STM32F765xx STM32F767xx
STM32F768Ax STM32F769xx
Arm® Cortex®-M7 32-bit MCU+FPU, 462 DMIPS, up to 2 MB flash,
512+16+4 KB RAM, USB OTG HS/FS, 28 comm. int., LCD, DSI
Datasheet - production data
Features
• Includes ST state-of-the-art patented
technology
• Core: Arm® 32-bit Cortex®-M7 CPU with
DPFPU, ART Accelerator and L1-cache:
16 Kbytes I/D cache, allowing 0-wait state
execution from embedded flash and external
memories, up to 216 MHz, MPU,
462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1),
and DSP instructions.
• Memories
– Up to 2 Mbytes of flash, organized into two
banks allowing read-while-write
– SRAM: 512 Kbytes (including 128 Kbytes
of data TCM RAM for critical real-time data)
+ 16 Kbytes of instruction TCM RAM (for
critical real-time routines) + 4 Kbytes of
backup
– Flexible external memory controller with up
to 32-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND
memories
• Dual mode Quad-SPI
• Graphics
– Chrom-ART Accelerator (DMA2D),
graphical hardware accelerator enabling
enhanced graphical user interface
– Hardware JPEG codec
– LCD-TFT controller supporting up to XGA
resolution
– MIPI® DSI host controller supporting up to
720p 30 Hz resolution
• Clock, reset and supply management
– 1.7 to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– Dedicated USB power
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy)
August 2023
This is information on a product in full production.
LQFP100 (14 × 14 mm) UFBGA176 (10 x 10 mm)
WLCSP180
LQFP144 (20 × 20 mm)
(0.4 mm pitch)
LQFP176 (24 × 24 mm)
TFBGA216 (13 x 13 mm)
TFBGA100 (8 x 8 mm)
LQFP208 (28 x 28 mm)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
• Low-power
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 32×32 bit backup
registers + 4 Kbytes backup SRAM
• 3×12-bit, 2.4 MSPS ADC: up to 24 channels
• Digital filters for sigma delta modulator
(DFSDM), 8 channels / 4 filters
• 2×12-bit D/A converters
• General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
• Up to 18 timers: up to thirteen 16-bit (1x lowpower 16-bit timer available in Stop mode) and
two 32-bit timers, each with up to four
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input. All 15 timers
running up to 216 MHz. 2x watchdogs, SysTick
timer
• Debug mode
– SWD and JTAG interfaces
– Cortex®-M7 Trace Macrocell™
• Up to 168 I/O ports with interrupt capability
– Up to 164 fast I/Os up to 108 MHz
– Up to 166 5 V-tolerant I/Os
DS11532 Rev 8
1/256
www.st.com
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
• Up to 28 communication interfaces
– Up to four I2C interfaces (SMBus/PMBus)
– Up to four USARTs/4 UARTs (12.5 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
– Up to six SPIs (up to 54 Mbit/s), three with
muxed simplex I2S for audio
– 2 x SAIs (serial audio interface)
– 3 × CANs (2.0B Active) and 2x SDMMCs
– SPDIFRX interface
– HDMI-CEC
– MDIO slave interface
• Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
• 8- to 14-bit camera interface, up to 54 Mbyte/s
• True random number generator
• CRC calculation unit
• RTC: subsecond accuracy, hardware calendar
• 96-bit unique ID
Table 1. Device summary
Reference
2/256
Part number
STM32F765xx
STM32F765BI, STM32F765BG, STM32F765NI, STM32F765NG, STM32F765II,
STM32F765IG, STM32F765ZI, STM32F765ZG, STM32F765VI, STM32F765VG
STM32F767xx
STM32F767BG, STM32F767BI, STM32F767IG, STM32F767II, STM32F767NG,
STM32F767NI, STM32F767VG, STM32F767VI, STM32F767ZG, STM32F767ZI
STM32F768Ax
STM32F768AI
STM32F769xx
STM32F769AG, STM32F769AI, STM32F769BG, STM32F769BI, STM32F769IG,
STM32F769II, STM32F769NG, STM32F769NI
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1
Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 22
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6
AXI-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9
Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10
LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11
Chrom-ART Accelerator (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 26
3.13
JPEG codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.14
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.15
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.16
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19
3.18.1
Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.2
Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.19.1
Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.19.2
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.19.3
Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 36
3.20
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 36
3.21
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.22
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DS11532 Rev 8
3/256
6
Contents
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.23
4/256
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.23.1
Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.23.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.23.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.23.4
Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.23.5
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.23.6
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.23.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.24
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.25
Universal synchronous/asynchronous receiver transmitters (USART) . . 43
3.26
Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 44
3.27
Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.28
SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.29
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.30
Audio and LCD PLL (PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.31
SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . . . . 46
3.32
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 46
3.33
Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 47
3.35
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 47
3.36
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.37
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.38
Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 49
3.39
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.40
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.41
Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.42
Digital filter for Sigma-Delta Modulators (DFSDM) . . . . . . . . . . . . . . . . . . 50
3.43
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.44
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.45
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.46
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.47
DSI Host (DSIHOST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Contents
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . 112
6.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . 112
6.3.5
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . 112
6.3.6
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.7
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.8
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.9
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.10
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.11
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.12
PLL spread spectrum clock generation (SSCG) characteristics . . . . . 143
6.3.13
MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.14
MIPI D-PHY PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.15
MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.16
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.17
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.18
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 155
6.3.19
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.20
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.21
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.22
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
DS11532 Rev 8
5/256
6
Contents
7
8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
6.3.23
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.24
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.25
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.26
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.27
Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.28
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.29
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.30
FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.3.31
Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.3.32
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 213
6.3.33
LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 214
6.3.34
Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 216
6.3.35
DFSDM timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.3.36
SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . 219
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.1
Device marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.2
LQFP100 package information (1L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.3
TFBGA100 package information (A08Q) . . . . . . . . . . . . . . . . . . . . . . . . 225
7.4
LQFP144 package information (1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.5
LQFP176 package information (1T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.6
UFBGA(176+25) package information (A0E7) . . . . . . . . . . . . . . . . . . . . 236
7.7
WLCSP package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.8
LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.9
TFBGA216 package information (A0L2) . . . . . . . . . . . . . . . . . . . . . . . . 244
7.10
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 250
A.1
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Important security notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 33
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 36
Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 111
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 112
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . 112
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Typical and maximum current consumption in Run mode, code with data processing
running from ITCM RAM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode) or SRAM on AXI (L1-cache disabled),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode), regulator ON . . . . . . . . . . . . . . . . . . . . . 119
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode) on ITCM interface (ART disabled),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode) on ITCM interface (ART disabled),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DS11532 Rev 8
7/256
10
List of tables
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
8/256
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 123
Typical and maximum current consumption in Sleep mode, regulator OFF . . . . . . . . . . . 124
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 124
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 125
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 126
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PLLI2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
MIPI D-PHY AC characteristics LP mode and HS/LP
transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
DSI-PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Flash memory programming (single bank configuration
nDBANK=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Flash memory programming (dual bank configuration
nDBANK=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
EMI characteristics for fHSE= 8 MHz and fCPU= 200MHz (Setting 1). . . . . . . . . . . . . . . 154
EMI characteristics for fHSE= 8 MHz and fCPU= 200MHz (Setting 2). . . . . . . . . . . . . . . 154
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 166
ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 167
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
List of tables
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Dynamics characteristics: JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Dynamics characteristics: SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 188
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 189
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 189
MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 192
Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 192
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 193
Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 194
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 195
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 197
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 202
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 207
SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
QUADSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
DFSDM measured timing 1.71-3.6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 220
Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 220
LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
TFBGA100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
TFBGA100 - Example of PCB design rules (0.8 mm pitch BGA) . . . . . . . . . . . . . . . . . . . 227
LQFP144 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
LQFP176 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
DS11532 Rev 8
9/256
10
List of tables
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 131. UFBGA(176+25) - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Table 132. UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 237
Table 133. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Table 134. WLCSP 180-bump, 5.5 x 6 mm, recommended PCB design rules
(0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Table 135. LQFP208 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Table 136. TFBGA216 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Table 137. TFBGA216 - Example of PCB design rules (0.8 mm pitch) . . . . . . . . . . . . . . . . . . . . . . . 247
Table 138. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Table 139. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Table 140. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 250
Table 141. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
10/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx block diagram . . . . 20
STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx AXI-AHB
bus matrix architecture(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
VDDUSB connected to external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 31
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1,VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 35
Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1,VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . 35
STM32F76xxx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STM32F76xxx TFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
STM32F76xxx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
STM32F76xxx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STM32F769xx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
STM32F76xxx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
STM32F769Ax/STM32F768Ax WLCSP180 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STM32F76xxx LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STM32F769xx LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STM32F76xxx TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
STM32F769xx TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
STM32F769xx/STM32F779xx power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
STM32F765xx/STM32F767xx/STM32F777xx power supply scheme . . . . . . . . . . . . . . . 106
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
LSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 148
MIPI D-PHY HS/LP data lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 148
FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Typical connection diagram when using the ADC with FT/TT pins
featuring analog switch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 169
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 169
DS11532 Rev 8
11/256
13
List of figures
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
12/256
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 185
ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 191
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 193
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 194
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 196
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 202
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 206
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 206
SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
LQFP100 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
LQFP100 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
TFBGA100 - Outline(13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
TFBGA100 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
LQFP144 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
LQFP144 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
LQFP176 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
LQFP176 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
UFBGA(176+25) - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
UFBGA(176+25) - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
WLCSP 180-bump, 5.5 x 6 mm, 1.27 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.
List of figures
WLCSP180 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
LQFP208 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
LQFP208 - footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
TFBGA216 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
TFBGA216 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
DS11532 Rev 8
13/256
13
Introduction
1
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Introduction
This document provides information on STM32F765xx, STM32F767xx, STM32F768Ax, and
STM32F769xx microcontrollers, such as description, functional overview, pin assignment
and definition, electrical characteristics, packaging, and ordering information.
This document must be read in conjunction with the reference manual (RM0410) and the
device errata sheet (ES0334), available from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M7 core, refer to the Cortex®-M7 Technical
Reference Manual, available from the http://www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
14/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
2
Description
Description
The STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx devices are based
on the high-performance Arm® Cortex®-M7 32-bit RISC core operating at up to 216 MHz
frequency. The Cortex®-M7 core features a floating point unit (FPU), which supports Arm®
double-precision and single-precision data-processing instructions and data types. It also
implements a full set of DSP instructions and a memory protection unit (MPU), which
enhances the application security.
The STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx devices
incorporate high-speed embedded memories with a flash up to 2 Mbytes, 512 Kbytes of
SRAM (including 128 Kbytes of Data TCM RAM for critical real-time data), 16 Kbytes of
instruction TCM RAM (for critical real-time routines), 4 Kbytes of backup SRAM available in
the lowest power modes, and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, two AHB buses, a 32-bit multi-AHB bus matrix, and a multi
layer AXI interconnect supporting internal and external memories access.
The devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers,
a true random number generator (RNG). They also feature standard and advanced
communication interfaces:
- Up to four I2Cs
- Six SPIs, three I2Ss in half-duplex mode. To achieve audio class accuracy, the I2S
peripherals can be clocked via a dedicated internal audio PLL or via an external clock to
allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI)
- Three CANs
- Two SAI serial audio interfaces
- Two SDMMC host interfaces
- Ethernet and camera interfaces
- LCD-TFT display controller
- Chrom-ART Accelerator
- SPDIFRX interface
- HDMI-CEC
Advanced peripherals include two SDMMC interfaces, a flexible memory control (FMC)
interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors.
The STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx devices operate in
the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. Dedicated supply
inputs for USB (OTG_FS and OTG_HS) and SDMMC2 (clock, command and 4-bit data) are
available on all the packages except LQFP100 for a greater power supply choice.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor. A
comprehensive set of power-saving mode allows the design of low-power applications.
DS11532 Rev 8
15/256
54
Description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
The STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx devices offer
devices in 11 packages ranging from 100 pins to 216 pins. The set of included peripherals
changes with the device chosen.
These features make the STM32F765xx, STM32F767xx, STM32F768Ax, and
STM32F769xx microcontrollers suitable for a wide range of applications:
- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances
- Mobile applications, Internet of Things
- Wearable devices: smartwatches
The following table lists the peripherals available on each part number.
16/256
DS11532 Rev 8
Peripherals
Flash memory in Kbytes
SRAM in
Kbytes
STM32F
765Vx
1024 2048
STM32F767
/769Vx
1024
STM32F
765Zx
STM32F767
/769Zx
STM32F
769Ax
2048 1024 2048 1024 2048 1024 2048
2048
STM32F
765Ix
STM32F767
/769Ix
STM32F
765Bx
STM32F767
/769Bx
1024 2048 1024 2048 1024 2048 1024 2048
System
512(368+16+128)
Instruction
16
Backup
4
STM32F
765Nx
1024
2048
STM32F767
/769Nx
1024
2048
Yes(1)
FMC memory controller
Quad-SPI
Yes
Ethernet
Yes
DS11532 Rev 8
Timers
No
10
Advancedcontrol
2
Basic
2
Low-power
1
SPI / I2S
Yes
4/3 (simplex)(2)
6/3 (simplex)(2)
5
(simplex)(2)
I2C
Communication
interfaces
Yes
Generalpurpose
Random number generator
6/3 (simplex)(2)
4
USART/UART
4/4
USB OTG FS
Yes
USB OTG HS
Yes
CAN
3
SAI
2
SPDIFRX
4 inputs
Yes
SDMMC2
Yes(3)
Yes
17/256
(4)
No
MIPI-DSI Host
No
Yes
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
Description
SDMMC1
Camera interface
LCD-TFT
STM32F
768Ax
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 2. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx features and
peripheral counts
Peripherals
STM32F
765Vx
STM32F767
/769Vx
STM32F
765Zx
STM32F767
/769Zx
STM32F
769Ax
STM32F
768Ax
Chrom-ART Accelerator
(DMA2D)
JPEG codec
GPIOs
No
Yes
No
82
Yes
114
128
STM32F
765Bx
STM32F767
/769Bx
STM32F
765Nx
STM32F767
/769Nx
No
Yes
No
Yes
No
Yes
140
132
168
159
168
168
159
Yes (4 filters)
12-bit ADC
3
16
24
Yes
2
12-bit DAC
Number of channels
216 MHz(5)
Maximum CPU frequency
DS11532 Rev 8
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Operating temperatures
Junction temperature: –40 to + 125 °C
LQFP100
TFBGA100
LQFP144
WLCSP180
UFBGA176(7)
LQFP176
LQFP208
1.
For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
2.
The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. SPI5 is not available on STM32F769Ax.
TFBGA216
3. SDMMC2 supports a dedicated power rail for clock, command and data 0..4 lines, feature available starting from 144 pin package.
4. DSI host interface is only available on STM32F769x sales types.
5. 216 MHz maximum frequency for - 40°C to + 85°C ambient temperature range (200 MHz maximum frequency for - 40°C to + 105°C ambient temperature range).
6. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 3.18.2: Internal reset OFF).
7. UFBGA176 is not available for STM32F769x sales types.
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
1.7 to 3.6 V(6)
Operating voltage
Package
STM32F767
/769Ix
Yes
DFSDM1
Number of channels
STM32F
765Ix
Description
18/256
Table 2. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx features and
peripheral counts (continued)
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Description
Full compatibility throughout the family
The STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx devices are fully
pin-to-pin, compatible with the STM32F4xxxx devices, allowing the user to try different
peripherals, and reaching higher frequency for a greater degree of freedom during the
development cycle.
Figure 1 gives compatible board designs between the STM32F7xx and STM32F4xx
families.
Figure 1. Compatible board design for LQFP100 package
PC3
VDD
VSSA
VREF+
VDDA
PA0-WKUP
PA1
PA2
STM32F427xx / STM32F437xx
STM32F429xx / STM32F439xx
STM32F415xx / STM32F417xx
STM32F405xx / STM32F407xx
18
19
20
21
22
23
24
25
18
19
20
21
22
23
24
25
VDD
PB11
VCAP1
PB10
PE15
PE14
PE12
PE13
PE11
PE9
PE10
PE7
PE8
PB1
PB2
PC5
PB0
PC4
PA7
PA5
PA6
PA4
VDD
PA3
PC3
VSSA
VREF+
VDDA
PA0-WKUP
PA1
PA2
PA3
VSS
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
STM32F76xxx
Pins 19 to 49 are not compatible
VDD
VSS
VCAP1
PB11
PB10
PE15
PE14
PE12
PE13
PE11
PE10
PE9
PE8
PE7
PB2
PB1
PB0
PC4
PC5
PA7
PA6
PA4
PA5
VDD
VSS
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
MSv39136V1
The STM32F76x LQFP144, LQFP176, LQFP208, TFBGA216, UFBGA176 packages are
fully pin to pin compatible with STM32F4xx devices.
