0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F398VET6

STM32F398VET6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP100_14X14MM

  • 描述:

    IC MCU 32BIT 512KB FLASH 100LQFP

  • 数据手册
  • 价格&库存
STM32F398VET6 数据手册
STM32F398VE ARM® Cortex®-M4 32b MCU+FPU, up to 512KB Flash, 80KB SRAM, FSMC, 4 ADCs, 2 DAC ch., 7 comp, 4 Op-Amp, 1.8 V Datasheet - production data Features  Core: ARM® Cortex®-M4 32-bit CPU with 72 MHz FPU, single-cycle multiplication and HW division, DSP instruction and MPU (memory protection unit)  Memories – Up to 512 Kbytes of Flash memory – 64 Kbytes of SRAM, with HW parity check implemented on the first 32 Kbytes. – Routine booster: 16 Kbytes of SRAM on instruction and data bus, with HW parity check (CCM) – Flexible memory controller (FSMC) for static memories, with four Chip Select  CRC calculation unit  Reset and supply management – Low power modes: Sleep and Stop – Supply: VDD = 1.8 V ± 8% VDDA voltage range = 1.65 V to 3.6 V – VBAT supply for RTC and backup registers  Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x 16 PLL option – Internal 40 kHz oscillator  Up to 85 fast I/Os – All mappable on external interrupt vectors – Several 5 V-tolerant  Interconnect matrix  12-channel DMA controller  Four ADCs 0.20 µs (up to 38 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, separate analog supply from 1.8 to 3.6 V  Two 12-bit DAC channels with analog supply from 2.4 to 3.6 V  Seven ultra-fast rail-to-rail analog comparators with analog supply from 1.8 to 3.6 V  Four operational amplifiers that can be used in PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V  Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors  Up to 14 timers July 2015 This is information on a product in full production. LQFP100 (14 mm × 14 mm)     – One 32-bit timer and two 16-bit timers with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – Three 16-bit 6-channel advanced-control timers, with up to six PWM channels, deadtime generation and emergency stop – One 16-bit timer with two IC/OCs, one OCN/PWM, deadtime generation and emergency stop – Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop – Two watchdog timers (independent, window) – One SysTick timer: 24-bit downcounter – Two 16-bit basic timers to drive the DAC Calendar RTC with Alarm, periodic wakeup from Stop/Standby Communication interfaces – CAN interface (2.0B Active) – Three I2C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP – Up to five USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control) – Up to four SPIs, 4 to 16 programmable bit frames, two with multiplexed half/full duplex I2S interface – Infrared transmitter SWD, Cortex®-M4 with FPU ETM, JTAG 96-bit unique ID DocID027227 Rev 2 1/151 www.st.com Contents STM32F398VE Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 ARM® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . 13 3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.3 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.12 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 18 3.13 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13.1 3.14 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14.4 OPAMP reference voltage (VREFOPAMP) . . . . . . . . . . . . . . . . . . . . . . 20 3.15 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.16 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.17 Ultra-fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.18.1 2/151 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19 Advanced timers (TIM1, TIM8, TIM20) . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID027227 Rev 2 STM32F398VE Contents 3.18.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . 23 3.18.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.18.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.18.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.18.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.19 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24 3.20 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.21 Universal synchronous/asynchronous receiver transmitter (USART) . . . 26 3.22 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27 3.23 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28 3.24 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.25 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.26 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.27 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.27.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.27.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 62 6.3.3 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DocID027227 Rev 2 3/151 4 Contents 7 STM32F398VE 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.16 NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.17 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.18 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3.19 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.22 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 146 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4/151 DocID027227 Rev 2 STM32F398VE List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. STM32F398VE device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32F398VE peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F398VE I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F398VE SPI/I2S implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Capacitive sensing GPIOs available on STM32F398VE . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Number of capacitive sensing channels available on STM32F398VE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F398VE pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F398VE alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Memory map, peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Typical and maximum current consumption from VDD supply at VDD = 1.8 V . . . . . . . . . . 65 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 66 Typical and maximum VDD consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical and maximum VDDA consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 67 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 70 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 87 Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . 87 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 88 Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . . 89 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . . 89 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 DocID027227 Rev 2 5/151 6 List of tables Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. 6/151 STM32F398VE Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . . 93 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 99 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Switching characteristics for PC Card/CF read and write cycles in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 105 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 108 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 ADC accuracy - limited test conditions, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . 131 ADC accuracy, 100-pin packages- limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . 133 ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 DocID027227 Rev 2 STM32F398VE List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. STM32F398VE block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 STM32F398VE clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STM32F398VE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32F398VE memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] 00’) . . . . . . . . . . . . . 68 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 83 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 86 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 88 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 98 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 PC Card/CompactFlash controller waveforms for attribute memory read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 PC Card/CompactFlash controller waveforms for attribute memory write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 106 PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 106 NAND controller read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 NAND controller write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 TC and TTA I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 DocID027227 Rev 2 7/151 8 List of figures Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. 