STM32F732xx
STM32F733xx
Arm® Cortex®-M7 32b MCU+FPU, 462DMIPS, up to 512KB Flash
/256+16+4KB RAM, USB OTG HS/FS, 18 TIMs, 3 ADCs, 21 com IF
Datasheet - production data
Features
• Core: Arm® 32-bit Cortex®-M7 CPU with FPU,
adaptive real-time accelerator (ART
Accelerator) and L1-cache: 8 Kbytes of data
cache and 8 Kbytes of instruction cache,
allowing 0-wait state execution from embedded
Flash memory and external memories,
frequency up to 216 MHz, MPU,
462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1)
and DSP instructions.
• Memories
– Up to 512 Kbytes of Flash memory with
protection mechanisms (read and write
protections, proprietary code readout
protection (PCROP))
– 528 bytes of OTP memory
– SRAM: 256 Kbytes (including 64 Kbytes of
data TCM RAM for critical real-time data) +
16 Kbytes of instruction TCM RAM (for
critical real-time routines) + 4 Kbytes of
backup SRAM (available in the lowest
power modes)
– Flexible external memory controller with up
to 32-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND
memories
• Dual mode Quad-SPI
• Clock, reset and supply management
– 1.7 V to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– Dedicated USB power
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
• Low-power
– Sleep, Stop and Standby modes
November 2020
This is information on a product in full production.
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
UFBGA144 (7 x 7 mm)
UFBGA176 (10 x 10 mm)
WLCSP100
(0.4 mm pitch)
LQFP144 (20 × 20 mm)
LQFP176 (24 x 24 mm)
– VBAT supply for RTC, 32×32 bit backup
registers + 4 Kbytes of backup SRAM
• 3×12-bit, 2.4 MSPS ADC: up to 24 channels
and 7.2 MSPS in triple interleaved mode
• 2×12-bit D/A converters
• Up to 18 timers: up to thirteen 16-bit (1x lowpower 16-bit timer available in Stop mode) and
two 32-bit timers, each with up to 4
IC/OC/PWMs or pulse counter and quadrature
(incremental) encoder inputs. All 15 timers
running up to 216 MHz. 2x watchdogs, SysTick
timer
• General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
• Debug mode
– SWD and JTAG interfaces
– Cortex®-M7 Trace Macrocell™
• Up to 140 I/O ports with interrupt capability
– Up to 136 fast I/Os up to 108 MHz
– Up to 138 5 V-tolerant I/Os
• Up to 21 communication interfaces
– Up to 3× I2C interfaces (SMBus/PMBus)
– Up to 4 USARTs/4 UARTs (27 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
– Up to 5 SPIs (up to 54 Mbit/s), 3 with
muxed simplex I2Ss for audio class
accuracy via internal audio PLL or external
clock
– 2 x SAIs (serial audio interface)
DS11854 Rev 5
1/228
www.st.com
STM32F732xx STM32F733xx
• CRC calculation unit
– 1 x CAN (2.0B active)
– 2 x SDMMCs
• RTC: subsecond accuracy, hardware
calendar
• Advanced connectivity
• 96-bit unique ID
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with
dedicated DMA, on-chip full-speed
PHY and on-chip Hi-speed PHY or
ULPI depending on the part number
• AES: 128/256-bit key encryption
hardware accelerator
• True random number generator
Table 1. Device summary
Reference
Part number
STM32F732xx
STM32F732IE, STM32F732ZE, STM32F732VE, STM32F732RE
STM32F733xx
STM32F733IE, STM32F733ZE, STM32F733VE
2/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
2.1
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2
STM32F733xx versus STM32F732xx LQFP144/
LQFP176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1
Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 22
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6
AXI-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9
Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 26
3.11
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.13
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.15
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16
3.15.1
Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.15.2
Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.16.1
Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.16.2
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.16.3
Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 35
3.17
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 35
3.18
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.19
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DS11854 Rev 5
3/228
6
Contents
STM32F732xx STM32F733xx
3.20
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.20.1
Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.20.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.20.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.20.4
Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.5
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.6
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.21
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.22
Universal synchronous/asynchronous receiver transmitters (USART) . . 42
3.23
Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 43
3.24
Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.25
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.26
Audio PLL (PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.27
SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . . . . 44
3.28
Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.29
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 45
3.30
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 45
3.31
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.32
Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 46
3.33
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34
Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.35
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.36
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.37
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.38
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1
4/228
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DS11854 Rev 5
STM32F732xx STM32F733xx
Contents
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . 109
6.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . 109
6.3.5
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . 109
6.3.6
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.7
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.8
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.9
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.10
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.11
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.12
PLL spread spectrum clock generation (SSCG) characteristics . . . . . 139
6.3.13
USB OTG HS PHY PLLs characteristics (on STM32F733xx devices) 141
6.3.14
USB OTG HS PHY regulator characteristics (on STM32F733xx devices)
141
6.3.15
USB HS PHY external resistor characteristics
(on STM32F733xx devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.16
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.17
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.18
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 145
6.3.19
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.20
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.21
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.22
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.23
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.24
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.25
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.26
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.27
Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.28
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
DS11854 Rev 5
5/228
6
Contents
7
8
STM32F732xx STM32F733xx
6.3.29
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.30
FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.31
Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3.32
SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . 198
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.1
LQFP64 – 10 x 10 mm, low-profile quad flat package information . . . . . 201
7.2
LQFP100, 14 x 14 mm low-profile quad flat package information . . . . . 204
7.3
LQFP144, 20 x 20 mm low-profile quad flat package information . . . . . 207
7.4
LQFP176 24 x 24 mm low-profile quad flat package information . . . . . . 210
7.5
UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.6
UFBGA176+25, 10 x 10, 0.65 mm ultra thin-pitch ball grid
array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.7
WLCSP100 - 0.4 mm pitch wafer level chip scale package information 220
7.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 226
A.1
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6/228
DS11854 Rev 5
STM32F732xx STM32F733xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32F732xx and STM32F733xx features and peripheral counts . . . . . . . . . . . . . . . . . . 15
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 32
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 35
Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
STM32F732xx and STM32F733xx pin and ball definition . . . . . . . . . . . . . . . . . . . . . . . . . 61
FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
STM32F732xx and STM32F733xx alternate function mapping. . . . . . . . . . . . . . . . . . . . . 88
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 107
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
VCAP1 operating conditions in the LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 109
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . 109
reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Typical and maximum current consumption in Run mode, code with data processing
running from ITCM RAM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON . . . . . 114
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory on ITCM interface (ART disabled), regulator ON . . . . . . . . 115
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 117
Typical and maximum current consumption in Sleep mode, regulator OFF . . . . . . . . . . . 117
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 118
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 119
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 120
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
USB OTG HS and USB OTG PHY HS current consumption . . . . . . . . . . . . . . . . . . . . . . 129
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DS11854 Rev 5
7/228
9
List of tables
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
8/228
STM32F732xx STM32F733xx
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
PLLI2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
USB OTG HS PLL1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
USB OTG HS PLL2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
USB OTG HS PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
USB HS PHY external resistor characteristics (on STM32F733xx devices). . . . . . . . . . . 142
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 157
ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 157
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
USB OTG high speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
USB OTG high speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
USB FS PHY BCD electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 178
DS11854 Rev 5
STM32F732xx STM32F733xx
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
List of tables
Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 178
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 179
Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 180
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 181
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 183
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 188
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 199
Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 200
LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
UFBGA144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 215
UFBGA176+25 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 218
WLCSP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 222
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 226
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
DS11854 Rev 5
9/228
9
List of figures
STM32F732xx STM32F733xx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
10/228
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Compatible board design for LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
STM32F732xx and STM32F733xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
STM32F732xx and STM32F733xx AXI-AHB bus matrix architecture(1) . . . . . . . . . . . . . . 23
VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
VDDUSB connected to external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 30
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 34
Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 34
STM32F732xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STM32F732xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32F733xx WLCSP100 ballout (with OTG PHY HS) . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM32F732xx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STM32F733xx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STM32F733xx UFBGA144 ballout (with OTG PHY HS). . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STM32F732xx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
STM32F733xx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
STM32F733xx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STM32F733xx UFBGA176 ballout (with OTG PHY HS). . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
STM32F732xx power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
STM32F733xx power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in medium low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in medium high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Typical VBAT current consumption (RTC ON/BKP SRAM OFF and
LSE in high medium drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
LSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DS11854 Rev 5
STM32F732xx STM32F733xx
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
List of figures
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 159
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 159
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 173
ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 177
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 179
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 180
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 182
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 188
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 191
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 192
SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
LQFP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
LQFP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
LQFP144 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
LQFP176 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
LQFP176 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
UFBGA144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
UFBGA144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
UFBGA144 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
UFBGA176 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
DS11854 Rev 5
11/228
12
List of figures
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
12/228
STM32F732xx STM32F733xx
UFBGA176+25 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
UFBGA176 top view example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
WLCSP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
WLCSP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
WLCSP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
DS11854 Rev 5
STM32F732xx STM32F733xx
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F732xx and STM32F733xx microcontrollers.
This document should be ready in conjunction with the STM32F72xxx and STM32F73xxx
advanced Arm®-based 32-bit MCUs reference manual (RM0431). The reference manual is
available from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M7 core, refer to the Cortex®-M7 technical
reference manual available from the http://www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS11854 Rev 5
13/228
49
Description
2
STM32F732xx STM32F733xx
Description
The STM32F732xx and STM32F733xx devices are based on the high-performance Arm®
Cortex®-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex®-M7 core
features a single floating point unit (SFPU) precision which supports Arm® single-precision
data-processing instructions and data types. It also implements a full set of DSP instructions
and a memory protection unit (MPU) which enhances the application security.
The STM32F732xx and STM32F733xx devices incorporate high-speed embedded
memories with a Flash memory up to 512 Kbytes, 256 Kbytes of SRAM (including
64 Kbytes of data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM
(for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power
modes, and an extensive range of enhanced I/Os and peripherals connected to two APB
buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect
supporting internal and external memories access.
All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen generalpurpose 16-bit timers including two PWM timers for motor control, two general-purpose 32bit timers, a true random number generator (RNG). They also feature standard and
advanced communication interfaces.
•
•
•
•
•
•
•
Up to three I2Cs
Five SPIs, three I2Ss in half duplex mode. To achieve the audio class accuracy, the I2S
peripherals can be clocked via a dedicated internal audio PLL or via an external clock
to allow synchronization.
Four USARTs plus four UARTs
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI or with the integrated HS PHY depending on the part number)
One CAN
Two SAI serial audio interfaces
Two SDMMC host interfaces
Advanced peripherals include two SDMMC interfaces, a flexible memory control (FMC)
interface, a Quad-SPI Flash memory interface.
The STM32F732xx and STM32F733xx devices operate in the –40 to +105 °C temperature
range from a 1.7 to 3.6 V power supply. Dedicated supply inputs for the USB (OTG_FS and
OTG_HS) and the SDMMC2 (clock, command and 4-bit data) are available on all the
packages except LQFP100 and LQFP64 for a greater power supply choice.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor. A
comprehensive set of power-saving mode allows the design of low-power applications.
The STM32F732xx and STM32F733xx devices offer devices in 7 packages ranging from 64
pins to 176 pins. The set of included peripherals changes with the device chosen.
14/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Description
These features make the STM32F732xx and STM32F733xx microcontrollers suitable for a
wide range of applications:
•
Motor drive and application control,
•
Medical equipment,
•
Industrial applications: PLC, inverters, circuit breakers,
•
Printers, and scanners,
•
Alarm systems, video intercom, and HVAC,
•
Home audio appliances,
•
Mobile applications, Internet of Things,
•
Wearable devices: smartwatches.
The following table lists the peripherals available on each part number.
Table 2. STM32F732xx and STM32F733xx features and peripheral counts
Peripherals
Flash memory in Kbytes
SRAM in Kbytes
STM32F73xRx
STM32F73xVx
STM32F73xZx
256
256
256
512
512
256(176+16+64)
Instruction
16
Backup
4
General-purpose
10(2)
Advanced-control
2
Basic
2
No
1
Random number generator
Yes
SPI / I2S
3/3 (simplex)(3)
4/3 (simplex)(3)
2
I C
USART/UART
4/2
4/4
USB OTG FS
Yes
USB OTG HS(4)
Yes
USB OTG PHY HS
controller (USBPHYC)
Yes(10)
No
1
SAI
2
SDMMC1
SDMMC2
Yes
Yes(5)(6)
No
AES
Yes
82 in STM32F732xx
79 in STM32F733xx
50
12-bit ADC
Number of channels
5/3 (simplex)(3)
3
CAN
GPIOs
512
Yes
Low-power
Communication
interfaces
256
Yes(1)
No
Quad-SPI
Timers
512
System
FMC memory controller
STM32F73xIx
114 in STM32F732xx
112 in STM32F733xx
140 in STM32F732xx
138 in STM32F733xx
3
16
12-bit DAC
Number of channels
24
Yes
2
DS11854 Rev 5
15/228
49
Description
STM32F732xx STM32F733xx
Table 2. STM32F732xx and STM32F733xx features and peripheral counts (continued)
Peripherals
STM32F73xRx
STM32F73xVx
STM32F73xIx
216 MHz(7)
Maximum CPU frequency
1.7 to 3.6 V(8)
Operating voltage
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Operating temperatures
Package
STM32F73xZx
Junction temperature: –40 to + 125 °C
LQFP64(9)
LQFP100(9)
WLCSP100(10)
LQFP144
UFBGA144(10)
UFBGA176
LQFP176
1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory
using the NE1 Chip Select.
2. On the STM32F733xx device packages, except the 176-pin ones, the TIM12 is not available, so there are 9 generalpurpose timers.
3. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio
mode.
4. USB OTG HS with the ULPI in the STM32F732xx devices and with integrated HS PHY in the STM32F733xx devices.
5. The SDMMC2 supports a dedicated power rail for clock, command and data 0..4 lines, feature available starting from 144
pin package.
6. The SDMMC2 is not available on the STM32F733Vx devices.
7. 216 MHz maximum frequency for - 40°C to + 85°C ambient temperature range (200 MHz maximum frequency for - 40°C to
+ 105°C ambient temperature range).
8. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 3.15.2: Internal reset OFF).
9. Available only on the STM32F732xx devices.
10. Available only on the STM32F733xx devices.
16/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Full compatibility throughout the family
The STM32F732xx devices are fully pin-to-pin, compatible with the STM32F7x5xx,
STM32F7x6xx, STM32F7x7xx devices.
The STM32F732xx devices are partially pin-to-pin, compatible with the STM32F4xxxx
devices, allowing the user to try different peripherals, and reaching higher performances
(higher frequency) for a greater degree of freedom during the development cycle.
Figure 1 and Figure 2 give compatible board designs between the STM32F732xx, with
LQFP64 and LQFP100 packages, and STM32F4xx families.
Figure 1. Compatible board design for LQFP100 package
PC3
VDD
VSSA
VREF+
VDDA
PA0-WKUP
PA1
PA2
STM32F427xx / STM32F437xx
STM32F429xx / STM32F439xx
STM32F415xx / STM32F417xx
STM32F405xx / STM32F407xx
18
19
20
21
22
23
24
25
VDD
PB11
VCAP1
PB10
PE15
PE14
PE12
PE13
PE11
PE9
PE10
PE7
PE8
PB1
PB2
PC5
PB0
PC4
PA7
PA5
PA6
PA4
VDD
PA3
18
19
20
21
22
23
24
25
STM32F73xxx
Pins 19 to 49 are not compatible
VDD
VSS
VCAP1
PB11
PB10
PE15
PE14
PE12
PE13
PE11
PE10
PE9
PE8
PE7
PB2
PB1
PB0
PC5
PC4
PA7
PA6
PA4
PA5
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
VDD
PC3
VSSA
VREF+
VDDA
PA0-WKUP
PA1
PA2
PA3
VSS
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
VSS
2.1
Description
MSv41002V2
DS11854 Rev 5
17/228
49
Description
STM32F732xx STM32F733xx
PC12
PC11
PC10
PA15
PA14
PC12
PC11
PC10
PA15
PA14
Figure 2. Compatible board design for LQFP64 package
VDD
VCAP_2
PA13
PA12
PA11
PA10
PA9
VSS
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
53 52 51 50 49
48
47
46
45
44
43
42
41
STM32F4x1
40
39
38
37
PB11 not available anymore
36
Replaced by V CAP_1
35
34
33
28 29 30 31 32
VDD
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VDD
VSS
PB2
PB10
VCAP_1
VSS
VDD
PB2
PB10
PB11
VCAP_1
VDD
53 52 51 50 49
48
47
46
45
44
43
42
41
STM32F405/
40
STM32F415 line
39
38
37
36
35
34
33
28 29 30 31 32
V CAP increased to 4.7 μf
ESR 1 ohm or below 1 ohm
VDD
VSS
57 56 55 54 53 52 51 50 49
48
VDD
47
VSS
46
PA13
45
44
PA12
PA11
PA10
PA9
41
40
PA8
PC9
39
PC8
38
PC7
37
36
PC6
PB15
35
PB14
34
PB13
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PB12
VSS
VCAP_1
PB11
PB10
PB1
PB2
PB0
PC4
PA7
PA5
PA6
PA4
VSS
VDD
PA3
PC5 not available anymore
Replaced by VCAP_1
VDD
VSS
VDD
43
42
STM32F732xx
VDD
PA14
PC 11
PC10
PA15
PC12
PB3
PD2
PB4
PB5
VSS
Not compatible STM32F732xx pins with either
STM32F4x1 or STM32F405/F415 or both
VCAP increased to 4.7 μf
ESR between 0.1 ohm and 0.2 ohm
VSS
VDD
MSv42019V1
The STM32F732xx LQFP144, UFBGA176 and LQFP176 packages are fully pin to pin
compatible with the STM32F4xx devices.
18/228
DS11854 Rev 5
STM32F732xx STM32F733xx
STM32F733xx versus STM32F732xx LQFP144/
LQFP176 packages
Figure 3. Compatible board design for LQFP144 package
STM32F732xx
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
STM32F733xx
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
PG8
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
VDD12OTGHS
OTG_HS_REXT
PB13
PB12
72
VDD
VDD
72
PG6, PG7 removed on the STM32F733xx
Not compatible pins
MSv42021V1
Figure 4. Compatible board design for LQFP176 package
STM32F732xx
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VDD
VSS
PH12
STM32F733xx
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PG8
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
VDD12OTGHS
OTG_HS_REXT
PB13
PB12
VDD
VSS
PH12
88
PH11
88
PH11
2.2
Description
PG6, PG7 removed on the STM32F733xx
Not compatible pins
MSv42074V1
Figure 5 shows the general block diagram of the device family.
