0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F401RET6

STM32F401RET6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    IC MCU 32BIT 512KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
STM32F401RET6 数据手册
STM32F401xD STM32F401xE ARM® Cortex®-M4 32b MCU+FPU, 105 DMIPS, 512KB Flash/96KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces Datasheet - production data Features ® ® • Core: ARM 32-bit Cortex -M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 84 MHz, memory protection unit, 105 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions • Memories – up to 512 Kbytes of Flash memory – up to 96 Kbytes of SRAM • Clock, reset and supply management – 1.7 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Power consumption – Run: 146 µA/MHz (peripheral off) – Stop (Flash in Stop mode, fast wakeup time): 42 µA Typ @ 25C; 65 µA max @25 °C – Stop (Flash in Deep power down mode, fast wakeup time): down to 10 µA @ 25 °C; 30 µA max @25 °C – Standby: 2.4 µA @25 °C / 1.7 V without RTC; 12 µA @85 °C @1.7 V – VBAT supply for RTC: 1 µA @25 °C • 1×12-bit, 2.4 MSPS A/D converter: up to 16 channels • General-purpose DMA: 16-stream DMA controllers with FIFOs and burst support • Up to 11 timers: up to six 16-bit, two 32-bit timers up to 84 MHz, each with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input, two watchdog timers (independent and window) and a SysTick timer January 2015 This is information on a product in full production. )%*$ UFQFPN48 LQFP100 (14 × 14 mm) (7 × 7 mm) WLCSP49 (3.06 x 3.06 mm) LQFP64 (10 × 10 mm) UFBGA100 (7 × 7 mm) • Debug mode – Serial wire debug (SWD) & JTAG interfaces – Cortex®-M4 Embedded Trace Macrocell™ • Up to 81 I/O ports with interrupt capability – Up to 78 fast I/Os up to 42 MHz – All I/O ports are 5 V-tolerant • Up to 12 communication interfaces – Up to 3 x I2C interfaces (SMBus/PMBus) – Up to 3 USARTs (2 x 10.5 Mbit/s, 1 x 5.25 Mbit/s), ISO 7816 interface, LIN, IrDA, modem control) – Up to 4 SPIs (up to 42Mbit/s at fCPU = 84 MHz), SPI2 and SPI3 with muxed full-duplex I2S to achieve audio class accuracy via internal audio PLL or external clock – SDIO interface – Advanced connectivity: USB 2.0 full-speed device/host/OTG controller with on-chip PHY • CRC calculation unit • 96-bit unique ID • RTC: subsecond accuracy, hardware calendar • All packages (WLCSP49, LQFP64/100, ® UFQFPN48, UFBGA100) are ECOPACK 2 Table 1. Device summary Reference Part number STM32F401xD STM32F401CD, STM32F401RD, STM32F401VD STM32F401xE STM32F401CE, STM32F401RE, STM32F401VE DocID025644 Rev 3 1/135 www.st.com Contents STM32F401xD STM32F401xE Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 15 3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 15 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 16 3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 18 3.10 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.12 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.14 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.15 2/135 Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.14.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.15.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.15.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15.3 Regulator ON/OFF and internal power supply supervisor availability . . 25 3.16 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25 3.17 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.18 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.19 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.19.1 Advanced-control timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.19.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DocID025644 Rev 3 STM32F401xD STM32F401xE Contents 3.19.3 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.19.4 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.19.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.20 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.21 Universal synchronous/asynchronous receiver transmitters (USART) . . 29 3.22 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.23 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.24 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.25 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 31 3.26 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 31 3.27 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.28 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.2 VCAP1/VCAP2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 63 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 63 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 64 DocID025644 Rev 3 3/135 4 Contents 7 STM32F401xD STM32F401xE 6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 84 6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 89 6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.24 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 113 6.3.25 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1 7.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.1.1 WLCSP49, 3.06 x 3.06 mm, 0.4 mm pitch wafer level chip size package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.1.2 UFQFPN48, 7 x 7 mm, 0.5 mm pitch package . . . . . . . . . . . . . . . . . . 119 7.1.3 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package . . . . . . . . 122 7.1.4 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package . . . . . . 125 7.1.5 UFBGA100, 7 x 7 mm, 0.5 mm pitch package . . . . . . . . . . . . . . . . . . 128 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4/135 DocID025644 Rev 3 STM32F401xD STM32F401xE List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F401xD/xE features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 25 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 STM32F401xD/xE pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 STM32F401xD register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 61 VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 63 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 63 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V . . . 67 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.3 V . . 67 Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory . . . . . . . . . . . . . . . . 68 Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 69 Typical and maximum current consumptions in Stop mode - VDD=1.8 V . . . . . . . . . . . . . . 69 Typical and maximum current consumption in Stop mode - VDD=3.3 V. . . . . . . . . . . . . . . 70 Typical and maximum current consumption in Standby mode - VDD=1.8 V . . . . . . . . . . . . 70 Typical and maximum current consumption in Standby mode - VDD=3.3 V . . . . . . . . . . . . 