DS11532 Rev 8
19/256
54
Description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 2. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx block diagram
USB
DMA/
OTG HS
FIFO
GP-DMA2
8 Streams
FIFO
GP-DMA1
8 Streams
FIFO
LCD-TFT
FIFO
SRAM1 368KB
SRAM2 16 KB
AHB2 216 MHZ
(DMA2D)
Quad-SPI
AHB1 216 MHz
PB[15:0]
GPIO PORT B
Int
PVD
RC HS
PC[15:0]
GPIO PORT C
PD[15:0]
GPIO PORT D
PE[15:0]
GPIO PORT E
PF[15:0]
GPIO PORT F
PG[15:0]
GPIO PORT G
PH[15:0]
GPIO PORT H
@VDD33
VDD12
PLL1+PLL2+PLL3
GPIO PORT J
FIFO FIFO
32b
4 channels, ETR as AF
TIM3
16b
4 channels, ETR as AF
TIM4
16b
4 channels, ETR as AF
TIM5
32b
4 channels
TIM12
16b
2 channels as AF
1 channel as AF
TIM14
16b
1 channel as AF
USART2
smcard
irDA
RX, TX, SCK
CTS, RTS as AF
USART3
smcard
irDA
UART4
RX, TX, SCK
CTS, RTS as AF
RX, TX as AF
UART5
RX, TX as AF
UART7
RX, TX as AF
UART8
RX, TX as AF
MOSI, MISO, SCK
NSS as AF
MOSI, MISO, SCK
NSS as AF
SCL, SDA, SMBAL as AF
SPI4
LPTIM1
SPI5
16b
TIM6
16b
TIM7
16b
FIFO FIFO
SPI6
SD, SCK, FS, MCLK as AF
SAI1
SAI2
SPI3/I2S3
I2C1/SMBUS
I2C2/SMBUS
SYSCFG
DFSDM
I2C3/SMBUS
MDIO Slave
@VDDA
bxCAN1
DSI HOST
ADC1
PLL
ADC2
IF
IF
LDO
bxCAN2
@VDDA
DAC1
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
I2C4/SMBUS
U STemperature
AR T 2 M Bsensor
ps
ADC3
SPI2/I2S2
Digital filter
SPI1/I2S1
WWDG
A P B(max)
10 MHz
3
APB1 54 MHz
16b
TIM11
smcard
USART1
irDA
smcard
USART6
irDA
MOSI, MISO,
SCK, NSS as AF
MOSI, MISO,
SCK, NSS as AF
MOSI, MISO,
SCK, NSS as AF
MOSI, MISO,
SCK, NSS as AF
APB2 108 MHz (max)
16b
16b
8 analog inputs for ADC3
AHB/APB1
TIM2
TIM13
TIM10
8 analog inputs common
to the 3 ADCs
8 analog inputs common
to the ADC1 & 2
OSC32_IN
OSC32_OUT
RTC_TS
RTC_TAMPx
RTC_OUT
16b
1 channel as AF
VDDREF_ADC
RTC
AWU
Backup register
TIM8 / PWM
16b
SD, SCK, FS, MCLK as AF
CKIN[7:0]
DATAIN[7:0]
CKOUT
CKIN[7:0]
DATAIN[7:0]
CKOUT
XTAL 32 kHz
TIM1 / PWM
TIM9
RX, TX, SCK,
CTS, RTS as AF
RX, TX, SCK,
CTS, RTS as AF
GPDMA1
AHB/APB2
VBAT = 1.8 to 3.6 V
16b
2 channels as AF
1 channel as AF
LS
EXT IT. WKUP
SDMMC1
OSC_IN
OSC_OUT
4 KB BKPRAM
GPIO PORT K
SDMMC2
VDDA, VSSA
NRESET
WKUP[4:0]
VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP1
@VSW
CRC
GPDMA2
CLK, CS,D[7:0]
@VDD33
Standby
interface
@VDDA
4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR, BKIN as AF
VOLT. REG
3.3V TO 1.2V
DP
DM
SCL, SDA, INT, ID, VBUS
CLK, NE [3:0], A[23:0],
D[31:0], NOEN, NWEN,
NBL[3:0], SDCLKE[1:0], SDNE[1:0],
SDNWE, NL
NRAS, NCAS, NADV
NWAIT, INTN
WDG32K
RCC
Reset
& control
M
GT
LS
GPIO PORT I
PJ[15:0]
BBgen + POWER MNGT
XTAL OSC
4- 16MHz
FCLK
HCLK
APBP2CLK
APBP1CLK
AHB2PCLK
AHB1PCLK
PI[15:0]
D[7:0]
CMD, CK as AF
D[7:0]
CMD, CK as AF
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF
@VDDA
SUPPLY
SUPERVISION
POR/PDR
BOR
POR
reset
RC LS
GPIO PORT A
168 AF
USB
EXT MEM CTL (FMC)
SRAM, SDRAM, NOR-Flash,
NAND-Flash, SDRAM
FIFO
PA[15:0]
HSYNC, VSYNC
PUIXCLK, D[13:0]
OTG FS
@VDDA
CHROM-ART
PK[7:0]
FIFO
RNG
PHY
FIFO
Camera
ITF
TX, RX
FIFO
LCD_R[7:0], LCD_G[7:0], LCD_B[7:0],
LCD_HSYNC, LCD_VSYNC, LCD_DE,
LCD_CLK
DMA/
10/100
JPEG
FLASH 1MB
PWRCTRL
DP, DM
ULPI:CK, D[7:0], DIR, STP, NXT
SCL/SDA, INT, ID, VBUS
FLASH 1MB
ACCEL/
CACHE
D-Cache AHBP
16KB
AHBS
Ethernet MAC
PHY
MII or RMII as AF
MDIO as AF
ITCM RAM 16KB
AXIM
I-Cache
16KB
216MHz
DTCM RAM 128KB
FIFO
Arm CPU
Cortex-M7
AHB BUS-MATRIX
11S8M
AHB bus-matrix
8S7M
TRACECK
TRACED[3:0]
MPU FPU
NVIC
DTCM
ICTM
FIFO
JTAG & SW
ETM
AHB2AXI
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
TX, RX
bxCAN3
TX, RX
SPDIFRX
SPDIFRX[3:0] as AF
HDMI-CEC
HDMI_CEC as AF
ITF
DSI PHY
DSI_DOP/N, DSI_D1P/N
DSI_VCAP, DSI_CKP/N
DSI_VDD12, DSI_VSS, DSI_TE as AF
DAC2
DAC1
as AF
DAC2
as AF
MSv41056V2
1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
20/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3
Functional overview
3.1
Arm® Cortex®-M7 with FPU
Functional overview
The Arm® Cortex®-M7 with FPU processor is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering an outstanding computational performance and low interrupt latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
–
Six-stage dual-issue pipeline
–
Dynamic branch prediction
–
Harvard caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
–
64-bit AXI4 interface
–
64-bit ITCM interface
–
2x32-bit DTCM interfaces
The processor supports the following memory interfaces:
•
Tightly Coupled Memory (TCM) interface.
•
Harvard instruction and data caches and AXI master (AXIM) interface.
•
Dedicated low-latency AHB-Lite peripheral (AHBP) interface.
The processor supports a set of DSP instructions which allow an efficient signal processing
and a complex algorithm execution.
It supports single and double precision FPU (floating point unit), speeds up software
development by using metalanguage development tools, while avoiding saturation.
Figure 2 shows the general block diagram of the STM32F76xxx family.
Note:
The Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
3.2
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS11532 Rev 8
21/256
54
Functional overview
3.3
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Embedded Flash memory
The STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx devices embed a
Flash memory of up to 2 Mbytes available for storing programs and data. The Flash
interface features:
3.4
•
Single /or Dual bank operating modes,
•
Read-While-Write (RWW) in Dual bank mode.
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.5
Embedded SRAM
All the devices feature:
•
•
System SRAM up to 512 Kbytes:
–
SRAM1 on AHB bus Matrix: 368 Kbytes
–
SRAM2 on AHB bus Matrix: 16 Kbytes
–
DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 128 Kbytes for
critical real-time data.
Instruction RAM (ITCM-RAM) 16 Kbytes:
–
It is mapped on TCM interface and reserved only for CPU Execution/Instruction
useful for critical real-time routines.
The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific
AHB slave of the CPU.The instruction TCM RAM is reserved only for CPU. It is accessed at
CPU clock speed with 0 wait states.
•
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
22/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.6
Functional overview
AXI-AHB bus matrix
The STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx system
architecture is based on 2 sub-systems:
•
An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
•
–
3x AXI to 32-bit AHB bridges connected to AHB bus matrix
–
1x AXI to 64-bit AHB bridge connected to the embedded Flash memory
A multi-AHB Bus-Matrix
–
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs,
Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM,
FMC, Quad-SPI, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
AHBS
DMA2D
Chrom-ART
Accelerator
(DMA2D)
LCD-TFT_M
USB_HS_M
ETHERNET_M
DMA_P2
GP
MAC
USB OTG LCD-TFT
DMA2 Ethernet
HS
DMA_MEM2
AHBP
16KB
I/D Cache
AXIM
GP
DMA1
DMA_PI
Arm Cortex-M7
DMA_MEM1
ITCM
DTCM
Figure 3. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx AXI-AHB
bus matrix architecture(1)
DTCM RAM
128KB
ITCM RAM
16KB
AXI to
multi-AHB
ART
ITCM
64-bit AHB
FLASH
2MB
64-bit BuS Matrix
SRAM1
368KB
SRAM2
16KB
AHB
periph1
AHB
periph2
FMC external
MemCtl
APB1
APB2
QuadSPI
32-bit Bus Matrix - S
MSv39103V2
1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus.
DS11532 Rev 8
23/256
54
Functional overview
3.7
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. The configuration is made by software and the transfer sizes
between the source and the destination are independent.
The DMA can be used with the main peripherals:
24/256
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
DAC
•
SDMMC
•
Camera interface (DCMI)
•
ADC
•
SAI
•
SPDIFRX
•
Quad-SPI
•
HDMI-CEC
•
JPEG codec
•
DFSDM1
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.8
Functional overview
Flexible memory controller (FMC)
The Flexible memory controller (FMC) includes three memory controllers:
•
The NOR/PSRAM memory controller
•
The NAND/memory controller
•
The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller
The main features of the FMC controller are the following:
•
Interface with static-memory mapped devices including:
–
Static random access memory (SRAM)
–
NOR Flash memory/OneNAND Flash memory
–
PSRAM (4 memory banks)
–
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
•
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
•
8-,16-,32-bit data bus width
•
Independent Chip Select control for each memory bank
•
Independent configuration for each memory bank
•
Write FIFO
•
Read FIFO for SDRAM controller
•
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is
HCLK/2
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.9
Quad-SPI memory interface (QUADSPI)
All the devices embed a Quad-SPI memory interface, which is a specialized communication
interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:
•
Direct mode through registers
•
External Flash status register polling mode
•
Memory mapped mode.
Up to 256 Mbytes external Flash are memory mapped, supporting 8, 16 and 32-bit access.
Code execution is supported.
The opcode and the frame format are fully programmable. The communication can be either
in Single Data Rate or Dual Data Rate.
DS11532 Rev 8
25/256
54
Functional overview
3.10
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
LCD-TFT controller
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024x768) resolution with the following features:
3.11
•
2 display layers with dedicated FIFO (64x32-bit)
•
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
•
Up to 8 input color formats selectable per layer
•
Flexible blending between two layers using alpha value (per pixel or constant)
•
Flexible programmable parameters for each layer
•
Color keying (transparency color)
•
Up to 4 programmable interrupt events
Chrom-ART Accelerator (DMA2D)
The Chrom-Art Accelerator (DMA2D) is a graphic accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
•
Rectangle filling with a fixed color
•
Rectangle copy
•
Rectangle copy with pixel format conversion
•
Rectangle composition with blending and pixel format conversion
Various image format codings are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
3.12
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M7 with FPU core.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
26/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.13
Functional overview
JPEG codec (JPEG)
The JPEG codec provides an fast and simple hardware compressor and decompressor of
JPEG images with full management of JPEG headers.
The JPEG codec main features:
3.14
•
8-bit/channel pixel depths
•
Single clock per pixel encoding and decoding
•
Support for JPEG header generation and parsing
•
Up to four programmable quantization tables
•
Fully programmable Huffman tables (two AC and two DC)
•
Fully programmable minimum coded unit (MCU)
•
Encode/decode support (non simultaneous)
•
Single clock Huffman coding and decoding
•
Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
•
Stallable design
•
Support for single, greyscale component
•
Functionality to enable/disable header processing
•
Internal register interface
•
Fully synchronous design
•
Configured for high-speed decode mode
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 25 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected
to the 16 external interrupt lines.
3.15
Clocks and startup
On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock can be monitored for failure. If a failure is detected, the system automatically
switches back to the internal RC oscillator and a software interrupt is generated (if enabled).
This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz.
Similarly, full interrupt management of the PLL clock entry is available when necessary (for
example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 216 MHz while the maximum frequency of the high-speed APB domains is
108 MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz.
DS11532 Rev 8
27/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio
class performance. In this case, the I2S and SAI master clock can generate all standard
sampling frequencies from 8 kHz to 192 kHz.
3.16
Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
•
All Flash address space mapped on ITCM or AXIM interface
•
All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface
•
The System memory bootloader
The boot loader is located in system memory. It is used to reprogram the Flash memory
through a serial interface. Refer to STM32 microcontroller system memory boot mode
application note (AN2606) for details.
3.17
Note:
Power supply schemes
•
VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
•
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to
Section 3.18.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode
versus device operating mode to identify the packages supporting this option.
•
•
28/256
VDDSDMMC can be connected either to VDD or an external independent power supply
(1.8 to 3.6V) for SDMMC2 pins (clock, command, and 4-bit data). For example, when
the device is powered at 1.8V, an independent power supply 2.7V can be connected to
VDDSDMMC.When the VDDSDMMC is connected to a separated power supply, it is
independent from VDD or VDDA but it must be the last supply to be provided and the first
to disappear. The following conditions VDDSDMMC must be respected:
–
During the power-on phase (VDD < VDD_MIN), VDDSDMMC should be always lower
than VDD
–
During the power-down phase (VDD < VDD_MIN), VDDSDMMC should be always
lower than VDD
–
The VDDSDMMC rising and falling time rate specifications must be respected
–
In operating mode phase, VDDSDMMC could be lower or higher than VDD:
All associated GPIOs powered by VDDSDMMC are operating between
VDDSDMMC_MIN and VDDSDMMC_MAX.
VDDUSB can be connected either to VDD or an external independent power supply (3.0
to 3.6V) for USB transceivers (refer to Figure 4 and Figure 5). For example, when the
device is powered at 1.8V, an independent power supply 3.3V can be connected to
VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent
from VDD or VDDA but it must be the last supply to be provided and the first to
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
disappear. The following conditions VDDUSB must be respected:
–
During the power-on phase (VDD < VDD_MIN), VDDUSB should be always lower
than VDD
–
During the power-down phase (VDD < VDD_MIN), VDDUSB should be always lower
than VDD
–
The VDDUSB rising and falling time rate specifications must be respected
–
In operating mode phase, VDDUSB could be lower or higher than VDD:
- If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by
VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX.
- The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). If
only one USB transceiver is used in the application, the GPIOs associated to the
other USB transceiver are still supplied by VDDUSB.
- If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by
VDDUSB are operating between VDD_MIN and VDD_MAX.
Figure 4. VDDUSB connected to VDD power supply
VDD
VDD_MAX
VDD= VDDA = VDDUSB
VDD_MIN
Power-on
Operating mode
Power-down
time
MS37591V1
DS11532 Rev 8
29/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 5. VDDUSB connected to external power supply
VDDUSB_MAX
USB functional area
VDDUSB
VDDUSB_MIN
USB non
functional
area
VDD = VDDA
Power-on
Operating mode
USB non
functional
area
VDD_MIN
time
Power-down
MS37590V1
The DSI (Display Serial Interface) sub-system uses several power supply pins which are
independent from the other supply pins:
•
VDDDSI is an independent DSI power supply dedicated for DSI Regulator and
MIPI D-PHY. This supply must be connected to global VDD.
•
The VCAPDSI pin is the output of DSI Regulator (1.2V) which must be connected
externally to VDD12DSI.
•
The VDD12DSI pin is used to supply the MIPI D-PHY, and to supply the clock and data
lanes pins. An external capacitor of 2.2 uF must be connected on the VDD12DSI pin.
•
The VSSDSI pin is an isolated supply ground used for DSI sub-system.
•
If the DSI functionality is not used at all, then:
–
The VDDDSI pin must be connected to global VDD.
–
The VCAPDSI pin must be connected externally to VDD12DSI but the external
capacitor is no more needed.
–
The VSSDSI pin must be grounded.
3.18
Power supply supervisor
3.18.1
Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other packages, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
30/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.18.2
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and NRST and should maintain
the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be
connected to VSS. Refer to Figure 6: Power supply supervisor interconnection with internal
reset OFF.
Figure 6. Power supply supervisor interconnection with internal reset OFF
VDD
External VDD power supply supervisor
Ext. reset controller active when
VDD < 1.7 V
NRST
VDD
Application reset
signal
PDR_ON
VSS
MS31383V4
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 7).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
•
The brownout reset (BOR) circuitry must be disabled
•
The embedded programmable voltage detector (PVD) is disabled
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
All the packages, except for the LQFP100, allow to disable the internal reset through the
PDR_ON signal when connected to VSS.
DS11532 Rev 8
31/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 7. PDR_ON control with internal reset OFF
V DD
PDR = 1.7 V
time
Reset by other source than
power supply supervisor
NRST
PDR_ON
PDR_ON
time
MS19009V7
3.19
Voltage regulator
The regulator has four operating modes:
•
•
3.19.1
Regulator ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator OFF
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
•
MR mode used in Run/sleep modes or in Stop modes
–
In Run/Sleep modes
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). Different voltages scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
The over-drive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
–
In Stop modes
The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode)
MR operates in under-drive mode (reduced leakage mode).
32/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
•
Functional overview
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:
•
–
LPR operates in normal mode (default mode when LPR is ON)
–
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin.
All packages have the regulator ON feature.
Table 3. Voltage regulator configuration mode versus device operating mode(1)
Voltage regulator
configuration
Run mode
Sleep mode
Stop mode
Standby mode
Normal mode
MR
MR
MR or LPR
-
Over-drive
mode(2)
MR
MR
-
-
Under-drive mode
-
-
MR or LPR
-
Power-down
mode
-
-
-
Yes
1. ‘-’ means that the corresponding configuration is not available.
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.
3.19.2
Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency.The two 2.2 µF ceramic capacitors should
be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In the regulator OFF mode, the following features are no more supported:
•
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
•
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
•
The over-drive and under-drive modes are not available.
•
The Standby mode is not available.
DS11532 Rev 8
33/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 8. Regulator OFF
V12
External VCAP_1/2 power
Application reset
supply supervisor
Ext. reset controller active signal (optional)
when VCAP_1/2 < Min V12
VDD
PA0
VDD
NRST
BYPASS_REG
V12
VCAP_1
VCAP_2
ai18498V3
The following conditions must be respected:
Note:
34/256
•
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
•
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9).
•
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 10).
•
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
The minimum value of V12 depends on the maximum frequency targeted in the application.
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1,VCAP_2 stabilization
VDD
PDR = 1.7 or 1.8 V
V12
Min V12
VCAP_1, VCAP_2
time
NRST
PA0
time
ai18491g
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1,VCAP_2 stabilization
VDD
PDR = 1.7 V or 1.8 V
VCAP_1 / VCAP_2
V12
Min V12
time
NRST
PA0 asserted externally
time
ai18492e
1. This figure is valid whatever the internal reset mode (ON or OFF).
DS11532 Rev 8
35/256
54
Functional overview
3.19.3
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Regulator ON/OFF and internal reset ON/OFF availability
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package
Regulator ON
Regulator OFF
LQFP100
LQFP144,
LQFP208
LQFP176,
UFBGA176,
TFBGA100,
TFBGA216
WLCSP180
Yes
Internal reset ON
Internal reset OFF
Yes
No
No
Yes
Yes
Yes
Yes
BYPASS_REG set BYPASS_REG set
PDR_ON set to VDD PDR_ON set to VSS
to VDD
to VSS
Yes(1)
1. Available only on dedicated part number. Refer to Section 8: Ordering information.
3.20
Real-time clock (RTC), backup SRAM and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby mode.
36/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator(LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
3.21
Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in stop mode):
–
Normal mode (default mode when MR or LPR is enabled)
–
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and
LPTIM1 asynchronous interrupt).
Table 5. Voltage regulator modes in stop mode
•
Voltage regulator
configuration
Main regulator (MR)
Low-power regulator (LPR)
Normal mode
MR ON
LPR ON
Under-drive mode
MR in under-drive mode
LPR in under-drive mode
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
DS11532 Rev 8
37/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11),
or an RTC alarm / wakeup / tamper /time stamp event occurs.
The Standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
3.22
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When the PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is
no more available and the VBAT pin should be connected to VDD.
3.23
Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
38/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
Table 6. Timer feature comparison
Max
Max
DMA
Capture/ Complem
interface timer
request
compare
entary
clock
clock
generation channels
output
(MHz)
(MHz)(1)
Timer
type
Timer
Counter Counter Prescaler
resolution
type
factor
Advanced
-control
TIM1,
TIM8
16-bit
Any
Up,
integer
Down,
between 1
Up/down
and 65536
Yes
4
Yes
108
216
32-bit
Any
Up,
integer
Down,
between 1
Up/down
and 65536
Yes
4
No
54
108/216
16-bit
Any
Up,
integer
Down,
between 1
Up/down
and 65536
Yes
4
No
54
108/216
16-bit
Up
Any
integer
between 1
and 65536
No
2
No
108
216
Up
Any
integer
between 1
and 65536
No
1
No
108
216
Up
Any
integer
between 1
and 65536
No
2
No
54
108/216
Up
Any
integer
between 1
and 65536
No
1
No
54
108/216
Up
Any
integer
between 1
and 65536
Yes
0
No
54
108/216
TIM2,
TIM5
TIM3,
TIM4
TIM9
General
purpose
TIM10,
TIM11
TIM12
TIM13,
TIM14
Basic
TIM6,
TIM7
16-bit
16-bit
16-bit
16-bit
1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR
register.
DS11532 Rev 8
39/256
54
Functional overview
3.23.1
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.23.2
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F76xxx
devices (see Table 6 for differences).
•
TIM2, TIM3, TIM4, TIM5
The STM32F76xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
•
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
3.23.3
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
40/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.23.4
Functional overview
Low-power timer (LPTIM1)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
3.23.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous / one-shot mode
•
Selectable software / hardware input trigger
•
Selectable clock source:
•
Internal clock source: LSE, LSI, HSI or APB clock
•
External clock source over LPTIM input (working even with no internal clock source
running, used by the Pulse Counter Application)
•
Programmable digital glitch filter
•
Encoder mode
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.23.6
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.23.7
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source
DS11532 Rev 8
41/256
54
Functional overview
3.24
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Inter-integrated circuit interface (I2C)
The devices embed 4 I2C. Refer to table Table 7: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 7. I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
I2C4
Standard-mode (up to 100 kbit/s)
X
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)
X
X
X
X
Programmable analog and digital noise filters
X
X
X
X
SMBus/PMBus hardware support
X
X
X
X
Independent clock
X
X
X
X
1. X: supported.
42/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.25
Functional overview
Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed USART. Refer to Table 8: USART implementation for the features
implementation.
