0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F378VCT6

STM32F378VCT6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP-100_14X14MM

  • 描述:

    IC MCU 32BIT 256KB FLASH 100LQFP

  • 数据手册
  • 价格&库存
STM32F378VCT6 数据手册
STM32F378xx ARM®Cortex®-M4 32b MCU+FPU, up to 256KB Flash+32KB SRAM, timers, 4 ADCs(16-bit Sig. Delta / 12-bit SAR), 3 DACs, 2 comp., 1.8 V Datasheet - production data Features )%*$ • Core: ARM® 32-bit Cortex®-M4 CPU (72 MHz max), single-cycle multiplication and HW division, DSP instruction with FPU (floatingpoint unit) and MPU (memory protection unit) • 1.25 DMIPS/MHz (Dhrystone 2.1) • Memories – 256 Kbytes of Flash memory – 32 Kbytes of SRAM with HW parity check • CRC calculation unit • Reset and power management – Supply: VDD= 1.8 V ± 8%, VDDA= 1.65 - 3.6 V – External POR pin – Low power modes: Sleep and Stop • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x16 PLL option – Internal 40 kHz oscillator • Up to 84 fast I/Os – All mappable on external interrupt vectors – Up to 45 I/Os with 5 V tolerant capability • 12-channel DMA controller • One 12-bit, 1.0 µs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply from 2.4 up to 3.6 • Up to three 16-bit Sigma Delta ADC – Separate analog supply from 2.2 to 3.6 V, up to 21 single/ 11 diff channels • Up to three 12-bit DAC channels – Separate analog supply from 2.2 to 3.6 V • Two fast rail-to-rail analog comparators with programmable input and output with analog supply from 1.65 to 3.6 V LQFP48 (7 × 7 mm) LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) WLCSP66 (0.400 mm) UFBGA100 (7 x 7 mm) • 17 timers – Two 32-bit timers and three 16-bit timers with up to 4 IC/OC/PWM or pulse counters – Two 16-bit timers with up to 2 IC/OC/PWM or pulse counters – Four 16-bit timers with up to 1 IC/OC/PWM or pulse counter – Independent and system watchdog timers – SysTick timer: 24-bit down counter – Three 16-bit basic timers to drive the DAC • Calendar RTC with Alarm and periodic wakeup from Stop • Communication interfaces – CAN interface (2.0B Active) – Two I2Cs supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP – Three USARTs supporting synchronous mode, modem control, ISO/IEC 7816, LIN, IrDA, auto baud rate, wakeup feature – Three SPIs (18 Mbit/s) with 4 to 16 programmable bit frames, muxed I2S – HDMI-CEC bus interface • Serial wire devices, JTAG, Cortex®-M4 ETM • 96-bit unique ID Table 1. Device summary Reference STM32F378xx Part numbers STM32F378CC, STM32F378RC, STM32F378VC • Up to 24 capacitive sensing channels June 2016 This is information on a product in full production. DocID025608 Rev 4 1/131 www.st.com Contents STM32F378xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 ARM® Cortex®-M4 core with embedded Flash and SRAM . . . . . . . . . . . 13 3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 14 3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.3 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.9 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.11 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.12 2/131 3.7.1 3.11.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.11.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16 12-bit analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.13 16-bit sigma delta analog-to-digital converters (SDADC) . . . . . . . . . . . . . 18 3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.15 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.16 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.17.1 General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19) . . . . . 22 3.17.2 Basic timers (TIM6, TIM7, TIM18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID025608 Rev 4 STM32F378xx Contents 3.17.3 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.4 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.19 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 25 3.21 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 26 3.22 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.24 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.25 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 58 6.3.3 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DocID025608 Rev 4 3/131 4 Contents 7 STM32F378xx 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.14 NRST and NPOR pins characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.18 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.20 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.21 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.22 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.23 SDADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.1 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2 WLCSP66 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 7.3 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 7.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 7.5 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.6.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 126 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4/131 DocID025608 Rev 4 STM32F378xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Capacitive sensing GPIOs available on STM32F378xx devices . . . . . . . . . . . . . . . . . . . . 19 No. of capacitive sensing channels available on STM32F378xx devices. . . . . . . . . . . . . . 20 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F378xx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F378xx USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F378xx SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F378xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Alternate functions for port PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Alternate functions for port PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Alternate functions for port PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Alternate functions for port PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Alternate functions for port PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate functions for port PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STM32F378xx peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Typical and maximum current consumption from VDD supply at VDD = 1.8V . . . . . . . . . . 60 Typical and maximum current consumption from VDDA supply . . . . . . . . . . . . . . . . . . . . . 62 Typical and maximum VDD consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typical and maximum VDDA consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 63 Typical current consumption in Run mode, code with data processing running from Flash 64 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 66 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 DocID025608 Rev 4 5/131 6 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. 6/131 STM32F378xx I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 RSRC max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 SDADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 VREFSD+ pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 112 WLCSP66 - 66-pin, 3.767 x 4.229 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 DocID025608 Rev 4 STM32F378xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 STM32F378xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 STM32F378xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STM32F378xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STM32F378xx UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32F378xx WLCSP66 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32F378xx memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00') . . . . . . . . . . . . 63 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 84 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . . 102 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . 112 UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 WLCSP66 - 66-pin, 3.767 x 4.229 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 WLCSP66 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 116 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 119 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 122 DocID025608 Rev 4 7/131 8 List of figures Figure 44. Figure 45. Figure 46. 8/131 STM32F378xx LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 DocID025608 Rev 4 STM32F378xx 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F378xx microcontrollers. This STM32F378xx datasheet should be read in conjunction with the RM0313 reference manual. The reference manual is available from the STMicroelectronics website www.st.com. For information on the Cortex®-M4 with FPU core, please refer to: • Cortex®-M4 with FPU Technical Reference Manual, available from www.arm.com. • STM32F3xxx and STM32F4xxx Cortex®-M4 programming manual (PM0214) available from www.st.com. DocID025608 Rev 4 9/131 47 Description 2 STM32F378xx Description The STM32F378xx family is based on the high-performance ARM® Cortex®-M4 32-bit RISC core operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an Embedded Trace Macrocell™ (ETM). The family incorporates high-speed embedded memories (up to 256 Kbyte of Flash memory, up to 32 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. The STM32F378xx devices offer one fast 12-bit ADC (1 Msps), up to three 16-bit Sigma delta ADCs, up to two comparators, up to two DACs (DAC1 with 2 channels and DAC2 with 1 channel), a low-power RTC, 9 general-purpose 16-bit timers, two general-purpose 32-bit timers, three basic timers. They also feature standard and advanced communication interfaces: up to two I2Cs, three SPIs, all with muxed I2Ss, three USARTs and CAN. The STM32F378xx family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 1.8 V ± 8% power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F378xx family offers devices in five packages ranging from 48 pins to 100 pins. The set of included peripherals changes with the device chosen. 10/131 DocID025608 Rev 4 STM32F378xx Description Table 2. Device overview Peripheral STM32F 378Cx STM32F 378Rx Flash (Kbytes) 256 SRAM (Kbytes) 32 Timers General purpose 9 (16-bit) 2 (32 bit) Basic 3 (16-bit) SPI/I2S Comm. interfaces 3 2 I C 2 USART 3 CAN 1 Capacitive sensing channels 14 17 12-bit ADCs 1 16-bit ADCs Sigma- Delta 3 12-bit DACs outputs 3 Analog comparator 2 Max. CPU frequency 24 72 MHz Main operating voltage 1.8 V +/- 8% 16-bit SDADC operating voltage 2.2 to 3.6 V Ambient operating temperature: −40 to 85 °C / −40 to 105 °C Junction temperature: −40 to 105 °C / −40 to 125 °C Operating temperature Packages STM32F 378Vx LQFP48 DocID025608 Rev 4 LQFP64, WLCSP66 LQFP100, UFBGA100 11/131 47 Description STM32F378xx Figure 1. Block diagram )BUS #/24%8-#05 FPD[ -(Z .6)# .6)# 6'' 0/7%2 &LASHUPTO+" #9'',2 BIT 3YSTEM 2ESET 32!- UPTO+" #9''$ 2#,3 0#;= '0)/ 0/24 # 0$;= '0)/ 0/24 $ 88!& '0)/ 0/24 % 4)- &HANNEOV(75 DV$) 7,0 3$!$#).S 3$!$#).S SHAREDW 3$!$# 62%&3$ 62%&3$ 3$!$#).S SHAREDW3$ 6333$ 6$$3$ 6$$3$ !("TO !0" 4)- !.4) 4!-0 4)- #HANNELS %42 AS!& 4)- #HANNELS %42 AS!& 4)- #HANNELS %42 AS!& 4)- #HANNELS %42 AS!& 4)- &HANNEL (75 DV$) 4)- #HANNELAS!& 4)- #HANNELAS!& 53!24 28 48 #43 243 3MART#ARDAS!& 53!24 28 48 #43 243 3MART#ARDAS!& 77$' 30))3 [ [ELW -/3) -)3/ 3#+ .33AS!& 30))3 [ [ELW -/3) -)3/ 3#+ .33AS!& 4)- 30))3 4)- 53!24  BIT3$!$# )&  BIT3$!$# )& #9''6' )# 3#, 3$! 3-"! AS!& )# 3#, 3$! 3-"! AS!& BX#!. #!.48#!.28 ($-)#%# ($-)#%#AS!& 4)- 32!-"  BIT3$!$# )& #9''6' 4EMPSENSOR  BIT !$# )& 393#&' #4, #9'' #/-0 )&  BIT $!#?/54 $!#?/54AS!& )&  BIT $!#?/54 $!#?/54AS!& )&  BIT $!#?/54 $!#?/54AS!& #9''$ #/-0 ).S /54SAS!& 1. AF: alternate function on I/O pins. 12/131 "ACKUP REG &5& 4)- #9''$ !).S 62%& 62%& /3#?). /3#?/54 "ACKUPINTERFACE !0"&PD[-(Z 28 48 #43 243 3MART#ARDAS!& 6$$ 84!,K(Z 24# !75 3$!$# #,+ %84)4 7+50 #HANNELS #OMP#HANNEL "2+AS!& #HANNEL #OMP#HANNEL "2+AS!& #HANNELS #OMP#HANNEL "2+AS!& /3#). /3#/54 #96: '0)/ 0/24 & !("TO !0" -/3) -)3/ 3#+ .33AS!&  !0"&PD[-(Z 0&;BITS= .2%3%4 6$$! 633! .0/2 )7$' !("0#,+ !0"0#,+ !0"0#,+ (#,+ &#,+ 53!24#,+ #%##,+ !$##,+ !("&MAX-(Z '0)/ 0/24 " !(" 0"; = 0%;= 2%3%4 #,/#+ -!.!'4 #42, 4OUCH3ENSING #ONTROLLER '0)/ 0/24 ! #9'',2 84!,/3#  -(Z 0,, $-! CHANNELS 0!;= 3500,9 350%26)3)/. #9''$ $-! CHANNELS 'ROUPSOF CHANNELSMAX AS!& 6$$6 666 $BUS "US-ATRIX *4234 *4$) *4#+37#,+ *4-337$!4 *4$/ AS!& 4RACE #ONTROLLER 0BUS &LASH OBL )NTERFACE *4!'37 DocID025608 Rev 4 069 STM32F378xx Functional overview 3 Functional overview 3.1 ARM® Cortex®-M4 core with embedded Flash and SRAM The ARM Cortex-M4 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation. With its embedded ARM core, the STM32F378xx family is compatible with all ARM tools and software. Figure 1 shows the general block diagram of the STM32F378xx family. 3.2 Memory protection unit The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to developers, including: • Outstanding processing performance combined with fast interrupt handling • Enhanced system debug with extensive breakpoint and trace capabilities • Efficient processor core, system and memories • Ultralow power consumption with integrated sleep modes • Platform security robustness with optional integrated memory protection unit (MPU). With its embedded ARM core, the STM32F378xx devices are compatible with all ARM development tools and software. DocID025608 Rev 4 13/131 47 Functional overview 3.3 STM32F378xx Embedded Flash memory All STM32F378xx devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). 3.4 Cyclic redundancy check (CRC) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Embedded SRAM All STM32F378xx devices feature up to 32 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states. 3.6 Boot modes At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or I2C (PB6/PB7). 3.7 Power management 3.7.1 Power supply schemes 14/131 • VDD: external power supply for I/Os and core. It is provided externally through VDD pins, and can be 1.8 V +/- 8%. • VDDA = 1.65 to 3.6 V: – external analog power supplies for Reset blocks, RCs and PLL – supply voltage for 12-bit ADC, DACs and comparators (minimum voltage to be applied to VDDA is 2.4 V when the 12-bit ADC and DAC are used). • VDDSD12 and VDDSD3 = 2.2 to 3.6 V: supply voltages for SDADC1/2 and SDADCD3 sigma delta ADCs. Independent from VDD/VDDA. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers when VDD is not present. DocID025608 Rev 4 STM32F378xx 3.7.2 Functional overview Power supply supervisor Device power on reset is controlled through the external NPOR pin. The device remains in reset mode when NPOR is held low. NPOR pin has an internal pull-up resistor so the external driver can be open drain type. To guarantee a proper power-on reset, the NPOR pin must be held low until VDD is stable. When VDD is stable, the reset state can be exited by: 3.7.3 • either putting the NPOR pin in high impedance. NPOR pin has an internal pull up. • or forcing the pin to high level by connecting it to VDDA. Low-power modes The STM32F378xx supports two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USARTs, the I2Cs, the CEC the COMPx and the RTC alarm. 3.8 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz. 3.9 General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. DocID025608 Rev 4 15/131 47 Functional overview STM32F378xx Do not reconfigure GPIO pins which are not present on 48 and 64 pin packages to the analog mode. Additional current consumption in the range of tens of µA per pin can be observed if VDDA is higher than VDDIO. 3.10 Direct memory access (DMA) The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The two DMAs can be used with the main peripherals: SPIs, I2Cs, USARTs, DACs, ADC, SDADCs, general-purpose timers. 3.11 Interrupts and events 3.11.1 Nested vectored interrupt controller (NVIC) The STM32F378xx devices embed a nested vectored interrupt controller (NVIC) able to handle up to 60 maskable interrupt channels and 16 priority levels. The NVIC benefits are the following: • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.11.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 84 GPIOs can be connected to the 16 external interrupt lines. 16/131 DocID025608 Rev 4 STM32F378xx 3.12 Functional overview 12-bit analog-to-digital converter (ADC) The 12-bit analog-to-digital converter is based on a successive approximation register (SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels (temperature sensor, voltage reference, VBAT voltage measurement) performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the timers (TIMx) can be internally connected to the ADC start and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 3.12.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See Table 64: Temperature sensor calibration values on page 103. 3.12.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. 3.12.3 VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a divider by 2. As a consequence, the converted digital value is half the VBAT voltage. DocID025608 Rev 4 17/131 47 Functional overview 3.13 STM32F378xx 16-bit sigma delta analog-to-digital converters (SDADC) Up to three 16-bit sigma-delta analog-to-digital converters are embedded in the STM32F378xx. They have up to two separate supply voltages allowing the analog function voltage range to be independent from the STM32F378xx power supply. They share up to 21 input pins which may be configured in any combination of single-ended (up to 21) or differential inputs (up to 11). The conversion speed is up to 16.6 ksps for each SDADC when converting multiple channels and up to 50 ksps per SDADC if single channel conversion is used. There are two conversion modes: single conversion mode or continuous mode, capable of automatically scanning any number of channels. The data can be automatically stored in a system RAM buffer, reducing the software overhead. A timer triggering system can be used in order to control the start of conversion of the three SDADCs and/or the 12-bit fast ADC. This timing control is very flexible, capable of triggering simultaneous conversions or inserting a programmable delay between the ADCs. Up to two external reference pins (VREFSD+, VREFSD-) and an internal 1.2/1.8 V reference can be used in conjunction with a programmable gain (x0.5 to x32) in order to fine-tune the input voltage range of the SDADC. VREFSD - pin is used as negative signal reference in case of single-ended input mode. 3.14 Digital-to-analog converter (DAC) The devices feature up to two 12-bit buffered DACs with three output channels that can be used to convert three digital signals into three analog voltage signal outputs. The internal structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital Interface supports the following features: • 18/131 Up to two DAC converters with three output channels: – DAC1 with two output channels – DAC2 with one output channel. • 8-bit or 10-bit monotonic output • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation (DAC1 only) • Triangular wave generation (DAC1 only) • Dual DAC channel independent or simultaneous conversions (DAC1 only) • DMA capability for each channel • External triggers for conversion DocID025608 Rev 4 STM32F378xx 3.15 Functional overview Fast comparators (COMP) The STM32F378xx embeds up to 2 comparators with rail-to-rail inputs and high-speed output. The reference voltage can be internal or external (delivered by an I/O). The threshold can be one of the following: • DACs channel outputs • External I/O • Internal reference voltage (VREFINT) or submultiple (1/4 VREFINT, 1/2 VREFINT and 3/4 VREFINT) The comparators can be combined into a window comparator. Both comparators can wake up the device from Stop mode and generate interrupts and breaks for the timers. 3.16 Touch sensing controller (TSC) The devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. Up to 24 touch sensing electrodes can be controlled by the TSC. The touch sensing I/Os are organized in 8 acquisition groups, with up to 4 I/Os in each group. Table 3. Capacitive sensing GPIOs available on STM32F378xx devices Group 1 2 Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G1_IO2 PA1 TSC_G1_IO3 PA2 TSC_G1_IO4 PA3 Group 5 (1) TSC_G2_IO1 PA4 TSC_G2_IO2 PA5(1) TSC_G2_IO3 PA6(1) TSC_G2_IO4 PA7 DocID025608 Rev 4 6 Capacitive sensing signal name Pin name TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 TSC_G5_IO3 PB6 TSC_G5_IO4 PB7 TSC_G6_IO1 PB14 TSC_G6_IO2 PB15 TSC_G6_IO3 PD8 TSC_G6_IO4 PD9 19/131 47 Functional overview STM32F378xx Table 3. Capacitive sensing GPIOs available on STM32F378xx devices (continued) Group 3 4 Capacitive sensing signal name Pin name Capacitive sensing signal name Pin name TSC_G3_IO1 PC4 TSC_G7_IO1 PE2 TSC_G3_IO2 PC5 TSC_G7_IO2 PE3 TSC_G3_IO3 PB0 TSC_G7_IO3 PE4 TSC_G3_IO4 PB1 TSC_G7_IO4 PE5 TSC_G4_IO1 PA9 TSC_G8_IO1 PD12 TSC_G4_IO2 PA10 TSC_G8_IO2 PD13 TSC_G4_IO3 PA13 TSC_G8_IO3 PD14 TSC_G4_IO4 PA14 TSC_G8_IO4 PD15 Group 7 8 1. This GPIO offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O. Table 4. No. of capacitive sensing channels available on STM32F378xx devices Number of capacitive sensing channels Analog I/O group 20/131 STM32F378Cx STM32F378Rx STM32F378Vx G1 3 3 3 G2 2 3 3 G3 1 3 3 G4 3 3 3 G5 3 3 3 G6 2 2 3 G7 0 0 3 G8 0 0 3 Number of capacitive sensing channels 14 17 24 DocID025608 Rev 4 STM32F378xx 3.17 Functional overview Timers and watchdogs The STM32F378xx includes two 32-bit and nine 16-bit general-purpose timers, three basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Generalpurpose TIM2 TIM5 32-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 0 Generalpurpose TIM3, TIM4, TIM19 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 0 Generalpurpose TIM12 16-bit Up Any integer between 1 and 65536 No 2 0 Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 0 Generalpurpose TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7, TIM18 16-bit Up Any integer between 1 and 65536 Yes 0 0 DocID025608 Rev 4 21/131 47 Functional overview 3.17.1 STM32F378xx General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19) There are eleven synchronizable general-purpose timers embedded in the STM32F378xx (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. • TIM2, 3, 4, 5 and 19 These five timers are full-featured general-purpose timers: – TIM2 and TIM5 have 32-bit auto-reload up/downcounters and 32-bit prescalers – TIM3, 4, and 19 have 16-bit auto-reload up/downcounters and 16-bit prescalers These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. • TIM12, 13, 14, 15, 16, 17 These six timers general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM12 has 2 channels – TIM13 and TIM14 have 1 channel – TIM15 has 2 channels and 1 complementary channel – TIM16 and TIM17 have 1 channel and 1 complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.17.2 Basic timers (TIM6, TIM7, TIM18) These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. 22/131 DocID025608 Rev 4 STM32F378xx 3.17.3 Functional overview Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stopmode. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.17.4 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB1 clock (PCLK1) derived from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.17.5 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.18 • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source Real-time clock (RTC) and backup registers The RTC and the backup registers are supplied through a switch that takes power either from VDD supply when present or through the VBATpin. The backup registers are thirty two 32-bit registers used to store 128 bytes of user application data. They are not reset by a system or power reset. The RTC is an independent BCD timer/counter. Its main features are the following: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28th, 29th (leap year), 30th and 31st day of the month. • 2 programmable alarms with wake up from Stop mode capability. • Periodic wakeup unit with programmable resolution and period. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. • 3 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop mode on tamper event detection. • Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop mode on timestamp event detection. DocID025608 Rev 4 23/131 47 Functional overview • STM32F378xx Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC clock sources can be: 3.19 • A 32.768 kHz external crystal • A resonator or oscillator • The internal low-power RC oscillator (typical frequency of 40 kHz) • The high-speed external clock divided by 32 Inter-integrated circuit interface (I2C) Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes with 20 mA output drive. They support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters - Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeout verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the application to wake up the MCU from Stop mode on address match. The I2C interfaces can be served by the DMA controller Refer to Table 7 for the differences between I2C1 and I2C2. Table 7. STM32F378xx I2C implementation I2C features(1) 24/131 I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X Independent clock X X DocID025608 Rev 4 STM32F378xx Functional overview Table 7. STM32F378xx I2C implementation (continued) I2C features(1) I2C1 I2C2 SMBus X X Wakeup from STOP X X 1. X = supported. 3.20 Universal synchronous/asynchronous receiver transmitter (USART) The STM32F378xx embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3). All USARTs interfaces are able to communicate at speeds of up to 9 Mbit/s. They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode, Smartcard mode (ISO/IEC 7816 compliant), autobaudrate feature and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. Refer to Table 8 for the features of USART1, USART2 and USART3. Table 8. STM32F378xx USART implementation USART modes/features(1) USART1 USART2 USART3 Hardware flow control for modem X X X Continuous communication using DMA X X X Multiprocessor communication X X X Synchronous mode X X X Smartcard mode X X X Single-wire half-duplex communication X X X IrDA SIR ENDEC block X X X LIN mode X X X Dual clock domain and wakeup from Stop mode X X X Receiver timeout interrupt X X X Modbus communication X X X Auto baud rate detection X X X Driver Enable X X X 1. X = supported. DocID025608 Rev 4 25/131 47 Functional overview 3.21 STM32F378xx Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) Up to three SPIs are able to communicate at up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. The SPIs can be served by the DMA controller. Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2S interfaces can operate in half-duplex mode only. Refer to Table 9 for the features between SPI1, SPI2 and SPI3. Table 9. STM32F378xx SPI/I2S implementation SPI features(1) SPI1 SPI2 SPI3 Hardware CRC calculation X X X Rx/Tx FIFO X X X NSS pulse mode X X X I2S mode X X X TI mode X X X I2S full-duplex mode - - - 1. X = supported. 3.22 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception. 3.23 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 26/131 DocID025608 Rev 4 STM32F378xx 3.24 Functional overview Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.25 Embedded trace macrocell™ The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F378xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. DocID025608 Rev 4 27/131 47 Pinouts and pin description 4 STM32F378xx Pinouts and pin description 9''B 966B 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ Figure 2. STM32F378xx LQFP48 pinout                      ,1&0                            3$ 3$ 3$ 3$ 9''B 3% 3% 1325 3( 3( 9666'95()6' 9''6' 9%$7 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 966$95() 9''$95() 3$ 3$ 3$ 1. The above figure shows the package top view. 28/131 DocID025608 Rev 4 3) 3) 3$ 3$ 3$ 3$ 3$ 3$ 3' 3% 3% 95()6' 069 STM32F378xx Pinouts and pin description 9''B 966B 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ Figure 3. STM32F378xx LQFP64 pinout                                 ,1&0                                 3) 3) 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3' 3% 3% 95()6' 95() 3$ 9''B 3$ 3$ 3$ 3$ 3& 3& 3% 3% 1325 3( 3( 9666'95()6' 9''6' 9%$7 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 3& 3& 3& 3& 966$95() 9''$ 3$ 3$ 3$ -36 1. The above figure shows the package top view. DocID025608 Rev 4 29/131 47 Pinouts and pin description STM32F378xx                          6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 4. STM32F378xx LQFP100 pinout                          ,1&0                          6$$? 633? 0& 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 62%&3$ 6$$3$ 0! 0& 6$$? 0! 0! 0! 0! 0# 0# 0" 0" .0/2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 62%&3$ 6333$ 6$$3$                          0% 0% 0% 0% 0% 6"!4 0# 0# /3#?). 