DS11854 Rev 5
19/228
49
Description
STM32F732xx STM32F733xx
Figure 5. STM32F732xx and STM32F733xx block diagram
FS PHY
FIFO
RNG
AHBP
AHBS
LDO
PLL1
PLL2
BGR
USB OTG HS
PLL
DMA/
FIFO
LDO
SRAM1 176KB
SRAM2 16KB
GPIO PORT A
PB[15:0]
GPIO PORT B
PC[15:0]
GPIO PORT C
PD[15:0]
GPIO PORT D
PE[15:0]
GPIO PORT E
CLK, CS,D[7:0]
@VDDA
POR
reset
Int
RC HS
RCC
Reset
M & control
GT
GPIO PORT I
2 channels as AF
SDMMC2
TIM1 / PWM
16b
TIM8 / PWM
16b
TIM9
16b
TIM10
16b
1 channel as AF
TIM11
16b
SPI1/I2S1
MOSI, MISO,
SCK, NSS as AF
SPI4
MOSI, MISO,
SCK, NSS as AF
SPI5
SD, SCK, FS, MCLK as AF
SAI1
SD, SCK, FS, MCLK as AF
SAI2
(2)
OTG HS PHY
CONTROLLER
AHB/
APB1
AHB/APB2
WWDG
LPTIM1
FIFO FIFO
smcard USART1
irDA
smcard
USART6
irDA
MOSI, MISO,
SCK, NSS as AF
ULPI:CK, D[7:0], DIR, STP, NXT
SCL, SDA, INT, ID, VBUS
GPDMA1
GPDMA2
1 channel as AF
RX, TX, SCK,
CTS, RTS as AF
RX, TX, SCK,
CTS, RTS as AF
OSC_IN
OSC_OUT
VBAT = 1.8 to 3.6 V
@VSW
16b
TIM6
16b
TIM7
16b
APB1
0M
3Hz
APB1 54 MHz
(max)
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF
4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR, BKIN as AF
SDMMC1
APB2 108 MHz (max)
D[7:0]
CMD, CK as AF
@VDD33
XTAL 32 kHz
OSC32_IN
OSC32_OUT
RTC
AWU
Backup register
RTC_TS
RTC_TAMPx
RTC_OUT
4 KB BKPRAM
EXT IT. WKUP
FIFO FIFO
D[7:0]
CMD, CK as AF
WKUP[4:0]
VDDMMC33 = 3.0 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP1
WDG32K
CRC
168 AF
VOLT. REG
3.3V TO 1.2V
Standby
interface
LS
PI[11:0]
BBgen + POWER MNGT
XTAL OSC
4- 16MHz
LS
GPIO PORT H
VDDA, VSSA
NRESET
@VDD33
VDD12
FCLK
HCLK
APBP2CLK
APBP1CLK
AHB2PCLK
AHB1PCLK
GPIO PORT G
PH[15:0]
BOR
PVD
GPIO PORT F
PG[15:0]
SUPPLY
SUPERVISION
POR/PDR
@VDDA
PLL1+PLL2+PLL3
PF[15:0]
DP
DM
SCL, SDA, INT, ID, VBUS
CLK, NE [3:0], A[23:0],
D[31:0], NOEN, NWEN,
NBL[3:0], SDCLKE[1:0]
SDNE[1:0], SDNWE, NL
NRAS, NCAS, NADV
NWAIT, INTN
Quad-SPI
AHB1 216 MHz
RC LS
PA[15:0]
OTG FS
EXT MEM CTL (FMC)
SRAM, SDRAM, NOR-Flash,
NAND-Flash, SDRAM
8 Streams
FIFO
GP-DMA1
USB
AHB2 216 MHz
8 Streams
FIFO
GP-DMA2
AES128
FLASH 512KB
TIM2
32b
4 channels, ETR as AF
TIM3
16b
4 channels, ETR as AF
TIM4
16b
4 channels, ETR as AF
TIM5
32b
4 channels
TIM12
16b
2 channels as AF
TIM13
16b
1 channel as AF
TIM14
16b
1 channel as AF
smcard
USART2 irDA
RX, TX, SCK
CTS, RTS as AF
smcard
USART3 irDA
UART4
RX, TX, SCK
CTS, RTS as AF
RX, TX as AF
UART5
RX, TX as AF
UART7
RX, TX as AF
SPI2/I2S2
SPI3/I2S3
I2C1/SMBUS
I2C2/SMBUS
SYSCFG
RX, TX as AF
UART8
I2C3/SMBUS
Digital filter
DP, DM
ULPI:CK, D[7:0], DIR, STP, NXT
SCL/SDA, INT, ID, VBUS
ACCEL/
CACHE
PHY
D-Cache
8KB
(2)
USB HS
PHY
ITCM RAM 16KB
AXIM
I-Cache
8KB
216MHz
DTCM RAM 64KB
FIFO
ARM CPU
Cortex-M7
AHB BUS-MATRIX
11S8M 8S7M
AHB bus-matrix
TRACECK
TRACED[3:0]
MPU FPU
NVIC
DTCM
ICTM
PWRCTRL
JTAG & SW
ETM
AHB2AXI
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
MOSI, MISO, SCK
NSS as AF
MOSI, MISO, SCK
NSS as AF
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
VDDREF_ADC
8 analog inputs common
to the 3 ADCs
8 analog inputs common
to the ADC1 & 2
8 analog inputs for ADC3
U STemperature
AR T 2 M B sensor
ps
ADC1
ADC2
ADC3
bxCAN1
FIFO
@VDDA
TX, RX
@VDDA
IF
DAC1
ITF
DAC2
DAC1
as AF
DAC2
as AF
MSv41003V3
1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
20/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Functional overview
3
Functional overview
3.1
Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with FPU processor is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and low interrupt latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
–
Six-stage dual-issue pipeline
–
Dynamic branch prediction
–
Harvard caches (8 Kbytes of I-cache and 8 Kbytes of D-cache)
–
64-bit AXI4 interface
–
64-bit ITCM interface
–
2x32-bit DTCM interfaces
The processor supports the following memory interfaces:
•
Tightly Coupled Memory (TCM) interface.
•
Harvard instruction and data caches and AXI master (AXIM) interface.
•
Dedicated low-latency AHB-Lite peripheral (AHBP) interface.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
It supports single precision FPU (floating point unit), speeds up software development by
using metalanguage development tools, while avoiding saturation.
Figure 5 shows the general block diagram of the STM32F732xx and STM32F733xx family.
Note:
Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
3.2
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS11854 Rev 5
21/228
49
Functional overview
3.3
STM32F732xx STM32F733xx
Embedded Flash memory
The STM32F732xx and STM32F733xx devices embed a Flash memory of up to 512 Kbytes
available for storing programs and data.
The flexible protections can be configured thanks to option bytes:
•
3.4
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: No access (read, erase, program) to the Flash memory or backup SRAM
can be performed while the debug feature is connected or while booting from RAM
or system memory bootloader
–
Level 2: debug/chip read protection disabled.
•
Write protection (WRP): the protected area is protected against erasing and
programming.
•
Proprietary code readout protection (PCROP): Flash memory user sectors (0 to 7) can
be protected against D-bus read accesses by using the proprietary readout protection
(PCROP). The protected area is execute-only.
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.5
Embedded SRAM
All the devices feature:
•
•
System SRAM up to 256 Kbytes:
–
SRAM1 on AHB bus Matrix: 176 Kbytes
–
SRAM2 on AHB bus Matrix: 16 Kbytes
–
DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 64 Kbytes for
critical real-time data.
Instruction RAM (ITCM-RAM) 16 Kbytes:
–
It is mapped on TCM interface and reserved only for CPU Execution/Instruction
useful for critical real-time routines.
The Data TCM RAM is accessible by the GP-DMAs and peripheral DMAs through the
specific AHB slave of the CPU.The instruction TCM RAM is reserved only for CPU. It is
accessed at CPU clock speed with 0 wait states.
•
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
22/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.6
Functional overview
AXI-AHB bus matrix
The STM32F732xx and STM32F733xx system architecture is based on 2 sub-systems:
•
•
An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
–
3x AXI to 32-bit AHB bridges connected to AHB bus matrix
–
1x AXI to 64-bit AHB bridge connected to the embedded Flash memory
A multi-AHB Bus-Matrix
–
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB
HS) and the slaves (Flash memory, RAM, FMC, Quad-SPI, AHB and APB
peripherals) and ensures a seamless and efficient operation even when several
high-speed peripherals work simultaneously.
AHBS
USB_HS_M
USB OTG
HS
DMA_P2
GP
DMA2
DMA_MEM2
AHBP
8KB
I/D Cache
AXIM
GP
DMA1
DMA_PI
Arm Cortex-M7
DMA_MEM1
ITCM
DTCM
Figure 6. STM32F732xx and STM32F733xx AXI-AHB bus matrix architecture(1)
DTCM RAM
64KB
ITCM RAM
16KB
AXI to
multi-AHB
ART
ITCM
64-bit AHB
FLASH
512KB
64-bit BuS Matrix
SRAM1
176KB
SRAM2
16KB
AHB
Periph1
AHB
periph2
FMC external
MemCtl
APB1
APB2
Quad-SPI
32-bit Bus Matrix - S
MSv41005V1
1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus.
DS11854 Rev 5
23/228
49
Functional overview
3.7
STM32F732xx STM32F733xx
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support a circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. The configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
24/228
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
DAC
•
SDMMC
•
ADC
•
SAI
•
Quad-SPI
DS11854 Rev 5
STM32F732xx STM32F733xx
3.8
Functional overview
Flexible memory controller (FMC)
The Flexible memory controller (FMC) includes three memory controllers:
•
The NOR/PSRAM memory controller
•
The NAND/memory controller
•
The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller
The main features of the FMC controller are the following:
•
Interface with static-memory mapped devices including:
–
Static random access memory (SRAM)
–
NOR Flash memory/OneNAND Flash memory
–
PSRAM (4 memory banks)
–
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
•
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
•
8-, 16-, 32-bit data bus width
•
Independent Chip Select control for each memory bank
•
Independent configuration for each memory bank
•
Write FIFO
•
Read FIFO for SDRAM controller
•
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is
HCLK/2
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.9
Quad-SPI memory interface (QUADSPI)
All the devices embed a Quad-SPI memory interface, which is a specialized communication
interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:
•
Direct mode through registers
•
External Flash status register polling mode
•
Memory mapped mode.
Up to 256 Mbytes of external Flash are memory mapped, supporting 8, 16 and 32-bit
access. The code execution is supported.
The opcode and the frame format are fully programmable. The communication can be either
in Single Data Rate or Dual Data Rate.
DS11854 Rev 5
25/228
49
Functional overview
3.10
STM32F732xx STM32F733xx
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M7 with FPU core.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with a minimum
interrupt latency.
3.11
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs in the
STM32F732xx devices (138 GPIOs in the STM32F733xx devices) can be connected to the
16 external interrupt lines.
3.12
Clocks and startup
On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock can be monitored for failure. If a failure is detected, the system automatically
switches back to the internal RC oscillator and a software interrupt is generated (if enabled).
This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz.
Similarly, a full interrupt management of the PLL clock entry is available when necessary
(for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 216 MHz while the maximum frequency of the high-speed APB domains is
108 MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz.
The devices embed two dedicated PLLs (PLLI2S and PLLSAI) which allow to achieve audio
class performance. In this case, the I2S and SAI master clock can generate all standard
sampling frequencies from 8 kHz to 192 kHz.
The STM32F733xx devices embed two PLLs inside the PHY HS controller: PLL1 and PLL2.
The PLL1 allows to output 60 MHz used as an input for PLL2 which itself allows to generate
the 480 Mbps in the USB OTG High Speed mode.
The PLL1 has as input HSE clock.
26/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.13
Functional overview
Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
•
All Flash address space mapped on ITCM or AXIM interface
•
All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface
•
The System memory bootloader
The boot loader is located in system memory. It is used to reprogram the Flash memory
through a serial interface.
3.14
Note:
Power supply schemes
•
VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
•
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
The VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to
Section 3.15.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode
versus device operating mode to identify the packages supporting this option.
•
•
The VDDSDMMC can be connected either to VDD or an external independent power
supply (1.8 to 3.6V) for the SDMMC2 pins (clock, command, and 4-bit data). For
example, when the device is powered at 1.8V, an independent power supply 2.7V can
be connected to VDDSDMMC.When the VDDSDMMC is connected to a separated power
supply, it is independent from VDD or VDDA but it must be the last supply to be provided
and the first to disappear. The following conditions VDDSDMMC must be respected:
–
During the power-on phase (VDD < VDD_MIN), VDDSDMMC should be always lower
than VDD
–
During the power-down phase (VDD < VDD_MIN), VDDSDMMC should be always
lower than VDD
–
The VDDSDMMC rising and falling time rate specifications must be respected
–
In the operating mode phase, VDDSDMMC could be lower or higher than VDD:
All associated GPIOs powered by VDDSDMMC are operating between
VDDSDMMC_MIN and VDDSDMMC_MAX.
The VDDUSB can be connected either to VDD or an external independent power supply
(3.0 to 3.6V) for USB transceivers (refer to Figure 7 and Figure 8). For example, when
the device is powered at 1.8V, an independent power supply 3.3V can be connected to
the VDDUSB. When the VDDUSB is connected to a separated power supply, it is
independent from VDD or VDDA but it must be the last supply to be provided and the first
to disappear. The following conditions VDDUSB must be respected:
–
During the power-on phase (VDD < VDD_MIN), VDDUSB should be always lower
than VDD
–
During the power-down phase (VDD < VDD_MIN), VDDUSB should be always lower
than VDD
DS11854 Rev 5
27/228
49
Functional overview
STM32F732xx STM32F733xx
–
The VDDUSB rising and falling time rate specifications must be respected
–
In the operating mode phase, VDDUSB could be lower or higher than VDD:
- If the USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by
VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX.
- The VDDUSB supplies both USB transceiver (USB OTG_HS and USB OTG_FS).
If only one USB transceiver is used in the application, the GPIOs associated to the
other USB transceiver are still supplied by VDDUSB.
- If the USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered
by VDDUSB are operating between VDD_MIN and VDD_MAX.
Figure 7. VDDUSB connected to VDD power supply
VDD
VDD_MAX
VDD= VDDA = VDDUSB
VDD_MIN
Power-on
Operating mode
Power-down
time
MS37591V1
Figure 8. VDDUSB connected to external power supply
VDDUSB_MAX
USB functional area
VDDUSB
VDDUSB_MIN
USB non
functional
area
VDD = VDDA
Power-on
Operating mode
USB non
functional
area
VDD_MIN
Power-down
time
MS37590V1
28/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Functional overview
On the STM32F7x3xx devices, the USB OTG HS sub-system uses one or two additional
power supply pins depending on the package:
•
The VDD12OTGHS pin is the output of PHY HS regulator (1.2V). An external capacitor
of 2.2 µF must be connected on the VDD12OTGHS pin.
•
On the LQFP100 only, a second power pin VDDPHYHS is used to supply the USB
OTG PHY HS and associated GPIOs.The VDDPHYHS follows the same rules provided
for the VDDUSB power pin.
3.15
Power supply supervisor
3.15.1
Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other packages, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.15.2
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and NRST and should maintain
the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be
connected to VSS. Refer to Figure 9: Power supply supervisor interconnection with internal
reset OFF.
DS11854 Rev 5
29/228
49
Functional overview
STM32F732xx STM32F733xx
Figure 9. Power supply supervisor interconnection with internal reset OFF
VDD
External VDD power supply supervisor
Ext. reset controller active when
VDD < 1.7 V
NRST
VDD
Application reset
signal
PDR_ON
VSS
MS31383V4
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 10).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
•
The brownout reset (BOR) circuitry must be disabled
•
The embedded programmable voltage detector (PVD) is disabled
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
All packages, except for the LQFP100, allow to disable the internal reset through the
PDR_ON signal when connected to VSS.
Figure 10. PDR_ON control with internal reset OFF
V DD
PDR = 1.7 V
time
Reset by other source than
power supply supervisor
NRST
PDR_ON
PDR_ON
time
MS19009V7
30/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.16
Functional overview
Voltage regulator
The regulator has four operating modes:
•
•
3.16.1
Regulator ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator OFF
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
•
MR mode used in Run/sleep modes or in Stop modes
–
In Run/Sleep modes
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). A different voltage scaling is provided to reach the
best compromise between maximum frequency and dynamic power consumption.
The over-drive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
–
In Stop modes
The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode)
MR operates in under-drive mode (reduced leakage mode).
•
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:
•
–
LPR operates in normal mode (default mode when LPR is ON)
–
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
The VCAP_1 and VCAP_2 pins must be connected to 2*2.2 µF, ESR < 2 Ω (or 1*4.7 µF, ESR
between 0.1 Ω and 0.2 Ω if only the VCAP_1 pin is provided (on LQFP64 package)).
All the packages have the regulator ON feature.
DS11854 Rev 5
31/228
49
Functional overview
STM32F732xx STM32F733xx
Table 3. Voltage regulator configuration mode versus device operating mode(1)
Voltage regulator
configuration
Run mode
Sleep mode
Stop mode
Standby mode
Normal mode
MR
MR
MR or LPR
-
Over-drive
mode(2)
MR
MR
-
-
Under-drive mode
-
-
MR or LPR
-
Power-down
mode
-
-
-
Yes
1. ‘-’ means that the corresponding configuration is not available.
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.
3.16.2
Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency.The two 2.2 µF ceramic capacitors should
be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. The PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
32/228
•
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
•
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
•
The over-drive and under-drive modes are not available.
•
The Standby mode is not available.
DS11854 Rev 5
STM32F732xx STM32F733xx
Functional overview
Figure 11. Regulator OFF
V12
External VCAP_1/2 power
Application reset
supply supervisor
Ext. reset controller active signal (optional)
when VCAP_1/2 < Min V12
VDD
PA0
VDD
NRST
BYPASS_REG
V12
VCAP_1
VCAP_2
ai18498V3
The following conditions must be respected:
•
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
•
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 12).
•
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 13).
•
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note:
The minimum value of V12 depends on the maximum frequency targeted in the application.
Note:
On the LQFP64 pin package, the VCAP_2 is not available.
DS11854 Rev 5
33/228
49
Functional overview
STM32F732xx STM32F733xx
Figure 12. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
VDD
PDR = 1.7 V or 1.8 V
V12
Min V12
VCAP_1 / VCAP_2
time
NRST
time
ai18491f
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 13. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
VDD
PDR = 1.7 V or 1.8 V
VCAP_1 / VCAP_2
V12
Min V12
time
NRST
PA0 asserted externally
time
ai18492e
1. This figure is valid whatever the internal reset mode (ON or OFF).
34/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.16.3
Functional overview
Regulator ON/OFF and internal reset ON/OFF availability
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package
LQFP64,
LQFP100
Regulator ON
Regulator OFF
Internal reset ON
Internal reset OFF
Yes
No
No
Yes
LQFP144
LQFP176,
UFBGA144,
UFBGA176
3.17
Yes
Yes
Yes
Yes
PDR_ON set to VDD PDR_ON set to VSS
BYPASS_REG set BYPASS_REG set
to VDD
to VSS
Real-time clock (RTC), backup SRAM and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby mode.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator(LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
DS11854 Rev 5
35/228
49
Functional overview
STM32F732xx STM32F733xx
All the RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
3.18
Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in stop mode):
–
Normal mode (default mode when MR or LPR is enabled)
–
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup and the LPTIM1
asynchronous interrupt).
Table 5. Voltage regulator modes in stop mode
•
Voltage regulator
configuration
Main regulator (MR)
Low-power regulator (LPR)
Normal mode
MR ON
LPR ON
Under-drive mode
MR in under-drive mode
LPR in under-drive mode
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11),
or an RTC alarm / wakeup / tamper /time stamp event occurs.
The Standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
36/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.19
Functional overview
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
The VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When the PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is
no more available and the VBAT pin should be connected to VDD.
3.20
Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
DS11854 Rev 5
37/228
49
Functional overview
STM32F732xx STM32F733xx
Table 6. Timer feature comparison
Max
Max
DMA
Capture/ Complem
interface timer
request
compare
entary
clock
clock
generation channels
output
(MHz)
(MHz)(1)
Timer
type
Timer
Counter Counter Prescaler
resolution
type
factor
Advanced
-control
TIM1,
TIM8
16-bit
Any
Up,
integer
Down,
between 1
Up/down
and 65536
Yes
4
Yes
108
216
32-bit
Any
Up,
integer
Down,
between 1
Up/down
and 65536
Yes
4
No
54
108/216
16-bit
Any
Up,
integer
Down,
between 1
Up/down
and 65536
Yes
4
No
54
108/216
16-bit
Up
Any
integer
between 1
and 65536
No
2
No
108
216
Up
Any
integer
between 1
and 65536
No
1
No
108
216
Up
Any
integer
between 1
and 65536
No
2
No
54
108/216
Up
Any
integer
between 1
and 65536
No
1
No
54
108/216
Up
Any
integer
between 1
and 65536
Yes
0
No
54
108/216
TIM2,
TIM5
TIM3,
TIM4
TIM9
General
purpose
TIM10,
TIM11
TIM12
TIM13,
TIM14
Basic
TIM6,
TIM7
16-bit
16-bit
16-bit
16-bit
1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR
register.
38/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.20.1
Functional overview
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
The TIM1 and TIM8 support independent DMA request generation.
3.20.2
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F732xx and
STM32F733xx devices (see Table 6 for differences).
•
TIM2, TIM3, TIM4, TIM5
The STM32F732xx and STM32F733xx include 4 full-featured general-purpose timers:
TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit autoreload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on
a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4
independent channels for input capture/output compare, PWM or one-pulse mode
output. This gives up to 16 input capture/output compare/PWMs on the largest
packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
•
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
3.20.3
Basic timers TIM6 and TIM7
These timers are mainly used for the DAC trigger and waveform generation. They can also
be used as a generic 16-bit time base.
The TIM6 and TIM7 support independent DMA request generation.
DS11854 Rev 5
39/228
49
Functional overview
3.20.4
STM32F732xx STM32F733xx
Low-power timer (LPTIM1)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
3.20.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous / one-shot mode
•
Selectable software / hardware input trigger
•
Selectable clock source:
•
Internal clock source: LSE, LSI, HSI or APB clock
•
External clock source over LPTIM input (working even with no internal clock source
running, used by the Pulse Counter Application)
•
Programmable digital glitch filter
•
Encoder mode
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.20.6
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.7
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
40/228
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source
DS11854 Rev 5
STM32F732xx STM32F733xx
3.21
Functional overview
Inter-integrated circuit interface (I2C)
The devices embed 3 I2Cs. Refer to Table 7: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 7. I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
Standard-mode (up to 100 kbit/s)
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)
X
X
X
Programmable analog and digital noise filters
X
X
X
SMBus/PMBus hardware support
X
X
X
Independent clock
X
X
X
1. X: supported.
DS11854 Rev 5
41/228
49
Functional overview
3.22
STM32F732xx STM32F733xx
Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed USARTs. Refer to Table 8: USART implementation for the features
implementation.
The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format.
The USART peripheral supports:
•
Full-duplex asynchronous communications
•
Configurable oversampling method by 16 or 8 to give flexibility between speed and
clock tolerance
•
Dual clock domain allowing convenient baud rate programming independent from the
PCLK reprogramming
•
A common programmable transmit and receive baud rate of up to 27 Mbit/s when
USART clock source is system clock frequency (max is 216 MHz) and oversampling by
8 is used.
•
Auto baud rate detection
•
Programmable data word length (7 or 8 or 9 bits) word length
•
Programmable data order with MSB-first or LSB-first shifting
•
Progarmmable parity (odd, even, no parity)
•
Configurable stop bits (1 or 1.5 or 2 stop bits)
•
Synchronous mode and clock output for synchronous communications
•
Single-wire half-duplex communications
•
Separate signal polarity control for transmission and reception
•
Swappable Tx/Rx pin configuration
•
Hardware flow control for modem and RS-485 transceiver
•
Multiprocessor communications
•
LIN master synchronous break send capability and LIN slave break detection capability
•
IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode
•
Smartcard mode ( T=0 and T=1 asynchronous protocols for Smartcards as defined in
the ISO/IEC 7816-3 standard)
•
Support for Modbus communication
Table 8 summarizes the implementation of all U(S)ARTs instances
Table 8. USART implementation
features(1)
USART1/2/3/6
Data Length
42/228
UART4/5/7/8
7, 8 and 9 bits
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode
X
-
DS11854 Rev 5
STM32F732xx STM32F733xx
Functional overview
Table 8. USART implementation (continued)
features(1)
USART1/2/3/6
UART4/5/7/8
Smartcard mode
X
-
Single-wire half-duplex communication
X
X
IrDA SIR ENDEC block
X
X
LIN mode
X
X
Dual clock domain
X
X
Receiver timeout interrupt
X
X
Modbus communication
X
X
Auto baud rate detection
X
X
Driver Enable
X
X
1. X: supported.
3.23
Serial peripheral interface (SPI)/inter- integrated sound
interfaces (I2S)
The devices feature up to five SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4, and SPI5 can communicate at up to 50 Mbit/s, SPI2
and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces support the
NSS pulse mode, TI mode and Hardware CRC calculation. All the SPIs can be served by
the DMA controller.