70 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 71 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-power mode wakeup timings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 DocID025644 Rev 3 5/135 6 List of tables Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. 6/135 STM32F401xD STM32F401xE SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 EMS characteristics for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 EMI characteristics for WLCSP49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 EMI characteristics for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 109 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 109 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 STM32F401xCE WLCSP49 wafer level chip size package mechanical data. . . . . . . . . . 116 WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 118 UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 119 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 123 LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 126 UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Device order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DocID025644 Rev 3 STM32F401xD STM32F401xE List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 STM32F401xD/xE block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 20 PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . . 24 Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F401xD/xE WLCSP49 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F401xD/xE UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32F401xD/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32F401xD/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32F401xD/xE UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typical VBAT current consumption (LSE and RTC ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 106 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 111 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 111 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 WLCSP49 wafer level chip size package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 DocID025644 Rev 3 7/135 8 List of figures Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. 8/135 STM32F401xD STM32F401xE WLCSP49 0.4 mm pitch wafer level chip size recommended footprint . . . . . . . . . . . . . . 117 Example of WLCSP49 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . 119 UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Example of UFQFPN48 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 122 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Example of LQFP64 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 125 LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Example of LQPF100 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Recommended PCB design rules for pads (0.5 mm-pitch BGA) . . . . . . . . . . . . . . . . . . . 129 Example of UFBGA100 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 DocID025644 Rev 3 STM32F401xD STM32F401xE 1 Introduction Introduction This datasheet provides the description of the STM32F401xD/xE line of microcontrollers. The STM32F401xD/xE datasheet should be read in conjunction with RM0368 reference manual which is available from the STMicroelectronics website www.st.com. It includes all information concerning Flash memory programming. For information on the Cortex-M4 core, please refer to the Cortex-M4 programming manual (PM0214) available from www.st.com. DocID025644 Rev 3 9/135 54 Description 2 STM32F401xD STM32F401xE Description The STM32F401XD/XE devices are based on the high-performance ARM® Cortex® -M4 32bit RISC core operating at a frequency of up to 84 MHz. Its Cortex®-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The STM32F401xD/xE incorporate high-speed embedded memories (512 Kbytes of Flash memory, 96 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. All devices offer one 12-bit ADC, a low-power RTC, six general-purpose 16-bit timers including one PWM timer for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces. • Up to three I2Cs • Up to four SPIs • Two full duplex I2Ss. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization. • Three USARTs • SDIO interface • USB 2.0 OTG full speed interface Refer to for the peripherals available for each part number. The STM32F401xD/xE operate in the –40 to +105 °C temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. These features make the STM32F401xD/xE microcontrollers suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances • Mobile phone sensor hub Figure 3 shows the general block diagram of the devices. 10/135 DocID025644 Rev 3 STM32F401xD STM32F401xE Description Table 2. STM32F401xD/xE features and peripheral counts Peripherals Flash memory in Kbytes SRAM in Kbytes Timers STM32F401xE 384 512 System 96 Generalpurpose 7 Advancedcontrol 1 SPI/ I2S Communication interfaces STM32F401xD 4/2 (full duplex) 3/2 (full duplex) I2C 3 USART 3 SDIO - 1 - USB OTG FS GPIOs 12-bit ADC Number of channels 36 50 81 36 50 81 1 10 16 10 16 84 MHz Operating voltage Package 1 1 Maximum CPU frequency Operating temperatures 4/2 (full duplex) 3/2 (full duplex) 1.7 to 3.6 V Ambient temperatures: –40 to +85 °C/–40 to +105 °C Junction temperature: –40 to + 125 °C WLCSP49 LQFP64 UFQFPN48 UFBGA100 WLCSP49 LQFP100 UFQFPN48 DocID025644 Rev 3 LQFP64 UFBGA100 LQFP100 11/135 54 Description 2.1 STM32F401xD STM32F401xE Compatibility with STM32F4 series The STM32F401xD/xE are fully software and feature compatible with the STM32F4 series (STM32F42x, STM32F43x, STM32F41x, STM32F405 and STM32F407) The STM32F401xD/xE can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board. Figure 1. Compatible board design for LQFP100 package 670)[           3%QRWDYDLODEOHDQ\PRUH  5HSODFHGE\9 &$3         3( 3( 3( 3( 3( 3( 3% 9&$3 966 9'' 3' 3' 3' 3' 3% 3% 3%  3%                   3( 3( 3( 3( 3( 3( 3% 3% 9&$3 9'' 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH 3' 3' 3' 3' 3% 3% 3%  3% 966 9'' 966 9'' 069 12/135 DocID025644 Rev 3 STM32F401xD STM32F401xE Description Figure 2. Compatible board design for LQFP64 package 670)[ 3% 9&$3 9'' 3% 3%                    9'' 9&$3 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966                  3%QRWDYDLODEOHDQ\PRUH  5HSODFHGE\9&$3         9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966 3% 3% 9&$3 966 9''        3& 3& 3& 3$ 3$ 3& 3& 3& 3$ 3$ 670)670)OLQH 9LQFUHDVHGWR—I &$3 (65ŸRUEHORZ 966 9'' 966 9'' 069 DocID025644 Rev 3 13/135 54 Description STM32F401xD STM32F401xE Figure 3. STM32F401xD/xE block diagram  -7$* 6:  038 19,& (70 '%86   '0$ 6WUHDPV ),)2 '0$ 6WUHDPV ),)2 .% )ODVK .%65$0 $+%0+] &)&/ 6%86 $&&(/ &$&+( )38 0(9 $50&RUWH[0  0+] ,%86 $+%EXVPDWUL[60   1-7567-7', -7&.6:&/. -7'26:'-7'2 75$&(&/. 75$&('>@ 53" /4'&3 $+%0+]  3RZHUPDQDJPW 9'' 9ROWDJH UHJXODWRU WR9  #9'' #9''$ 3$>@ 3%>@ *3,23257$ *3,23257% 3&>@ *3,23257& 3'>@ *3,23257' 5&+6 325 UHVHW 5&/6 ,QW 3//  $0 $)$ 6"53 3/& 6XSSO\ VXSHUYLVLRQ 3253'5 %25 39' 9'' WR9 0$2/&& TO6 966 0$2/. 