0# /3#?/54 0& 0& 0& /3#?). 0& /3#?/54 .234 0# 0# 0# 0# 0& 633!62%& 6$$! 62%& 0! 0! 0! 069 1. The above figure shows the package top view. 30/131 DocID025608 Rev 4 STM32F378xx Pinouts and pin description Figure 5. STM32F378xx UFBGA100 ballout             ! 0% 0% 0" "//4 0$ 0$ 0" 0" 0! 0! 0! 0! " 0% 0% 0" 0" 0" 0$ 0$ 0$ 0$ 0# 0# 0! # 0# 0% 0% 0$ 0$ 0# 0& 0! $ 0# 0% 633? 0! 0! 0# 0# 6"!4 0# 0# 0# & 0& 0& 633? 6333$ ' 0& 0& 6$$? 6$$3$ ( 0# .234 * 0& + % 6$$? 0" 0& 6$$? 0$ 0$ 0$ 0# 0# 0$ 0$ 0$ 633! 62%& 0# 0! 0! 0# 0" 62%&3$ , 62%& 0! 0! 0! 0# .0/2 - 6$$! 0! 0! 0! 0" 0" 0$ 0$ 0" 0% 0% 0% 0" 0% 0% 0% 0% 62%&3$ 6$$3$ 0% 0% -36 1. The above figure shows the package top view. DocID025608 Rev 4 31/131 47 Pinouts and pin description STM32F378xx Figure 6. STM32F378xx WLCSP66 ballout         $ 3$ 3$ 3& 3' 3% 3% 3% 9%$7 % 3) 3) 3& 3& 3% 3% 3% 3& & 3$ 3$ 3$ 3$ 3% 966B %227 3& 3$ 3& 3$ 9''B 3) 3& 3& 3& 3& 3& 1567 3) 3% 3% 3' 3& 3& 3& 95()6' 1325 3$ 966B 966B 95() 9''$ 95() 966$ 9''6' 3( 3% 3& 3$ 3$ 3$ 3$ 9666' 95()6' 3( 3% 3& 3$ 3$ 9''B 3$ ' ( ) * + - 06Y9 1. The above figure shows the package top view. 32/131 DocID025608 Rev 4 STM32F378xx Pinouts and pin description Table 10. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Notes Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC or SDADC POR External power on reset pin with embedded weak pull-up resistor, powered from VDDA TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions DocID025608 Rev 4 33/131 47 Pinouts and pin description STM32F378xx Table 11. STM32F378xx pin definitions BGA100 LQFP64 LQFP48 WLCSP66 (function after reset) 1 B2 - - - PE2 Pin type I/O I/O structure LQFP100 Pin name Pin functions Notes Pin numbers Alternate function Additional functions (1) FT TSC_G7_IO1, TRACECLK - FT TSC_G7_IO2, TRACED0 - 2 A1 - - - PE3 I/O (1) 3 B1 - - - PE4 I/O (1) FT TSC_G7_IO3, TRACED1 - FT TSC_G7_IO4, TRACED2 - TRACED3 WKUP3, RTC_TAMPER3 4 C2 - - - PE5 I/O (1) 5 D2 - - - PE6 I/O (1) FT 6 E2 1 1 A8 VBAT S - - Backup power supply 7 C1 2 2 B8 PC13(2) I/O - TC - WKUP2, ALARM_OUT, CALIB_OUT, TIMESTAMP, RTC_TAMPER1 8 D1 3 3 C8 PC14 OSC32_IN(2) I/O - TC - OSC32_IN 9 E1 4 4 D8 PC15 OSC32_OUT(2) I/O - TC - OSC32_OUT 10 F2 - - - PF9 I/O (1) FT TIM14_CH1 - FT - - 11 G2 - - - PF10 I/O (1) 12 F1 5 5 D7 PF0 - OSC_IN I/O - FTf I2C2_SDA OSC_IN 13 G1 6 6 E8 PF1 OSC_OUT I/O - FTf I2C2_SCL OSC_OUT 14 H2 7 7 E7 NRST I/O - RST Device reset input / internal reset output (active low) 15 H1 8 - E6 PC0 I/O (1) TTa TIM5_CH1_ETR ADC_IN10 TTa TIM5_CH2 ADC_IN11 16 J2 9 - F8 PC1 I/O (1) 17 J3 10 - F7 PC2 I/O (1) TTa SPI2_MISO/I2S2_MCK, TIM5_CH3 ADC_IN12 18 K2 11 - F6 PC3 I/O (1) TTa SPI2_MOSI/I2S2_SD, TIM5_CH4 ADC_IN13 19 J1 - - - PF2 I/O (1) FT I2C2_SMBA - 20 K1 12 8 G8 VSSA/ VREF- S - - Analog ground - - - 9 - VDDA/ VREF+ S (1) - Analog power supply / Reference voltage for ADC, COMP, DAC - G7 VDDA S (1) - Analog power supply S (1) - Reference voltage for ADC, COMP, DAC 21 M1 13 22 34/131 L1 17 - G6 VREF+ DocID025608 Rev 4 STM32F378xx Pinouts and pin description 23 24 25 L2 K3 L3 27 E3 28 H3 30 31 16 12 J8 18 13 H6 - - - 19 17 J7 M3 20 14 J6 K4 L4 21 15 H5 22 16 J5 Pin name (function after reset) PA0 PA1 PA2 Pin type I/O I/O I/O Notes WLCSP66 LQFP48 14 10 H8 M2 15 11 H7 26 29 LQFP64 BGA100 LQFP100 Pin numbers - - - I/O structure Table 11. STM32F378xx pin definitions (continued) Pin functions Alternate function Additional functions TTa USART2_CTS, TIM2_CH1_ETR, TIM5_CH1_ETR, TIM19_CH1, TSC_G1_IO1, COMP1_OUT RTC_ TAMPER2, WKUP1, ADC_IN0, COMP1_INM TTa SPI3_SCK/I2S3_CK, USART2_RTS, TIM2_CH2, TIM15_CH1N, TIM5_CH2, TIM19_CH2, TSC_G1_IO2, RTC_REF_IN ADC_IN1, COMP1_INP TTa COMP2_OUT, TSC_G1_IO3, SPI3_MISO/I2S3_MCK, USART2_TX, TIM2_CH3, TIM15_CH1, TIM5_CH3, TIM19_CH3 ADC_IN2, COMP2_INM ADC_IN3, COMP2_INP - PA3 I/O - TTa SPI3_MOSI, I2S3_SD, USART2_RX, TIM2_CH4, TIM15_CH2, TIM5_CH4, TIM19_CH4, TSC_G1_IO4 PF4 I/O (1) FT - VDD_2 S - - PA4 PA5 PA6 I/O I/O - - Digital power supply TTa SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, TIM3_CH2, TIM12_CH1, TSC_G2_IO1 ADC_IN4, DAC1_OUT1 TTa SPI1_SCK/I2S1_CK, CEC, TIM2_CH1_ETR, TIM14_CH1, TIM12_CH2, TSC_G2_IO2 ADC_IN5, DAC1_OUT2 TTa SPI1_MISO/I2S1_MCK, TIM3_CH1, TIM13_CH1, TIM16_CH1, COMP1_OUT, TSC_G2_IO3 ADC_IN6, DAC2_OUT1 SPI1_MOSI/I2S1_SD, TIM14_CH1, TIM17_CH1, TIM3_CH2, COMP2_OUT, TSC_G2_IO4 ADC_IN7 I/O - TTa 32 M4 23 - G3 PA7 I/O (1) 33 K5 24 - H4 PC4 I/O (1) TTa 34 L5 25 - J4 PC5 I/O (1) TTa USART1_RX, TSC_G3_IO2 USART1_TX, TIM13_CH1, DocID025608 Rev 4 TSC_G3_IO1 ADC_IN14 ADC_IN15 35/131 47 Pinouts and pin description STM32F378xx Table 11. STM32F378xx pin definitions (continued) Notes I/O structure PB0 I/O - TTa SPI1_MOSI/I2S1_SD, TIM3_CH3, TSC_G3_IO3 ADC_IN8, SDADC1_AIN6P 36 M6 27 19 J3 PB1 I/O - TTa TIM3_CH4, TSC_G3_IO4 ADC_IN9, SDADC1_AIN5P, SDADC1_AIN6M 37 L6 NPOR I (3) POR PE7 I/O (1)(4) TC - SDADC1_AIN3P, SDADC1_AIN4M, SDADC2_AIN5P, SDADC2_AIN6M PE8 I/O (4) TC - SDADC1_AIN8P, SDADC2_AIN8P (4) TC - SDADC1_AIN7P, SDADC1_AIN8M, SDADC2_AIN7P, SDADC2_AIN8M (1) TC - SDADC1_AIN2P 38 M7 39 L7 WLCSP66 M5 26 18 H3 LQFP48 35 LQFP64 BGA100 Pin functions LQFP100 Pin numbers 28 20 G2 - - - 29 21 H2 Pin name (function after reset) Pin type Alternate function Additional functions Power-on reset 40 M8 30 22 J2 PE9 I/O 41 L8 - - - PE10 I/O 42 M9 - - - PE11 I/O (1)(4) TC - SDADC1_AIN1P, SDADC1_AIN2M, SDADC2_AIN4P 43 L9 - - - PE12 I/O (1)(4) TC - SDADC1_AIN0P, SDADC2_AIN3P, SDADC2_AIN4M 44 M10 - - - PE13 I/O (1)(4) TC - SDADC1_AIN0M, SDADC2_AIN2P 45 M11 - - - PE14 I/O (1)(4) TC - SDADC2_AIN1P, SDADC2_AIN2M 46 M12 - - - PE15 I/O (1)(4) TC USART3_RX SDADC2_AIN0P 47 L10 - - - PB10 I/O (1)(4) TC SPI2_SCK/I2S2_CK, CEC, USART3_TX, TSC_SYNC TIM2_CH3, SDADC2_AIN0M 48 L11 - - - VREFSD- S (1) - External reference voltage for SDADC1, SDADC2, SDADC3 (negative input), negative SDADC analog input in SDADC single ended mode 49 F12 - - - VSSSD S (1) - SDADC1, SDADC2, SDADC3 ground - SDADC1, SDADC2, SDADC3 ground / External reference voltage for SDADC1, SDADC2, SDADC3 (negative input), negative SDADC analog input in SDADC single ended mode - 36/131 - 31 23 J1 VSSSD/ VREFSD- S (4) - DocID025608 Rev 4 STM32F378xx Pinouts and pin description Table 11. STM32F378xx pin definitions (continued) (1) - SDADC1 and SDADC2 power supply VDDSD S - - SDADC1, SDADC2, SDADC3 power supply VDDSD3 S (1) - SDADC3 power supply VREFSD+ S - - External reference voltage for SDADC1, SDADC2, SDADC3 (positive input) WLCSP66 (function after reset) - - - VDDSD12 32 24 H1 51 L12 52 K12 33 25 G1 53 I/O structure - Notes - S LQFP48 50 G12 - - - K11 34 26 F2 Pin functions Pin type Pin name LQFP64 BGA100 LQFP100 Pin numbers PB14 Alternate function Additional functions TC SPI2_MISO/I2S2_MCK, USART3_RTS, TIM15_CH1, TIM12_CH1, TSC_G6_IO1 SDADC3_AIN8P SDADC3_AIN7P, SDADC3_AIN8M I/O (5) TC SPI2_MOSI/I2S2_SD, TIM15_CH1N, TIM15_CH2, TIM12_CH2, TSC_G6_IO2, RTC_REFIN TC SPI2_SCK/I2S2_CK, USART3_TX, TSC_G6_IO3 SDADC3_AIN6P (1) TC USART3_RX, TSC_G6_IO4 SDADC3_AIN5P, SDADC3_AIN6M 54 K10 35 27 F1 PB15 I/O (5) 55 K9 PD8 I/O (5) 56 K8 - - - PD9 I/O 57 J12 - - - PD10 I/O (1)(5) TC USART3_CK SDADC3_AIN4P 58 J11 - - - PD11 I/O (1)(5) TC USART3_CTS SDADC3_AIN3P, SDADC3_AIN4M 59 J10 - - - PD12 I/O (1)(5) TC USART3_RTS, TIM4_CH1, TSC_G8_IO1 SDADC3_AIN2P 60 H12 - - - PD13 I/O (1)(5) TC TIM4_CH2, TSC_G8_IO2 SDADC3_AIN1P, SDADC3_AIN2M 61 H11 - - - PD14 I/O (1)(5) TC TIM4_CH3, TSC_G8_IO3 SDADC3_AIN0P TC TIM4_CH4, TSC_G8_IO4 SDADC3_AIN0M 36 28 F3 (5) - - PD15 I/O (1)(5) E12 37 - E2 PC6 I/O (1) FT SPI1_NSS/I2S1_WS, TIM3_CH1 - 64 E11 38 - E1 PC7 I/O (1) FT SPI1_SCK/I2S1_CK, TIM3_CH2 - 65 E10 39 - E3 PC8 I/O (1) FT SPI1_MISO/I2S1_MCK, TIM3_CH3 - 66 D12 40 - D2 PC9 I/O (1) FT SPI1_MOSI/I2S1_SD, TIM3_CH4 - 62 H10 63 - DocID025608 Rev 4 37/131 47 Pinouts and pin description STM32F378xx 67 68 69 70 71 D11 41 29 D1 D10 42 30 D3 C12 43 31 C2 B12 44 32 C1 A12 45 33 C3 Pin name (function after reset) PA8 PA9 PA10 PA11 PA12 Pin type I/O I/O I/O I/O I/O Notes WLCSP66 LQFP48 LQFP64 BGA100 LQFP100 Pin numbers - - - - - I/O structure Table 11. STM32F378xx pin definitions (continued) Pin functions Alternate function Additional functions FT SPI2_SCK/I2S2_CK, I2C2_SMBA, USART1_CK, TIM4_ETR, TIM5_CH1_ETR, CLK_CLKOUT - FTf SPI2_MISO/I2S2_MCK, I2C2_SCL, USART1_TX, TIM2_CH3, TIM15_BKIN, TIM13_CH1, TSC_G4_IO1 - FTf SPI2_MOSI/I2S2_SD, I2C2_SDA, USART1_RX, TIM2_CH4, TIM17_BKIN, TIM14_CH1, TSC_G4_IO2 - FT SPI2_NSS/I2S2_WS, SPI1_NSS/I2S1_WS, USART1_CTS, CAN_RX, TIM4_CH1, TIM5_CH2, COMP1_OUT - FT SPI1_SCK/I2S1_CK, USART1_RTS, CAN_TX, TIM16_CH1, TIM4_CH2, TIM5_CH3, COMP2_OUT - - - 72 A11 46 34 C4 PA13 I/O - FT SPI1_MISO/I2S1_MCK, USART3_CTS, IR_OUT, TIM16_CH1N, TIM4_CH3, TIM5_CH4, G4_IO3, SWDIO-JTMS 73 C11 47 35 B2 PF6 I/O - FTf SPI1_MOSI, I2S1_SD, USART3_RTS, TIM4_CH4, I2C2_SCL 74 F11 VSS_3 S (1) - Ground VDD_3 S (1) - Digital power supply 48 36 B1 PF7 I/O - FTf I2C2_SDA, USART2_CK - A10 49 37 A1 PA14 I/O - FTf I2C1_SDA, TIM12_CH1, TSC_G4_IO4, SWCLKJTCK - FTf SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, I2C1_SCL, TIM2_CH1_ETR, TIM12_CH2, TSC_SYNC, JTDI - 75 G11 - - 76 77 A9 38/131 - - - 50 38 A2 PA15 I/O - DocID025608 Rev 4 STM32F378xx Pinouts and pin description Table 11. STM32F378xx pin definitions (continued) LQFP48 WLCSP66 (function after reset) Notes I/O structure 78 B11 51 - B3 PC10 I/O (1) FT SPI3_SCK/I2S3_CK, USART3_TX, TIM19_CH1 - 79 C10 52 - A3 PC11 I/O (1) FT SPI3_MISO/I2S3_MCK, USART3_RX, TIM19_CH2 - 80 B10 53 - B4 PC12 I/O (1) FT SPI3_MOSI/I2S3_SD, USART3_CK, TIM19_CH3 - 81 C9 - - PD0 I/O (1) FT CAN_RX, TIM19_CH4 - I/O (1) FT CAN_TX, TIM19_ETR - FT TIM3_ETR - 82 B9 LQFP64 BGA100 Pin functions LQFP100 Pin numbers - - - Pin name PD1 Pin type Alternate function Additional functions 83 C8 54 - A4 PD2 I/O (1) 84 B8 - - - PD3 I/O (1) FT SPI2_MISO/I2S2_MCK, USART2_CTS - 85 B7 - - - PD4 I/O (1) FT SPI2_MOSI/I2S2_SD, USART2_RTS - 86 A6 - - - PD5 I/O (1) FT USART2_TX - 87 B6 - - - PD6 I/O (1) FT SPI2_NSS/I2S2_WS, USART2_RX - 88 A5 - - - PD7 I/O (1) FT SPI2_SCK/I2S2_CK, USART2_CK - FT SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TIM13_CH1, TSC_G5_IO1, JTDO-TRACESWO - FT SPI1_MISO/I2S1_MCK, SPI3_MISO/I2S3_MCK, USART2_RX, TIM162_CH1, TIM3_CH1, TIM17_BKIN, TIM15_CH1N, TSC_G5_IO2, NJTRST - FT SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM17_CH1, TIM19_ETR - FTf I2C1_SCL, USART1_TX, TIM16_CH1N, TIM3_CH3, TIM4_CH1, TIM19_CH1, TIM15_CH1, TSC_G5_IO3 - 89 90 91 92 A8 A7 C5 B5 55 39 C5 56 40 B5 57 41 A5 58 42 B6 PB3 PB4 PB5 PB6 I/O I/O I/O I/O - - - - DocID025608 Rev 4 39/131 47 Pinouts and pin description STM32F378xx Pin name (function after reset) Pin type Notes WLCSP66 LQFP48 LQFP64 BGA100 LQFP100 Pin numbers I/O structure Table 11. STM32F378xx pin definitions (continued) 93 B4 59 43 A6 PB7 I/O - FTf 94 A4 60 44 C7 BOOT0 I - B 95 A3 96 B3 97 C3 98 A2 99 D3 61 45 B7 62 46 A7 - - - 63 47 C6 PB8 I/O - Pin functions Alternate function Additional functions I2C1_SDA, USART1_RX, TIM17_CH1N, TIM3_CH4, TIM4_CH2, TIM19_CH2, TIM15_CH2, TSC_G5_IO4 - Boot memory selection FTf SPI2_SCK/I2S2_CK, I2C1_SCL, USART3_TX, CAN_RX, CEC, TIM16_CH1, TIM4_CH3, TIM19_CH3, COMP1_OUT, TSC_SYNC - - PB9 I/O - FTf SPI2_NSS/I2S2_WS, I2C1_SDA, USART3_RX, CAN_TX, IR_OUT, TIM17_CH1, TIM4_CH4, TIM19_CH4, COMP2_OUT PE0 I/O (1) FT USART1_TX, TIM4_ETR - PE1 I/O (1) FT USART1_RX - VSS_1 S - - Ground - Ground - - - - G5 VSS_1 S (1) - - - - G4 VSS_1 S (1) - Ground 100 C4 64 48 D6 VDD_1 S - - Digital power supply 1. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode. 2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED) After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the RM0313 reference manual. 3. These pins are powered by VDDA. 4. These pins are powered by VDDSD12. 5. These pins are powered by VDDSD3. 40/131 DocID025608 Rev 4 Pin Name AF0 AF1 PA0 - TIM2_ CH1_ ETR PA1 RTC_ REFIN PA2 AF2 DocID025608 Rev 4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF14 AF15 TIM5_ TSC_ CH1_ G1_IO1 ETR - - - USART2_CTS COMP1 _OUT - - TIM19 _CH1 - EVENT OUT TIM2_ CH2 TIM5_ TSC_ CH2 G1_IO2 - - SPI3_SCK/ I2S3_CK USART2_RTS - TIM15_ CH1N - TIM19 _CH2 - EVENT OUT - TIM2_ CH3 TIM5_ TSC_ CH3 G1_IO3 - - SPI3_MISO/ I2S3_MCK USART2_TX COMP2 _OUT TIM15_ CH1 - TIM19 _CH3 - EVENT OUT PA3 - TIM2_ CH4 TIM5_ TSC_ CH4 G1_IO4 - - SPI3_MOSI /I2S3_SD USART2_RX - TIM15_ CH2 - TIM19 _CH4 - EVENT OUT PA4 - - TIM3_ TSC_ CH2 G2_IO1 - SPI1_NSS/ I2S1_WS SPI3_NSS/ I2S3_WS USART2_CK - - TIM12 _CH1 - - EVENT OUT PA5 - TIM2_ CH1_ ETR TSC_ G2_IO2 - SPI1_SCK/ I2S1_CK - CEC - TIM14_ CH1 TIM12 _CH2 - - EVENT OUT PA6 - TIM16_ CH1 TIM3_ TSC_ CH1 G2_IO3 - SPI1_MISO /I2S1_MCK - - COMP1 _OUT TIM13_ CH1 - - - EVENT OUT PA7 - TIM17_ CH1 TIM3_ TSC_ CH2 G2_IO4 - SPI1_MOSI /I2S1_SD - - COMP2 _OUT TIM14_ CH1 - - - EVENT OUT PA8 MCO - TIM5_ CH1_ ETR I2C2_ SMBA SPI2_SCK/ I2S2_CK - USART1_CK - - TIM4_ ETR - - EVENT OUT PA9 - - TIM13 TSC_ _CH1 G4_IO1 I2C2_ SCL SPI2_MISO /I2S2_MCK - USART1_TX - TIM15_ BKIN TIM2_ CH3 - - EVENT OUT PA10 - TIM17_ BKIN - TSC_ G4_IO2 I2C2_ SDA SPI2_MOSI /I2S2_SD - USART1_RX - TIM14_ CH1 TIM2_ CH4 - - EVENT OUT PA11 - - TIM5_ CH2 - - SPI2_NSS/ I2S2_WS SPI1_NSS/ I2S1_WS USART1_CTS COMP1 _OUT CAN_ RX TIM4_ CH1 - - EVENT OUT PA12 - TIM16_ CH1 TIM5_ CH3 - - - SPI1_SCK/ I2S1_CK USART1_RTS COMP2 TIM4_ CAN_TX _OUT CH2 - - EVENT OUT - STM32F378xx AF4 - AF3 Pinouts and pin description 41/131 Table 12. Alternate functions for port PA Pin Name AF0 AF1 PA13 SWDIO -JTMS TIM16_ CH1N PA14 SWCLK -JTCK - - PA15 JTDI TIM2_ CH1_ETR - AF2 AF3 AF4 AF5 - IR-OUT TSC_ G4_IO4 I2C1_ SDA - - TSC_ SYNC I2C1_ SCL SPI1_NSS/ I2S1_WS SPI3_NSS/ I2S3_WS TIM5_ TSC_ CH4 G4_IO3 AF6 AF7 AF8 AF9 AF10 AF11 AF14 AF15 - - TIM4_ CH3 - - EVENT OUT - - - TIM12 _CH1 - - EVENT OUT - - - TIM12 _CH2 - - EVENT OUT SPI1_MISO USART3_CTS /I2S1_MCK Pinouts and pin description 42/131 Table 12. Alternate functions for port PA (continued) DocID025608 Rev 4 STM32F378xx Pin Name DocID025608 Rev 4 AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF15 PB0 - - TIM3_CH3 TSC_ G3_IO3 - SPI_MOSI/ I2S1_SD - - - - TIM3_ CH2 - EVENTOUT PB1 - - TIM3_CH4 TSC_ G3_IO4 - - - - - - - - EVENTOUT TIM4_ETR TSC_ G5_IO1 - SPI1_SCK/ I2S1_CK SPI3_SCK/ I2S3_CK USART2_TX - TIM13_ TIM3_ CH1 ETR - EVENTOUT TIM16_ TSC_ TIM3_CH1 CH1 G5_IO2 - SPI1_MISO SPI3_MISO/ USART2_RX /I2S1_MCK I2S3_MCK - TIM15_ TIM17 CH1N _BKIN - EVENTOUT I2C1_ SMBA SPI1_MOSI SPI3_MOSI USART2_CK /I2S1_SD /I2S3_SD - PB3 JTDOTIM2_ TRACESWO CH2 PB4 NJTRST PB5 - TIM16_ TIM3_CH2 BKIN PB6 - TIM16_ TSC_ I2C1_ TIM4_CH1 CH1N G5_IO3 SCL - - USART1_TX PB7 - TIM17_ TSC_ I2C1_ TIM4_CH2 CH1N G5_IO4 SDA - - USART1_RX PB8 - TIM16_ TSC_ TIM4_CH3 CH1 SYNC I2C1_ SCL SPI2_SCK/ I2S2_CK CEC USART3_TX COMP1 CAN_ _OUT RX - TIM19 EVENTOUT _CH3 PB9 - TIM17_ TIM4_CH4 CH1 I2C1_ SDA SPI2_NSS/ I2S2_WS IR-OUT USART3_RX COMP2 CAN_ _OUT TX - TIM19 EVENTOUT _CH4 PB10 - TIM2_ CH3 - TSC_ SYNCH - SPI2_SCK/ I2S2_CK CEC USART3_TX - - - - EVENTOUT PB14 - TIM15_ CH1 - TSC_ G6_IO1 - SPI2_MISO /I2S2_MCK - USART3_RTS - TIM12_ CH1 - - EVENTOUT PB15 RTC_REFIN TSC_ G6_IO2 - SPI2_MOSI /I2S2_SD - - - TIM12_ CH2 - - EVENTOUT TIM15_ TIM15_ CH2 CH1N - - TIM17 _CH1 TIM19 EVENTOUT _ETR - TIM15_ TIM3_ CH1 CH3 TIM19 EVENTOUT _CH1 - TIM15_ TIM3_ CH2 CH4 TIM19 EVENTOUT _CH2 - Pinouts and pin description 43/131 Table 13. Alternate functions for port PB STM32F378xx Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 DocID025608 Rev 4 PC0 - EVENTOUT TIM5_CH1_ETR - - - - - PC1 - EVENTOUT TIM5_CH2 - - - - - PC2 - EVENTOUT TIM5_CH3 - - SPI2_MISO/I2S2_MCK - - PC3 - EVENTOUT TIM5_CH4 - - SPI2_MOSI/I2S2_SD - - PC4 - EVENTOUT TIM13_CH1 PC5 - EVENTOUT PC6 - EVENTOUT TIM3_CH1 - - SPI1_NSS/I2S1_WS - - PC7 - EVENTOUT TIM3_CH2 - - SPI1_SCK/I2S1_CK - - PC8 - EVENTOUT TIM3_CH3 - - SPI1_MISO/I2S1_MCK - - PC9 - EVENTOUT TIM3_CH4 - - SPI1_MOSI/I2S1_SD - - PC10 - EVENTOUT TIM19_CH1 - - - SPI3_SCK/I2S3_CK USART3_TX PC11 - EVENTOUT TIM19_CH2 - - - SPI3_MISO/I2S3_MCK USART3_RX PC12 - EVENTOUT TIM19_CH3 - - - SPI3_MOSI/I2S3_SD USART3_CK PC13 - - - - - - - - PC14 - - - - - - - - PC15 - - - - - - - - - TSC_G3_IO1 - - - USART1_TX TSC_G3_IO2 - - - USART1_RX Pinouts and pin description 44/131 Table 14. Alternate functions for port PC STM32F378xx Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 DocID025608 Rev 4 PD0 - EVENTOUT TIM19_CH4 - - - - CAN_RX PD1 - EVENTOUT TIM19_ETR - - - - CAN_TX PD2 - EVENTOUT TIM3_ETR - - - - - PD3 - EVENTOUT - - - SPI2_MISO/I2S2_MCK - USART2_CTS PD4 - EVENTOUT - - - SPI2_MOSI/I2S2_SD - USART2_RTS PD5 - EVENTOUT - - - - USART2_TX PD6 - EVENTOUT - - - SPI2_NSS/I2S2_WS - USART2_RX PD7 - EVENTOUT - - - SPI2_SCK/I2S2_CK - USART2_CK PD8 - EVENTOUT - TSC_G6_IO3 - SPI2_SCK/I2S2_CK - USART3_TX PD9 - EVENTOUT - TSC_G6_IO4 - - - USART3_RX PD10 - EVENTOUT - - - - - USART3_CK PD11 - EVENTOUT - - - - - USART3_CTS PD12 - EVENTOUT TIM4_CH1 TSC_G8_IO1 - - - USART3_RTS PD13 - EVENTOUT TIM4_CH2 TSC_G8_IO2 - - - - PD14 - EVENTOUT TIM4_CH3 TSC_G8_IO3 - - - - PD15 - EVENTOUT TIM4_CH4 TSC_G8_IO4 - - - - - Pinouts and pin description 45/131 Table 15. Alternate functions for port PD STM32F378xx Pin Name AF0 AF1 AF2 TIM4_ETR AF3 AF4 AF5 AF6 - - - - USART1_TX USART1_RX PE0 - EVENTOUT PE1 - EVENTOUT - - - - - AF7 PE2 TRACECLK EVENTOUT - TSC_G7_IO1 - - - - PE3 TRACED0 EVENTOUT - TSC_G7_IO2 - - - - PE4 TRACED1 EVENTOUT - TSC_G7_IO3 - - - - PE5 TRACED2 EVENTOUT - TSC_G7_IO4 - - - - PE6 TRACED3 EVENTOUT - - - - - - DocID025608 Rev 4 PE7 - EVENTOUT - - - - - - PE8 - EVENTOUT - - - - - - PE9 - EVENTOUT - - - - - - PE10 - EVENTOUT - - - - - - PE11 - EVENTOUT - - - - - - PE12 - EVENTOUT - - - - - - PE13 - EVENTOUT - - - - - - PE14 - EVENTOUT - - - - - - PE15 - EVENTOUT - - - - - Pinouts and pin description 46/131 Table 16. Alternate functions for port PE USART3_RX STM32F378xx Pin Name AF0 AF1 AF2 AF3 PF0 - - - - PF1 - - - PF2 - EVENTOUT PF4 - EVENTOUT PF6 - EVENTOUT AF5 AF6 AF7 I2C2_SDA - - - - I2C2_SCL - - - - - I2C2_SMBA - - - - - - - - PF7 - EVENTOUT PF9 - PF10 - TIM4_CH4 AF4 - - I2C2_SCL - - I2C2_SDA EVENTOUT TIM14_CH1 - EVENTOUT - - SPI1_MOSI/I2S1_SD - USART3_RTS - - USART2_CK - - - - - - - - Pinouts and pin description 47/131 Table 17. Alternate functions for port PF DocID025608 Rev 4 STM32F378xx Memory mapping 5 STM32F378xx Memory mapping Figure 7. STM32F378xx memory map [))))))))  [)) &RUWH[0 LQWHUQDO SHULSKHUDOV [( $+% [ 5HVHUYHG [)) $+%  [ 5HVHUYHG [& [& $3%  [ 5HVHUYHG [$ [$ $3%  [ [  [))))))) [ 2SWLRQE\WHV [))))  6\VWHPPHPRU\ [)))' [ 3HULSKHUDOV 5HVHUYHG  [  [ 65$0 )ODVKPHPRU\ [ &2'( 5HVHUYHG [ [ 5HVHUYHG )ODVKV\VWHPPHPRU\ RU65$0GHSHQGLQJ RQ%227FRQILJXUDWLRQ [ 06Y9 48/131 DocID025608 Rev 4 STM32F378xx Memory mapping Table 18. STM32F378xx peripheral register boundary addresses(1) Bus AHB2 - AHB1 - Boundary address Size Peripheral 0x4800 1400 - 0x4800 17FF 1KB GPIOF 0x4800 1000 - 0x4800 13FF 1KB GPIOE 0x4800 0C00 - 0x4800 0FFF 1KB GPIOD 0x4800 0800 - 0x4800 0BFF 1KB GPIOC 0x4800 0400 - 0x4800 07FF 1KB GPIOB 0x4800 0000 - 0x4800 03FF 1KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB 0x4002 4000 - 0x4002 43FF 1 KB TSC 0x4002 3400 - 0x4002 3FFF 3 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH memory interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0800- 0x4002 0FFF 2 KB Reserved 0x4002 0400 - 0x4002 07FF 1 KB DMA2 0x4002 0000 - 0x4002 03FF 1 KB DMA1 0x4001 6C00 - 0x4001 FFFF 37 KB Reserved DocID025608 Rev 4 Reserved 49/131 51 Memory mapping STM32F378xx Table 18. STM32F378xx peripheral register boundary addresses(1) (continued) Bus APB2 - APB1 50/131 Boundary address Size Peripheral 0x4001 6800 - 0x4001 6BFF 1 KB SDADC3 0x4001 6400 - 0x4001 67FF 1 KB SDADC2 0x4001 6000 - 0x4001 63FF 1 KB SDADC1 0x4001 5C00 - 0x4001 5FFF 1 KB TIM19 0x4001 4C00 - 0x4001 5BFF 4 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1 0x4001 2800 - 0x4001 2FFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG + COMP 0x4000 4000 - 0x4000 FFFF 24 KB Reserved 0x4000 9C00 – 0x4000 9FFF 1 KB TIM18 0x4000 9800 - 0x4000 9BFF 1 KB DAC2 0x4000 7C00 - 0x4000 97FF 8 KB Reserved 0x4000 7800 - 0x4000 7BFF 1 KB CEC 0x4000 7400 - 0x4000 77FF 1 KB DAC1 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6800 - 0x4000 6FFF 2 KB Reserved 0x4000 6400 - 0x4000 67FF 1 KB CAN 0x4000 5C00 - 0x4000 63FF 2 KB Reserved DocID025608 Rev 4 STM32F378xx Memory mapping Table 18. STM32F378xx peripheral register boundary addresses(1) (continued) Bus APB1 Boundary address Size Peripheral 0x4000 5800 - 0x4000 5BFF 1 KB I2C2 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 4C00 - 0x4000 53FF 2 KB Reserved 0x4000 4800 - 0x4000 4BFF 1 KB USART3 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 4000 - 0x4000 43FF 1 KB Reserved 0x4000 3C00 - 0x4000 3FFF 1 KB SPI3/I2S3 0x4000 3800 - 0x4000 3BFF 1 KB SPI2/I2S2 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1C00 - 0x4000 1FFF 1 KB TIM13 0x4000 1800 - 0x4000 1BFF 1 KB TIM12 0x4000 1400 - 0x4000 17FF 1 KB TIM7 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0C00 - 0x4000 0FFF 1 KB TIM5 0x4000 0800 - 0x4000 0BFF 1 KB TIM4 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB TIM2 1. Cells in gray indicate Reserved memory locations. DocID025608 Rev 4 51/131 51 Electrical characteristics STM32F378xx 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD =1.8 V, VDDA = VDDSDx = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC and SDADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 069 52/131 DocID025608 Rev 4 069 STM32F378xx 6.1.6 Electrical characteristics Power supply scheme Figure 10. Power supply scheme 9 %$7 %DFNXSFLUFXLWU\ /6(57& :DNHXSORJLF %DFNXSUHJLVWHUV ±9 3RZHUVZLWFK 1325 ,1  î 9 ''  î  Q)  î  —) /HYHOVKLIWHU 2 87 *3 ,2 V #9 '' ,2 /RJLF  9 .HUQHOORJLF &38 'LJLWDO 0HPRULHV  ,1 2 87 *3 ,2 V #9''6' 9''6' ,1 /HYHOVKLIWHU 2 87 *3 ,2 V #9''6' /HYHOVKLIWHU  î 9 66 ,2 /RJLF ,2 /RJLF 9''6' 9''6' 9''6'  Q)  —)  Q)  —) 6LJPD 'HOWD $'&V 9666' 95()6' 95()6'  Q)  —) 95()6' 9 ''$ 9 ''$ 95()  Q)  —) 9 5() 9 5()  Q)  —) 9 5() $'& '$& $Q DOR J 5&V3//&203  9 66$ 06Y9 1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins. Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DocID025608 Rev 4 53/131 110 Electrical characteristics 6.1.7 STM32F378xx Current consumption measurement Figure 11. Current consumption measurement scheme )$$ 6$$ )$$! 6$$! )$$3$ 6$$3$ )$$3$ 6$$3$ -36 54/131 DocID025608 Rev 4 STM32F378xx 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics, Table 20: Current characteristics, and Table 21: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 19. Voltage characteristics(1) Symbol Ratings Min Max VDDA–VSS External main supply voltage (including VDDA, VDDSDx, VBAT) − 0.3 4.0 VDD–VSS External supply voltage VDD − 0.3 1.95 Allowed voltage difference for VDD > VDDA - 0.4 Allowed voltage difference for VDDSDx > VDDA - 0.4 Allowed voltage difference for VREFSD+ > VDDSD3 - 0.4 Allowed voltage difference for VREF+ > VDDA - 0.4 Input voltage on FT and FTf pins VSS −0.3 VDD + 4.0 Input voltage on POR pins VSS −0.3 VDDA + 4.0 VSS −0.3 4.0 Input voltage on TC pins on SDADCx channels inputs VSS − 0.3 4.0 Input voltage on any other pin VSS − 0.3 4.0 - 50 mV - 50 mV VDD–VDDA VDDSDx – VDDA VREFSD+ – VDDSD3 VREF+ – VDDA VIN (2) Input voltage on TTa pins (3) |VSSX - VSS| |VREFSD- - VSSx| VESD(HBM) Variations between all the different ground pins Electrostatic discharge voltage (human body model) Unit V see Section 6.3.11: Electrical sensitivity characteristics - 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected current values. 3. VDDSD12 is the external power supply for the PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). All main power (VDD, VDDSD12, VDDSD3 and VDDA) and ground (VSS, VSSSD, and VSSA) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between VDDA and VDD: VDDA must power on before or at the same time as VDD in the power up sequence. VDDA must be greater than or equal to VDD. The following relationship must be respected between VDDA and VDDSD12: VDDA must power on before or at the same time as VDDSD12 or VDDSD3 in the power up sequence. VDDA must be greater than or equal to VDDSD12 or VDDSD3. DocID025608 Rev 4 55/131 110 Electrical characteristics STM32F378xx The following relationship must be respected between VDDSD12 and VDDSD3: VDDSD3 must power on before or at the same time as VDDSD12 in the power up sequence. After power up (VDDSD12 > Vrefint = 1.2 V) VDDSD3 can be higher or lower than VDDSD12. The following relationship must be respected between VREFSD+ and VDDSD12, VDDSD3: VREFSD+ must be lower than VDDSD3. Depending on the SDADCx operation mode, there can be more constraints between VREFSD+, VDDSD12 and VDDSD3 which are described in reference manual RM0313. Table 20. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD_x and VDDSDx power lines (source)(1) 160 ΣIVSS Total current out of sum of all VSS_x and VSSSD ground lines (sink)(1) -160 Maximum current into each VDD_x or VDDSDx power pin (source)(1) 100 IVDD(PIN) IVSS(PIN) IIO(PIN) ΣIIO(PIN) Maximum current out of each VSS_x or VSSSD ground pin 25 Output current source by any I/O and control pin -25 Total output current sunk by sum of all IOs and control pins(2) Total output current sourced by sum of all IOs and control pins(2) pins(3) mA 80 -80 -5/+0 Injected current on TC and RST pin(4) Injected current on TTa ΣIINJ(PIN) -100 Output current sunk by any I/O and control pin Injected current on FT, FTf, POR and B IINJ(PIN) (sink)(1) Unit ±5 pins(5) ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 1. VDDSD12 is the external power supply for the PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). VDD (VDD_x) is the external power supply for all remaining I/O pins (the I/O pin ground is internally connected to VSS). 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 19: Voltage characteristics for the maximum allowed input voltage values. 5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note (2) below Table 61. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 21. Thermal characteristics Symbol TSTG TJ 56/131 Ratings Storage temperature range Maximum junction temperature DocID025608 Rev 4 Value Unit –65 to +150 °C 150 °C STM32F378xx Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 22. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 72 fPCLK1 Internal APB1 clock frequency - 0 36 fPCLK2 Internal APB2 clock frequency - 0 72 VDD Standard operating voltage Must have a potential equal to or lower than VDDA 1.65 1.95 2.4 3.6 1.65 3.6 2.2 3.6 1.65 3.6 2.2 3.6 1.65 3.6 2.4 3.6 1.65 3.6 (1) VDDA VDDSD12 VDDSD3 VREF+ Analog operating voltage (ADC and DAC used) Must have a potential equal to or higher than VDD Analog operating voltage (ADC and DAC not used) VDDSD12 operating voltage (SDADC used) Must have a potential equal to or lower than VDDA VDDSD12 operating voltage (SDADC not used) VDDSD3 operating voltage (SDADC used) Must have a potential equal to or lower than VDDA VDDSD3 operating voltage (SDADC not used) Positive reference voltage (ADC and DAC used) Positive reference voltage (ADC and DAC not used) Must have a potential equal to or lower than VDDA Unit MHz V V V V V VREFSD+ SDADCx positive reference voltage Must have a potential equal to or lower than any VDDSDx 1.1 3.6 V VBAT Backup operating voltage - 1.65 3.6 V Input voltage on FT, FTf and POR pins(2) - 0.3 5.2 Input voltage on TTa pins - 0.3 VDDA + 0.3 - 0.3 VDDSDx + 0.3 Input voltage on BOOT0 pin 0 5.5 Input voltage on any other pin - 0.3 VDD + 0.3 VIN Input voltage on TC pins on SDADCx channels inputs(3) - DocID025608 Rev 4 V 57/131 110 Electrical characteristics STM32F378xx Table 22. General operating conditions (continued) Symbol PD Parameter Min Max WLCSP66 - 376 LQFP100 - 434 LQFP64 - 444 LQFP48 - 364 BGA100 - 338 –40 85 –40 105 –40 105 –40 125 6 suffix version –40 105 7 suffix version –40 125 Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(4) Ambient temperature for 6 suffix version Maximum power dissipation Ambient temperature for 7 suffix version Maximum power dissipation TA TJ Conditions Junction temperature range Low power dissipation Low power dissipation (5) (5) Unit mW °C °C °C 1. When the ADC is used, refer to Table 59: ADC characteristics. 2. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled. 3. VDDSD12 is the external power supply for the PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. 5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax. 