The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format.
The USART peripheral supports:
•
Full-duplex asynchronous communications
•
Configurable oversampling method by 16 or 8 to give flexibility between speed and
clock tolerance
•
Dual clock domain allowing convenient baud rate programming independent from the
PCLK reprogramming
•
A common programmable transmit and receive baud rate of up to 27 Mbit/s when the
USART clock source is system clock frequency (max is 216 MHz) and oversampling by
8 is used.
•
Auto baud rate detection
•
Programmable data word length (7 or 8 or 9 bits) word length
•
Programmable data order with MSB-first or LSB-first shifting
•
Programmable parity (odd, even, no parity)
•
Configurable stop bits (1 or 1.5 or 2 stop bits)
•
Synchronous mode and clock output for synchronous communications
•
Single-wire half-duplex communications
•
Separate signal polarity control for transmission and reception
•
Swappable Tx/Rx pin configuration
•
Hardware flow control for modem and RS-485 transceiver
•
Multiprocessor communications
•
LIN master synchronous break send capability and LIN slave break detection capability
•
IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode
•
Smartcard mode ( T=0 and T=1 asynchronous protocols for Smartcards as defined in
the ISO/IEC 7816-3 standard )
•
Support for Modbus communication
Table 8 summarizes the implementation of all U(S)ARTs instances
Table 8. USART implementation
features(1)
USART1/2/3/6
Data Length
UART4/5/7/8
7, 8 and 9 bits
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode
X
-
DS11532 Rev 8
43/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 8. USART implementation (continued)
features(1)
USART1/2/3/6
UART4/5/7/8
Smartcard mode
X
-
Single-wire half-duplex communication
X
X
IrDA SIR ENDEC block
X
X
LIN mode
X
X
Dual clock domain
X
X
Receiver timeout interrupt
X
X
Modbus communication
X
X
Auto baud rate detection
X
X
Driver Enable
X
X
1. X: supported.
3.26
Serial peripheral interface (SPI)/inter- integrated sound
interfaces (I2S)
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 54 Mbits/s,
SPI2 and SPI3 can communicate at up to 27 Mbit/s. The 3-bit prescaler gives 8 master
mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces
support NSS pulse mode, TI mode and Hardware CRC calculation. All the SPIs can be
served by the DMA controller.
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They
can be operated in master or slave mode, in simplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.27
Serial audio interface (SAI)
The devices embed two serial audio interfaces.
The serial audio interface is based on two independent audio subblocks which can operate
as transmitter or receiver with their FIFO. Many audio protocols are supported by each
block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output,
supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be
configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub-blocks can be configured in synchronous mode when full-duplex mode is
required.
44/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
SAI1 and SAI2 can be served by the DMA controller
3.28
SPDIFRX Receiver Interface (SPDIFRX)
The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958
and IEC-61937. These standards support simple stereo streams up to high sample rate,
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up
to 5.1).
The main features of the SPDIFRX are the following:
•
Up to 4 inputs available
•
Automatic symbol rate detection
•
Maximum symbol rate: 12.288 MHz
•
Stereo stream from 32 to 192 kHz supported
•
Supports Audio IEC-60958 and IEC-61937, consumer applications
•
Parity bit management
•
Communication using DMA for audio samples
•
Communication using DMA for control and user channel information
•
Interrupt capabilities
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and
decode the incoming data stream. The user can select the wanted SPDIF input, and when a
valid signal is available, the SPDIFRX re-samples the incoming signal, decodes the
manchester stream, recognizes frames, sub-frames and blocks elements. It delivers to the
CPU decoded data, and associated status flags.
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF
sub-frame rate that is used to compute the exact sample rate for clock drift algorithms.
3.29
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
3.30
Audio and LCD PLL (PLLSAI)
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.
The PLLSAI is also used to generate the LCD-TFT clock.
DS11532 Rev 8
45/256
54
Functional overview
3.31
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
SD/SDIO/MMC card host interface (SDMMC)
SDMMC host interfaces are available, that support the MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDMMC Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a
stack of MMC4.1 or previous.
The SDMMC can be served by the DMA controller
3.32
Ethernet MAC interface with dedicated DMA and IEEE 1588
support
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
46/256
•
Supports 10 and 100 Mbit/s rates
•
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors
•
Tagged MAC frame support (VLAN support)
•
Half-duplex (CSMA/CD) and full-duplex operation
•
MAC control sublayer (control frames) support
•
32-bit CRC generation and removal
•
Several address filtering modes for physical and multicast address (multicast and
group addresses)
•
32-bit status code for each transmitted or received frame
•
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
•
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
•
Triggers interrupt when system time becomes greater than target time
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.33
Functional overview
Controller area network (bxCAN)
The three CANs are compliant with the 2.0A and B (active) specifications with a bit rate up
to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for CAN1 and CAN2. 512 bytes of SRAM
are dedicated for CAN3.
3.34
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The major features are:
•
Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
•
12 host channels with periodic OUT support
•
Software configurable to OTG1.3 and OTG2.0 modes of operation
•
USB 2.0 LPM (Link Power Management) support
•
Battery Charging Specification Revision 1.2 support
•
Internal FS OTG PHY support
•
HNP/SNP/IP inside (no need for any external resistor)
For the OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.35
Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed a USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral.
The USB OTG HS supports both full-speed and high-speed operations. It integrates the
transceivers for full-speed operation (12 Mbit/s) and features a UTMI low-pin interface
(ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG HS in HS mode, an
external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The major features are:
•
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
8 bidirectional endpoints
•
16 host channels with periodic OUT support
DS11532 Rev 8
47/256
54
Functional overview
3.36
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
•
Software configurable to OTG1.3 and OTG2.0 modes of operation
•
USB 2.0 LPM (Link Power Management) support
•
Battery Charging Specification Revision 1.2 support
•
Internal FS OTG PHY support
•
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
•
Internal USB DMA
•
HNP/SNP/IP inside (no need for any external resistor)
•
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The devices embed a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC
controller to wakeup the MCU from Stop mode on data reception.
3.37
Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 54 Mbytes/s in 8-bit mode at 54 MHz. It
features:
48/256
•
Programmable polarity for the input pixel clock and synchronization signals
•
Parallel data communication can be 8-, 10-, 12- or 14-bit
•
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
•
Supports continuous mode or snapshot (a single frame) mode
•
Capability to automatically crop the image
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
3.38
Functional overview
Management Data Input/Output (MDIO) slaves
The devices embed a MDIO slave interface it includes the following features:
•
–
32 x 16-bit firmware read/write, MDIO read-only output data registers
–
32 x 16-bit firmware read-only, MDIO write-only input data registers
•
Configurable slave (port) address
•
Independently maskable interrupts/events:
•
3.39
32 MDIO Registers addresses, each of which is managed using separate input and
output data registers:
–
MDIO Register write
–
MDIO Register read
–
MDIO protocol error
Able to operate in and wake up from STOP mode
Random number generator (RNG)
The RNG is a true random number generator that provides full entropy outputs to the
application as 32-bit samples. It is composed of a live entropy source (analog) and an
internal conditioning component.
All the devices embed an RNG that delivers 32-bit random numbers generated by an
integrated analog circuit.
3.40
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
A fast I/O handling allows a maximum I/O toggling up to 108 MHz.
3.41
Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
DS11532 Rev 8
49/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
3.42
Digital filter for Sigma-Delta Modulators (DFSDM)
The devices embed one DFSDM with 4 digital filters modules and 8 external input serial
channels (transceivers) or alternately 8 internal parallel inputs support. The DFSDM
peripheral is dedicated to interface the external Σ∆ modulators to microcontroller and then to
perform digital filtering of the received data streams (which represent analog value on Σ∆
modulators inputs). The DFSDM can also interface PDM (Pulse Density Modulation)
microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDM
features optional parallel data stream inputs from microcontrollers memory (through
DMA/CPU transfers into DFSDM). The DFSDM transceivers support several serial interface
formats (to support various Σ∆ modulators). The DFSDM digital filter modules perform
digital processing according user selected filter parameters with up to 24-bit final ADC
resolution.
The DFSDM peripheral supports:
•
•
8 multiplexed input digital serial channels:
–
Configurable SPI interface to connect various SD modulator(s)
–
Configurable Manchester coded 1 wire interface support
–
PDM (Pulse Density Modulation) microphone input support
–
Maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
–
Clock output for SD modulator(s): 0..20 MHz
Alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
–
•
–
Sincxfilter: filter order/type (1..5), oversampling ratio (up to 1..1024)
–
integrator: oversampling ratio (1..256)
•
Up to 24-bit output data resolution, signed output data format
•
Automatic data offset correction (offset stored in register by user)
•
Continuous or single conversion
•
Start-of-conversion triggered by:
•
•
50/256
internal sources: device memory data streams (DMA)
4 digital filter modules with adjustable digital signal processing:
–
Software trigger
–
Internal timers
–
External events
–
Start-of-conversion synchronously with first digital filter module (DFSDM0)
Analog watchdog feature:
–
Low value and high value data threshold registers
–
Dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
–
Input from final output data or from selected input digital serial channels
–
Continuous monitoring independently from standard conversion
Short circuit detector to detect saturated analog input values (bottom and top range):
–
Up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
–
Monitoring continuously each input serial channel
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
•
Break signal generation on analog watchdog event or on short circuit detector event
•
Extremes detector:
–
Storage of minimum and maximum values of final conversion data
–
Refreshed by software
•
DMA capability to read the final conversion data
•
Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
•
“regular” or “injected” conversions:
–
“regular” conversions can be requested at any time or even in continuous mode
without having any impact on the timing of “injected” conversions
–
“injected” conversions for precise timing and with high conversion priority
Table 9. DFSDM implementation
DFSDM features
DFSDM1
Number of filters: x (DFSDM_FLTx)
4
Number of input transceivers/channels: y (DFSDM_CHy)
8
Internal ADC parallel input support
-
Number of external triggers (JEXTSEL size)
ID register support
32
-
DS11532 Rev 8
51/256
54
Functional overview
3.43
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with the temperature.
The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.44
Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
•
Two DAC converters: one for each output channel
•
8-bit or 12-bit monotonic output
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
External triggers for conversion
•
Input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.45
Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins
could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.46
Embedded Trace Macrocell™
The Arm embedded trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F76xxx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
52/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Functional overview
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
3.47
DSI Host (DSIHOST)
The DSI Host is a dedicated peripheral for interfacing with MIPI® DSI compliant displays. It
includes a dedicated video interface internally connected to the LTDC and a generic APB
interface that can be used to transmit information to the display.
These interfaces are as follows:
•
•
•
LTDC interface:
–
Used to transmit information in Video mode, in which the transfers from the host
processor to the peripheral take the form of a real-time pixel stream (DPI).
–
Through a customized for mode, this interface can be used to transmit information
in full bandwidth in the Adapted Command mode (DBI).
APB slave interface:
–
Allows the transmission of generic information in Command mode, and follows a
proprietary register interface.
–
Can operate concurrently with either LTDC interface in either Video mode or
Adapted Command mode.
Video mode pattern generator:
–
Allows the transmission of horizontal/vertical color bar and D-PHY BER testing
pattern without any kind of stimuli.
The DSI Host main features:
•
Compliant with MIPI® Alliance standards
•
Interface with MIPI® D-PHY
•
Supports all commands defined in the MIPI® Alliance specification for DCS:
–
Transmission of all Command mode packets through the APB interface
–
Transmission of commands in low-power and high-speed during Video mode
•
Supports up to two D-PHY data lanes
•
Bidirectional communication and escape mode support through data lane 0
•
Supports non-continuous clock in D-PHY clock lane for additional power saving
•
Supports Ultra Low-power mode with PLL disabled
•
ECC and Checksum capabilities
•
Support for End of Transmission Packet (EoTp)
•
Fault recovery schemes
•
3D transmission support
•
Configurable selection of system interfaces:
•
–
AMBA APB for control and optional support for Generic and DCS commands
–
Video Mode interface through LTDC
–
Adapted Command mode interface through LTDC
Independently programmable Virtual Channel ID in
DS11532 Rev 8
53/256
54
Functional overview
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
–
Video mode
–
Adapted Command mode
–
APB Slave
Video Mode interfaces features:
•
LTDC interface color coding mappings into 24-bit interface:
–
16-bit RGB, configurations 1, 2, and 3
–
18-bit RGB, configurations 1 and 2
–
24-bit RGB
•
Programmable polarity of all LTDC interface signals
•
Maximum resolution is limited by available DSI physical link bandwidth:
–
Number of lanes: 2
–
Maximum speed per lane: 500 Mbps1Gbps
Adapted interface features
Support for sending large amounts of data through the memory_write_start(WMS) and
memory_write_continue(WMC) DCS commands
•
LTDC interface color coding mappings into 24-bit interface:
–
16-bit RGB, configurations 1, 2, and 3
–
18-bit RGB, configurations 1 and 2
–
24-bit RGB
Video mode pattern generator:
54/256
•
Vertical and horizontal color bar generation without LTDC stimuli
•
BER pattern without LTDC stimuli
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 11. STM32F76xxx LQFP100 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD
VSS
VCAP2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13-ANTI_TAMP
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF+
VDDA
PA0-WKUP
PA1
PA2
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP1
VSS
VDD
4
Pinouts and pin description
MSv34171V2
1. The above figure shows the package top view.
DS11532 Rev 8
55/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 12. STM32F76xxx TFBGA100 pinout
1
2
3
5
6
7
8
A
PC14
PC13
PE2
PB9
PB7
PB4
PB3
PA15
PA14
PA13
B
PC15
VBAT
PE3
PB8
PB6
PD5
PD2
PC11
PC10
PA12
C
PH0
VSS
PE4
PE1
PB5
PD6
PD3
PC12
PA9
PA11
PH1
VDD
PE5
PE0
BOOT0
PD7
PD4
PD0
PA8
PA10
NRST
PC2
PE6
VSS
VSS
BYPASS
-REG
VCAP_2
PD1
PC9
PC7
PC0
PC1
PC3
VDD
VDD
VDDUSB PDR_ON VCAP_1
PC8
PC6
VSSA
PA0
PA4
PC4
PB2
PE10
PE14
PD15
PD11
PB15
H
VDDA
PA1
PA5
PC5
PE7
PE11
PE15
PD14
PD10
PB14
J
VSS
PA2
PA6
PB0
PE8
PE12
PB10
PB13
PD9
PD13
K
VDD
PA3
PA7
PB1
PE9
PE13
PB11
PB12
PD8
PD12
D
E
F
G
4
9
10
MSv40497V1
1. The above figure shows the package top view.
56/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 13. STM32F76xxx LQFP144 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14
PC15
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
MS39132V1
1. The above figure shows the package top view.
DS11532 Rev 8
57/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PI3
PI2
V
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PI7
PI6
PI5
PI4
Figure 14. STM32F76xxx LQFP176 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176 without DSI
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VDD
VSS
PH12
VCAP_1
VDD
PH6
PH7
PH8
PH9
PH10
PH11
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
PH4
PH5
PA3
BYPASS_REG
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14
PC15
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
MS39123V1
1. The above figure shows the package top view.
58/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
DD
PDR_ON
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PI3
PI1
V
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PI7
PI6
PI5
PI4
Figure 15. STM32F769xx LQFP176 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176 with DSI
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PI0
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
VSSDSI
DSI_D1N
DSI_D1P
VDD12DSI
DSI_CKN
DSI_CKP
VSSDSI
DSI_D0N
DSI_D0P
VCAPDSI
VDDDSI
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
VCAP_1
VDD
PH6
PH7
PB12
PB13
PB14
PB15
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
PH4
PH5
PA3
BYPASS_REG
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14
PC15
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
MS41054V1
1. The above figure shows the package top view.
DS11532 Rev 8
59/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 16. STM32F76xxx UFBGA176 ballout
1
2
A
PE3
PE2
B
PE4
C
3
4
5
6
7
8
9
PE1
PE0
PB8
PB5
PG14
PG13
PB4
PE5
PE6
PB9
PB7
PB6
PG15
PG12
VBAT
PI7
PI6
PI5
VDD
11
12
13
14
15
PB3
PD7
PC12
PA15
PA14
PA13
PG11
PG10
PD6
PD0
PC11
PC10
PA12
VDD
SDMMC
VDD
PG9
PD5
PD1
PI3
PI2
PA11
D
PC13
PI8
PI9
PI4
VSS
VSS
PD4
PD3
PD2
PH15
PI1
PA10
E
PC14
PF0
PI10
PI11
PH13
PH14
PI0
PA9
F
PC15
VSS
VDD
PH2
VSS
VSS
VSS
VSS
VSS
VSS
VCAP2
PC9
PA8
G
PH0
VSS
VDD
PH3
VSS
VSS
VSS
VSS
VSS
VSS
VDD
PC8
PC7
H
PH1
PF2
PF1
PH4
VSS
VSS
VSS
VSS
VSS
VSS
VDDUSB PG8
PC6
J
NRST
PF3
PF4
PH5
VSS
VSS
VSS
VSS
VSS
VDD
VDD
PG7
PG6
K
PF7
PF6
PF5
VDD
VSS
VSS
VSS
VSS
VSS
PH12
PG5
PG4
PG3
L
PF10
PF9
PF8
BYPASS_
REG
PH11
PH10
PD15
PG2
M
VSSA
PC0
PC1
PC2
PC3
PB2
PG1
VSS
VSS
PH6
PH8
PH9
PD14
PD13
N
VREF-
PA1
PA0
PA4
PC4
PF13
PG0
VDD
VDD
VDD
PE13
PH7
PD12
PD11
PD10
P
VREF+
PA2
PA6
PA5
PC5
PF12
PF15
PE8
PE9
PE11
PE14
PB12
PB13
PD9
PD8
R
VDDA
PA3
PA7
PB1
PB0
PF11
PF14
PE7
PE10
PE12
PE15
PB10
PB11
PB14
PB15
PDR_ON VDD
BOOT0
VSS
VSS
10
VCAP_1
MS39130V1
1. The above figure shows the package top view.
Note:
On the UFBGA176 package, the following balls are connected to Vss for package
mechanical stability and for heat dissipation purposes:
F6, F7, F8, F9, F10, G6, G7, G8, G9, G10, H6, H7, H8, H9, H10, J6, J7, J8, J9, J10, K6, K7,
K8, K9, K10.
