC 5.4 µA/MHz 1. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs, Comparators, etc. is not included. Refer to those peripherals characteristics in the subsequent sections. 2. The BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2). 3. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus. Doc ID 022691 Rev 3 69/128 Electrical characteristics 6.3.6 STM32F37x Wakeup time from low-power mode The wakeup times given in Table 37 are measured from the wakeup event trigger to the first instruction executed by the CPU. The clock source used to wake up the device depends from the current operating mode: ● Stop or sleep mode: the wakeup event is WFE ● WKUP1 (PA0) pin is used to wakeup from standby, stop and sleep modes. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 37. Low-power mode wakeup timings Typ @VDD = VDDA Symbol Parameter Conditions Max = 2.0 V = 2.4 V = 2.7 V tWUSTOP Wakeup from Stop mode = 3.3 V Regulator in run mode 4.1 3.9 3.8 3.7 3.6 4.5 Regulator in low power mode 7.9 6.7 6.1 5.7 5.4 8.6 LSI and IWDG off 62.6 53.7 49.2 45.7 42.7 100 tWUSTANDBY Wakeup from Standby mode tWUSLEEP Wakeup from Sleep After WFE instruction mode 6.3.7 =3V Unit µs CPU clock cycles 6 External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 12. Table 38. Symbol High-speed external user clock characteristics Parameter(1) Conditions Typ Max Unit 1 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7VDD VDD VHSEL OSC_IN input pin low level voltage VSS 0.3VDD tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V 15 ns 1. Guaranteed by design, not tested in production. 70/128 Min Doc ID 022691 Rev 3 20 STM32F37x Electrical characteristics Figure 12. High-speed external clock source AC timing diagram T7(3%( 6(3%(  6(3%,  TR(3% TF(3% T T7(3%, 4(3% -36 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 13. Table 39. Symbol Low-speed external user clock characteristics Parameter(1) Conditions Min Typ Max Unit 32.768 1000 kHz fLSE_ext User External clock source frequency VLSEH OSC32_IN input pin high level voltage 0.7VDD VDD VLSEL OSC32_IN input pin low level voltage VSS 0.3VDD tw(LSEH) tw(LSEL) OSC32_IN high or low time 450 tr(LSE) tf(LSE) OSC32_IN rise or fall time V ns 50 1. Guaranteed by design, not tested in production. Doc ID 022691 Rev 3 71/128 Electrical characteristics STM32F37x Figure 13. Low-speed external clock source AC timing diagram T7,3%( 6,3%(  6,3%,  TR,3% TF,3% T T7,3%, 4,3% -36 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 40. HSE oscillator characteristics Symbol Parameter fOSC_IN Oscillator frequency RF Conditions(1) Min(2) Typ Max(2) Unit 4 8 32 MHz Feedback resistor 200 During startup(3) IDD gm tSU(HSE)(4) HSE current consumption 8.5 VDD = 3.3 V, Rm= 30 , CL= 10 pF@8 MHz 0.4 VDD = 3.3 V, Rm= 45 , CL= 10 pF@8 MHz 0.5 VDD = 3.3 V, Rm= 30 , CL=5 pF@32 MHz 0.8 VDD = 3.3 V, Rm= 30 , CL= 10 pF@32 MHz 1 VDD = 3.3 V, Rm= 30 , CL= 20 pF@32 MHz 1.5 Oscillator transconductance Startup time Startup k mA 10 VDD is stabilized mA/V 2 ms 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer 72/128 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 14). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 14. Typical application with an 8 MHz crystal 2ESONATORWITH INTEGRATEDCAPACITORS #, F(3% /3#?). -( Z RESONATOR #, 2%84 2& "IAS CONTROLLED GAIN /3#?/5 4 -36 1. REXT value depends on the crystal characteristics. Doc ID 022691 Rev 3 73/128 Electrical characteristics STM32F37x Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 41. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 41. Symbol LSE oscillator characteristics (fLSE = 32.768 kHz) Parameter Conditions(1) Min(2) LSEDRV[1:0]=00 lower driving capability Typ 0.5 LSEDRV[1:0]= 01 medium low driving capability IDD gm Max(2) Unit 0.9 1 LSE current consumption Oscillator transconductance tSU(LSE)(3) Startup time µA LSEDRV[1:0] = 10 medium high driving capability 1.3 LSEDRV[1:0]=11 higher driving capability 1.6 LSEDRV[1:0]=00 lower driving capability 5 LSEDRV[1:0]= 01 medium low driving capability 8 µA/V LSEDRV[1:0] = 10 medium high driving capability 15 LSEDRV[1:0]=11 higher driving capability 25 VDD is stabilized 2 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: 74/128 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Doc ID 022691 Rev 3 s STM32F37x Electrical characteristics Figure 15. Typical application with a 32.768 kHz crystal 2ESONATORWITH INTEGRATEDCAPACITORS #, F,3% /3#?). $RIVE PROGRAMMABLE AMPLIFIER K( Z RESONATOR /3#?/5 4 #, -36 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. 6.3.8 Internal clock source characteristics The parameters given in Table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. The provided curves are chararacterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 42. Symbol fHSI TRIM DuCy(HSI) ACCHSI HSI oscillator characteristics(1) Parameter Conditions Min Frequency Typ Max 8 HSI user trimming step HSI oscillator startup time IDD(HSI) HSI oscillator power consumption (2) % 45(2) 55(2) % TA = –40 to 105 °C –3.8(3) 4.6(3) % TA = –10 to 85 °C –2.9(3) 2.9(3) % TA = 0 to 70 °C TA = 25 °C tsu(HSI) MHz 1 Duty cycle Accuracy of the HSI oscillator (factory calibrated) Unit % –1 1 % 1(3) 2(3) µs 100(3) µA 80 1. VDDA =3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Doc ID 022691 Rev 3 75/128 Electrical characteristics STM32F37x Figure 16. HSI oscillator accuracy characterization results !## (3)     -!8  -).  4!; #=               -36 Low-speed internal (LSI) RC oscillator Table 43. LSI oscillator characteristics(1) Symbol fLSI Parameter Min Typ Max Unit 30 40 60 kHz 85 µs 1.2 µA Frequency tsu(LSI)(2) LSI oscillator startup time IDD(LSI)(2) LSI oscillator power consumption 0.75 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 44 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. Table 44. PLL characteristics Value Symbol Parameter Unit Min fPLL_IN fPLL_OUT tLOCK Jitter 76/128 Typ Max PLL input clock(1) 1(2) 24(2) MHz PLL input clock duty cycle 40(2) 60(2) % PLL multiplier output clock (2) 72 MHz 200(2) µs (2) ps PLL lock time Cycle-to-cycle jitter Doc ID 022691 Rev 3 16 300 STM32F37x Electrical characteristics 1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 6.3.10 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 45. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA–40 to +105 °C 40 53.5 60 µs Page (2 kB) erase time TA –40 to +105 °C 20 40 ms tME Mass erase time TA –40 to +105 °C 20 40 ms Write mode 10 mA IDD Supply current Erase mode 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 46. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions Min(1) TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle(2) 10 kcycles at TA = 105 °C 10 (2) 20 at TA = 55 °C Unit kcycles Years 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. Doc ID 022691 Rev 3 77/128 Electrical characteristics 6.3.11 STM32F37x EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: ● Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 47. They are based on the EMS levels and classes defined in application note AN1709. Table 47. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD 3.3 V, LQFP100, TA +25 °C, Voltage limits to be applied on any I/O pin fHCLK 72 MHz to induce a functional disturbance conforms to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD3.3 V, LQFP100, TA +25 °C, fHCLK 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: 78/128 ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) Doc ID 022691 Rev 3 STM32F37x Electrical characteristics Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 48. EMI characteristics Symbol Parameter SEMI 6.3.12 Conditions Max vs. [fHSE/fHCLK] Monitored frequency band Unit 8/72 MHz 0.1 to 30 MHz VDD 3.3 V, TA 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with IEC 130 MHz to 1 GHz 61967-2 SAE EMI Level 9 26 dBµV 30 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 49. Symbol ESD absolute maximum ratings Ratings Conditions Class Maximum value(1) Unit Electrostatic discharge TA +25 °C, conforming voltage (human body model) to JESD22-A114 2 2000 TA +25 °C, conforming to JESD22-C101, LQFP100, LQFP64, LQFP48 and BGA100 Electrostatic discharge VESD(CDM) voltage (charge device model) packages II 500 TA +25 °C, conforming to JESD22-C101, WLCSP66 package II 250 VESD(HBM) V 1. Data based on characterization results, not tested in production. Doc ID 022691 Rev 3 79/128 Electrical characteristics STM32F37x Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 50. Symbol LU 6.3.13 Electrical sensitivities Parameter Conditions Static latch-up class TA +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The test results are given in Table 51. 80/128 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics Table 51. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ Note: 1 Injected current on BOOT0 pin -0 NA Injected current on PC0 pin -0 +5 Injected current on TC type I/O pins on VDDSD12 power domain: PB0, PB1, PB2, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB10 with induced leakage current on other pins from this group less than -50 µA -5 +5 Injected current on TC type I/O pins on VDDSD3 power domain: PB14, PB15, PD8, PD9, PD10, PD12, PD13, PD14, PD15 with induced leakage current on other pins from this group less than -50 µA -5 +5 Injected current on TTa type pins: PA4, PA5, PA6 with induced leakage current on adjacent pins less than -10 µA -5 +5 Injected current on any other FT and FTf pins -5 NA Injected current on any other pins -5 +5 mA It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Doc ID 022691 Rev 3 81/128 Electrical characteristics 6.3.14 STM32F37x I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 52 are derived from tests performed under the conditions summarized in Table 22. All I/Os are CMOS and TTL compliant. Table 52. Symbol VIL VIH Vhys Ilkg I/O static characteristics (1) Parameter Low level input voltage High level input voltage Schmitt trigger hysteresis Input leakage current (3) Conditions Min Typ Max Unit (2) TC and TTa I/O - - 0.3VDD+0.07 FT and FTf I/O - - 0.475VDD–0.2(2) BOOT0 - - 0.3VDD–0.3(2) All I/Os except BOOT0 pin - - 0.3VDD TC and TTa I/O 0.445VDD+0.398(2) - FT and FTf I/O 0.5VDD+0.2(2) - +0.95(2) - BOOT0 0.2VDD All I/Os except BOOT0 pin 0.7VDD - TC and TTa I/O - 200(2) - FT and FTf I/O - 100(2) - BOOT0 - 300 (2) - TC, FT and FTf I/O TTa in digital mode VSS  VIN VDD - - 01 TTa in digital mode VDD VIN  VDDA - - 1 TTa in analog mode VSS  VIN  VDDA - - ±0.2 FT and FTf I/O (3) VDD  VIN  5 V - - 10 V mV µA RPU Weak pull-up equivalent resistor(4) VIN =VSS 25 40 55 RPD Weak pull-down equivalent resistor(4) VIN =VDD 25 40 55 CIO I/O pin capacitance - 5 - k pF 1. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). For those pins all VDD supply references in this table are related to their given VDDSDx power supply. 2. Data based on design simulation only. Not tested in production. 3. Leakage could be higher than maximum value, if negative current is injected on adjacent pins. 4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). 82/128 Doc ID 022691 Rev 3 STM32F37x Note: Electrical characteristics I/O pins are powered from VDD voltage except pins which can be used as SDADC inputs: - PB2, PB10 and PE7 to PE15 I/O pins are powered from VDDSD12. - PB14 to PB15 and PD8 to PD15 I/O pins are powered from VDDSD3. All I/O pin ground is internally connected to VSS. VDD mentioned in the Table 52 represents power voltage for a given I/O pin (VDD or VDDSD12 or VDDSD3). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 17 and Figure 18 for standard I/Os, and in Figure 19 and Figure 20 for 5 V tolerant I/Os. Figure 17. TC and TTa I/O input characteristics - CMOS port VIL/VIH (V) min ts VIH S CMO VIHmin 2.0 Tested en quirem = 0.7 VDD 98 ns +0.3 5V DD imulatio 0.44 s = n V IHmin on desig d Base ons 7 +0.0 ulati .3V DDsign sim 0 = e V ILmaxed on d Bas ard re stand uction in prod 1.3 Area not determined CMOS standard requirements VILmax = 0.3VDD VILmax 0.7 0.6 duction in pro Tested VDD (V) 2.0 2.7 3.0 3.3 3.6 MS30255V2 Figure 18. TC and TTa I/O input characteristics - TTL port VIL/VIH (V) TTL standard requirements VIHmin = 2 V VIHmin 2.0 98 ons +0.3 ti 45V DD imula = 0.4 design s n o d Base V IHmin 0.07 ulations V DD+ im = 0.3 design s d on Base V ILmax 1.3 Area not determined 0.8 VILmax 0.7 TTL standard requirements VILmax = 0.8 V VDD (V) 2.0 2.7 3.0 3.3 3.6 -36 Doc ID 022691 Rev 3 83/128 Electrical characteristics STM32F37x Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port VIL/VIH (V) in = ts V IHm ndard men quire 0.7V DD re ons 0.2 V DD+ simulati n = 0.5 V IHmin on desig d Base -0.2 lations u 5V DD 0.47 ign sim x= s a e m d V IL d on e s a B S sta CMO 2.0 Area not determined 1.0 nts ard requireme CMOS stand VILmax = 0.3VDD 0.5 VDD (V) 2.7 2.0 3.6 -36 Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port VIL/VIH (V) TTL standard requirements VIHmin = 2 V 2.0 Area not determined 1.0 0.8 ons 0.2 V DD+ simulati n = 0.5 V IHmin on desig d Base -0.2 lations u 5V DD 0.47 ign sim = x s a e d V ILm d on e s a B TTL standard requirements VILmax = 0.8 V 0.5 VDD (V) 2.0 2.7 3.6 -36 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: 84/128 ● The sum of the currents sourced by all the I/Os on all VDD_x and VDDSDx, plus the maximum Run consumption of the MCU sourced on VDD cannot exceed the absolute maximum rating IVDD( (see Table 20). ● The sum of the currents sunk by all the I/Os on all VSS_x and VSSSD, plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS( (see Table 20). Doc ID 022691 Rev 3 STM32F37x Electrical characteristics Output voltage levels Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified). Table 53. Output voltage characteristics (1) Symbol Parameter VOL(2) Output low level voltage for an I/O pin VOH(4) Output high level voltage for an I/O pin VOL(2) Output low level voltage for an I/O pin VOH (4) Output high level voltage for an I/O pin VOL(2)(5) Output low level voltage for an I/O pin VOH(4)(5) Output high level voltage for an I/O pin VOL (2)(5) Output low level voltage for an I/O pin VOH(4)(5) Output high level voltage for an I/O pin VOLFM+(2) Output low level voltage for a FTf I/O pins in FM+ mode Conditions Min (3) Max Unit CMOS port IIO = +8 mA VDD–0.4 2.7 V < VDD < 3.6 V 0.4 TTL port(3) IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 2.4 - IIO = +20 mA 2.7 V < VDD < 3.6 V VDD–1.3 IIO = +6 mA 2 V < VDD < 2.7 V - - - 0.4 VDD–0.4 - - 0.4 IIO = +20 mA 2.7 V < VDD < 3.6 V V 1.3 1. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O ground pin is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O ground pin is internally connected to VSS). For those pins all VDD supply references in this table are related to their given VDDSDx power supply. 2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 20 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 4. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 20 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 5. Data based on design simulation. Note: I/O pins are powered from VDD voltage except pins which can be used as SDADC inputs: - PB2, PB10 and PE7 to PE15 I/O pins are powered from VDDSD12. - PB14 to PB15 and PD8 to PD15 I/O pins are powered from VDDSD3. All I/O pin ground is internally connected to VSS. VDD mentioned in the Table 53 represents power voltage for a given I/O pin (VDD or VDDSD12 or VDDSD3). Doc ID 022691 Rev 3 85/128 Electrical characteristics STM32F37x Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 21 and Table 54, respectively. Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 54. I/O AC characteristics(1) OSPEEDRy [1:0] value(1) Symbol Parameter fmax(IO)out Maximum frequency(2) x0 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) 01 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum 11 tf(IO)out tr(IO)out frequency(2)(3) Output high to low level fall time Output low to high level rise time Conditions Min CL = 50 pF, VDD = 2 V to 3.6 V tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time tEXTIpw Pulse width of external signals detected by the EXTI controller (4) Unit 2 MHz 125(3) CL = 50 pF, VDD = 2 V to 3.6 V ns 125(3) CL = 50 pF, VDD = 2 V to 3.6 V 10 MHz 25(3) CL = 50 pF, VDD = 2 V to 3.6 V ns 25(3) CL = 30 pF, VDD = 2.7 V to 3.6 V 50 MHz CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V 20 MHz CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3) CL = 50 pF, VDD = 2 V to 2.7 V 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3) CL = 50 pF, VDD = 2 V to 2.7 V 12(3) fmax(IO)out Maximum frequency(2) FM+ configuration Max 2 ns MHz 12 CL = 50 pF, VDD = 2 V to 3.6 V ns 34 10 ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0313 reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 21. 3. Guaranteed by design, not tested in production. 4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F37xx and STM32F38xx reference manual RM0313 for a description of FM+ I/O mode configuration 86/128 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics Figure 21. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 6.3.15 NRST characteristics NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 52). Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 55. Symbol NRST pin characteristics Parameter Conditions Min Typ Unit 0.3VDD +0.07(1) VIL(NRST)(1) NRST Input low level voltage VIH(NRST)(1) Max 0.445 VDD+ 0.398 NRST Input high level voltage V (1) Vhys(NRST)(1) RPU VF(NRST)(1) NRST Schmitt trigger voltage hysteresis Weak pull-up equivalent resistor(2) 200 VIN VSS 25 NRST Input filtered pulse VNF(NRST)(1) NRST Input not filtered pulse 500 40 mV 55 k 100 ns ns 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). Doc ID 022691 Rev 3 87/128 Electrical characteristics STM32F37x Figure 22. Recommended NRST pin protection 6$$ %XTERNAL RESETCIRCUIT .234 205 )NTERNAL2ESET &ILTER —& -36 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 55. Otherwise the reset will not be taken into account by the device. 88/128 Doc ID 022691 Rev 3 STM32F37x 6.3.16 Electrical characteristics Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 56 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 22. The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 56. Refer also to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 56. I2C characteristics(1) Standard mode Symbol Fast mode Fast mode Plus Parameter Unit Min Max Min Max Min Max tw(SCLL) SCL clock low time 4.7 1.3 0.5 tw(SCLH) SCL clock high time 4.0 0.6 0.26 tsu(SDA) SDA setup time 250 th(SDA) SDA data hold time 0(2) tr(SDA) tr(SCL) SDA and SCL rise time 1000 300 120 tf(SDA) tf(SCL) SDA and SCL fall time 300 300 120 th(STA) Start condition hold time 4.0 0.6 0.26 tsu(STA) Repeated Start condition setup time 4.7 0.6 0.26 tsu(STO) Stop condition setup time 4.0 0.6 0.26 s tw(STO:STA) Stop to Start condition time (bus free) 4.7 1.3 0.5 s Cb Capacitive load for each bus line µs 100 3450(3) 0(2) 50 900(3) 0(4) 450(3) ns µs 400 400 550 pF 1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in production. 2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. 4. The device must internally provide a hold time of at least 120ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. Doc ID 022691 Rev 3 89/128 Electrical characteristics Table 57. STM32F37x I2C analog filter characteristics(1) Symbol tSP Parameter Min Max Unit 50 260 ns Pulse width of spikes that are suppressed by the analog filter 1. Guaranteed by design, not tested in production. Figure 23. I2C bus AC waveforms and measurement circuit 6$$ 6$$ 2 2 -#5 Ω 3$! )#BUS Ω 3#, 3 4!242%0%!4%$ 3 4!24 3 4!24 TSU34! 3$! TF3$! TR3$! TH34! 3#, TW3#,( TSU3$! TW3#,, TR3#, TH3$! TF3#, 3 4/0 TW34/34! TSU34/ -36 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 90/128 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 58 for SPI or in Table 59 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 22. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 58. SPI characteristics Symbol fSCK 1/tc(SCK)(1) Parameter Conditions Min Max Master mode 18 Slave mode 18 8 ns 70 % SPI clock frequency MHz tr(SCK) tf(SCK)(1) SPI clock rise and fall time Capacitive load: C = 30 pF DuCy(SCK)(1) SPI slave input clock duty cycle Slave mode 30 tsu(NSS)(1) NSS setup time Slave mode 2Tpclk th(NSS)(1) NSS hold time Slave mode 4Tpclk SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 Tpclk/2 -3 +3 (1) tw(SCKH) tw(SCKL)(1) tsu(MI) (1) tsu(SI)(1) th(MI) Master mode 5.5 Slave mode 6.5 Master mode 5 Slave mode 5 Data input setup time (1) th(SI)(1) Data input hold time ns ta(SO)(1)(2) Data output access time Slave mode, fPCLK = 24 MHz 0 4Tpclk tdis(SO)(1)(3) Data output disable time Slave mode 0 24 (1) Data output valid time Slave mode (after enable edge) 39 tv(MO)(1) Data output valid time Master mode (after enable edge) 3 tv(SO) th(SO)(1) th(MO)(1) Unit Slave mode (after enable edge) 15 Master mode (after enable edge) 4 Data output hold time 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. Doc ID 022691 Rev 3 91/128 Electrical characteristics STM32F37x Figure 24. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) tSU(NSS) SCK Input CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 25. SPI timing diagram - slave mode and CPHA = 1(1) NSS input tSU(NSS) SCK Input CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) M SB IN B I T1 IN LSB IN ai14135 1. Measurement points are done at 0.5VDD level and with external CL = 30 pF. 92/128 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics Figure 26. SPI timing diagram - master mode(1) (IGH .33INPUT 3#+/UTPUT #0(!  #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(!  #0/, #0(! #0/, TSU-) -)3/ ).0 54 TW3#+( TW3#+, TR3#+ TF3#+ -3 "). ") 4). ,3"). TH-) -/3) /54054 - 3"/54 TV-/ " ) 4/54 ,3"/54 TH-/ AI6 1. Measurement points are done at 0.5VDD level and with external CL = 30 pF. Doc ID 022691 Rev 3 93/128 Electrical characteristics STM32F37x I2S characteristics Table 59. Symbol Parameter DuCy(SCK)(1) I2S slave input clock duty cycle fCK(1) 1/tc(CK) I2S clock frequency Conditions Slave mode Master mode (data: 16 bits, Audio frequency = 48 kHz) Slave mode tr(CK)(1) Min Max Unit 30 70 % 1.528 1.539 MHz 0 I2S clock rise and fall time Capacitive load CL = 30 pF tv(WS) (1) WS valid time Master mode 4 (1) WS hold time Master mode 4 WS setup time Slave mode 2 tf(CK) th(WS) tsu(WS) (1) (1) WS hold time Slave mode tw(CKH) (1) I2S clock high time tw(CKL) (1) I2S clock low time Master fPCLK= 16 MHz, audio frequency = 48 kHz th(WS) tsu(SD_MR) (1) tsu(SD_SR) (1) th(SD_MR) (1) th(SD_SR) (1) 8 306 312 Master receiver 6 Slave receiver 3 Data input setup time Master receiver 1.5 Slave receiver 1.5 ns Data input hold time tv(SD_ST) (1) Data output valid time Slave transmitter (after enable edge) th(SD_ST) (1) Data output hold time Slave transmitter (after enable edge) tv(SD_MT) (1) Data output valid time Master transmitter (after enable edge) th(SD_MT) (1) Data output hold time Master transmitter (after enable edge) 1. Data based on design simulation, not tested in production. 94/128 12.288 Doc ID 022691 Rev 3 16 16 2 0 STM32F37x Electrical characteristics Figure 27. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at 0.5VDD level and with external CL = 30 pF. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 28. I2S master timing diagram (Philips protocol)(1) tr(CK) tf(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. Measurement points are done at 0.5VDD level and with external CL = 30 pF. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Doc ID 022691 Rev 3 95/128 Electrical characteristics 6.3.17 STM32F37x 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 60 are preliminary values derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 22. Note: It is recommended to perform a calibration after each power-up. Table 60. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 2.4 3.6 V VREF+ Positive reference voltage 2.4 VDDA V IVREF Current on the VREF input pin 220(1) µA fADC ADC clock frequency 0.6 14 MHz fS(2) Sampling rate 0.05 1 MHz 823 kHz 17 1/fADC VREF+ V 50 k 160(1) fADC = 14 MHz fTRIG(2) External trigger frequency VAIN Conversion voltage range RSRC(2) Signal source impedance RADC(2) Sampling switch resistance 1 k CADC(2) Internal sample and hold capacitor 8 pF tCAL(2) Calibration time 0 (VSSA or VREFtied to ground) See Equation 1 and Table 61 for details fADC = 14 MHz tlat(2) Injection trigger conversion latency fADC = 14 MHz tlatr(2) Regular trigger conversion latency fADC = 14 MHz tS(2) Sampling time tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) µs 83 1/fADC 0.214 µs 2(3) 1/fADC 0.143 µs (3) 2 fADC = 14 MHz 17.1 µs 1.5 239.5 1/fADC 1 µs 18 µs 0 fADC = 14 MHz 1 0 14 to 252 (tS for sampling +12.5 for successive approximation) 2. Guaranteed by design, not tested in production. 3. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 60 Doc ID 022691 Rev 3 1/fADC 0.107 1. Based on characterization, not tested in production. 96/128 5.9 1/fADC STM32F37x Electrical characteristics Equation 1: RSRC max formula TS R SRC  ------------------------------------------------------------- – R ADC N+2 f ADC  C ADC  ln  2  The formula above (Equation 1) is used to determine the maximum external signal source impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 61. RSRC max for fADC = 14 MHz(1) Ts (cycles) tS (µs) RSRC max (k) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 50 239.5 17.1 50 1. Guaranteed by design, not tested in production. Table 62. Symbol ADC accuracy(1)(2) (3) Parameter Test conditions Typ Max(4) ±1.3 ±3 ±1 ±2 ±0.5 ±1.5 ±0.7 ±1 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ±0.8 ±1.5 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 fADC = 14 MHz, RSRC < 10 k, VDDA = 3 V to 3.6 V TA = 25 °C fADC = 14 MHz, RSRC < 10 k, VDDA = 2.7 V to 3.6 V TA = -40 to 105 °C fADC = 14 MHz, RSRC < 10 k, VDDA = 2.4 V to 3.6 V TA = 25 °C Unit LSB LSB LSB 1. ADC DC accuracy values are measured after internal calibration. Doc ID 022691 Rev 3 97/128 Electrical characteristics STM32F37x 2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. Figure 29. ADC accuracy characteristics VDDA 1 LSBIDEAL   EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4095 4094 4093 (2) ET ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (3) 7 (1) 6 5 EO 4 EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 4093 4094 4095 4096 VDDA -36 Figure 30. Typical connection diagram using the ADC VDD 232# 732# VT 0.6 V AINx Cparasitic VT 0.6 V IL±1 μA Sample and hold ADC converter RADC(1) 12-bit converter CADC(1) -36 1. Refer to Table 60 for the values of RSRC, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 9. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 98/128 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics 6.3.18 DAC electrical specifications Table 63. DAC characteristics Symbol Parameter Min Typ Max Unit VDDA Analog supply voltage 2.4 - 3.6 V VREF+ Reference supply voltage 2.4 - 3.6 V Ground 0 - 0 V Resistive load with buffer ON 5 - k VSSA RLOAD (1) Comments VREF+ must always be below VDDA RO(1) Impedance output with buffer OFF - - 15 When the buffer is OFF, the Minimum resistive load between DAC_OUT k and VSS to have a 1% accuracy is 1.5 M CLOAD(1) Capacitive load - - 50 Maximum capacitive load at pF DAC_OUT pin (when the buffer is ON). DAC_OUT Lower DAC_OUT voltage min(1) with buffer ON 0.2 - - V DAC_OUT Higher DAC_OUT voltage with buffer ON max(1) - - VDDA – 0.2 V DAC_OUT Lower DAC_OUT voltage min(1) with buffer OFF - 0.5 DAC_OUT Higher DAC_OUT voltage with buffer OFF max(1) - VREF+ – 1LSB DAC DC current IDDVREF+(3) consumption in quiescent mode (Standby mode) - 220 With no load, worst code (0xF1C) at µA VREF+ = 3.6 V in terms of DC consumption on the inputs - 380 µA - 480 With no load, worst code (0xF1C) at µA VREF+ = 3.6 V in terms of DC consumption on the inputs - ±0.5 LSB Given for the DAC in 10-bit configuration - ±2 LSB Given for the DAC in 12-bit configuration IDDA(3) DNL(3) INL(3) DAC DC current consumption in quiescent mode(2) Differential non linearity Difference between two consecutive code-1LSB) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x155) and (0xEAB) at VREF+ = 2.4 V mV It gives the maximum output excursion of the DAC. V With no load, middle code (0x800) on the inputs - - ±1 LSB Given for the DAC in 10-bit configuration - - ±4 LSB Given for the DAC in 12-bit configuration Doc ID 022691 Rev 3 99/128 Electrical characteristics Table 63. Symbol STM32F37x DAC characteristics (continued) Parameter Min Typ Max Unit - - ±10 mV Comments Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) - - ±3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V Gain error - - ±0.5 % Settling time (full scale: for a 10-bit input code transition between the lowest and the tSETTLING(3) highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 µs CLOAD  50 pF, RLOAD  5 k Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD  50 pF, RLOAD  5 k Wakeup time from off state tWAKEUP(3) (Setting the ENx bit in the DAC Control register) - 6.5 10 CLOAD  50 pF, RLOAD  5 k µs input code between lowest and highest possible ones. Power supply rejection ratio PSRR+ (1) (to VDDA) (static DC measurement - -67 -40 dB No RLOAD, CLOAD = 50 pF Offset(3) Gain error(3) Update rate(3) Given for the DAC in 12bit configuration 1. Guaranteed by design, not tested in production. 2. Quiescent mode refers to the state of the DAC keeping a steady value on the output, so no dynamic consumption is involved. 3. Guaranteed by characterization, not tested in production. Figure 31. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R LOAD 12-bit digital to analog converter DACx_OUT C LOAD ai17157 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 100/128 Doc ID 022691 Rev 3 STM32F37x Electrical characteristics 6.3.19 Comparator characteristics Table 64. Comparator characteristics Symbol VDDA Parameter Conditions Min Typ Max(1) Unit Analog supply voltage 2 3.6 VIN Comparator input voltage range 0 VDDA V VBG Scaler input voltage 1.2 VSC Scaler offset voltage ±5 ±10 mV tS_SC Scaler startup time from power down 0.1 ms tSTART Comparator startup time 60 µs Startup time to reach propagation delay specification Ultra-low power mode 2 4.5 0.7 1.5 0.3 0.6 VDDA  2.7 V 50 100 VDDA  2.7 V 100 240 2 7 Low power mode 0.7 2.1 Medium power mode 0.3 1.2 VDDA  2.7 V 90 180 VDDA  2.7 V 110 300 10 Low power mode Propagation delay for 200 mV step with 100 mV Medium power mode overdrive High speed mode tD Ultra-low power mode Propagation delay for full range step with 100 mV overdrive High speed mode ns Comparator offset error 4 dVoffset/dT Offset error temperature coefficient 18 IDD(COMP) COMP current consumption µs ns Voffset Ultra-low power mode µs mV µV/°C 1.2 1.5 Low power mode 3 5 Medium power mode 10 15 High speed mode 75 100 µA Doc ID 022691 Rev 3 101/128 Electrical characteristics Table 64. Symbol STM32F37x Comparator characteristics (continued) Parameter Conditions Min Typ Max(1) No hysteresis (COMPxHYST[1:0]=00) Low hysteresis (COMPxHYST[1:0]=01) Vhys Comparator hysteresis Medium hysteresis (COMPxHYST[1:0]=10) High hysteresis (COMPxHYST[1:0]=11) 0 High speed mode 3 All other power modes 5 High speed mode 7 High speed mode 18 Doc ID 022691 Rev 3 10 26 15 9 All other power modes 13 8 All other power modes 1. Guaranteed by design, not tested in production. 102/128 Unit 19 49 31 19 40 mV STM32F37x 6.3.20 Electrical characteristics Temperature sensor characteristics Table 65. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 Table 66. TS characteristics Symbol Parameter Min Typ Max Unit 1 2 °C TL VSENSE linearity with temperature Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C V25 Voltage at 25 °C 1.34 1.43 1.52 V tSTART(1) Startup time 10 µs TS_temp(2)(1) ADC sampling time when reading the temperature 4 17.1 µs 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.21 VBAT monitoring characteristics Table 67. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit K R Resistor bridge for VBAT - 50 - Q Ratio on VBAT measurement - 2 - Error on Q -1 - +1 % ADC sampling time when reading the VBAT 1mV accuracy 5 - - µs Er (1) TS_vbat(2) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.22 Timer characteristics The parameters given in Table 68 are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Doc ID 022691 Rev 3 103/128 Electrical characteristics Table 68. TIMx(1) (2)characteristics Symbol tres(TIM) STM32F37x Parameter Conditions ResTIM tCOUNTER tMAX_COUNT Max fTIMxCLK = 72 MHz Unit 1 tTIMxCLK 13.9 ns Timer resolution time Timer external clock frequency on CH1 to CH4 f TIMxCLK = 72 MHz fEXT Min 0 fTIMxCLK/2 MHz 0 24 MHz TIMx (except TIM2) 16 TIM2 32 Timer resolution bit 1 65536 tTIMxCLK 0.0139 910 µs 65536 × 65536 tTIMxCLK 59.65 s 16-bit counter clock period fTIMxCLK = 72 MHz Maximum possible count with 32-bit counter fTIMxCLK = 72 MHz 1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, TIM12, TIM13, TIM14, TIM15, TIM16 , TIM17, TIM18 and TIM19 timers. 2. Data based on characterization results, not tested in production. Table 69. IWDG min/max timeout period at 40 kHz (LSI) (1)(2) Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]= 0x000 Max timeout (ms) RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. 2. Data based on characterization results, not tested in production. Table 70. 104/128 WWDG min-max timeout value @72 MHz (PCLK) Prescaler WDGTB Min timeout value Max timeout value 1 0 0.05687 3.6409 2 1 0.1137 7.2817 4 2 0.2275 14.564 8 3 0.4551 29.127 Doc ID 022691 Rev 3 STM32F37x 6.3.23 Electrical characteristics USB characteristics Table 71. USB startup time Symbol tSTARTUP(1) Parameter USB transceiver startup time Max Unit 1 µs 1. Guaranteed by design, not tested in production. Table 72. USB DC electrical characteristics Symbol Parameter Conditions Min.(1) Max.(1) Unit 3.0(3) 3.6 V Input levels VDD USB operating voltage(2) VDI(4) Differential input sensitivity (for USB compliance) VCM(4) Differential common mode range VSE(4) Single ended receiver threshold I(USB_DP, USB_DM) 0.2 Includes VDI range 0.8 2.5 1.3 2.0 V Output levels VOL Static output level low RL of 1.5 k to 3.6 V(5) VOH Static output level high RL of 15 k to VSS(5) 0.3 V 2.8 3.6 1. All the voltages are measured from the local ground potential. 