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They
can be operated in master or slave mode, in simplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.24
Serial audio interface (SAI)
The devices embed two serial audio interfaces.
The serial audio interface is based on two independent audio subblocks which can operate
as transmitter or receiver with their FIFO. Many audio protocols are supported by each
block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output,
supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be
configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub-blocks can be configured in synchronous mode when full-duplex mode is
required.
DS11854 Rev 5
43/228
49
Functional overview
STM32F732xx STM32F733xx
SAI1 and SAI2 can be served by the DMA controller
3.25
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve an error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU and USB interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
3.26
Audio PLL (PLLSAI)
An additional PLL dedicated to audio is used for the SAI1 peripheral in case the PLLI2S is
programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz)
and the audio application requires both sampling frequencies simultaneously.
3.27
SD/SDIO/MMC card host interface (SDMMC)
SDMMC host interfaces are available, that support MultiMediaCard System Specification
Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDMMC Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a
stack of MMC4.1 or previous.
The SDMMC can be served by the DMA controller
3.28
Controller area network (bxCAN)
The CAN is compliant with the 2.0A and B (active) specifications with a bit rate up to 1
Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. The CAN has three transmit mailboxes, two receive
FIFOs with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated to the CAN.
44/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.29
Functional overview
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The major features are:
•
Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
•
12 host channels with periodic OUT support
•
Software configurable to OTG1.3 and OTG2.0 modes of operation
•
USB 2.0 LPM (Link Power Management) support
•
Internal FS OTG PHY support
•
HNP/SNP/IP inside (no need for any external resistor)
•
BCD support
For the OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.30
Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG
peripheral. The USB OTG HS supports both full-speed and high-speed operations. It
integrates the transceivers for full-speed operation (12 Mbit/s).
The STM32F732xx devices feature a UTMI low-pin interface (ULPI) for high-speed
operation (480 Mbit/s). When using the USB OTG HS in HS mode, an external PHY device
connected to the ULPI is required.
The STM32F733xx devices feature an integrated PHY HS.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
2.0 specification. It has a software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The major features are:
•
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
8 bidirectional endpoints
•
16 host channels with periodic OUT support
•
Software configurable to OTG1.3 and OTG2.0 modes of operation
•
USB 2.0 LPM (Link Power Management) support
DS11854 Rev 5
45/228
49
Functional overview
STM32F732xx STM32F733xx
•
Internal FS OTG PHY support
•
For the STM32F732xx devices: External HS or HS OTG operation supporting ULPI in
SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12
signals. It can be clocked using the 60 MHz output.
•
For the STM32F733xx devices: Internal HS OTG PHY support.
•
Internal USB DMA
•
HNP/SNP/IP inside (no need for any external resistor)
•
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Universal Serial Bus controller on-the-go High-Speed PHY controller
(USBPHYC) only on STM32F733xx devices.
The USB HS PHY controller:
3.31
–
Sets the PHYPLL1/2 values for the PHY HS
–
Sets the other controls on the PHY HS
–
Controls and monitors the USB PHY’s LDO
Random number generator (RNG)
All the devices embed an RNG that delivers 32-bit random numbers generated by an
integrated analog circuit.
3.32
Advanced encryption standard hardware accelerator (AES)
The devices embed an AES hardware accelerator which can be used to both encipher and
decipher data using AES algorithm.
46/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Functional overview
The AES peripheral supports:
3.33
•
Encryption/Decryption using AES Rijndael Block Cipher algorithm
•
NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm
•
128-bit and 256-bit register for storing the encryption, decryption or derivation key
(4x 32-bit registers)
•
Electronic codebook (ECB), Cipher block chaining (CBC), Counter mode (CTR), Galois
Counter Mode (GCM), Galois Message Authentication Code mode (GMAC) and Cipher
Message Authentication Code mode (CMAC) supported.
•
Key scheduler
•
Key derivation for decryption
•
128-bit data block processing
•
128-bit, 256-bit key length
•
1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer.
•
Register access supporting 32-bit data width only.
•
One 128-bit Register for the initialization vector when AES is configured in CBC mode
or for the 32-bit counter initialization when CTR mode is selected, GCM mode or
CMAC mode.
•
Automatic data flow control with support of direct memory access (DMA) using 2
channels, one for incoming data, and one for outcoming data.
•
Suspend a message if another message with a higher priority needs to be processed
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
A Fast I/O handling allows a maximum I/O toggling up to 108 MHz.
3.34
Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In the scan
mode, an automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
DS11854 Rev 5
47/228
49
Functional overview
STM32F732xx STM32F733xx
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
3.35
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with the temperature.
The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.36
Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
•
Two DAC converters: one for each output channel
•
8-bit or 12-bit monotonic output
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
External triggers for conversion
•
Input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.37
Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins
could be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
48/228
DS11854 Rev 5
STM32F732xx STM32F733xx
3.38
Functional overview
Embedded Trace Macrocell™
The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F732xx and STM32F733xx device through a small number of ETM pins to an
external hardware trace port analyzer (TPA) device. The TPA is connected to a host
computer using the USB or any other high-speed channel. The real-time instruction and
data flow activity can be recorded and then formatted for display on the host computer that
runs the debugger software. The TPA hardware is commercially available from common
development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DS11854 Rev 5
49/228
49
Pinouts and pin description
4
STM32F732xx STM32F733xx
Pinouts and pin description
VDD
PA4
PA5
PA6
PA7
PC4
PB0
PB1
PB2
PB10
PB11
VCAP_1
VSS
VDD
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PA3
VSS
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0-WKUP
PA1
PA2
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PB9
PB8
Figure 14. STM32F732xx LQFP64 pinout
1. The above figure shows the package top view.
50/228
DS11854 Rev 5
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
MS40455V3
STM32F732xx STM32F733xx
Pinouts and pin description
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 15. STM32F732xx LQFP100 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VSS
VDD
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF+
VDDA
PA0-WKUP
PA1
PA2
PA3
MSv40457V1
1. The above figure shows the package top view.
DS11854 Rev 5
51/228
98
Pinouts and pin description
STM32F732xx STM32F733xx
Figure 16. STM32F733xx WLCSP100 ballout (with OTG PHY HS)
1
2
3
4
5
6
PC10
PD1
PD5
PB3
VCAP_2
PA15
PD0
PD4
10
8
9
VSS
VDD
PE3
PB4
PB7
PE1
PE6
7
A
VDD
VSS
B
PA13
PA12
C
PA11
PA10
PA9
PA14
PC11
PD3
PB5
PB8
PE2
VBAT
D
PC9
PC8
PA8
PC7
PC12
PD6
PB6
PB9
PE4
PC13
E
PC6
PD15
PD13
PE10
PD2
PD7
PE0
PE5
PC14
PC15
F
PD14
PD12
PD11
PE15
PB0
PA5
PC3
PC0
VSS
G
VDD12
OTGHS
OTG_HS
_REXT
PB10
PE11
PB1
PA6
PA4
PA0
NRST
PH0
H
PB15
PB13
PB11
PE12
PE8
PC4
PA3
PA2
PC1
PH1
J
PB14
PB12
VCAP_1
PE13
PE7
PC5
VDD
PA1
VREF+
PC2
K
VDD
USB
VDD
VSS
PE14
PE9
PB2
PA7
VSS
VDDA
VSSA
BOOT0
VDD
MSv42002V2
1. The above figure shows the package top view.
52/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Pinouts and pin description
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 17. STM32F732xx LQFP144 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14
PC15
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
MS39132V1
1. The above figure shows the package top view.
DS11854 Rev 5
53/228
98
Pinouts and pin description
STM32F732xx STM32F733xx
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 18. STM32F733xx LQFP144 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
with HS PHY
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
VDD12OTGHS
OTG_HS_REXT
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14
PC15
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
MS41014V1
1. The above figure shows the package top view.
54/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Pinouts and pin description
Figure 19. STM32F733xx UFBGA144 ballout (with OTG PHY HS)
1
2
3
4
5
6
7
8
9
10
11
12
A
PC13
PE3
PE2
PE1
PE0
PB4
PB3
PD6
PD7
PA15
PA14
PA13
B
PC14OSC32_IN
PE4
PE5
PE6
PB9
PB5
PG15
PG12
PD5
PC11
PC10
PA12
C
PC15OSC32_OUT
VBAT
PF0
PF1
PB8
PB6
PG14
PG11
PD4
PC12
VDDUSB
PA11
D
PH0 OSC_IN
VSS
VDD
PF2
BOOT0
PB7
PG13
PG10
PD3
PD1
PA10
PA9
E
PH1 OSC_OUT
PF3
PF4
PF5
PDR_ON
VSS
VSS
PG9
PD2
PD0
PC9
PA8
F
NRST
PF7
PF6
VDD
VDD
VDD
VDD
VDD
VDD
VDD
PC8
PC7
G
PF10
PF9
PF8
VSS
VDD
VDD
VDD
VSS
VCAP_2
VSS
PG8
PC6
H
PC0
PC1
PC2
PC3
BYPASS_
REG
VSS
VCAP_1
PE11
PD11
VDD12OTG
HS
OTG_HS
_REXT
PG5
J
VSSA
PA0
PA4
PC4
PB2
PG1
PE10
PE12
PD10
PG4
PG3
PG2
K
VREF-
PA1
PA5
PC5
PF13
PG0
PE9
PE13
PD9
PD13
PD14
PD15
L
VREF+
PA2
PA6
PB0
PF12
PF15
PE8
PE14
PD8
PD12
PB14
PB15
M
VDDA
PA3
PA7
PB1
PF11
PF14
PE7
PE15
PB10
PB11
PB12
PB13
MSv42000V1
1. The above figure shows the package top view.
DS11854 Rev 5
55/228
98
Pinouts and pin description
STM32F732xx STM32F733xx
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PI3
PI2
V
DD
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PI7
PI6
PI5
PI4
Figure 20. STM32F732xx LQFP176 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VDD
VSS
PH12
VCAP_1
VDD
PH6
PH7
PH8
PH9
PH10
PH11
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
PH4
PH5
PA3
BYPASS_REG
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14
PC15
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
MS41015V1
1. The above figure shows the package top view.
56/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Pinouts and pin description
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PI3
PI2
V
DD
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PI7
PI6
PI5
PI4
Figure 21. STM32F733xx LQFP176 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176
with HS PHY
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
VDD12OTGHS
OTG_HS_REXT
PB13
PB12
VDD
VSS
PH12
VCAP_1
VDD
PH6
PH7
PH8
PH9
PH10
PH11
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
PH4
PH5
PA3
BYPASS_REG
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14
PC15
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
MS41082V1
1. The above figure shows the package top view.
DS11854 Rev 5
57/228
98
Pinouts and pin description
STM32F732xx STM32F733xx
Figure 22. STM32F733xx UFBGA176 ballout
1
2
A
PE3
PE2
B
PE4
C
3
4
5
6
7
8
9
PE1
PE0
PB8
PB5
PG14
PG13
PB4
PE5
PE6
PB9
PB7
PB6
PG15
PG12
VBAT
PI7
PI6
PI5
VDD
11
12
13
14
15
PB3
PD7
PC12
PA15
PA14
PA13
PG11
PG10
PD6
PD0
PC11
PC10
PA12
VDD
SDMMC
VDD
PG9
PD5
PD1
PI3
PI2
PA11
D
PC13
PI8
PI9
PI4
VSS
VSS
PD4
PD3
PD2
PH15
PI1
PA10
E
PC14
PF0
PI10
PI11
PH13
PH14
PI0
PA9
F
PC15
VSS
VDD
PH2
VSS
VSS
VSS
VSS
VSS
VSS
VCAP2
PC9
PA8
G
PH0
VSS
VDD
PH3
VSS
VSS
VSS
VSS
VSS
VSS
VDD
PC8
PC7
H
PH1
PF2
PF1
PH4
VSS
VSS
VSS
VSS
VSS
VSS
VDDUSB PG8
PC6
J
NRST
PF3
PF4
PH5
VSS
VSS
VSS
VSS
VSS
VDD
VDD
PG7
PG6
K
PF7
PF6
PF5
VDD
VSS
VSS
VSS
VSS
VSS
PH12
PG5
PG4
PG3
L
PF10
PF9
PF8
BYPASS_
REG
PH11
PH10
PD15
PG2
M
VSSA
PC0
PC1
PC2
PC3
PB2
PG1
VSS
VSS
PH6
PH8
PH9
PD14
PD13
N
VREF-
PA1
PA0
PA4
PC4
PF13
PG0
VDD
VDD
VDD
PE13
PH7
PD12
PD11
PD10
P
VREF+
PA2
PA6
PA5
PC5
PF12
PF15
PE8
PE9
PE11
PE14
PB12
PB13
PD9
PD8
R
VDDA
PA3
PA7
PB1
PB0
PF11
PF14
PE7
PE10
PE12
PE15
PB10
PB11
PB14
PB15
PDR_ON VDD
BOOT0
VSS
VSS
10
VCAP_1
MS39130V1
1. The above figure shows the package top view.
58/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Pinouts and pin description
Figure 23. STM32F733xx UFBGA176 ballout (with OTG PHY HS)
1
2
A
PE3
PE2
B
PE4
C
3
4
5
6
7
8
9
PE1
PE0
PB8
PB5
PG14
PG13
PB4
PE5
PE6
PB9
PB7
PB6
PG15
PG12
VBAT
PI7
PI6
PI5
VDD
11
12
13
14
15
PB3
PD7
PC12
PA15
PA14
PA13
PG11
PG10
PD6
PD0
PC11
PC10
PA12
VDD
SDMMC
VDD
PG9
PD5
PD1
PI3
PI2
PA11
D
PC13
PI8
PI9
PI4
VSS
VSS
PD4
PD3
PD2
PH15
PI1
PA10
E
PC14
PF0
PI10
PI11
PH13
PH14
PI0
PA9
F
PC15
VSS
VDD
PH2
VSS
VSS
VSS
VSS
VSS
VSS
VCAP2
PC9
PA8
G
PH0
VSS
VDD
PH3
VSS
VSS
VSS
VSS
VSS
VSS
VDD
PC8
PC7
H
PH1
PF2
PF1
PH4
VSS
VSS
VSS
VSS
VSS
VSS
VDDUSB PG8
PC6
J
NRST
PF3
PF4
PH5
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD12 OTG_HS
OTGHS _REXT
K
PF7
PF6
PF5
VDD
VSS
VSS
VSS
VSS
VSS
PH12
PG5
PG4
PG3
L
PF10
PF9
PF8
BYPASS_
REG
PH11
PH10
PD15
PG2
M
VSSA
PC0
PC1
PC2
PC3
PB2
PG1
VSS
VSS
PH6
PH8
PH9
PD14
PD13
N
VREF-
PA1
PA0
PA4
PC4
PF13
PG0
VDD
VDD
VDD
PE13
PH7
PD12
PD11
PD10
P
VREF+
PA2
PA6
PA5
PC5
PF12
PF15
PE8
PE9
PE11
PE14
PB12
PB13
PD9
PD8
R
VDDA
PA3
PA7
PB1
PB0
PF11
PF14
PE7
PE10
PE12
PE15
PB10
PB11
PB14
PB15
PDR_ON VDD
BOOT0
VSS
VSS
10
VCAP_1
MS42001V1
1. The above figure shows the package top view.
DS11854 Rev 5
59/228
98
Pinouts and pin description
STM32F732xx STM32F733xx
Table 9. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
I/O structure
Notes
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5V tolerant I/O, I2C Fm+ option.