60/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Figure 17. STM32F769Ax/STM32F768Ax WLCSP180 ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
A
NC(1)
NC(1)
PA14(JTCK
-SWCLK)
PD0
PD4
VDDMMC
PG10
VSS
PB5
BOOT0
VSS
NC(1)
NC(1)
B
NC(1)
VDD
PI1
PC10
PD3
VSS
PG11
VDD
PB6
PE1
VDD
PI7
NC(1)
C
VCAP_2
VSS
PI2
PC11
PD5
PG9
PG13
PB7
PE0
PDR_ON
PI6
PE4
VBAT
D
PA12
PA13(JTMS
-SWDIO)
PI3
PC12
PD1
PD2
PG12
PB4(NJ
TRST)
PB9
PI4
PI5
PE5
PC13
E
PC9
PA8
PA11
PI0
PH15
PD6
PD7
PB3(JTDO/
TRACESWO)
PB8
PE2
PE6
PC15OSC32
_IN
PC15OSC32_
OUT
F
VSS
VDDUSB
PC7
PA9
PA10
PH13
PH14
PA15(JTDI)
PG15
PE3
PI11
VDD
VSS
G
PG4
PG5
PG6
PG7
PG8
PC6
PC8
PG3
PI9
PF0
PF1
PF2
H
DSI_D1P
DSI_D1N
DSI_CKN
DSI_CKP
VSSDSI
VCAPDSI
PB12
PG2
PI10
PF3
PF4
PF5
J
DSI_D0P
DSI_D0N VDD12DSI
PD12
PB13
PE10
PB2
PB1
VSS
PA2
PA1
VDD
VSS
K
VDDDSI
PD15
PD11
PH9
PB10
PE11
PF12
PF14
VDD
PH3
PF10
PH0OSC_IN
PH1OSC_OUT
L
PD14
PD13
PD9
PH10
PB11
PE12
PG1
PF13
PA4
PH2
NRST
PC0
PC1
M
VSS
PD10
PD8
PH11
PH8
PE15
PE7
VDD
PA7
PA3
VSSA
VDDA
PA0-WKUP
N
NC(1)
PB15
PB14
VSS
VSS
PE14
PE8
PG0
PF11
PA6
PH5
PH4
NC(1)
P
NC(1)
NC(1)
PH12
VDD
VCAP_1
PE13
PE9
PF15
VSS
PB0
PA5
NC(1)
NC(1)
MSv39614V1
1. NC ball must not be connected to GND nor to VDD.
2. The above figure shows the package top view.
DS11532 Rev 8
61/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
LQFP208
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
PI2
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PK2
PK1
PK0
VSS
VDD
PJ11
PJ10
PJ9
PJ8
PJ7
PJ6
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PA4
PA5
PA6
PA7
PC4
PC5
VDD
VSS
PB0
PB1
PB2
PI15
PJ0
PJ1
PJ2
PJ3
PJ4
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VSS
VDD
PJ5
PH6
PH7
PH8
PH9
PH10
PH11
PH12
VDD
PB12
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14
PC15
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PI12
PI13
PI14
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
PH4
PH5
PA3
VSS
VDD
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
PI7
PI6
PI5
PI4
VDD
PDR_ON
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
PK7
PK6
PK5
PK4
PK3
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PJ15
PJ14
PJ13
PJ12
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
PI3
Figure 18. STM32F76xxx LQFP208 pinout
1. The above figure shows the package top view.
62/256
DS11532 Rev 8
MSv39131V1
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
LQFP208 with DSI
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
PI2
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDUSB
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
VSSDSI
DSI_D1N
DSI_D1P
VDD12DSI
DSI_CKN
DSI_CKP
VSSDSI
DSI_D0N
DSI_D0P
VCAPDSI
VDDDSI
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PA4
PA5
PA6
PA7
PC4
PC5
VDD
VSS
PB0
PB1
PB2
PI15
PJ0
PJ1
PJ2
PJ3
PJ4
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VSS
VDD
PJ5
PH6
PH7
PH8
PH9
PH10
PH11
PH12
VDD
PB12
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14
PC15
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PI12
PI13
PI14
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0
PH1
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
PH4
PH5
PA3
VSS
VDD
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
PI7
PI6
PI5
PI4
VDD
PDR_ON
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
PK7
PK6
PK5
PK4
PK3
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PJ15
PJ14
PJ13
PJ12
PD7
PD6
VDDSDMMC
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
PI3
Figure 19. STM32F769xx LQFP208 pinout
MSv39124V1
1. The above figure shows the package top view.
DS11532 Rev 8
63/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 20. STM32F76xxx TFBGA216 ballout
1
2
3
4
5
6
7
8
9
10
11
A
PE4
PE3
PE2
PG14
PE1
PE0
PB8
PB5
PB4
PB3
PD7
B
PE5
PE6
PG13
PB9
PB7
PB6
PG15
PG11
PJ13
PJ12
C
VBAT
PI8
PI4
PK7
PK6
PK5
PG12
PG10
PJ14
D
PC13
PF0
PI5
PI7
PI10
PI6
PK4
PK3
PG9
E
PC14
PF1
PI12
PI9
PDR_
ON
BOOT0 VDD
VDD
F
PC15
VSS
PI11
VDD
VDD
VSS
VSS
VSS
G
PH0
PF2
PI13
PI15
VDD
VSS
VSS
H
PH1
PF3
PI14
PH4
VDD
VSS
VSS
VDD
J
NRST
PF4
PH5
PH3
VDD
VSS
VSS
K
PF7
PF6
PF5
PH2
VDD
VSS
VSS
VSS
VSS
PF10
PF9
PF8
PC3
BYPASSVSS
REG
VDD
VDD
M
VSSA
PC0
PC1
PC2
PB2
PF12
PG1
N
VREF-
PA1
PA0
PA4
PC4
PF13
P
VREF+
PA2
PA6
PA5
PC5
R
VDDA
PA3
PA7
PB1
PB0
L
13
14
15
PC12
PA15
PA14
PA13
PD6
PD0
PC11
PC10
PA12
PD5
PD3
PD1
PI3
PI2
PA11
PJ15
PD4
PD2
PH15
PI1
PA10
VCAP2
PH13
PH14
PI0
PA9
VDD
PK1
PK2
PC9
PA8
VDDUSB PJ11
PK0
PC8
PC7
PJ8
PJ10
PG8
PC6
VDD
PJ7
PJ9
PG7
PG6
VSS
VDD
PJ6
PD15
PB13
PD10
VDD
VDD
VCAP1
PD14
PB12
PD9
PD8
PF15
PJ4
PD12
PD13
PG3
PG2
PJ5
PH12
PG0
PJ3
PE8
PD11
PG5
PG4
PH7
PH9
PH11
PF14
PJ2
PF11
PE9
PE11
PE14
PB10
PH6
PH8
PH10
PJ0
PJ1
PE7
PE10
PE12
PE15
PE13
PB11
PB14
PB15
VDD
VDD
SDMMC
VSS
VSS
12
MS39129V1
1. The above figure shows the package top view.
64/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Figure 21. STM32F769xx TFBGA216 ballout
1
2
3
4
5
6
7
8
9
10
11
A
PE4
PE3
PE2
PG14
PE1
PE0
PB8
PB5
PB4
PB3
PD7
B
PE5
PE6
PG13
PB9
PB7
PB6
PG15
PG11
PJ13
PJ12
C
VBAT
PI8
PI4
PK7
PK6
PK5
PG12
PG10
PJ14
D
PC13
PF0
PI5
PI7
PI10
PI6
PK4
PK3
PG9
E
PC14
PF1
PI12
PI9
PDR_
ON
BOOT0 VDD
VDD
13
14
15
PC12
PA15
PA14
PA13
PD6
PD0
PC11
PC10
PA12
PD5
PD3
PD1
PI3
PI2
PA11
PJ15
PD4
PD2
PH15
PI1
PA10
PH13
PH14
PI0
PA9
F
PC15
VSS
PI11
VDD
VDD
VSS
VSS
VSS
DSI_
D1P
DSI_
D1N
PC9
PA8
G
PH0
PF2
PI13
PI15
VDD
VSS
VSS VDDUSB VSSDSI VDD12 PC8
DSI
PC7
H
PH1
PF3
PI14
PH4
VDD
VSS
VSS
J
NRST
PF4
PH5
PH3
VDD
VSS
VSS
VDD
K
PF7
PF6
PF5
PH2
VDD
VSS
VSS
VSS
VSS
VSS
PF10
PF9
PF8
PC3
BYPASSVSS
REG
VDD
VDD
VDD
VDD
VCAP1
PD14
M
VSSA
PC0
PC1
PC2
PB2
PF12
PG1
PF15
PJ4
PD12
PD13
N
VREF-
PA1
PA0
PA4
PC4
PF13
PG0
PJ3
PE8
PD11
P
VREF+
PA2
PA6
PA5
PC5
PF14
PJ2
PF11
PE9
R
VDDA
PA3
PA7
PB1
PB0
PJ0
PJ1
PE7
PE10
L
VDD
SDMMC VDD VCAP2
VSS
VSS
VDD
12
VDDDSI DSI_
CKP
DSI_
CKN
PG8
PC6
DSI_
D0P
DSI_
D0N
PG7
PG6
VDD VCAPDSI PD15
PB13
PD10
PB12
PD9
PD8
PG3
PG2
PJ5
PH12
PG5
PG4
PH7
PH9
PH11
PE11
PE14
PB10
PH6
PH8
PH10
PE12
PE15
PE13
PB11
PB14
PB15
MS39125V1
1. The above figure shows the package top view.
DS11532 Rev 8
65/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 10. Legend/abbreviations used in the pinout table
Name
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TTa
3.3 V tolerant I/O directly connected to ADC
B
Dedicated BOOT pin
RST
Bidirectional reset pin with weak pull-up resistor
Pin type
I/O structure
Notes
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions
1
A3
PE2
I/O
FT
-
B3
2
2
A1
2
2
A2
F10
2
2
A2
PE3
I/O
FT
-
TRACED0, SAI1_SD_B,
FMC_A19, EVENTOUT
66/256
TFBGA216
1
LQFP208
E10
LQFP176
A3
WLCSP180(1)
1
TFBGA216
1
LQFP208
A2
LQFP176
1
UFBGA176
1
LQFP144
A3
TRACECLK, SPI4_SCK,
SAI1_MCLK_A,
QUADSPI_BK1_IO2,
ETH_MII_TXD3, FMC_A23,
EVENTOUT
LQFP100
Alternate functions
TFBGA100
Notes
I/O structure
STM32F768Ax
STM32F769xx
Pin type
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
DS11532 Rev 8
Additional
functions
-
-
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
D3
3
4
4
B1
B2
3
4
3
4
A1
B1
C12
D12
E3
5
5
B3
5
5
B2
E11
-
-
-
-
-
-
G6
-
-
-
-
-
-
-
F5
-
B2
6
6
C1
6
6
C1
C13
-
-
-
D2
7
7
C2
A2
7
7
D1
8
8
A1
8
8
E1
9
B1
9
9
F1
-
-
-
-
-
-
3
4
5
3
4
A1
B1
PE4
PE5
PE6
I/O
I/O
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
3
STM32F768Ax
STM32F769xx
FT
FT
Alternate functions
Additional
functions
-
TRACED1, SPI4_NSS,
SAI1_FS_A,
DFSDM1_DATIN3, FMC_A20,
DCMI_D4, LCD_B0,
EVENTOUT
-
-
TRACED2, TIM9_CH1,
SPI4_MISO, SAI1_SCK_A,
DFSDM1_CKIN3, FMC_A21,
DCMI_D6, LCD_G0,
EVENTOUT
-
-
TRACED3, TIM1_BKIN2,
TIM9_CH2, SPI4_MOSI,
SAI1_SD_A, SAI2_MCLK_B,
FMC_A22, DCMI_D7,
LCD_G1, EVENTOUT
-
5
B2
-
-
G6
VSS
S
-
-
-
-
-
-
F5
VDD
S
-
-
-
-
6
6
C1
VBAT
S
-
-
-
-
NC
7
7
C2
PI8
I/O
FT
(2)
EVENTOUT
RTC_TAMP2/
RTC_TS/
WKUP5
D1
D13
8
8
D1
PC13
I/O
FT
(2)
EVENTOUT
RTC_TAMP1/
RTC_TS/
RTC_OUT/
WKUP4
9
E1
E12
9
9
E1
PC14OSC32_IN
I/O
FT
(2)
(3)
EVENTOUT
OSC32_IN
10
10
F1
E13
10
10
F1
PC15OSC32_O
UT
I/O
FT
(2)
(3)
EVENTOUT
OSC32_OUT
-
-
-
G5
-
-
-
G5
VDD
S
-
-
-
-
-
D3
11
11
E4
G10
11
11
E4
PI9
I/O
FT
-
UART4_RX, CAN1_RX,
FMC_D30, LCD_VSYNC,
EVENTOUT
-
-
-
E3
12
12
D5
H10
12
12
D5
PI10
I/O
FT
-
ETH_MII_RX_ER, FMC_D31,
LCD_HSYNC, EVENTOUT
-
-
-
-
E4
13
13
F3
F11
13
13
F3
PI11
I/O
FT
-
LCD_G6, OTG_HS_ULPI_DIR,
EVENTOUT
WKUP6
-
-
-
F2
14
14
F2
F13
14
14
F2
VSS
S
-
-
-
-
DS11532 Rev 8
FT
Notes
C3
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
67/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
-
-
-
F3
15
15
F4
F12
15
15
F4
VDD
S
-
-
-
-
-
-
10
E2
16
16
D2
G11
16
16
D2
PF0
I/O
FT
-
I2C2_SDA, FMC_A0,
EVENTOUT
-
-
-
11
H3
17
17
E2
G12
17
17
E2
PF1
I/O
FT
-
I2C2_SCL, FMC_A1,
EVENTOUT
-
-
-
12
H2
18
18
G2
G13
18
18
G2
PF2
I/O
FT
-
I2C2_SMBA, FMC_A2,
EVENTOUT
-
-
-
-
-
-
19
E3
NC
-
19
E3
PI12
I/O
FT
-
LCD_HSYNC, EVENTOUT
-
-
-
-
-
-
20
G3
NC
-
20
G3
PI13
I/O
FT
-
LCD_VSYNC, EVENTOUT
-
-
-
-
-
-
21
H3
NC
-
21
H3
PI14
I/O
FT
-
LCD_CLK, EVENTOUT
-
-
-
13
J2
19
22
H2
H11
19
22
H2
PF3
I/O
FT
-
FMC_A3, EVENTOUT
ADC3_IN9
-
-
14
J3
20
23
J2
H12
20
23
J2
PF4
I/O
FT
-
FMC_A4, EVENTOUT
ADC3_IN14
-
-
15
K3
21
24
K3
H13
21
24
K3
PF5
I/O
FT
-
FMC_A5, EVENTOUT
ADC3_IN15
C2
10
16
G2
22
25
H6
J13
22
25
H6
VSS
S
-
-
-
-
D2
11
17
G3
23
26
H5
J12
23
26
H5
VDD
S
-
-
-
-
ADC3_IN4
Additional
functions
-
-
18
K2
24
27
K2
NC
24
27
K2
PF6
I/O
FT
-
TIM10_CH1, SPI5_NSS,
SAI1_SD_B, UART7_RX,
QUADSPI_BK1_IO3,
EVENTOUT
-
-
19
K1
25
28
K1
NC
25
28
K1
PF7
I/O
FT
-
TIM11_CH1, SPI5_SCK,
SAI1_MCLK_B, UART7_TX,
QUADSPI_BK1_IO2,
EVENTOUT
ADC3_IN5
-
-
20
L3
26
29
L3
NC
26
29
L3
PF8
I/O
FT
-
SPI5_MISO, SAI1_SCK_B,
UART7_RTS, TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
ADC3_IN6
-
-
21
L2
27
30
L2
NC
27
30
L2
PF9
I/O
FT
-
SPI5_MOSI, SAI1_FS_B,
UART7_CTS, TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
ADC3_IN7
-
-
22
L1
28
31
L1
K11
28
31
L1
PF10
I/O
FT
-
QUADSPI_CLK, DCMI_D11,
LCD_DE, EVENTOUT
ADC3_IN8
C1
12
23
G1
29
32
G1
K12
29
32
G1
PH0OSC_IN
I/O
FT
(3)
EVENTOUT
OSC_IN
68/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
D1
13
24
H1
30
33
H1
K13
30
33
H1
PH1OSC_OUT
I/O
FT
(3)
EVENTOUT
OSC_OUT
E1
14
25
J1
31
34
J1
L11
31
34
J1
NRST
I/O
RS
T
-
-
-
-
DFSDM1_CKIN0,
DFSDM1_DATIN4,
SAI2_FS_B,
OTG_HS_ULPI_STP,
FMC_SDNWE, LCD_R5,
EVENTOUT
ADC1_IN10,
ADC2_IN10,
ADC3_IN10
-
TRACED0, DFSDM1_DATIN0,
SPI2_MOSI/I2S2_SD,
SAI1_SD_A, DFSDM1_CKIN4,
ETH_MDC, MDIOS_MDC,
EVENTOUT
ADC1_IN11,
ADC2_IN11,
ADC3_IN11,
RTC_TAMP3/
WKUP3
-
DFSDM1_CKIN1, SPI2_MISO,
DFSDM1_CKOUT,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2, FMC_SDNE0,
EVENTOUT
ADC1_IN12,
ADC2_IN12,
ADC3_IN12
ADC1_IN13,
ADC2_IN13,
ADC3_IN13
-
F1
F2
E2
15
16
17
26
27
28
M2
M3
M4
32
33
34
35
36
37
M2
M3
M4
L12
L13
NC
32
33
34
35
36
37
M2
M3
M4
PC0
PC1
PC2
I/O
I/O
I/O
FT
FT
FT
F3
18
29
M5
35
38
L4
NC
35
38
L4
PC3
I/O
FT
-
DFSDM1_DATIN1,
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0, EVENTOUT
-
-
30
-
36
39
J5
-
36
39
J5
VDD
S
-
-
-
Additional
functions
-
-
-
-
-
-
J6
-
-
-
J6
VSS
S
-
-
-
-
G1
19
31
M1
37
40
M1
M11
37
40
M1
VSSA
S
-
-
-
-
-
-
-
N1
-
-
N1
-
-
-
N1
VREF-
S
-
-
-
-
-
20
32
P1
38
41
P1
-
38
41
P1
VREF+
S
-
-
-
-
H1
21
33
R1
39
42
R1
M12
39
42
R1
VDDA
S
-
-
-
-
(4)
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS, UART4_TX,
SAI2_SD_B, ETH_MII_CRS,
EVENTOUT
ADC1_IN0,
ADC2_IN0,
ADC3_IN0,
WKUP1
G2
22
34
N3
40
43
N3
M13
40
43
N3
PA0WKUP
I/O
DS11532 Rev 8
FT
69/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
J2
23
24
36
N2
P2
41
42
44
45
N2
P2
J11
J10
41
42
44
45
N2
P2
PA1
PA2
I/O
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
35
STM32F768Ax
STM32F769xx
FT
FT
Notes
H2
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
Alternate functions
Additional
functions
-
TIM2_CH2, TIM5_CH2,
USART2_RTS, UART4_RX,
QUADSPI_BK1_IO3,
SAI2_MCLK_B,
ETH_MII_RX_CLK/ETH_RMII_
REF_CLK, LCD_R2,
EVENTOUT
ADC1_IN1,
ADC2_IN1,
ADC3_IN1
-
TIM2_CH3, TIM5_CH3,
TIM9_CH1, USART2_TX,
SAI2_SCK_B, ETH_MDIO,
MDIOS_MDIO, LCD_R1,
EVENTOUT
ADC1_IN2,
ADC2_IN2,
ADC3_IN2,
WKUP2
-
-
-
-
F4
43
46
K4
L10
43
46
K4
PH2
I/O
FT
-