2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k resistor to a 3.0-to-3.6 V voltage range. 3. The STM32F3xxx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 4. Guaranteed by design, not tested in production. 5. RL is the load connected on the USB drivers Doc ID 022691 Rev 3 105/128 Electrical characteristics STM32F37x Figure 32. USB timings: definition of data signal rise and fall time Crossover points Differen tial Data L ines VCRS VS S Table 73. tr tf ai14137 USB: Full-speed electrical characteristics(1) Symbol Parameter Conditions Min Typ Max Unit Driver characteristics tr Rise time(2) CL = 50 pF 4 - 20 ns tf Fall time(2) CL = 50 pF 4 - 20 ns tr/tf 90 - 110 % 1.3 - 2.0 V 28 40 44  trfm VCRS Rise/ fall time matching Output signal crossover voltage driving high and low Output driver Z Impedance(3) DRV 1. Guaranteed by design, not tested in production. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver. 6.3.24 CAN (controller area network) interface Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). 6.3.25 SDADC characteristics Table 74. SDADC characteristics (1) Symbol Parameter VDDSDx Power supply fADC SDADC clock frequency VREFSD+ Positive ref. voltage VREFSD- Negative ref. voltage 106/128 Conditions Min Typ Max Slow mode (fADC = 1.5 MHz) 2.2 VDDA Fast mode (fADC = 6 MHz) 2.4 VDDA Slow mode (fADC = 1.5 MHz) 0.5 1.5 1.65 Fast mode (fADC = 6 MHz) 0.5 6 6.3 Unit V MHz 1.1 VDDSDx VSSA Doc ID 022691 Rev 3 V V Note STM32F37x Table 74. Symbol Electrical characteristics SDADC characteristics (continued)(1) Parameter Conditions Min Fast mode (fADC = 6 MHz) IDDSDx VAIN VDIFF fS Supply current (VDDSDx = 3.3 V) Common input voltage range Differential input voltage Sampling rate Conversion time Rain Analog input impedance Max 800 1200 Slow mode (fADC = 1.5 MHz) 600 Standby 200 Power down 2.5 SD_ADC off 1 VSSA VREFSD+ /gain Single ended offset mode VSSA VREFSD+ /gain/2 Differential mode VSSA VDDSDx Single ended mode (zero reference) -VREF Differential mode only Unit gain/2 Note µA V Voltage on AINP or AINN pin Differential voltage between AINP and AINN VREFSD+/ gain/2 SD+/ Slow mode (fADC = 1.5 MHz) 4.166 fADC/360 Slow mode one channel only (fADC = 1.5 MHz) 12.5 fADC/120 Fast mode multiplexed channel (fADC = 6 MHz) 16.66 fADC/360 50 fADC/120 Fast mode one channel only (fADC = 6 MHz) tCONV Typ kHz 1/fs One channel, gain = 0.5, fADC = 1.5 MHz 540 One channel, gain = 0.5, fADC = 6 MHz 135 One channel, gain = 8, fADC = 6 MHz 47 tCALIB Calibration time tSTAB Stabilization From power down fADC = 6 MHz time tSTANDBY Wakeup from standby time fADC = 6 MHz, one offset calibration 5120 100 fADC = 6 MHz 50 fADC = 1.5 MHz 50 s k see reference manual for detailed description µs 30720/fADC µs 600/fADC, 75/fADC if SLOWCK =1 300/fADC µs Doc ID 022691 Rev 3 75/fADC if SLOWCK =1 107/128 Electrical characteristics Table 74. Symbol STM32F37x SDADC characteristics (continued)(1) Parameter Conditions EO Offset error gain = 1 gain = 8 Differential mode fADC = 1.5 MHz fADC = 6 MHz fADC = 6 MHz gain = 1 gain = 8 Single ended mode fADC = 1.5 MHz Min Max VREFSD+ = 3.3 110 VREFSD+ = 1.2 110 VREFSD+ = 3.3 100 VREFSD+ = 1.2 70 VREFSD+ = 3.3 100 VDDSDx = 3.3 VREFSD+ = 3.3 2100 VREFSD+ = 3.3 2000 VREFSD+ = 1.2 1500 VREFSD+ = 3.3 1800 Offset drift Differential or single ended mode, with gain = 1, VDDSDx = 3.3 V temperature EG Gain error EGT Gain drift gain = 1, differential mode, single ended with mode temperature All gains, differential mode, single ended mode Doc ID 022691 Rev 3 Unit Note uV after offset calibration 90 VREFSD+ = 1.2 Dvoffsett emp 108/128 Typ -2.4 10 15 uV/K -2.7 -3.1 % 0 ppm/ K STM32F37x Conditions gain = 8 gain = 8 gain = 1 gain = 8 Differential mode gain = 1 VDDSDx = 3.3 Single ended mode ED Differential linearity error gain = 1 VDDSDx = 3.3 Single ended mode EL Integral linearity error gain = 1 Parameter Differential mode Symbol SDADC characteristics (continued)(1) gain = 8 Table 74. Electrical characteristics Min Typ Max VREFSD+ = 1.2 16 VREFSD+ = 3.3 14 VREFSD+ = 1.2 26 VREFSD+= 3.3 14 Unit Note LSB VREFSD+ = 1.2 31 VREFSD+= 3.3 23 VREFSD+= 1.2 80 VREFSD+ = 3.3 35 VREFSD+ = 1.2 2.4 VREFSD+ = 3.3 1.8 VREFSD+= 1.2 3.6 VREFSD+ = 3.3 2.9 LSB VREFSD+ = 1.2 3.2 VREFSD+ = 3.3 2.8 VREFSD+= 1.2 4.1 VREFSD+ = 3.3 3.3 Doc ID 022691 Rev 3 109/128 Electrical characteristics Table 74. Symbol STM32F37x SDADC characteristics (continued)(1) Parameter Conditions Min Typ VREFSD+ = 3.3(2) 84 85 VREFSD+= 1.2(3) 86 88 VREFSD+ = 3.3 88 92 VREFSD+ = 1.2(3) 76 78 VREFSD+ = 3.3 82 86 fADC = 1.5 MHz VDDSDx VREFSD+= = 3.3 3.3(2) 76 80 fADC = 1.5MHz VREFSD+ = 3.3 80 84 VREFSD+ = 1.2(3) 77 81 VREFSD+ = 3.3 85 90 VREFSD+ = 1.2(3) 66 71 VREFSD+ = 3.3 74 78 110/128 gain = 1 gain = 8 gain = 1 Signal to noise ratio Single ended mode SNR(4) gain = 8 Differential mode fADC = 1.5 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz Doc ID 022691 Rev 3 Max Unit dB Note STM32F37x Table 74. Symbol Electrical characteristics SDADC characteristics (continued)(1) Parameter Conditions Min Typ VREFSD+ = 3.3(2) 76 77 VREFSD+ = 1.2(3) 75 76 VREFSD+ = 3.3 76 77 VREFSD+ = 1.2(3) 70 74 VREFSD+ = 3.3 79 85 fADC = 1.5 MHz VDDSDx VREFSD+ = = 3.3 3.3(2) 75 81 fADC = 1.5MHz VREFSD+ = 3.3 72 73 VREFSD+ = 1.2(3) 68 71 VREFSD+ = 3.3 72 73 VREFSD+ = 1.2(3) 60 64 VREF = 3.3 67 72 Single ended mode (4) gain =1 gain =8 gain =1 SINAD Signal to noise and distortion ratio gain =8 Differential mode fADC = 1.5 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz gain =1 fADC = 6 MHz fADC = 6 MHz gain =1 fADC = 6 MHz gain =8 fADC = 1.5 MHz Single ended mode THD(4) Total harmonic distortion gain =8 Differential mode fADC = 1.5 MHz fADC = 6 MHz Max VREFSD+ = 3.3(2) -77 -76 VREFSD+ = 1.2(3) -77 -76 VREFSD+ = 3.3 -77 -76 VREFSD+ = 1.2(3) -85 -70 -93 -80 VREFSD+ = VDDSDx 3.3 = 3.3 VREFSD+ = 3.3(2) Unit Note dB ENOB = SINAD/6.0 2 -0.292 dB -93 -83 VREFSD+ = 1.2(3) -72 -68 VREFSD+ = 3.3 -74 -72 VREFSD+ = 1.2(3) -66 -61 VREFSD+ = 3.3 -75 -70 1. Data based on characterization results, not tested in production. Doc ID 022691 Rev 3 111/128 Electrical characteristics STM32F37x 2. For fADC lower than 5 MHz, there will be a performance degradation of around 2 dB due to flicker noise increase. 3. If the reference value is lower than 2.4 V, there will be a performance degradation proportional to the reference supply drop, according to this formula: 20*log10(VREF/2.4) dB 4. SNR, THD, SINAD parameters are valid for frequency bandwidth 20Hz - 1kHz. Input signal frequency is 300Hz (for fADC=6MHz) and 100Hz (for fADC=1.5MHz). Table 75. Symbol VREFINT VREFSD+ pin characteristics(1) Parameter Conditions Min Typ Buffered embedded reference voltage (1.2 V) 1.2 Embedded reference voltage amplified by factor 1.5 1.8 Max Unit Note V See Section 6.3.4: Embedded reference voltage on page 58 Internal reference voltage CVREFSD+(2) Reference voltage filtering capacitor RVREFSD+ Reference voltage input impedance VREFSD+ = VREFINT 1000 10000 Fast mode (fADC = 6 MHz) 238 Slow mode (fADC = 1.5 MHz) 952 nF k See RM0313 reference manual for detailed description 1. Data based on characterization results, not tested in production. 