8/151 STM32F398VE 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 143 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 DocID027227 Rev 2 STM32F398VE 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F398VE microcontroller. This STM32F398VE datasheet should be read in conjunction with the reference manual of STM32F303xB/C/D/E, STM32F358xC and STM32F328x4/6/8 devices (RM0316) available on STMicroelectronics website at www.st.com. For information on the Cortex®-M4 core with FPU, please refer to the following documents:  Cortex®-M4 with FPU Technical Reference Manual, available from ARM website at www.arm.com  STM32F3xxx and STM32F4xxx Cortex-M4 programming manual (PM0214) available on STMicroelectronics website at www.st.com. DocID027227 Rev 2 9/151 55 Description 2 STM32F398VE Description The STM32F398VE is based on the high-performance ARM® Cortex®-M4 32-bit RISC core with FPU operating at a frequency of 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (512 Kbyte of Flash memory, 80 Kbyte of SRAM), a flexible memory controller (FSMC) for static memories (SRAM, PSRAM, NOR and NAND), and an extensive range of enhanced I/Os and peripherals connected to an AHB and two APB buses. The device offers four fast 12-bit ADCs (5 Msps), seven comparators, four operational amplifiers, two DAC channel, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and three timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to three I2Cs, up to four SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs and CAN. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL. The STM32F398VE operates in the -40 to +85°C and -40 to +105°C temperature ranges at 1.8 V ± 8% power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F398VE offers devices in LQFP100 package. The set of included peripherals changes with the device chosen. 10/151 DocID027227 Rev 2 STM32F398VE Description Table 1. STM32F398VE device features and peripheral counts Peripheral STM32F3398VE Flash (Kbytes) 512 SRAM (Kbytes) on data bus 64 CCM (Core Coupled Memory) RAM (Kbytes) 16 FSMC (flexible static memory YES controller) Timers Advanced control 3 (16-bit) General purpose 5 (16-bit) 1 (32-bit) Basic 2 (16-bit) PWM channels (all) (1) 40 PWM channels  (except complementary) 28 SPI (I2S)(2) 4(2) 2C 3 I Communication USART interfaces UART GPIOs 3 2 CAN 1 Normal I/Os  (TC, TTa) 43 5-volt tolerant I/Os (FT, FTf) 42 DMA channels 12 Capacitive sensing channels 24 4 38 channels 12-bit ADCs 12-bit DAC channels 2 Analog comparator 7 Operational amplifiers 4 CPU frequency Operating voltage Operating temperature 72 MHz VDD = 1.8 V ± 8%, VDDA voltage range = 1.65 V to 3.6 V Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C Junction temperature: - 40 to 125 °C Packages LQFP100 1. This total number considers also the PWMs generated on the complementary output channels. 2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode. DocID027227 Rev 2 11/151 55 Description STM32F398VE Figure 1. STM32F398VE block diagram 6:-7$* )0&65$0365$0 3&&DUG&RPSDFW )ODVK 1251$1')ODVK (70 7UDFH 7ULJ 2%/ )ODVK LQWHUIDFH 73,8 038)38 ,EXV &RUWH[0&38 'EXV )PD[0+] 6\VWHP %XV0DWUL[ .%65$0 #9''$ ,) ,) *3,23257$ 3%>@ *3,23257% 3&>@ *3,23257& 3'>@ *3,23257' 3(>@ *3,23257( 3)>@ *3,23257) 3*>@ *3,23257* 3+>@ *3,23257+ ;;*URXSVRI FKDQQHOVDV $) 026,0,62 6&.166DV$) 5;7;&76576 6PDUW&DUGDV$) 9%$7 9WR9 26&B,1 26&B287 $17,7$03 7,0(5 ELW3:0 &KDQQHOV(75DV$) 7,0(5 &KDQQHOV(75DV$) 7,0(5 &KDQQHOV(75DV$) 63,,6 026,6'0,62H[WB6' 6&.&.166:60&/.DV$) $+% $3% 63,,6 026,6'0,62H[WB6' 6&.&.166:60&/.DV$) 86$57 5;7;&76576DV$) 86$57 5;7;&76576DV$) 8$57 5;7;DV$) 8$57 5;7;DV$) ,& 6&/6'$60%$DV$) ,& 6&/6'$60%$DV$) 7,0(5 ,& 6&/6'$60%$DV$) 7,0(5 E[&$1  %65$0 (;7,7:.83 :LQ:$7&+'2* 7,0(5 7,0(53:0 7,0(53:0 7,0(53:0 7,0(5 7,0(5 63, #9''$ 86$57 '$&B&+DV$) '$&B&+DV$) #9''$ 6@ 15(6(7 9''$ 966$ 1325 #9'',2 ;7$/26& 0+] $+%3&/. $3%3&/. $3%3&/. +&/. )&/. $+% ELW$'& 5HVHW  FORFN FRQWURO $+% ELW$'& 9'',2  966 ,QG:'*. 7HPSVHQVRU 95() 95() 6XSSO\ 6XSHUYLVLRQ #9''$ 5&/6 3// *3'0$ FKDQQHOV ELW$'& 5HVHW 5&+60+] *3'0$ FKDQQHOV 3RZHU #9'',2 .%&&05$0 19,& ELW$'& 9'' .%)/$6+ ELWV DocID027227 Rev 2 ,17(5)$&( 75$'(&/. 75$&('>@ DV$) -7567 -7', -7&.6:&/. -7066:',2 -7'2 $V$) &/.1(>@$>@'^@ 12(11:(11%/>@ 6'&/.(>@6'1(>@ 6'1:(1/15$61&$6 1$'9 1:$,71,25'15(*&' ,171 2S$PS 2S$PS 2S$PS 2S$PS ,1[[ 287[[ ,1[[ 287[[ ,1[[ 287[[ ,1[[ 287[[ 06Y9 STM32F398VE Functional overview 3 Functional overview 3.1 ARM® Cortex®-M4 core with FPU with embedded Flash and SRAM The ARM® Cortex®-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM® Cortex®-M4 32-bit RISC processor with FPU features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation. With its embedded ARM core, the STM32F398VE is compatible with all ARM tools and software. Figure 1 shows the general block diagram of the STM32F398VE. 3.2 Memory protection unit (MPU) The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.3 Embedded Flash memory All STM32F398VE features 384/512 Kbyte of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). 3.4 Embedded SRAM STM32F398VE features 80 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the DocID027227 Rev 2 13/151 55 Functional overview STM32F398VE CPU to achieve 90 Dhrystone MIPS at 72 MHz (when running code from the CCM (Core Coupled Memory) RAM). 3.5  16 Kbytes of CCM SRAM mapped on both instruction and data bus, used to execute critical routines or to access data (parity check on all of CCM SRAM).  64 Kbytes of SRAM mapped on the data bus (parity check on first 32 Kbytes of SRAM). Boot modes At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:  Boot from user Flash  Boot from system memory  Boot from embedded SRAM The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10) or USART2 (PA2/PA3) or I2C1 (PB6/PB7) or I2C3 (PA8/PB5). 3.6 Cyclic redundancy check (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 14/151 DocID027227 Rev 2 STM32F398VE Functional overview 3.7 Power management 3.7.1 Power supply schemes  VSS, VDD = 1.8 V ± 8% V: external power supply for I/Os and the internal regulator. It is provided externally through VDD pins.  VSSA, VDDA = 1.65 to 3.6 V: external analog power supply for ADC, DAC, comparators, operational amplifier, reset blocks, RCs and PLL. The minimum voltage to be applied to VDDA differs from one analog peripheral to another. Table 2 provides the summary of the VDDA ranges for analog peripherals. The VDDA voltage level must always be greater than or equal to the VDD voltage level and must be provided first. Table 2. External analog supply values for analog peripherals Analog peripheral  3.7.2 Minimum VDDA supply Maximum VDDA supply ADC/COMP 1.8 V 3.6 V DAC/OPAMP 2.4 V 3.6 V VBAT = 1.65 to 3.6 V: power supply for RT C, external clock 32 kHz oscillator and backup registers (through power switch which is guaranteed in the full range of VDD) when VDD is not present. Power supply supervisor The device power-on reset (POR) is controlled through the external NPOR pin. The device remains in reset state when NPOR pin is held low. To guarantee a proper power-on reset, the NPOR pin must be held low when VDDA is applied. Then, when VDD is stable, the reset state can be exited through one of the following ways:  by putting the NPOR pin in high impedance, NPOR pin has an internal pull up, or  3.7.3 by forcing the pin to high level by connecting it to VDDA. Low-power modes The STM32F398VE supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:  Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.  Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the RTC alarm, COMPx, I2Cx or U(S)ARTx. DocID027227 Rev 2 15/151 55 Functional overview STM32F398VE Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.8 Interconnect matrix Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency. Table 3. STM32F398VE peripheral interconnect matrix Interconnect source Interconnect destination Interconnect action TIMx Timers synchronization or chaining ADCx DAC1 Conversion triggers DMA Memory to memory transfer trigger Compx Comparator output blanking COMPx TIMx Timer input: OCREF_CLR input, input capture ADCx TIMx Timer triggered by analog watchdog GPIO RTCCLK HSE/32 MC0 TIM16 Clock source used as input channel for HSI and LSI calibration CSS CPU (hard fault) COMPx GPIO TIM1, TIM8, TIM20 TIM15, 16, 17 Timer break TIMx TIMx External trigger, timer break GPIO ADCx DAC1 Conversion external trigger DAC1 COMPx Comparator inverting input Note: For more details about the interconnect actions, please refer to the corresponding sections in the STM32F398VEreference manual (RM0316). 3.9 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). 