TTa
3.3 V tolerant I/O directly connected to ADC
B
Dedicated BOOT pin
RST
Bidirectional reset pin with weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
60/228
DS11854 Rev 5
Pin Number
1
PE2
I/O
FT
-
-
2
2
A1
2
A10
A1
A2
2
2
PE3
I/O
FT
-
TRACED0, SAI1_SD_B,
FMC_A19, EVENTOUT
-
-
3
3
B1
3
D9
B1
B2
3
3
PE4
I/O
FT
-
TRACED1, SPI4_NSS,
SAI1_FS_A, FMC_A20,
EVENTOUT
-
-
4
4
B2
4
E8
B2
B3
4
4
PE5
I/O
FT
-
TRACED2, TIM9_CH1,
SPI4_MISO, SAI1_SCK_A,
FMC_A21, EVENTOUT
-
-
-
LQFP176
1
LQFP144
A3
UFBGA144
A2
UFBGA176
C9
WLCSP100
1
LQFP176
A2
UFBGA176
1
LQFP144
1
LQFP100
-
TRACECLK, SPI4_SCK,
SAI1_MCLK_A,
QUADSPI_BK1_IO2, FMC_A23,
EVENTOUT
LQFP64
Alternate functions
DS11854 Rev 5
-
5
5
B3
5
B10
B3
B4
5
5
PE6
I/O
FT
-
TRACED3, TIM1_BKIN2,
TIM9_CH2, SPI4_MOSI,
SAI1_SD_A, SAI2_MCK_B,
FMC_A22, EVENTOUT
1
6
6
C1
6
C10
C1
C2
6
6
VBAT
S
-
-
-
Additional
functions
-
61/228
Pinouts and pin description
Notes
Pin name
(function after
reset)(1)
I/O structure
STM32F733xx
Pin type
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition
Pin Number
LQFP176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
-
D2
7
-
D2
-
-
7
PI8
I/O
FT
Notes
UFBGA176
-
I/O structure
LQFP144
-
Pin name
(function after
reset)(1)
Pin type
LQFP100
STM32F733xx
LQFP64
STM32F732xx
Alternate functions
Additional
functions
EVENTOUT
RTC_TAMP2/
RTC_TS,
WKUP5
EVENTOUT
RTC_TAMP1/
RTC_TS/
RTC_OUT,
WKUP4
EVENTOUT
OSC32_IN
EVENTOUT
OSC32_OUT
(2)
(3)
(2)
DS11854 Rev 5
2
3
4
7
8
9
7
8
9
D1
E1
F1
8
9
10
D10
E9
E10
D1
E1
F1
A1
B1
C1
7
8
9
8
PC13
9
PC14OSC32_IN(PC1
4)
10
I/O
FT
(3)
Pinouts and pin description
62/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
(2)
I/O
FT
(3)
(5)
(2)
PC15OSC32_OUT(P
C15)
I/O
FT
(3)
(5)
-
-
D3
11
-
D3
-
-
11
PI9
I/O
FT
-
UART4_RX, CAN1_RX,
FMC_D30, EVENTOUT
-
-
-
-
E3
12
-
E3
-
-
12
PI10
I/O
FT
-
FMC_D31, EVENTOUT
-
-
-
-
E4
13
-
E4
-
-
13
PI11
I/O
FT
(4)
OTG_HS_ULPI_DIR,
EVENTOUT
WKUP6
-
-
-
F2
14
-
F2
-
-
14
VSS
S
-
-
-
-
-
-
-
F3
15
-
F3
-
-
15
VDD
S
-
-
-
-
STM32F732xx STM32F733xx
-
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
-
-
10
E2
16
-
E2
C3
10
16
PF0
I/O
FTf
-
I2C2_SDA, FMC_A0,
EVENTOUT
-
-
-
11
H3
17
-
H3
C4
11
17
PF1
I/O
FTf
-
I2C2_SCL, FMC_A1,
EVENTOUT
-
-
-
12
H2
18
-
H2
D4
12
18
PF2
I/O
FT
-
I2C2_SMBA, FMC_A2,
EVENTOUT
-
-
-
13
J2
19
-
J2
E2
13
19
PF3
I/O
FT
-
FMC_A3, EVENTOUT
ADC3_IN9
-
-
14
J3
20
-
J3
E3
14
20
PF4
I/O
FT
-
FMC_A4, EVENTOUT
ADC3_IN14
-
-
15
K3
21
-
K3
E4
15
21
PF5
I/O
FT
-
FMC_A5, EVENTOUT
ADC3_IN15
-
10
16
G2
22
F9
G2
D2
16
22
VSS
S
-
-
-
-
-
11
17
G3
23
F10
G3
D3
17
23
VDD
S
-
-
-
-
-
TIM10_CH1, SPI5_NSS,
SAI1_SD_B, UART7_RX,
QUADSPI_BK1_IO3,
EVENTOUT
ADC3_IN4
-
TIM11_CH1, SPI5_SCK,
SAI1_MCLK_B, UART7_TX,
QUADSPI_BK1_IO2,
EVENTOUT
ADC3_IN5
-
-
-
-
18
19
K2
K1
24
25
-
-
K2
K1
F3
F2
18
19
24
25
Pin name
(function after
reset)(1)
PF6
PF7
I/O
I/O
FT
FT
Additional
functions
63/228
Pinouts and pin description
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
-
L3
26
-
L3
G3
20
26
PF8
I/O
I/O structure
Pin type
LQFP176
Pin name
(function after
reset)(1)
LQFP144
UFBGA144
UFBGA176
WLCSP100
LQFP176
UFBGA176
LQFP144
20
STM32F733xx
FT
DS11854 Rev 5
Notes
-
LQFP100
LQFP64
STM32F732xx
Alternate functions
Additional
functions
-
SPI5_MISO, SAI1_SCK_B,
UART7_RTS, TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
ADC3_IN6
-
SPI5_MOSI, SAI1_FS_B,
UART7_CTS, TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
ADC3_IN7
-
-
21
L2
27
-
L2
G2
21
27
PF9
I/O
FT
-
-
22
L1
28
-
L1
G1
22
28
PF10
I/O
FT
-
EVENTOUT
ADC3_IN8
FT
(5)
EVENTOUT
OSC_IN
EVENTOUT
OSC_OUT
5
12
23
G1
29
G10
G1
D1
23
29
PH0-OSC_IN
I/O
13
24
H1
30
H10
H1
E1
24
30
PH1-OSC_OUT
I/O
FT
7
14
25
J1
31
G9
J1
F1
25
31
NRST
I/O
RS
T
-
-
-
8
15
26
M2
32
F8
M2
H1
26
32
PC0
I/O
FT
(4)
SAI2_FS_B,
OTG_HS_ULPI_STP,
FMC_SDNWE, EVENTOUT
ADC1_IN10,
ADC2_IN10,
ADC3_IN10
-
TRACED0,
SPI2_MOSI/I2S2_SD,
SAI1_SD_A, EVENTOUT
ADC1_IN11,
ADC2_IN11,
ADC3_IN11,
RTC_TAMP3,
WKUP3
9
16
27
M3
33
H9
M3
H2
27
33
PC1
I/O
FT
STM32F732xx STM32F733xx
6
(5)
Pinouts and pin description
64/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
10
17
28
M4
34
J10
M4
H3
28
34
PC2
I/O
FT
(4)
SPI2_MISO,
OTG_HS_ULPI_DIR,
FMC_SDNE0, EVENTOUT
ADC1_IN12,
ADC2_IN12,
ADC3_IN12
11
18
29
M5
35
F7
M5
H4
29
35
PC3
I/O
FT
(4)
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
FMC_SDCKE0, EVENTOUT
ADC1_IN13,
ADC2_IN13,
ADC3_IN13
-
-
30
-
36
J7
-
F10
30
36
VDD
S
-
-
-
-
12
19
31
M1
37
K10
M1
J1
31
37
VSSA
S
-
-
-
-
-
-
-
N1
-
-
N1
K1
-
-
VREF-
S
-
-
-
-
13
20
32
P1
38
J9
P1
L1
32
38
VREF+
S
-
-
-
-
-
21
33
R1
39
K9
R1
M1
33
39
VDDA
S
-
-
-
-
FT
(6)
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS, UART4_TX,
SAI2_SD_B, EVENTOUT
ADC1_IN0,
ADC2_IN0,
ADC3_IN0,
WKUP1
14
22
34
N3
40
G8
N3
J2
34
40
Pin name
(function after
reset)(1)
PA0-WKUP
I/O
Additional
functions
65/228
Pinouts and pin description
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
DS11854 Rev 5
16
23
24
36
N2
P2
41
42
J8
H8
N2
P2
K2
L2
35
36
41
42
PA1
PA2
I/O
I/O
I/O structure
Pin type
LQFP176
Pin name
(function after
reset)(1)
LQFP144
UFBGA144
UFBGA176
WLCSP100
LQFP176
UFBGA176
LQFP144
35
STM32F733xx
FT
FT
Notes
15
LQFP100
LQFP64
STM32F732xx
Alternate functions
Additional
functions
-
TIM2_CH2, TIM5_CH2,
USART2_RTS, UART4_RX,
QUADSPI_BK1_IO3,
SAI2_MCK_B, EVENTOUT
ADC1_IN1,
ADC2_IN1,
ADC3_IN1
-
TIM2_CH3, TIM5_CH3,
TIM9_CH1, USART2_TX,
SAI2_SCK_B, EVENTOUT
ADC1_IN2,
ADC2_IN2,
ADC3_IN2,
WKUP2
-
-
-
F4
43
-
F4
-
-
43
PH2
I/O
FT
-
-
-
-
G4
44
-
G4
-
-
44
PH3
I/O
FT
-
QUADSPI_BK2_IO1,
SAI2_MCK_B, FMC_SDNE0,
EVENTOUT
-
-
-
-
H4
45
-
H4
-
-
45
PH4
I/O
FTf
(4)
I2C2_SCL, OTG_HS_ULPI_NXT,
EVENTOUT
-
-
-
-
J4
46
-
J4
-
-
46
PH5
I/O
FTf
-
I2C2_SDA, SPI5_NSS,
FMC_SDNWE, EVENTOUT
-
17
25
37
R2
47
H7
R2
M2
37
47
PA3
I/O
FT
(4)
TIM2_CH4, TIM5_CH4,
TIM9_CH2, USART2_RX,
OTG_HS_ULPI_D0, EVENTOUT
ADC1_IN3,
ADC2_IN3,
ADC3_IN3
18
26
38
-
-
K8
-
G4
38
-
VSS
S
-
-
-
-
-
-
-
L4
48
-
L4
H5
-
48
BYPASS_REG
I
FT
-
-
-
STM32F732xx STM32F733xx
-
LPTIM1_IN2,
QUADSPI_BK2_IO0,
SAI2_SCK_B, FMC_SDCKE0,
EVENTOUT
Pinouts and pin description
66/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
LQFP176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
39
K4
49
-
K4
F4
39
49
20
28
40
N4
50
G7
N4
J3
40
50
VDD
S
PA4
I/O
DS11854 Rev 5
Notes
UFBGA176
27
I/O structure
LQFP144
19
Pin name
(function after
reset)(1)
Pin type
LQFP100
STM32F733xx
LQFP64
STM32F732xx
Alternate functions
Additional
functions
-
-
-
-
TTa
-
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK, OTG_HS_SOF,
EVENTOUT
ADC1_IN4,
ADC2_IN4,
DAC_OUT1
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
OTG_HS_ULPI_CK, EVENTOUT
ADC1_IN5,
ADC2_IN5,
DAC_OUT2
21
29
41
P4
51
F6
P4
K3
41
51
PA5
I/O
TTa
(4)
22
30
42
P3
52
G6
P3
L3
42
52
PA6
I/O
FT
-
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
TIM13_CH1, EVENTOUT
ADC1_IN6,
ADC2_IN6
ADC1_IN7,
ADC2_IN7
31
43
R3
53
K7
R3
M3
43
53
PA7
I/O
FT
-
24
32
44
N5
54
H6
N5
J4
44
54
PC4
I/O
FT
-
I2S1_MCK, FMC_SDNE0,
EVENTOUT
ADC1_IN14,
ADC2_IN14
-
33
45
P5
55
J6
P5
K4
45
55
PC5
I/O
FT
-
FMC_SDCKE0, EVENTOUT
ADC1_IN15,
ADC2_IN15
67/228
Pinouts and pin description
23
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SD,
TIM14_CH1, FMC_SDNWE,
EVENTOUT
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
25
34
46
R5
56
F5
R5
L4
46
56
PB0
I/O
FT
(4)
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N, UART4_CTS,
OTG_HS_ULPI_D1, EVENTOUT
ADC1_IN8,
ADC2_IN8
26
35
47
R4
57
G5
R4
M4
47
57
PB1
I/O
FT
(4)
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
OTG_HS_ULPI_D2, EVENTOUT
ADC1_IN9,
ADC2_IN9
27
36
48
M6
58
K6
M6
J5
48
58
PB2
I/O
FT
-
SAI1_SD_A,
SPI3_MOSI/I2S3_SD,
QUADSPI_CLK, EVENTOUT
-
-
-
49
R6
59
-
R6
M5
49
59
PF11
I/O
FT
-
SPI5_MOSI, SAI2_SD_B,
FMC_SDNRAS, EVENTOUT
-
-
-
50
P6
60
-
P6
L5
50
60
PF12
I/O
FT
-
FMC_A6, EVENTOUT
-
-
-
51
M8
61
-
M8
-
51
61
VSS
S
-
-
-
-
-
-
52
N8
62
-
N8
G5
52
62
VDD
S
-
-
-
-
-
-
53
N6
63
-
N6
K5
53
63
PF13
I/O
FT
-
FMC_A7, EVENTOUT
-
-
-
54
R7
64
-
R7
M6
54
64
PF14
I/O
FT
-
FMC_A8, EVENTOUT
-
-
-
55
P7
65
-
P7
L6
55
65
PF15
I/O
FT
-
FMC_A9, EVENTOUT
-
-
-
56
N7
66
-
N7
K6
56
66
PG0
I/O
FT
-
FMC_A10, EVENTOUT
-
-
-
57
M7
67
-
M7
J6
57
67
PG1
I/O
FT
-
FMC_A11, EVENTOUT
-
Pin name
(function after
reset)(1)
Additional
functions
STM32F732xx STM32F733xx
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
Pinouts and pin description
68/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
-
37
58
R8
68
J5
R8
M7
58
68
PE7
I/O
FT
-
TIM1_ETR, UART7_Rx,
QUADSPI_BK2_IO0, FMC_D4,
EVENTOUT
-
-
38
59
P8
69
H5
P8
L7
59
69
PE8
I/O
FT
-
TIM1_CH1N, UART7_Tx,
QUADSPI_BK2_IO1, FMC_D5,
EVENTOUT
-
-
39
60
P9
70
K5
P9
K7
60
70
PE9
I/O
FT
-
TIM1_CH1, UART7_RTS,
QUADSPI_BK2_IO2, FMC_D6,
EVENTOUT
-
-
-
61
M9
71
-
M9
H6
61
71
VSS
S
-
-
-
-
-
-
62
N9
72
-
N9
G6
62
72
VDD
S
-
-
-
-
-
40
63
R9
73
E4
R9
J7
63
73
PE10
I/O
FT
-
TIM1_CH2N, UART7_CTS,
QUADSPI_BK2_IO3, FMC_D7,
EVENTOUT
-
-
41
64
P10
74
G4
P10
H8
64
74
PE11
I/O
FT
-
TIM1_CH2, SPI4_NSS,
SAI2_SD_B, FMC_D8,
EVENTOUT
-
-
42
65
R10
75
H4
R10
J8
65
75
PE12
I/O
FT
-
TIM1_CH3N, SPI4_SCK,
SAI2_SCK_B, FMC_D9,
EVENTOUT
-
-
43
66
N11
76
J4
N11
K8
66
76
PE13
I/O
FT
-
TIM1_CH3, SPI4_MISO,
SAI2_FS_B, FMC_D10,
EVENTOUT
-
Pin name
(function after
reset)(1)
Additional
functions
69/228
Pinouts and pin description
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
LQFP176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
-
44
67
P11
77
K4
P11
L8
67
77
PE14
I/O
FT
-
TIM1_CH4, SPI4_MOSI,
SAI2_MCK_B, FMC_D11,,
EVENTOUT
-
-
45
68
R11
78
F4
R11
M8
68
78
PE15
I/O
FT
-
TIM1_BKIN, FMC_D12,
EVENTOUT
-
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
USART3_TX,
OTG_HS_ULPI_D3, EVENTOUT
-
Pin name
(function after
reset)(1)
Additional
functions
46
69
R12
79
G3
R12
M9
69
79
PB10
I/O
FTf
29
47
70
R13
80
H3
R13 M10
70
80
PB11
I/O
FTf
(4)
TIM2_CH4, I2C2_SDA,
USART3_RX,
OTG_HS_ULPI_D4, EVENTOUT
-
30
48
71
M10
81
J3
M10
H7
71
81
VCAP_1
S
-
-
-
-
31
49
-
-
-
K3
-
-
-
-
VSS
S
-
-
-
-
32
50
72
N10
82
K2
N10
G7
72
82
VDD
S
-
-
-
-
-
-
-
M11
83
-
M11
-
-
83
PH6
I/O
FT
-
I2C2_SMBA, SPI5_SCK,
TIM12_CH1, FMC_SDNE1,
EVENTOUT
-
-
-
-
N12
84
-
N12
-
-
84
PH7
I/O
FTf
-
I2C3_SCL, SPI5_MISO,
FMC_SDCKE1, EVENTOUT
-
-
-
-
M12
85
-
M12
-
-
85
PH8
I/O
FTf
-
I2C3_SDA, FMC_D16,
EVENTOUT
-
STM32F732xx STM32F733xx
28
(4)
Pinouts and pin description
70/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
-
-
-
M13
86
-
M13
-
-
86
PH9
I/O
FT
-
I2C3_SMBA, TIM12_CH2,
FMC_D17, EVENTOUT
-
-
-
-
L13
87
-
L13
-
-
87
PH10
I/O
FT
-
TIM5_CH1, FMC_D18,
EVENTOUT
-
-
-
-
L12
88
-
L12
-
-
88
PH11
I/O
FT
-
TIM5_CH2, FMC_D19,
EVENTOUT
-
-
-
-
K12
89
-
K12
-
-
89
PH12
I/O
FT
-
TIM5_CH3, FMC_D20,
EVENTOUT
-
-
-
-
H12
90
-
H12
-
-
90
VSS
S
-
-
-
-
-
-
-
J12
91
K2
J12
-
-
91
VDD
S
-
-
-
-
FT
(4)
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
USART3_CK,
OTG_HS_ULPI_D5,
OTG_HS_ID, EVENTOUT
-
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
(4)
OTG_HS_VBUS
USART3_CTS,
OTG_HS_ULPI_D6, EVENTOUT
33
51
73
P12
92
J2
P12 M11
73
92
Pin name
(function after
reset)(1)
PB12
I/O
34
52
74
P13
93
H2
P13 M12
74
93
PB13
I/O
FT
-
-
-
-
-
G2
J15
H11
75
94
OTG_HS_REXT
-
-
-
-
-
-
-
-
G1
J14
H10
76
95
VDD12OTGHS
-
-
-
Additional
functions
USB HS OTG PHY calibration resistor
-
-
71/228
Pinouts and pin description
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
-
-
PB14
I/O
FT
-
-
-
-
-
-
J1
R14
L11
77
96
PB14
I/O
FT
-
OTG_HS_DM
-
-
LQFP176
-
LQFP144
-
UFBGA144
-
UFBGA176
94
WLCSP100
R14
LQFP176
75
UFBGA176
53
LQFP144
35
TIM1_CH2N, TIM8_CH2N,
SPI2_MISO, USART3_RTS,
TIM12_CH1, SDMMC2_D0,
OTG_HS_DM, EVENTOUT
LQFP100
Alternate functions
LQFP64
Notes
Pin name
(function after
reset)(1)
I/O structure
STM32F733xx
Pin type
STM32F732xx
Additional
functions
-
DS11854 Rev 5
54
76
R15
95
-
-
-
-
-
PB15
I/O
FT
-
-
-
-
-
-
H1
R15
L12
78
97
PB15
I/O
FT
-
OTG_HS_DP
-
-
55
77
P15
96
-
P15
L9
79
98
PD8
I/O
FT
-
USART3_TX, FMC_D13,
EVENTOUT
-
-
56
78
P14
97
-
P14
K9
80
99
PD9
I/O
FT
-
USART3_RX, FMC_D14,
EVENTOUT
-
-
57
79
N15
98
-
N15
J9
81
100
PD10
I/O
FT
-
USART3_CK, FMC_D15,
EVENTOUT
-
STM32F732xx STM32F733xx
36
RTC_REFIN, TIM1_CH3N,
TIM8_CH3N,
SPI2_MOSI/I2S2_SD,
TIM12_CH2, SDMMC2_D1,
OTG_HS_DP, EVENTOUT
Pinouts and pin description
72/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
DS11854 Rev 5
-
58
59
81
N14
99
N13 100
F3
F2
N14
N13
H9
L10
82
83
101
102
PD11
PD12
I/O
I/O
I/O structure
Pin type
LQFP176
Pin name
(function after
reset)(1)
LQFP144
UFBGA144
UFBGA176
WLCSP100
LQFP176
UFBGA176
LQFP144
80
STM32F733xx
FT
FT
Notes
-
LQFP100
LQFP64
STM32F732xx
Alternate functions
Additional
functions
-
USART3_CTS,
QUADSPI_BK1_IO0,
SAI2_SD_A,
FMC_A16/FMC_CLE,
EVENTOUT
-
-
TIM4_CH1, LPTIM1_IN1,
USART3_RTS,
QUADSPI_BK1_IO1,
SAI2_FS_A,
FMC_A17/FMC_ALE,
EVENTOUT
-
-
103
PD13
I/O
FT
-
G8
85
104
VSS
S
-
-
-
-
F8
86
105
VDD
S
-
-
-
-
F1
M14 K11
87
106
PD14
I/O
FT
-
TIM4_CH3, UART8_CTS,
FMC_D0, EVENTOUT
-
105
E2
L14
K12
88
107
PD15
I/O
FT
-
TIM4_CH4, UART8_RTS,
FMC_D1, EVENTOUT
-
L15
106
-
L15
J12
89
108
PG2
I/O
FT
-
FMC_A12, EVENTOUT
-
K15
107
-
K15
J11
90
109
PG3
I/O
FT
-
FMC_A13, EVENTOUT
-
-
60
82
M15 101
E3
M15 K10
-
-
83
-
102
-
-
-
-
84
J13
103
-
J13
-
61
85
M14 104
-
62
86
L14
-
-
87
-
-
88
73/228
Pinouts and pin description