9&$3 9''$966$ 1567 #9''$ #9'' 3(>@ *3,23257( *3,23257+ /6 /6 '0$ FRPSOFKDQQHOV7,0B&+>@1 FKDQQHOV7,0B&+>@(75 %.,1DV$) 3$)/--# ;7$/N+]  57& $:8 %DFNXSUHJLVWHU  7,0 $+%$3% $+%$3% 67$03 E FKDQQHOV(75DV$) 7,0 E FKDQQHOV(75DV$) 7,0 E FKDQQHOV(75DV$) 7,0 E FKDQQHOV VPFDUG E FKDQQHODV$) 7,0 E FKDQQHODV$) 7,0 5;7;&. &76576DV$) VPFDUG 86$57 LU'$ 5;7;&.DV$) VPFDUG 86$57 LU'$ 026,0,62 6&.166DV$) 026,0,62 6&.166DV$) E ::'* $3%0+]  63, 86$57 LU'$ $3%0+] $3%0+] PD[ 7,0 $3%0+] FKDQQHOVDV$)   9''5()B$'& $/$50B287 7,03:0 E  DQDORJLQSXWV 26&B,1 26&B287 '0$ (;7,7:.83 &)&/ $;= #-$ #+AS!& 9%$7 WR9 #9%$7 &5& XSWR$) 26&B,1 26&B287 :'*.  3:5 LQWHUIDFH +&/. $3%&/. $3%&/. $+%3&/. $+%3&/. 3+>@ ;7$/26& 0+] 5HVHW FORFN 0$1$*7 FRQWURO 63, 5;7;DV$) &76576DV$) 63,6 026,6'0,626'BH[W6&.&. 166:60&.DV$) 63,6 026,6'0,626'BH[W6&.&. 166:60&.DV$) ,&60%86 6&/6'$60%$DV$) ,&60%86 6&/6'$60%$DV$) ,&60%86 6&/6'$60%$DV$) 86$570%SV 7HPSHUDWXUHVHQVRU $'& ,) #9''$ 069 1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 42 MHz. 14/135 DocID025644 Rev 3 STM32F401xD STM32F401xE Functional overview 3 Functional overview 3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F401xD/xE devices are compatible with all ARM tools and software. Figure 3 shows the general block diagram of the STM32F401xD/xE. Note: Cortex®-M4 with FPU is binary compatible with Cortex®-M3. 3.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 105 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 84 MHz. 3.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. DocID025644 Rev 3 15/135 54 Functional overview 3.4 STM32F401xD STM32F401xE Embedded Flash memory The devices embed 512 Kbytes of Flash memory available for storing programs and data. 3.5 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 3.6 Embedded SRAM All devices embed: • 3.7 96 Kbytes of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. 16/135 DocID025644 Rev 3 STM32F401xD STM32F401xE Functional overview Figure 4. Multi-AHB matrix 6 6 6 6 '0$B3 *3 '0$ '0$B0(0 '0$B0(0 '0$B3, 6EXV *3 '0$ 6 0 ,&2'( 0 '&2'( $&&(/ 6 'EXV ,EXV $50 &RUWH[0 )ODVK N% 0 65$0 .E\WHV 0 $+% SHULSK $3% 0 $+% SHULSK $3% %XVPDWUL[6 069 3.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: • SPI and I2S • I2C • USART • General-purpose, basic and advanced-control timers TIMx • SD/SDIO/MMC host interface • ADC DocID025644 Rev 3 17/135 54 Functional overview 3.9 STM32F401xD STM32F401xE Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4 with FPU. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.10 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 21 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 81 GPIOs can be connected to the 16 external interrupt lines. 3.11 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 84 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 84 MHz while the maximum frequency of the high-speed APB domains is 84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 18/135 DocID025644 Rev 3 STM32F401xD STM32F401xE 3.12 Functional overview Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using either USART1(PA9/10), USART2(PD5/6), USB OTG FS in device mode (PA11/12) through DFU (device firmware upgrade), I2C1(PB6/7), I2C2(PB10/3), I2C3(PA8/PB4), SPI1(PA4/5/6/7), SPI2(PB12/13/14/15) or SPI3(PA15, PC10/11/12). For more detailed information on the bootloader, refer to Application Note: AN2606, STM32™ microcontroller system memory boot mode. 3.13 Power supply schemes • VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor (POR/PDR) disabled, provided externally through VDD pins. Requires the use of an external power supply supervisor connected to the VDD and PDR_ON pins. • VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. • VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with decoupling technique. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Refer to Figure 18: Power supply scheme for more details. DocID025644 Rev 3 19/135 54 Functional overview STM32F401xD STM32F401xE 3.14 Power supply supervisor 3.14.1 Internal reset ON This feature is available for VDD operating voltage range 1.8 V to 3.6 V. The internal power supply supervisor is enabled by holding PDR_ON high. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.14.2 Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to Figure 5: Power supply supervisor interconnection with internal reset OFF. Figure 5. Power supply supervisor interconnection with internal reset OFF(1) 9'' ([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYHZKHQ 9''9 3'5B21 1567 $SSOLFDWLRQUHVHW VLJQDO RSWLRQDO 9'' 069 1. The PRD_ON pin is only available in the WLCSP49 and UFBGA100 packages. 20/135 DocID025644 Rev 3 STM32F401xD STM32F401xE Functional overview The VDD specified threshold, below which the device must be maintained under reset, is 1.7 V (see Figure 6). A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no longer supported: • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled. • The brownout reset (BOR) circuitry must be disabled. • The embedded programmable voltage detector (PVD) is disabled. • VBAT functionality is no more available and VBAT pin should be connected to VDD. Figure 6. PDR_ON control with internal reset OFF 9 '' 3'5 9 WLPH 5HVHWE\RWKHUVRXUFHWKDQ SRZHUVXSSO\VXSHUYLVRU 1567 3'5B21 3'5B21 WLPH 069 3.15 Voltage regulator The regulator has four operating modes: • • 3.15.1 Regulator ON – Main regulator mode (MR) – Low power regulator (LPR) – Power-down Regulator OFF Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. DocID025644 Rev 3 21/135 54 Functional overview STM32F401xD STM32F401xE There are three power modes configured by software when the regulator is ON: • MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. • LPR is used in the Stop modes The LP regulator mode is configured by software when entering Stop mode. • Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost. Depending on the package, one or two external ceramic capacitors should be connected on the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the LQFP100 and UFBGA100 packages. All packages have the regulator ON feature. 3.15.2 Regulator OFF The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to Table 14: General operating conditions. The two 2.2 µF VCAP ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to Figure 18: Power supply scheme. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode, the following features are no more supported: 22/135 • PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. DocID025644 Rev 3 STM32F401xD STM32F401xE Functional overview Figure 7. Regulator OFF 9 ([WHUQDO9&$3BSRZHU $SSOLFDWLRQUHVHW VXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYH VLJQDO RSWLRQDO  ZKHQ9&$3B0LQ9 9'' 3$ 9'' 1567 %5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 53. 