0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F413ZHT6

STM32F413ZHT6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP144_20X20MM

  • 描述:

    STM32F413ZHT6

  • 数据手册
  • 价格&库存
STM32F413ZHT6 数据手册
STM32F413xG STM32F413xH Arm®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs Datasheet - production data Features )%*$ • Dynamic Efficiency Line with eBAM (enhanced Batch Acquisition Mode) – 1.7 V to 3.6 V power supply – -40 °C to 85/105/125 °C temperature range • Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 100 MHz, memory protection unit, 125 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions • Memories – Up to 1.5 Mbytes of Flash memory – 320 Kbytes of SRAM – Flexible external static memory controller with up to 16-bit data bus: SRAM, PSRAM, NOR Flash memory – Dual mode Quad-SPI interface • LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 1.7 to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Power consumption – Run: 112 µA/MHz (peripheral off) – Stop (Flash in Stop mode, fast wakeup time): 42 µA Typ.; 80 µA max @25 °C – Stop (Flash in Deep power down mode, slow wakeup time): 15 µA Typ.; 46 µA max @25 °C – Standby without RTC: 1.1 µA Typ.; 14.7 µA max at @85 °C – VBAT supply for RTC: 1 µA @25 °C • 2x12-bit D/A converters • 1×12-bit, 2.4 MSPS ADC: up to 16 channels • 6x digital filters for sigma delta modulator, 12x PDM interfaces, with stereo microphone and sound source localization support • General-purpose DMA: 16-stream DMA September 2017 This is information on a product in full production. LQFP64 (10x10mm) WLCSP81 UFQFPN48 (4.039x3.951 mm) LQFP100 (14x14mm) (7x7 mm) LQFP144 (20x20mm) UFBGA100 (7x7mm) UFBGA144 (10x10mm) • Up to 18 timers: up to twelve 16-bit timers, two 32-bit timers up to 100 MHz each with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input, two watchdog timers (independent and window), one SysTick timer, and a low-power timer • Debug mode – Serial wire debug (SWD) & JTAG – Cortex®-M4 Embedded Trace Macrocell™ • Up to 114 I/O ports with interrupt capability – Up to 109 fast I/Os up to 100 MHz – Up to 114 five V-tolerant I/Os • Up to 24 communication interfaces – Up to 4x I2C interfaces (SMBus/PMBus) – Up to 10 UARTS: 4 USARTs / 6 UARTs (2 x 12.5 Mbit/s, 2 x 6.25 Mbit/s), ISO 7816 interface, LIN, IrDA, modem control) – Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or I2S audio protocol), out of which 2 muxed full-duplex I2S interfaces – SDIO interface (SD/MMC/eMMC) – Advanced connectivity: USB 2.0 full-speed device/host/OTG controller with PHY – 3x CAN (2.0B Active) – 1xSAI • True random number generator • CRC calculation unit • 96-bit unique ID • RTC: subsecond accuracy, hardware calendar • All packages are ECOPACK®2 Table 1. Device summary Reference Part number STM32F413xH STM32F413CH STM32F413MH STM32F413RH STM32F413VH STM32F413ZH STM32F413xG STM32F413CG STM32F413MG STM32F413RG STM32F413VG STM32F413ZG DocID029162 Rev 6 1/208 www.st.com Contents STM32F413xG/H Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Arm® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . . 19 3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19 3.3 Enhanced Batch Acquisition mode (eBAM) . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20 3.7 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.8 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.9 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.10 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11 Quad-SPI memory interface (QUAD-SPI) . . . . . . . . . . . . . . . . . . . . . . . . 23 3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23 3.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.18 2/208 Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31 3.19 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 31 3.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DocID029162 Rev 6 STM32F413xG/H Contents 3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 3.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.22.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 36 3.25 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.27 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.29 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 39 3.30 Dynamic tuning of PDM delays for sound source localization . . . . . . . . . 39 3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40 3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.33 Universal serial bus on-the-go full-speed (USB_OTG_FS) . . . . . . . . . . . 40 3.34 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.35 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.36 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.37 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.38 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.39 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.40 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 WLCSP81 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 LQFP144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.6 UFBGA100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 DocID029162 Rev 6 3/208 5 Contents STM32F413xG/H 4.7 UFBGA144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 Pins definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.9 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1 4/208 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.2 VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 85 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 86 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 86 6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 116 6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 121 6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 DocID029162 Rev 6 STM32F413xG/H 7 Contents 6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.25 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.3.26 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3.27 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics . . . 172 6.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.1 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.5 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.6 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.7 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.8.1 8 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Appendix A Recommendations when using the internal reset OFF . . . . . . . . 