84
TIM4_CH2, LPTIM1_OUT,
QUADSPI_BK1_IO3,
SAI2_SCK_A, FMC_A18,
EVENTOUT
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
-
-
89
K14
108
-
K14
J10
91
110
PG4
I/O
FT
-
FMC_A14/FMC_BA0,
EVENTOUT
-
-
-
90
K13
109
-
K13 H12
92
111
PG5
I/O
FT
-
FMC_A15/FMC_BA1,
EVENTOUT
-
-
-
91
J15
110
-
-
-
-
-
PG6
I/O
FT
-
EVENTOUT
-
-
-
92
J14
111
-
-
-
-
-
PG7
I/O
FT
-
USART6_CK, FMC_INT,
EVENTOUT
-
-
-
93
H14
112
-
H14 G11
93
112
PG8
I/O
FT
-
USART6_RTS, FMC_SDCLK,
EVENTOUT
-
-
-
94
G12 113
-
G12
-
94
113
VSS
S
-
-
-
-
-
-
-
-
-
-
-
F10
-
-
VDD
-
-
-
-
-
-
-
95
H13
114
K1
95
114
VDDUSB
S
-
-
-
-
-
TIM3_CH1, TIM8_CH1,
I2S2_MCK, USART6_TX,
SDMMC2_D6, SDMMC1_D6,
EVENTOUT
-
-
TIM3_CH2, TIM8_CH2,
I2S3_MCK, USART6_RX,
SDMMC2_D7, SDMMC1_D7,
EVENTOUT
-
37
38
63
64
96
97
H15
115
G15 116
E1
D4
H13 C11
H15 G12
G15 F12
96
97
115
116
Pin name
(function after
reset)(1)
PC6
PC7
I/O
I/O
FT
FT
Additional
functions
STM32F732xx STM32F733xx
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
Pinouts and pin description
74/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
65
G14 117
D2
G14
F11
98
117
PC8
I/O
I/O structure
Pin type
LQFP176
Pin name
(function after
reset)(1)
LQFP144
UFBGA144
UFBGA176
WLCSP100
LQFP176
UFBGA176
LQFP144
98
STM32F733xx
FT
DS11854 Rev 5
Notes
39
LQFP100
LQFP64
STM32F732xx
Alternate functions
Additional
functions
-
TRACED1, TIM3_CH3,
TIM8_CH3, UART5_RTS,
USART6_CK, SDMMC1_D0,
EVENTOUT
-
-
66
99
F14
118
D1
F14
E11
99
118
PC9
I/O
FTf
-
41
67
100
F15
119
D3
F15
E12
100
119
PA8
I/O
FTf
-
MCO1, TIM1_CH1, TIM8_BKIN2,
I2C3_SCL, USART1_CK,
OTG_FS_SOF, EVENTOUT
-
42
68
101 E15
120
C3
E15 D12
101
120
PA9
I/O
FT
-
TIM1_CH2, I2C3_SMBA,
SPI2_SCK/I2S2_CK,
USART1_TX, EVENTOUT
OTG_FS_VBUS
43
69
102 D15 121
C2
D15 D11
102
121
PA10
I/O
FT
-
TIM1_CH3, USART1_RX,
OTG_FS_ID, EVENTOUT
-
44
70
103 C15 122
C1
C15 C12
103
122
PA11
I/O
FT
-
TIM1_CH4, USART1_CTS,
CAN1_RX, OTG_FS_DM,
EVENTOUT
-
45
71
104 B15
123
B2
B15
B12
104
123
PA12
I/O
FT
-
TIM1_ETR, USART1_RTS,
SAI2_FS_B, CAN1_TX,
OTG_FS_DP, EVENTOUT
-
46
72
105 A15
124
B1
A15
A12
105
124
PA13(JTMSSWDIO)
I/O
FT
-
JTMS-SWDIO, EVENTOUT
-
Pinouts and pin description
75/228
40
MCO2, TIM3_CH4, TIM8_CH4,
I2C3_SDA, I2S_CKIN,
UART5_CTS,
QUADSPI_BK1_IO0,
SDMMC1_D1, EVENTOUT
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
-
73
106
F13
125
B3
F13
G9
106
125
VCAP_2
S
-
-
-
-
47
74
107
F12
126
A2
F12 G10
107
126
VSS
S
-
-
-
-
48
75
108 G13 127
A1
G13
F9
108
127
VDD
S
-
-
-
-
-
-
-
E12
128
-
E12
-
-
128
PH13
I/O
FT
-
TIM8_CH1N, UART4_TX,
CAN1_TX, FMC_D21,
EVENTOUT
-
-
-
-
E13
129
-
E13
-
-
129
PH14
I/O
FT
-
TIM8_CH2N, UART4_RX,
CAN1_RX, FMC_D22,
EVENTOUT
-
-
-
-
D13 130
-
D13
-
-
130
PH15
I/O
FT
-
TIM8_CH3N, FMC_D23,
EVENTOUT
-
-
-
-
E14
131
-
E14
-
-
131
PI0
I/O
FT
-
TIM5_CH4, SPI2_NSS/I2S2_WS,
FMC_D24, EVENTOUT
-
-
-
-
D14 132
-
D14
-
-
132
PI1
I/O
FT
-
TIM8_BKIN2,
SPI2_SCK/I2S2_CK, FMC_D25,
EVENTOUT
-
-
-
-
C14 133
-
C14
-
-
133
PI2
I/O
FT
-
TIM8_CH4, SPI2_MISO,
FMC_D26, EVENTOUT
-
-
-
-
C13 134
-
C13
-
-
134
PI3
I/O
FT
-
TIM8_ETR,
SPI2_MOSI/I2S2_SD, FMC_D27,
EVENTOUT
-
-
-
-
D9
-
D9
-
-
135
VSS
S
-
-
-
-
135
Pin name
(function after
reset)(1)
Additional
functions
STM32F732xx STM32F733xx
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
Pinouts and pin description
76/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
I/O structure
Notes
-
C9
136
-
C9
-
-
136
VDD
S
-
-
-
-
109 A14
137
C4
A14
A11
109
137
PA14(JTCKSWCLK)
I/O
FT
-
JTCK-SWCLK, EVENTOUT
-
-
JTDI, TIM2_CH1/TIM2_ETR,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
UART4_RTS, EVENTOUT
-
-
SPI3_SCK/I2S3_CK,
USART3_TX, UART4_TX,
QUADSPI_BK1_IO1,
SDMMC1_D2, EVENTOUT
-
-
SPI3_MISO, USART3_RX,
UART4_RX,
QUADSPI_BK2_NCS,
SDMMC1_D3, EVENTOUT
-
-
110
111
112
A13
B14
B13
138
139
140
B4
A3
C5
A13
B14
B13
A10
B11
B10
110
111
112
138
139
140
Pin name
(function after
reset)(1)
PA15(JTDI)
PC10
PC11
I/O
I/O
I/O
FT
FT
FT
Additional
functions
53
80
113
A12
141
D5
A12 C10
113
141
PC12
I/O
FT
-
TRACED3,
SPI3_MOSI/I2S3_SD,
USART3_CK, UART5_TX,
SDMMC1_CK, EVENTOUT
-
81
114
B12
142
B5
B12
E10
114
142
PD0
I/O
FT
-
CAN1_RX, FMC_D2,
EVENTOUT
-
-
82
115 C12 143
A4
C12 D10
115
143
PD1
I/O
FT
-
CAN1_TX, FMC_D3,
EVENTOUT
-
77/228
Pinouts and pin description
Pin type
79
LQFP176
52
78
LQFP144
51
77
UFBGA144
DS11854 Rev 5
50
UFBGA176
76
WLCSP100
49
LQFP176
-
Alternate functions
UFBGA176
LQFP100
-
STM32F733xx
LQFP144
LQFP64
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
WLCSP100
UFBGA176
UFBGA144
LQFP176
Pin type
I/O structure
Notes
LQFP144
83
116 D12 144
E5
D12
E9
116
144
PD2
I/O
FT
-
TRACED2, TIM3_ETR,
UART5_RX, SDMMC1_CMD,
EVENTOUT
-
-
84
117
145
C6
D11
D9
117
145
PD3
I/O
FT
-
SPI2_SCK/I2S2_CK,
USART2_CTS, FMC_CLK,
EVENTOUT
-
-
85
118 D10 146
B6
D10
C9
118
146
PD4
I/O
FT
-
USART2_RTS, FMC_NOE,
EVENTOUT
-
-
86
119
C11
147
A5
C11
B9
119
147
PD5
I/O
FT
-
USART2_TX, FMC_NWE,
EVENTOUT
-
-
-
120
D8
148
-
D8
E7
120
148
VSS
S
-
-
-
-
-
-
121
C8
149
-
C8
F7
121
149
VDDSDMMC
S
-
-
-
-
-
D11
LQFP176
54
UFBGA176
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
Pin name
(function after
reset)(1)
Additional
functions
87
122
B11
150
D6
B11
A8
122
150
PD6
I/O
FT
-
-
88
123
A11
151
E6
A11
A9
123
151
PD7
I/O
FT
-
USART2_CK SDMMC2_CMD,
FMC_NE1, EVENTOUT
-
-
USART6_RX,
QUADSPI_BK2_IO2,
SAI2_FS_B, SDMMC2_D0,
FMC_NE2/FMC_NCE,
EVENTOUT
-
-
-
124 C10 152
-
C10
E8
124
152
PG9
I/O
FT
STM32F732xx STM32F733xx
-
SPI3_MOSI/I2S3_SD,
SAI1_SD_A, USART2_RX,
SDMMC2_CK, FMC_NWAIT,
EVENTOUT
Pinouts and pin description
78/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
WLCSP100
UFBGA176
UFBGA144
LQFP176
Pin type
I/O structure
Notes
LQFP144
125 B10
153
-
B10
D8
125
153
PG10
I/O
FT
-
SAI2_SD_B, SDMMC2_D1,
FMC_NE3, EVENTOUT
-
-
-
126
B9
154
-
B9
C8
126
154
PG11
I/O
FT
-
SDMMC2_D2, FMC_INT,
EVENTOUT
-
-
-
127
B8
155
-
B8
B8
127
155
PG12
I/O
FT
-
LPTIM1_IN1, USART6_RTS,
SDMMC2_D3, FMC_NE4,
EVENTOUT
-
-
-
128
A8
156
-
A8
D7
128
156
PG13
I/O
FT
-
TRACED0, LPTIM1_OUT,
USART6_CTS, FMC_A24,
EVENTOUT
-
-
-
UFBGA176
-
LQFP144
-
Pin name
(function after
reset)(1)
-
-
129
A7
157
-
A7
C7
129
157
PG14
I/O
FT
-
TRACED1, LPTIM1_ETR,
USART6_TX,
QUADSPI_BK2_IO3, FMC_A25,
EVENTOUT
-
-
130
D7
158
-
D7
-
130
158
VSS
S
-
-
-
Additional
functions
Pinouts and pin description
79/228
LQFP176
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
-
-
131
C7
159
-
C7
F6
131
159
VDD
S
-
-
-
-
-
-
132
B7
160
-
B7
B7
132
160
PG15
I/O
FT
-
USART6_CTS, FMC_SDNCAS,
EVENTOUT
-
161
PB3(JTDO/TRA
CESWO)
-
JTDO/TRACESWO, TIM2_CH2,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
SDMMC2_D2, EVENTOUT
-
-
NJTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
SPI2_NSS/I2S2_WS,
SDMMC2_D3, EVENTOUT
-
(4)
TIM3_CH2, I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
OTG_HS_ULPI_D7,
FMC_SDCKE1, EVENTOUT
-
-
TIM4_CH1, I2C1_SCL,
USART1_TX,
QUAD SPI_BK1_NCS,
FMC_SDNE1, EVENTOUT
-
55
56
57
58
89
90
91
92
133 A10
134
135
136
A9
A6
B6
161
162
163
164
A6
B7
C7
D7
A10
A9
A6
B6
A7
A6
B6
C6
133
134
135
136
162
163
164
Pin name
(function after
reset)(1)
PB4(NJTRST)
PB5
PB6
I/O
I/O
I/O
I/O
FT
FT
FT
FTf
Additional
functions
STM32F732xx STM32F733xx
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
Pinouts and pin description
80/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
LQFP176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
59
93
137
B5
165
B8
B5
D6
137
165
PB7
I/O
FTf
-
TIM4_CH2, I2C1_SDA,
USART1_RX, FMC_NL,
EVENTOUT
-
60
94
138
D6
166
A7
D6
D5
138
166
BOOT
I
B
-
-
VPP
-
TIM4_CH3, TIM10_CH1,
I2C1_SCL, CAN1_RX,
SDMMC2_D4, SDMMC1_D4,
EVENTOUT
-
-
61
95
139
A5
167
C8
A5
C5
139
167
Pin name
(function after
reset)(1)
PB8
I/O
FTf
Additional
functions
96
140
B4
168
D8
B4
B5
140
168
PB9
I/O
FTf
-
-
97
141
A4
169
E7
A4
A5
141
169
PE0
I/O
FT
-
TIM4_ETR, LPTIM1_ETR,
UART8_Rx, SAI2_MCK_A,
FMC_NBL0, EVENTOUT
-
-
98
142
A3
170
B9
A3
A4
142
170
PE1
I/O
FT
-
LPTIM1_IN2, UART8_Tx,
FMC_NBL1, EVENTOUT
-
63
99
-
D5
-
A8
D5
E6
-
-
VSS
S
-
-
-
-
Pinouts and pin description
81/228
62
TIM4_CH4, TIM11_CH1,
I2C1_SDA, SPI2_NSS/I2S2_WS,
CAN1_TX, SDMMC2_D5,
SDMMC1_D5, EVENTOUT
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
Notes
172
A9
C5
F5
144
172
VDD
S
-
-
-
-
LQFP176
C5
LQFP144
100 144
UFBGA144
-
UFBGA176
-
WLCSP100
-
LQFP176
-
UFBGA176
S
LQFP144
PDR_ON
LQFP100
Alternate functions
LQFP64
I/O structure
STM32F733xx
Pin type
STM32F732xx
-
-
143
C6
171
-
C6
E5
143
171
64
Pin name
(function after
reset)(1)
Additional
functions
DS11854 Rev 5
-
-
D4
173
-
D4
-
-
173
PI4
I/O
FT
-
TIM8_BKIN, SAI2_MCK_A,
FMC_NBL2, EVENTOUT
-
-
-
-
C4
174
-
C4
-
-
174
PI5
I/O
FT
-
TIM8_CH1, SAI2_SCK_A,
FMC_NBL3, EVENTOUT
-
-
-
-
C3
175
-
C3
-
-
175
PI6
I/O
FT
-
TIM8_CH2, SAI2_SD_A,
FMC_D28, EVENTOUT
-
-
-
-
C2
176
-
C2
-
-
176
PI7
I/O
FT
-
TIM8_CH3, SAI2_FS_A,
FMC_D29, EVENTOUT
-
-
-
-
F6
-
-
F6
-
-
-
VSS
S
-
-
-
-
-
-
-
F7
-
-
F7
-
-
-
VSS
S
-
-
-
-
-
-
-
F8
-
-
F8
-
-
-
VSS
S
-
-
-
-
-
-
-
F9
-
-
F9
-
-
-
VSS
S
-
-
-
-
-
-
-
F10
-
-
F10
-
-
-
VSS
S
-
-
-
-
STM32F732xx STM32F733xx
-
Pinouts and pin description
82/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
Pin type
I/O structure
Notes
LQFP176
-
-
-
G6
-
-
G6
-
-
-
VSS
S
-
-
-
-
-
-
-
G7
-
-
G7
-
-
-
VSS
S
-
-
-
-
-
-
-
G8
-
-
G8
-
-
-
VSS
S
-
-
-
-
-
-
-
G9
-
-
G9
-
-
-
VSS
S
-
-
-
-
-
-
-
G10
-
-
G10
-
-
-
VSS
S
-
-
-
-
-
-
-
H6
-
-
H6
-
-
-
VSS
S
-
-
-
-
-
-
-
H7
-
-
H7
-
-
-
VSS
S
-
-
-
-
-
-
-
H8
-
-
H8
-
-
-
VSS
S
-
-
-
-
-
-
-
H9
-
-
H9
-
-
-
VSS
S
-
-
-
-
-
-
-
H10
-
-
H10
-
-
-
VSS
S
-
-
-
-
-
-
-
J6
-
-
J6
-
-
-
VSS
S
-
-
-
-
-
-
-
J7
-
-
J7
-
-
-
VSS
S
-
-
-
-
-
-
-
J8
-
-
J8
-
-
-
VSS
S
-
-
-
-
-
-
-
J9
-
-
J9
-
-
-
VSS
S
-
-
-
-
-
-
-
J10
-
-
J10
-
-
-
VSS
S
-
-
-
-
-
-
-
K6
-
-
K6
-
-
-
VSS
S
-
-
-
-
-
-
-
K7
-
-
K7
-
-
-
VSS
S
-
-
-
-
-
-
-
K8
-
-
K8
-
-
-
VSS
S
-
-
-
-
Pin name
(function after
reset)(1)
Additional
functions
83/228
Pinouts and pin description
LQFP144
DS11854 Rev 5
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
STM32F732xx STM32F733xx
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
Pin Number
UFBGA176
LQFP176
WLCSP100
UFBGA176
UFBGA144
LQFP144
LQFP176
I/O structure
Notes
LQFP144
Pin type
Alternate functions
LQFP100
STM32F733xx
LQFP64
STM32F732xx
-
-
-
K9
-
-
K9
-
-
-
VSS
S
-
-
-
-
-
-
-
K10
-
-
K10
-
-
-
VSS
S
-
-
-
-
Pin name
(function after
reset)(1)
Additional
functions
Pinouts and pin description
84/228
Table 10. STM32F732xx and STM32F733xx pin and ball definition (continued)
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to
PC15 and PI8 in output mode is limited:
DS11854 Rev 5
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not
reset by the main reset).
4. ULPI signals not available on the STM32F733xx devices.
5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
6. If the device is in regulator OFF/internal reset ON mode (BYPASS_REG pin is set to VDD), then PA0 is used as an internal reset (active low).
STM32F732xx STM32F733xx
STM32F732xx STM32F733xx
Pinouts and pin description
Table 11. FMC pin definition
Pin name
NOR/PSRAM/SR
AM
NOR/PSRAM
Mux
NAND16
SDRAM
PF0
A0
-
-
A0
PF1
A1
-
-
A1
PF2
A2
-
-
A2
PF3
A3
-
-
A3
PF4
A4
-
-
A4
PF5
A5
-
-
A5
PF12
A6
-
-
A6
PF13
A7
-
-
A7
PF14
A8
-
-
A8
PF15
A9
-
-
A9
PG0
A10
-
-
A10
PG1
A11
-
-
A11
PG2
A12
-
-
A12
PG3
A13
-
-
-
PG4
A14
-
-
BA0
PG5
A15
-
-
BA1
PD11
A16
A16
CLE
-
PD12
A17
A17
ALE
-
PD13
A18
A18
-
-
PE3
A19
A19
-
-
PE4
A20
A20
-
-
PE5
A21
A21
-
-
PE6
A22
A22
-
-
PE2
A23
A23
-
-
PG13
A24
A24
-
-
PG14
A25
A25
-
-
PD14
D0
DA0
D0
D0
PD15
D1
DA1
D1
D1
PD0
D2
DA2
D2
D2
PD1
D3
DA3
D3
D3
PE7
D4
DA4
D4
D4
PE8
D5
DA5
D5
D5
PE9
D6
DA6
D6
D6
PE10
D7
DA7
D7
D7
DS11854 Rev 5
85/228
98
Pinouts and pin description
STM32F732xx STM32F733xx
Table 11. FMC pin definition (continued)
86/228
Pin name
NOR/PSRAM/SR
AM
NOR/PSRAM
Mux
NAND16
SDRAM
PE11
D8
DA8
D8
D8
PE12
D9
DA9
D9
D9
PE13
D10
DA10
D10
D10
PE14
D11
DA11
D11
D11
PE15
D12
DA12
D12
D12
PD8
D13
DA13
D13
D13
PD9
D14
DA14
D14
D14
PD10
D15
DA15
D15
D15
PH8
D16
-
-
D16
PH9
D17
-
-
D17
PH10
D18
-
-
D18
PH11
D19
-
-
D19
PH12
D20
-
-
D20
PH13
D21
-
-
D21
PH14
D22
-
-
D22
PH15
D23
-
-
D23
PI0
D24
-
-
D24
PI1
D25
-
-
D25
PI2
D26
-
-
D26
PI3
D27
-
-
D27
PI6
D28
-
-
D28
PI7
D29
-
-
D29
PI9
D30
-
-
D30
PI10
D31
-
-
D31
PD7
NE1
NE1
-
-
PG9
NE2
NE2
NCE
-
PG10
NE3
NE3
-
-
PG11
-
-
-
-
PG12
NE4
NE4
-
-
PD3
CLK
CLK
-
-
PD4
NOE
NOE
NOE
-
PD5
NWE
NWE
NWE
-
PD6
NWAIT
NWAIT
NWAIT
-
PB7
NADV
NADV
-
-
DS11854 Rev 5
STM32F732xx STM32F733xx
Pinouts and pin description
Table 11. FMC pin definition (continued)
Pin name
NOR/PSRAM/SR
AM
NOR/PSRAM
Mux
NAND16
SDRAM
PF6
-
-
-
-
PF7
-
-
-
-
PF8
-
-
-
-
PF9
-
-
-
-
PF10
-
-
-
-
PG6
-
-
-
-
PG7
-
-
INT
-
PE0
NBL0
NBL0
-
NBL0
PE1
NBL1
NBL1
-
NBL1
PI4
NBL2
-
-
NBL2
PI5
NBL3
-
-
NBL3
PG8
-
-
-
SDCLK
PC0
-
-
-
SDNWE
PF11
-
-
-
SDNRAS
PG15
-
-
-
SDNCAS
PH2
-
-
-
SDCKE0
PH3
-
-
-
SDNE0
PH6
-
-
-
SDNE1
PH7
-
-
-
SDCKE1
PH5
-
-
-
SDNWE
PC2
-
-
-
SDNE0
PC3
-
-
-
SDCKE0
PB5
-
-
-
SDCKE1
PB6
-
-
-
SDNE1
DS11854 Rev 5
87/228
98
AF0
AF1
AF2
AF3
AF4
TIM3/4/5
TIM8/9/10/1
1/LPTIM1
I2C1/2/3/U
SART1
Port
SYS
DS11854 Rev 5
Port A
TIM1/2
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
6/UART4/5/7/
ADSPI/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
-
TIM2_CH1
/TIM2_ET TIM5_CH1