LPTIM1_IN2,
QUADSPI_BK2_IO0,
SAI2_SCK_B, ETH_MII_CRS,
FMC_SDCKE0, LCD_R0,
EVENTOUT
-
-
-
G4
44
47
J4
K10
44
47
J4
PH3
I/O
FT
-
QUADSPI_BK2_IO1,
SAI2_MCLK_B,
ETH_MII_COL, FMC_SDNE0,
LCD_R1, EVENTOUT
-
-
-
-
H4
45
48
H4
N12
45
48
H4
PH4
I/O
FT
-
I2C2_SCL, LCD_G5,
OTG_HS_ULPI_NXT, LCD_G4,
EVENTOUT
-
-
-
-
J4
46
49
J3
N11
46
49
J3
PH5
I/O
FT
-
I2C2_SDA, SPI5_NSS,
FMC_SDNWE, EVENTOUT
-
ADC1_IN3,
ADC2_IN3,
ADC3_IN3
PA3
I/O
FT
-
TIM2_CH4, TIM5_CH4,
TIM9_CH2, USART2_RX,
LCD_B2, OTG_HS_ULPI_D0,
ETH_MII_COL, LCD_B5,
EVENTOUT
K6
VSS
S
-
-
-
-
I
FT
-
-
-
S
-
-
-
-
-
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK, SPI6_NSS,
OTG_HS_SOF, DCMI_HSYNC,
LCD_VSYNC, EVENTOUT
ADC1_IN4,
ADC2_IN4,
DAC_OUT1
K2
25
37
R2
47
50
R2
M10
47
50
R2
J1
26
38
-
-
51
K6
J9
-
51
E6
-
-
L4
48
-
L5
-(5)
48
-
L5
BYPASS_
REG
K1
27
39
K4
49
52
K5
K9
49
52
K5
VDD
G3
28
70/256
40
N4
50
53
N4
L9
50
53
N4
PA4
I/O
DS11532 Rev 8
TTa
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
J3
29
30
42
P4
P3
51
52
54
55
P4
P3
P11
N10
51
52
54
55
P4
P3
PA5
PA6
I/O
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
41
STM32F768Ax
STM32F769xx
TTa
FT
Notes
H3
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
Alternate functions
Additional
functions
-
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
SPI6_SCK,
OTG_HS_ULPI_CK, LCD_R4,
EVENTOUT
ADC1_IN5,
ADC2_IN5,
DAC_OUT2
-
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
SPI6_MISO, TIM13_CH1,
MDIOS_MDC, DCMI_PIXCLK,
LCD_G2, EVENTOUT
ADC1_IN6,
ADC2_IN6
ADC1_IN7,
ADC2_IN7
K3
31
43
R3
53
56
R3
M9
53
56
R3
PA7
I/O
FT
-
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SD,
SPI6_MOSI, TIM14_CH1,
ETH_MII_RX_DV/ETH_RMII_C
RS_DV, FMC_SDNWE,
EVENTOUT
G4
32
44
N5
54
57
N5
NC
54
57
N5
PC4
I/O
FT
-
DFSDM1_CKIN2, I2S1_MCK,
SPDIF_RX2,
ETH_MII_RXD0/ETH_RMII_RX
D0, FMC_SDNE0, EVENTOUT
ADC1_IN14,
ADC2_IN14
ADC1_IN15,
ADC2_IN15
H4
33
45
P5
55
58
P5
NC
55
58
P5
PC5
I/O
FT
-
DFSDM1_DATIN2,
SPDIF_RX3,
ETH_MII_RXD1/ETH_RMII_RX
D1, FMC_SDCKE0,
EVENTOUT
-
-
-
-
-
59
L7
-
-
59
L7
VDD
S
-
-
-
-
-
-
-
-
-
60
L6
-
-
60
L6
VSS
S
-
-
-
-
-
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
DFSDM1_CKOUT,
UART4_CTS, LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2, LCD_G1,
EVENTOUT
ADC1_IN8,
ADC2_IN8
-
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN1, LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3, LCD_G0,
EVENTOUT
ADC1_IN9,
ADC2_IN9
J4
K4
34
35
46
47
R5
R4
56
57
61
62
R5
R4
P10
J8
56
57
61
62
R5
R4
PB0
PB1
I/O
I/O
DS11532 Rev 8
FT
FT
71/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
G5
36
48
M6
58
63
M5
J7
58
63
M5
PB2
I/O
FT
-
SAI1_SD_A,
SPI3_MOSI/I2S3_SD,
QUADSPI_CLK,
DFSDM1_CKIN1, EVENTOUT
-
-
-
-
-
-
64
G4
NC
-
64
G4
PI15
I/O
FT
-
LCD_G2, LCD_R0,
EVENTOUT
-
-
-
-
-
-
65
R6
NC
-
65
R6
PJ0
I/O
FT
-
LCD_R7, LCD_R1,
EVENTOUT
-
-
-
-
-
-
66
R7
NC
-
66
R7
PJ1
I/O
FT
-
LCD_R2, EVENTOUT
-
-
-
-
-
-
67
P7
NC
-
67
P7
PJ2
I/O
FT
-
DSI_TE, LCD_R3, EVENTOUT
-
-
-
-
-
-
68
N8
NC
-
68
N8
PJ3
I/O
FT
-
LCD_R4, EVENTOUT
-
-
-
-
-
-
69
M9
NC
-
69
M9
PJ4
I/O
FT
-
LCD_R5, EVENTOUT
-
-
-
49
R6
59
70
P8
N9
59
70
P8
PF11
I/O
FT
-
SPI5_MOSI, SAI2_SD_B,
FMC_SDNRAS, DCMI_D12,
EVENTOUT
-
-
-
50
P6
60
71
M6
K7
60
71
M6
PF12
I/O
FT
-
FMC_A6, EVENTOUT
-
-
-
51
M8
61
72
K7
P9
61
72
K7
VSS
S
-
-
-
-
-
-
52
N8
62
73
L8
M8
62
73
L8
VDD
S
-
-
-
-
-
-
53
N6
63
74
N6
L8
63
74
N6
PF13
I/O
FT
-
I2C4_SMBA,
DFSDM1_DATIN6, FMC_A7,
EVENTOUT
-
-
-
54
R7
64
75
P6
K8
64
75
P6
PF14
I/O
FT
-
I2C4_SCL, DFSDM1_CKIN6,
FMC_A8, EVENTOUT
-
-
-
55
P7
65
76
M8
P8
65
76
M8
PF15
I/O
FT
-
I2C4_SDA, FMC_A9,
EVENTOUT
-
-
-
56
N7
66
77
N7
N8
66
77
N7
PG0
I/O
FT
-
FMC_A10, EVENTOUT
-
-
-
57
M7
67
78
M7
L7
67
78
M7
PG1
I/O
FT
-
FMC_A11, EVENTOUT
-
-
-
H5
37
58
R8
68
79
R8
M7
68
79
R8
PE7
I/O
FT
-
TIM1_ETR, DFSDM1_DATIN2,
UART7_RX,
QUADSPI_BK2_IO0, FMC_D4,
EVENTOUT
J5
38
59
P8
69
80
N9
N7
69
80
N9
PE8
I/O
FT
-
TIM1_CH1N, DFSDM1_CKIN2,
UART7_TX,
QUADSPI_BK2_IO1, FMC_D5,
EVENTOUT
72/256
DS11532 Rev 8
Additional
functions
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
K5
39
60
P9
70
81
P9
P7
70
81
P9
PE9
I/O
FT
-
TIM1_CH1, DFSDM1_CKOUT,
UART7_RTS,
QUADSPI_BK2_IO2, FMC_D6,
EVENTOUT
-
-
-
61
M9
71
82
K8
-
71
82
K8
VSS
S
-
-
-
-
-
-
62
N9
72
83
L9
-
72
83
L9
VDD
S
-
-
-
-
-
Additional
functions
G6
40
63
R9
73
84
R9
J6
73
84
R9
PE10
I/O
FT
-
TIM1_CH2N,
DFSDM1_DATIN4,
UART7_CTS,
QUADSPI_BK2_IO3, FMC_D7,
EVENTOUT
H6
41
64
P10
74
85
P10
K6
74
85
P10
PE11
I/O
FT
-
TIM1_CH2, SPI4_NSS,
DFSDM1_CKIN4, SAI2_SD_B,
FMC_D8, LCD_G3,
EVENTOUT
-
J6
42
65
R10
75
86
R10
L6
75
86
R10
PE12
I/O
FT
-
TIM1_CH3N, SPI4_SCK,
DFSDM1_DATIN5,
SAI2_SCK_B, FMC_D9,
LCD_B4, EVENTOUT
-
K6
43
66
N11
76
87
R12
P6
76
87
R12
PE13
I/O
FT
-
TIM1_CH3, SPI4_MISO,
DFSDM1_CKIN5, SAI2_FS_B,
FMC_D10, LCD_DE,
EVENTOUT
-
G7
44
67
P11
77
88
P11
N6
77
88
P11
PE14
I/O
FT
-
TIM1_CH4, SPI4_MOSI,
SAI2_MCLK_B, FMC_D11,
LCD_CLK, EVENTOUT
-
H7
45
68
R11
78
89
R11
M6
78
89
R11
PE15
I/O
FT
-
TIM1_BKIN, FMC_D12,
LCD_R7, EVENTOUT
-
-
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN7,
USART3_TX,
QUADSPI_BK1_NCS,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER, LCD_G4,
EVENTOUT
-
J7
46
69
R12
79
90
P12
K5
79
90
P12
PB10
I/O
DS11532 Rev 8
FT
73/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
91
R13
PB11
I/O
FT
-
F8
48
71
M10
81
92
L11
P5
81
92
L11
VCAP_1
S
-
-
-
-
-
49
-
-
-
93
K9
N5
-
93
K9
VSS
S
-
-
-
-
-
50
72
N10
82
94
L10
P4
82
94
L10
VDD
S
-
-
-
-
-
-
-
-
-
95
M14
NC
-
95
M14
PJ5
I/O
FT
-
LCD_R6, EVENTOUT
-
-
-
-
M11
83
96
P13
NC
83
96
P13
PH6
I/O
FT
-
I2C2_SMBA, SPI5_SCK,
TIM12_CH1, ETH_MII_RXD2,
FMC_SDNE1, DCMI_D8,
EVENTOUT
-
-
-
-
N12
84
97
N13
NC
84
97
N13
PH7
I/O
FT
-
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1, DCMI_D9,
EVENTOUT
-
-
-
-
M12
85
98
P14
M5
-
98
P14
PH8
I/O
FT
-
I2C3_SDA, FMC_D16,
DCMI_HSYNC, LCD_R2,
EVENTOUT
-
-
-
-
M13
86
99
N14
K4
-
99
N14
PH9
I/O
FT
-
I2C3_SMBA, TIM12_CH2,
FMC_D17, DCMI_D0,
LCD_R3, EVENTOUT
-
-
-
-
L13
87
100
P15
L4
-
100
P15
PH10
I/O
FT
-
TIM5_CH1, I2C4_SMBA,
FMC_D18, DCMI_D1,
LCD_R4, EVENTOUT
-
-
-
-
L12
88
101
N15
M4
-
101
N15
PH11
I/O
FT
-
TIM5_CH2, I2C4_SCL,
FMC_D19, DCMI_D2,
LCD_R5, EVENTOUT
-
-
-
-
K12
89
102
M15
P3
-
102 M15
PH12
I/O
FT
-
TIM5_CH3, I2C4_SDA,
FMC_D20, DCMI_D3,
LCD_R6, EVENTOUT
-
-
-
-
H12
90
-
K10
N4
-
-
K10
VSS
S
-
-
-
-
-
-
-
J12
91
103
K11
-
-
103
K11
VDD
S
-
-
-
-
74/256
TFBGA216
80
LQFP208
L5
LQFP176
R13
WLCSP180(1)
91
TFBGA216
80
LQFP208
R13
LQFP176
70
UFBGA176
47
LQFP144
K7
TIM2_CH4, I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX,
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_RMII_T
X_EN, DSI_TE, LCD_G5,
EVENTOUT
LQFP100
Alternate functions
TFBGA100
Notes
I/O structure
STM32F768Ax
STM32F769xx
Pin type
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
DS11532 Rev 8
Additional
functions
-
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
J8
H10
51
52
53
74
75
P12
P13
R14
92
93
94
104
105
106
L13
K14
R14
H8
J5
N3
85
86
87
104
105
106
L13
K14
R14
PB12
PB13
PB14
I/O
I/O
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
73
STM32F768Ax
STM32F769xx
FT
FT
FT
Notes
K8
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
Alternate functions
Additional
functions
-
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN1,
USART3_CK, UART5_RX,
CAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_RMII_TX
D0, OTG_HS_ID, EVENTOUT
-
-
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
DFSDM1_CKIN1,
USART3_CTS, UART5_TX,
CAN2_TX, OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_RMII_TX
D1, EVENTOUT
OTG_HS_VB
US
-
TIM1_CH2N, TIM8_CH2N,
USART1_TX, SPI2_MISO,
DFSDM1_DATIN2,
USART3_RTS, UART4_RTS,
TIM12_CH1, SDMMC2_D0,
OTG_HS_DM, EVENTOUT
-
-
G10
54
76
R15
95
107
R15
N2
88
107
R15
PB15
I/O
FT
-
RTC_REFIN, TIM1_CH3N,
TIM8_CH3N, USART1_RX,
SPI2_MOSI/I2S2_SD,
DFSDM1_CKIN2,
UART4_CTS, TIM12_CH2,
SDMMC2_D1, OTG_HS_DP,
EVENTOUT
K9
55
77
P15
96
108
L15
M3
89
108
L15
PD8
I/O
FT
-
DFSDM1_CKIN3,
USART3_TX, SPDIF_RX1,
FMC_D13, EVENTOUT
-
J9
56
78
P14
97
109
L14
L3
90
109
L14
PD9
I/O
FT
-
DFSDM1_DATIN3,
USART3_RX, FMC_D14,
EVENTOUT
-
H9
57
79
N15
98
110
K15
M2
91
110
K15
PD10
I/O
FT
-
DFSDM1_CKOUT,
USART3_CK, FMC_D15,
LCD_B3, EVENTOUT
-
-
I2C4_SMBA, USART3_CTS,
QUADSPI_BK1_IO0,
SAI2_SD_A,
FMC_A16/FMC_CLE,
EVENTOUT
-
G9
58
80
N14
99
111
N10
K3
92
111
N10
PD11
I/O
DS11532 Rev 8
FT
75/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
59
N13
100
112
M10
J4
93
112
M10
PD12
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
81
STM32F768Ax
STM32F769xx
FT
Notes
K10
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
Alternate functions
Additional
functions
-
TIM4_CH1, LPTIM1_IN1,
I2C4_SCL, USART3_RTS,
QUADSPI_BK1_IO1,
SAI2_FS_A,
FMC_A17/FMC_ALE,
EVENTOUT
-
-
J10
60
82
M15
101
113
M11
L2
94
113
M11
PD13
I/O
FT
-
TIM4_CH2, LPTIM1_OUT,
I2C4_SDA,
QUADSPI_BK1_IO3,
SAI2_SCK_A, FMC_A18,
EVENTOUT
-
-
83
-
102
114
J10
M1
95
114
J10
VSS
S
-
-
-
-
-
-
84
J13
103
115
J11
-
96
115
J11
VDD
S
-
-
-
-
H8
61
85
M14
104
116
L12
L1
97
116
L12
PD14
I/O
FT
-
TIM4_CH3, UART8_CTS,
FMC_D0, EVENTOUT
-
G8
62
86
L14
105
117
K13
K2
98
117
K13
PD15
I/O
FT
-
TIM4_CH4, UART8_RTS,
FMC_D1, EVENTOUT
-
-
-
-
-
-
118
K12
-
-
-
-
PJ6
I/O
FT
-
LCD_R7, EVENTOUT
-
-
-
-
-
-
119
J12
-
-
-
-
PJ7
I/O
FT
-
LCD_G0, EVENTOUT
-
-
-
-
-
-
120
H12
-
-
-
-
PJ8
I/O
FT
-
LCD_G1, EVENTOUT
-
-
-
-
-
-
121
J13
-
-
-
-
PJ9
I/O
FT
-
LCD_G2, EVENTOUT
-
-
-
-
-
-
122
H13
-
-
-
-
PJ10
I/O
FT
-
LCD_G3, EVENTOUT
-
-
-
-
-
-
123
G12
-
-
-
-
PJ11
I/O
FT
-
LCD_G4, EVENTOUT
-
-
-
-
-
-
124
H11
-
-
-
-
VDD
S
-
-
-
-
-
-
-
-
-
-
-
K1
99
118
H11
VDDDSI
S
-
-
-
-
-
-
-
-
-
125
H10
-
-
-
H10
VSS
S
-
-
-
-
-
-
-
-
-
-
-
H6
100
119
K12
VCAPDSI
S
-
-
-
-
-
-
-
-
-
-
-
J3
-
-
G13
VDD12DSI
S
-
-
-
-
-
-
-
-
-
-
-
J1
101 120
J12
DSI_D0P
I/O
-
-
-
-
-
-
-
-
-
-
-
J2
102 121
J13
DSI_D0N
I/O
-
-
-
-
-
-
-
-
-
-
-
H5
103 122
G12
VSSDSI
S
-
-
-
-
-
-
-
-
-
-
-
H4
104 123
H12
DSI_CKP
I/O
-
-
-
-
76/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
-
-
-
-
-
-
-
H3
105 124
H13
DSI_CKN
I/O
-
-
-
-
-
-
-
-
-
-
-
-
106 125
-
VDD12DSI
S
-
-
-
-
-
-
-
-
-
-
-
H1
107 126
F12
DSI_D1P
I/O
-
-
-
-
-
-
-
-
-
-
-
H2
108 127
F13
DSI_D1N
I/O
-
-
-
-
-
-
-
-
-
-
-
-
109 128
-
VSSDSI
S
-
-
-
-
-
-
-
-
-
126
G13
-
-
-
-
PK0
I/O
FT
-
LCD_G5, EVENTOUT
-
-
-
-
-
-
127
F12
-
-
-
-
PK1
I/O
FT
-
LCD_G6, EVENTOUT
-
-
-
-
-
-
128
F13
-
-
-
-
PK2
I/O
FT
-
LCD_G7, EVENTOUT
-
-
-
87
L15
106
129
M13
H9
110
129 M13
PG2
I/O
FT
-
FMC_A12, EVENTOUT
-
-
-
88
K15
107
130
M12
G9
111
130 M12
PG3
I/O
FT
-
FMC_A13, EVENTOUT
-
-
-
89
K14
108
131
N12
G1
112
131
N12
PG4
I/O
FT
-
FMC_A14/FMC_BA0,
EVENTOUT
-
-
-
90
K13
109
132
N11
G2
113
132
N11
PG5
I/O
FT
-
FMC_A15/FMC_BA1,
EVENTOUT
-
-
-
91
J15
110
133
J15
G3
114
133
J15
PG6
I/O
FT
-
FMC_NE3, DCMI_D12,
LCD_R7, EVENTOUT
-
-
-
92
J14
111
134
J14
G4
115
134
J14
PG7
I/O
FT
-
SAI1_MCLK_A, USART6_CK,
FMC_INT, DCMI_D13,
LCD_CLK, EVENTOUT
-
-
-
93
H14
112
135
H14
G5
116
135
H14
PG8
I/O
FT
-
SPI6_NSS, SPDIF_RX2,
USART6_RTS,
ETH_PPS_OUT, FMC_SDCLK,
LCD_G7, EVENTOUT
-
-
-
94
G12
113
136
G10
F1
117
136
G10
VSS
S
-
-
-
-
F6
-
95
H13
114
137
G11
F2
118
137
G11
VDDUSB
S
-
-
-
-
-
TIM3_CH1, TIM8_CH1,
I2S2_MCK, DFSDM1_CKIN3,
USART6_TX, FMC_NWAIT,
SDMMC2_D6, SDMMC1_D6,
DCMI_D0, LCD_HSYNC,
EVENTOUT
-
F10
63
96
H15
115
138
H15
G6
LQFP176
LQFP144
UFBGA176
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
119
138
H15
PC6
I/O
DS11532 Rev 8
FT
Additional
functions
77/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
F9
E9
64
65
66
98
99
G15
G14
F14
116
117
118
139
140
141
G15
G14
F14
F3
G8
E1
120 139
121 140
122 141
G15
G14
F14
PC7
PC8
PC9
I/O
I/O
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
97
STM32F768Ax
STM32F769xx
FT
FT
FT
Notes
E10
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
Alternate functions
Additional
functions
-
TIM3_CH2, TIM8_CH2,
I2S3_MCK, DFSDM1_DATIN3,
USART6_RX, FMC_NE1,
SDMMC2_D7, SDMMC1_D7,
DCMI_D1, LCD_G6,