201 Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 B.1 Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 B.2 Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.3 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 204 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DocID029162 Rev 6 5/208 5 List of tables STM32F413xG/H List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. 6/208 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F413xG/H features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 31 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DFSDM feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STM32F413xG/H pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 STM32F413xG/H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 STM32F413xG/H register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 84 VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 85 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 86 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V . . . 90 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V . . 91 Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD = 3.6 V. . . . . . . . . . . . . . . 92 Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD = 1.7 V. . . . . . . . . . . . . . . 93 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V . . . . . 94 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - VDD = 1.7 V . . . . . 95 Typical and maximum current consumption in Sleep mode - VDD = 3.6 V . . . . . . . . . . . . . 96 Typical and maximum current consumption in Sleep mode - VDD = 1.7 V . . . . . . . . . . . . . 97 Typical and maximum current consumptions in Stop mode - VDD = 1.7 V . . . . . . . . . . . . . 98 Typical and maximum current consumption in Stop mode - VDD=3.6 V. . . . . . . . . . . . . . . 98 Typical and maximum current consumption in Standby mode - VDD= 1.7 V . . . . . . . . . . . 98 Typical and maximum current consumption in Standby mode - VDD= 3.6 V . . . . . . . . . . . 99 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 99 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DocID029162 Rev 6 STM32F413xG/H Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. List of tables High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 EMS characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 EMI characteristics for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 131 FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 QSPI dynamic characteristics in SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 QSPI dynamic characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 146 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 146 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 161 DocID029162 Rev 6 7/208 8 List of tables Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. 8/208 STM32F413xG/H Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 163 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 165 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 177 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 194 UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 197 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DocID029162 Rev 6 STM32F413xG/H List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32F413xG/H block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 26 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30 Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 30 STM32F413xG/H WLCSP81 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 STM32F413xG/H UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STM32F413xG/H LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 STM32F413xG/H LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 STM32F413xG/H LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STM32F413xG/H UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STM32F413xG/H UFBGA144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Typical VBAT current consumption (LSE and RTC ON/LSE oscillator “low power” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Typical VBAT current consumption (LSE and RTC ON/LSE oscillator “high drive” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Low-power mode wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 FT/TC I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 DocID029162 Rev 6 9/208 11 List of figures Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. 10/208 STM32F413xG/H SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 143 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 149 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 150 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 159 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 161 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 162 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 164 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 WLCSP81 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 182 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 186 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 189 LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 UFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Sensor Hub application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 204 USB peripheral-only Full speed mode with direct connection DocID029162 Rev 6 STM32F413xG/H Figure 88. Figure 89. List of figures for VBUS sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 USB peripheral-only Full speed mode, VBUS detection using GPIO . . . . . . . . . . . . . . . . 205 USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 205 DocID029162 Rev 6 11/208 11 Introduction 1 STM32F413xG/H Introduction This datasheet provides the description of the STM32F413xG/H microcontrollers. For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming manual (PM0214) available from www.st.com. 12/208 DocID029162 Rev 6 STM32F413xG/H 2 Description Description The STM32F413XG/H devices are based on the high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 100 MHz. Their Cortex®-M4 core features a Floating point unit (FPU) single precision which supports all Arm single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The STM32F413XG/H devices belong to the STM32F4 access product lines (with products combining power efficiency, performance and integration) while adding a new innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power consumption during data batching. The STM32F413XG/H devices incorporate high-speed embedded memories (up to 1.5 Mbytes of Flash memory, 320 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. All devices offer a 12-bit ADC, two 12-bit DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timer for motor control, two general-purpose 32-bit timers