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 23 are derived from tests performed under the ambient temperature condition summarized in Table 22. Table 23. Operating conditions at power-up / power-down Symbol tVDD tVDDA 58/131 Parameter VDD rise time rate VDD fall time rate VDDA rise time rate VDDA fall time rate Conditions - - DocID025608 Rev 4 Min Max 0 ∞ 20 ∞ 0 ∞ 20 ∞ Unit µs/V STM32F378xx 6.3.3 Electrical characteristics Embedded reference voltage The parameters given in Table 25 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 24. Embedded internal reference voltage calibration values Calibration value name Description Memory address Raw data acquired at temperature of 30 °C VDDA= 3.3 V VREFINT_CAL 0x1FFF F7BA - 0x1FFF F7BB Table 25. Embedded internal reference voltage Symbol Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.20 1.23 1.25 V - 17.10 - - µs VDD = 3 V ±10 mV - - 10 mV Temperature coefficient - - - 100 ppm/°C Startup time - - - 10 µs tVREFINT_RD Internal reference voltage (3) temporization Y - 1.50 2.50 4.50 ms VREFINT TS_vrefint(1) Parameter Internal reference voltage ADC sampling time when reading the internal reference voltage Internal reference voltage VREFINT_s(2) spread over the temperature range TCoeff(2) tSTART (2) 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. 3. Guaranteed by design. Latency between the time when the NPOR pin is set to 1 by the application and the time when the VREFINTRDYF bit is set to 1 by the hardware. DocID025608 Rev 4 59/131 110 Electrical characteristics 6.3.4 STM32F378xx Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 11: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in input mode with a static value at VDD or VSS (no load) • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz) • Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) • When the peripherals are enabled fAPB1 = fAHB/2 , fAPB2 = fAHB • When fHCLK > 8 MHz PLL is ON and PLL inputs is equal to HSI/2 = 4 MHz (if internal clock is used) or HSE = 8 MHz (if HSE bypass mode is used) The parameters given in Table 26 to Table 32 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. Table 26. Typical and maximum current consumption from VDD supply at VDD = 1.8V(1) All peripherals enabled Symbol Parameter Conditions HSE bypass, PLL on IDD Supply current in Run mode, code executing from Flash HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off 60/131 fHCLK Max @ TA(2) Typ All peripherals disabled Max @ TA(2) Typ 25 °C 85 °C 105 °C 72 MHz 64.9 75.3 77.1 84.0 64 MHz 58.3 67.0 68.7 48 MHz 44.8 50.5 32 MHz 30.7 Unit 25 °C 85 °C 105 °C 31.0 34.0 35.0 36.7 74.4 27.8 30.4 31.2 32.7 52.0 55.5 21.3 23.1 23.9 24.8 33.9 35.1 36.7 14.6 15.8 16.4 17.1 24 MHz 23.4 25.6 26.6 27.5 11.3 12.1 12.7 13.3 8 MHz 8.1 8.9 9.3 9.9 4.0 4.4 4.8 5.3 1 MHz 1.3 1.7 2.0 2.5 0.9 1.2 1.6 2.0 64 MHz 54.0 61.6 63.2 68.2 27.5 30.1 30.9 32.3 48 MHz 41.5 46.6 47.9 51.0 21.1 22.9 23.6 24.5 32 MHz 28.4 31.3 32.5 33.9 14.5 15.6 16.2 16.9 24 MHz 21.8 23.8 24.8 25.6 7.6 8.2 8.8 9.3 8 MHz 8.4 8.9 9.5 4.0 4.4 4.8 5.3 7.7 DocID025608 Rev 4 mA STM32F378xx Electrical characteristics Table 26. Typical and maximum current consumption from VDD supply at VDD = 1.8V(1) (continued) All peripherals enabled Symbol Parameter Conditions HSE bypass, PLL on Supply current in Run mode, code executing from RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off IDD HSE bypass, PLL on Supply current in Sleep mode, code executing from Flash or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off fHCLK Max @ TA(2) Typ All peripherals disabled Max @ TA(2) Typ 25 °C 85 °C 105 °C 72 MHz 65.5 77.8 78.1 86.6 64 MHz 58.7 69.0 69.5 48 MHz 44.8 51.6 32 MHz 30.4 Unit 25 °C 85 °C 105 °C 31.6 35.1 35.6 38.0 76.5 28.2 31.2 31.7 33.7 52.2 56.6 21.4 23.3 23.9 25.1 34.2 34.9 37.1 14.4 15.6 16.1 16.8 24 MHz 23.1 25.7 26.2 27.6 10.9 11.8 12.2 12.8 8 MHz 7.7 8.4 8.9 9.5 3.6 4.0 4.4 5.0 1 MHz 1.0 1.3 1.7 2.2 0.5 0.7 1.1 1.7 64 MHz 54.3 63.3 63.9 70.1 27.9 30.8 31.2 33.2 48 MHz 41.5 47.3 48.0 51.9 21.1 23.0 23.5 24.7 32 MHz 28.2 31.5 32.2 34.1 14.2 15.3 15.9 16.5 24 MHz 21.4 23.6 24.3 25.5 7.2 7.8 8.2 8.8 8 MHz 7.3 7.9 8.4 9.1 3.6 4.0 4.4 4.9 72 MHz 46.4 54.0 54.8 59.5 7.2 7.9 8.4 9.0 64 MHz 41.5 48.0 48.8 52.6 6.5 7.1 7.5 8.1 48 MHz 31.6 35.9 36.7 39.0 4.9 5.3 5.8 6.4 32 MHz 21.4 23.8 24.7 25.7 3.3 3.7 4.2 4.7 24 MHz 16.2 17.9 18.6 19.4 2.5 2.8 3.3 3.8 8 MHz 5.4 5.9 6.5 7.0 0.8 1.1 1.6 2.1 1 MHz 0.7 1.0 1.4 1.9 0.1 0.3 0.7 1.3 64 MHz 37.0 42.4 43.3 46.4 6.1 6.7 7.2 7.7 48 MHz 28.2 31.8 32.7 34.5 4.6 5.0 5.5 6.1 32 MHz 19.1 21.2 22.0 22.9 3.1 3.5 4.0 4.5 24 MHz 14.5 16.0 16.7 17.4 1.7 2.0 2.4 2.9 8 MHz 5.5 6.0 6.6 0.8 1.1 1.5 2.0 5.0 mA 1. To calculate complete device consumption there must be added consumption from VDDA (Table 27). 2. Guaranteed by characterization results. DocID025608 Rev 4 61/131 110 Electrical characteristics STM32F378xx Table 27. Typical and maximum current consumption from VDDA supply VDDA= 2.4 V Symbol Parameter Conditions (1) HSE bypass, PLL on IDDA Supply current in Run or Sleep mode, code executing from Flash or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off fHCLK VDDA= 3.6 V Max @ TA(2) Typ Max @ TA(2) Typ 25 °C 85 °C 105 °C 72 MHz 226 250 272 279 247 268 302 308 64 MHz 200 223 245 250 218 240 267 273 48 MHz 150 172 189 194 163 182 207 210 32 MHz 103 122 137 139 111 130 147 148 24 MHz 80 99 109 111 86 102 117 117 8 MHz 1 3 3 3 1 3 3 4 1 MHz 1 3 3 4 1 3 4 4 64 MHz 268 293 319 325 296 321 351 358 48 MHz 219 242 263 267 241 263 290 296 32 MHz 171 193 210 213 189 209 230 234 24 MHz 148 169 181 184 165 182 200 203 8 MHz 84 86 87 80 93 95 97 68 25 °C Unit 85 °C 105 °C µA 1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency. 2. Guaranteed by characterization results. Table 28. Typical and maximum VDD consumption in Stop mode Max Symbol Parameter Conditions Typ@VDD (VDD=1.8 V, VDDA=3.3 V) IDD Supply current in Stop mode All oscillators OFF 5.19 Note: TA= 25 °C TA= 85 °C TA= 105 °C 29.2 485.7 1052.2 Unit µA To calculate complete device consumption there must be added consumption from VDDA (Table 29. Table 29. Typical and maximum VDDA consumption in Stop mode Symbol Parameter IDDA Typ@VDDA (VDD= 1.8 V) Max(1) 1.8 V 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA= TA= TA= 25 °C 85 °C 105 °C Conditions Supply All oscillators current in OFF Stop mode 0.74 0.76 0.78 0.81 0.86 1. Data based on characterization results and tested in production. 62/131 DocID025608 Rev 4 0.92 1 8.8 10.1 11.6 Unit µA STM32F378xx Electrical characteristics Table 30. Typical and maximum current consumption from VBAT supply(1) Max(2) IDD_ VBAT Backup domain supply current = 3.6 V = 3.3 V = 2.7 V = 2.4 V = 2.0 V Conditions = 1.8 V Symbol Parameter = 1.65 V Typ @ VBAT TA= 25 °C LSE & RTC ON; "Xtal mode" lower 0.50 0.52 0.55 0.63 0.70 0.87 0.95 driving capability; LSEDRV[1:0] = '00' 1.1 LSE & RTC ON; "Xtal mode" higher 0.85 0.90 0.93 1.02 1.10 1.27 1.38 driving capability; LSEDRV[1:0] = '11' 1.6 TA= TA= 85 °C 105 °C 1.6 Unit 2.2 µA 2.4 3.0 1. Crystal used: Abracon ABS07-120-32.768kHz-T with 6 pF of CL for typical values. 2. Guaranteed by characterization results. Figure 12. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00')   9 ) 6"!4—!  9  9 9  9  9  9  9  ƒ& ƒ& ƒ& 4!  # DocID025608 Rev 4 ƒ& -36 63/131 110 Electrical characteristics STM32F378xx Typical current consumption The MCU is placed under the following conditions: • VDD = 1.8 V, VDDA = VDDSD12 = VDDSD3 = 3.3 V • All I/O pins are in analog input configuration • The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz) • Prefetch is ON • When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8, 16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively Table 31. Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol Parameter Conditions Running from HSE crystal clock 8 MHz, code executing from Flash, PLL on IDD Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash, PLL off 64/131 fHCLK Peripherals enabled Peripherals disabled 72 MHz 61.0 28.6 64 MHz 54.7 25.7 48 MHz 42.0 20.0 32 MHz 28.5 13.7 24 MHz 21.8 10.5 16 MHz 14.6 7.3 8 MHz 7.5 3.8 4 MHz 4.3 2.2 2 MHz 2.5 1.4 1 MHz 1.6 1.0 500 kHz 1.2 0.8 125 kHz 0.9 0.6 DocID025608 Rev 4 Unit mA STM32F378xx Electrical characteristics Table 31. Typical current consumption in Run mode, code with data processing running from Flash (continued) Typ Symbol Parameter Conditions Running from HSE crystal clock 8 MHz, code executing from Flash, PLL on IDDA(1)(2) Supply current in Run mode from VDDA supply Running from HSE crystal clock 8 MHz, code executing from Flash, PLL off ISDADC12 + ISDADC3 Supply currents in Run mode from VDDSD12 and VDDSD3 (SDADCs are off) - fHCLK Peripherals enabled Peripherals disabled 72 MHz 243.1 243.1 64 MHz 214.1 214.1 48 MHz 159.4 159.4 32 MHz 109.1 109.1 24 MHz 84.7 84.7 16 MHz 60.6 60.6 8 MHz 1.0 1.0 4 MHz 1.0 1.0 2 MHz 1.0 1.0 1 MHz 1.0 1.0 500 kHz 1.0 1.0 125 kHz 1.0 1.0 - 2.5 1 Unit µA µA 1. VDDA monitoring is off, VDDSD12 monitoring is off. 2. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs, Comparators, etc. is not included. Refer to those peripherals characteristics in the subsequent sections. DocID025608 Rev 4 65/131 110 Electrical characteristics STM32F378xx Table 32. Typical current consumption in Sleep mode, code running from Flash or RAM Typ Symbol Parameter Conditions Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL on IDD Supply current in Sleep mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL off Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL on IDDA(1) Supply current in Sleep mode from VDDA supply Running from HSE crystal clock 8 MHz, code executing from Flash or RAM, PLL off fHCLK Peripherals enabled Peripherals disabled 72 MHz 42.6 6.7 64 MHz 38.0 6.0 48 MHz 28.7 4.5 32 MHz 19.3 3.1 24 MHz 14.6 2.4 16 MHz 9.8 1.7 8 MHz 4.8 0.8 4 MHz 3.0 0.7 2 MHz 1.9 0.6 1 MHz 1.3 0.6 500 kHz 1.0 0.6 125 kHz 0.8 0.5 72 MHz 243.1 243.1 64 MHz 214.1 214.1 48 MHz 159.4 159.4 32 MHz 109.1 109.1 24 MHz 84.7 84.7 16 MHz 60.6 60.6 8 MHz 1.0 1.0 4 MHz 1.0 1.0 2 MHz 1.0 1.0 1 MHz 1.0 1.0 500 kHz 1.0 1.0 125 kHz 1.0 1.0 1. VDDA monitoring is off, VDDSD12 monitoring is off. 66/131 DocID025608 Rev 4 Unit mA µA STM32F378xx Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 50: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC and SDADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. Under reset conditions all I/Os are configured in input floating mode so if some inputs do not have a defined voltage level then they can generate additional consumption. This consumption is visible on VDD supply and also on VDDSDx supply because some I/Os are powered from SDADCx supply (all I/Os which have SDADC analog input functionality). I/O dynamic current consumption In addition to the internal peripheral current consumption (see Table 34: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+ CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. DocID025608 Rev 4 67/131 110 Electrical characteristics STM32F378xx Table 33. Switching output I/O current consumption Symbol Parameter Conditions(1) VDD = 1.8 V Cext = 0 pF C = CINT + CEXT+ CS VDD = 1.8 V Cext = 10 pF C = CINT + CEXT+ CS ISW I/O current consumption VDD = 1.8 V Cext = 22 pF C = CINT + CEXT+ CS VDD = 1.8 V Cext = 33 pF C = CINT + CEXT+ CS VDD = 1.8 V Cext = 47 pF C = CINT + CEXT+ CS 1. CS = 5 pF (estimated value). 68/131 DocID025608 Rev 4 I/O toggling frequency (fSW) Typ 2 MHz 0.09 4 MHz 0.17 8 MHz 0.34 18 MHz 0.79 36 MHz 1.50 48 MHz 2.06 2 MHz 0.13 4 MHz 0.26 8 MHz 0.50 18 MHz 1.18 36 MHz 2.27 48 MHz 3.03 2 MHz 0.18 4 MHz 0.36 8 MHz 0.69 18 MHz 1.60 36 MHz 3.27 2 MHz 0.23 4 MHz 0.45 8 MHz 0.87 18 MHz 2.0 36 MHz 3.7 2 MHz 0.29 4 MHz 0.55 8 MHz 1.09 18 MHz 2.43 Unit mA mA STM32F378xx Electrical characteristics On-chip peripheral current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input configuration. • All peripherals are disabled unless otherwise mentioned. • The given value is calculated by measuring the current consumption • – with all peripherals clocked off; – with only one peripheral clocked on. Ambient operating temperature at 25°C and VDD = 1.8 V, VDDA = VDDSD12 = VDDSD3 = 3.3 V. Table 34. Peripheral current consumption Typical consumption(1) Peripheral AHB peripherals - BusMatrix(2) 6.9 DMA1 18.3 DMA2 4.8 CRC 2.6 GPIOA 12.2 GPIOB 11.9 GPIOC 4.3 GPIOD 12.0 GPIOE 4.4 GPIOF 3.7 TSC 5.7 APB2 peripherals APB2-Bridge (3) 4.2 SYSCFG & COMP 2.8 ADC1 17.7 SPI1 12.3 USART1 22.9 TIM15 15.7 TIM16 12.2 TIM17 12.1 TIM19 18.5 SDAC1 10.8 SDAC2 10.5 SDAC3 10.3 DocID025608 Rev 4 Unit µA/MHz 69/131 110 Electrical characteristics STM32F378xx Table 34. Peripheral current consumption (continued) Typical consumption(1) Peripheral Unit APB1 peripherals APB1-Bridge(3) 6.9 TIM2 47.9 TIM3 36.8 TIM4 36.9 TIM5 45.5 TIM6 8.4 TIM7 8.2 TIM12 21.3 TIM13 14.2 TIM14 14.4 TIM18 10.1 WWDG 4.7 SPI2 24.3 SPI3 25.3 USART2 45.3 USART3 43.1 I2C1 14.0 I2C2 13.9 CAN 38.1 DAC2 7.7 PWR 5.4 DAC1 14.8 CEC 5.4 µA/MHz 1. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs, Comparators, etc. is not included. Refer to those peripherals characteristics in the subsequent sections. 2. The BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2). 3. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus. 6.3.5 Wakeup time from low-power mode The wakeup times given in Table 44 are measured from the wakeup event trigger to the first instruction executed by the CPU. The clock source used to wake up the device depends from the current operating mode: • Stop or sleep mode: the wakeup event is WFE. • The WKUP1 (PA0) pin is used to wakeup from stop and sleep modes. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. 70/131 DocID025608 Rev 4 STM32F378xx Electrical characteristics Table 35. Low-power mode wakeup timings Symbol Parameter Conditions Typ @VDD = 1.8 V, VDDA = 3.3 V Max Unit 3.6 5.21 µs tWUSTOP Wakeup from Stop mode - tWUSLEEP Wakeup from Sleep mode After WFE instruction tWUPOR Wakeup from Power off state Startup after NPOR pin release 6.3.6 CPU clock cycles 6 62.6 100 µs External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 13. Table 36. High-speed external user clock characteristics Symbol Parameter(1) User external clock source fHSE_ext frequency Conditions Min CSS is on or PLL is used 1 CSS is off, PLL not used 0 Typ Max Unit 8 32 MHz VHSEH OSC_IN input pin high level voltage - 0.7 VDD - VDD VHSEL OSC_IN input pin low level voltage - VSS - 0.3 VDD - 15 - - tw(HSEH) OSC_IN high or low time tw(HSEL) tr(HSE) tf(HSE) OSC_IN rise or fall time V ns - - - 20 1. Guaranteed by design. DocID025608 Rev 4 71/131 110 Electrical characteristics STM32F378xx Figure 13. High-speed external clock source AC timing diagram WZ +6(+ 9+6(+  9+6(/  WU +6( WI +6( W WZ +6(/ 7+6( 069 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 14. Table 37. Low-speed external user clock characteristics Symbol Parameter(1) Conditions Min Typ Max Unit kHz fLSE_ext User External clock source frequency - - 32.768 1000 VLSEH OSC32_IN input pin high level voltage - 0.7VDD - VDD VLSEL OSC32_IN input pin low level voltage - VSS - 0.3VDD tw(LSEH) tw(LSEL) OSC32_IN high or low time - 450 - - tr(LSE) tf(LSE) OSC32_IN rise or fall time ns 1. Guaranteed by design. 