EVENTOUT
-
-
TRACED1, TIM3_CH3,
TIM8_CH3, UART5_RTS,
USART6_CK,
FMC_NE2/FMC_NCE,
SDMMC1_D0, DCMI_D2,
EVENTOUT
-
-
MCO2, TIM3_CH4, TIM8_CH4,
I2C3_SDA, I2S_CKIN,
UART5_CTS,
QUADSPI_BK1_IO0, LCD_G3,
SDMMC1_D1, DCMI_D3,
LCD_B2, EVENTOUT
--
-
D9
67
100
F15
119
142
F15
E2
123 142
F15
PA8
I/O
FT
-
MCO1, TIM1_CH1,
TIM8_BKIN2, I2C3_SCL,
USART1_CK, OTG_FS_SOF,
CAN3_RX, UART7_RX,
LCD_B3, LCD_R6,
EVENTOUT
C9
68
101
E15
120
143
E15
F4
124 143
E15
PA9
I/O
FT
-
TIM1_CH2, I2C3_SMBA,
SPI2_SCK/I2S2_CK,
USART1_TX, DCMI_D0,
LCD_R5, EVENTOUT
OTG_FS_VB
US
D10
69
102 D15
121
144
D15
F5
125 144
D15
PA10
I/O
FT
-
TIM1_CH3, USART1_RX,
LCD_B4, OTG_FS_ID,
MDIOS_MDIO, DCMI_D1,
LCD_B1, EVENTOUT
-
-
TIM1_CH4,
SPI2_NSS/I2S2_WS,
UART4_RX, USART1_CTS,
CAN1_RX, OTG_FS_DM,
LCD_R4, EVENTOUT
-
-
TIM1_ETR,
SPI2_SCK/I2S2_CK,
UART4_TX, USART1_RTS,
SAI2_FS_B, CAN1_TX,
OTG_FS_DP, LCD_R5,
EVENTOUT
-
C10
B10
70
71
78/256
103 C15
104
B15
122
123
145
146
C15
B15
E3
D1
126 145
127 146
C15
B15
PA11
PA12
I/O
I/O
DS11532 Rev 8
FT
FT
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
A10
72
105
A15
124
147
A15
D2
128 147
A15
PA13(JTM
S-SWDIO)
I/O
FT
-
JTMS-SWDIO, EVENTOUT
-
E7
73
106
F13
125
148
E11
C1
129 148
E11
VCAP_2
S
-
-
-
-
E5
74
107
F12
126
149
F10
C2
130 149
F10
VSS
S
-
-
-
-
F5
75
108 G13
127
150
F11
B2
131 150
F11
VDD
S
-
-
-
-
LQFP176
LQFP144
UFBGA176
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
Additional
functions
-
-
-
E12
128
151
E12
F6
-
151
E12
PH13
I/O
FT
-
TIM8_CH1N, UART4_TX,
CAN1_TX, FMC_D21,
LCD_G2, EVENTOUT
-
-
-
E13
129
152
E13
F7
-
152
E13
PH14
I/O
FT
-
TIM8_CH2N, UART4_RX,
CAN1_RX, FMC_D22,
DCMI_D4, LCD_G3,
EVENTOUT
-
-
-
-
D13
130
153
D13
E5
-
153
D13
PH15
I/O
FT
-
TIM8_CH3N, FMC_D23,
DCMI_D11, LCD_G4,
EVENTOUT
-
-
-
-
E14
131
154
E14
E4
132 154
E14
PI0
I/O
FT
-
TIM5_CH4,
SPI2_NSS/I2S2_WS,
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
-
-
-
-
D14
132
155
D14
B3
133 155
D14
PI1
I/O
FT
-
TIM8_BKIN2,
SPI2_SCK/I2S2_CK,
FMC_D25, DCMI_D8,
LCD_G6, EVENTOUT
-
-
-
-
C14
133
156
C14
C3
156
C14
PI2
I/O
FT
-
TIM8_CH4, SPI2_MISO,
FMC_D26, DCMI_D9,
LCD_G7, EVENTOUT
-
-
-
-
C13
134
157
C13
D3
134 157
C13
PI3
I/O
FT
-
TIM8_ETR,
SPI2_MOSI/I2S2_SD,
FMC_D27, DCMI_D10,
EVENTOUT
-
-
-
-
D9
135
-
F9
-
135
F9
VSS
S
-
-
-
-
-
-
-
C9
136
158
E10
-
136 158
E10
VDD
S
-
-
-
--
A9
76
109
A14
137
159
A14
A3
137 159
A14
PA14(JTC
K-SWCLK)
I/O
FT
-
JTCK-SWCLK, EVENTOUT
-
-
-
DS11532 Rev 8
79/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
B9
B8
77
78
79
111
112
A13
B14
B13
138
139
140
160
161
162
A13
B14
B13
F8
B4
C4
138 160
139 161
140 162
A13
B14
B13
PA15(JTDI
)
PC10
PC11
I/O
I/O
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
110
STM32F768Ax
STM32F769xx
FT
FT
FT
Notes
A8
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
Alternate functions
Additional
functions
-
JTDI, TIM2_CH1/TIM2_ETR,
HDMI_CEC,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
SPI6_NSS, UART4_RTS,
CAN3_TX, UART7_TX,
EVENTOUT
-
-
DFSDM1_CKIN5,
SPI3_SCK/I2S3_CK,
USART3_TX, UART4_TX,
QUADSPI_BK1_IO1,
SDMMC1_D2, DCMI_D8,
LCD_R2, EVENTOUT
-
-
DFSDM1_DATIN5,
SPI3_MISO, USART3_RX,
UART4_RX,
QUADSPI_BK2_NCS,
SDMMC1_D3, DCMI_D4,
EVENTOUT
-
-
C8
80
113
A12
141
163
A12
D4
141 163
A12
PC12
I/O
FT
-
TRACED3,
SPI3_MOSI/I2S3_SD,
USART3_CK, UART5_TX,
SDMMC1_CK, DCMI_D9,
EVENTOUT
D8
81
114
B12
142
164
B12
A4
142 164
B12
PD0
I/O
FT
-
DFSDM1_CKIN6,
DFSDM1_DATIN7,
UART4_RX, CAN1_RX,
FMC_D2, EVENTOUT
-
E8
82
115
C12
143
165
C12
D5
143 165
C12
PD1
I/O
FT
-
DFSDM1_DATIN6,
DFSDM1_CKIN7, UART4_TX,
CAN1_TX, FMC_D3,
EVENTOUT
--
B7
83
116
D12
144
166
D12
D6
144 166
D12
PD2
I/O
FT
-
TRACED2, TIM3_ETR,
UART5_RX, SDMMC1_CMD,
DCMI_D11, EVENTOUT
-
-
-
C7
84
117
D11
145
167
C11
B5
145 167
C11
PD3
I/O
FT
-
DFSDM1_CKOUT,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN0,
USART2_CTS, FMC_CLK,
DCMI_D5, LCD_G7,
EVENTOUT
D7
85
118
D10
146
168
D11
A5
146 168
D11
PD4
I/O
FT
-
DFSDM1_CKIN0,
USART2_RTS, FMC_NOE,
EVENTOUT
80/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
B6
86
119
C11
147
169
C10
C5
147 169
C10
PD5
I/O
FT
-
USART2_TX, FMC_NWE,
EVENTOUT
-
-
-
120
D8
148
170
F8
B6
148 170
F8
VSS
S
-
-
-
-
-
-
121
C8
149
171
E9
A6
149 171
E9
VDDSDM
MC
S
-
-
-
-
-
DFSDM1_CKIN4,
SPI3_MOSI/I2S3_SD,
SAI1_SD_A, USART2_RX,
DFSDM1_DATIN1,
SDMMC2_CK, FMC_NWAIT,
DCMI_D10, LCD_B2,
EVENTOUT
-
-
C6
87
122
B11
150
172
B11
E6
LQFP176
LQFP144
UFBGA176
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
150 172
B11
PD6
I/O
FT
Additional
functions
A11
PD7
I/O
FT
-
DFSDM1_DATIN4,
SPI1_MOSI/I2S1_SD,
DFSDM1_CKIN1,
USART2_CK, SPDIF_RX0,
SDMMC2_CMD, FMC_NE1,
EVENTOUT
174
B10
PJ12
I/O
FT
-
LCD_G3, LCD_B0,
EVENTOUT
-
175
B9
PJ13
I/O
FT
-
LCD_G4, LCD_B1,
EVENTOUT
-
PJ14
I/O
FT
-
LCD_B2, EVENTOUT
-
PJ15
I/O
FT
-
LCD_B3, EVENTOUT
-
-
D6
88
123
A11
151
173
A11
E7
151 173
-
-
-
-
-
174
B10
NC
-
-
-
-
-
-
175
B9
NC
-
-
-
-
-
-
176
C9
NC
-
176
C9
-
-
-
-
-
177
D10
-
-
177
D10
-
-
124 C10
152
178
D9
C6
152 178
D9
PG9
I/O
FT
-
SPI1_MISO, SPDIF_RX3,
USART6_RX,
QUADSPI_BK2_IO2,
SAI2_FS_B, SDMMC2_D0,
FMC_NE2/FMC_NCE,
DCMI_VSYNC, EVENTOUT
-
-
125
153
179
C8
A7
153 179
C8
PG10
I/O
FT
-
SPI1_NSS/I2S1_WS, LCD_G3,
SAI2_SD_B, SDMMC2_D1,
FMC_NE3, DCMI_D2,
LCD_B2, EVENTOUT
-
-
SPI1_SCK/I2S1_CK,
SPDIF_RX0, SDMMC2_D2,
ETH_MII_TX_EN/ETH_RMII_T
X_EN, DCMI_D3, LCD_B3,
EVENTOUT
-
-
-
126
B10
B9
154
180
B8
B7
154 180
B8
PG11
I/O
DS11532 Rev 8
FT
81/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
-
-
-
127
128
A8
155
156
B3
B3
PG13
FT
-
-
TRACED0, LPTIM1_OUT,
SPI6_SCK, USART6_CTS,
ETH_MII_TXD0/ETH_RMII_TX
D0, FMC_A24, LCD_R0,
EVENTOUT
-
-
TRACED1, LPTIM1_ETR,
SPI6_MOSI, USART6_TX,
QUADSPI_BK2_IO3,
ETH_MII_TXD1/ETH_RMII_TX
D1, FMC_A25, LCD_B0,
EVENTOUT
-
D7
158
184
F7
A8
158 184
F7
VSS
S
-
-
-
-
C7
159
185
E8
B8
159 185
E8
VDD
S
-
-
-
-
-
-
-
-
-
186
D8
NC
-
186
D8
PK3
I/O
FT
-
LCD_B4, EVENTOUT
-
-
-
-
-
-
187
D7
NC
-
187
D7
PK4
I/O
FT
-
LCD_B5, EVENTOUT
-
-
-
-
-
-
188
C6
NC
-
188
C6
PK5
I/O
FT
-
LCD_B6, EVENTOUT
-
-
-
-
-
-
189
C5
NC
-
189
C5
PK6
I/O
FT
-
LCD_B7, EVENTOUT
-
-
-
-
-
-
190
C4
NC
-
190
C4
PK7
I/O
FT
-
LCD_DE, EVENTOUT
-
-
-
132
B7
160
191
B7
F9
160 191
B7
PG15
I/O
FT
-
USART6_CTS,
FMC_SDNCAS, DCMI_D13,
EVENTOUT
-
-
JTDO/TRACESWO,
TIM2_CH2,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
SPI6_SCK, SDMMC2_D2,
CAN3_RX, UART7_RX,
EVENTOUT
-
-
NJTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
SPI2_NSS/I2S2_WS,
SPI6_MISO, SDMMC2_D3,
CAN3_TX, UART7_TX,
EVENTOUT
-
A6
90
82/256
134
A9
162
193
A9
D8
162 193
A10
A9
PB3
(JTDO/
I/O
TRACESW
O)
PB4(NJTR
ST)
I/O
DS11532 Rev 8
FT
-
131
161 192
I/O
I/O structure
Pin type
I/O
FT
130
E8
PG14
I/O
-
A10
A4
PG12
-
192
157 183
TFBGA216
LQFP208
156 182
C7
-
161
NC
LQFP176
WLCSP180(1)
C7
155 181
-
A10
A4
D7
LPTIM1_IN1, SPI6_MISO,
SPDIF_RX1, USART6_RTS,
LCD_B4, SDMMC2_D3,
FMC_NE4, LCD_B1,
EVENTOUT
129
133
183
TFBGA216
LQFP208
182
C7
Additional
functions
-
89
157
181
Alternate functions
-
A7
A7
LQFP176
UFBGA176
B8
STM32F768Ax
STM32F769xx
Notes
-
LQFP144
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
FT
FT
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
B5
91
92
136
A6
B6
163
164
194
195
A8
B6
A9
B9
163 194
164 195
A8
B6
PB5
PB6
I/O
I/O
I/O structure
Pin type
TFBGA216
LQFP208
LQFP176
WLCSP180(1)
TFBGA216
LQFP208
LQFP176
UFBGA176
LQFP144
135
STM32F768Ax
STM32F769xx
FT
FT
Notes
C5
LQFP100
TFBGA100
STM32F765xx
STM32F767xx
Pin name (function after reset
Pin Number
Alternate functions
Additional
functions
-
UART5_RX, TIM3_CH2,
I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
SPI6_MOSI, CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1, DCMI_D10,
LCD_G7, EVENTOUT
-
-
UART5_TX, TIM4_CH1,
HDMI_CEC, I2C1_SCL,
DFSDM1_DATIN5,
USART1_TX, CAN2_TX,
QUADSPI_BK1_NCS,
I2C4_SCL, FMC_SDNE1,
DCMI_D5, EVENTOUT
-
TIM4_CH2, I2C1_SDA,
DFSDM1_CKIN5,
USART1_RX, I2C4_SDA,
FMC_NL, DCMI_VSYNC,
EVENTOUT
-
A5
93
137
B5
165
196
B5
C8
165 196
B5
PB7
I/O
FT
-
D5
94
138
D6
166
197
E6
A10
166 197
E6
BOOT0
I
B
-
-
VPP
-
I2C4_SCL, TIM4_CH3,
TIM10_CH1, I2C1_SCL,
DFSDM1_CKIN7, UART5_RX,
CAN1_RX, SDMMC2_D4,
ETH_MII_TXD3, SDMMC1_D4,
DCMI_D6, LCD_B6,
EVENTOUT
-
-
B4
95
139
A5
167
198
A7
E9
167 198
A7
PB8
I/O
FT
A4
96
140
B4
168
199
B4
D9
168 199
B4
PB9
I/O
FT
-
I2C4_SDA, TIM4_CH4,
TIM11_CH1, I2C1_SDA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN7, UART5_TX,
CAN1_TX, SDMMC2_D5,
I2C4_SMBA, SDMMC1_D5,
DCMI_D7, LCD_B7,
EVENTOUT
D4
97
141
A4
169
200
A6
C9
169 200
A6
PE0
I/O
FT
-
TIM4_ETR, LPTIM1_ETR,
UART8_RX, SAI2_MCLK_A,
FMC_NBL0, DCMI_D2,
EVENTOUT
-
C4
98
142
A3
170
201
A5
B10
170 201
A5
PE1
I/O
FT
-
LPTIM1_IN2, UART8_TX,
FMC_NBL1, DCMI_D3,
EVENTOUT
-
DS11532 Rev 8
83/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
-
-
C10
171 203
E5
PDR_ON
S
-
-
-
-
E7
B11
172 204
E7
VDD
S
-
-
-
-
WLCSP180(1)
-
TFBGA216
-
LQFP208
S
LQFP176
VSS
UFBGA176
F6
LQFP144
202
LQFP100
-
TFBGA100
Alternate functions
LQFP208
STM32F768Ax
STM32F769xx
LQFP176
STM32F765xx
STM32F767xx
E4
99
-
D5
-
202
F6
A11
F7
-
143
C6
171
203
E5
100 144
C5
172
204
F4
Additional
functions
-
-
-
D4
173
205
C3
D10
173 205
C3
PI4
I/O
FT
-
TIM8_BKIN, SAI2_MCLK_A,
FMC_NBL2, DCMI_D5,
LCD_B4, EVENTOUT
-
-
-
-
C4
174
206
D3
D11
174 206
D3
PI5
I/O
FT
-
TIM8_CH1, SAI2_SCK_A,
FMC_NBL3, DCMI_VSYNC,
LCD_B5, EVENTOUT
-
-
-
-
C3
175
207
D6
C11
175 207
D6
PI6
I/O
FT
-
TIM8_CH2, SAI2_SD_A,
FMC_D28, DCMI_D6, LCD_B6,
EVENTOUT
-
-
-
-
C2
176
208
D4
B12
176 208
D4
PI7
I/O
FT
-
TIM8_CH3, SAI2_FS_A,
FMC_D29, DCMI_D7, LCD_B7,
EVENTOUT
-
-
-
-
F6
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
F7
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
F8
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
F9
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
F10
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
G6
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
G7
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
G8
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
G9
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
G10
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
H6
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
H7
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
H8
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
H9
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
H10
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
J6
-
-
-
-
-
-
-
VSS
S
-
-
-
-
84/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx pin and
ball definitions (continued)
Pin Number
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions
LQFP100
STM32F768Ax
STM32F769xx
TFBGA100
STM32F765xx
STM32F767xx
-
-
-
J7
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
J8
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
J9
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
J10
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
K6
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
K7
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
K8
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
K9
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
K10
-
-
-
-
-
-
-
VSS
S
-
-
-
-
Additional
functions
1. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the
output data register to avoid an extra current consumption in low-power modes. list of pins: PI8, PI12, PI13, PI14, PF6,
PF7, PF8, PF9, PC2, PC3, PC4, PC5, PI15, PJ0, PJ1, PJ2, PJ3, PJ4, PJ5, PH6, PH7, PJ12, PJ13, PJ14, PJ15, PG14,
PK3, PK4, PK5, PK6 and PK7.
2.
PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of
GPIOs PC13 to PC15 and PI8 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These I/Os
must not be used as a current source (e.g. to drive an LED).
3.
FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
4.
If the device is in regulator OFF/internal reset ON mode (BYPASS_REG pin is set to VDD), then PA0 is used as an internal reset (active low).
5.
Internally connected to VDD or VSS depending on part number.