16/151 DocID027227 Rev 2 STM32F398VE Functional overview Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz. Figure 2. STM32F398VE clock tree )/,7)&/. WR)ODVKSURJUDPPLQJLQWHUIDFH +6, WR,&[ [  6 VDDA - 0.4 Input voltage on FT and FTf pins VSS  0.3 VDD + 4.0 Input voltage on TTa and TT pins VSS  0.3 4.0 Input voltage on POR pin VSS  0.3 VDDA + 4.0 Input voltage on any other pin VSS 0.3 4.0 Input voltage on Boot0 pin 0 9 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 VREF+–VDDA(2) VIN(3) |VDDx| |VSSX VSS| VESD(HBM) Electrostatic discharge voltage (human body model) Unit V V mV see Section 6.3.12: Electrical sensitivity characteristics - 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between VDDA and VDD:  VDDA must power on before or at the same time as VDD in the power up sequence.  VDDA must be greater than or equal to VDD. 2. VREF+ must be always lower or equal than VDDA (VREF+  VDDA). If unused then it must be connected to VDDA. 3. VIN maximum must always be respected. Refer to Table 16: Current characteristics for the maximum allowed injected current values. DocID027227 Rev 2 59/151 142 Electrical characteristics STM32F398VE Table 16. Current characteristics Symbol Ratings Max. IVDD Total current into sum of all VDD_x power lines (source) 160 IVSS Total current out of sum of all VSS_x ground lines (sink) -160 IVDD Maximum current into each VDD_x power line (source) (1) 100 IVSS Maximum current out of each VSS _x ground line (sink)(1) 100 Output current sunk by any I/O and control pin 25 IIO(PIN) IIO(PIN) Output current source by any I/O and control pin Total output current sunk by sum of all IOs and control pins Total output current sourced by sum of all IOs and control pins(2) Injected current on FT, FTf, and B IINJ(PIN) Injected current on TC and RST Injected current on TTa pins IINJ(PIN) -25 (2) pins(3) 80 Unit mA -80 -5/+0 pin(4) ±5 (5) ±5 Total injected current (sum of all I/O and control pins)(6) ±25 1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be exceeded. Refer to Table 15: Voltage characteristics for the maximum allowed input voltage values. 5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be exceeded. Refer also to Table 15: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note (2) below Table 75. 6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 17. Thermal characteristics Symbol TSTG TJ 60/151 Ratings Storage temperature range Maximum junction temperature DocID027227 Rev 2 Value Unit -65 to +150 °C 150 °C STM32F398VE Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 18. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 72 fPCLK1 Internal APB1 clock frequency - 0 36 fPCLK2 Internal APB2 clock frequency - 0 72 Standard operating voltage - 1.65 1.95 1.65 3.6 VDD VDDA VBAT Analog operating voltage (OPAMP and DAC not used) Analog operating voltage (OPAMP and DAC used) Must have a potential equal to or higher than VDD 3.6 1.65 3.6 -0.3 VDD+0.3 -0.3 3.6 -0.3 VDDA+0.3 -0.3 5.2 BOOT0 0 5.2 LQFP100 - 476 -40 85 Low power dissipation -40 105 Maximum power dissipation -40 105 -40 125 6 suffix version -40 105 7 suffix version -40 125 TC I/O (1) TT I/O VIN TTa I/O pins and POR pin I/O input voltage (1) FT and FTf I/O PD Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(2) Ambient temperature for 6 suffix version TA Ambient temperature for 7 suffix version TJ Junction temperature range Maximum power dissipation (3) Low power dissipation(3) MHz V V 2.4 Backup operating voltage Unit V V mW °C °C °C 1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics). 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics). DocID027227 Rev 2 61/151 142 Electrical characteristics 6.3.2 STM32F398VE Operating conditions at power-up / power-down The parameters given in Table 19 are derived from tests performed under the ambient temperature condition summarized in Table 18. Table 19. Operating conditions at power-up / power-down Symbol tVDD tVDDA 62/151 Parameter VDD rise time rate VDD fall time rate VDDA rise time rate VDDA fall time rate Conditions - - DocID027227 Rev 2 Min Max 0  20  0  20  Unit µs/V STM32F398VE 6.3.3 Electrical characteristics Embedded reference voltage The parameters given in Table 20 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 18. Table 20. Embedded internal reference voltage Symbol Parameter VREFINT Internal reference voltage TS_vrefint VRERINT TCoeff Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.16 1.2 1.25 V (1) –40 °C < TA < +85 °C 1.16 1.2 ADC sampling time when reading the internal reference voltage - 2.2 - - µs Internal reference voltage spread over the temperature range VDD = 3 V ±10 mV - - 10(2) mV - - - 100(2) ppm/°C Temperature coefficient 1.24 V 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. Table 21. Internal reference voltage calibration values Calibration value name VREFINT_CAL 6.3.4 Description Raw data acquired at temperature of 30 °C VDDA= 3.3 V Memory address 0x1FFF F7BA - 0x1FFF F7BB Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 9: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Note: The total current consumption is the sum of IDD and IDDA. DocID027227 Rev 2 63/151 142 Electrical characteristics STM32F398VE Typical and maximum current consumption The MCU is placed under the following conditions:  All I/O pins are in input mode with a static value at VDD or VSS (no load)  All peripherals are disabled except when explicitly mentioned  The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)  Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)  When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2  When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode. The parameters given in Table 22 to Table 26 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18. 64/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 22. Typical and maximum current consumption from VDD supply at VDD = 1.8 V All peripherals enabled Symbol Parameter Conditions Max @ TA(1) fHCLK Max @ TA(1) Typ IDD Supply current in Run mode, executing from Flash External clock (HSE bypass) Internal clock (HSI) IDD Supply current in Run mode, executing from RAM External clock (HSE bypass) Internal clock (HSI) All peripherals disabled 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 72 MHz 61.5 68.9 69.3 69.7 28.4 31.2 31.7 32.3 64 MHz 55.0 60.0 61.1 62.5 25.5 27.9 28.3 28.5 48 MHz 41.9 46.6 47.2 47.9 19.5 21.1 21.5 21.8 32 MHz 28.5 31.1 31.6 32.0 13.3 14.4 14.7 15.0 24 MHz 21.9 23.7 24.3 24.6 10.4 11.3 11.5 11.7 8 MHz 7.8 8.2 8.4 8.9 3.95 4.33 4.43 4.60 1 MHz 1.82 2.16 2.27 2.40 1.31 1.66 1.69 1.79 64 MHz 51.9 56.5 56.9 57.2 25.6 28.0 28.2 28.4 48 MHz 39.3 42.9 43.4 43.6 19.4 21.1 21.3 21.4 32 MHz 26.9 29.3 29.7 29.9 13.4 14.6 14.7 14.9 24 MHz 20.9 21.6 21.9 22.2 10.7 11.1 11.2 11.3 8 MHz 7.8 8.3 8.4 8.5 4.22 4.82 4.96 5.30 72 MHz 61.3 68.8 69.2 69.6 28.3 31.1 31.6 32.2 64 MHz 54.8 59.9 61.0 62.4 25.3 27.8 28.2 28.4 48 MHz 41.7 46.5 47.1 47.7 19.2 21.0 21.4 21.6 32 MHz 28.2 30.9 31.4 31.8 13.0 14.3 14.6 14.7 24 MHz 21.4 23.5 23.8 24.2 9.9 11.0 11.1 11.2 8 MHz 7.45 7.92 7.97 8.17 3.57 3.96 4.08 4.19 1 MHz 1.29 1.59 1.72 1.91 0.89 1.21 1.26 1.40 64 MHz 51.4 56.3 56.8 57.0 25.2 27.8 28.0 28.1 48 MHz 39.1 42.8 43.3 43.5 19.1 21.0 21.2 21.3 32 MHz 26.5 29.2 29.4 29.6 13.0 13.6 13.7 13.8 24 MHz 20.3 21.0 21.2 21.5 10.0 10.4 10.5 10.6 8 MHz 7.76 7.86 7.98 3.65 4.02 4.09 4.16 7.29 Unit Typ DocID027227 Rev 2 mA 65/151 142 Electrical characteristics STM32F398VE Table 22. Typical and maximum current consumption from VDD supply at VDD = 1.8 V (continued) All peripherals enabled Symbol Parameter Conditions Max @ TA(1) fHCLK Max @ TA(1) Typ IDD Supply current in Sleep mode, executing from Flash or RAM External clock (HSE bypass) Internal clock (HSI) All peripherals disabled Unit Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 72 MHz 43.6 47.4 48.6 49.0 7.0 7.6 7.90 8.20 64 MHz 38.9 42.3 43.5 43.8 6.30 6.90 7.20 7.40 48 MHz 29.5 32.1 33.1 34.1 4.80 5.30 5.50 5.90 32 MHz 20.0 21.8 22.5 22.7 3.40 3.70 4.00 4.30 24 MHz 15.2 16.7 17.1 17.3 2.60 3.00 3.10 3.60 8 MHz 5.36 5.71 5.81 6.03 1.16 1.54 1.65 1.80 1 MHz 1.11 1.47 1.51 1.66 0.59 0.97 1.06 1.15 64 MHz 35.3 38.5 39.1 39.4 6.10 6.70 6.80 7.10 48 MHz 26.8 29.2 29.8 30.0 4.60 5.10 5.20 5.60 32 MHz 18.2 20.0 20.2 20.4 3.20 3.70 3.80 4.10 24 MHz 14.0 14.6 14.7 15.1 2.68 3.11 3.16 3.27 8 MHz 5.57 5.70 5.82 1.21 1.54 1.61 1.67 5.18 mA 1. Data based on characterization results, not tested in production unless otherwise specified. Table 23. Typical and maximum current consumption from the VDDA supply VDDA = 3.6 V Symbol Parameter Conditions (1) Max @ TA(2) fHCLK Typ 25 °C IDDA Supply current in Run/Sleep mode, code executing from Flash or RAM HSE bypass HSI clock VDDA = 2.4 V Max @ TA(2) Typ 85 °C 105 °C 25 °C Unit 85 °C 105 °C 72 MHz 240 263 279 286 219 242 254 259 64 MHz 211 232 246 252 193 214 225 230 48 MHz 156 174 186 191 144 162 171 175 32 MHz 107 122 129 132 99 115 120 123 24 MHz 83 96 101 103 77 91 95 96 8 MHz 1.2 2.4 2.9 4.1 0.8 2.0 2.5 3.3 1 MHz 1.2 2.4 2.9 4.1 0.8 2.0 2.5 3.3 64 MHz 294 319 334 339 265 289 300 305 48 MHz 239 260 273 278 215 236 245 249 32 MHz 189 207 216 220 169 187 194 197 24 MHz 165 181 188 191 147 163 169 171 8 MHz 83 91 94 95 69 77 80 81 1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production. 