R
TIM8_ETR
-
-
-
USART2_CT
S
UART4_ TX
-
SAI2_SD_B
-
-
EVEN
TOUT
PA1
-
TIM2_CH2 TIM5_CH2
-
-
-
-
USART2_RT
S
UART4_RX
QUADSPI_
BK1_IO3
SAI2_MCK
_B
-
-
EVEN
TOUT
PA2
-
TIM2_CH3 TIM5_CH3
TIM9_CH1
-
-
-
USART2_TX
SAI2_SCK_B
-
-
-
-
EVEN
TOUT
PA3
-
TIM2_CH4 TIM5_CH4
TIM9_CH2
-
-
-
USART2_RX
-
-
OTG_HS_U
LPI_D0
-
-
EVEN
TOUT
PA4
-
-
-
-
-
SPI1_NSS SPI3_NSS
USART2_CK
/I2S1_WS /I2S3_WS
-
-
-
-
OTG_HS_
SOF
EVEN
TOUT
PA5
-
TIM2_CH1
/TIM2_ET
R
-
TIM8_CH1
N
-
SPI1_SCK
/I2S1_CK
-
-
-
-
OTG_HS_U
LPI_CK
-
-
EVEN
TOUT
PA6
-
TIM1_BKI
N
TIM3_CH1 TIM8_BKIN
-
SPI1_MIS
O
-
-
-
TIM13_CH1
-
-
-
EVEN
TOUT
PA7
-
TIM1_CH1
TIM3_CH2
N
TIM8_CH1
N
-
SPI1_MO
SI/I2S1_S
D
-
-
-
TIM14_CH1
-
-
FMC_SDN
WE
EVEN
TOUT
PA8
MCO1
TIM1_CH1
-
TIM8_BKIN
2
I2C3_SCL
-
-
USART1_CK
-
-
OTG_FS_S
OF
-
-
EVEN
TOUT
PA9
-
TIM1_CH2
-
-
I2C3_SMB
A
SPI2_SCK
/I2S2_CK
-
USART1_TX
-
-
-
-
-
EVEN
TOUT
PA10
-
TIM1_CH3
-
-
-
-
-
USART1_RX
-
-
OTG_FS_I
D
-
-
EVEN
TOUT
PA11
-
TIM1_CH4
-
-
-
-
-
USART1_CT
S
-
CAN1_RX
OTG_FS_D
M
-
-
EVEN
TOUT
STM32F732xx STM32F733xx
PA0
Pinouts and pin description
88/228
Table 12. STM32F732xx and STM32F733xx alternate function mapping
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
TIM1/2
TIM3/4/5
PA12
-
TIM1_ETR
-
-
-
-
-
USART1_RT
S
SAI2_FS_B
CAN1_TX
OTG_FS_D
P
-
-
EVEN
TOUT
PA13
JTMSSWDIO
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PA14
JTCKSWCLK
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PA15
JTDI
TIM2_CH1
/TIM2_ET
R
-
-
-
-
UART4_RTS
-
-
-
-
EVEN
TOUT
PB0
-
TIM1_CH2
TIM3_CH3
N
TIM8_CH2
N
-
-
-
-
UART4_CTS
-
OTG_HS_U
LPI_D1
-
-
EVEN
TOUT
PB1
-
TIM1_CH3
TIM3_CH4
N
TIM8_CH3
N
-
-
-
-
-
-
OTG_HS_U
LPI_D2
-
-
EVEN
TOUT
PB2
-
-
-
-
-
-
SAI1_SD_
A
SPI3_MOSI/I
2S3_SD
-
QUADSPI_
CLK
-
-
-
EVEN
TOUT
PB3
JTDO/TR
ACESWO
TIM2_CH2
-
-
-
SPI1_SCK SPI3_SCK
/I2S1_CK /I2S3_CK
-
-
-
SDMMC2_
D2
-
-
EVEN
TOUT
PB4
NJTRST
-
TIM3_CH1
-
-
SPI1_MIS
O
SPI3_MIS
O
SPI2_NSS/I2
S2_WS
-
-
SDMMC2_
D3
-
-
EVEN
TOUT
PB5
-
-
TIM3_CH2
-
I2C1_SMB
A
SPI1_MO
SI/I2S1_S
D
SPI3_MO
SI/I2S3_S
D
-
-
-
OTG_HS_U
LPI_D7
-
FMC_SDC
KE1
EVEN
TOUT
PB6
-
-
TIM4_CH1
-
I2C1_SCL
-
-
USART1_TX
-
-
QUADSPI_
BK1_NCS
-
FMC_SDN
E1
EVEN
TOUT
PB7
-
-
TIM4_CH2
-
I2C1_SDA
-
-
USART1_RX
-
-
-
-
FMC_NL
EVEN
TOUT
PB8
-
-
TIM4_CH3
TIM10_CH
1
I2C1_SCL
-
-
-
-
CAN1_RX
SDMMC2_
D4
-
SDMMC1
_D4
EVEN
TOUT
SPI1_NSS SPI3_NSS
/I2S1_WS /I2S3_WS
DS11854 Rev 5
89/228
Pinouts and pin description
SYS
TIM8/9/10/1
1/LPTIM1
Port A
Port B
AF5
STM32F732xx STM32F733xx
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
TIM3/4/5
TIM8/9/10/1
1/LPTIM1
I2C1/2/3/U
SART1
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
TIM4_CH4 TIM11_CH1
I2C1_SDA
SPI2_NSS
/I2S2_WS
-
-
-
CAN1_TX
Port
Port B
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
SDMMC2_
D5
-
SDMMC1
_D5
EVEN
TOUT
DS11854 Rev 5
SYS
TIM1/2
PB9
-
-
PB10
-
TIM2_CH3
-
-
I2C2_SCL
SPI2_SCK
/I2S2_CK
-
USART3_TX
-
-
OTG_HS_U
LPI_D3
-
-
EVEN
TOUT
PB11
-
TIM2_CH4
-
-
I2C2_SDA
-
-
USART3_RX
-
-
OTG_HS_U
LPI_D4
-
-
EVEN
TOUT
PB12
-
TIM1_BKI
N
-
-
I2C2_SMB
A
SPI2_NSS
/I2S2_WS
-
USART3_CK
-
-
OTG_HS_U
LPI_D5
-
OTG_HS_
ID
EVEN
TOUT
PB13
-
TIM1_CH1
N
-
-
-
SPI2_SCK
/I2S2_CK
-
USART3_CT
S
-
-
OTG_HS_U
LPI_D6
-
-
EVEN
TOUT
PB14
-
TIM1_CH2
N
-
TIM8_CH2
N
-
SPI2_MIS
O
-
USART3_RT
S
-
TIM12_CH1
SDMMC2_
D0
-
OTG_HS_
DM
EVEN
TOUT
RTC_REF TIM1_CH3
IN
N
-
TIM8_CH3
N
-
SPI2_MO
SI/I2S2_S
D
-
-
-
TIM12_CH2
SDMMC2_
D1
-
OTG_HS_
DP
EVEN
TOUT
PB15
-
-
-
-
-
-
-
-
SAI2_FS_B
-
OTG_HS_U
LPI_STP
-
FMC_SDN
WE
EVEN
TOUT
PC1
TRACED0
-
-
-
-
SPI2_MO
SI/I2S2_S
D
SAI1_SD_
A
-
-
-
-
-
-
EVEN
TOUT
PC2
-
-
-
-
-
SPI2_MIS
O
-
-
-
-
OTG_HS_U
LPI_DIR
-
FMC_SDN
E0
EVEN
TOUT
PC3
-
-
-
-
-
SPI2_MO
SI/I2S2_S
D
-
-
-
-
OTG_HS_U
LPI_NXT
-
FMC_SDC
KE0
EVEN
TOUT
Port C
STM32F732xx STM32F733xx
PC0
Pinouts and pin description
90/228
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
DS11854 Rev 5
TIM1/2
TIM3/4/5
PC4
-
-
-
-
-
I2S1_MCK
-
-
-
-
-
-
FMC_SDN
E0
EVEN
TOUT
PC5
-
-
-
-
-
-
-
-
-
-
-
-
FMC_SDC
KE0
EVEN
TOUT
PC6
-
-
TIM3_CH1
TIM8_CH1
-
I2S2_MCK
-
-
USART6_TX
-
SDMMC2_
D6
-
SDMMC1
_D6
EVEN
TOUT
PC7
-
-
TIM3_CH2
TIM8_CH2
-
-
I2S3_MCK
-
USART6_RX
-
SDMMC2_
D7
-
SDMMC1
_D7
EVEN
TOUT
PC8
TRACED1
-
TIM3_CH3
TIM8_CH3
-
-
-
UART5_RTS
USART6_CK
-
-
-
SDMMC1
_D0
EVEN
TOUT
PC9
MCO2
-
TIM3_CH4
TIM8_CH4
I2C3_SDA
I2S_CKIN
-
UART5_CTS
-
QUADSPI_
BK1_IO0
-
-
SDMMC1
_D1
EVEN
TOUT
PC10
-
-
-
-
-
-
SPI3_SCK
/I2S3_CK
USART3_TX
UART4_TX
QUADSPI_
BK1_IO1
-
-
SDMMC1
_D2
EVEN
TOUT
PC11
-
-
-
-
-
-
SPI3_MIS
O
USART3_RX
UART4_RX
QUADSPI_
BK2_NCS
-
-
SDMMC1
_D3
EVEN
TOUT
PC12
TRACED3
-
-
-
-
-
SPI3_MO
SI/I2S3_S
D
USART3_CK
UART5_TX
-
-
-
SDMMC1
_CK
EVEN
TOUT
PC13
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
Port C
91/228
Pinouts and pin description
SYS
TIM8/9/10/1
1/LPTIM1
STM32F732xx STM32F733xx
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
DS11854 Rev 5
TIM1/2
TIM3/4/5
PD0
-
-
-
-
-
-
-
-
-
CAN1_RX
-
-
FMC_D2
EVEN
TOUT
PD1
-
-
-
-
-
-
-
-
-
CAN1_TX
-
-
FMC_D3
EVEN
TOUT
PD2
TRACED2
-
TIM3_ETR
-
-
-
-
-
UART5_RX
-
-
-
SDMMC1
_CMD
EVEN
TOUT
PD3
-
-
-
-
-
SPI2_SCK
/I2S2_CK
-
USART2_CT
S
-
-
-
-
FMC_CLK
EVEN
TOUT
PD4
-
-
-
-
-
-
-
USART2_RT
S
-
-
-
-
FMC_NO
E
EVEN
TOUT
PD5
-
-
-
-
-
-
-
USART2_TX
-
-
-
-
FMC_NW
E
EVEN
TOUT
PD6
-
-
-
-
-
SPI3_MO
SI/I2S3_S
D
SAI1_SD_
A
USART2_RX
-
-
-
SDMMC2
_CK
FMC_NW
AIT
EVEN
TOUT
PD7
-
-
-
-
-
-
-
USART2_CK
-
-
-
SDMMC2
_CMD
FMC_NE1
EVEN
TOUT
PD8
-
-
-
-
-
-
-
USART3_TX
-
-
-
-
FMC_D13
EVEN
TOUT
PD9
-
-
-
-
-
-
-
USART3_RX
-
-
-
-
FMC_D14
EVEN
TOUT
PD10
-
-
-
-
-
-
-
USART3_CK
-
-
-
-
FMC_D15
EVEN
TOUT
PD11
-
-
-
-
-
-
-
USART3_CT
S
-
QUADSPI_
BK1_IO0
SAI2_SD_A
-
FMC_A16/
FMC_CLE
EVEN
TOUT
PD12
-
-
TIM4_CH1
LPTIM1_IN
1
-
-
-
USART3_RT
S
-
QUADSPI_
BK1_IO1
SAI2_FS_A
-
FMC_A17/
FMC_ALE
EVEN
TOUT
PD13
-
-
TIM4_CH2
LPTIM1_O
UT
-
-
-
-
-
QUADSPI_
BK1_IO3
SAI2_SCK_
A
-
FMC_A18
EVEN
TOUT
PD14
-
-
TIM4_CH3
-
-
-
-
-
UART8_CTS
-
-
-
FMC_D0
EVEN
TOUT
PD15
-
-
TIM4_CH4
-
-
-
-
-
UART8_RTS
-
-
-
FMC_D1
EVEN
TOUT
Port D
Port D
STM32F732xx STM32F733xx
SYS
TIM8/9/10/1
1/LPTIM1
Pinouts and pin description
92/228
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
DS11854 Rev 5
TIM1/2
TIM3/4/5
PE0
-
-
TIM4_ETR
LPTIM1_ET
R
-
-
-
-
UART8_Rx
-
SAI2_MCK
_A
-
FMC_NBL
0
EVEN
TOUT
PE1
-
-
-
LPTIM1_IN
2
-
-
-
-
UART8_Tx
-
-
-
FMC_NBL
1
EVEN
TOUT
PE2
TRACECL
K
-
-
-
-
SPI4_SCK
SAI1_MCL
K_A
-
-
QUADSPI_
BK1_IO2
-
-
FMC_A23
EVEN
TOUT
PE3
TRACED0
-
-
-
-
-
SAI1_SD_
B
-
-
-
-
-
FMC_A19
EVEN
TOUT
PE4
TRACED1
-
-
-
-
SPI4_NSS
SAI1_FS_
A
-
-
-
-
-
FMC_A20
EVEN
TOUT
PE5
TRACED2
-
-
TIM9_CH1
-
SPI4_MIS
O
SAI1_SCK
_A
-
-
-
-
-
FMC_A21
EVEN
TOUT
PE6
TRACED3
TIM1_BKI
N2
-
TIM9_CH2
-
SPI4_MO
SI
SAI1_SD_
A
-
-
-
SAI2_MCK
_B
-
FMC_A22
EVEN
TOUT
PE7
-
TIM1_ETR
-
-
-
-
-
-
UART7_Rx
-
QUADSPI_
BK2_IO0
-
FMC_D4
EVEN
TOUT
PE8
-
TIM1_CH1
N
-
-
-
-
-
-
UART7_Tx
-
QUADSPI_
BK2_IO1
-
FMC_D5
EVEN
TOUT
PE9
-
TIM1_CH1
-
-
-
-
-
-
UART7_RTS
-
QUADSPI_
BK2_IO2
-
FMC_D6
EVEN
TOUT
PE10
-
TIM1_CH2
N
-
-
-
-
-
-
UART7_CTS
-
QUADSPI_
BK2_IO3
-
FMC_D7
EVEN
TOUT
PE11
-
TIM1_CH2
-
-
-
SPI4_NSS
-
-
-
-
SAI2_SD_B
-
FMC_D8
EVEN
TOUT
PE12
-
TIM1_CH3
N
-
-
-
SPI4_SCK
-
-
-
-
SAI2_SCK_
B
-
FMC_D9
EVEN
TOUT
PE13
-
TIM1_CH3
-
-
-
SPI4_MIS
O
-
-
-
-
SAI2_FS_B
-
FMC_D10
EVEN
TOUT
PE14
-
TIM1_CH4
-
-
-
SPI4_MO
SI
-
-
-
-
SAI2_MCK
_B
-
FMC_D11
EVEN
TOUT
PE15
-
TIM1_BKI
N
-
-
-
-
-
-
-
-
-
-
FMC_D12
EVEN
TOUT
Port E
Port E
93/228
Pinouts and pin description
SYS
TIM8/9/10/1
1/LPTIM1
STM32F732xx STM32F733xx
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
DS11854 Rev 5
Port F
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
SYS
TIM1/2
TIM3/4/5
TIM8/9/10/1
1/LPTIM1
PF0
-
-
-
-
I2C2_SDA
-
-
-
-
-
-
-
FMC_A0
EVEN
TOUT
PF1
-
-
-
-
I2C2_SCL
-
-
-
-
-
-
-
FMC_A1
EVEN
TOUT
PF2
-
-
-
-
I2C2_SMB
A
-
-
-
-
-
-
-
FMC_A2
EVEN
TOUT
PF3
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A3
EVEN
TOUT
PF4
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A4
EVEN
TOUT
PF5
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A5
EVEN
TOUT
PF6
-
-
-
TIM10_CH
1
-
SPI5_NSS
SAI1_SD_
B
-
UART7_Rx
QUADSPI_
BK1_IO3
-
-
-
EVEN
TOUT
PF7
-
-
-
TIM11_CH1
-
SPI5_SCK
SAI1_MCL
K_B
-
UART7_Tx
QUADSPI_
BK1_IO2
-
-
-
EVEN
TOUT
PF8
-
-
-
-
-
SPI5_MIS
O
SAI1_SCK
_B
-
UART7_RTS
TIM13_CH1
QUADSPI_
BK1_IO0
-
-
EVEN
TOUT
PF9
-
-
-
-
-
SPI5_MO
SI
SAI1_FS_
B
-
UART7_CTS
TIM14_CH1
QUADSPI_
BK1_IO1
-
-
EVEN
TOUT
PF10
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PF11
-
-
-
-
-
SPI5_MO
SI
-
-
-
-
SAI2_SD_B
-
FMC_SDN
RAS
EVEN
TOUT
PF12
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A6
EVEN
TOUT
PF13
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A7
EVEN
TOUT
PF14
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A8
EVEN
TOUT
PF15
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A9
EVEN
TOUT
STM32F732xx STM32F733xx
Port F
AF5
Pinouts and pin description
94/228
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
DS11854 Rev 5
Port G
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
TIM1/2
TIM3/4/5
PG0
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10
EVEN
TOUT
PG1
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A11
EVEN
TOUT
PG2
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A12
EVEN
TOUT
PG3
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A13
EVEN
TOUT
PG4
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A14/
FMC_BA0
EVEN
TOUT
PG5
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A15/
FMC_BA1
EVEN
TOUT
PG6
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PG7
-
-
-
-
-
-
-
-
USART6_CK
-
-
-
FMC_INT
EVEN
TOUT
PG8
-
-
-
-
-
-
-
-
USART6_RT
S
-
-
-
FMC_SDC
LK
EVEN
TOUT
PG9
-
-
-
-
-
-
-
-
USART6_RX
QUADSPI_
BK2_IO2
SAI2_FS_B
SDMMC2
_D0
FMC_NE2
/FMC_NC
E
EVEN
TOUT
PG10
-
-
-
-
-
-
-
-
-
-
SAI2_SD_B
SDMMC2
_D1
FMC_NE3
EVEN
TOUT
95/228
Pinouts and pin description
SYS
TIM8/9/10/1
1/LPTIM1
STM32F732xx STM32F733xx
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
Port G
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
DS11854 Rev 5
TIM1/2
TIM3/4/5
PG11
-
-
-
-
-
-
-
-
-
-
SDMMC2_
D2
-
-
EVEN
TOUT
PG12
-
-
-
LPTIM1_IN
1
-
-
-
-
USART6_RT
S
-
-
SDMMC2
_D3
FMC_NE4
EVEN
TOUT
PG13
TRACED0
-
-
LPTIM1_O
UT
-
-
-
-
USART6_CT
S
-
-
-
FMC_A24
EVEN
TOUT
PG14
TRACED1
-
-
LPTIM1_ET
R
-
-
-
-
USART6_TX
QUADSPI_
BK2_IO3
-
-
FMC_A25
EVEN
TOUT
PG15
-
-
-
-
-
-
-
-
USART6_CT
S
-
-
-
FMC_SDN
CAS
EVEN
TOUT
PH0
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PH2
-
-
-
LPTIM1_IN
2
-
-
-
-
-
QUADSPI_
BK2_IO0
SAI2_SCK_
B
-
FMC_SDC
KE0
EVEN
TOUT
PH3
-
-
-
-
-
-
-
-
-
QUADSPI_
BK2_IO1
SAI2_MCK
_B
-
FMC_SDN
E0
EVEN
TOUT
PH4
-
-
-
-
I2C2_SCL
-
-
-
-
-
OTG_HS_U
LPI_NXT
-
-
EVEN
TOUT
PH5
-
-
-
-
I2C2_SDA
SPI5_NSS
-
-
-
-
-
-
FMC_SDN
WE
EVEN
TOUT
PH6
-
-
-
-
I2C2_SMB
A
SPI5_SCK
-
-
-
TIM12_CH1
-
-
FMC_SDN
E1
EVEN
TOUT
PH7
-
-
-
-
I2C3_SCL
SPI5_MIS
O
-
-
-
-
-
-
FMC_SDC
KE1
EVEN
TOUT
Port H
STM32F732xx STM32F733xx
SYS
TIM8/9/10/1
1/LPTIM1
Pinouts and pin description
96/228
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
TIM1/2
TIM3/4/5
PH8
-
-
-
-
I2C3_SDA
-
-
-
-
-
-
-
FMC_D16
EVEN
TOUT
PH9
-
-
-
-
I2C3_SMB
A
-
-
-
-
TIM12_CH2
-
-
FMC_D17
EVEN
TOUT
PH10
-
-
TIM5_CH1
-
-
-
-
-
-
-
-
-
FMC_D18
EVEN
TOUT
PH11
-
-
TIM5_CH2
-
-
-
-
-
-
-
-
-
FMC_D19
EVEN
TOUT
PH12
-
-
TIM5_CH3
-
-
-
-
-
-
-
-
-
FMC_D20
EVEN
TOUT
PH13
-
-
-
TIM8_CH1
N
-
-
-
-
UART4_TX
CAN1_TX
-
-
FMC_D21
EVEN
TOUT
PH14
-
-
-
TIM8_CH2
N
-
-
-
-
UART4_RX
CAN1_RX
-
-
FMC_D22
EVEN
TOUT
PH15
-
-
-
TIM8_CH3
N
-
-
-
-
-
-
-
-
FMC_D23
EVEN
TOUT
PI0
-
-
TIM5_CH4
-
-
SPI2_NSS
/I2S2_WS
-
-
-
-
-
-
FMC_D24
EVEN
TOUT
PI1
-
-
-
TIM8_BKIN
2
-
SPI2_SCK
/I2S2_CK
-
-
-
-
-
-
FMC_D25
EVEN
TOUT
PI2
-
-
-
TIM8_CH4
-
SPI2_MIS
O
-
-
-
-
-
-
FMC_D26
EVEN
TOUT
PI3
-
-
-
TIM8_ETR
-
SPI2_MO
SI/I2S2_S
D
-
-
-
-
-
-
FMC_D27
EVEN
TOUT
PI4
-
-
-
TIM8_BKIN
-
-
-
-
-
-
SAI2_MCK
_A
-
FMC_NBL
2
EVEN
TOUT
PI5
-
-
-
TIM8_CH1
-
-
-
-
-
-
SAI2_SCK_
A
-
FMC_NBL
3
EVEN
TOUT
PI6
-
-
-
TIM8_CH2
-
-
-
-
-
-
SAI2_SD_A
-
FMC_D28
EVEN
TOUT
Port H
DS11854 Rev 5
Port I
97/228
Pinouts and pin description
SYS
TIM8/9/10/1
1/LPTIM1
STM32F732xx STM32F733xx
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
I2C1/2/3/U
SART1
Port
Port I
AF5
AF6
AF7
AF8
AF9
AF10
SPI2/I2S2/
CAN1/TIM1 SAI2/QUAD
SPI1/I2S1/
SPI2/I2S2/S
SPI3/I2S3/
SAI2/USART 2/13/14/QU SPI/SDMM
SPI2/I2S2/
PI3/I2S3/US
SPI3/I2S3/
ADSPI/
6/UART4/5/7/
C2/OTG2_
SPI3/I2S3/
ART1/2/3/UA
SAI1/
8/OTG1_FS
FMC/
HS/OTG1_
SPI4/5
RT5
UART4
OTG2_HS
FS
AF11
AF12
AF15
SDMMC2
UART7/F
MC/SDM
MC1/
OTG2_FS
SYS
DS11854 Rev 5
SYS
TIM1/2
TIM3/4/5
TIM8/9/10/1
1/LPTIM1
PI7
-
-
-
TIM8_CH3
-
-
-
-
-
-
SAI2_FS_A
-
FMC_D29
EVEN
TOUT
PI8
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PI9
-
-
-
-
-
-
-
-
UART4_RX
CAN1_RX
-
-
FMC_D30
EVEN
TOUT
PI10
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D31
EVEN
TOUT
PI11
-
-
-
-
-
-
-
-
-
-
OTG_HS_U
LPI_DIR
-
-
EVEN
TOUT
PI12
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PI13
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PI14
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PI15
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
Pinouts and pin description
98/228
Table 12. STM32F732xx and STM32F733xx alternate function mapping (continued)
STM32F732xx STM32F733xx
STM32F732xx STM32F733xx
5
Memory mapping
Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.