DS11532 Rev 8
85/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 12. FMC pin definition
86/256
Pin name
NOR/PSRAM/SR
AM
NOR/PSRAM
Mux
NAND16
SDRAM
PF0
A0
-
-
A0
PF1
A1
-
-
A1
PF2
A2
-
-
A2
PF3
A3
-
-
A3
PF4
A4
-
-
A4
PF5
A5
-
-
A5
PF12
A6
-
-
A6
PF13
A7
-
-
A7
PF14
A8
-
-
A8
PF15
A9
-
-
A9
PG0
A10
-
-
A10
PG1
A11
-
-
A11
PG2
A12
-
-
A12
PG3
A13
-
-
-
PG4
A14
-
-
BA0
PG5
A15
-
-
BA1
PD11
A16
A16
CLE
-
PD12
A17
A17
ALE
-
PD13
A18
A18
-
-
PE3
A19
A19
-
-
PE4
A20
A20
-
-
PE5
A21
A21
-
-
PE6
A22
A22
-
-
PE2
A23
A23
-
-
PG13
A24
A24
-
-
PG14
A25
A25
-
-
PD14
D0
DA0
D0
D0
PD15
D1
DA1
D1
D1
PD0
D2
DA2
D2
D2
PD1
D3
DA3
D3
D3
PE7
D4
DA4
D4
D4
PE8
D5
DA5
D5
D5
PE9
D6
DA6
D6
D6
PE10
D7
DA7
D7
D7
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Pinouts and pin description
Table 12. FMC pin definition (continued)
Pin name
NOR/PSRAM/SR
AM
NOR/PSRAM
Mux
NAND16
SDRAM
PE11
D8
DA8
D8
D8
PE12
D9
DA9
D9
D9
PE13
D10
DA10
D10
D10
PE14
D11
DA11
D11
D11
PE15
D12
DA12
D12
D12
PD8
D13
DA13
D13
D13
PD9
D14
DA14
D14
D14
PD10
D15
DA15
D15
D15
PH8
D16
-
-
D16
PH9
D17
-
-
D17
PH10
D18
-
-
D18
PH11
D19
-
-
D19
PH12
D20
-
-
D20
PH13
D21
-
-
D21
PH14
D22
-
-
D22
PH15
D23
-
-
D23
PI0
D24
-
-
D24
PI1
D25
-
-
D25
PI2
D26
-
-
D26
PI3
D27
-
-
D27
PI6
D28
-
-
D28
PI7
D29
-
-
D29
PI9
D30
-
-
D30
PI10
D31
-
-
D31
PD7
NE1
NE1
-
-
PG6
NE3
-
-
-
PG9
NE2
NE2
NCE
-
PG10
NE3
NE3
-
-
PG11
-
-
-
-
PG12
NE4
NE4
-
-
PD3
CLK
CLK
-
-
PD4
NOE
NOE
NOE
-
PD5
NWE
NWE
NWE
-
PD6
NWAIT
NWAIT
NWAIT
-
DS11532 Rev 8
87/256
102
Pinouts and pin description
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 12. FMC pin definition (continued)
88/256
Pin name
NOR/PSRAM/SR
AM
NOR/PSRAM
Mux
NAND16
SDRAM
PB7
NADV
NADV
-
-
PF6
-
-
-
-
PF7
-
-
-
-
PF8
-
-
-
-
PF9
-
-
-
-
PF10
-
-
-
-
PG6
-
-
-
-
PG7
-
-
INT
-
PE0
NBL0
NBL0
-
NBL0
PE1
NBL1
NBL1
-
NBL1
PI4
NBL2
-
-
NBL2
PI5
NBL3
-
-
NBL3
PG8
-
-
-
SDCLK
PC0
-
-
-
SDNWE
PF11
-
-
-
SDNRAS
PG15
-
-
-
SDNCAS
PH2
-
-
-
SDCKE0
PH3
-
-
-
SDNE0
PH6
-
-
-
SDNE1
PH7
-
-
-
SDCKE1
PH5
-
-
-
SDNWE
PC2
-
-
-
SDNE0
PC3
-
-
-
SDCKE0
PC6
NWAIT
NWAIT
NWAIT
-
PB5
-
-
-
SDCKE1
PB6
-
-
-
SDNE1
DS11532 Rev 8
AF0
AF1
AF2
AF3
AF4
SYS
I2C4/UA
RT5/TIM
1/2
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
-
TIM2_C
H1/TIM2
_ETR
TIM5_C
H1
PA1
-
TIM2_C
H2
TIM5_C
H2
-
-
PA2
-
TIM2_C
H3
TIM5_C
H3
TIM9_CH
1
PA3
-
TIM2_C
H4
TIM5_C
H4
PA4
-
-
PA5
-
PA6
Port
AF6
AF7
AF8
AF9
AF10
UART4_
TX
-
-
-
USART2
_RTS
UART4_
RX
QUADSP
I_BK1_IO
3
-
-
-
USART2
_TX
SAI2_SC
K_B
-
TIM9_CH
2
-
-
-
USART2
_RX
-
LCD_B2
-
-
-
SPI1_NS SPI3_NS
S/I2S1_ S/I2S3_
WS
WS
USART2
_CK
SPI6_NS
S
-
-
TIM2_C
H1/TIM2
_ETR
-
TIM8_CH
1N
-
SPI1_SC
K/I2S1_
CK
-
-
SPI6_SC
K
-
-
TIM1_B
KIN
TIM3_C
H1
TIM8_BKI
N
-
SPI1_MI
SO
-
-
SPI6_MI
SO
PA7
-
TIM1_C
H1N
TIM3_C
H2
TIM8_CH
1N
-
SPI1_M
OSI/I2S1
_SD
-
-
PA8
MCO1
TIM1_C
H1
-
TIM8_BKI
N2
I2C3_SC
L
-
-
PA9
-
TIM1_C
H2
-
-
I2C3_SM
BA
SPI2_SC
K/I2S2_
CK
PA10
-
TIM1_C
H3
-
-
-
-
DS11532 Rev 8
Port A
AF12
-
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
89/256
SAI2_SD_ ETH_MII_
B
CRS
-
-
-
EVEN
TOUT
SAI2_MC
K_B
ETH_MII_
RX_CLK/
ETH_RMI
I_REF_C
LK
-
-
LCD_R2
EVEN
TOUT
-
ETH_MDI
O
MDIOS_
MDIO
-
LCD_R1
EVEN
TOUT
-
-
LCD_B5
EVEN
TOUT
-
OTG_HS
_SOF
DCMI_H
SYNC
LCD_VS
YNC
EVEN
TOUT
OTG_HS_
ULPI_CK
-
-
-
LCD_R4
EVEN
TOUT
TIM13_C
H1
-
-
MDIOS_
MDC
DCMI_PI
XCLK
LCD_G2
EVEN
TOUT
SPI6_MO
SI
TIM14_C
H1
-
-
-
EVEN
TOUT
USART1
_CK
-
-
OTG_FS_
SOF
CAN3_R
X
UART7_
RX
LCD_B3
LCD_R6
EVEN
TOUT
-
USART1
_TX
-
-
-
-
-
DCMI_D
0
LCD_R5
EVEN
TOUT
-
USART1
_RX
-
LCD_B4
OTG_FS_
ID
-
MDIOS_
MDIO
DCMI_D
1
LCD_B1
EVEN
TOUT
OTG_HS_ ETH_MII_
ULPI_D0
COL
ETH_MII_
RX_DV/E FMC_SD
TH_RMII_
NWE
CRS_DV
Pinouts and pin description
USART2
_CTS
-
AF11
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
-
PA0
TIM8_ET
R
I2C1/2/3/
4/USART
1/CEC
AF5
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping
AF0
Port
Port A
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PA11
-
TIM1_C
H4
-
-
-
SPI2_NS
S/I2S2_
WS
UART4_
RX
USART1
_CTS
-
CAN1_R
X
OTG_FS_
DM
-
-
-
LCD_R4
EVEN
TOUT
PA12
-
TIM1_ET
R
-
-
-
SPI2_SC
K/I2S2_
CK
UART4_
TX
USART1
_RTS
SAI2_FS
_B
CAN1_T
X
OTG_FS_
DP
-
-
-
LCD_R5
EVEN
TOUT
PA13
JTMSSWDIO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PA14
JTCKSWCLK
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PA15
JTDI
TIM2_C
H1/TIM2
_ETR
-
-
HDMICEC
SPI6_NS
S
UART4_
RTS
-
-
CAN3_TX
UART7_
TX
-
-
EVEN
TOUT
PB0
-
TIM1_C
H2N
TIM3_C
H3
TIM8_CH
2N
-
-
DFSDM1
_CKOUT
-
UART4_
CTS
LCD_R3
OTG_HS_ ETH_MII_
ULPI_D1
RXD2
-
-
LCD_G1
EVEN
TOUT
PB1
-
TIM1_C
H3N
TIM3_C
H4
TIM8_CH
3N
-
-
DFSDM1
_DATIN1
-
-
LCD_R6
OTG_HS_ ETH_MII_
ULPI_D2
RXD3
-
-
LCD_G0
EVEN
TOUT
PB2
-
-
-
-
-
-
SAI1_SD
_A
SPI3_MO
SI/I2S3_
SD
-
QUADSP
I_CLK
DFSDM1_
CKIN1
-
-
-
-
EVEN
TOUT
PB3
JTDO/T
RACES
WO
TIM2_C
H2
-
-
-
SPI1_SC SPI3_SC
K/I2S1_ K/I2S3_
CK
CK
-
SPI6_SC
K
-
SDMMC2
_D2
CAN3_R
X
UART7_
RX
-
-
EVEN
TOUT
PB4
NJTRST
-
TIM3_C
H1
-
-
SPI1_MI
SO
SPI2_NS
S/I2S2_
WS
SPI6_MI
SO
-
SDMMC2
_D3
CAN3_TX
UART7_
TX
-
-
EVEN
TOUT
PB5
-
UART5_
RX
TIM3_C
H2
-
I2C1_SM
BA
-
SPI6_MO
SI
CAN2_R
X
OTG_HS_ ETH_PPS FMC_SD
ULPI_D7
_OUT
CKE1
DCMI_D
10
LCD_G7
EVEN
TOUT
PB6
-
UART5_
TX
TIM4_C
H1
HDMICEC
I2C1_SC
L
USART1
_TX
-
CAN2_T
X
QUADSPI
_BK1_NC
S
DCMI_D
5
-
EVEN
TOUT
Port B
I2C1/2/3/
4/USART
1/CEC
SPI1_NS SPI3_NS
S/I2S1_ S/I2S3_
WS
WS
SPI3_MI
SO
SPI1_M SPI3_M
OSI/I2S1 OSI/I2S3
_SD
_SD
-
DFSDM1
_DATIN5
I2C4_SC
L
FMC_SD
NE1
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DS11532 Rev 8
SYS
Pinouts and pin description
90/256
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
AF3
AF4
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
DS11532 Rev 8
I2C4/UA
RT5/TIM
1/2
PB7
-
-
TIM4_C
H2
-
I2C1_SD
A
-
DFSDM1
_CKIN5
USART1
_RX
-
-
-
I2S4_SD
A
FMC_NL
DCMI_V
SYNC
-
EVEN
TOUT
PB8
-
I2C4_SC
L
TIM4_C
H3
TIM10_C
H1
I2C1_SC
L
-
DFSDM1
_CKIN7
UART5_
RX
-
CAN1_R
X
SDMMC2
_D4
ETH_MII_
TXD3
SDMMC
_D4
DCMI_D
6
LCD_B6
EVEN
TOUT
PB9
-
I2C4_SD
A
TIM4_C
H4
TIM11_CH
1
I2C1_SD
A
SPI2_NS
DFSDM1 UART5_T
S/I2S2_
_DATIN7
X
WS
-
CAN1_T
X
SDMMC2
_D5
I2C4_SM
BA
SDMMC
_D5
DCMI_D
7
LCD_B7
EVEN
TOUT
PB10
-
TIM2_C
H3
-
-
I2C2_SC
L
SPI2_SC
DFSDM1
K/I2S2_
_DATIN7
CK
USART3
_TX
-
QUADSP
I_BK1_N
CS
OTG_HS_ ETH_MII_
ULPI_D3
RX_ER
-
-
LCD_G4
EVEN
TOUT
PB11
-
TIM2_C
H4
-
-
I2C2_SD
A
DFSDM1
_CKIN7
USART3
_RX
-
-
ETH_MII_
OTG_HS_ TX_EN/E
ULPI_D4 TH_RMII_
TX_EN
-
DSI_TE
LCD_G5
EVEN
TOUT
PB12
-
TIM1_B
KIN
-
-
I2C2_SM
BA
SPI2_NS
DFSDM1
S/I2S2_
_DATIN1
WS
USART3
_CK
UART5_
RX
CAN2_R
X
ETH_MII_
OTG_HS_ TXD0/ET OTG_HS
ULPI_D5 H_RMII_T
_ID
XD0
-
-
EVEN
TOUT
PB13
-
TIM1_C
H1N
-
-
-
SPI2_SC
DFSDM1
K/I2S2_
_CKIN1
CK
USART3
_CTS
UART5_T
X
CAN2_T
X
ETH_MII_
OTG_HS_ TXD1/ET
ULPI_D6 H_RMII_T
XD1
-
-
-
EVEN
TOUT
PB14
-
TIM1_C
H2N
-
TIM8_CH
2N
USART1_
TX
SPI2_MI
SO
USART3
_RTS
UART4_
RTS
TIM12_C
H1
SDMMC2
_D0
-
OTG_HS
_DM
-
-
EVEN
TOUT
PB15
RTC_RE
FIN
TIM1_C
H3N
-
TIM8_CH
3N
SPI2_M
USART1_
DFSDM1
OSI/I2S2
RX
_CKIN2
_SD
-
UART4_
CTS
TIM12_C
H2
SDMMC2
_D1
-
OTG_HS
_DP
-
-
EVEN
TOUT
Port B
-
DFSDM1
_DATIN2
91/256
Pinouts and pin description
SYS
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
SYS
I2C4/UA
RT5/TIM
1/2
PC0
-
-
-
DFSDM1_
CKIN0
-
PC1
TRACED
0
-
-
DFSDM1_
DATAIN0
PC2
-
-
-
PC3
-
-
PC4
-
PC5
I2C1/2/3/
4/USART
1/CEC
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
DFSDM1
_DATIN4
-
SAI2_FS
_B
-
OTG_HS_
ULPI_ST
P
-
FMC_SD
NWE
-
LCD_R5
EVEN
TOUT
-
SPI2_M
SAI1_SD
OSI/I2S2
_A
_SD
-
-
-
DFSDM1_
CKIN4
ETH_MD
C
MDIOS_
MDC
-
-
EVEN
TOUT
DFSDM1_
CKIN1
-
SPI2_MI
SO
DFSDM1
_CKOUT
-
-
-
OTG_HS_ ETH_MII_ FMC_SD
ULPI_DIR
TXD2
NE0
-
-
EVEN
TOUT
-
DFSDM1_
DATAIN1
-
SPI2_M
OSI/I2S2
_SD
-
-
-
-
OTG_HS_
ETH_MII_ FMC_SD
ULPI_NX
TX_CLK
CKE0
T
-
-
EVEN
TOUT
-
-
DFSDM1_
CKIN2
-
I2S1_M
CK
-
-
SPDIF_R
X2
-
-
ETH_MII_
RXD0/ET FMC_SD
H_RMII_
NE0
RXD0
-
-
EVEN
TOUT
-
-
-
DFSDM1_
DATAIN2
-
-
-
-
SPDIF_R
X3
-
-
ETH_MII_
RXD1/ET FMC_SD
H_RMII_
CKE0
RXD1
-
-
EVEN
TOUT
PC6
-
-
TIM3_C
H1
TIM8_CH
1
-
I2S2_M
CK
-
DFSDM1
_CKIN3
USART6
_TX
FMC_NW
AIT
SDMMC2
_D6
-
SDMMC
_D6
DCMI_D
0
LCD_HS
YNC
EVEN
TOUT
PC7
-
-
TIM3_C
H2
TIM8_
CH2
-
-
I2S3_M
CK
DFSDM1
_DATAIN
3
USART6
_RX
FMC_NE
1
SDMMC2
_D7
-
SDMMC
_D7
DCMI_D
1
LCD_G6
EVEN
TOUT
PC8
TRACED
1
-
TIM3_C
H3
TIM8_
CH3
-
-
-
UART5_
RTS
USART6
_CK
FMC_NE
2/FMC_N
CE
-
-
SDMMC
_D0
DCMI_D
2
-
EVEN
TOUT
PC9
MCO2
-
TIM3_C
H4
TIM8_
CH4
I2C3_SD
A
I2S_CKI
N
-
UART5_
CTS
-
QUADSP
I_BK1_IO
0
LCD_G3
-
SDMMC
_D1
DCMI_D
3
LCD_B2
EVEN
TOUT
PC10
-
-
-
DFSDM1_
CKIN5
-
-
SPI3_SC
K/I2S3_
CK
USART3
_TX
-
-
SDMMC
_D2
DCMI_D
8
LCD_R2
EVEN
TOUT
-
QUADSP
UART4_T
I_BK1_IO
X
1
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DS11532 Rev 8
Port C
AF1
Pinouts and pin description
92/256
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PC11
-
-
-
DFSDM1_
DATAIN5
-
-
SPI3_MI
SO
USART3
_RX
UART4_
RX
QUADSP
I_BK2_N
CS
-
-
SDMMC
_D3
DCMI_D
4
-
EVEN
TOUT
PC12
TRACED
3
-
-
-
-
-
SPI3_M
OSI/I2S3
_SD
USART3
_CK
UART5_T
X
-
-
-
SDMMC
_CK
DCMI_D
9
-
EVEN
TOUT
PC13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PD0
-
-
-
DFSDM1_
CKIN6
-
-
DFSDM1
_DATAIN
7
-
UART4_
RX
CAN1_R
X
-
-
FMC_D2
-
-
EVEN
TOUT
PD1
-
-
-
DFSDM1_
DATAIN6
-
-
DFSDM1
_CKIN7
-
UART4_T
X
CAN1_T
X
-
-
FMC_D3
-
-
EVEN
TOUT
PD2
TRACED
2
-
TIM3_ET
R
-
-
-
-
-
UART5_
RX
-
-
-
SDMMC
_CMD
DCMI_D
11
-
EVEN
TOUT
PD3
-
-
-
DFSDM1_
CKOUT
-
SPI2_SC DFSDM1
K/I2S2_ _DATAIN
CK
0
USART2
_CTS
-
-
-
-
FMC_CL
K
DCMI_D
5
LCD_G7
EVEN
TOUT
PD4
-
-
-
-
-
-
DFSDM1
_CKIN0
USART2
_RTS
-
-
-
-
FMC_N
OE
-
-
EVEN
TOUT
PD5
-
-
-
-
-
-
-
USART2
_TX
-
-
-
-
FMC_N
WE
-
-
EVEN
TOUT
PD6
-
-
-
DFSDM1_
CKIN4
-
SPI3_M
SAI1_SD
OSI/I2S3
_A
_SD
USART2
_RX
-
-
DFSDM1_
DATAIN1
SDMMC2
_CK
FMC_N
WAIT
DCMI_D
10
LCD_B2
EVEN
TOUT
PD7
-
-
-
DFSDM1_
DATAIN4
-
SPI1_M
DFSDM1
OSI/I2S1
_CKIN1
_SD
USART2
_CK
SPDIF_R
X0
-
-
SDMMC2
_CMD
FMC_NE
1
-
-
EVEN
TOUT
I2C1/2/3/
4/USART
1/CEC
Port C
DS11532 Rev 8
Port D
93/256
Pinouts and pin description
SYS
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PD8
-
-
-
DFSDM1_
CKIN3
-
-
-
USART3
_TX
SPDIF_R
X1
-
-
-
FMC_D1
3
-
-
EVEN
TOUT
PD9
-
-
-
DFSDM1_
DATAIN3
-
-
-
USART3
_RX
-
-
-
-
FMC_D1
4
-
-
EVEN
TOUT
PD10
-
-
-
DFSDM1_
CKOUT
-
-
-
USART3
_CK
-
-
-
-
FMC_D1
5
-
LCD_B3
EVEN
TOUT
PD11
-
-
-
-
I2C4_SM
BA
-
-
USART3
_CTS
-
QUADSP
SAI2_SD_
I_BK1_IO
A
0
-
FMC_A1
6/FMC_
CLE
-
-
EVEN
TOUT
PD12
-
-
TIM4_C
H1
LPTIM1_I
N1
I2C4_SC
L
-
-
USART3
_RTS
-
QUADSP
SAI2_FS_
I_BK1_IO
A
1
-
FMC_A1
7/FMC_
ALE
-
-
EVEN
TOUT
PD13
-
-
TIM4_C
H2
LPTIM1_
OUT
I2C4_SD
A
-
-
-
-
QUADSP
I_BK1_IO
3
SAI2_SC
K_A
-
FMC_A1
8
-
-
EVEN
TOUT
PD14
-
-
TIM4_C
H3
-
-
-
-
-
UART8_
CTS
-
-
-
FMC_D0
-
-
EVEN
TOUT
PD15
-
-
TIM4_C
H4
-
-
-
-
-
UART8_
RTS
-
-
-
FMC_D1
-
-
EVEN
TOUT
PE0
-
-
TIM4_ET LPTIM1_E
R
TR
-
-
-
-
UART8_
Rx
-
SAI2_MC
K_A
-
FMC_NB
L0
DCMI_D
2
-
EVEN
TOUT
PE1
-
-
-
LPTIM1_I
N2
-
-
-
-
UART8_T
x
-
-
-
FMC_NB
L1
DCMI_D
3
-
EVEN
TOUT
PE2
TRACEC
LK
-
-
-
-
SPI4_SC
K
SAI1_M
CLK_A
-
-
QUADSP
I_BK1_IO
2
-
ETH_MII_
TXD3
FMC_A2
3
-
-
EVEN
TOUT
PE3
TRACED
0
-
-
-
-
-
SAI1_SD
_B
-
-
-
-
-
FMC_A1
9
-
-
EVEN
TOUT
Port D
Port E
I2C1/2/3/
4/USART
1/CEC
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DS11532 Rev 8
SYS
Pinouts and pin description
94/256
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
DCMI/L
CD/DSI
LCD
SYS
DS11532 Rev 8
I2C4/UA
RT5/TIM
1/2
PE4
TRACED
1
-
-
-
-
SPI4_NS SAI1_FS
S
_A
-
-
-
DFSDM1_
DATAIN3
-
FMC_A2
0
DCMI_D
4
LCD_B0
EVEN
TOUT
PE5
TRACED
2
-
-
TIM9_CH
1
-
SPI4_MI
SO
SAI1_SC
K_A
-
-
-
DFSDM1_
CKIN3
-
FMC_A2
1
DCMI_D
6
LCD_G0
EVEN
TOUT
PE6
TRACED
3
TIM1_B
KIN2
-
TIM9_CH
2
-
SPI4_M
OSI
SAI1_SD
_A
-
-
-
SAI2_MC
K_B
-
FMC_A2
2
DCMI_D
7
LCD_G1
EVEN
TOUT
PE7
-
TIM1_ET
R
-
-
-
-
DFSDM1
_DATAIN
2
-
UART7_
Rx
-
QUADSPI
_BK2_IO0
-
FMC_D4
-
-
EVEN
TOUT
PE8
-
TIM1_C
H1N
-
-
-
-
DFSDM1
_CKIN2
-
UART7_T
x
-
QUADSPI
_BK2_IO1
-
FMC_D5
-
-
EVEN
TOUT
PE9
-
TIM1_C
H1
-
-
-
-
DFSDM1
_CKOUT
-
UART7_
RTS
-
QUADSPI
_BK2_IO2
-
FMC_D6
-
-
EVEN
TOUT
PE10
-
TIM1_C
H2N
-
-
-
-
DFSDM1
_DATAIN
4
-
UART7_
CTS
-
QUADSPI
_BK2_IO3
-
FMC_D7
-
-
EVEN
TOUT
PE11
-
TIM1_C
H2
-
-
-
SPI4_NS DFSDM1
S
_CKIN4
-
-
-
SAI2_SD_
B
-
FMC_D8
-
LCD_G3
EVEN
TOUT
PE12
-
TIM1_C
H3N
-
-
-
DFSDM1
SPI4_SC
_DATAIN
K
5
-
-
-
SAI2_SC
K_B
-
FMC_D9
-
LCD_B4
EVEN
TOUT
PE13
-
TIM1_C
H3
-
-
-
SPI4_MI
SO
DFSDM1
_CKIN5
-
-
-
SAI2_FS_
B
-
FMC_D1
0
-
LCD_DE
EVEN
TOUT
PE14
-
TIM1_C
H4
-
-
-
SPI4_M
OSI
-
-
-
-
SAI2_MC
K_B
-
FMC_D1
1
-
LCD_CL
K
EVEN
TOUT
PE15
-
TIM1_B
KIN
-
-
-
-
-
-
-
-
-
-
FMC_D1
2
-
LCD_R7
EVEN
TOUT
Port E
I2C1/2/3/
4/USART
1/CEC
95/256
Pinouts and pin description
SYS
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
SYS
I2C4/UA
RT5/TIM
1/2
PF0
-
-
-
-
I2C2_SD
A
-
-
-
-
-
-
-
FMC_A0
-
-
EVEN
TOUT
PF1
-
-
-
-
I2C2_SC
L
-
-
-
-
-
-
-
FMC_A1
-
-
EVEN
TOUT
PF2
-
-
-
-
I2C2_SM
BA
-
-
-
-
-
-
-
FMC_A2
-
-
EVEN
TOUT
PF3