66/151 DocID027227 Rev 2 µA STM32F398VE Electrical characteristics Table 24. Typical and maximum VDD consumption in Stop mode Symbol IDD Parameter Typ @VDD (VDD= 1.8 V, VDDA = 3.3 V) Max 1.8 V TA = TA = TA = 25 °C 85 °C 105 °C Conditions Unit Supply current in All oscillators Stop mode OFF 8.6 22.4 418 927 µA Table 25. Typical and maximum VDDA consumption in Stop mode Symbol Parameter IDDA Typ @VDD (VDD = 1.8 V) Max 1.8 V 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA = TA = TA = 25 °C 85 °C 105 °C Conditions Supply  current in All oscillators OFF Stop mode 0.72 0.73 0.75 0.78 0.83 0.90 0.98 9.3 9.6 10.6 Unit µA Table 26. Typical and maximum current consumption from VBAT supply Max @VBAT = 3.6 V(2) Typ @VBAT Symbol Para meter Conditions Unit (1) LSE & RTC ON; “Xtal mode” lower driving capability; LSEDRV[1: Backup 0] = '00' domain IDD_VBAT supply LSE & RTC current ON; “Xtal mode” higher driving capability; LSEDRV[1: 0] = '11' 1.65V 1.8V 2V 0.48 0.50 0.52 2.4V 2.7V 0.58 3V T = TA = TA = 3.3V 3.6V A 25°C 85°C 105°C 0.65 0.72 0.80 0.90 1.1 1.5 2.0 µA 0.83 0.86 0.90 0.98 1.03 1.10 1.20 1.30 1.5 2.2 2.9 1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values. 2. Data based on characterization results, not tested in production. DocID027227 Rev 2 67/151 142 Electrical characteristics STM32F398VE Figure 10. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] 00’)   6 6 6  6  6  6 ) 6"!4—!  6  6   #  #  #  # 4!  # -36 Typical current consumption The MCU is placed under the following conditions: 68/151  VDD = 1.8 V, VDDA = 3.3 V  All I/O pins available on each package are in analog input configuration  The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON  When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB  PLL is used for frequencies greater than 8 MHz  AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively. DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 27. Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol IDD Parameter Conditions Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash IDDA (1) Supply current in Run mode from VDDA supply fHCLK Peripherals enabled Peripherals disabled 72 MHz 60.6 27.2 64 MHz 54.3 24.4 48 MHz 42.3 19.0 32 MHz 28.6 13.1 24 MHz 22.0 10.3 16 MHz 14.6 7.10 8 MHz 7.42 3.67 4 MHz 4.27 2.15 2 MHz 2.46 1.33 1 MHz 1.55 0.92 500 kHz 1.10 0.71 125 kHz 0.75 0.56 72 MHz Unit mA 241.0 64 MHz 211.7 48 MHz 156.8 32 MHz 106.5 24 MHz 82.6 16 MHz 58.6 8 MHz 0.9 4 MHz 0.9 2 MHz 0.9 1 MHz 0.9 500 kHz 0.9 125 kHz 0.9 µA 1. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp is not included. Refer to the tables of characteristics in the subsequent sections. DocID027227 Rev 2 69/151 142 Electrical characteristics STM32F398VE Table 28. Typical current consumption in Sleep mode, code running from Flash or RAM Typ Symbol IDD Parameter Conditions Supply current in Sleep mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash or RAM IDDA (1) Supply current in Sleep mode from VDDA supply fHCLK Peripherals enabled Peripherals disabled 72 MHz 43.2 6.8 64 MHz 38.3 6.1 48 MHz 29.0 4.6 32 MHz 19.6 3.1 24 MHz 14.8 2.41 16 MHz 9.88 1.68 8 MHz 4.83 0.74 4 MHz 2.94 0.64 2 MHz 1.79 0.56 1 MHz 1.22 0.52 500 kHz 0.93 0.50 125 kHz 0.72 0.48 72 MHz 241.0 64 MHz 211.7 48 MHz 156.8 32 MHz 106.5 24 MHz 82.6 16 MHz 58.6 8 MHz 0.90 4 MHz 0.90 2 MHz 0.90 1 MHz 0.90 500 kHz 0.90 125 kHz 0.90 Unit mA µA 1. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. 70/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 62: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption (seeTable 30: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD  f SW  C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. DocID027227 Rev 2 71/151 142 Electrical characteristics STM32F398VE Table 29. Switching output I/O current consumption Symbol Parameter Conditions(1) VDD = 3.3 V Cext = 0 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 10 pF C = CINT + CEXT +CS ISW I/O current consumption VDD = 3.3 V Cext = 22 pF C = CINT + CEXT +CS VDD = 3.3 V Cext = 33 pF C = CINT + CEXT+ CS VDD = 3.3 V Cext = 47 pF C = CINT + CEXT+ CS 1. CS = 5 pF (estimated value). 72/151 DocID027227 Rev 2 I/O toggling frequency (fSW) Typ 2 MHz 0.90 4 MHz 0.93 8 MHz 1.16 18 MHz 1.60 36 MHz 2.51 48 MHz 2.97 2 MHz 0.93 4 MHz 1.06 8 MHz 1.47 18 MHz 2.26 36 MHz 3.39 48 MHz 5.99 2 MHz 1.03 4 MHz 1.30 8 MHz 1.79 18 MHz 3.01 36 MHz 5.99 2 MHz 1.10 4 MHz 1.31 8 MHz 2.06 18 MHz 3.47 36 MHz 8.35 2 MHz 1.20 4 MHz 1.54 8 MHz 2.46 18 MHz 4.51 36 MHz 9.98 Unit mA STM32F398VE Electrical characteristics On-chip peripheral current consumption The MCU is placed under the following conditions:  all I/O pins are in analog input configuration  all peripherals are disabled unless otherwise mentioned  the given value is calculated by measuring the current consumption  – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature at 25°C and VDD = 1.8 V, VDDA = 3.3 V. DocID027227 Rev 2 73/151 142 Electrical characteristics STM32F398VE Table 30. Peripheral current consumption Typical consumption(1) Peripheral Unit IDD BusMatrix (2) 8.3 DMA1 7.0 DMA2 5.4 FSMC 35.0 CRC 1.5 GPIOH 1.3 GPIOA 5.4 GPIOB 5.3 GPIOC 5.4 GPIOD 5.0 GPIOE 5.4 GPIOF 5.2 GPIOG 5.0 TSC 5.2 ADC1&2 15.4 ADC3&4 APB2-Bridge 74/151 16.2 (3) 3.1 SYSCFG 4.0 TIM1 26.0 SPI1 6.2 TIM8 26.4 USART1 17.7 SPI4 6.2 TIM15 11.9 TIM16 8.0 TIM17 8.5 TIM20 25.3 DocID027227 Rev 2 µA/MHz STM32F398VE Electrical characteristics Table 30. Peripheral current consumption (continued) Typical consumption(1) Peripheral Unit IDD APB1-Bridge (3) 6.7 TIM2 39.2 TIM3 30.8 TIM4 31.3 TIM6 4.3 TIM7 4.3 WWDG 1.3 SPI2 33.6 SPI3 33.9 USART2 39.3 USART3 39.3 UART4 29.8 UART5 27.0 I2C1 6.7 I2C2 6.4 CAN 25.6 PWR 3.7 DAC 22.1 I2C3 6.8 µA/MHz 1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp is not included. Refer to the tables of characteristics in the subsequent sections. 2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2). 3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus. DocID027227 Rev 2 75/151 142 Electrical characteristics 6.3.5 STM32F398VE Wakeup time from low-power mode The wakeup times given in Table 31 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:  For Stop or Sleep mode: the wakeup event is WFE.  WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 18. Table 31. Low-power mode wakeup timings Symbol Typ @VDD = 1.8 V, VDDA = 3.3V Max Unit tWUSTOP Wakeup from Stop mode 4.98 5.7 µs tWUSLEEP Wakeup from sleep mode 6.0 - CPU clock cycle Wakeup from power-off mode 91 139 µs tWUPOR 76/151 Parameter DocID027227 Rev 2 STM32F398VE 6.3.6 Electrical characteristics External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 11. Table 32. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit 1 8 32 MHz fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD 15 - - - - 20 tw(HSEH) tw(HSEL) tr(HSE) tf(HSE) OSC_IN high or low - time(1) V ns OSC_IN rise or fall time(1) 1. Guaranteed by design, not tested in production. Figure 11. High-speed external clock source AC timing diagram WZ +6(+ 9+6(+  9+6(/  WU +6( WI +6( WZ +6(/ W 7+6( 069 DocID027227 Rev 2 77/151 142 Electrical characteristics STM32F398VE Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 12 Table 33. Low-speed external user clock characteristics Symbol Parameter Conditions fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSEH) tw(LSEL) OSC32_IN high or low time(1) tr(LSE) tf(LSE) Min Typ Max Unit - 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 450 - ns OSC32_IN rise or fall time(1) - - 50 1. Guaranteed by design, not tested in production. Figure 12. Low-speed external clock source AC timing diagram WZ /6(+ 9/6(+  9/6(/  WU /6( WI /6( WZ /6(/ W 7/6( 069 78/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 34. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 34. HSE oscillator characteristics Symbol fOSC_IN RF Conditions(1) Min(2) Typ Max(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - - 8.5 VDD= 3.3 V, Rm= 30, CL=10 pF@8 MHz - 0.4 - VDD= 3.3 V, Rm= 45, CL=10 pF@8 MHz - 0.5 - VDD= 3.3 V, Rm= 30, CL=5 pF@32 MHz - 0.8 - VDD= 3.3 V, Rm= 30, CL=10 pF@32 MHz - 1 - VDD= 3.3 V, Rm= 30, CL=20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Parameter During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time (3) k mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. DocID027227 Rev 2 79/151 142 Electrical characteristics STM32F398VE For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 13). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 13. Typical application with an 8 MHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7  I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. 80/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 35. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 35. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol IDD gm tSU(LSE)(3) Parameter LSE current consumption Oscillator transconductance Startup time Conditions(1) Min(2) Typ Max(2) LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]=01 medium low driving capability - - 1 LSEDRV[1:0]=10 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]=01 medium low driving capability 8 - - LSEDRV[1:0]=10 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDD is stabilized - 2 - Unit µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID027227 Rev 2 81/151 142 Electrical characteristics STM32F398VE Figure 14. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I+6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: 82/151 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID027227 Rev 2 STM32F398VE 6.3.7 Electrical characteristics Internal clock source characteristics The parameters given in Table 36 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18. High-speed internal (HSI) RC oscillator Table 36. HSI oscillator characteristics(1) Symbol Parameter fHSI TRIM DuCy(HSI) Conditions Min Typ Max Unit Frequency - - 8 - MHz HSI user trimming step - - - 1(2) % - (2) Duty cycle Accuracy of the HSI oscillator ACCHSI 45 (2) - 55 TA = -40 to 105°C -2.8(3) - 3.8(3) TA = -10 to 85°C -1.9(3) - 2.3(3) TA = 0 to 85°C -1.9(3) - 2(3) TA = 0 to 70°C -1.3(3) - 2(3) TA = 0 to 55°C -1(3) - 2(3) -1 - 1 1(2) - 2(2) μs 80 100(2) μA TA = 25°C(4) tSU(HSI) HSI oscillator startup time - IDDA(HSI) HSI oscillator power consumption - % % 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. 4. Factory calibrated, parts not soldered. Figure 15. HSI oscillator accuracy characterization results for soldered parts  ."9 .*/             5  "     069 DocID027227 Rev 2 83/151 142 Electrical characteristics STM32F398VE Low-speed internal (LSI) RC oscillator Table 37. LSI oscillator characteristics(1) Symbol fLSI tsu(LSI) Parameter Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 1.2 µA Frequency (2) IDD(LSI)(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.8 PLL characteristics The parameters given in Table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18. Table 38. PLL characteristics Value Symbol fPLL_IN fPLL_OUT Parameter Unit Min Typ Max 1(2) - 24(2) MHz PLL input clock duty cycle (2) 40 - 60(2) % PLL multiplier output clock 16(2) - 72 MHz PLL input clock(1) tLOCK PLL lock time - - 200(2) µs Jitter Cycle-to-cycle jitter - - 300(2) ps 1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 84/151 DocID027227 Rev 2 STM32F398VE 6.3.9 Electrical characteristics Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 39. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA–40 to +105 °C 40 53.5 60 µs Page (2 KB) erase time TA –40 to +105 °C 20 - 40 ms tME Mass erase time TA –40 to +105 °C 20 - 40 ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 40. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 (2) 1 kcycle 10 at TA = 105 °C kcycle(2) at TA = 55 °C Unit Min(1) kcycles 10 Years 20 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.10 FSMC characteristics Unless otherwise specified, the parameters given in Table 41 to Table 56 for the FSMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 18 with the following configuration:  Output speed is set to OSPEEDRy[1:0] = 11  Capacitive load C = 30 pF  Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.14: I/O port characteristics: for more details on the input/output characteristics. DocID027227 Rev 2 85/151 142 Electrical characteristics STM32F398VE Asynchronous waveforms and timings Figure 16 to Figure 19 represent asynchronous waveforms and Table 41 to Table 48 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:  AddressSetupTime = 0x4  AddressHoldTime = 0x1  DataSetupTime = 0x4 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)  BusTurnAroundDuration = 0x0  NOR NWAIT pulse width= 1THCLK In all the timing tables, the THCLK is the HCLK clock period. Figure 16. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings TW.% &-#?.% TV./%?.% T W./% T H.%?./% &-#?./% &-#?.7% TV!?.% &-#?!;= T H!?./% !DDRESS TV",?.% T H",?./% &-#?.",;= T H$ATA?.% T SU$ATA?./% TH$ATA?./% T SU$ATA?.% $ATA &-#?$;= T V.!$6?.% TW.!$6 &-#?.!$6  &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 86/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) Symbol Min Max 8THCLK– 1 8THCLK+1 0 1 8THCLK 8THCLK+ 1.5 0.5 - FMC_NEx low to FMC_A valid - 3 th(A_NOE) Address hold time after FMC_NOE high 0 - tv(BL_NE) FMC_NEx low to FMC_BL valid - 2 (NA) th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 - tsu(Data_NE) Data to FMC_NEx high setup time THCLK + 6 - tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK +7 - th(Data_NOE) Data hold time after FMC_NOE high 0 - th(Data_NE) Data hold time after FMC_NEx high 0 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 2 FMC_NADV low time - 4THCLK +1.5 tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tw(NADV) Parameter FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time FMC_NOE high to FMC_NE high hold time Unit ns 1. Based on characterization, not tested in production Table 42. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings(1) Symbol tw(NE) tw(NOE) Parameter FMC_NE low time FMC_NWE low time Min Max 10THCLK +0.5 10THCLK+ 1 6THCLK -1.5 6THCLK +2 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 4THCLK +15 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid - 4THCLK-3 Unit ns 1. Based on characterization, not tested in production DocID027227 Rev 2 87/151 142 Electrical characteristics STM32F398VE Figure 17. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings TW.% &-#?.%X &-#?./% TV.7%?.% TW.7% T H.%?.7% &-#?.7% TV!?.% &-#?!;= TH!?.7% !DDRESS TV",?.% &-#?.",;= TH",?.7% .", TV$ATA?.% TH$ATA?.7% $ATA &-#?$;= T V.!$6?.% &-#?.!$6  TW.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used. Table 43. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Min Max FMC_NE low time 9THCLK-1 9THCLK+2 FMC_NEx low to FMC_NWE low THCLK+0.5 THCLK+1 FMC_NWE low time 4THCLK-2 4THCLK+1 FMC_NWE high to FMC_NE high hold time THCLK-0.5 - - 0 THCLK-1.5 - - 1 THCLK-0.5 - FMC_NEx low to FMC_A valid th(A_NWE) Address hold time after FMC_NWE high tv(BL_NE) FMC_NEx low to FMC_BL valid th(BL_NWE) FMC_BL hold time after FMC_NWE high tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK+ 3 th(Data_NWE) Data hold time after FMC_NWE high THCLK+0.5 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 2.5 FMC_NADV low time - 4THCLK+2 tw(NADV) 88/151 Parameter DocID027227 Rev 2 Unit ns STM32F398VE Electrical characteristics 1. Based on characterization, not tested in production Table 44. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings(1) Symbol tw(NE) tw(NWE) Parameter FMC_NE low time FMC_NWE low time Min Max 11THCLK+1 11THCLK+2 6THCLK-1 6THCLK+2 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK-0.5 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+2 - Unit ns 1. Based on characterization, not tested in production Table 45. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1) Symbol tw(NE) tw(NOE) Parameter FMC_NE low time FMC_NWE low time tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid Min Max 11THCLK+2 11THCLK+2 6THCLK-1 6THCLK+1.5 4THCLK+14 - 4THCLK-4 - Unit ns 1. Based on characterization, not tested in production DocID027227 Rev 2 89/151 142 Electrical characteristics STM32F398VE Figure 18. Asynchronous multiplexed PSRAM/NOR read timings TW.% &-#? .% TV./%?.% T H.%?./% &-#?./% T W./% &-#?.7% TH!?./% TV!?.% &-#? !;= !DDRESS TV",?.% TH",?./% &-#? .",;= .", TH$ATA?.% TSU$ATA?.% T V!?.% &-#? !$;= TSU$ATA?./% TH$ATA?./% $ATA !DDRESS TH!$?.!