DS11854 Rev 5
99/228
99
Electrical characteristics
6
STM32F732xx STM32F733xx
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 24.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 25.
Figure 24. Pin loading conditions
Figure 25. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19011V2
100/228
DS11854 Rev 5
MS19010V2
STM32F732xx STM32F733xx
Power supply scheme
Figure 26. STM32F732xx power supply scheme
VBAT
GP I/Os
IN
V
DDSDMMC
V
DDSDMMC
OUT
PG[9..12], PD[6,7]
IN
2 × 2.2 μF
VDD
IO
Logic
IO
Logic
VCAP_1
VCAP_2
VDD
1/2/...11/12
12 × 100 nF
+ 1 × 4.7 μF
Level shifter
OUT
100 nF
+ 1 μF
Backup circuitry
(OSC32K,RTC,
Wakeup logic
Backup registers,
backup RAM)
Power switch
VBAT =
1.65 to 3.6V
Level shifter
6.1.6
Electrical characteristics
Voltage
regulator
VSS
1/2/...11/12
Flash memory
BYPASS_REG
VDDUSB
VDDUSB
100 nF
+ 1 μF
PDR_ON
VDD
OTG FS
PHY
Reset
controller
VDDA
VREF
100 nF
+ 1 μF
Kernel logic
(CPU,
digital
& RAM)
100 nF
+ 1 μF
VREF+
VREF-
ADC
Analog:
RCs, PLL,
...
VSSA
MSv42076V2
1. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the
voltage regulator is OFF.
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
3. VDDA=VDD and VSSA=VSS.
DS11854 Rev 5
101/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Figure 27. STM32F733xx power supply scheme
VBAT
Backup circuitry
(OSC32K,RTC,
Wakeup logic
Backup registers,
backup RAM)
OUT
GP I/Os
IN
V
DDSDMMC
Level shifter
Power switch
VBAT =
1.65 to 3.6V
IO
Logic
IN
OUT
PA[11,12], PB[14,15]
VDDUSB
IN
VDDUSB
Level shifter
OUT
PG[9..12], PD[6,7]
Level shifter
VDDSDMMC
100 nF
+ 1 μF
IO
Logic
IO
Logic
100 nF
+ 1 μF
OTG FS
PHY
Kernel logic
(CPU,
digital
& RAM)
V CAP_1
2 × 2.2 μF V CAP_2
VDD
V DD
1/2/...11/12
12 × 100 nF
+ 1 × 4.7 μF
Voltage
regulator
VSS
1/2/...11/12
Flash memory
BYPASS_REG
OTG HS PHY
voltage
regulator
VDD12OTGHS
2.2 μF
3 Kohm +/-1%
PDR_ON
VDD
Reset
controller
VDDA
VREF
100 nF
+ 1 μF
OTG HS PHY
OTG_HS_REXT
100 nF
+ 1 μF
VREF+
VREF-
ADC
Analog:
RCs, PLL,
...
VSSA
MSv42069V1
1. In all the packages (except LQFP100), the VDDUSB allows supplying the PHY FS in PA11/PA12 and the
PHY HS on PB14/PB15. In the LQFP100, the PHY HS on PB14/PB15 is supplied by VDDPHYHS.
102/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the
voltage regulator is OFF.
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
4. VDDA=VDD and VSSA=VSS.
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
6.1.7
Current consumption measurement
Figure 28. Current consumption measurement scheme
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics,
Table 14: Current characteristics, and Table 15: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. The device mission profile (application
conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission
profiles are available on demand.
Table 13. Voltage characteristics
Symbol
VDD–VSS
VIN
Ratings
Min
Max
− 0.3
4.0
Input voltage on FT pins(2)
VSS − 0.3
VDD+4.0
Input voltage on TTa pins
VSS − 0.3
4.0
Input voltage on any other pin
VSS − 0.3
4.0
VSS
9.0
External main supply voltage (including VDDA, VDD,
VBAT, VDDUSB, VDDPHYHS and VDDSDMMC) (1)
Input voltage on BOOT pin
DS11854 Rev 5
Unit
V
103/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 13. Voltage characteristics (continued)
Symbol
|ΔVDDx|
|VSSX −VSS|
VESD(HBM)
Ratings
Min
Max
Variations between different VDD power pins
-
50
Variations between all the different ground pins(3)
-
50
Electrostatic discharge voltage (human body model)
Unit
mV
see Section 6.3.18:
Absolute maximum
ratings (electrical
sensitivity)
-
1. All main power (VDD, VDDA, VDDSDMMC, VDDPHYHS, VDDUSB) and ground (VSS, VSSA) pins must always be
connected to the external power supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 14 for the values of the maximum allowed
injected current.
3. Include VREF- pin.
Table 14. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD_x power lines (source)(1)
Σ IVSS
(sink)(1)
Total current out of sum of all VSS_x ground lines
Σ IVDDUSB
Σ IVDDSDMMC
IVDDSDMMC
300
− 300
Total current into VDDUSB power line (source)
25
Total current into VDDSDMMC power line (source)
Maximum current into each VDD_x power line
IVDD
60
(source)(1)
100
Maximum current into VDDSDMMC power line (source): PG[12:9], PD[7:6]
Maximum current out of each VSS_x ground line (sink)(1)
IVSS
25
Total output current sunk by sum of all I/O and control pins
(2)
120
Total output current sunk by sum of all USB I/Os
25
(2)
Total output current sourced by sum of all I/Os and control pins
IINJ(PIN)
ΣIINJ(PIN)
(4)
Injected current on FT, FTf, RST and B pins
(3)
mA
− 25
Output current sourced by any I/Os and control pin
ΣIIO
100
− 100
Output current sunk by any I/O and control pin
IIO
Unit
− 120
− 5/+0
Injected current on TTa pins(4)
±5
Total injected current (sum of all I/O and control
pins)(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN 2.4 V, the compensation cell should be used.
Figure 44. I/O AC characteristics definition
90%
10%
50%
50%
90%
10%
EXTERNAL
OUTPUT
ON CL
tr(IO)out
tf(IO)out
T
Maximum frequency is achieved if (tr + tf) ≤ (2/3)T and if the duty cycle is (45-55%)
when loaded by CL specified in the table “ I/O AC characteristics”.
ai14131d
152/228
DS11854 Rev 5
STM32F732xx STM32F733xx
6.3.21
Electrical characteristics
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 61: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 64 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 16.
Table 64. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RPU
Weak pull-up equivalent resistor(1)
VIN = VSS
30
40
50
kΩ
-
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Internal Reset source
20
-
-
µs
VF(NRST)
(2)
NRST Input filtered pulse
VNF(NRST)(2) NRST Input not filtered pulse
TNRST_OUT
Generated reset pulse duration
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
Figure 45. Recommended NRST pin protection
VDD
External
reset circuit (1)
NRST (2)
RPU
Internal Reset
Filter
0.1 μF
STM32F
ai14132c
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as
possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 61. Otherwise the reset is not taken into account by the device.
DS11854 Rev 5
153/228
200
Electrical characteristics
6.3.22
STM32F732xx STM32F733xx
TIM timer characteristics
The parameters given in Table 65 are guaranteed by design.
Refer to Section 6.3.20: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 65. TIMx characteristics(1)(2)
Conditions(3)
Min
Max
Unit
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
216 MHz
1
-
tTIMxCLK
AHB/APBx
prescaler>4, fTIMxCLK =
108 MHz
1
-
tTIMxCLK
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 216 MHz
0
fTIMxCLK/2
MHz
Timer resolution
-
16/32
bit
-
65536 ×
65536
tTIMxCLK
Symbol
tres(TIM)
fEXT
ResTIM
tMAX_COUNT
Parameter
Timer resolution time
Maximum possible count
with 32-bit counter
-
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz, by setting the TIMPRE bit in the
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK =
4x PCLKx.
6.3.23
RTC characteristics
Table 66. RTC characteristics
6.3.24
Symbol
Parameter
Conditions
-
fPCLK1/RTCCLK frequency ratio
Any read/write operation
from/to an RTC register
Min
Max
4
-
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 67 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 16.
Table 67. ADC characteristics
Symbol
Parameter
VDDA
Power supply
VREF+
Positive reference voltage
VREF-
Negative reference voltage
Conditions
VDDA − VREF+ < 1.2 V
(1)
fADC
154/228
ADC clock frequency
VDDA = 1.7
to 2.4 V
VDDA = 2.4 to 3.6 V
DS11854 Rev 5
Min
Typ
Max
Unit
1.7(1)
-
3.6
V
1.7(1)
-
VDDA
V
-
0
-
V
0.6
15
18
MHz
0.6
30
36
MHz
STM32F732xx STM32F733xx
Electrical characteristics
Table 67. ADC characteristics (continued)
Symbol
fTRIG(2)
VAIN
RAIN(2)
Parameter
External trigger frequency
Conversion voltage range(3)
External input impedance
RADC(2)(4) Sampling switch resistance
CADC(2)
Internal sample and hold
capacitor
Conditions
Min
Typ
Max
Unit
fADC = 30 MHz,
12-bit resolution
-
-
1764
kHz
-
-
-
17
1/fADC
-
0
(VSSA or VREFtied to ground)
-
VREF+
V
See Equation 1 for
details
-
-
50
κΩ
-
1.5
-
6
κΩ
-
-
4
7
pF
-
-
0.100
µs
1/fADC
tlat(2)
Injection trigger conversion
latency
fADC = 30 MHz
-
-
-
3(5)
tlatr(2)
Regular trigger conversion
latency
fADC = 30 MHz
-
-
0.067
µs
-
-
-
2(5)
1/fADC
tS(2)
Sampling time
fADC = 30 MHz
0.100
-
16
µs
-
3
-
480
1/fADC
tSTAB(2)
Power-up time
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
tCONV(2)
Total conversion time (including
sampling time)
-
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
Sampling rate
fS(2)
(fADC = 36 MHz, and
tS = 3 ADC cycles)
1/fADC
12-bit resolution
Single ADC
-
-
2.4
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
4.5
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
7.2
Msps
DS11854 Rev 5
155/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 67. ADC characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
-
-
300
500
µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
-
-
1.6
1.8
mA
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:
Internal reset OFF).
2. Guaranteed by characterization results.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67.
Equation 1: RAIN max formula
R AIN
( k – 0.5 )
= ------------------------------------------------------------- – R ADC
f ADC × C ADC × ln ( 2
N+2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 68. ADC static accuracy at fADC = 18 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Typ
Max(1)
±3
±4
±2
±3
±1
±3
±1
±2
±2
±3
Unit
LSB
1. Guaranteed by characterization results.
Table 69. ADC static accuracy at fADC = 30 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA − VREF < 1.2 V
1. Guaranteed by characterization results.
156/228
DS11854 Rev 5
Typ
Max(1)
±2
±5
±1.5
±2.5
±1.5
±4
±1
±2
±1.5
±3
Unit
LSB
STM32F732xx STM32F733xx
Electrical characteristics
Table 70. ADC static accuracy at fADC = 36 MHz
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
Typ
Max(1)
±4
±7
±2
±3
±3
±6
±2
±3
±3
±6
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Unit
LSB
1. Guaranteed by characterization results.
Table 71. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to-noise and distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.3
10.4
-
bits
64
64.2
-
64
65
-
− 67
− 72
-
dB
1. Guaranteed by characterization results.
Table 72. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to noise and distortion ratio
SNR
Signal-to noise ratio
THD
Total harmonic distortion
fADC =36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.6
10.8
-
bits
66
67
-
64
68
-
− 70
− 72
-
dB
1. Guaranteed by characterization results.
Note:
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.20 does not affect the ADC accuracy.
DS11854 Rev 5
157/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Figure 46. ADC accuracy characteristics
[1LSB IDEAL =
V REF+
4096
(or
V DDA
4096
depending on package)]
EG
4095
4094
4093
(2)
ET
(3)
7
(1)
6
5
EO
4
EL
3
ED
2
1L SBIDEAL
1
0
1
2
3
456
7
V SSA
4093 4094 4095 4096
VDDA
ai14395c
1. See also Table 69.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 47. Typical connection diagram using the ADC
STM32F
VDD
RAIN(1) AINx
VAIN
Cparasitic
Sample and hold ADC
converter
VT
0.6 V
RADC(1)
VT
0.6 V
IL±1 μA
12-bit
converter
C ADC(1)
ai17534
1. Refer to Table 67 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
158/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 48 or Figure 49,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 48. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32
VREF+ (1)
1 μF // 10 nF
VDDA
1 μF // 10 nF
VSSA/VREF+
(1)
ai17535c
1. VREF+ input is available on all the packages except LQFP64, whereas the VREF– is available only on
UFBGA176 and UFBGA144. When VREF- is not available, it is internally connected to VSSA.
Figure 49. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F
VREF+/VDDA (1)
1 μF // 10 nF
VREF-/VSSA
(1)
ai17536c
1. VREF+ input is available on all the packages except LQFP64, whereas the VREF– is available only on
UFBGA176 and UFBGA144. When VREF- is not available, it is internally connected to VSSA.
DS11854 Rev 5
159/228
200
Electrical characteristics
6.3.25
STM32F732xx STM32F733xx
Temperature sensor characteristics
Table 73. Temperature sensor characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VSENSE linearity with temperature
-
±1
±2
°C
Average slope
-
2.5
-
mV/°C
Voltage at 25 °C
-
0.76
-
V
tSTART(2)
Startup time
-
6
10
µs
TS_temp(2)
ADC sampling time when reading the temperature (1 °C accuracy)
10
-
-
µs
TL(1)
Avg_Slope
(1)
V25(1)
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 74. Temperature sensor calibration values
Symbol
Parameter
Memory address
TS_CAL1
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V
0x1FF0 7A2C - 0x1FF0 7A2D
TS_CAL2
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V
0x1FF0 7A2E - 0x1FF0 7A2F
6.3.26
VBAT monitoring characteristics
Table 75. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT
-
50
-
KΩ
Q
Ratio on VBAT measurement
-
4
-
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
Er(1)
TS_vbat(2)(2)
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.27
Reference voltage
The parameters given in Table 76 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 16.
Table 76. internal reference voltage
Symbol
VREFINT
TS_vrefint(1)
VRERINT_s(2)
160/228
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
-
10
-
-
µs
VDD = 3V ± 10mV
-
3
5
mV
ADC sampling time when reading the
internal reference voltage
Internal reference voltage spread over the
temperature range
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Table 76. internal reference voltage (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
TCoeff(2)
Temperature coefficient
-
-
30
50
ppm/°C
tSTART(2)
Startup time
-
-
6
10
µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 77. Internal reference voltage calibration values
Symbol
Parameter
VREFIN_CAL
6.3.28
Memory address
Raw data acquired at temperature of 30 °C VDDA = 3.3 V
0x1FF0 7A2A - 0x1FF0 7A2B
DAC electrical characteristics
Table 78. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
-
VDDA
Analog supply voltage
1.7(1)
-
3.6
V
VREF+
Reference supply voltage
1.7(1)
-
3.6
V
VSSA
Ground
0
-
0
V
-
5
-
-
kΩ
-
25
-
-
kΩ
-
Impedance output with buffer
OFF
-
-
15
kΩ
When the buffer is OFF, the Minimum
resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
Capacitive load
-
-
50
pF
Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
DAC_OUT Lower DAC_OUT voltage
with buffer ON
min(2)
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
max(2)
with buffer ON
-
-
VDDA −
0.2
V
DAC_OUT Lower DAC_OUT voltage
with buffer OFF
min(2)
-
0.5
-
mV
-
VREF+ −
1LSB
V
RLOAD
(2)
RO(2)
CLOAD(2)
Connected to
Resistive load VSSA
with buffer ON Connected to
VDDA
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(2)
-
DS11854 Rev 5
VREF+ ≤ VDDA
It gives the maximum output excursion of
the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and
(0x1C7) to (0xE38) at VREF+ = 1.7 V
It gives the maximum output excursion of
the DAC.
161/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 78. DAC characteristics (continued)
Symbol
IVREF+(4)
Parameter
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
Min
Typ
Max
-
170
240
Unit
µA
Comments
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
50
75
-
280
380
µA
With no load, middle code (0x800) on the
inputs
-
475
625
µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
Differential non linearity
Difference between two
consecutive code-1LSB)
-
-
±0.5
LSB Given for the DAC in 10-bit configuration.
-
-
±2
LSB Given for the DAC in 12-bit configuration.
-
-
±1
LSB Given for the DAC in 10-bit configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-
-
±4
LSB Given for the DAC in 12-bit configuration.
-
-
±10
mV Given for the DAC in 12-bit configuration
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
-
-
±3
LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
-
-
±0.5
%
Given for the DAC in 12-bit configuration
-
3
6
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
IDDA(4)
DNL(4)
Gain
error(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
Gain error
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
(4)
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±4LSB
THD(4)
Total Harmonic Distortion
Buffer ON
-
-
-
dB
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
162/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Table 78. DAC characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
Comments
Wakeup time from off state
tWAKEUP(4) (Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and highest
possible ones.
Power supply rejection ratio
PSRR+ (2) (to VDDA) (static DC
measurement)
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results.
Figure 50. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
RL
DAC_OUTx
12-bit
digital to
analog
converter
CL
ai17157V3
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.29
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
•
Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0431 reference manual) and when the I2CCLK frequency is greater
than the minimum shown in the table below:
DS11854 Rev 5
163/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 79. Minimum I2CCLK frequency in all I2C modes
Symbol
Parameter
Condition
Standard-mode
Fast-mode
f(I2CCLK)
I2CCLK
frequency
Fast-mode Plus
Min
-
2
Analog Filter ON
DNF=0
10
Analog Filter OFF
DNF=1
9
Analog Filter ON
DNF=0
22.5
Analog Filter OFF
DNF=1
16
Unit
MHz
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the
maximum load Cload supported in Fm+, which is given by these formulas:
•
Tr(SDA/SCL)=0.8473xRpxCload
•
Rp(min)= (VDD-VOL(max))/IOL(max)
Where Rp is the I2C lines pull-up. Refer to Section 6.3.20: I/O port characteristics for the
I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 80. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2)
260(3)
ns
1. Guaranteed by characterization results.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
164/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 81 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 16, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 81. SPI dynamic characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Typ
Max
Master mode
SPI1,4,5
2.7≤VDD≤3.6
-
-
54(2)
Master mode
SPI1,4,5
1.71≤VDD≤3.6
-
-
27
Master transmitter mode
SPI1,4,5
1.71≤VDD≤3.6
-
-
54
Slave receiver mode
SPI1,4,5
1.71≤VDD≤3.6
-
-
54
Slave mode transmitter/full duplex
SPI1,4,5
2.7≤VDD≤3.6
-
-
50(3)
Slave mode transmitter/full duplex
SPI1,4,5
1.71≤VDD≤3.6
-
-
37(3)
Master & Slave mode
SPI2,3
1.71≤VDD≤3.6
-
-
27
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4xTpclk
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2xTpclk
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
Tpclk-1
Tpclk
Tpclk+1
DS11854 Rev 5
Unit
MHz
ns
165/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 81. SPI dynamic characteristics(1) (continued)
Symbol
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Parameter
Data input setup time
Data input hold time
Conditions
Min
Typ
Max
Master mode
4
-
-
Slave mode
3.5
-
-
Master mode
3
-
-
Slave mode
1
-
-
ta(SO)
Data output access time
Slave mode
7
9
21
tdis(SO)
Data output disable time
Slave mode
5
7
12
Slave mode 2.7≤VDD≤3.6V
-
6.5
10
Slave mode 1.71≤VDD≤3.6V
-
6.5
13.5
Master mode
-
2
3
Slave mode
1.71≤VDD≤3.6V
4.5
-
-
Master mode
0
-
-
tv(SO)
Data output valid time
tv(MO)
th(SO)
Data output hold time
th(MO)
Unit
ns
1. Guaranteed by characterization results.
2. Excepting SPI1 with SCK IO=PA5. In this configuration, the maximum achievable frequency is 40 MHz.
3. Maximum frequency of the slave transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK
level phase preceding the SCK sampling edge.This value can be achieved when it communicates with a Master having
Tsu(MI)=0 while signal Duty(SCK)=50%.
Figure 51. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
tsu(NSS)
th(NSS)
tw(SCKH)
tr(SCK)
SCK input
CPHA=0
CPOL=0
CPHA=0
CPOL=1
ta(SO)
tw(SCKL)
tv(SO)
First bit OUT
MISO output
th(SO)
Next bits OUT
tf(SCK)
tdis(SO)
Last bit OUT
th(SI)
tsu(SI)
MOSI input
First bit IN
Next bits IN
Last bit IN
MSv41658V1
166/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Figure 52. SPI timing diagram - slave mode and CPHA = 1
NSS input
tsu(NSS)
tw(SCKH)
ta(SO)
tw(SCKL)
tf(SCK)
th(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tv(SO)
th(SO)
First bit OUT
MISO output
tsu(SI)
tr(SCK)
Next bits OUT
tdis(SO)
Last bit OUT
th(SI)
MOSI input
First bit IN
Next bits IN
Last bit IN
MSv41659V1
Figure 53. SPI timing diagram - master mode
High
NSS input
SCK Output
tc(SCK)
CPHA= 0
CPOL=0
SCK Output
SCK input
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
MSB IN
tr(SCK)
tf(SCK)
BIT6 IN
LSB IN
th(MI)
MOSI
OUTPUT
MSB OUT
tv(MO)
B I T1 OUT
LSB OUT
th(MO)
ai14136c
DS11854 Rev 5
167/228
200
Electrical characteristics
STM32F732xx STM32F733xx
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 82 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 16, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Table 82. I2S dynamic characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
fMCK
I2S Main clock output
-
256 x 8K
256xFs(2)
MHz
fCK
I2S clock frequency
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
30
70
DCK
I2S clock frequency duty cycle Slave receiver
tv(WS)
WS valid time
Master mode
-
3
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
5
-
th(WS)
WS hold time
Slave mode
2
-
Master receiver
2.5
-
Slave receiver
2.5
-
Master receiver
3.5
-
Slave receiver
2
-
Slave transmitter (after enable edge)
-
12
Master transmitter (after enable edge)
-
3
Slave transmitter (after enable edge)
5
-
Master transmitter (after enable edge)
0
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
tv(SD_MT)
th(SD_ST)
th(SD_MT)
Data input setup time
Data input hold time
Data output valid time
Data output hold time
MHz
%
ns
1. Guaranteed by characterization results.
2. 256xFs maximum is 49.152 MHz (APB1 Maximum frequency).