72/131 V DocID025608 Rev 4 - - - 50 STM32F378xx Electrical characteristics Figure 14. Low-speed external clock source AC timing diagram WZ /6(+ 9/6(+  9/6(/  WU /6( WI /6( W WZ /6(/ 7/6( 069 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 38. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 38. HSE oscillator characteristics Conditions(1) Min(2) Typ Max(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - kΩ During startup(3) - - 8.5 VDD = 1.8 V, Rm= 30 Ω, CL= 10 pF@8 MHz - 0.4 - VDD = 1.8 V, Rm= 45 Ω, CL= 10 pF@8 MHz - 0.5 - VDD = 1.8 V, Rm= 30 Ω, CL=5 pF@32 MHz - 0.8 - VDD = 1.8 V, Rm= 30 Ω, CL= 10 pF@32 MHz - 1 - VDD = 1.8 V, Rm= 30 Ω, CL= 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Symbol Parameter fOSC_IN RF HSE current consumption IDD Oscillator transconductance gm tSU(HSE) (4) Startup time mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer DocID025608 Rev 4 73/131 110 Electrical characteristics STM32F378xx For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 15). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 15. Typical application with an 8 MHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7  I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. 74/131 DocID025608 Rev 4 STM32F378xx Electrical characteristics Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 39. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol IDD gm Parameter LSE current consumption Oscillator transconductance tSU(LSE)(3) Startup time Conditions(1) Min(2) Typ Max(2) Unit LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]= 10 medium low driving capability - - 1 LSEDRV[1:0] = 01 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]= 10 medium low driving capability 8 - - LSEDRV[1:0] = 01 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDD is stabilized - 2 - µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID025608 Rev 4 75/131 110 Electrical characteristics STM32F378xx Figure 16. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ I/6( 26&B,1 'ULYH SURJUDPPDEOH DPSOLILHU N+ ] UHVRQDWRU 26&B28 7 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. 6.3.7 Internal clock source characteristics The parameters given in Table 40 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. The provided curves are characterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 40. HSI oscillator characteristics(1) Symbol fHSI TRIM DuCy(HSI) ACCHSI Parameter Conditions Min Typ Max Unit Frequency - - 8 - MHz HSI user trimming step - - - 1(2) % - 45(2) % - 55(2) TA = –40 to 105 °C –3.8(3) - 4.6(3) % TA = –10 to 85 °C –2.9(3) - 2.9(3) % TA = 0 to 70 °C –2.3(3) - –2.2(3) % –1 - 1 % Duty cycle Accuracy of the HSI oscillator (factory calibrated) TA = 25 °C tsu(HSI) HSI oscillator startup time - 1(3) - 2(3) µs IDD(HSI) HSI oscillator power consumption - - 80 100(3) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design. 3. Guaranteed by characterization results. 76/131 DocID025608 Rev 4 STM32F378xx Electrical characteristics Figure 17. HSI oscillator accuracy characterization results  -!8 -).     4; #= !                -36 Low-speed internal (LSI) RC oscillator Table 41. LSI oscillator characteristics(1) Symbol fLSI tsu(LSI) Parameter Min Typ Max Unit 30 40 60 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 1.2 µA Frequency (2) IDD(LSI)(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design. 6.3.8 PLL characteristics The parameters given in Table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 22. Table 42. PLL characteristics Symbol Parameter Value Unit Min Typ Max 1(2) - 24(2) MHz PLL input clock duty cycle (2) 40 - 60(2) % fPLL_OUT PLL multiplier output clock 16(2) - 72 MHz tLOCK PLL lock time - - 200(2) µs - (2) ps fPLL_IN Jitter PLL input clock(1) Cycle-to-cycle jitter - 300 1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design. DocID025608 Rev 4 77/131 110 Electrical characteristics 6.3.9 STM32F378xx Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 43. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs Page (2 kB) erase time TA = –40 to +105 °C 20 - 40 ms tME Mass erase time TA = –40 to +105 °C 20 - 40 ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design. Table 44. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle 10 (2) at TA = 105 °C kcycles(2) at TA = 55 °C 1. Guaranteed by characterization results. 2. Cycling performed over the whole temperature range. 78/131 Min(1) DocID025608 Rev 4 10 20 Unit kcycles Years STM32F378xx 6.3.10 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 45. They are based on the EMS levels and classes defined in application note AN1709. Table 45. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 1.8 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin fHCLK = 72 MHz to induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 1.8 V, LQFP100, TA = +25 °C, fHCLK = 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. DocID025608 Rev 4 79/131 110 Electrical characteristics STM32F378xx To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 46. EMI characteristics Symbol Parameter SEMI 6.3.11 Conditions Monitored frequency band Max vs. [fHSE/fHCLK] Unit 8/72 MHz 0.1 to 30 MHz VDD - 1.8 V, TA - 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with IEC 130 MHz to 1 GHz 61967-2 SAE EMI Level 16 20 dBµV 26 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 47. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C, conforming to JESD22A114 2 2000 TA = +25 °C, conforming to ANSI/ESD STM5.3.1, LQFP100, LQFP64, LQFP48 and BGA100 packages II 500 TA = +25 °C, conforming to JESD22C101, WLCSP66 package II 250 Electrostatic discharge VESD(CDM) voltage (charge device model) 1. Guaranteed by characterization results. 80/131 DocID025608 Rev 4 Unit V STM32F378xx Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 48. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The test results are given in Table 49. DocID025608 Rev 4 81/131 110 Electrical characteristics STM32F378xx Table 49. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ Note: 82/131 Injected current on BOOT0 pin -0 NA Injected current on PC0 pin -0 +5 Injected current on TC type I/O pins on VDDSD12 power domain: PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB10 with induced leakage current on other pins from this group less than -50 µA -5 +5 Injected current on TC type I/O pins on VDDSD3 power domain: PB14, PB15, PD8, PD9, PD10, PD12, PD13, PD14, PD15 with induced leakage current on other pins from this group less than -50 µA -5 +5 Injected current on TTa type pins: PA4, PA5, PA6 with induced leakage current on adjacent pins less than -10 µA -5 +5 Injected current NPOR pin and on any other FT and FTf pins -5 NA Injected current on any other pins -5 +5 mA It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. DocID025608 Rev 4 STM32F378xx 6.3.13 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under the conditions summarized in Table 22. All I/Os are CMOS and TTL compliant. Table 50. I/O static characteristics (1) Symbol VIL Parameter Low level input voltage Conditions High level input voltage Vhys Ilkg Input leakage current (3) Max Unit (2) - - 0.3VDD+0.07 FT and FTf I/O - - 0.475VDD–0.2(2) BOOT0 - - 0.3VDD–0.3(2) All I/Os except BOOT0 pin - - 0.3VDD +0.398(2) - - 0.445VDD FT and FTf I/O 0.5VDD+0.2(2) - - BOOT0 0.2VDD+0.95(2) - - All I/Os except BOOT0 pin 0.7VDD - - - 200(2) - FT and FTf I/O - 100(2) - BOOT0 - 300(2) - TC, FT, FTf and POR I/O TTa in digital mode VSS ≤ VIN ≤ VDD - - ±0.1 TTa in digital mode VDD ≤VIN ≤VDDA - - 1 TTa in analog mode VSS ≤VIN ≤VDDA - - ±0.2 FT and FTf I/O (3) VDD ≤VIN ≤5 V - - 10 POR VDDA ≤ VIN ≤ 5 V - - 10 25 40 55 TC and TTa I/O Schmitt trigger hysteresis Typ TC and TTa I/O TC and TTa I/O VIH Min RPU Weak pull-up equivalent resistor(4) VIN = VSS RPD Weak pull-down equivalent resistor(4) VIN = VDD 25 40 55 CIO I/O pin capacitance - - 5 - V mV µA kΩ pF 1. VDDSD12 is the external power supply for the PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). For those pins all VDD supply references in this table are related to their given VDDSDx power supply. 2. Guaranteed by design. 3. Leakage could be higher than maximum value, if negative current is injected on adjacent pins. 4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). DocID025608 Rev 4 83/131 110 Electrical characteristics Note: STM32F378xx I/O pins are powered from VDD voltage except pins which can be used as SDADC inputs: - The PB10 and PE7 to PE15 I/O pins are powered from VDDSD12. - PB14 to PB15 and PD8 to PD15 I/O pins are powered from VDDSD3. All I/O pin ground is internally connected to VSS. VDD mentioned in the Table 50 represents power voltage for a given I/O pin (VDD or VDDSD12 or VDDSD3). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology parameters. The coverage of these requirements is shown in Figure 18 for standard I/Os, and in Figure 19 for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production. Figure 18. TC and TTa I/O input characteristics 9,/9,+ 9   XODWLRQV 9 ''  HVLJQVLP G Q VHGR PHQWV9,+PLQ 9'' 9,+PLQ  &026VWDQGDUGUHTXLUH 7HVWHGLQSURGXFWLRQ 9 ,+PLQ %D  QV   LPXODWLR '' V 9H VLJQ G Q VHGR $UHDQRWGHWHUPLQHG  9 ,/PD[  9,/PD[ %D  7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 9'' 9    069 Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics 9,/9,+ 9 9,+PLQ  7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUHPHQWV9,+PLQ 9''  XODWLRQV ' 9 ' QVLP 9 ,+PLQ RQGHVLJ G %DVH    XODWLRQV 9 ''  VLJQVLP 9 ,/PD[ GRQGH %DVH $UHDQRWGHWHUPLQHG  9,/PD[  &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 7HVWHGLQSURGXFWLRQ 9'' 9    069 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed VOL/VOH). 84/131 DocID025608 Rev 4 STM32F378xx Electrical characteristics In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on all VDD_x and VDDSDx, plus the maximum Run consumption of the MCU sourced on VDD cannot exceed the absolute maximum rating SIVDD (see Table 20). • The sum of the currents sunk by all the I/Os on all VSS_x and VSSSD, plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating SIVSS (see Table 20). Output voltage levels Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified). Table 51. Output voltage characteristics (1) Symbol Parameter Conditions Min Max VOL(2) Output low level voltage for an I/O pin IIO = +4 mA 1.65 V < VDD < 1.95 V - 0.4 VOH(3) Output high level voltage for an I/O pin IIO = +4 mA 1.65 V < VDD < 1.95 V VDD–0.4 - VOL(2)(4) Output low level voltage for an I/O pin powered by VDDSDx(1) VOH(3)(4) Output high level voltage for an I/O pin powered by VDDSDx(1) VOL(2)(4) Output low level voltage for an I/O pin powered by VDDSDx(1) VOH(3)(4) Output high level voltage for an I/O pin powered by VDDSDx(1) VOLFM+(2) Output low level voltage for a FTf I/O pins in FM+ mode IIO = +8 mA 2.7 V < VDDSDx < 3.6 V VDDSDx –0.4 0.4 IIO = +20 mA 2.7 V < VDDSDx < 3.6 V VDDSDx –1.3 1.3 IIO = +10 mA 1.65 V < VDD < 1.95 V - Unit V - 0.4 1. VDDSD12 is the external power supply for the PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). For those pins all VDD supply references in this table are related to their given VDDSDx power supply. 2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 20 and the sum of IIO (I/O ports and control pins) must not exceed IVSS(Σ) . 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 20 and the sum of IIO (I/O ports and control pins) must not exceed IVDD(Σ) . 4. Guaranteed by design. Note: I/O pins are powered from VDD voltage except pins which can be used as SDADC inputs: - The PB10 and PE7 to PE15 I/O pins are powered from VDDSD12. - PB14 to PB15 and PD8 to PD15 I/O pins are powered from VDDSD3. All I/O pin ground is internally connected to VSS. VDD mentioned in the Table 51 represents power voltage for a given I/O pin (VDD or VDDSD12 or VDDSD3). DocID025608 Rev 4 85/131 110 Electrical characteristics STM32F378xx Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 20 and Table 52, respectively. Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 52. I/O AC characteristics(1) OSPEEDRy [1:0] value(1) x0 01 Symbol Conditions Min Max Unit CL = 50 pF, VDD = 1.65 V to 1.95 V - 1 MHz - 125(3) - 125(3) - 4 - 62.5 - 62.5 Maximum frequency(2)(3) CL = 50 pF, VDD = 1.65 V to 1.95 V - 10 tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 1.65 V to 1.95 V - 25 tr(IO)out Output low to high level rise time CL = 50 pF, VDD = 1.65 V to 1.95 V fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time tEXTIpw Pulse width of external signals detected by the EXTI controller fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out 11 FM+ configuration (4) - Parameter CL = 50 pF, VDD = 1.65 V to 1.95 V CL = 50 pF, VDD = 1.65 V to 1.95 V ns CL = 50 pF, VDD = 1.65 V to 1.95 V ns MHz ns CL = 50 pF, VDD = 1.65 V to 1.95 V - - 25 - 0.5 - 16 - 44 10 - 2. The maximum frequency is defined in Figure 20. 3. Guaranteed by design. 4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F37xx reference manual RM0313 for a description of FM+ I/O mode configuration DocID025608 Rev 4 MHz ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0313 reference manual for a description of GPIO Port configuration register. 86/131 MHz ns STM32F378xx Electrical characteristics Figure 20. I/O AC characteristics definition      (;7(51$/ 287387 21S)  W I ,2 RXW W U ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WW ” 7DQGLIWKHGXW\F\FOHLV  U I ZKHQORDGHGE\S) 069 6.3.14 NRST and NPOR pins characteristics NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 50). Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 22. Table 53. NRST pin characteristics Symbol Conditions Min Typ Max VIL(NRST)(1) NRST Input low level voltage - - - 0.3VDD + 0.07(1) VIH(NRST)(1) NRST Input high level voltage - 0.445VDD + 0.398(1) - - NRST Schmitt trigger voltage hysteresis - - 200 - mV VIN = VSS 25 40 55 kΩ NRST Input filtered pulse - - - 100 ns NRST Input not filtered pulse - 700 - - ns Vhys(NRST)(1) Weak pull-up equivalent resistor(2) RPU VF(NRST)(1) VNF(NRST) Parameter (1) Unit V 1. Guaranteed by design. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). DocID025608 Rev 4 87/131 110 Electrical characteristics STM32F378xx Figure 21. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLWU\  538 ,QWHUQDOUHVHW 1567  )LOWHU —) 069 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 53. Otherwise the reset will not be taken into account by the device. NPOR pin characteristics The NPOR pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor to the VDDA, RPU (see Table 50). Unless otherwise specified, the parameters given in Table 54 are derived from tests performed under ambient temperature and VDDA supply voltage conditions summarized in Table 22. Table 54. NPOR pin characteristics Symbol Conditions Min Typ Max - - - 0.475VDDA - 0.2 VIH(NPOR)(1) NPOR Input high level voltage - 0.5VDDA + 0.2 - - NPOR Schmitt trigger voltage hysteresis - - 100 - mV VIN = VSS 25 40 55 kΩ VIL(NPOR)(1) Vhys(NPOR)(1) RPU Parameter NPOR Input low level voltage Weak pull-up equivalent resistor(2) Unit V 1. Guaranteed by design. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 88/131 DocID025608 Rev 4 STM32F378xx 6.3.15 Electrical characteristics Communications interfaces I2C interface characteristics The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 55. Refer also to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 55. I2C characteristics(1) Standard Symbol Fast mode Fast mode + Parameter Unit Min Max Min Max Min Max 0 100 0 400 0 1000 KHz fSCL SCL clock frequency tLOW Low period of the SCL clock 4.7 - 1.3 - 0.5 - µs tHIGH High Period of the SCL clock 4 - 0.6 - 0.26 - µs tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 ns tf Fall time of both SDA and SCL signals - 300 - 300 - 120 ns Data hold time 0 - 0 - 0 - µs - 3.45(2) - 0.9(2) - 0.45(2) µs - 3.45(2) - 0.9(2) - 0.45(2) µs tHD;DAT tVD;DAT Data valid time tVD;ACK Data valid acknowledge time tSU;DAT Data setup time 250 - 100 - 50 - ns tHD;STA Hold time (repeated) START condition 4.0 - 0.6 - 0.26 - µs tSU;STA Set-up time for a repeated START condition 4.7 - 0.6 - 0.26 - µs tSU;STO Set-up time for STOP condition 4.0 - 0.6 - 0.26 - µs Bus free time between a STOP and START condition 4.7 - 1.3 - 0.5 - µs - 400 - 400 - 550 pF tBUF Cb Capacitive load for each bus line 1. The I2C characteristics are the requirements from the I2C bus specification rev03. They are guaranteed by design when the I2Cx_TIMING register is correctly programmed (refer to reference manual). These characteristics are not tested in production. 2. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for standard mode, fast mode and fast mode plus, but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time. DocID025608 Rev 4 89/131 110 Electrical characteristics STM32F378xx Table 56. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design. 2. Spikes width below tAF(min) are filtered. 3. Spikes width above tAF(max) are not filtered. Figure 22. I2C bus AC waveforms and measurement circuit 9''B,& 9''B,& 5S 5S 0&8 5V 6'$ ,&EXV 5V 6&/ UG 4%" U 46%"5 US     UG U )%%"5     4$U )%45" U 7%%"5 U )*()     DPOUJOVFE U -08 G4$- 4 DPOUJOVFE US UIDMPDL U #6' TUDMPDLDZDMF 4%" U 4645" U )%45" U 41 U 7%"$, U 46450 4$4S UIDMPDL 1 4 069 1. Legend: Rs: Series protection resistors. Rp: Pull-up resistors. VDD_I2C: I2C bus supply. 90/131 DocID025608 Rev 4 STM32F378xx Electrical characteristics SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 57 for SPI or in Table 58 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 22. Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 57. SPI characteristics Symbol fSCK 1/tc(SCK)(1) Parameter SPI clock frequency Conditions Min Max Master mode (C = 30 pF) - 18 Slave mode - 18 - 8 ns % tr(SCK) tf(SCK)(1) SPI clock rise and fall time Capacitive load: C = 30 pF DuCy(SCK)(1) SPI slave input clock duty cycle Slave mode 30 70 tsu(NSS)(1) NSS setup time Slave mode 2Tpclk - th(NSS)(1) NSS hold time Slave mode 4Tpclk - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 Tpclk/2 -3 +3 (1) tw(SCKH) tw(SCKL)(1) tsu(MI) (1) tsu(SI)(1) th(MI) Data input setup time (1) th(SI)(1) Data input hold time Master mode 5.5 - Slave mode 6.5 - Master mode 5 - Slave mode 5 - ta(SO)(1)(2) Data output access time Slave mode, fPCLK = 24 MHz 0 4Tpclk tdis(SO)(1)(3) Data output disable time Slave mode 0 24 (1) Data output valid time Slave mode (after enable edge) - 39 tv(MO)(1) Data output valid time Master mode (after enable edge) - 3 Slave mode (after enable edge) 15 - Master mode (after enable edge) 4 - tv(SO) th(SO)(1) th(MO)(1) Data output hold time Unit MHz ns 1. Guaranteed by characterization results. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. DocID025608 Rev 4 91/131 110 Electrical characteristics STM32F378xx Figure 23. SPI timing diagram - slave mode and CPHA = 0 166LQSXW 6&.,QSXW W68 166 &3+$  &32/  WK 166 WF 6&. WZ 6&.+ WZ 6&./ &3+$  &32/  W9 62 WD 62 0,62 287387 WU 6&. WI 6&. WK 62 06%287 %,7287 06%,1 %,7,1 WGLV 62 /6%287 WVX 6, 026, ,1387 /6%,1 WK 6, DLF Figure 24. SPI timing diagram - slave mode and CPHA = 1(1) 166LQSXW 6&.LQSXW W68 166 &3+$  &32/  &3+$  &32/  WZ 6&.+ WZ 6&./ WK 62 WY 62 WD 62 0,62 287387 06%287 %,7287 WU 6&. WI 6&. WGLV 62 /6%287 WK 6, WVX 6, 026, ,1387 WK 166 WF 6&. 06%,1 %,7,1 /6%,1 DLE 1. Measurement points are done at 0.5VDD level and with external CL = 30 pF. 92/131 DocID025608 Rev 4 STM32F378xx Electrical characteristics Figure 25. SPI timing diagram - master mode(1) +LJK 166LQSXW 6&.2XWSXW &3+$  &32/  6&.2XWSXW WF 6&. &3+$  &32/  &3+$  &32/  &3+$  &32/  WVX 0, 0,62 ,13 87 WZ 6&.+ WZ 6&./ WU 6&. WI 6&. %,7,1 06%,1 /6%,1 WK 0, 026, 287387 06%287 WY 02 % , 7287 /6%287 WK 02 DLF 1. Measurement points are done at 0.5VDD level and with external CL = 30 pF. DocID025608 Rev 4 93/131 110 Electrical characteristics STM32F378xx Table 58. I2S characteristics Symbol Parameter Conditions Min Max Unit 30 70 % 1.528 1.539 Slave mode 0 12.288 DuCy(SCK)(1) I2S slave input clock duty cycle fCK(1) 1/tc(CK) I2S clock frequency tr(CK)(1) tf(CK) I2S clock rise and fall time Capacitive load CL = 30 pF - 8 tv(WS) (1) WS valid time Master mode 4 - (1) WS hold time Master mode 4 - WS setup time Slave mode 2 - - - 306 - 312 - Master receiver 6 - Slave receiver 3 - Master receiver 1.5 - Slave receiver 1.5 - th(WS) tsu(WS) (1) (1) Slave mode Master mode (data: 16 bits, Audio frequency = 48 kHz) WS hold time Slave mode tw(CKH) (1) I2S clock high time tw(CKL) (1) I2S clock low time Master fPCLK= 16 MHz, audio frequency = 48 kHz th(WS) tsu(SD_MR) (1) tsu(SD_SR) (1) th(SD_MR) (1) th(SD_SR) (1) Data input setup time Data input hold time MHz tv(SD_ST) (1) Data output valid time Slave transmitter (after enable edge) - 16 th(SD_ST) (1) Data output hold time Slave transmitter (after enable edge) 16 - tv(SD_MT) (1) Data output valid time Master transmitter (after enable edge) - 2 th(SD_MT) (1) Data output hold time Master transmitter (after enable edge) 0 - 1. Guaranteed by characterization results. 94/131 DocID025608 Rev 4 ns STM32F378xx Electrical characteristics Figure 26. I2S slave timing diagram (Philips protocol)(1) &.,QSXW WF &. &32/  &32/  WZ &.+ WK :6 WZ &./ :6LQSXW WY 6'B67 WVX :6 6'WUDQVPLW /6%WUDQVPLW  06%WUDQVPLW %LWQWUDQVPLW WVX 6'B65 /6%UHFHLYH  6'UHFHLYH WK 6'B67 /6%WUDQVPLW WK 6'B65 06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH DLE 1. Measurement points are done at 0.5 VDD level and with external CL = 30 pF. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 27. I2S master timing diagram (Philips protocol)(1) TR#+ TF#+ #+OUTPUT TC#+ #0/, TW#+( #0/, TV73 TH73 TW#+, 73OUTPUT TV3$?-4 3$TRANSMIT ,3"TRANSMIT -3"TRANSMIT 3$RECEIVE ,3"TRANSMIT TH3$?-2 TSU3$?-2 ,3"RECEIVE "ITNTRANSMIT TH3$?-4 -3"RECEIVE "ITNRECEIVE ,3"RECEIVE AIB 1. Measurement points are done at 0.5 VDD level and with external CL = 30 pF. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID025608 Rev 4 95/131 110 Electrical characteristics 6.3.16 STM32F378xx 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 59 are preliminary values derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 22. Note: It is recommended to perform a calibration after each power-up. Table 59. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply - 2.4 - 3.6 V VREF+ Positive reference voltage - 2.4 - VDDA V Negative reference voltage - 0 - - V VDDA = 3.3 V - 0.9 - mA 220(2) µA VREFIDDA(ADC) (1) Current consumption from VDDA IVREF Current on the VREF input pin - - 160(2) fADC ADC clock frequency - 0.6 - 14 MHz fS(3) Sampling rate - 0.05 - 1 MHz fADC = 14 MHz - - 823 kHz - - - 17 1/fADC fTRIG(3) External trigger frequency VAIN Conversion voltage range - 0 (VSSA or VREFtied to ground) - VREF+ V RSRC(3) Signal source impedance See Equation 1 and Table 60 for details - - 50 kΩ RADC(3) Sampling switch resistance - - - 1 kΩ CADC(3) Internal sample and hold capacitor - - - 8 pF tCAL(3) Calibration time fADC = 14 MHz 5.9 µs - 83 1/fADC tlat(3) Injection trigger conversion latency fADC = 14 MHz - tlatr(3) Regular trigger conversion latency fADC = 14 MHz tS(3) Sampling time tSTAB(3) Power-up time tCONV(3) Total conversion time (including sampling time) - - 0.214 µs - - 2(4) 1/fADC - - 0.143 µs 1/fADC - - - 2(4) fADC = 14 MHz 0.107 - 17.1 µs - 1.5 - 239.5 1/fADC - - - 1 µs fADC = 14 MHz 1 - 18 µs - 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA on IDD is present 2. Guaranteed by characterization results. 3. Guaranteed by design. 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 59 96/131 DocID025608 Rev 4 STM32F378xx Electrical characteristics Equation 1: RSRC max formula TS - – R ADC R SRC < --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external signal source impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 60. RSRC max for fADC = 14 MHz(1) Ts (cycles) tS (µs) RSRC max (kΩ) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 50 239.5 17.1 50 1. Guaranteed by design. Table 61. ADC accuracy(1)(2) (3) Symbol Parameter Test conditions Typ Max(4) ±1.3 ±3 ±1 ±2 ±0.5 ±1.5 ±0.7 ±1 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ±0.8 ±1.5 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 fADC = 14 MHz, RSRC < 10 kΩ, VDDA = 3 V to 3.6 V TA = 25 °C fADC = 14 MHz, RSRC < 10 kΩ, VDDA = 2.7 V to 3.6 V TA = -40 to 105 °C fADC = 14 MHz, RSRC < 10 kΩ, VDDA = 2.4 V to 3.6 V TA = 25 °C Unit LSB LSB LSB 1. ADC DC accuracy values are measured after internal calibration. DocID025608 Rev 4 97/131 110 Electrical characteristics STM32F378xx 2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Guaranteed by characterization results. Figure 28. ADC accuracy characteristics 966$ (*  ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH  7KHLGHDOWUDQVIHUFXUYH  (QGSRLQWFRUUHODWLRQOLQH    (7 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW LGHDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH  (7      (2 (/   ('  /6%,'($/         9''$      069 Figure 29. Typical connection diagram using the ADC 9'' 232# 732# 97  9 $,1[ &SDUDVLWLF 97  9 ,/“ —$ 6DPSOHDQGKROG$'& FRQYHUWHU 5$'&  ELW FRQYHUWHU &$'&  -36 1. Refer to Table 59 for the values of RSRC, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 10. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 98/131 DocID025608 Rev 4 STM32F378xx 6.3.17 Electrical characteristics DAC electrical specifications Table 62. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit 2.4 - 3.6 V 2.4 - 3.6 V 0 - 0 V Connected to VSSA 5 - - Connected to VDDA 25 - - VDDA Analog supply voltage VREF+ Reference supply voltage VREF+ must always be below VDDA VSSA Ground RLOAD(1) Resistive load DAC output buffer ON RO(1) Output Impedance DAC output buffer OFF - - 15 kΩ CLOAD(1) Capacitive load Maximum capacitive load at DAC_OUT pin (when the buffer is ON). - - 50 pF 0.2 - - V - - VDDA – 0.2 V - 0.5 - mV - - VREF+ – 1LSB V - - 220 µA - - 380 µA - - 480 µA Given for the DAC in 10-bit configuration - - ± 0.5 LSB Given for the DAC in 12-bit configuration - - ±2 LSB Given for the DAC in 10-bit configuration - - ±1 LSB Given for the DAC in 12-bit configuration - - ±4 LSB DAC_OUT min(1) DAC_OUT max(1) DAC_OUT min(1) DAC_OUT max(1) - - It gives the maximum output excursion Lower DAC_OUT voltage of the DAC. with buffer ON It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V Higher DAC_OUT and (0x155) and (0xEAB) at VREF+ = voltage with buffer ON 2.4 V Lower DAC_OUT voltage with buffer OFF It gives the maximum output excursion of the DAC. Higher DAC_OUT voltage with buffer OFF DAC DC current With no load, worst code (0xF1C) at IDDVREF+(3) consumption in quiescent VREF+ = 3.6 V in terms of DC consumption on the inputs mode (Standby mode) With no load, middle code (0x800) on the inputs IDDA(3) DNL(3) INL(3) DAC DC current consumption in quiescent With no load, worst code (0xF1C) at mode(2) VREF+ = 3.6 V in terms of DC consumption on the inputs Differential non linearity Difference between two consecutive code-1LSB) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) DocID025608 Rev 4 kΩ 99/131 110 Electrical characteristics STM32F378xx Table 62. DAC characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit - - - ±10 mV Given for the DAC in 10-bit at VREF+ = 3.6 V - - ±3 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V - - ±12 LSB Given for the DAC in 12bit configuration - - ±0.5 % CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ - 3 4 µs Update rate(3) Max frequency for a correct DAC_OUT change when small CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ variation in the input code (from code i to i+1LSB) - - 1 MS/s tWAKEUP(3) Wakeup time from off state (Setting the ENx bit in the DAC Control register) CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. - 6.5 10 µs PSRR+ (1) Power supply rejection ratio (to VDDA) (static DC measurement No RLOAD, CLOAD = 50 pF - -67 -40 dB Offset(3) Gain error(3) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) Gain error Settling time (full scale: for a 10-bit input code transition between the tSETTLING(3) lowest and the highest input codes when DAC_OUT reaches final value ±1LSB 1. Guaranteed by design. 2. Quiescent mode refers to the state of the DAC keeping a steady value on the output, so no dynamic consumption is involved. 3. Guaranteed by characterization. Figure 30. 