and a low power timer. They also feature standard and advanced communication interfaces. • Up to four I2Cs, including one I2C supporting Fast-Mode Plus • Five SPIs • Five I2Ss out of which two are full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicate internal audio PLL or via an external clock to allow synchronization. • Four USARTs and six UARTs • An SDIO/MMC interface • An USB 2.0 OTG full-speed interface • Three CANs • An SAI. In addition, the STM32F413xG/H devices embed advanced peripherals: • A flexible static memory control interface (FSMC) • A Quad-SPI memory interface • Two digital filter for sigma modulator (DFSDM) supporting microphone MEMs and sound source localization, one with two filters and up to four inputs, and the second one with four filters and up to eight inputs They are offered in 7 packages ranging from 48 to 144 pins. The set of available peripherals depends on the selected package. The STM32F413xG/H operate in the – 40 to + 125 °C temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. DocID029162 Rev 6 13/208 42 Description STM32F413xG/H These features make the STM32F413xG/H microcontrollers suitable for a wide range of applications: 14/208 • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances • Mobile phone sensor hub • Wearable devices • Connected objects • Wifi modules DocID029162 Rev 6 STM32F413xG/H Description Table 2. STM32F413xG/H features and peripheral counts Peripherals STM32F413xG STM32F413xH 1024 1536 320 (256 + 64) 320 (256 + 64) Flash memory (Kbyte) SRAM (Kbyte) System Quad-SPI memory interface - FSMC memory controller - 1(1) FSMC LCD parallel interface Data bus size - 8 Generalpurpose 10(2) 10 Advancedcontrol 2(4) Timers 1 - 1(1) 1(1) 1 16 10(3) 10 1 - 1(1) - 8 10(2) 10 1(1) 10(3) 2 2 Low-power timer 1 1 1 1 SPI/ I S 5/5 (2 full duplex) 5/5 (2 full duplex) I2C 3 3 2 1 1 I CFMP USART/ UART Comm. interfaces SDIO/MMC 3/3 4/3 4/6 3/3 4/3 1 USB/OTG FS Dual power rail 1 No 4/6 1 1 Yes 1 No 1 Yes 1 No 1 Yes CAN 3 3 SAI 1 1 Number of digital Filters for Sigma-delta modulator Number of channels 6 6 7 11 GPIOs 36 50 12-bit ADC Number of channels 10 114 7 11 36 50 1 No 1 Yes 12 60 81 114 1 10 16 Yes Yes 2 2 100 MHz 100 MHz 1.7 to 3.6 V 1.7 to 3.6 V Ambient temperatures: – 40 to +85 °C / – 40 to +105 °C / – 40 to +125 °C Ambient temperatures: – 40 to +85 °C / – 40 to +105 °C / – 40 to +125 °C Junction temperature: –40 to + 130 °C Junction temperature: –40 to + 130 °C Operating voltage 1. 81 16 Maximum CPU frequency Operating temperatures 12 60 1 12-bit DAC Number of channels Package 10 2 Basic 2 1 16 2(4) 2 Random number generator 1(1) UFQFPN 48 LQFP 64 WLCSP 81 UFBGA/ LQFP100 UFBGA/ LQFP144 UFQFPN LQFP64 48 WLCSP 81 UFBGA/ LQFP100 UFBGA/ LQFP144 64 pins package: support only 8 bits multiplexed mode interface 81 pins package: support 1 external memory of up to 64KB in multiplexed mode 100 pins: support 2 external memories of up to 64MB in multiplexed mode Refer to Table 11: FSMC pin definition for more detailed information 2. 48 pins packages: TIM3 and TIM4: ETR pin not available. 3. 4. 81 pins packages: TIM4: ETR pin not available. 48 pins packages: TIM8:CH1, CH2, CH3 and CH4 pins not available. DocID029162 Rev 6 15/208 42 Description 2.1 STM32F413xG/H Compatibility with STM32F4 series The STM32F413xG/H are fully software and feature compatible with the STM32F4 series (STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407) The STM32F413xG/H can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board. Figure 1. Compatible board design for LQFP100 package 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH           3( 3( 3( 3( 3( 3( 3% 9&$3B 966 9'' 3% QRW DYDLODEOHDQ\PRUH 5HSODFHG E\ 9 &$3B                   3' 3' 3' 3' 3% 3% 3% 3% 3( 3( 3( 3( 3( 3( 3% 3% 9&$3B 9''         966 9'' 3' 3' 3' 3' 3% 3% 3% 3% 966 9'' 06Y9 16/208 DocID029162 Rev 6 STM32F413xG/H Description Figure 2. Compatible board design for LQFP64 package 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 9'' 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966                3%QRWDYDLODEOHDQ\PRUH  5HSODFHGE\9&$3B       9'' 966 3$ 3$ 3$ 3$ 3$ 966 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 3% 3% 9&$3B 966 9'' 3% 3% 3% 9&$3B 9''                       3& 3& 3& 3$ 3$ 3& 3& 3& 3$ 3$ 670)670)OLQH 9&$3BLQFUHDVHGWR—I (65ŸRUEHORZ 966 9 6 6 9 '' 9'' 06Y9 Figure 3. Compatible board design for LQFP144 package 670)[ 670)[ 670)[ 670)[[ 3' 3' 3& 3& 3& 3$ 3$               3' 3' 3& 3& 3& 3$ 3$ 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH                 9'' 966 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9'' 966 3* 6HSDUDWH86%SRZHUUDLO &RQQHFWHGWR9''LIDGLIIHUHQW SRZHUVXSSO\IRUWKH86%LVQRW UHTXLUHG                 9'' 966 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9''86% 966 3* 06Y9 DocID029162 Rev 6 17/208 42 Description STM32F413xG/H Figure 4. STM32F413xG/H block diagram 038)38 (70 )60& 125)ODVK 65$0365$0 $+% -7$* 6: .%65$0 ,%86 '%86 .%65$0 6%86 $&&(/ &$&+( $50&RUWH[0 &RUWH[0 0+] &/.1(>@$>@ '>@12(11:(1 1%/>@1:$,7 &/.&6$&6%'>@ 4XDG63, 19,& $+%EXVPDWUL[60 -7567-7', -7&.6:&/. -7'26:'-7'2 75$&(&/. 75$&('>@ 8SWR0% )ODVKPHPRU\ 51* ),)2 *3,23257$ 3%>@ *3,23257% $+%0+] 6WUHDPV '0$ 3$>@ ),)2 6WUHDPV '0$ 9'' ),)2 #9''$ *3,23257& 3'>@ *3,23257' 3(>@ *3,23257( 3*>@ *3,23257* 3+>@ *3,23257+ 86% 27*)6 3RZHUPDQDJPW 9ROWDJH UHJXODWRU WR9 325 UHVHW ,QW 3//3// 9''$966$ 1567 39' #9'' ;7$/26& 0+] 5HVHW FORFN 0 $1 $*7 FRQWURO 3:5 LQWHUIDFH 3&/. +&/. $3%&/. $3%&/. $+%3&/. $+%3&/. 7,03:0 /6 E E FKDQQHOVDV$) 7,0 E FKDQQHODV$) 7,0 E FKDQQHODV$) 7,0 E VPFDUG 5;7;6&. &76576DV$) VPFDUG 86$57 LU'$ LU'$ 86$57 5;7;DV$) 8$57 5;7;DV$) 8$57 026,0,62 6&.166:6DV$) 63,,6 FKDQQHOVDV$) FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) E VPFDUG LU'$ VPFDUG LU'$ E FKDQQHOVDV$) 5;7;6&. &76576DV$) 5;7;6&. &76576DV$) 5;7;DV$) 8$57 8$57 5;7;DV$) 8$57 5;7;DV$) 8$57 5;7;DV$) 026,0,626&. 166:60&.DV$) 026,0,626&. 166:60&.DV$) ,&60%86 6&/6'$60%$DV$) ,&60%86 6&/6'$60%$DV$)  ')6'0 ')6'0 '$& '$& ,) ,7) #9''$ '$& DV$) ,&60%86 6&/6'$60%$DV$) ,&)0360%86 6&/6'$60%$DV$) /37,0 #9''$ '$& DV$) ),)2 6$, 87HPSHUDWXUHVHQVRU 6 $5 7  0 % S V $'& E 63,,6 63,,6 6'6&.)6 0&/.DV$) DQDORJLQSXWV 7,0(5 E $/$50B287 67$03 E 86$57 63,,6 &.,1>@'$7,1>@ &.287 &.,1>@'$7,1>@ &.287 9''5()B$'& 7,0(5 26&B287 7,0 7,0 ::'* 26&B,1 7,0 63,,6 ),)2 026,0,62 6&.166:6DV$) 026,0,62 6&.166:6DV$) 57& $:8 %DFNXSUHJLVWHU 86$57 $3%0+] 7,03:0 5;7;6&. &76576DV$) $+% $3% $3%0+] PD[ 3:03:0 (75%.,1DV$) %$7 ;7$/N+] /6 6',200& 3:03:0 (75%.,1DV$) $+% $3% ),)2 '>@ &0'&.DV$) 9%$7 WR9 #9 '0$ '0$ 26&B,1 26&B287 :'*. &5& (;7,7:.83 9'' WR9 966 9&$3B9&$3B 6XSSO\ VXSHUYLVLRQ 3253'5 %25 #9''$ $) ' ' 6&/6'$,17,'9%86 #9'' 5& +6 5& / 6 3&>@ #9''86% #9'' 3+< $+%0+] E ,1V287,,75DV$) &$1 7;5; &$1 7;5; &$1 7;5; 06Y9 1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 50 MHz. 18/208 DocID029162 Rev 6 STM32F413xG/H Functional overview 3 Functional overview 3.1 Arm® Cortex®-M4 with FPU core with embedded Flash and SRAM The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F413xG/H devices are compatible with all Arm tools and software. Figure 4 shows the general block diagram of the STM32F413xG/H. Note: Cortex®-M4 with FPU is binary compatible with Cortex®-M3. 