Note:
Refer to RM0431 reference manual I2S section for more details on the sampling frequency
(FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
168/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Figure 54. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(1)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(1)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
MS46528V1
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 55. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(1)
MSB transmit
LSB receive(1)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
MS46529V1
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DS11854 Rev 5
169/228
200
Electrical characteristics
STM32F732xx STM32F733xx
SAI characteristics
Unless otherwise specified, the parameters given in Table 83 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 16, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C=30 pF
•
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
Table 83. SAI characteristics(1)
Symbol
Parameter
Conditions
Min
Max
fMCKL
SAI Main clock output
-
256x8K
256xFs
FCK
SAI clock frequency(2)
Master data: 32 bits
-
128xFs(3)
Slave data: 32 bits
-
128xFs(3)
Master mode
2.7≤VDD≤3.6V
-
18
Master mode
1.71≤VDD≤3.6V
-
20
Slave mode
1
-
Master mode
7
-
Slave mode
0.5
-
Master receiver
1
-
Slave receiver
2.5
-
Master receiver
3.5
-
Slave receiver
0.5
-
Slave transmitter (after enable edge)
2.7≤VDD≤3.6V
-
11
Slave transmitter (after enable edge)
1.71≤VDD≤3.6V
-
18
Slave transmitter (after enable edge)
5
-
Master transmitter (after enable edge)
2.7≤VDD≤3.6V
-
16
Master transmitter (after enable edge)
1.71≤VDD≤3.6V
-
18.5
Master transmitter (after enable edge)
7.5
-
tv(FS)
FS valid time
tsu(FS)
FS setup time
th(FS)
FS hold time
tsu(SD_A_MR)
tsu(SD_B_SR)
th(SD_A_MR)
th(SD_B_SR)
tv(SD_B_MT)
th(SD_B_ST)
tv(SD_A_MT)
th(SD_A_MT)
Data input setup time
Data input hold time
Data output valid time
Data output hold time
Data output valid time
Data output hold time
1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.
3. With Fs = 192 KHz.
170/228
DS11854 Rev 5
Unit
MHz
ns
STM32F732xx STM32F733xx
Electrical characteristics
Figure 56. SAI master timing waveforms
1/fSCK
SAI_SCK_X
th(FS)
SAI_FS_X
(output)
tv(FS)
th(SD_MT)
tv(SD_MT)
SAI_SD_X
(transmit)
Slot n
tsu(SD_MR)
SAI_SD_X
(receive)
Slot n+2
th(SD_MR)
Slot n
MS32771V1
Figure 57. SAI slave timing waveforms
1/fSCK
SAI_SCK_X
tw(CKH_X)
SAI_FS_X
(input)
tw(CKL_X)
tsu(FS)
th(FS)
th(SD_ST)
tv(SD_ST)
SAI_SD_X
(transmit)
Slot n
tsu(SD_SR)
SAI_SD_X
(receive)
Slot n+2
th(SD_SR)
Slot n
MS32772V1
DS11854 Rev 5
171/228
200
Electrical characteristics
STM32F732xx STM32F733xx
USB OTG full speed (FS) characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 84. USB OTG full speed startup time
Symbol
tSTARTUP(1)
Parameter
Max
Unit
USB OTG full speed transceiver startup time
1
µs
1. Guaranteed by design.
Table 85. USB OTG full speed DC electrical characteristics
Symbol
Parameter
Conditions
USB OTG full speed
VDDUSB transceiver operating
voltage
Input
levels
Min.
(1)
Typ.
-
3.0(2)
Max.(
1)
Unit
-
3.6
V
VDI(3)
Differential input sensitivity
I(USB_FS_DP/DM,
USB_HS_DP/DM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
-
1.3
-
2.0
VOL
Static output level low
RL of 1.5 kΩ to 3.6 V(4)
-
-
0.3
2.8
-
3.6
14.25
-
24.8
2.4
5.2
8
Output
levels
VOH
Static output level high
RL of 15 kΩ to
PA11, PA12
(USB_FS_DP/DM)
RPD
RPU
VIN = VDD
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
PA12 (USB_FS_DP)
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VSS(4)
VIN = VDD
V
V
kΩ
VIN = VSS, during idle
0.9
1.25 1.575
VIN = VSS, during reception
0.55
0.95
1.35
1. All the voltages are measured from the local ground potential.
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics which are degraded in the 2.7-to-3.0 V VDDUSB voltage range.
3. Guaranteed by design.
4. RL is the load connected on the USB OTG full speed drivers.
Note:
172/228
When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state
(floating input), not as alternate function. A typical 200 µA current consumption of the
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 and PB13 when the feature is enabled.
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Figure 58. USB OTG full speed timings: definition of data signal rise and fall time
Cross over
points
Differential
data lines
VCRS
VSS
tf
tr
ai14137b
Table 86. USB OTG full speed electrical characteristics(1)
Driver characteristics
Symbol
tr
tf
trfm
Parameter
Rise time(2)
Fall
time(2)
Conditions
Min
Max
Unit
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
111
%
-
1.3
2.0
V
Driving high or
low
28
44
Ω
Rise/ fall time matching
VCRS
Output signal crossover voltage
ZDRV
Output driver impedance(3)
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
USB high speed (HS) characteristics (through ULPI in STM32F732xx devices)
Unless otherwise specified, the parameters given in Table 89 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 88
and VDD supply voltage conditions summarized in Table 87, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified
•
Capacitive load C = 20 pF, unless otherwise specified
•
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output
characteristics.
Table 87. USB HS DC electrical characteristics
Symbol
Input level
Parameter
VDD
USB OTG HS operating voltage
Min.(1)
Max.(1)
Unit
1.7
3.6
V
1. All the voltages are measured from the local ground potential.
DS11854 Rev 5
173/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 88. USB HS clock timing parameters(1)
Symbol
Parameter
Min
Typ
Max
Unit
-
fHCLK value to guarantee proper operation of
USB HS interface
30
-
-
MHz
FSTART_8BIT
Frequency (first transition)
54
60
66
MHz
FSTEADY
Frequency (steady state) ±500 ppm
59.97
60
60.03
MHz
DSTART_8BIT
Duty cycle (first transition)
40
50
60
%
DSTEADY
Duty cycle (steady state) ±500 ppm
49.975
50
50.025
%
tSTEADY
Time to reach the steady state frequency and
duty cycle after the first transition
-
-
1.4
ms
Peripheral
-
-
5.6
Host
-
-
-
-
-
-
tSTART_DEV
tSTART_HOST
Clock startup time after the
de-assertion of SuspendM
8-bit ±10%
8-bit ±10%
PHY preparation time after the first transition
of the input clock
tPREP
ms
µs
1. Guaranteed by design.
Figure 59. ULPI timing diagram
Clock
Control In
(ULPI_DIR,
ULPI_NXT)
tSC
tHC
tSD
tHD
data In
(8-bit)
tDC
Control out
(ULPI_STP)
tDC
tDD
data out
(8-bit)
ai17361c
174/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Table 89. Dynamic characteristics: USB ULPI(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
tSC
Control in (ULPI_DIR, ULPI_NXT) setup time
-
1.5
-
-
tHC
Control in (ULPI_DIR, ULPI_NXT) hold time
-
1
-
-
tSD
Data in setup time
-
1.5
-
-
tHD
Data in hold time
-
1
-
-
2.7 V < VDD < 3.6 V,
CL = 20 pF and
OSPEEDRy[1:0] = 11
-
6
7.5
-
9.5
11
tDC/tDD
Data/control output delay
1.7 V < VDD < 3.6 V,
CL = 15 pF and
OSPEEDRy[1:0] = 11
-
Unit
ns
1. Guaranteed by characterization results.
USB high speed (HS) characteristics (embedded PHY High speed on
STM32F733xx devices)
Table 90. USB OTG high speed DC electrical characteristics
Symbol
Parameter
Conditions
Min Typ Max
Unit
Vhssq
High speed squelch detection threshold
-
100
-
150
mV
Vhsdsc
High speed disconnect detection threshold
-
525
-
625
mV
Vhsdif
High speed differential detection threshold
-
100
-
-
mV
Vhscm
High speed data signalling common mode voltage
range
-
-50
-
500
mV
Vhsoi
High speed idle level
-
-10
-
10
mV
Vhsoh
High speed data signaling high
-
360
-
440
mV
Vhsol
High speed data signaling low
-
-10
-
10
mV
Vchirpj
Chirp J level
-
700
-
1100
mV
Vchirpk
Chirp K level
-
-900
-
-500
mV
Min Typ Max
Unit
Table 91. USB OTG high speed electrical characteristics
Parameter
Comments
Conditions
tlr
Rise time
-
0.5
-
-
ns
tlf
Fall time
-
0.5
-
-
ns
tlrfm
Setup time from INHSDRIVERENABLE=1 to the
transition on INHSDATAP/INHSDATAN
-
10
-
-
ns
Zdrv
Driver output impedance
-
40.5
-
49.5
Ω
DS11854 Rev 5
175/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 92. USB FS PHY BCD electrical characteristics
Symbol
Parameter
Conditions
Min Typ Max
Unit
Primary detection mode consumption
-
-
-
300
Secondary detection mode consumption
-
-
-
300
RDAT_LKG
Data line leakage resistance
-
300
-
-
kΩ
VDAT_LKG
Data line leakage voltage
-
0.0
-
3.6
V
RDCP_DAT
Dedicated charging port resistance across D+/D-
-
-
-
200
Ω
VLGC_HI
Logic high
-
2.0
-
3.6
VLGC_LOW
Logic low
-
-
-
0.8
Logic threshold
-
0.8
-
2.0
VDAT_REF
Data detect voltage
-
0.25
-
3.6
VDP_SRC
D+ source voltage
-
0.5
-
3.6
VDM_SRC
D- source voltage
-
0.5
-
3.6
IDM_SINK
D- sink current
-
25
-
175
IDP_SINK
D+ sink current
-
25
-
175
IDP_SRC
Data contact detect current source
-
7
-
30
IDDUSB
VLGC
µA
V
µA
CAN (controller area network) interface
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
6.3.30
FMC characteristics
Unless otherwise specified, the parameters given in Table 93 to Table 106 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 16, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 60 through Figure 63 represent asynchronous waveforms and Table 93 through
Table 100 provide the corresponding timings. The results shown in these tables are
obtained with the following FMC configuration:
•
AddressSetupTime = 0x1
•
AddressHoldTime = 0x1
•
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
•
BusTurnAroundDuration = 0x0
•
Capcitive load CL = 30 pF
In all timing tables, the THCLK is the HCLK clock period
176/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
tw(NE)
FMC_NE
tv(NOE_NE)
t w(NOE)
t h(NE_NOE)
FMC_NOE
FMC_NWE
tv(A_NE)
FMC_A[25:0]
t h(A_NOE)
Address
tv(BL_NE)
t h(BL_NOE)
FMC_NBL[1:0]
t h(Data_NE)
t su(Data_NOE)
th(Data_NOE)
t su(Data_NE)
Data
FMC_D[15:0]
t v(NADV_NE)
tw(NADV)
FMC_NADV
(1)
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32753V1
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
DS11854 Rev 5
177/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 93. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)
Symbol
Min
Max
2Thclk -1
2Thclk +1
0
0.5
2Thclk -1
2Thclk +1
FMC_NOE high to FMC_NE high hold time
0
-
FMC_NEx low to FMC_A valid
-
0.5
th(A_NOE)
Address hold time after FMC_NOE high
0
-
tv(BL_NE)
FMC_NEx low to FMC_BL valid
-
0.5
th(BL_NOE)
FMC_BL hold time after FMC_NOE high
0
-
tsu(Data_NE)
Data to FMC_NEx high setup time
Thclk -1.5
-
tsu(Data_NOE)
Data to FMC_NOEx high setup time
Thclk -1.5
-
th(Data_NOE)
Data hold time after FMC_NOE high
0
-
th(Data_NE)
Data hold time after FMC_NEx high
0
-
tv(NADV_NE)
FMC_NEx low to FMC_NADV low
-
0
FMC_NADV low time
-
Thclk -0.5
tw(NE)
tv(NOE_NE)
tw(NOE)
th(NE_NOE)
tv(A_NE)
tw(NADV)
Parameter
FMC_NE low time
FMC_NEx low to FMC_NOE low
FMC_NOE low time
Unit
ns
1. CL = 30 pF.
Table 94. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT
timings(1)
Symbol
tw(NE)
tw(NOE)
tw(NWAIT)
Parameter
Min
Max
FMC_NE low time
7Thclk +1
7Thclk +1
FMC_NWE low time
5Thclk -1
5Thclk +1
FMC_NWAIT low time
Thclk -0.5
-
5Thclk +1.5
-
4Thclk +1
-
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT invalid
1. Guaranteed by characterization results.
178/228
DS11854 Rev 5
Unit
ns
STM32F732xx STM32F733xx
Electrical characteristics
Figure 61. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
tw(NE)
FMC_NEx
FMC_NOE
tv(NWE_NE)
tw(NWE)
t h(NE_NWE)
FMC_NWE
tv(A_NE)
FMC_A[25:0]
th(A_NWE)
Address
tv(BL_NE)
FMC_NBL[1:0]
th(BL_NWE)
NBL
tv(Data_NE)
th(Data_NWE)
Data
FMC_D[15:0]
t v(NADV_NE)
FMC_NADV (1)
tw(NADV)
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32754V1
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 95. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)
Symbol
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
Parameter
Min
Max
FMC_NE low time
3Thclk +1
3Thclk +1
FMC_NEx low to FMC_NWE low
Thclk - 0.5
Thclk +0.5
FMC_NWE low time
Thclk - 1.5
Thclk +0.5
Thclk
-
-
0
Thclk - 0.5
-
-
0.5
Thclk - 0.5
-
FMC_NWE high to FMC_NE high hold time
FMC_NEx low to FMC_A valid
th(A_NWE)
Address hold time after FMC_NWE high
tv(BL_NE)
FMC_NEx low to FMC_BL valid
Unit
ns
th(BL_NWE)
FMC_BL hold time after FMC_NWE high
tv(Data_NE)
Data to FMC_NEx low to Data valid
-
Thclk +1.5
th(Data_NWE)
Data hold time after FMC_NWE high
Thclk +0.5
-
tv(NADV_NE)
FMC_NEx low to FMC_NADV low
-
0
FMC_NADV low time
-
Thclk - 0.5
tw(NADV)
1. Guaranteed by characterization results.
DS11854 Rev 5
179/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Table 96. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT
timings(1)
Symbol
Parameter
FMC_NE low time
tw(NE)
tw(NWE)
FMC_NWE low time
Min
Max
8Thclk -1
8Thclk +1
6Thclk -1.5
6Thclk +0.5
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
6Thclk -1
-
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid
4Thclk + 2
-
Unit
ns
1. Guaranteed by characterization results.
Figure 62. Asynchronous multiplexed PSRAM/NOR read waveforms
tw(NE)
FMC_ NE
tv(NOE_NE)
t h(NE_NOE)
FMC_NOE
t w(NOE)
FMC_NWE
th(A_NOE)
tv(A_NE)
FMC_ A[25:16]
Address
tv(BL_NE)
th(BL_NOE)
FMC_ NBL[1:0]
NBL
th(Data_NE)
tsu(Data_NE)
t v(A_NE)
FMC_ AD[15:0]
tsu(Data_NOE)
th(Data_NOE)
Data
Address
th(AD_NADV)
t v(NADV_NE)
tw(NADV)
FMC_NADV
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32755V1
180/228
DS11854 Rev 5
STM32F732xx STM32F733xx
Electrical characteristics
Table 97. Asynchronous multiplexed PSRAM/NOR read timings(1)
Symbol
Min
Max
3Thclk -1
3Thclk +1
2Thclk
2Thclk +0.5
Thclk -1
Thclk +1
FMC_NOE high to FMC_NE high hold time
0
-
FMC_NEx low to FMC_A valid
-
0.5
FMC_NEx low to FMC_NADV low
0
0.5
FMC_NADV low time
Thclk -0.5
Thclk +1
th(AD_NADV)
FMC_AD(address) valid hold time after
FMC_NADV high)
Thclk +0.5
-
th(A_NOE)
Address hold time after FMC_NOE high
Thclk -0.5
-
th(BL_NOE)
FMC_BL time after FMC_NOE high
0
-
FMC_NEx low to FMC_BL valid
-
0.5
tw(NE)
tv(NOE_NE)
ttw(NOE)
th(NE_NOE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
tv(BL_NE)
Parameter
FMC_NE low time
FMC_NEx low to FMC_NOE low
FMC_NOE low time
tsu(Data_NE)
Data to FMC_NEx high setup time
Thclk -1.5
-
tsu(Data_NOE)
Data to FMC_NOE high setup time
Thclk -1.5
-
th(Data_NE)
Data hold time after FMC_NEx high
0
-
th(Data_NOE)
Data hold time after FMC_NOE high
0
-
Unit
ns
1. Guaranteed by characterization results.
Table 98. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)
Symbol
Min
Max
8Thclk -1
8Thclk +1
FMC_NWE low time
5Thclk -1.5
8Thclk +0.5
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
5Thclk +1.5
-
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid
4Thclk +1
-
tw(NE)
tw(NOE)
Parameter
FMC_NE low time
Unit
ns
1. Guaranteed by characterization results.
DS11854 Rev 5
181/228
200
Electrical characteristics
STM32F732xx STM32F733xx
Figure 63. Asynchronous multiplexed PSRAM/NOR write waveforms
tw(NE)
FMC_ NEx
FMC_NOE
tv(NWE_NE)
tw(NWE)
t h(NE_NWE)
FMC_NWE
th(A_NWE)
tv(A_NE)
FMC_ A[25:16]
Address
tv(BL_NE)
th(BL_NWE)
FMC_ NBL[1:0]
NBL
t v(A_NE)
FMC_ AD[15:0]
t v(Data_NADV)
Address
th(Data_NWE)
Data
th(AD_NADV)
t v(NADV_NE)
tw(NADV)
FMC_NADV
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32756V1
Table 99. Asynchronous multiplexed PSRAM/NOR write timings(1)
Symbol
Min
Max
FMC_NE low time
4Thclk -1
4Thclk +1
FMC_NEx low to FMC_NWE low
Thclk -0.5
Thclk +0.5
FMC_NWE low time
2Thclk -0.5
2Thclk +0.5
FMC_NWE high to FMC_NE high hold time
Thclk -0.5
-
FMC_NEx low to FMC_A valid
-
0
FMC_NEx low to FMC_NADV low
0
0.5
Thclk
Thclk +1
FMC_AD(adress) valid hold time after
FMC_NADV high)
Thclk +0.5
-
th(A_NWE)
Address hold time after FMC_NWE high
Thclk +0.5
-
th(BL_NWE)
FMC_BL hold time after FMC_NWE high
Thclk -0.5
-
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
th(AD_NADV)
182/228
Parameter
FMC_NADV low time
tv(BL_NE)
FMC_NEx low to FMC_BL valid
-
0.5
tv(Data_NADV)
FMC_NADV high to Data valid
-
Thclk +1.5
th(Data_NWE)
Data hold time after FMC_NWE high
Thclk +0.5
-
DS11854 Rev 5
Unit
ns
STM32F732xx STM32F733xx
Electrical characteristics
1. Guaranteed by characterization results.
Table 100. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)
Symbol
Min
Max
FMC_NE low time
9Thclk - 1
9Thclk + 1
FMC_NWE low time
7Thclk -0.5
7Thclk + 0.5
tsu(NWAIT_NE)
FMC_NWAIT valid before FMC_NEx high
6Thclk + 2
-
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid
4Thclk - 1
-
tw(NE)
tw(NWE)
Parameter
Unit
ns
1. Guaranteed by characterization results.
Synchronous waveforms and timings
Figure 64 through Figure 67 represent synchronous waveforms and Table 101 through
Table 104 provide the corresponding timings. The results shown in these tables are
obtained with the following FMC configuration:
•
BurstAccessMode = FMC_BurstAccessMode_Enable;
•
MemoryType = FMC_MemoryType_CRAM;
•
WriteBurst = FMC_WriteBurst_Enable;
•
CLKDivision = 1;
•
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
•
CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise
specified.
In all timing tables, the THCLK is the HCLK clock period.
–
For 2.7 V≤ VDD≤ 3.6 V, maximum FMC_CLK = 108 MHz at CL=20 pF or 90 MHz at
CL=30 pF (on FMC_CLK).
–
For 1.71 V≤ VDD