$6 T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 90/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 46. Asynchronous multiplexed PSRAM/NOR read timings(1) Symbol tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) Parameter Min Max 9THCLK-0.5 9THCLK+1 5THCLK 5THCLK+1 4THCLK-2 4THCLK+2 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 1.5 FMC_NEx low to FMC_NADV low 0 2 4THCLK-2 4THCLK+2 FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time FMC_NADV low time th(AD_NADV) FMC_AD(address) valid hold time after FMC_NADV high 0 - th(A_NOE) Address hold time after FMC_NOE high THCLK-0.5 - th(BL_NOE) FMC_BL time after FMC_NOE high 0 - FMC_NEx low to FMC_BL valid - 2 tv(BL_NE) tsu(Data_NE) Data to FMC_NEx high setup time THCLK - tsu(Data_NOE) Data to FMC_NOE high setup time THCLK+1 - th(Data_NE) Data hold time after FMC_NEx high 0 - th(Data_NOE) Data hold time after FMC_NOE high 0 - Unit ns 1. Based on characterization, not tested in production DocID027227 Rev 2 91/151 142 Electrical characteristics STM32F398VE Figure 19. Asynchronous multiplexed PSRAM/NOR write timings TW.% &-#? .%X &-#?./% TV.7%?.% TW.7% T H.%?.7% &-#?.7% TH!?.7% TV!?.% &-#? !;= !DDRESS TV",?.% &-#? .",;= .", T V!?.% &-#? !$;= TH",?.7% T V$ATA?.!$6 !DDRESS TH$ATA?.7% $ATA TH!$?.!$6 T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 92/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 47. Asynchronous multiplexed PSRAM/NOR write timings(1) Symbol Min Max 10THCLK-1 10THCLK+1 THCLK THCLK+0.5 FMC_NWE low time 5THCLK-0.5 5THCLK+1 FMC_NWE high to FMC_NE high hold time THCLK-0.5 - FMC_NEx low to FMC_A valid - 5 FMC_NEx low to FMC_NADV low 1 2.5 FMC_NADV low time 4THCLK-2 4THCLK+2 FMC_AD(adress) valid hold time after FMC_NADV high) THCLK-2 - th(A_NWE) Address hold time after FMC_NWE high THCLK-1 - th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK-0.5 - tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) Parameter FMC_NE low time FMC_NEx low to FMC_NWE low tv(BL_NE) FMC_NEx low to FMC_BL valid - 1 tv(Data_NADV) FMC_NADV high to Data valid - THCLK +3.5 th(Data_NWE) Data hold time after FMC_NWE high THCLK +0.5 - Unit ns 1. Based on characterization, not tested in production Table 48. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1) Symbol tw(NE) tw(NWE) Parameter Min Max FMC_NE low time 12THCLK 12THCLK+0. 5 FMC_NWE low time 6THCLK 6THCLK+2 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK+6 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 5THCLK-5 - Unit ns 1. Based on characterization, not tested in production Synchronous waveforms and timings Figure 20 and Figure 23 present the synchronous waveforms and Table 49 to Table 52 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:  BurstAccessMode = FMC_BurstAccessMode_Enable;  MemoryType = FMC_MemoryType_CRAM;  WriteBurst = FMC_WriteBurst_Enable;  CLKDivision = 4;  DataLatency = 2 for NOR Flash; DataLatency = 0 for PSRAM In all timing tables, the THCLK is the HCLK clock period (with maximum FMC_CLK = 18 MHz). DocID027227 Rev 2 93/151 142 Electrical characteristics STM32F398VE Figure 20. Synchronous multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &-#?#,+ $ATALATENCY TD#,+, .%X, &-#?.%X T D#,+, .!$6, TD#,+( .%X( TD#,+, .!$6( &-#?.!$6 TD#,+, !6 TD#,+( !)6 &-#?!;= TD#,+, ./%, TD#,+( ./%( &-#?./% T D#,+, !$6 &-#?!$;= TD#,+, !$)6 TSU!$6 #,+( !$;= TH#,+( !$6 TSU!$6 #,+( $ TSU.7!)46 #,+( &-#?.7!)4 7!)4#&'B 7!)40/, B &-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( TSU.7!)46 #,+( TH#,+( !$6 $ TH#,+( .7!)46 TH#,+( .7!)46 TH#,+( .7!)46 -36 94/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 49. Synchronous multiplexed NOR/PSRAM read timings(1) Symbol tw(CLK) Parameter FMC_CLK period td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) td(CLKL-NADVL) td(CLKL-NADVH) Min Max 4THCLK - - Unit 5 THCLK+1 - FMC_CLK low to FMC_NADV low - 7 FMC_CLK low to FMC_NADV high 2.5 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 3 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 - td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 6 td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK+1 - td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 2 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high 4 - th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 6 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 3 - th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 4 - ns 1. Based on characterization, not tested in production DocID027227 Rev 2 95/151 142 Electrical characteristics STM32F398VE Figure 21. Synchronous multiplexed PSRAM write timings "53452. TW#,+ TW#,+ &-#?#,+ $ATALATENCY TD#,+, .%X, TD#,+( .%X( &-#?.%X TD#,+, .!$6, TD#,+, .!$6( &-#?.!$6 TD#,+( !)6 TD#,+, !6 &-#?!;= TD#,+( .7%( TD#,+, .7%, &-#?.7% TD#,+, !$)6 TD#,+, !$6 &-#?!$;= TD#,+, $ATA TD#,+, $ATA !$;= $ $ &-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( TH#,+( .7!)46 TD#,+( .",( &-#?.", -36 96/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 50. Synchronous multiplexed PSRAM write timings(1) (2) Symbol Parameter Min Max tw(CLK) FMC_CLK period, VDD range= 2.7 to 3.6 V 4THCLK-1 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 5.5 td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK+1 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 7 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 2 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 0 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 - td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 5.5 td(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK+1 - td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 7.5 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 8 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 6 td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK+1 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 3 - th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 5 - Unit ns 1. Based on characterization, not tested in production 2. CL = 30 pF. DocID027227 Rev 2 97/151 142 Electrical characteristics STM32F398VE Figure 22. Synchronous non-multiplexed NOR/PSRAM read timings TW#,+ TW#,+ &-#?#,+ TD#,+, .%X, TD#,+( .%X( $ATALATENCY &-#?.%X TD#,+, .!$6, TD#,+, .!$6( &-#?.!$6 TD#,+( !)6 TD#,+, !6 &-#?!;= TD#,+, ./%, TD#,+( ./%( &-#?./% TSU$6 #,+( TH#,+( $6 TSU$6 #,+( &-#?$;= &-#?.7!)4 7!)4#&'B 7!)40/, B &-#?.7!)4 7!)4#&'B 7!)40/, B $ TSU.7!)46 #,+( TSU.7!)46 #,+( TSU.7!)46 #,+( TH#,+( $6 $ TH#,+( .7!)46 T H#,+( .7!)46 TH#,+( .7!)46 -36 98/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 51. Synchronous non-multiplexed NOR/PSRAM read timings(1) Symbol tw(CLK) Parameter FMC_CLK period Min Max 4THCLK-1 - - 5 td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high  (x= 0…2) THCLK+1 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 7 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 2.5 - - 7 THCLK - - 6 THCLK+1 - 3.5 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 5 tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 4 Unit ns 1. Based on characterization, not tested in production DocID027227 Rev 2 99/151 142 Electrical characteristics STM32F398VE Figure 23. Synchronous non-multiplexed PSRAM write timings TW#,+ TW#,+ &-#?#,+ TD#,+, .%X, TD#,+( .%X( $ATALATENCY &-#?.%X TD#,+, .!$6, TD#,+, .!$6( &-#?.!$6 TD#,+( !)6 TD#,+, !6 &-#?!;= TD#,+, .7%, TD#,+( .7%( &-#?.7% TD#,+, $ATA TD#,+, $ATA $ &-#?$;= $ &-#?.7!)4 7!)4#&'B 7!)40/, B TSU.7!)46 #,+( TD#,+( .",( TH#,+( .7!)46 &-#?.", -36 100/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Table 52. Synchronous non-multiplexed PSRAM write timings(1) Symbol tw(CLK) Parameter FMC_CLK period Min Max 4THCLK-1 - - 6 td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high  (x= 0…2) THCLK+1.5 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 7.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 6.5 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 - td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 0 td(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK+2 - td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 7.5 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 7 td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK+0.5 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 - th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 4 - Unit ns 1. Based on characterization, not tested in production PC Card/CompactFlash controller waveforms and timings Figure 24 to Figure 29 present the PC Card/Compact Flash controller waveforms, and Table 53 to Table 54 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:  COM.FMC_SetupTime = 0x04;  COM.FMC_WaitSetupTime = 0x07;  COM.FMC_HoldSetupTime = 0x04;  COM.FMC_HiZSetupTime = 0x05;  ATT.FMC_SetupTime = 0x04;  ATT.FMC_WaitSetupTime = 0x07;  ATT.FMC_HoldSetupTime = 0x04;  ATT.FMC_HiZSetupTime = 0x05;  IO.FMC_SetupTime = 0x04;  IO.FMC_WaitSetupTime = 0x07;  IO.FMC_HoldSetupTime = 0x04;  IO.FMC_HiZSetupTime = 0x05;  TCLRSetupTime = 0;  TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. DocID027227 Rev 2 101/151 142 Electrical characteristics STM32F398VE Table 53. Switching characteristics for PC Card/CF read and write cycles in attribute/common space(1) Symbol Parameter Max - 0 tv(NCEx-A) FMC_Ncex low to FMC_Ay valid th(NCEx_AI) FMC_NCEx high to FMC_Ax invalid 2.5 - td(NREG-NCEx) FMC_NCEx low to FMC_NREG valid - 2 th(NCEx-NREG) FMC_NCEx high to FMC_NREG invalid 0 - td(NCEx-NWE) FMC_NCEx low to FMC_NWE low - 5THCLK+2 8THCLK 8THCLK+0.5 tw(NWE) FMC_NWE low width td(NWE_NCEx) FMC_NWE high to FMC_NCEx high 5THCLK-1 - tv (NWE-D) FMC_NWE low to FMC_D[15:0] valid - 5 th (NWE-D) FMC_NWE high to FMC_D[15:0] invalid 4THCLK-1 - td (D-NWE) FMC_D[15:0] valid before FMC_NWE high 13THCLK-3 - td(NCEx-NOE) tw(NOE) td(NOE_NCEx) tsu (D-NOE) th(NOE-D) FMC_NCEx low to FMC_NOE low 5THCLK+2 FMC_NOE low width 8THCLK-1 8THCLK+2 FMC_NOE high to FMC_NCEx high 5THCLK-1 - FMC_D[15:0] valid data before FMC_NOE high THCLK+2 - 0 - FMC_N0E high to FMC_D[15:0] invalid 1. Based on characterization, not tested in production 102/151 Min DocID027227 Rev 2 Unit ns STM32F398VE Electrical characteristics Figure 24. PC Card/CompactFlash controller waveforms for common memory read access &-#?.