3.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the Arm® Cortex®-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 125 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 100 MHz. 3.3 Enhanced Batch Acquisition mode (eBAM) The Batch acquisition mode allows enhanced power efficiency during data batching. It enables data acquisition through any communication peripherals directly to memory using the DMA in reduced power consumption as well as data processing while the rest of the system is in low-power mode (including the Flash and ART). For example in an audio system, a smart combination of PDM audio sample acquisition and processing from the DFSDM directly to RAM (Flash and ART™ stopped) with the DMA using BAM followed by some very short processing from Flash allows to drastically reduce the power consumption of the application. The BAM has been enhanced by adding SRAM2 that allows SRAM code to be executed through the Ibus and Dbus, thus improving code execution performance. DocID029162 Rev 6 19/208 42 Functional overview STM32F413xG/H A dedicated application note (AN4515) describes how to implement the STM32F413xG/H BAM to allow the best power efficiency. 3.4 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.5 Embedded Flash memory The devices embed up to 1.5 Mbytes of Flash memory available for storing programs and data, plus 512 bytes of one-time programmable (OTP) memory organized in 16 blocks of 32 bytes, each which can be independently locked. The user Flash memory area can be protected against read operations by an entrusted code (read protection or RDP). Different protection levels are available. The user Flash memory is divided into sectors, which can be individually protected against write operation. Flash sectors can also be protected individually against D-bus read accesses by using the proprietary readout protection (PCROP). Refer to the product line reference manual for additional information on OTP area and protection features. To optimize the power consumption the Flash memory can also be switched off in Run or in Sleep mode (see Section 3.20: Low-power modes). Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between power saving and startup time. Before disabling the Flash, the code must be executed from the internal RAM. 3.6 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 20/208 DocID029162 Rev 6 STM32F413xG/H 3.7 Functional overview Embedded SRAM All devices embed 320 Kbytes of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states. Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. Figure 5. Multi-AHB matrix 6 6 6 $FFHVVWKURXJKUHPDS $FFHVVE\DOLDVLQJ '0$B3 '0$B0(0 '0$B0(0 '0$B3, 6EXV 6 *3 '0$ *3 '0$ 6 0 ,&2'( 0 '&2'( %XVPDWUL[6 $&&(/ 6 'EXV $50 &RUWH[0 ,EXV 3.8 )ODVK 0% 0 65$0 .% 0 $+% SHULSK $3% 0 $+% SHULSK $3% 0 )60&H[WHUQDO 0HP&WUO 4XDG63, 0 65$0 .% 06Y9 CPU can access SRAM1 memory via S-bus, when SRAM1 is mapped at the address range: 0x2000 0000 to 0x2003 FFFF. CPU can access SRAM2 memory via S-bus, when SRAM2 is mapped at the address range: 0x2004 0000 to 0x2004 FFFF. CPU can access SRAM1 memory via I-bus and D-bus, when SRAM1 is remapped at address 0x0000 0000 either by booting from RAM memory or by the remap mode. CPU can access SRAM2 memory via I-bus and D-bus, when SRAM2 is mapped at the address range: 0x1000 0000 to 0x1000 FFFF. Performance boosts up, when the CPU access SRAM memory via the I-bus. DocID029162 Rev 6 21/208 42 Functional overview 3.9 STM32F413xG/H DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: 3.10 • SPI and I2S • I2C and I2CFMP • USART • General-purpose, basic and advanced-control timers TIMx • SD/SDIO/MMC/eMMC host interface • Quad-SPI • ADC • DAC • Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter • SAI. Flexible static memory controller (FSMC) The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR Flash memory. The main functions are: • 8-,16-bit data bus width • Write FIFO • Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz. LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 22/208 DocID029162 Rev 6 STM32F413xG/H 3.11 Functional overview Quad-SPI memory interface (QUAD-SPI) All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode through registers, external Flash status register polling mode and memory mapped mode. Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or 32-bit mode. Code execution is also supported. The opcode and the frame format are fully programmable. Communication can be performed either in single data rate or dual data rate. 3.12 Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 102 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4 with FPU. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.13 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 24 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines. 3.14 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB DocID029162 Rev 6 23/208 42 Functional overview STM32F413xG/H buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB domain is 50 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 3.15 Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash memory • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using one of the interface listed in the Table 3 or the USB OTG FS in device mode through DFU (device firmware upgrade). Table 3. Embedded bootloader interfaces Package USART1 USART2 USART3 I2C1 PA9/ PD6/ PB11/ PB6/ PA10 PD5 PB10 PB7 SPI3 I2C2 PF0/ PF1 I2C3 PA8/ PB4 I2C FMP1 PB14/ PB15 SPI1 PA4/ PA5/ PA6/ PA7 PA15/ PC10/ PC11/ PC12 SPI4 PE11/ CAN2 USB PE12/ PB5/ PA11 PE13/ PB13 /P12 PE14 UFQFPN48 Y - - Y - Y Y Y - - Y Y LQFP64 Y - - Y - Y Y Y Y - Y Y WLCSP81 Y - - Y - Y Y Y Y Y Y Y LQFP100 Y Y - Y - Y Y Y Y Y Y Y LQFP144 Y Y Y Y Y Y Y Y Y Y Y Y UFBGA100 Y Y Y Y - Y Y Y Y Y Y Y UFBGA144 Y Y Y Y Y Y Y Y Y Y Y Y For more detailed information on the bootloader, refer to Application Note: AN2606, STM32™ microcontroller system memory boot mode. 24/208 DocID029162 Rev 6 STM32F413xG/H 3.16 Note: Functional overview Power supply schemes • VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor (POR/PDR) disabled, provided externally through VDD pins. Requires the use of an external power supply supervisor connected to the VDD and NRST pins. • VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with decoupling technique. The VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF and internal power supply supervisor availability to identify the packages supporting this option. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. • VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6 V) for USB transceivers. For example, when device is powered at 1.8 V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: – During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – VDDUSB rising and falling time rate specifications must be respected. – In operating mode phase, VDDUSB could be lower or higher than VDD: – If USB is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX. – If USB is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. DocID029162 Rev 6 25/208 42 Functional overview STM32F413xG/H Figure 6. VDDUSB connected to an external independent power supply 9''86%B0$; 86% IXQFWLRQDODUHD 9''86% 9''86%B0,1 86%QRQ IXQFWLRQDO DUHD 9'' 9''$ 86% QRQ IXQFWLRQDO DUHD 9''B0,1 2SHUDWLQJPRGH 3RZHURQ 3RZHUGRZQ WLPH 069 3.17 Power supply supervisor 3.17.1 Internal reset ON This feature is available for VDD operating voltage range 1.8 V to 3.6 V. On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 26/208 DocID029162 Rev 6 STM32F413xG/H 3.17.2 Functional overview Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low. An external power supply supervisor should monitor VDD and should set the device in reset mode when VDD is below 1.7 V. NRST should be connected to this external power supply supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset OFF. Figure 7. Power supply supervisor interconnection with internal reset OFF(1) 9'' ([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYHZKHQ 9''9 1567 3'5B21 9'' 06Y9 1. The PRD_ON pin is available only on WLCSP81, UFBGA100, UFBGA144 and LQFP144 packages. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no longer supported: 3.18 • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled. • The brownout reset (BOR) circuitry must be disabled. • The embedded programmable voltage detector (PVD) is disabled. • VBAT functionality is no more available and VBAT pin should be connected to VDD. Voltage regulator The regulator has three operating modes: – Main regulator mode (MR) – Low power regulator (LPR) – Power-down DocID029162 Rev 6 27/208 42 Functional overview 3.18.1 STM32F413xG/H Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. There are three power modes configured by software when the regulator is ON: • MR is used in the nominal regulation mode (With different voltage scaling in Run mode) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. • LPR is used in the Stop mode The LP regulator mode is configured by software when entering Stop mode. • Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost. Depending on the package, one or two external ceramic capacitors should be connected on the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available on 100- and 144-pin packages. All packages have the regulator ON feature. 3.18.2 Regulator OFF This feature is available only on UFBGA100 and UFBGA144 packages, which feature the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode, the following features are no more supported: 28/208 • PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. DocID029162 Rev 6 STM32F413xG/H Functional overview Figure 8. Regulator OFF 9 ([WHUQDO9&$3BSRZHU $SSOLFDWLRQUHVHW VXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYH VLJQDO RSWLRQDO  ZKHQ9&$3B0LQ9 9'' 3$ 9'' 1567 %@ $GGUHVV TV",?.% WK %/B12( )60&B1%/>@ WK 'DWDB1( WVX 'DWDB12( WK 'DWDB12( WVX 'DWDB1( 'DWD )60&B'>@ WY 1$'9B1( WZ 1$'9 )60&B1$'9  )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. DocID029162 Rev 6 159/208 174 Electrical characteristics STM32F413xG/H Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol Min Max 2 * tHCLK - 1 2 * tHCLK + 1 0 0.5 2 * tHCLK - 1 2 * tHCLK + 1 FSMC_NOE high to FSMC_NE high hold time 0 - FSMC_NEx low to FSMC_A valid - 0.5 th(A_NOE) Address hold time after FSMC_NOE high 0 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - tsu(Data_NE) Data to FSMC_NEx high setup time tHCLK - 2 - tsu(Data_NOE) Data to FSMC_NOEx high setup time tHCLK - 2 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - th(Data_NE) Data hold time after FSMC_NEx high 0 - tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 FSMC_NADV low time - tHCLK + 1 tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tw(NADV) Parameter FSMC_NE low time FSMC_NEx low to FSMC_NOE low FSMC_NOE low time Unit ns 1. CL = 30 pF. 2. Based on characterization. Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings(1)(2) Symbol tw(NE) tw(NOE) tw(NWAIT) Parameter Min Max FSMC_NE low time 7 * tHCLK + 1 7 * tHCLK + 1 FSMC_NWE low time 5 * tHCLK - 1 5 * tHCLK + 1 tHCLK - 0.5 - 5 * tHCLK + 1.5 - 4 * tHCLK + 1 - FSMC_NWAIT low time tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 1. CL = 30 pF. 2. Based on characterization. 160/208 DocID029162 Rev 6 Unit ns STM32F413xG/H Electrical characteristics Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms WZ 1( )60&B1([ )60&B12( WY 1:(B1( WK 1(B1:( WZ 1:( )60&B1:( WK $B1:( TV!?.% )60&B$>@ $GGUHVV TV",?.% )60&B1%/>@ WK %/B1:( 1%/ WY 'DWDB1( WK 'DWDB1:( 'DWD )60&B'>@ WY 1$'9B1( )60&B1$'9  WZ 1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Parameter FSMC_NE low time FSMC_NEx low to FSMC_NWE low FSMC_NWE low time FSMC_NWE high to FSMC_NE high hold time FSMC_NEx low to FSMC_A valid th(A_NWE) Address hold time after FSMC_NWE high tv(BL_NE) FSMC_NEx low to FSMC_BL valid Min Max 3 * tHclk - 1 3 * tHclk - 1 tHCLK - 1 tHCLK + 0.5 tHCLK - 1.5 tHCLK + 0.5 tHCLK - - 0 tHCLK - 0.5 - - 0.5 tHCLK - 0.5 - th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tv(Data_NE) Data to FSMC_NEx low to Data valid - tHCLK + 2.5 th(Data_NWE) Data hold time after FSMC_NWE high tHCLK - tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 FSMC_NADV low time - tHCLK + 1 tw(NADV) DocID029162 Rev 6 Unit ns 161/208 174 Electrical characteristics STM32F413xG/H 1. CL = 30 pF. 2. Based on characterization. Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings(1)(2) Symbol Parameter FSMC_NE low time tw(NE) tw(NWE) FSMC_NWE low time Min Max Unit 8 * tHCLK - 1 8 * tHCLK + 1 6 * tHCLK - 1.5 6 * tHCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6 * tHCLK - 1 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4 * tHCLK + 2 - ns 1. CL = 30 pF. 2. Based on characterization. Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms WZ 1( )60&B1( WK 1(B12( WY 12(B1( )60&B12( WZ 12( )60&B1:( WK $B12( TV!?.% )60&B$>@ $GGUHVV WK %/B12( TV",?.% )60&B1%/>@ 1%/ WK 'DWDB1( WVX 'DWDB1( WVX 'DWDB12( WY $B1( )60&B$'>@ WY 1$'9B1( WK 'DWDB12( 'DWD $GGUHVV TH!$?.!$6 WZ 1$'9 )60&B1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 162/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 92. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol Min Max 3 * tHCLK - 1 3 * tHCLK + 1 FSMC_NEx low to FSMC_NOE low 2 * tHCLK 2 * tHCLK + 0.5 FSMC_NOE low time tHCLK - 1 tHCLK + 1 FSMC_NOE high to FSMC_NE high hold time 0 - FSMC_NEx low to FSMC_A valid - 0.5 FSMC_NEx low to FSMC_NADV low 0 0.5 FSMC_NADV low time tHCLK - 0.5 tHCLK + 1 th(AD_NADV) FSMC_AD(address) valid hold time after FSMC_NADV high) tHCLK + 0.5 - th(A_NOE) Address hold time after FSMC_NOE high tHCLK - 0.5 - th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 tsu(Data_NE) Data to FSMC_NEx high setup time tHCLK - 2 - tsu(Data_NOE) Data to FSMC_NOE high setup time tHCLK - 2 - th(Data_NE) Data hold time after FSMC_NEx high 0 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) Parameter FSMC_NE low time Unit ns 1. CL = 30 pF. 2. Based on characterization. Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2) Symbol tw(NE) tw(NOE) Parameter FSMC_NE low time Min 8 * tHCLK - 1 Max Unit 8 * tHCLK + 1 FSMC_NWE low time 5 * tHCLK - 1.5 5 * tHCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 5 * tHCLK + 1.5 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4 * tHCLK + 1 - ns 1. CL = 30 pF. 2. Based on characterization. DocID029162 Rev 6 163/208 174 Electrical characteristics STM32F413xG/H Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms WZ 1( )60&B1([ )60&B12( WK 1(B1:( WZ 1:( WY 1:(B1( )60&B1:( WK $B1:( TV!?.% )60&B$>@ $GGUHVV WK %/B1:( TV",?.% )60&B1%/>@ 1%/ WY $B1( )60&B$'>@ WY 'DWDB1$'9 $GGUHVV W Y 1$'9B1( WK 'DWDB1:( 'DWD TH!$?.!$6 WZ 1$'9 )60&B1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 164/208 DocID029162 Rev 6 06Y9 STM32F413xG/H Electrical characteristics Table 94. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Parameter tw(NE) FSMC_NE low time FSMC_NEx low to FSMC_NWE low tv(NWE_NE) tw(NWE) FSMC_NWE low time th(NE_NWE) Min Max 4 * THCLK - 1 4 * THCLK + 1 THCLK - 1 THCLK + 0.5 2 * THCLK - 0.5 2 * THCLK - 0.5 FSMC_NWE high to FSMC_NE high hold time THCLK - 0.5 - FSMC_NEx low to FSMC_A valid - 0 FSMC_NEx low to FSMC_NADV low 0 0.5 THCLK THCLK + 1 FSMC_AD (address) valid hold time after FSMC_NADV high) THCLK + 0.5 - th(A_NWE) Address hold time after FSMC_NWE high THCLK + 0.5 - th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK - 0.5 - - 0.5 - THCLK + 2.5 THCLK - tv(A_NE) tv(NADV_NE) tw(NADV) FSMC_NADV low time th(AD_NADV) FSMC_NEx low to FSMC_BL valid tv(BL_NE) tv(Data_NADV) FSMC_NADV high to Data valid Data hold time after FSMC_NWE high th(Data_NWE) Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2) Symbol tw(NE) Parameter FSMC_NE low time tw(NWE) Min Max 9 * THCLK - 1 9 * THCLK + 1 FSMC_NWE low time 7 * THCLK - 0.5 7 * THCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6 * THCLK + 2 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4 * THCLK - 1 - Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Synchronous waveforms and timings Figure 57 through Figure 60 represent synchronous waveforms and Table 96 through Table 99 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • BurstAccessMode = FSMC_BurstAccessMode_Enable; • MemoryType = FSMC_MemoryType_CRAM; • WriteBurst = FSMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM DocID029162 Rev 6 165/208 174 Electrical characteristics STM32F413xG/H In all timing tables, the THCLK is the HCLK clock period (with maximum FSMC_CLK = 90 MHz). Figure 57. Synchronous multiplexed NOR/PSRAM read timings WZ &/. %867851  WZ &/. )60&B&/. 'DWDODWHQF\  WG &/./1([/ )60&B1([ WG &/./1$'9/ WG &/.+1([+ WG &/./1$'9+ )60&B1$'9 WG &/.+$,9 WG &/./$9 )60&B$>@ WG &/./12(/ WG &/.+12(+ )60&B12( WG &/./$',9 WG &/./$'9 )60&B$'>@ WK &/.+$'9 WVX $'9&/.+ WVX $'9&/.+ $'>@ ' WVX 1:$,79&/.+ WK &/.+$'9 ' WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 06Y9 166/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 96. Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol tw(CLK) Parameter FSMC_CLK period Min Max 2 * THCLK - 0.5 - - 2 THCLK + 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) td(CLKH_NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK - - 1.5 THCLK - 0.5 - td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 1.5 - th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2.5 - th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 - Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DocID029162 Rev 6 167/208 174 Electrical characteristics STM32F413xG/H Figure 58. Synchronous multiplexed PSRAM write timings WZ &/. %867851  WZ &/. )60&B&/. 'DWDODWHQF\  WG &/./1([/ WG &/.+1([+ )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/.+$,9 WG &/./$9 )60&B$>@ WG &/.+1:(+ WG &/./1:(/ )60&B1:( WG &/./$',9 WG &/./$'9 )60&B$'>@ WG &/./'DWD WG &/./'DWD $'>@ ' ' )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 WG &/.+1%/+ )60&B1%/ 06Y9 168/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 97. Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max tw(CLK) FSMC_CLK period, VDD range= 2.7 to 3.6 V 2 * THCLK - 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x= 0...2) - 2 td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 - td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK - - 1.5 THCLK + 0.5 - td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low t(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 4 td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low 0 2 td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK + 0.5 - 2 - 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DocID029162 Rev 6 169/208 174 Electrical characteristics STM32F413xG/H Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings WZ &/. WZ &/. )60&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\  )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/./$9 WG &/.+$,9 )60&B$>@ WG &/.+12(+ WG &/./12(/ )60&B12( WVX '9&/.+ WK &/.+'9 WVX '9&/.+ ' )60&B'>@ WVX 1:$,79&/.+ )60&B1:$,7 :$,7&)* E :$,732/E ' WK &/.+1:$,79 WVX 1:$,79&/.+ )60&B1:$,7 :$,7&)* E :$,732/E WVX 1:$,79&/.+ WK &/.+'9 WK &/.+1:$,79 WK &/.+1:$,79 06Y9 Table 98. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol tw(CLK) t(CLKL-NExL) Parameter FSMC_CLK period FSMC_CLK low to FSMC_NEx low (x=0..2) Min Max 2THCLK – 0.5 - - 2 THCLK +0.5 - td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK - - 1.5 THCLK - 0.5 - td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 1.5 - th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2.5 - th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 - 1. CL = 30 pF. 2. Guaranteed by characterization results. 170/208 DocID029162 Rev 6 Unit ns STM32F413xG/H Electrical characteristics Figure 60. Synchronous non-multiplexed PSRAM write timings WZ &/. WZ &/. )60&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\  )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/./$9 WG &/.+$,9 )60&B$>@ WG &/./1:(/ WG &/.+1:(+ )60&B1:( WG &/./'DWD ' )60&B'>@ )60&B1:$,7 :$,7&)* E :$,732/E WG &/./'DWD WVX 1:$,79&/.+ ' WG &/.+1%/+ WK &/.+1:$,79 )60&B1%/ 06Y9 Table 99. Synchronous non-multiplexed PSRAM write timings(1)(2) Symbol tw(CLK) Parameter FSMC_CLK period Min Max 2 * THCLK - 0.5 - - 2 THCLK + 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK - - 1.5 THCLK + 1 - td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 4 td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low - 2 td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK + 1 - 2 - 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DocID029162 Rev 6 171/208 174 Electrical characteristics 6.3.27 STM32F413xG/H SD/SDIO MMC/eMMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 100 for the SDIO are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics. Figure 61. SDIO high-speed mode WU WI W& W: &./ W: &.+ &. W2+ W29 '&0' RXWSXW W,68 W,+ '&0' LQSXW DL Figure 62. SD default mode 172/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 100. SD / MMC characteristics(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz - SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp =50MHz 5 - - tIH Input hold time HS fpp =50MHz 1 - - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp =50MHz - 12 13.5 tOH Output hold time HS fpp =50MHz 10.5 - - ns CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp =25MHz 5 - - tIHD Input hold time SD fpp =25MHz 1 - - ns CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp =25 MHz - 2 3 tOHD Output hold default time SD fpp =25 MHz 1 - - ns 1. Guaranteed by characterization results. 2. VDD = 2.7 to 3.6 V. Table 101. eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in eMMC mode tISU Input setup time HS fpp =50MHz 3 - - tIH Input hold time HS fpp =50MHz 2.5 - - ns CMD, D outputs (referenced to CK) in eMMC mode tOV Output valid time HS fpp =50MHz - 15 15.5 tOH Output hold time HS fpp =50MHz 13 - - ns 1. Guaranteed by characterization results. 2. CLOAD = 20 pF. DocID029162 Rev 6 173/208 174 Electrical characteristics 6.3.28 STM32F413xG/H RTC characteristics Table 102. RTC characteristics 174/208 Symbol Parameter - fPCLK1/RTCCLK frequency ratio Conditions Any read/write operation from/to an RTC register DocID029162 Rev 6 Min Max 4 - STM32F413xG/H 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 WLCSP81 package information Figure 63. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package outline $EDOO ORFDWLRQ H $2ULHQWDWLRQ UHIHUHQFH ' H $ H H - ( *   %RWWRPYLHZ %XPSVLGH DDD 7RSYLHZ :DIHUEDFNVLGH ) %803  EEE = HHH = $ $ $ $ ‘FFF0 ‘GGG 0 '(7$,/$ 6,'(9,(: = ‘E [ =;< = 6HDWLQJSODQH '(7$,/$ :/&63B$%B0(B9 1. Drawing is not to scale. DocID029162 Rev 6 175/208 205 Package information STM32F413xG/H Table 103. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - - 0.025 - - 0.0010 - Ø b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 4.004 4.039 4.074 0.1576 0.1590 0.1604 E 3.916 3.951 3.986 0.1542 0.1556 0.1569 e - 0.400 - - 0.0157 - e1 - 3.200 - - 0.1260 - e2 - 3.200 - - 0.1260 - F - 0.4195 - - 0.0165 - G - 0.3755 - - 0.0148 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 A3 (2) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 176/208 DocID029162 Rev 6 STM32F413xG/H Package information Figure 64. WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package recommended footprint 'SDG 'VP :/&63B$%B)3B9 Table 104. WLCSP81 recommended PCB design rules (0.4 mm pitch) Dimension Recommended values Pitch 0.4 mm Dpad 0.225 mm Dsm 0.290 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm DocID029162 Rev 6 177/208 205 Package information STM32F413xG/H Device marking for WLCSP81 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 65. WLCSP81 marking example (package top view) 3LQLGHQWLILHU 3URGXFW LGHQWLILFDWLRQ  )* 'DWHFRGH < :: $ $GGLWLRQDO LQIRUPDWLRQ 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 178/208 DocID029162 Rev 6 STM32F413xG/H 7.2 Package information UFQFPN48 package information Figure 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG $ 6HDWLQJ SODQH E H 'HWDLO< ' ([SRVHGSDG DUHD < '  /  &[ƒ SLQFRUQHU ( 5W\S 'HWDLO=  =  $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. DocID029162 Rev 6 179/208 205 Package information STM32F413xG/H Table 105. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 67. UFQFPN48 recommended footprint                     1. Dimensions are in millimeters. 180/208 DocID029162 Rev 6  !"?&0?6 STM32F413xG/H Package information Device marking for UFQFPN48 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 68. UFQFPN48 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ  670) &+8 'DWHFRGH < :: 3LQ LQGHQWLILHU 5HYLVLRQFRGH $ 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID029162 Rev 6 181/208 205 Package information 7.3 STM32F413xG/H LQFP64 package information Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / /      3,1 ,'(17,),&$7,21 ( ( ( E    H :B0(B9 1. Drawing is not to scale. 182/208 DocID029162 Rev 6 STM32F413xG/H Package information Table 106. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - Κ 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID029162 Rev 6 183/208 205 Package information STM32F413xG/H Figure 70. LQFP64 recommended footprint                 AIC 1. Dimensions are in millimeters. 184/208 DocID029162 Rev 6 STM32F413xG/H Package information Device marking for LQFP64 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 71. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ  $ 670) 5+7 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID029162 Rev 6 185/208 205 Package information 7.4 STM32F413xG/H LQFP100 package information Figure 72. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline MM C ! ! ! 3%!4).'0,!.% # '!5'%0,!.% $ ! + CCC # , $ , $      0).  )$%.4)&)#!4)/. % % % B   E ,?-%?6 1. Drawing is not to scale. Dimensions are in millimeters. Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol 186/208 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 DocID029162 Rev 6 STM32F413xG/H Package information Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint                AIC 1. Dimensions are in millimeters. DocID029162 Rev 6 187/208 205 Package information STM32F413xG/H Device marking for LQFP100 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 74. LQFP100 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ  670) 9+7$ 5HYLVLRQFRGH 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 188/208 DocID029162 Rev 6 STM32F413xG/H LQFP144 package information Figure 75. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline C ! ! 3%!4).' 0,!.% # ! MM CCC # $ , $ + ! '!5'%0,!.% , $     % % % B 7.5 Package information    0). )$%.4)&)#!4)/.  E !?-%?6 1. Drawing is not to scale. DocID029162 Rev 6 189/208 205 Package information STM32F413xG/H Table 108. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.8740 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 - 17.500 - - 0.6890 - E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 - 17.500 - - 0.6890 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 190/208 DocID029162 Rev 6 STM32F413xG/H Package information Figure 76. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint                 DLH 1. Dimensions are expressed in millimeters. DocID029162 Rev 6 191/208 205 Package information STM32F413xG/H Device marking for LQFP144 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 77. LQFP144 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ  $ 670)=+7 'DWHFRGH < :: 3LQ LGHQWLILHU 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 192/208 DocID029162 Rev 6 STM32F413xG/H 7.6 Package information UFBGA100 package information Figure 78. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ $ ( $EDOO $EDOO LGHQWLILHU LQGH[DUHD = H ; ( $ = ' ' H < 0   %277209,(: ‘E EDOOV ‘ HHH 0 = < ; ‘ III 0 = 7239,(: $&B0(B9 1. Drawing is not to scale. Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 0.600 - - 0.0236 A1 - - 0.110 - - 0.0043 A2 - 0.450 - - 0.0177 - A3 - 0.130 - - 0.0051 0.0094 A4 - 0.320 - - 0.0126 - b 0.240 0.290 0.340 0.0094 0.0114 0.0134 D 6.850 7.000 7.150 0.2697 0.2756 0.2815 D1 - 5.500 - - 0.2165 - E 6.850 7.000 7.150 0.2697 0.2756 0.2815 E1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - Z - 0.750 - - 0.0295 - DocID029162 Rev 6 193/208 205 Package information STM32F413xG/H Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 79. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint 'SDG 'VP $&B)3B9 Table 110. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) Dimension 194/208 Recommended values Pitch 0.5 Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm DocID029162 Rev 6 STM32F413xG/H Package information Device marking for UFBGA100 The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 80. UFBGA100 marking example (package top view) WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ 670) 9++ ĂƚĞĐŽĚĞсLJĞĂƌнǁĞĞŬ < :: ĂůůϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ĚĚŝƚŝŽŶĂůŝŶĨŽƌŵĂƚŝŽŶ $ 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID029162 Rev 6 195/208 205 Package information 7.7 STM32F413xG/H UFBGA144 package information Figure 81. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline & 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) $ ( $ ) ' ' H % 0   %277209,(: ‘E EDOOV ‘ HHH 0 & $ % ‘ III 0 & 7239,(: $''@  *3,2 ,QWHUUXSW 3% 3% 6&/ ,& 6'$ 7RXFK6FUHHQ &RQWUROOHU 06Y9 Note: 16 bit displays interfaces can be addressed with 100 and 144 pins packages. MSv40843 DocID029162 Rev 6 203/208 205 Application block diagrams B.3 STM32F413xG/H USB OTG full speed (FS) interface solutions Figure 86. USB controller configured as peripheral-only and used in Full speed mode 9''86% 9'' 9WR9''86% 9ROWDJHUHJXODWRU  9%86 '0 3$ 26&B,1 '3 3$ 26&B287 966 86%6WG%FRQQHFWRU 670)[[ 670)[[ SLQVSDFNDJHV SLQVSDFNDJHV 06Y9 06Y9 1. External voltage regulator only needed when building a VBUS powered device. Figure 87. USB peripheral-only Full speed mode with direct connection for VBUS sense 9''!9 9''86% 3$ 9%86 '0 3$ 26&B,1 '3 3$ 26&B287 966 86%6WG%FRQQHFWRU 670)[[ 670)[[ SLQVSDFNDJHV SLQVSDFNDJHV 06Y9 06Y9 1. External voltage regulator only needed when building a VBUS powered device. 204/208 DocID029162 Rev 6 STM32F413xG/H Application block diagrams Figure 88. USB peripheral-only Full speed mode, VBUS detection using GPIO 99''9 9''86% *3,2 9%86 '0 3$ 26&B,1 '3 3$ 26&B287 966 86%6WG%FRQQHFWRU 670)[[ SLQVSDFNDJHV 06Y9 1. External voltage regulator only needed when building a VBUS powered device. Figure 89. USB controller configured as host-only and used in full speed mode 9'' 670)[[ *3,2,54 (1 2YHUFXUUHQW &XUUHQWOLPLWHU SRZHUVZLWFK  9 9%86 26&B,1 3$ 3$ 26&B287 '0 '3 966 86%6WG$FRQQHFWRU *3,2 06Y9 2. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. DocID029162 Rev 6 205/208 205 Revision history STM32F413xG/H Revision history Table 115. Document revision history Date Revision 29-Aug-2016 1 Initial release. 2 Updated: – Table 10: STM32F413xG/H pin definition – Section 7: Package information – Figure 65: WLCSP81 marking example (package top view) 3 Updated: – Table 39: Peripheral current consumption – Table 55: EMI characteristics for LQFP144 – Table 56: ESD absolute maximum ratings – Table 70: QSPI dynamic characteristics in SDR mode – Table 111: UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data – Figure 81: UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline 4 Updated: – Table 2: STM32F413xG/H features and peripheral counts – Table 12: STM32F413xG/H alternate functions Added: – Table 11: FSMC pin definition 21-Oct-2016 13-Dec-2016 09-Mar-2017 206/208 Changes DocID029162 Rev 6 STM32F413xG/H Revision history Table 115. Document revision history Date 14-Jun-2017 19-Sep-2017 Revision Changes 5 Added: – Section 4.1: WLCSP81 pinout description – Section 4.2: UFQFPN48 pinout description – Section 4.3: LQFP64 pinout description – Section 4.4: LQFP100 pinout description – Section 4.5: LQFP144 pinout description – Section 4.6: UFBGA100 pinout description – Section 4.7: UFBGA144 pinout description – Section 4.8: Pins definition – Section 4.9: Alternate functions Updated: – Table 10: STM32F413xG/H pin definition – Table 11: FSMC pin definition – Table 38: Switching output I/O current consumption – Table 39: Peripheral current consumption 6 Updated: – Section 3.29: Digital filter for sigma-delta modulators (DFSDM) – Table 53: Flash memory endurance and data retention – Table 59: I/O static characteristics – Table 75: ADC characteristics DocID029162 Rev 6 207/208 207 STM32F413xG/H IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 208/208 DocID029162 Rev 6
STM32F413ZHT6 价格&库存

很抱歉,暂时无法提供与“STM32F413ZHT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货