90/135 STM32F401xD STM32F401xE Electrical characteristics Table 53. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on BOOT0 pin –0 NA Injected current on NRST pin –0 NA Injected current on PB3, PB4, PB5, PB6, PB7, PB8, PB9, PC13, PC14, PC15, PH1, PDR_ON, PC0, PC1,PC2, PC3, PD1, PD5, PD6, PD7, PE0, PE2, PE3, PE4, PE5, PE6 –0 NA Injected current on any other FT pin –5 NA Injected current on any other pins –5 +5 Unit mA 1. NA = not applicable. Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. 6.3.16 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 54 are derived from tests performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Table 54. I/O static characteristics Symbol Parameter FT, and NRST I/O input low level voltage VIL BOOT0 I/O input low level voltage FT and NRST I/O input high level voltage(5) VIH BOOT0 I/O input high level voltage Conditions Min Typ 1.7 V≤ VDD≤ 3.6 V - - 1.75 V≤ VDD ≤ 3.6 V, -40 °C≤ TA ≤ 105 °C - - 1.7 V≤ VDD ≤ 3.6 V, 0 °C≤ TA ≤ 105 °C - 1.7 V≤ VDD≤ 3.6 V 1.75 V≤ VDD ≤ 3.6 V, -40 °C≤ TA ≤ 105 °C 1.7 V≤ VDD ≤ 3.6 V, 0 °C≤ TA ≤ 105 °C Max Unit 0.35VDD–0.04(1) 0.3VDD(2) V 0.1VDD+0.1 - 0.45VDD+0.3(1) 0.4VDD - - (2) V 0.17VDD+0.7(1) DocID025644 Rev 3 - - 91/135 114 Electrical characteristics STM32F401xD STM32F401xE Table 54. I/O static characteristics (continued) Symbol Parameter FT and NRST I/O input hysteresis BOOT0 I/O input hysteresis RPU RPD CIO(8) Min Typ Max Unit 1.7 V≤ VDD≤ 3.6 V - 10% VDD(3) - V - 100 - mV VSS ≤ VIN ≤ VDD - - ±1 VIN = 5 V - - 3 30 40 50 7 10 14 1.75 V≤ VDD ≤ 3.6 V, -40 °C≤ TA ≤ 105 °C VHYS Ilkg Conditions 1.7 V≤ VDD ≤ 3.6 V, 0 °C≤ TA ≤ 105 °C I/O input leakage current (4) I/O FT input leakage current Weak pull-up equivalent resistor(6) (5) All pins except for PA10 (OTG_FS_ID ) VIN = VSS PA10 (OTG_FS_ID ) All pins except for PA10 Weak pull-down (OTG_FS_ID equivalent ) resistor(7) PA10 (OTG_FS_ID ) I/O pin capacitance kΩ 30 40 50 7 10 14 - 5 - VIN = VDD - 1. Guaranteed by design, not tested in production. 2. Guaranteed by test in production. 3. With a minimum of 200 mV. 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 53: I/O current injection susceptibility 5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 53: I/O current injection susceptibility 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order). 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order). 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization, not tested in production. All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in Figure 30. 92/135 µA pF STM32F401xD STM32F401xE Electrical characteristics Figure 30. FT I/O input characteristics 9,/9,+ 9  ' 9'   L P ,+ Q 9 QW H P LUH 77/UHTXLUHPHQW U 9,+PLQ 9  26 0   &  '  9' Q  R  WL  XF  LQ RG +P , SU  9  LQ QV WLR HG VW XOD P L 7H V LJQ HV  $UHDQRW Q' R  G   VH GHWHUPLQHG '' D % 9    D[ ,/P QV9 ODWLR X LP V  VLJQ Q'H HGR 77/UHTXLUHPHQW9,/PD[ %DV  9  7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9'' X HT 9'' 9       069 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 12). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating ΣIVSS (see Table 12). Output voltage levels Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. DocID025644 Rev 3 93/135 114 Electrical characteristics STM32F401xD STM32F401xE Table 55. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL (1) Output low level voltage for an I/O pin VOH (3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2) IIO = +8 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 VDD–0.4 - - 0.4 2.4 - TTL port(2) IIO =+8 mA 2.7 V ≤ VDD ≤ 3.6 V IIO = +20 mA 2.7 V ≤ VDD ≤ 3.6 V VDD–1.3(4) 1.3(4) IIO = +6 mA 1.8 V ≤ VDD ≤ 3.6 V VDD–0.4(4) 0.4(4) IIO = +4 mA 1.7 V ≤ VDD ≤ 3.6 V VDD–0.4(5) 0.4(5) Unit V V V - V - V - 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Guaranteed by characterization results, not tested in production. 5. Guaranteed by design, not tested in production.. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 31 and , respectively. Unless otherwise specified, the parameters given in Table 56 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. Table 56. I/O AC characteristics(1)(2) OSPEEDRy [1:0] bit value(1) Symbol Parameter fmax(IO)out Maximum frequency(3) 00 tf(IO)out/ tr(IO)out 94/135 Output high to low level fall time and output low to high level rise time Conditions Min Typ Max CL = 50 pF, VDD ≥ 2.70 V - - 4 CL = 50 pF, VDD≥ 1.7 V - - 2 CL = 10 pF, VDD ≥ 2.70 V - - 8 CL = 10 pF, VDD ≥ 1.7 V - - 4 CL = 50 pF, VDD = 1.7 V to 3.6 V - - 100 Unit MHz ns STM32F401xD STM32F401xE Electrical characteristics Table 56. I/O AC characteristics(1)(2) (continued) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions fmax(IO)out Maximum frequency(3) 01 tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time fmax(IO)out Maximum frequency(3) 10 tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time Fmax(IO)out Maximum frequency(3) 11 tf(IO)out/ tr(IO)out - tEXTIpw Output high to low level fall time and output low to high level rise time Min Typ Max CL = 50 pF, VDD ≥ 2.70 V - - 25 CL = 50 pF, VDD ≥ 1.7 V - - 12.5 CL = 10 pF, VDD ≥ 2.70 V - - 50 CL = 10 pF, VDD ≥ 1.7 V - - 20 CL = 50 pF, VDD ≥2.7 V - - 10 CL = 50 pF, VDD ≥ 1.7 V - - 20 CL = 10 pF, VDD ≥ 2.70 V - - 6 CL = 10 pF, VDD ≥ 1.7 V - - 10 CL = 40 pF, VDD ≥ 2.70 V - - 50(4) CL = 40 pF, VDD ≥ 1.7 V - - 25 CL = 10 pF, VDD ≥ 2.70 V - - 100(4) CL = 10 pF, VDD ≥ 1.7 V - - 50(4) CL = 40 pF, VDD≥ 2.70 V - - 6 CL = 40 pF, VDD≥ 1.7 V - - 10 CL = 10 pF, VDD≥ 2.70 V - - 4 CL = 10 pF, VDD≥ 1.7 V - - 6 CL = 30 pF, VDD ≥ 2.70 V - - 100(4) CL = 30 pF, VDD ≥ 1.7 V - - 50(4) CL = 10 pF, VDD ≥ 2.70 V - - 180(4) CL = 10 pF, VDD≥ 1.7 V - - 100(4) CL = 30 pF, VDD ≥ 2.70 V - - 4 CL = 30 pF, VDD ≥ 1.7 V - - 6 CL = 10 pF, VDD≥ 2.70 V - - 2.5 CL = 10 pF, VDD≥ 1.7 V - - 4 10 - - Pulse width of external signals detected by the EXTI controller Unit MHz ns MHz ns MHz ns ns 1. Guaranteed by characterization, not tested in production. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. The maximum frequency is defined in Figure 31. 4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used. DocID025644 Rev 3 95/135 114 Electrical characteristics STM32F401xD STM32F401xE Figure 31. I/O AC characteristics definition       (;7(51$/ 287387 21&/ WU ,2 RXW WI ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI ”  7DQGLIWKHGXW\F\FOHLV   ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´  6.3.17 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 54). Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. Refer to Table 54: I/O static characteristics for the values of VIH and VIL for NRST pin. Table 57. NRST pin characteristics Symbol Parameter RPU Weak pull-up equivalent resistor(1) VF(NRST)(2) NRST Input filtered pulse VNF(NRST)(2) NRST Input not filtered pulse TNRST_OUT Generated reset pulse duration Conditions Min Typ Max Unit VIN = VSS 30 40 50 kΩ - - 100 ns VDD > 2.7 V 300 - - ns Internal Reset source 20 - - µs 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Guaranteed by design, not tested in production. 