2. If internal reference voltage is selected then this capacitor is charged through internal resistance - typ. 300 ohm. If internal reference source is selected through the reference voltage selection bits (REFV”00” in SDADC_CR1 register), the application must first configure REFV bits and then wait for capacitor charging. Recommended waiting time is 3 ms if 1 µF capacitor is used. 112/128 Doc ID 022691 Rev 3 STM32F37x Package characteristics 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Doc ID 022691 Rev 3 113/128 Package characteristics STM32F37x Figure 33. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline 0.10 Z D1 D X A1 ball pad corner FD Y A1 ball pad corner 0.50 1.75 b 1.75 E1 E e A1 A 0.10 Side view Top view FE A2 Bottom view A0C2_ME 1. Drawing is not to scale. Table 76. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.46 0.53 0.6 0.0181 0.0209 0.0236 A1 0.06 0.08 0.1 0.0024 0.0031 0.0039 A2 0.4 0.45 0.5 0.0157 0.0177 0.0197 b 0.2 0.25 0.3 0.0079 0.0098 0.0118 D 7 0.2756 D1 5.5 0.2165 E 7 0.2756 E1 5.5 0.2165 e 0.5 0.0197 FD 0.75 0.0295 FE 0.75 0.0295 1. Values in inches are converted from mm and rounded to 4 decimal digits. 114/128 Doc ID 022691 Rev 3 STM32F37x Package characteristics Figure 34. LQFP100 –14 x 14 mm 100-pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% , $ + ! CCC # , $ $     % % % B   0).  )$%.4)&)#!4)/.  E ,?-%?6 1. Drawing is not to scale. Table 77. LQPF100 – 14 x 14 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 D 15.80 D1 13.80 D3 E Max 0.063 0.15 0.002 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 16.00 16.20 0.622 0.6299 0.6378 14.00 14.20 0.5433 0.5512 0.5591 12.00 15.80 Max 16.00 0.0059 0.0079 0.4724 16.20 Doc ID 022691 Rev 3 0.622 0.6299 0.6378 115/128 Package characteristics Table 77. STM32F37x LQPF100 – 14 x 14 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol E1 Min Typ Max Min Typ Max 13.80 14.00 14.20 0.5433 0.5512 0.5591 E3 12.00 0.4724 e 0.50 0.0197 L 0.45 0.60 L1 K 0.75 0.0177 0.0236 1.00 0° 0.0394 3.5° 7° ccc 0° 3.5° 0.08 Figure 35. Recommended footprint 75 51 76 50 0.5 0.3 14.3 100 26 1.2 1 25 12.3 16.7 ai14906b 1. Dimensions are in millimeters. 116/128 7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 16.7 0.0295 Doc ID 022691 Rev 3 STM32F37x Package characteristics Figure 36. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline ! C ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% ! CCC # + , $ , $ $      % % % B  0). )$%.4)&)#!4)/.   E 7?-%?6 1. Drawing is not to scale. Table 78. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Min Typ 1.60 A1 0.05 A2 1.350 b 0.17 c 0.09 D 11.80 D1 9.80 D3 Max Max 0.0630 0.15 0.0020 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 12.00 12.20 0.4646 0.4724 0.4803 10.00 10.20 0.3858 0.3937 0.4016 7.50 0.0059 0.0079 0.2953 Doc ID 022691 Rev 3 117/128 Package characteristics Table 78. STM32F37x LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E 11.80 12.00 12.20 0.4646 0.4724 0.4803 E1 9.80 10.00 10.20 0.3858 0.3937 0.4016 E3 7.50 0.2953 e 0.50 0.0197 L 0.45 L1 K 0.60 0.75 0.0177 0.0236 1.00 0° 0.0394 3.5° 7° ccc 0° 3.5° 0.08 Figure 37. Recommended footprint      7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits.            AIB 1. Dimensions are in millimeters. 118/128 0.0295 Doc ID 022691 Rev 3 STM32F37x Package characteristics Figure 38. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $      % % % B  0). )$%.4)&)#!4)/.   E "?-%?6 1. Drawing is not to scale. Table 79. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 Max 0.0630 0.15 0.0020 0.0059 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 0.20 0.0035 D 8.80 9.00 9.20 0.3465 0.3543 0.3622 D1 6.80 7.00 7.20 0.2677 0.2756 0.2835 D3 5.50 0.0079 0.2165 E 8.80 9.00 9.20 0.3465 0.3543 0.3622 E1 6.80 7.00 7.20 0.2677 0.2756 0.2835 E3 5.50 0.2165 Doc ID 022691 Rev 3 119/128 Package characteristics Table 79. STM32F37x LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ e L Min Typ 0.50 0.45 0.75 0.0177 0.0236 1.00 0° 7° ccc 0° 3.5° 0.08 Figure 39. Recommended footprint           7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits.         AID 1. Dimensions are in millimeters. 120/128 0.0295 0.0394 3.5°  Max 0.0197 0.60 L1 K Max Doc ID 022691 Rev 3 STM32F37x 7.2 Package characteristics Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 22: General operating conditions on page 55. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where: ● TA max is the maximum ambient temperature in °C, ● JA is the package junction-to-ambient thermal resistance, in C/W, ● PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), ● PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 80. Package thermal characteristics Symbol JA 7.2.1 Parameter Value Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP48 - 7 × 7 mm 55 Unit °C/W Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient BGA100 - 7 x 7 mm 59 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org Doc ID 022691 Rev 3 121/128 Package characteristics 7.2.2 STM32F37x Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Part numbering. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F37x at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 3 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 2 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW This gives: PINTmax = 175 mW and PIOmax = 61.6 mW: PDmax = 175+ 61.6 = 236.6 mW Thus: PDmax = 236.6 mW Using the values obtained in Table 80 TJmax is calculated as follows: – For LQFP64, 45°C/W TJmax = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering). Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 9 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 9 × 8 mA × 0.4 V = 28.8 mW This gives: PINTmax = 70 mW and PIOmax = 28.8 mW: PDmax = 70 + 28.8 = 98.8 mW Thus: PDmax = 98.8 mW 122/128 Doc ID 022691 Rev 3 STM32F37x Package characteristics Using the values obtained in Table 80 TJmax is calculated as follows: – For LQFP100, 46°C/W TJmax = 115 °C + (46°C/W × 98.8 mW) = 115 °C + 4.54 °C = 119.5 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering). Figure 40. LQFP64 PD max vs. TA 700 PD (mW) 600 500 Suffix 6 400 Suffix 7 300 200 100 0 65 75 85 95 105 115 125 135 TA (°C) Doc ID 022691 Rev 3 123/128 Part numbering 8 STM32F37x Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 81. Ordering information scheme Example: STM32 Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Sub-family 372 = STM32F372xx 373 = STM32F373xx Pin count C = 48 pins R = 64 pins V = 100 pins Code size 8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory C = 256 Kbytes of Flash memory Package T = LQFP H = BGA Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Options xxx = programmed parts TR = tape and real 124/128 Doc ID 022691 Rev 3 F 372 R 8 T 6 x STM32F37x 9 Revision history Revision history Table 82. Document revision history Date Revision 18-Jun-2012 1 Initial release. 