12-bit buffered /non-buffered DAC %XIIHUHGQRQEXIIHUHG'$& %XIIHU  5/2$' ELW GLJLWDOWR DQDORJ FRQYHUWHU '$&[B287 &/2$' DLD 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 100/131 DocID025608 Rev 4 STM32F378xx 6.3.18 Electrical characteristics Comparator characteristics Table 63. Comparator characteristics Symbol Parameter VDDA Analog supply voltage VIN Conditions Max(1) Unit - 3.6 V Min Typ VREFINT scaler not in use 1.65 VREFINT scaler in use 2 Comparator input voltage range - 0 - VDDA V VBG VREFINT scaler input voltage - - 1.2 - V VSC VREFINT scaler offset voltage - - ±5 ±10 mV tS_SC Scaler startup time from power down First VREFINT scaler activation after device power on - - tSTART Comparator startup time Propagation delay for 200 mV step with 100 mV overdrive Next activations Propagation delay for full range step with 100 mV overdrive - - 60 Ultra-low power mode - 2 4.5 Low power mode - 0.7 1.5 Medium power mode - 0.3 0.6 VDDA ≥ 2.7 V - 50 100 VDDA < 2.7 V - 100 240 Ultra-low power mode - 2 7 Low power mode - 0.7 2.1 Medium power mode - 0.3 1.2 VDDA ≥ 2.7 V - 90 180 VDDA < 2.7 V - 110 300 High speed mode ms 0.2 Startup time to reach propagation delay specification High speed mode tD 1000(2) µs µs ns µs ns Voffset Comparator offset error - - ±4 ±10 mV dVoffset/dT Offset error temperature coefficient - - 18 - µV/°C Ultra-low power mode - 1.2 1.5 Low power mode - 3 5 Medium power mode - 10 15 High speed mode - 75 100 IDD(COMP) COMP current consumption DocID025608 Rev 4 µA 101/131 110 Electrical characteristics STM32F378xx Table 63. Comparator characteristics (continued) Symbol Parameter Conditions Min Typ No hysteresis (COMPxHYST[1:0]=00) Low hysteresis (COMPxHYST[1:0]=01) Vhys Comparator hysteresis Medium hysteresis (COMPxHYST[1:0]=10) High hysteresis (COMPxHYST[1:0]=11) - - High speed mode 3 All other power modes 5 High speed mode 7 All other power modes 9 High speed mode 18 All other power modes 19 Max(1) 0 Unit 13 8 10 mV 26 15 19 49 31 40 1. Guaranteed by design. 2. For more details and conditions see Figure 31: Maximum VREFINT scaler startup time from power down Figure 31. Maximum VREFINT scaler startup time from power down                      102/131 DocID025608 Rev 4    STM32F378xx 6.3.19 Electrical characteristics Temperature sensor characteristics Table 64. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C ± 5 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C ± 5 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 Table 65. TS characteristics Symbol Parameter Min Typ Max Unit - ±1 ±2 °C TL VSENSE linearity with temperature Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C V25 Voltage at 25 °C 1.34 1.43 1.52 V tSTART(1) Startup time 4 - 10 µs TS_temp(2)(1) ADC sampling time when reading the temperature 17.1 - - µs 1. Guaranteed by design. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.20 VBAT monitoring characteristics Table 66. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 50 - KΩ Q Ratio on VBAT measurement - 2 - - Error on Q -1 - +1 % ADC sampling time when reading the VBAT 1mV accuracy 5 - - µs Er(1) TS_vbat(2) 1. Guaranteed by design. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.21 Timer characteristics The parameters given in Table 67 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). DocID025608 Rev 4 103/131 110 Electrical characteristics STM32F378xx Table 67. TIMx(1) (2)characteristics Symbol tres(TIM) Parameter Timer resolution time Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 72 MHz 13.9 - ns 0 fTIMxCLK/2 MHz 0 24 MHz TIMx (except TIM2) - 16 TIM2 - 32 - 1 65536 tTIMxCLK fTIMxCLK = 72 MHz 0.0139 910 µs - - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.65 s Timer external clock frequency on CH1 to CH4 f TIMxCLK = 72 MHz fEXT ResTIM tCOUNTER Timer resolution 16-bit counter clock period tMAX_COUN Maximum possible count with 32-bit counter T bit 1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, TIM12, TIM13, TIM14, TIM15, TIM16 , TIM17, TIM18 and TIM19 timers. 2. Guaranteed by characterization results. Table 68. IWDG min/max timeout period at 40 kHz (LSI) (1)(2) Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]= 0x000 Max timeout (ms) RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. 2. Guaranteed by characterization results. Table 69. WWDG min-max timeout value @72 MHz (PCLK) 104/131 Prescaler WDGTB Min timeout value Max timeout value 1 0 0.05687 3.6409 2 1 0.1137 7.2817 4 2 0.2275 14.564 8 3 0.4551 29.127 DocID025608 Rev 4 STM32F378xx 6.3.22 Electrical characteristics CAN (controller area network) interface Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). 6.3.23 SDADC characteristics Table 70. SDADC characteristics (1) Symbol Parameter Conditions Min Typ Max Unit Note - VDDSDx Power supply Slow mode (fADC = 1.5 MHz) 2.2 - VDDA Normal mode (fADC = 6 MHz) 2.4 - VDDA SDADC clock frequency Slow mode (fADC = 1.5 MHz) 0.5 1.5 1.65 fADC Normal mode (fADC = 6 MHz) 0.5 6 6.3 VREFSD+ Positive ref. voltage - 1.1 - VDDSDx V - VREFSD- Negative ref. voltage - - VSSA - V - Normal mode (fADC = 6 MHz) - 800 1200 - Slow mode (fADC = 1.5 MHz) - - 600 - Standby - - 200 Power down - - 2.5 - SD_ADC off - - 1 - VREFSD- - VREFSD+ /gain VREFSD- - VREFSD+/ (gain*2) VSSA - VDDSDx IDDSDx VAIN Supply current (VDDSDx = 3.3 V) Common input voltage range Single ended mode (zero reference) Single ended offset mode Differential mode VDIFF fS tCONV Differential input Differential mode only voltage Sampling rate Conversio n time V - MHz µA - - V Voltage on AINP or AINN pin - Differential voltage between AINP and AINN -VREFSD+/ (gain*2) - VREFSD+/ (gain*2) Slow mode (fADC = 1.5 MHz) - 4.166 - fADC/360 Slow mode one channel only (fADC = 1.5 MHz) - 12.5 - fADC/120 Normal mode multiplexed channel (fADC = 6 MHz) - 16.66 - kHz f ADC/360 Normal mode one channel only, FAST= 1 (fADC = 6 MHz) - 50 - fADC/120 - 1/fs - - DocID025608 Rev 4 s - 105/131 110 Electrical characteristics STM32F378xx Table 70. SDADC characteristics (continued)(1) Symbol Parameter Conditions One channel, gain = 0.5, fADC = 1.5 MHz Rain Analog input One channel, gain = 0.5, fADC = 6 impedance MHz One channel, gain = 8, fADC = 6 MHz tCALIB Calibration fADC = 6 MHz, one offset calibration time tSTAB Stabilizatio From power down fADC = 6 MHz n time tSTANDBY Wakeup from standby time EG 106/131 540 - - 135 - - 47 - - 5120 - fADC = 6 MHz - 50 - fADC = 1.5 MHz - 50 - VREFSD+ = 3.3 - - 110 VREFSD+ = 1.2 - - 110 VREFSD+ = 3.3 - - 100 VREFSD+ = 1.2 - - 70 VREFSD+ = 3.3 - - 100 fADC = 6 MHz VDDSDx = 3.3 VREFSD+ fADC = 1.5 MHz = 3.3 gain = 1 gain = 1 gain = 8 fADC = 6 MHz gain = 8 Offset error - - 90 VREFSD+ = 1.2 - - 2100 VREFSD+ = 3.3 - - 2000 VREFSD+ = 1.2 - - 1500 VREFSD+ = 3.3 - - 1800 - 10 15 Offset drift with Differential or single ended mode, temperatur gain = 1, VDDSDx = 3.3 V e Gain error - - Differential mode p Max 100 Single ended mode Dvoffsettem Typ - fADC = 1.5 MHz EO Min All gains, differential mode, single ended mode DocID025608 Rev 4 -2.4 -2.7 -3.1 Unit Note kΩ see reference manual for detailed description µs 30720/fADC µs 600/fADC, 75/fADC if SLOWCK =1 300/fADC µs 75/fADC if SLOWCK =1 uV after offset calibration uV/K - % negative gain error = data result are greater than ideal STM32F378xx Electrical characteristics Table 70. SDADC characteristics (continued)(1) Conditions gain = 1 gain = 8 gain = 1 gain = 8 Differential mode Differential linearity error gain = 1 VDDSDx = 3.3 gain = 1 VDDSDx = 3.3 Single ended mode ED gain = 8 Integral linearity error(2) Single ended mode EL Min Typ Max Unit Note - 0 - ppm /K - VREFSD+ = 1.2 - - 16 VREFSD+ = 3.3 - - 14 VREFSD+ = 1.2 - - 26 VREFSD+ = 3.3 - - 14 VREFSD+ = 1.2 LSB - - - 31 VREFSD+ = 3.3 - - 23 VREFSD+ = 1.2 - - 80 VREFSD+ = 3.3 - - 35 VREFSD+ = 1.2 - - 2.4 VREFSD+ = 3.3 - - 1.8 VREFSD+ = 1.2 - - 3.6 VREFSD+ = 3.3 - - 2.9 VREFSD+ = 1.2 LSB - - - 3.2 VREFSD+ = 3.3 - - 2.8 VREFSD+ = 1.2 - - 4.1 VREFSD+ = 3.3 - - 3.3 Gain drift with gain = 1, differential mode, single temperatur ended mode e Differential mode EGT Parameter gain = 8 Symbol DocID025608 Rev 4 107/131 110 Electrical characteristics STM32F378xx Table 70. SDADC characteristics (continued)(1) Symbol Parameter Conditions Min Typ Max VREFSD+ = 3.3(3) 84 85 - VREFSD+ = 1.2(4) 86 88 - VREFSD+ = 3.3 88 92 - VREFSD+ = 1.2(4) 76 78 - VREFSD+ = 3.3 82 86 - fADC = VDDSDx VREFSD+ 1.5 MHz = 3.3 = 3.3(3) 76 80 - fADC = 1.5 MHz VREFSD+ = 3.3 80 84 - VREFSD+ = 1.2(4) 77 81 - VREFSD+ = 3.3 85 90 - VREFSD+ = 1.2(4) 66 71 - VREFSD+ = 3.3 74 78 - 108/131 gain = 1 gain = 8 gain = 1 Signal to noise ratio Single ended mode SNR(5) gain = 8 Differential mode fADC = 1.5 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz DocID025608 Rev 4 Unit Note dB - STM32F378xx Electrical characteristics Table 70. SDADC characteristics (continued)(1) Symbol Parameter Conditions Min Typ Max VREFSD+ = 3.3(3) 76 77 - VREFSD+ = 1.2(4) 75 76 - VREFSD+ = 3.3 76 77 - VREFSD+ = 1.2(4) 70 74 - VREFSD+ = 3.3 79 85 - fADC = VDDSDx VREFSD+ 1.5 MHz = 3.3 = 3.3(3) 75 81 - fADC = 1.5MHz VREFSD+ = 3.3 72 73 - VREFSD+ = 1.2(4) 68 71 - VREFSD+ = 3.3 72 73 - VREFSD+ = 1.2(4) 60 64 - VREF = 3.3 67 72 - VREFSD+ = 3.3(3) - -77 -76 VREFSD+ = 1.2(4) - -77 -76 VREFSD+ = 3.3 - -77 -76 VREFSD+ = 1.2(4) - -85 -70 VREFSD+ = 3.3 - -93 -80 gain =1 gain =8 gain =1 Single ended mode SINAD(5) Signal to noise and distortion ratio gain =8 Differential mode fADC = 1.5 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz fADC = 6 MHz gain =1 gain =8 gain =1 Single ended mode THD(5) Total harmonic distortion gain =8 Differential mode fADC = 1.5 MHz fADC = 6 MHz fADC = 6 MHz VDDSDx = 3.3 VREFSD+ fADC = 1.5 MHz = 3.3(3) fADC = 6 MHz fADC = 6 MHz - -93 -83 VREFSD+ = 1.2(4) - -72 -68 VREFSD+ = 3.3 - -74 -72 VREFSD+ = 1.2(4) - -66 -61 VREFSD+ = 3.3 - -75 -70 DocID025608 Rev 4 Unit Note dB ENOB = SINAD/ 6.02 - 0.292 dB - 109/131 110 Electrical characteristics STM32F378xx 1. Guaranteed by characterization results. 2. Integral linearity error can be improved by software calibration of SDADC transfer curve (2-nd order polynomial calibration). 3. For fADC lower than 5 MHz, there will be a performance degradation of around 2 dB due to flicker noise increase. 4. If the reference value is lower than 2.4 V, there will be a performance degradation proportional to the reference supply drop, according to this formula: 20*log10(VREF/2.4) dB 5. SNR, THD, SINAD parameters are valid for frequency bandwidth 20Hz - 1kHz. Input signal frequency is 300Hz (for fADC=6MHz) and 100Hz (for fADC=1.5MHz). Table 71. VREFSD+ pin characteristics(1) Symbol VREFINT CVREFSD+(2) RVREFSD+ Parameter Internal reference voltage Reference voltage filtering capacitor Reference voltage input impedance Conditions Min Typ Max Unit Note Buffered embedded reference voltage (1.2 V) - 1.2 - V See Section 6.3.3: Embedded reference voltage on page 59 Embedded reference voltage amplified by factor 1.5 - 1.8 - V - 1000 - 10000 nF - Normal mode (fADC = 6 MHz) - 238 - Slow mode (fADC = 1.5 MHz) kΩ - See RM0313 reference manual for detailed description VREFSD+ = VREFINT 952 - 1. Guaranteed by characterization results. 2. If internal reference voltage is selected then this capacitor is charged through internal resistance - typ. 300 ohm. If internal reference source is selected through the reference voltage selection bits (REFV”00” in SDADC_CR1 register), the application must first configure REFV bits and then wait for capacitor charging. Recommended waiting time is 3 ms if 1 µF capacitor is used. 110/131 DocID025608 Rev 4 STM32F378xx 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 UFBGA100 package information Figure 32. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) ; ( $ ) ' ' H < 0   %277209,(: ‘E EDOOV ‘ HHH 0 = < ; ‘ III 0 = 7239,(: $&B0(B9 1. Drawing is not to scale. Table 72. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 - 0.130 - - 0.0051 - A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.200 0.250 0.300 0.0079 0.0098 0.0118 DocID025608 Rev 4 111/131 128 Package information STM32F378xx Table 72. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. D 6.950 7.000 7.050 0.2736 0.2756 0.2776 D1 5.450 5.500 5.550 0.2146 0.2165 0.2185 E 6.950 7.000 7.050 0.2736 0.2756 0.2776 E1 5.450 5.500 5.550 0.2146 0.2165 0.2185 e - 0.500 - - 0.0197 - F 0.700 0.750 0.800 0.0276 0.0295 0.0315 ddd - - 0.100 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 33. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint 'SDG 'VP $&B)3B9 Table 73. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) Dimension 112/131 Recommended values Pitch 0.5 Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm DocID025608 Rev 4 STM32F378xx Package information Device Marking for UFBGA100 The following figure gives an example of topside marking orientation versus ball 1 identifier location. Figure 34. UFBGA100 marking example (package top view) WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ 670) 9&+ ĂƚĞĐŽĚĞсLJĞĂƌнǁĞĞŬ < :: ĂůůϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ĚĚŝƚŝŽŶĂůŝŶĨŽƌŵĂƚŝŽŶ 5 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID025608 Rev 4 113/131 128 Package information 7.2 STM32F378xx WLCSP66 package information Figure 35. WLCSP66 - 66-pin, 3.767 x 4.229 mm, 0.4 mm pitch wafer level chip scale package outline $EDOOORFDWLRQ ' ; H EEE = < H 'HWDLO$ ( DDD ; $ % & ' ( ) * + - H H *         $ ) $ :DIHUEDFNVLGH $EDOO ORFDWLRQ 6LGHYLHZ %XPSVLGH 'HWDLO$ URWDWHGE\ƒ HHH $ E FFF = ; < GGG = 6HDWLQJSODQH = $5B0(B9 1. Drawing is not to scale. Table 74. WLCSP66 - 66-pin, 3.767 x 4.229 mm, 0.4 mm pitch wafer level chip scale package mechanical data 114/131 inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.540 0.570 0.600 0.0213 0.0224 0.0236 A1 - 0.190 - - 0.0075 - A2 - 0.380 - - 0.0150 - b(2) 0.240 0.270 0.300 0.0094 0.0106 0.0118 D 3.732 3.767 3.802 0.1469 0.1483 0.1497 E 4.194 4.229 4.264 0.1651 0.1665 0.1679 e - 0.400 - - 0.0157 - e1 - 2.800 - - 0.1102 - e2 - 3.200 - - 0.1260 - DocID025608 Rev 4 STM32F378xx Package information Table 74. WLCSP66 - 66-pin, 3.767 x 4.229 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max F - 0.484 - - 0.0191 - G - 0.515 - - 0.0203 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Device Marking for WLCSP66 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 36. WLCSP66 marking example (package top view) WŝŶϭŝĚĞŶƚŝĨŝĞƌ WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ )5&
STM32F378VCT6 价格&库存

很抱歉,暂时无法提供与“STM32F378VCT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货