96/135 STM32F401xD STM32F401xE Electrical characteristics Figure 32. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLW  1567  538 ,QWHUQDO5HVHW )LOWHU —) 670) DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 57. Otherwise the reset is not taken into account by the device. 6.3.18 TIM timer characteristics The parameters given in Table 58 are guaranteed by design. Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 58. TIMx characteristics(1)(2) Symbol tres(TIM) Conditions(3) Min Max Unit AHB/APBx prescaler=1 or 2 or 4, fTIMxCLK = 84 MHz 1 - tTIMxCLK 11.9 - ns 1 - tTIMxCLK 11.9 - ns Parameter Timer resolution time AHB/APBx prescaler>4, fTIMxCLK = 84 MHz fEXT ResTIM tCOUNTER Timer external clock frequency on CH1 to CH4 f TIMxCLK = 84 MHz 0 fTIMxCLK/2 MHz 0 42 MHz Timer resolution - 16/32 bit 0.0119 780 µs - 65536 × 65536 tTIMxCLK - 51.1 S 16-bit counter clock period when internal clock fTIMxCLK = 84 MHz is selected Maximum possible count tMAX_COUNT with 32-bit counter fTIMxCLK = 84 MHz 1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers. 2. Guaranteed by design, not tested in production. 3. The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx. DocID025644 Rev 3 97/135 114 Electrical characteristics 6.3.19 STM32F401xD STM32F401xE Communications interfaces I2C interface characteristics The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table59. Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400 kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the complete solution, please contact your local ST sales representative. Table 59. I2C characteristics Standard mode I2C(1) Symbol Fast mode I2C(1)(2) Parameter Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0 - 0 900(3) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - µs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - µs Cb Capacitive load for each bus line - 400 - 400 pF 300 µs ns µs 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. 98/135 STM32F401xD STM32F401xE Electrical characteristics Figure 33. I2C bus AC waveforms and measurement circuit s ''B,& s ''B,& 53 53 670)[[ 56 6'$ ,ð&EXV 56 6&/ 67$575(3($7(' 67$57 67$57 WVX 67$ 6'$ WI 6'$ WU 6'$ WK 67$ WVX 6'$ WZ 67267$ 6723 WK 6'$ WZ 6&/+ 6&/ WU 6&/ WZ 6&// WI 6&/ WVX 672 DLF 1. RS = series protection resistor. 2. RP = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. Table 60. SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz) RP = 4.7 kΩ 400 0x8019 300 0x8021 200 0x8032 100 0x0096 50 0x012C 20 0x02EE 1. RP = External pull-up resistance, fSCL = I2 C speed 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application. DocID025644 Rev 3 99/135 114 Electrical characteristics STM32F401xD STM32F401xE SPI interface characteristics Unless otherwise specified, the parameters given in Table 61 for the SPI interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 61. SPI dynamic characteristics(1) Symbol fSCK 1/tc(SCK) Duty(SCK) Parameter SPI clock frequency Conditions Min Typ Max Master mode, SPI1/4, 2.7 V < VDD < 3.6 V 42 Slave mode, SPI1/4, 2.7 V < VDD < 3.6 V 42 Slave transmitter/full-duplex mode, SPI1/4, 2.7 V < VDD < 3.6 V - - 38(2) Master mode, SPI1/2/3/4, 1.7 V < VDD < 3.6 V 21 Slave mode, SPI1/2/3/4, 1.7 V < VDD < 3.6 V 21 Duty cycle of SPI clock Slave mode frequency Unit MHz 30 50 70 % TPCLK−1.5 TPCLK TPCLK+1.5 ns tw(SCKH) tw(SCKL) SCK high and low time Master mode, SPI presc = 2 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4TPCLK - - ns th(NSS) NSS hold time Slave mode, SPI presc = 2 2TPCLK - - ns Master mode 0 - - ns Slave mode 2.5 - - ns Master mode 6 - - ns Slave mode 2.5 - - ns tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO) Data output access time Slave mode 9 - 20 ns tdis(SO) Data output disable time Slave mode 8 - 13 ns Slave mode (after enable edge), 2.7 V < VDD < 3.6 V - 9.5 13 ns Slave mode (after enable edge), 1.7 V < VDD < 3.6 V - 9.5 17 ns Slave mode (after enable edge), 2.7 V < VDD < 3.6 V 5.5 - - ns Slave mode (after enable edge), 1.7 V < VDD < 3.6 V 3.5 - - ns tv(SO) th(SO) 100/135 Data output valid time Data output hold time STM32F401xD STM32F401xE Electrical characteristics Table 61. SPI dynamic characteristics(1) (continued) Symbol Parameter tv(MO) Data output valid time th(MO) Conditions Data output hold time Min Typ Max Unit Master mode (after enable edge) - 3 5 ns Master mode (after enable edge) 2 - - ns 1. Guaranteed by characterization, not tested in production. 2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50% Figure 34. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) SCK Input tSU(NSS) CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 35. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) M SB IN B I T1 IN LSB IN ai14135 DocID025644 Rev 3 101/135 114 Electrical characteristics STM32F401xD STM32F401xE Figure 36. SPI timing diagram - master mode(1) High NSS input SCK Input CPHA= 0 CPOL=0 SCK Input tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MS BIN tr(SCK) tf(SCK) BI T6 IN LSB IN th(MI) MOSI OUTPUT M SB OUT tv(MO) B I T1 OUT LSB OUT th(MO) ai14136 102/135 STM32F401xD STM32F401xE Electrical characteristics I2S interface characteristics Unless otherwise specified, the parameters given in Table 62 for the I2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Table 62. I2S dynamic characteristics(1) Symbol Parameter fMCK I2S Main clock output fCK I2S clock frequency DCK Conditions Min Max Unit 256x8K 256xFs(2) MHz Master data: 32 bits - 64xFs Slave data: 32 bits - 64xFs 30 70 - I2S clock frequency duty cycle Slave receiver tv(WS) WS valid time Master mode 0 6 th(WS) WS hold time Master mode 0 - tsu(WS) WS setup time Slave mode 1 - th(WS) WS hold time Slave mode 0 - Master receiver 7.5 - Slave receiver 2 - Master receiver 0 - Slave receiver 0 - Slave transmitter (after enable edge) - 27 Master transmitter (after enable edge) - 20 Master transmitter (after enable edge) 2.5 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) th(SD_ST) Data input setup time Data input hold time Data output valid time tv(SD_MT) th(SD_MT) Data output hold time MHz % ns 1. Guaranteed by characterization, not tested in production. 2. The maximum value of 256xFs is 42 MHz (APB1 maximum frequency). Note: Refer to the I2S section of the reference manual for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS maximum value is supported for each mode/condition. DocID025644 Rev 3 103/135 114 Electrical characteristics STM32F401xD STM32F401xE Figure 37. I2S slave timing diagram (Philips protocol)(1) tc(CK) CK Input CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 38. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit SDreceive LSB LSB transmit th(SD_MR) tsu(SD_MR) receive(2) Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 104/135 STM32F401xD STM32F401xE Electrical characteristics USB OTG full speed (FS) characteristics This interface is present in USB OTG FS controller. Table 63. USB OTG FS startup time Symbol tSTARTUP(1) Parameter USB OTG FS transceiver startup time Max Unit 1 µs 1. Guaranteed by design, not tested in production. Table 64. USB OTG FS DC electrical characteristics Symbol VDD Input levels Parameter Conditions USB OTG FS operating voltage Min.(1) Typ. Max.(1) Unit 3.0(2) - 3.6 VDI(3) Differential input sensitivity I(USB_FS_DP/DM) 0.2 - - VCM(3) Differential common mode range Includes VDI range 0.8 - 2.5 VSE(3) Single ended receiver threshold 1.3 - 2.0 VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) - - 0.3 VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6 17 21 24 0.65 1.1 2.0 Output levels RPD PA11, PA12 (USB_FS_DM/DP) VIN = VDD PA9 (OTG_FS_VBUS) RPU PA11, PA12 (USB_FS_DM/DP) VIN = VSS 1.5 1.8 2.1 PA9 (OTG_FS_VBUS) VIN = VSS 0.25 0.37 0.55 V V V kΩ 1. All the voltages are measured from the local ground potential. 2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 3. Guaranteed by design, not tested in production. 4. RL is the load connected on the USB OTG FS drivers. Note: When VBUS sensing feature is enabled, PA9 should be left at their default state (floating input), not as alternate function. A typical 200 µA current consumption of the embedded sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 when the feature is enabled. DocID025644 Rev 3 105/135 114 Electrical characteristics STM32F401xD STM32F401xE Figure 39. USB OTG FS timings: definition of data signal rise and fall time Crossover points Differen tial Data L ines VCRS VS S tr tf ai14137 Table 65. USB OTG FS electrical characteristics(1) Driver characteristics Symbol Parameter Rise time(2) tr tf Fall trfm time(2) Conditions Min Max Unit CL = 50 pF 4 20 ns CL = 50 pF 4 20 ns tr/tf 90 110 % 1.3 2.0 V Rise/ fall time matching VCRS Output signal crossover voltage 1. Guaranteed by design, not tested in production. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 6.3.20 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 66 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 14. Table 66. ADC characteristics Symbol VDDA VREF+ Parameter Power supply Positive reference voltage Conditions Min Typ Max Unit 1.7(1) - 3.6 V (1) - VDDA V 0.6 15 18 MHz VDDA = 2.4 to 3.6 V 0.6 30 36 MHz fADC = 30 MHz, 12-bit resolution - - 1764 kHz - - 17 1/fADC 0 (VSSA or VREFtied to ground) - VREF+ V - - 50 kΩ - - 6 kΩ - 4 7 pF VDDA − VREF+ < 1.2 V (1) fADC fTRIG(2) VAIN RAIN(2) ADC clock frequency External trigger frequency 106/135 to 2.4 V Conversion voltage range(3) External input impedance RADC(2)(4) Sampling switch resistance CADC(2) VDDA = 1.7 Internal sample and hold capacitor See Equation 1 for details 1.7 STM32F401xD STM32F401xE Electrical characteristics Table 66. ADC characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit - - 0.100 µs - - 3(5) 1/fADC - - 0.067 µs - - 2(5) 1/fADC 0.100 - 16 µs 3 - 480 1/fADC - 2 3 µs fADC = 30 MHz 12-bit resolution 0.50 - 16.40 µs fADC = 30 MHz 10-bit resolution 0.43 - 16.34 µs fADC = 30 MHz 8-bit resolution 0.37 - 16.27 µs fADC = 30 MHz 6-bit resolution 0.30 - 16.20 µs tlat(2) Injection trigger conversion latency fADC = 30 MHz tlatr(2) Regular trigger conversion latency fADC = 30 MHz tS(2) Sampling time tSTAB(2) Power-up time tCONV(2) fADC = 30 MHz Total conversion time (including sampling time) 9 to 492 (tS for sampling +n-bit resolution for successive approximation) Sampling rate fS(2) (fADC = 30 MHz, and tS = 3 ADC cycles) 1/fADC 12-bit resolution Single ADC - - 2 Msps 12-bit resolution Interleave Dual ADC mode - - 3.75 Msps 12-bit resolution Interleave Triple ADC mode - - 6 Msps IVREF+(2) ADC VREF DC current consumption in conversion mode - 300 500 µA IVDDA(2) ADC VDDA DC current consumption in conversion mode - 1.6 1.8 mA 1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.14.2: Internal reset OFF). 2. Guaranteed by characterization, not tested in production. 3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V. 5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66. Equation 1: RAIN max formula R AIN ( k – 0,5 ) - – R ADC = ------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 DocID025644 Rev 3 ) 107/135 114 Electrical characteristics STM32F401xD STM32F401xE The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. Table 67. ADC accuracy at fADC = 18 MHz(1) Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions fADC =18 MHz VDDA = 1.7 to 3.6 V VREF = 1.7 to 3.6 V VDDA − VREF < 1.2 V Typ Max(2) ±3 ±4 ±2 ±3 ±1 ±3 ±1 ±2 ±2 ±3 Unit LSB 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 2. Guaranteed by characterization, not tested in production. Table 68. ADC accuracy at fADC = 30 MHz(1) Symbol ET Parameter Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V, VDDA − VREF < 1.2 V Typ Max(2) ±2 ±5 ±1.5 ±2.5 ±1.5 ±4 ±1 ±2 ±1.5 ±3 Unit LSB 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 2. Guaranteed by characterization, not tested in production. Table 69. ADC accuracy at fADC = 36 MHz(1) Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions fADC =36 MHz, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V VDDA − VREF < 1.2 V Typ Max(2) ±4 ±7 ±2 ±3 ±3 ±6 ±2 ±3 ±3 ±6 1. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 2. Guaranteed by characterization, not tested in production. 108/135 Unit LSB STM32F401xD STM32F401xE Electrical characteristics Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to-noise and distortion ratio SNR Signal-to-noise ratio THD Total harmonic distortion fADC =18 MHz VDDA = VREF+= 1.7 V Input Frequency = 20 KHz Temperature = 25 °C Min Typ Max Unit 10.3 10.4 - bits 64 64.2 - 64 65 - -67 -72 - dB 1. Guaranteed by characterization, not tested in production. Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to noise and distortion ratio SNR Signal-to noise ratio THD Total harmonic distortion fADC = 36 MHz VDDA = VREF+ = 3.3 V Input Frequency = 20 KHz Temperature = 25 °C Min Typ Max Unit 10.6 10.8 - bits 66 67 - 64 68 - -70 -72 - dB 1. Guaranteed by characterization, not tested in production. Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.16 does not affect the ADC accuracy. DocID025644 Rev 3 109/135 114 Electrical characteristics STM32F401xD STM32F401xE Figure 40. ADC accuracy characteristics 6 $$! 6 2%& ;,3" )$%!, ORDEPENDINGONPACKAGE =   %'     %4      %/  %,  %$  , 3")$%!,   6 33!          6$$! AIC 1. See also Table 68. 2. Example of an actual transfer curve. 3. Ideal transfer curve. 4. End point correlation line. 5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. Figure 41. Typical connection diagram using the ADC 670) 9'' 5$,1  $,1[ 9$,1 &SDUDVLWLF 6DPSOHDQGKROG$'& FRQYHUWHU 97 9 5$'&  97 9 ,/“—$ ELW FRQYHUWHU & $'&  DL 1. Refer to Table 66 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. 