2 Added ‘F’ to all ‘Cortex-M4’ occurences Modified the shapes of Figure 2: STM32F37x LQFP48 pinout to Figure 4: STM32F37x LQFP100 pinout Added two rows ‘VREFSD+ - VDDSD3’ and ‘VREF+ - VDDA’ in Table 19: Voltage characteristics Removed PB0 in footnote of Table 19: Voltage characteristics and in Section 6.3.14: I/O port characteristics Added a paragraph after ‘...power up sequence’ in Table 6.2: Absolute maximum ratings and after ‘...in output mode’ in I/O system current consumption Corrected SDAC_VREF+ in Figure 9: Power supply scheme Modified Table 20: Current characteristics Added BGA100 in Table 22: General operating conditions Added values in Table 27: Embedded internal reference voltage Filled values in Table 28: Typical and maximum current consumption from VDD supply at VDD = 3.6 V Filled values in Table 29: Typical and maximum current consumption from VDDA supply Filled values in Table 30: Typical and maximum VDD consumption in Stop and Standby modes Removed table: “Typical and maximum VDDA consumption in Stop modes” Filled values in Table 31: Typical and maximum VDDA consumption in Stop and Standby modes Added VBAT values in Table 32: Typical and maximum current consumption from VBAT supply Added typ values in Table 33: Typical current consumption in Run mode, code with data processing running from Flash and Table 34: Typical current consumption in Sleep mode, code running from Flash or RAM Added max value in Table 41: LSE oscillator characteristics (fLSE = 32.768 kHz) Modified min and max values in Table 42: HSI oscillator characteristics Added values in Table 37: Low-power mode wakeup timings Added Class values in Table 47: EMS characteristics Modified values in Table 48: EMI characteristics Added values in Table 49: ESD absolute maximum ratings Added class value in Table 50: Electrical sensitivities modified values and descriptions in Table 51: I/O current injection susceptibility 07-Sep-2012 Changes Doc ID 022691 Rev 3 125/128 Revision history STM32F37x Table 82. Document revision history Date 07-Sep-2012 126/128 Revision Changes 2 (cont’d) Filled values in Table 70: WWDG min-max timeout value @72 MHz (PCLK) Filled values in Table 58: SPI characteristics Filled values in Table 59: I2S characteristics Replaced Table 60: ADC characteristics Added values in Table 74: SDADC characteristics Modified footnote in Table 75: VREFSD+ pin characteristics Replaced ‘AIN’ with ‘SRC’ in Table 61: RSRC max for fADC = 14 MHz and Figure 30: Typical connection diagram using the ADC Reordered chapters and Cover page features. Added subsection to GPIOS in Table 2: Device overview Aligned SRAM with USB in Figure 1: Block diagram Added “Do not reconfigure...” sentence in Section 3.9: General-purpose input/outputs (GPIOs) Added Table 7: STM32F37x I2C implementation Added Table 8: STM32F37x USART implementation Merged SPI and I2S into one section Reshaped Figure 5: STM32F37x BGA100 pinout and removed ADC10 Added notes column, modified I/O structure values and pin, function names, removed TIM1_TX & TIM1_RX in Table 11: STM32F37x pin definitions Added the note “do not reconfigure...” after Table 11: STM32F37x pin definitions Modified “x_CK” occurences to “I2Sx_CK” in Table 12: Alternate functions for port PA to Table 17: Alternate functions for port PF Added two GP I/Os in Table 9: Power supply scheme Added Caution after Table 9: Power supply scheme Added Max values in Table 23: Operating conditions at powerup / power-down Modified (1) footnote in Table 24: Embedded reset and power control block characteristics Added row to Table 27: Embedded internal reference voltage Added the note “ It is recommended...” under Table 51: I/O current injection susceptibility Modified Table 51: I/O current injection susceptibility Modified temperature and current values in Section 7.2.2: Selecting the product temperature range Added crystal EPSON-TOYOCOM bullet under Typical current consumption Modified Figure 9: Power supply scheme Removed Boot 0 section Modified Table 73: USB: Full-speed electrical characteristics Doc ID 022691 Rev 3 STM32F37x Revision history Table 82. Document revision history Date 21-Dec-2012 Revision Changes 3 Updated Table 2: Device overview, capacitive sensing channels peripheral added. Updated Table 3: Capacitive sensing GPIOs available on STM32F37x devices Updated Section 3.19: Inter-integrated circuit interface (I2C) Updated the function names in Table 11: STM32F37x pin definitions Updated Table 20: Current characteristics Updated Table 22: General operating conditions Updated Table 30: Typical and maximum VDD consumption in Stop and Standby modes Updated Table 32: Typical and maximum current consumption from VBAT supply Added Figure 11: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00') Updated Table 33: Typical current consumption in Run mode, code with data processing running from Flash Table 34: Typical current consumption in Sleep mode, code running from Flash or RAM Added Table 35: Switching output I/O current consumption Added Table 36: Peripheral current consumption Figure 16: HSI oscillator accuracy characterization results Updated Section 6.3.6: Wakeup time from low-power mode Updated Table 37: Low-power mode wakeup timings Updated Table 47: EMS characteristics Updated Table 51: I/O current injection susceptibility Updated Table 52: I/O static characteristics Updated Figure 17: TC and TTa I/O input characteristics CMOS port, Figure 18: TC and TTa I/O input characteristics TTL port, Figure 19: Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port and Figure 20: Five volt tolerant (FT and FTf) I/O input characteristics - TTL port Updated Table 53: Output voltage characteristics Updated Table 55: NRST pin characteristics Updated Table 54: I/O AC characteristics Updated Table 63: DAC characteristics Updated Table 74: SDADC characteristics Updated Figure 7: LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline, Figure 9: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Figure 11: LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline Updated Table 21: LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data, Table 22: LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data and Table 23: LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data Added Figure 16: HSI oscillator accuracy characterization results Doc ID 022691 Rev 3 127/128 STM32F37x Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 128/128 Doc ID 022691 Rev 3
STM32F372RCT6 价格&库存

很抱歉,暂时无法提供与“STM32F372RCT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货