#%? &-#?.#%? TH.#%X !) TV.#%X ! &-#?!;= TH.#%X .2%' TH.#%X .)/2$ TH.#%X .)/72 TD.2%' .#%X TD.)/2$ .#%X &-#?.2%' &-#?.)/72 &-#?.)/2$ &-#?.7% TD.#%? ./% &-#?./% TW./% TSU$ ./% TH./% $ &-#?$;= -36 1. FMC_NCE4_2 remains high (inactive during 8-bit access. Figure 25. PC Card/CompactFlash controller waveforms for common memory write access &-#?.#%? &-#?.#%? (IGH TV.#%? ! TH.#%? !) &-#?!;= TH.#%? .2%' TH.#%? .)/2$ TH.#%? .)/72 TD.2%' .#%? TD.)/2$ .#%? &-#?.2%' &-#?.)/72 &-#?.)/2$ TD.#%? .7% TW.7% TD.7% .#%? &-#?.7% &-#?./% -%-X(): TD$ .7% TV.7% $ TH.7% $ &-#?$;= -36 DocID027227 Rev 2 103/151 142 Electrical characteristics STM32F398VE Figure 26. PC Card/CompactFlash controller waveforms for attribute memory read access &-#?.#%? TV.#%? ! &-#?.#%? TH.#%? !) (IGH &-#?!;= &-#?.)/72 &-#?.)/2$ TD.2%' .#%? TH.#%? .2%' &-#?.2%' &-#?.7% TD.#%? ./% TW./% TD./% .#%? &-#?./% TSU$ ./% TH./% $ &-#?$;= -36 1. Only data bits 0...7 are read (bits 8...15 are disregarded). 104/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Figure 27. PC Card/CompactFlash controller waveforms for attribute memory write access &-#?.#%? &-#?.#%? (IGH TV.#%? ! TH.#%? !) &-#?!;= &-#?.)/72 &-#?.)/2$ TD.2%' .#%? TH.#%? .2%' &-#?.2%' TD.#%? .7% TW.7% &-#?.7% TD.7% .#%? &-#?./% TV.7% $ &-#?$;= -36 1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z). Table 54. Switching characteristics for PC Card/CF read and write cycles in I/O space(1) Symbol tw(NIOWR) Parameter FMC_NIOWR low width tv(NIOWR-D) FMC_NIOWR low to FMC_D[15:0] valid th(NIOWR-D) FMC_NIOWR high to FMC_D[15:0] invalid Min Max 8THCLK-0.5 - 5.5 4THCLK-0.5 - td(NCE4_1-NIOWR) FMC_NCE4_1 low to FMC_NIOWR valid - 5THCLK+1 th(NCEx-NIOWR) FMC_NCEx high to FMC_NIOWR invalid 4THCLK+0.5 - td(NIORD-NCEx) FMC_NCEx low to FMC_NIORD valid - 5THCLK th(NCEx-NIORD) FMC_NCEx high to FMC_NIORD) valid 6THCLK+2 - FMC_NIORD low width 8THCLK-1 8THCLK+1 tsu(D-NIORD) FMC_D[15:0] valid before FMC_NIORD high THCLK+2 - td(NIORD-D) FMC_D[15:0] valid after FMC_NIORD high 0 - tw(NIORD) Unit ns 1. Based on characterization, not tested in production DocID027227 Rev 2 105/151 142 Electrical characteristics STM32F398VE Figure 28. PC Card/CompactFlash controller waveforms for I/O space read access &-#?.#%? &-#?.#%? TH.#%? !) TV.#%X ! &-#?!;= &-#?.2%' &-#?.7% &-#?./% &-#?.)/72 TW.)/2$ TD.)/2$ .#%? &-#?.)/2$ TSU$ .)/2$ TD.)/2$ $ &-#?$;= -36 Figure 29. PC Card/CompactFlash controller waveforms for I/O space write access &-#?.#%? &-#?.#%? TV.#%X ! TH.#%? !) &-#?!;= &-#?.2%' &-#?.7% &-#?./% &-#?.)/2$ T D.#%? .)/72 TW.)/72 &-#?.)/72 !44X(): TV.)/72 $ TH.)/72 $ &-#?$;= -36 106/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics NAND controller waveforms and timings Figure 30 and Figure 31 present the NAND controller synchronous waveforms, and Table 55 and Table 56 provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:  COM.FMC_SetupTime = 0x01;  COM.FMC_WaitSetupTime = 0x03;  COM.FMC_HoldSetupTime = 0x02;  COM.FMC_HiZSetupTime = 0x03;  ATT.FMC_SetupTime = 0x01;  ATT.FMC_WaitSetupTime = 0x03;  ATT.FMC_HoldSetupTime = 0x02;  ATT.FMC_HiZSetupTime = 0x03;  Bank = FMC_Bank_NAND;  MemoryDataWidth = FMC_MemoryDataWidth_16b;  ECC = FMC_ECC_Enable;  ECCPageSize = FMC_ECCPageSize_512Bytes;  TCLRSetupTime = 0;  TARSetupTime = 0. In all timing tables, the THCLK is the HCLK clock period. Figure 30. NAND controller read timings &-#?.#%X !,%&-#?! #,%&-#?! &-#?.7% TD!,% ./% TH./% !,% &-#?./%.2% TSU$ ./% TH./% $ &-#?$;= -36 DocID027227 Rev 2 107/151 142 Electrical characteristics STM32F398VE Table 55. Switching characteristics for NAND Flash read cycles(1) (2) Symbol Min Max FMC_NOE low width 6THCLK 6THCLK + 2 tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high THCLK+5 - th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 0 - td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 6THCLK -0.5 th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 6THCLK-1 - tw(NOE) Parameter Unit ns 1. Based on characterization, not tested in production 2. CL = 30 pF Figure 31. NAND controller write timings &-#?.#%X !,%&-#?! #,%&-#?! TH.7% !,% TD!,% .7% &-#?.7% &-#?./%.2% TH.7% $ TV.7% $ &-#?$;= -36 Table 56. Switching characteristics for NAND Flash write cycles(1) Symbol tw(NWE) Parameter FMC_NWE low width Max 4THCLK-0.5 4THCLK + 1.5 - 3.5 tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 3THCLK -1.5 - td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5THCLK – 3 - td(ALE_NWE) FMC_ALE valid before FMC_NWE low - 4THCLK+2 th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 2THCLK-1 - 1. Based on characterization, not tested in production 108/151 Min DocID027227 Rev 2 Unit ns STM32F398VE 6.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling two LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:  Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 57. They are based on the EMS levels and classes defined in application note AN1709. Table 57. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 1.8 V, LQFP100, TA = +25°C,  Voltage limits to be applied on any I/O pin to fHCLK = 72 MHz induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 1.8 V, LQFP100, TA = +25°C,  fHCLK = 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as:  Corrupted program counter  Unexpected reset  Critical Data corruption (control registers...) DocID027227 Rev 2 109/151 142 Electrical characteristics STM32F398VE Pre qualification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 58. EMI characteristics Symbol Parameter SEMI 6.3.12 Monitored frequency band Conditions Max vs. [fHSE/fHCLK] Unit 8/72 MHz 0.1 to 30 MHz VDD 1.9 V, TA 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with IEC 130 MHz to 1GHz 61967-2 SAE EMI Level 9 15 dBµV 25 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 59. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions Electrostatic discharge TA +25 °C, conforming voltage (human body model) to ANSI/JEDEC JS-001 Electrostatic discharge VESD(CDM) voltage (charge device model) TA +25 °C, conforming to ANSI/ESD STM5.3.1 1. Data based on characterization results, not tested in production. 110/151 DocID027227 Rev 2 Class Maximum value(1) 2 2000 Unit V C3 250 STM32F398VE Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance:  A supply overvoltage is applied to each power supply pin  A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 60. Electrical sensitivities Symbol LU 6.3.13 Parameter Static latch-up class Conditions TA +105 °C conforming to JESD78A Class II Level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The test results are given in Table 61. DocID027227 Rev 2 111/151 142 Electrical characteristics STM32F398VE Table 61. I/O current injection susceptibility Functional susceptibility Symbol IINJ Note: 112/151 Description Negative injection Positive injection Injected current on BOOT0 -0 NA Injected current on PF3, PC1, PC2, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PB0, PB1, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 pins with induced leakage current on adjacent pins less than 50 µA or more than +400 µA -5 +5 Injected current on PF2, PF4, PC0, PC1, PC2, PC3, PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB11 with induced leakage current on other pins from this group less than -50 µA or more than +400 µA -5 +5 Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, P15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than -50 µA or more than +400 µA -5 +5 Injected current on any other FT, FTf and NPOR pins -5 NA Injected current on any other pins -5 +5 It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. DocID027227 Rev 2 Unit mA STM32F398VE 6.3.14 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 62 are derived from tests performed under the conditions summarized in Table 18. All I/Os are CMOS and TTL compliant. Table 62. I/O static characteristics Symbol VIL VIH Parameter Low level input voltage High level input voltage Conditions Vhys Ilkg Input leakage current (3) Typ Max Unit (1) TC and TTa I/O - - 0.3 VDD+0.07 FT and FTf I/O - - 0.475 VDD-0.2 (1) BOOT0 - - 0.3 VDD–0.3 (1) All I/Os except BOOT0 - - 0.3 VDD (2) TC and TTa I/O 0.445 VDD+0.398 (1) - - FT and FTf I/O 0.5 VDD+0.2 (1) - - NPOR I/O input high-level voltage 0.2 VDDA+0.2 - - BOOT0 0.2 VDD+0.95 (1) - - All I/Os except BOOT0 Schmitt trigger hysteresis Min 0.7 VDD (2) - V V (1) - TC and TTa I/O - 200 FT, FTf I/O and NPOR pin - 100 (1) - BOOT0 - 300 (1) - TC, FT and FTf I/O TTa I/O in digital mode VSS VIN VDD - - ±0.1 TTa I/O in digital mode VDD VIN VDDA - - 1 TTa I/O in analog mode VSS VIN VDDA - - ±0.2 FT and FTf I/O(4) VDD VIN 5 V - - 10 POR VDDA VIN 5 V - - 10 mV µA RPU Weak pull-up equivalent resistor(5) VIN VSS 25 40 55 k RPD Weak pull-down equivalent resistor(5) VIN VDD 25 40 55 k CIO I/O pin capacitance - - 5 - pF 1. Data based on design simulation. 