110/135 STM32F401xD STM32F401xE Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 42 or Figure 43, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 42. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F V REF+ (See note 1) 1 µF // 10 nF V DDA 1 µF // 10 nF V SSA/V REF(See note 1) ai17535 1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA. Figure 43. Power supply and reference decoupling (VREF+ connected to VDDA) 670) 95()9''$ 6HHQRWH —)Q) 9 5()± 966$ 6HHQRWH DL 1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA. DocID025644 Rev 3 111/135 114 Electrical characteristics 6.3.21 STM32F401xD STM32F401xE Temperature sensor characteristics Table 72. Temperature sensor characteristics Symbol Parameter Min Typ Max Unit VSENSE linearity with temperature - ±1 ±2 °C Average slope - 2.5 - mV/°C Voltage at 25 °C - 0.76 - V tSTART(2) Startup time - 6 10 µs TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs TL(1) Avg_Slope (1) V25(1) 1. Guaranteed by characterization, not tested in production. 2. Guaranteed by design, not tested in production. Table 73. Temperature sensor calibration values Symbol Parameter Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F 6.3.22 VBAT monitoring characteristics Table 74. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit KΩ R Resistor bridge for VBAT - 50 - Q Ratio on VBAT measurement - 4 - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 1 mV accuracy 5 - - µs Er(1) TS_vbat(2)(2) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.23 Embedded reference voltage The parameters given in Table 75 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. Table 75. Embedded internal reference voltage Symbol VREFINT TS_vrefint(1) VRERINT_s(2) 112/135 Parameter Internal reference voltage ADC sampling time when reading the internal reference voltage Internal reference voltage spread over the temperature range Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.18 1.21 1.24 V - 10 - - µs VDD = 3V ± 10mV - 3 5 mV STM32F401xD STM32F401xE Electrical characteristics Table 75. Embedded internal reference voltage (continued) Symbol Parameter TCoeff(2) tSTART (2) Conditions Min Typ Max Unit Temperature coefficient - - 30 50 ppm/°C Startup time - - 6 10 µs 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production Table 76. Internal reference voltage calibration values 6.3.24 Symbol Parameter Memory address VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 77 for the SDIO/MMC interface are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics. Figure 44. SDIO high-speed mode tf tr tC tW(CKH) tW(CKL) CK tOV tOH D, CMD (output) tISU tIH D, CMD (input) ai14887 DocID025644 Rev 3 113/135 114 Electrical characteristics STM32F401xD STM32F401xE Figure 45. SD default mode CK tOVD tOHD D, CMD (output) ai14888 Table 77. Dynamic characteristics: SD / MMC characteristics(1)(2) Symbol Parameter fPP Conditions Min Typ Max Unit Clock frequency in data transfer mode 0 - 48 MHz - SDIO_CK/fPCLK2 frequency ratio - - 8/3 - tW(CKL) Clock low time fpp = 48MHz 8.5 9 - tW(CKH) Clock high time fpp = 48MHz 8.3 10 - ns CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp = 48MHz 3.5 - - tIH Input hold time HS fpp = 48MHz 0 - - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp = 48MHz - 4.5 7 tOH Output hold time HS fpp = 48MHz 3 - - ns CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp = 24MHz 1.5 - - tIHD Input hold time SD fpp = 24MHz 0.5 - - ns CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp =24MHz - 4.5 6.5 tOHD Output hold default time SD fpp =24MHz 3.5 - - ns 1. Data based on characterization results, not tested in production. 2. VDD = 2.7 to 3.6 V. 6.3.25 RTC characteristics Table 78. RTC characteristics 114/135 Symbol Parameter - fPCLK1/RTCCLK frequency ratio Conditions Any read/write operation from/to an RTC register Min Max 4 - STM32F401xD STM32F401xE Package characteristics 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID025644 Rev 3 115/135 133 Package characteristics 7.1.1 STM32F401xD STM32F401xE WLCSP49, 3.06 x 3.06 mm, 0.4 mm pitch wafer level chip size package Figure 46. WLCSP49 wafer level chip size package outline E & !BALLLOCATION   ! ' $ETAIL! E % E ' ! ! E "UMPSIDE 3IDEVIEW ! &RONTVIEW "UMP $ ! EEE : B % !ORIENTATION REFERENCE $ETAIL! ROTATED  .OTE 7AFERBACKSIDE 3EATINGPLANE .OTE !8-?-%?6 1. Drawing is not to scale. Table 79. STM32F401xCE WLCSP49 wafer level chip size package mechanical data inches(1) millimeters Symbol 116/135 Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - DocID025644 Rev 3 STM32F401xD STM32F401xE Package characteristics Table 79. STM32F401xCE WLCSP49 wafer level chip size package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A2 - 0.380 - - 0.0150 - A3(2) - 0.025 - - 0.0010 - (3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 2.994 3.029 3.064 0.1179 0.1193 0.1206 E 2.994 3.029 3.064 0.1179 0.1193 0.1206 e - 0.400 - - 0.0157 - e1 - 2.400 - - 0.0945 - e2 - 2.400 - - 0.0945 - F - 0.3145 - - 0.0124 - G - 0.3145 - - 0.0124 - aaa - 0.100 - - 0.0039 - bbb - 0.100 - - 0.0039 - ccc - 0.100 - - 0.0039 - ddd - 0.050 - - 0.0020 - eee - 0.050 - - 0.0020 - b 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Figure 47. WLCSP49 0.4 mm pitch wafer level chip size recommended footprint 'SDG 'VP DocID025644 Rev 3 069 117/135 133 Package characteristics STM32F401xD STM32F401xE Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch) Dimension Recommended values Pitch 0.4 mm Dpad 260 µm max. (circular) 220 µm recommended Dsm 300 µm min. (for 260 µm diameter pad) PCB pad design Non-solder mask defined via underbump allowed Device marking Figure 48. Example of WLCSP49 marking (top view) %DOO LQGHQWLILHU 3URGXFWLGHQWLILFDWLRQ  )&' 5HYLVLRQFRGH 'DWHFRGH < :: 5 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 118/135 DocID025644 Rev 3 STM32F401xD STM32F401xE 7.1.2 Package characteristics UFQFPN48, 7 x 7 mm, 0.5 mm pitch package Figure 49. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG 6HDWLQJ SODQH $ E H 'HWDLO< ' ([SRVHGSDG DUHD < '  /  &[ƒ SLQFRUQHU 5W\S 'HWDLO= (  =  $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. Table 81. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 DocID025644 Rev 3 119/135 133 Package characteristics STM32F401xD STM32F401xE Table 81. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 50. UFQFPN48 recommended footprint                     1. Dimensions are in millimeters. 120/135 DocID025644 Rev 3  !"?&0?6 STM32F401xD STM32F401xE Package characteristics Device marking Figure 51. Example of UFQFPN48 marking (top view) 3URGXFWLGHQWLILFDWLRQ  670) &'8 'DWHFRGH < :: 3LQ LQGHQWLILHU 5HYLVLRQFRGH 5 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID025644 Rev 3 121/135 133 Package characteristics 7.1.3 STM32F401xD STM32F401xE LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package Figure 52. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / /      3,1 ,'(17,),&$7,21 ( ( ( E    H :B0(B9 1. Drawing is not to scale. 122/135 DocID025644 Rev 3 STM32F401xD STM32F401xE Package characteristics Table 82. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.60 - - 0.0630 A1 0.05 - 0.15 0.0020 - 0.0059 A2 1.35 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.20 0.0035 - 0.0079 D - 12.00 - - 0.4724 - D1 - 10.00 - - 0.3937 - E - 12.00 - - 0.4724 - E1 - 10.00 - - 0.3937 - e - 0.50 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 - 1.00 - - 0.0394 - Number of pins N 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 53. LQFP64 recommended footprint                 AIC 1. Dimensions are in millimeters. DocID025644 Rev 3 123/135 133 Package characteristics STM32F401xD STM32F401xE Device marking Figure 54. Example of LQFP64 marking (top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ  5 670) 5'7 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 124/135 DocID025644 Rev 3 STM32F401xD STM32F401xE LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package Figure 55. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline MM C ! ! 3%!4).'0,!.% # ! '!5'%0,!.% $ , $ ! + CCC # , $       0).  )$%.4)&)#!4)/. % % % B 7.1.4 Package characteristics  E ,?-%?6 1. Drawing is not to scale. DocID025644 Rev 3 125/135 133 Package characteristics STM32F401xD STM32F401xE Table 83. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.6 - - 0.063 A1 0.05 - 0.15 0.002 - 0.0059 A2 1.35 1.4 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.2 0.0035 - 0.0079 D 15.8 16 16.2 0.622 0.6299 0.6378 D1 13.8 14 14.2 0.5433 0.5512 0.5591 D3 - 12 - - 0.4724 - E 15.8 16 16.2 0.622 0.6299 0.6378 E1 13.8 14 14.2 0.5433 0.5512 0.5591 E3 - 12 - - 0.4724 - e - 0.5 - - 0.0197 - L 0.45 0.6 0.75 0.0177 0.0236 0.0295 L1 - 1 - - 0.0394 - K 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc 0.08 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 126/135 DocID025644 Rev 3 STM32F401xD STM32F401xE Package characteristics Figure 56. LQFP100 recommended footprint                AIC 1. Dimensions are in millimeters. Device marking Figure 57. Example of LQPF100 marking (top view) 3URGXFWLGHQWLILFDWLRQ  (6) 2SWLRQDOJDWHPDUN 9'75 5HYLVLRQFRGH 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID025644 Rev 3 127/135 133 Package characteristics 7.1.5 STM32F401xD STM32F401xE UFBGA100, 7 x 7 mm, 0.5 mm pitch package Figure 58. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) ; ( $ ) ' ' H < 0   %277209,(: ‘E EDOOV ‘ HHH 0 = < ; ‘ III 0 = 7239,(: $&B0(B9 1. Drawing is not to scale. Table 84. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol 128/135 Min. Typ. Max. Min. Typ. Max. A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 - 0.130 - - 0.0051 - A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.200 0.250 0.300 0.0079 0.0098 0.0118 D 6.950 7.000 7.050 0.2736 0.2756 0.2776 D1 5.450 5.500 5.550 0.2146 0.2165 0.2185 E 6.950 7.000 7.050 0.2736 0.2756 0.2776 E1 5.450 5.500 5.550 0.2146 0.2165 0.2185 e - 0.500 - - 0.0197 - F 0.700 0.750 0.800 0.0276 0.0295 0.0315 DocID025644 Rev 3 STM32F401xD STM32F401xE Package characteristics Table 84. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. ddd - - 0.100 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 59. Recommended PCB design rules for pads (0.5 mm-pitch BGA) Pitch 0.5 mm D pad 0.27 mm Dsm 0.35 mm typ (depends on the soldermask registration tolerance) Solder paste 0.27 mm aperture diameter Dpad Dsm ai15495 1. Non solder mask defined (NSMD) pads are recommended. 2. 4 to 6 mils solder paste screen printing process. DocID025644 Rev 3 129/135 133 Package characteristics STM32F401xD STM32F401xE Device marking Figure 60. Example of UFBGA100 marking (top view) 3URGXFWLGHQWLILFDWLRQ  670) 9(+ 'DWHFRGH < :: %DOO LQGHQWLILHU 5HYLVLRQFRGH 5 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 130/135 DocID025644 Rev 3 STM32F401xD STM32F401xE 7.2 Package characteristics Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 14: General operating conditions on page 60. The maximum chip-junction temperature, TJ max., in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 85. Package thermal characteristics Symbol ΘJA 7.2.1 Parameter Value Thermal resistance junction-ambient UFQFPN48 32 Thermal resistance junction-ambient WLCSP49 51 Thermal resistance junction-ambient LQFP64 50 Thermal resistance junction-ambient LQFP100 42 Thermal resistance junction-ambient UFBGA100 56 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. DocID025644 Rev 3 131/135 133 Part numbering 8 STM32F401xD STM32F401xE Part numbering Table 86. Ordering information scheme Example: STM32 Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Device subfamily 401 = 401 family Pin count C = 48/49 pins R = 64 pins V = 100 pins Flash memory size D = 384 Kbytes of Flash memory E = 512 Kbytes of Flash memory Package H = UFBGA T = LQFP U = UFQFPN Y = WLCSP Temperature range 6 = Industrial temperature range, –40 to 85 °C Packing TR = tape and reel No character = tray or tube 132/135 DocID025644 Rev 3 F 401 C E Y 6 TR STM32F401xD STM32F401xE Part numbering Table 87. Device order codes Reference Order codes STM32F401xD STM32F401CDY6, STM32F401RDT6, STM32F401VDT6, STM32F401CDU6, STM32F401VDH6 STM32F401xE STM32F401CEY6, STM32F401RET6, STM32F401VET6, STM32F401CEU6, STM32F401VEH6 DocID025644 Rev 3 133/135 133 Revision history 9 STM32F401xD STM32F401xE Revision history Table 88. Document revision history Date Revision 16-Jan-2014 1 Initial release. 2 Updated Flash memory size in Table 2: STM32F401xD/xE features and peripheral counts. Added alternate functions mapped on PCx, PDx and PEx GPIOS in Table 9: Alternate function mapping 3 Updated UFQFPN48 in Table 3: Regulator ON/OFF and internal power supply supervisor availability. Updated number of EXTI lines in Section 3.10: External interrupt/event controller (EXTI). Updated Table 54: I/O static characteristics Added WLCSP49 Figure 47: WLCSP49 0.4 mm pitch wafer level chip size recommended footprint and Table 80: WLCSP49 recommended PCB design rules (0.4 mm pitch). Updated Figure 48: Example of WLCSP49 marking (top view). Updated Figure 51: Example of UFQFPN48 marking (top view). Updated Figure 54: Example of LQFP64 marking (top view). Updated Figure 57: Example of LQPF100 marking (top view). Updated Figure 60: Example of UFBGA100 marking (top view). Added notes below all engineering sample marking schematics. 24-Feb-2014 22-Jan-2015 134/135 Changes DocID025644 Rev 3 STM32F401xD STM32F401xE IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID025644 Rev 3 135/135 135
STM32F401RET6 价格&库存

很抱歉,暂时无法提供与“STM32F401RET6”相匹配的价格&库存,您可以联系我们找货

免费人工找货