2. Tested in production. 3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 61: I/O current injection susceptibility. DocID027227 Rev 2 113/151 142 Electrical characteristics STM32F398VE 4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 32 for standard I/Os. Figure 32. TC and TTA I/O input characteristics 9,/9,+ 9   XODWLRQV 9 ''  HVLJQVLP 9 ,+ GRQG %DVH PHQWV9,+PLQ 9'' 9,+PLQ  7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUH PLQ  QV   LPXODWLR '' 9H LJQV V 9 ,/ GRQG %DVH $UHDQRWGHWHUPLQHG  PD[  9,/PD[  7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 9'' 9    069 Figure 33. Five volt tolerant (FT and FTf) I/O input characteristics 9,/9,+ 9 9,+PLQ  7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUHPHQWV9,+PLQ 9''  XODWLRQV ' 9 ' QVLP 9 ,+PLQ RQGHVLJ G %DVH   XODWLRQV 9 ''  HVLJQVLP QG VHGR  $UHDQRWGHWHUPLQHG  9,/PD[  9 ,/PD[ %D &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 7HVWHGLQSURGXFWLRQ 9'' 9    069 114/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:  The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 16).  The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 16). Output voltage levels Unless otherwise specified, the parameters given in Table 63 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 18. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant. Table 63. Output voltage characteristics Symbol Parameter Conditions Min Max VOL(1) Output low level voltage for an I/O pin IIO = +4 mA 1.65 V < VDD < 1.95 V - 0.4 VOH(2) Output high level voltage for an I/O pin IIO = -4 mA 1.65 V < VDD < 1.95 V VDD–0.4 - - 0.4 VOLFM+(1)(3) Output low level voltage for an FTf I/O pin in IIO = +10 mA FM+ mode 1.65 V < VDD < 1.95 V Unit V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IIO(PIN). 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IIO(PIN). 3. Data based on design simulation. DocID027227 Rev 2 115/151 142 Electrical characteristics STM32F398VE Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 34 and Table 64, respectively. Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 18. Table 64. I/O AC characteristics(1) OSPEEDRy [1:0] value(1) x0 01 11 FM+ configuration(4) - Symbol Parameter Conditions Min Max Unit CL = 50 pF, VDD = 1.65 V to 1.95 V - 1(3) MHz - 125(3) - 125(3) - 4(3) - 62.5(3) - 25(3) fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 1.65 V to 1.95 V - 10(3) tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 1.65 V to 1.95 V - 25(3) tr(IO)out Output low to high level rise time - 25(3) fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time tEXTIpw Pulse width of external signals detected by the EXTI controller CL = 50 pF, VDD = 1.65 V to 1.95 V CL = 50 pF, VDD = 1.65 V to 1.95 V ns CL = 50 pF, VDD = 1.65 V to 1.95 V MHz ns MHz ns CL = 50 pF, VDD = 1.65 V to 1.95 V CL = 50 pF, VDD = 1.65 V to 1.95 V - 16(4) ns - - 0.5(3)(4) MHz 10(3) 44 (3)(4) - ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 34. 3. Guaranteed by design, not tested in production. 4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the reference manual RM0316 for a description of FM+ I/O mode configuration. 116/151 DocID027227 Rev 2 STM32F398VE Electrical characteristics Figure 34. I/O AC characteristics definition       WU ,2 RXW WI ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI ” 7DQGLIWKHGXW\F\FOHLV  ZKHQORDGHGE\&/    .47 1. See Table 64: I/O AC characteristics. 6.3.15 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 62). Unless otherwise specified, the parameters given in Table 65 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 18. Table 65. NRST pin characteristics Symbol Conditions Min Typ Max VIL(NRST)(1) NRST Input low level voltage - - - 0.3VDD+ 0.07(1) VIH(NRST)(1) NRST Input high level voltage - 0.445VDD+ 0.398(1) - - - - 200 - mV VIN VSS 25 40 55 k ns ns Vhys(NRST) RPU VF(NRST)(1) Parameter NRST Schmitt trigger voltage hysteresis Weak pull-up equivalent resistor NRST Input filtered pulse VNF(NRST)(1) NRST Input not filtered pulse (2) - - - 100(1) - 700(1) - - Unit V 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). DocID027227 Rev 2 117/151 142 Electrical characteristics STM32F398VE Figure 35. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLWU\  538 ,QWHUQDOUHVHW 1567  )LOWHU —) 069 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 65. Otherwise the reset will not be taken into account by the device. 6.3.16 NPOR pin characteristics The NPOR pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 66) connected to VDDA supply. Unless otherwise specified, the parameters given in Table 66 are derived from tests performed under ambient temperature and VDDA supply voltage conditions summarized in Table 18. Table 66. NPOR pin characteristics Symbol(1) VIL(NPOR) Parameter Conditions Min Typ Max - - - 0.475VDDA - 0.2 - - NPOR Input low level voltage Unit V VIH(NPOR) NPOR Input high level voltage - 0.5VDDA + 0.2 Vhys(NPOR) NPOR Schmitt trigger voltage hysteresis - - 100 - mV VIN VSS 25 40 55 k RPU Weak pull-up equivalent resistor(2) 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 118/151 DocID027227 Rev 2 STM32F398VE 6.3.17 Electrical characteristics Timer characteristics The parameters given in Table 67 are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 67. TIMx(1)(2) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Timer resolution time Timer external clock frequency on CH1 to CH4 Timer resolution 16-bit counter clock period Maximum possible count tMAX_COUNT with 32-bit counter Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 72 MHz 13.9 - ns fTIMxCLK = 144 MHz 6.95 - ns 0 fTIMxCLK/2 MHz fTIMxCLK = 72 MHz 0 36 MHz TIMx (except TIM2) - 16 TIM2 - 32 - 1 65536 tTIMxCLK fTIMxCLK = 72 MHz 0.0139 910 µs fTIMxCLK = 144 MHz 0.0069 455 µs - - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.65 s fTIMxCLK = 144 MHz - 29.825 s - bit 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 TIM17 and TIM20 timers. 2. Guaranteed by design, not tested in production. DocID027227 Rev 2 119/151 142 Electrical characteristics STM32F398VE Table 68. IWDG min/max timeout period at 40 kHz (LSI) (1) Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]= 0x000 Max timeout (ms) RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 69. WWDG min-max timeout value @72 MHz (PCLK)(1) Prescaler WDGTB Min timeout value Max timeout value 1 0 0.05687 3.6409 2 1 0.1137 7.2817 4 2 0.2275 14.564 8 3 0.4551 29.127 1. Guaranteed by design, not tested in production. 120/151 DocID027227 Rev 2 STM32F398VE 6.3.18 Electrical characteristics Communications interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev.03 for:  Standard-mode (Sm): with a bit rate up to 100 kbit/s  Fast-mode (Fm): with a bit rate up to 400 kbit/s  Fast-mode Plus (Fm+): with a bit rate up to 1Mbits/s The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics. All I2C I/Os embed an analog filter. refer to theTable 70: I2C analog filter characteristics. Table 70. I2C analog filter characteristics(1) Symbol tAF Parameter Pulse width of spikes that are suppressed by the analog filter Min Max Unit 50 260 ns 1. Guaranteed by design, not tested in production. DocID027227 Rev 2 121/151 142 Electrical characteristics STM32F398VE SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 71 for SPI or in Table 72 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 18. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 71. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Typ. Max Master mode,  SPI1/2/3/4 - - 18 Slave mode,  SPI1/2/3/4 - - 18 Slave mode transmitter/full duplex, 1.65 V
STM32F398VET6 价格&库存

很抱歉,暂时无法提供与“STM32F398VET6”相匹配的价格&库存,您可以联系我们找货

免费人工找货