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A3
-
-
EVEN
TOUT
PF4
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A4
-
-
EVEN
TOUT
PF5
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A5
-
-
EVEN
TOUT
PF6
-
-
-
TIM10_C
H1
-
SPI5_NS SAI1_SD
S
_B
-
UART7_
Rx
QUADSP
I_BK1_IO
3
-
-
-
-
-
EVEN
TOUT
PF7
-
-
-
TIM11_CH
1
-
SPI5_SC
K
SAI1_M
CLK_B
-
QUADSP
UART7_T
I_BK1_IO
x
2
-
-
-
-
-
EVEN
TOUT
PF8
-
-
-
-
-
SPI5_MI
SO
SAI1_SC
K_B
-
UART7_
RTS
TIM13_C
H1
QUADSPI
_BK1_IO0
-
-
-
-
EVEN
TOUT
PF9
-
-
-
-
-
SPI5_M
OSI
SAI1_FS
_B
-
UART7_
CTS
TIM14_C
H1
QUADSPI
_BK1_IO1
-
-
-
-
EVEN
TOUT
PF10
-
-
-
-
-
-
-
-
-
QUADSP
I_CLK
-
-
-
DCMI_D
11
LCD_DE
EVEN
TOUT
PF11
-
-
-
-
-
SPI5_M
OSI
-
-
-
-
SAI2_SD_
B
-
FMC_SD
NRAS
DCMI_D
12
-
EVEN
TOUT
I2C1/2/3/
4/USART
1/CEC
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DS11532 Rev 8
Port F
AF1
Pinouts and pin description
96/256
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PF12
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A6
-
-
EVEN
TOUT
PF13
-
-
-
-
I2C4_SM
BA
-
DFSDM1
_DATAIN
6
-
-
-
-
-
FMC_A7
-
-
EVEN
TOUT
PF14
-
-
-
-
I2C4_SC
L
-
DFSDM1
_CKIN6
-
-
-
-
-
FMC_A8
-
-
EVEN
TOUT
PF15
-
-
-
-
I2C4_SD
A
-
-
-
-
-
-
-
FMC_A9
-
-
EVEN
TOUT
PG0
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A1
0
-
-
EVEN
TOUT
PG1
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A1
1
-
-
EVEN
TOUT
PG2
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A1
2
-
-
EVEN
TOUT
PG3
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A1
3
-
-
EVEN
TOUT
PG4
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A1
4/FMC_
BA0
-
-
EVEN
TOUT
PG5
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A1
5/FMC_
BA1
-
-
EVEN
TOUT
PG6
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NE
3
DCMI_D
12
LCD_R7
EVEN
TOUT
PG7
-
-
-
-
-
-
SAI1_M
CLK_A
-
USART6
_CK
-
-
-
FMC_IN
T
DCMI_D
13
LCD_CL
K
EVEN
TOUT
I2C1/2/3/
4/USART
1/CEC
DS11532 Rev 8
97/256
Pinouts and pin description
SYS
Port F
Port G
AF4
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF11
AF12
PG8
-
-
-
-
-
SPI6_NS
S
-
SPDIF_R
X2
USART6
_RTS
PG9
-
-
-
-
-
SPI1_MI
SO
-
SPDIF_R
X3
USART6
_RX
PG10
-
-
-
-
-
SPI1_NS
S/I2S1_
WS
-
-
-
PG11
-
-
-
-
-
SPI1_SC
K/I2S1_
CK
-
SPDIF_R
X0
PG12
-
-
-
LPTIM1_I
N1
-
SPI6_MI
SO
-
PG13
TRACED
0
-
-
LPTIM1_
OUT
-
SPI6_SC
K
PG14
TRACED
1
-
-
LPTIM1_E
TR
-
PG15
-
-
-
-
-
-
-
ETH_PPS FMC_SD
_OUT
CLK
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
-
LCD_G7
EVEN
TOUT
QUADSP
SAI2_FS_
I_BK2_IO
B
2
SDMMC2
_D0
FMC_NE
2/FMC_
NCE
DCMI_V
SYNC
-
EVEN
TOUT
LCD_G3
SAI2_SD_
B
SDMMC2
_D1
FMC_NE
3
DCMI_D
2
LCD_B2
EVEN
TOUT
-
-
SDMMC2
_D2
ETH_MII_
TX_EN/E
TH_RMII_
TX_EN
-
DCMI_D
3
LCD_B3
EVEN
TOUT
SPDIF_R
X1
USART6
_RTS
LCD_B4
-
SDMMC2
_D3
FMC_NE
4
-
LCD_B1
EVEN
TOUT
-
-
USART6
_CTS
-
-
ETH_MII_
TXD0/ET FMC_A2
H_RMII_T
4
XD0
-
LCD_R0
EVEN
TOUT
SPI6_M
OSI
-
-
USART6
_TX
QUADSP
I_BK2_IO
3
-
ETH_MII_
TXD1/ET FMC_A2
H_RMII_T
5
XD1
-
LCD_B0
EVEN
TOUT
-
-
-
USART6
_CTS
-
-
DCMI_D
13
-
EVEN
TOUT
-
FMC_SD
NCAS
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DS11532 Rev 8
I2C4/UA
RT5/TIM
1/2
Port G
AF10
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
SYS
I2C1/2/3/
4/USART
1/CEC
AF9
Pinouts and pin description
98/256
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
DS11532 Rev 8
Port H
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PH0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PH2
-
-
-
LPTIM1_I
N2
-
-
-
-
-
QUADSP
I_BK2_IO
0
SAI2_SC
K_B
ETH_MII_ FMC_SD
CRS
CKE0
-
LCD_R0
EVEN
TOUT
PH3
-
-
-
-
-
-
-
-
-
QUADSP
I_BK2_IO
1
SAI2_MC
K_B
ETH_MII_ FMC_SD
COL
NE0
-
LCD_R1
EVEN
TOUT
PH4
-
-
-
-
I2C2_SC
L
-
-
-
-
LCD_G5
OTG_HS_
ULPI_NX
T
-
-
-
LCD_G4
EVEN
TOUT
PH5
-
-
-
-
I2C2_SD
A
SPI5_NS
S
-
-
-
-
-
-
FMC_SD
NWE
-
-
EVEN
TOUT
PH6
-
-
-
-
I2C2_SM
BA
SPI5_SC
K
-
-
-
TIM12_C
H1
-
ETH_MII_ FMC_SD
RXD2
NE1
DCMI_D
8
-
EVEN
TOUT
PH7
-
-
-
-
I2C3_SC
L
SPI5_MI
SO
-
-
-
-
-
ETH_MII_ FMC_SD
RXD3
CKE1
DCMI_D
9
-
EVEN
TOUT
PH8
-
-
-
-
I2C3_SD
A
-
-
-
-
-
-
-
FMC_D1
6
DCMI_H
SYNC
LCD_R2
EVEN
TOUT
PH9
-
-
-
-
I2C3_SM
BA
-
-
-
-
TIM12_C
H2
-
-
FMC_D1
7
DCMI_D
0
LCD_R3
EVEN
TOUT
PH10
-
-
TIM5_C
H1
-
I2C4_SM
BA
-
-
-
-
-
-
-
FMC_D1
8
DCMI_D
1
LCD_R4
EVEN
TOUT
PH11
-
-
TIM5_C
H2
-
I2C4_SC
L
-
-
-
-
-
-
-
FMC_D1
9
DCMI_D
2
LCD_R5
EVEN
TOUT
PH12
-
-
TIM5_C
H3
-
I2C4_SD
A
-
-
-
-
-
-
-
FMC_D2
0
DCMI_D
3
LCD_R6
EVEN
TOUT
PH13
-
-
-
TIM8_CH
1N
-
-
-
-
UART4_T
X
CAN1_T
X
-
-
FMC_D2
1
-
LCD_G2
EVEN
TOUT
I2C1/2/3/
4/USART
1/CEC
Pinouts and pin description
99/256
SYS
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PH14
-
-
-
TIM8_CH
2N
-
-
-
-
UART4_
RX
CAN1_R
X
-
-
FMC_D2
2
DCMI_D
4
LCD_G3
EVEN
TOUT
PH15
-
-
-
TIM8_CH
3N
-
-
-
-
-
-
-
-
FMC_D2
3
DCMI_D
11
LCD_G4
EVEN
TOUT
PI0
-
-
TIM5_C
H4
-
-
SPI2_NS
S/I2S2_
WS
-
-
-
-
-
-
FMC_D2
4
DCMI_D
13
LCD_G5
EVEN
TOUT
PI1
-
-
-
TIM8_BKI
N2
-
SPI2_SC
K/I2S2_
CK
-
-
-
-
-
-
FMC_D2
5
DCMI_D
8
LCD_G6
EVEN
TOUT
PI2
-
-
-
TIM8_CH
4
-
SPI2_MI
SO
-
-
-
-
-
-
FMC_D2
6
DCMI_D
9
LCD_G7
EVEN
TOUT
PI3
-
-
-
TIM8_ET
R
-
SPI2_M
OSI/I2S2
_SD
-
-
-
-
-
-
FMC_D2
7
DCMI_D
10
-
EVEN
TOUT
PI4
-
-
-
TIM8_BKI
N
-
-
-
-
-
-
SAI2_MC
K_A
-
FMC_NB
L2
DCMI_D
5
LCD_B4
EVEN
TOUT
PI5
-
-
-
TIM8_CH
1
-
-
-
-
-
-
SAI2_SC
K_A
-
FMC_NB
L3
DCMI_V
SYNC
LCD_B5
EVEN
TOUT
PI6
-
-
-
TIM8_CH
2
-
-
-
-
-
-
SAI2_SD_
A
-
FMC_D2
8
DCMI_D
6
LCD_B6
EVEN
TOUT
PI7
-
-
-
TIM8_CH
3
-
-
-
-
-
-
SAI2_FS_
A
-
FMC_D2
9
DCMI_D
7
LCD_B7
EVEN
TOUT
PI8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN
TOUT
PI9
-
-
-
-
-
-
-
-
UART4_
RX
CAN1_R
X
-
-
FMC_D3
0
-
LCD_VS
YNC
EVEN
TOUT
PI10
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_
RX_ER
FMC_D3
1
-
LCD_HS
YNC
EVEN
TOUT
PI11
-
-
-
-
-
-
-
-
-
LCD_G6
OTG_HS_
ULPI_DIR
-
-
-
-
EVEN
TOUT
I2C1/2/3/
4/USART
1/CEC
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
SYS
Port H
Port I
AF3
Pinouts and pin description
100/256
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PI12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_HS
YNC
EVEN
TOUT
PI13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_VS
YNC
EVEN
TOUT
PI14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_CL
K
EVEN
TOUT
PI15
-
-
-
-
-
-
-
-
-
LCD_G2
-
-
-
-
LCD_R0
EVEN
TOUT
PJ0
-
-
-
-
-
-
-
-
-
LCD_R7
-
-
-
-
LCD_R1
EVEN
TOUT
PJ1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R2
EVEN
TOUT
PJ2
-
-
-
-
-
-
-
-
-
-
-
-
-
DSI_TE
LCD_R3
EVEN
TOUT
PJ3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R4
EVEN
TOUT
PJ4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R5
EVEN
TOUT
PJ5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R6
EVEN
TOUT
PJ6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R7
EVEN
TOUT
PJ7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G0
EVEN
TOUT
PJ8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G1
EVEN
TOUT
PJ9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G2
EVEN
TOUT
PJ10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G3
EVEN
TOUT
I2C1/2/3/
4/USART
1/CEC
Port I
DS11532 Rev 8
Port J
101/256
Pinouts and pin description
SYS
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
AF0
Port
Port J
AF1
AF2
AF3
TIM8/9/10/
11/LPTIM
TIM3/4/5
1/DFSDM
1/CEC
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
SPI2/I2S
SAI2/QU
SPI2/I2S
SPI6/SAI
SPI1/I2S
2/SPI3/I2
CAN1/2/T ADSPI/S
UART7/
2/SPI3/I2
2/USART
1/SPI2/I2
S3/SPI6/
IM12/13/ DMMC2/D I2C4/CAN FMC/SD
S3/SAI1/
6/UART4/
S2/SPI3/
USART1/
14/QUAD FSDM1/O 3/SDMM MMC1/M
I2C4/UA
5/7/8/OT
I2S3/SPI
2/3/UART
SPI/FMC/ TG2_HS/
C2/ETH DIOS/OT
RT4/DF
G_FS/SP
4/5/6
5/DFSDM
LCD
OTG1_FS
G2_FS
SDM1
DIF
1/SPDIF
/LCD
AF13
AF14
AF15
DCMI/L
CD/DSI
LCD
SYS
I2C4/UA
RT5/TIM
1/2
PJ11
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G4
EVEN
TOUT
PJ12
-
-
-
-
-
-
-
-
-
LCD_G3
-
-
-
-
LCD_B0
EVEN
TOUT
PJ13
-
-
-
-
-
-
-
-
-
LCD_G4
-
-
-
-
LCD_B1
EVEN
TOUT
PJ14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B2
EVEN
TOUT
PJ15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B3
EVEN
TOUT
PK0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G5
EVEN
TOUT
PK1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G6
EVEN
TOUT
PK2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G7
EVEN
TOUT
PK3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B4
EVEN
TOUT
PK4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B5
EVEN
TOUT
PK5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B6
EVEN
TOUT
PK6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B7
EVEN
TOUT
PK7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_DE
EVEN
TOUT
I2C1/2/3/
4/USART
1/CEC
Port K
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
DS11532 Rev 8
SYS
Pinouts and pin description
102/256
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax, and STM32F769xx alternate
function mapping (continued)
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
5
Memory mapping
Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.
DS11532 Rev 8
103/256
103
Electrical characteristics
6
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 22.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 23.
Figure 22. Pin loading conditions
Figure 23. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19011V2
104/256
DS11532 Rev 8
MS19010V2
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Power supply scheme
Figure 24. STM32F769xx/STM32F779xx power supply scheme
VBAT
Backup circuitry
(OSC32K,RTC,
Wakeup logic
Backup registers,
backup RAM)
OUT
GP I/Os
IN
Level shifter
Power switch
VBAT =
1.65 to 3.6V
IO
Logic
VDDSDMMC
OUT
PG[9..12], PD[6,7]
IN
2 × 2.2 μF
VDD
IO
Logic
Kernel logic
(CPU,
digital
& RAM)
VCAP_1
VCAP_2
VDD
1/2/...14/20
20 × 100 nF
+ 1 × 4.7 μF
Level shifter
6.1.6
Electrical characteristics
Voltage
regulator
VSS
1/2/...14/20
Flash memory
BYPASS_REG
VDDUSB
VDDUSB
OTG FS
PHY
100 nF
+ 1 μF
VDDDSI
DSI
voltage
regulator
VCAPDSI
VDD12DSI
DSI
PHY
2.2 μF
VSSDSI
PDR_ON
VDD
VDDA
VREF
100 nF
+ 1 μF
Reset
controller
100 nF
+ 1 μF
VREF+
VREF-
ADC
Analog:
RCs, PLL,
...
VSSA
MSv39619V1
DS11532 Rev 8
105/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 25. STM32F765xx/STM32F767xx/STM32F777xx power supply scheme
V BAT
V
DDSDMMC
OUT
PG[9..12], PD[6,7]
IN
OUT
PA[11,12], PB[14,15]
V DDUSB
IN
VDDUSB
Level shifter
IN
V
DDSDMMC
Level shifter
GP I/O s
Level shifter
OUT
100 nF
+ 1 μF
backup circuitry
(OSC32K, RTC,
Wakeup logic,
Backup registers,
backup RAM)
Power switch
VBAT =
1.65 to 3.6V
IO
Logic
IO
Logic
IO
Logic
100 nF
+ 1 μF
OTG FS
PHY
2 × 2.2 μF
V DD
V DD
1/2/...14/20
20 × 100nF
+ 1 × 4.7 μF
Kernel logic
(CPU,
digital
& RAM)
V CAP_1
V CAP_2
Voltage
regulator
V SS
1/2/...14/20
Flash memory
BYPASS_REG
PDR_ON
V DD
V DDA
V REF
100 nF
+ 1 μF
Reset
controller
100 nF
+ 1 μF
V REF+
V REF-
ADC
Analog:
RCs,...PLL,
V SSA
MSv41016V1
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 3.18: Power supply supervisor and
Section 3.19: Voltage regulator.
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the
voltage regulator is OFF.
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
4. VDDA=VDD and VSSA=VSS.
106/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
6.1.7
Current consumption measurement
Figure 26. Current consumption measurement scheme
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and the functional operation
of the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. The device mission profile (application
conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission
profiles are available on demand.
Table 14. Voltage characteristics
Symbol
VDD–VSS
VIN
Ratings
Min
Max
− 0.3
4.0
Input voltage on FT pins(3)
VSS − 0.3
VDD+4.0
Input voltage on TTa pins
VSS − 0.3
4.0
Input voltage on any other pin
VSS − 0.3
4.0
VSS
9.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins(4)
-
50
External main supply voltage (including VDDA, VDD,
VBAT, VDDUSB, VDDDSI (1) and VDDSDMMC)(2)
Input voltage on BOOT pin
|ΔVDDx|
|VSSX −VSS|
VESD(HBM)
Electrostatic discharge voltage (human body model)
DS11532 Rev 8
see Section 6.3.18:
Absolute maximum
ratings (electrical
sensitivity)
Unit
V
mV
-
107/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
1. Applicable only for STM32F7x9 sales types.
2. All main power (VDD, VDDA, VDDSDMMC, VDDUSB, VDDDSI) and ground (VSS, VSSA) pins must always be
connected to the external power supply, in the permitted range.
3. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed
injected current.
4. Include VREF- pin.
Table 15. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD_x power lines (source)(1)
Σ IVSS
(1)
Σ IVDDUSB
420
Total current out of sum of all VSS_x ground lines (sink)
−420
Total current into VDDUSB power line (source)
25
Σ IVDDSDMMC Total current into VDDSDMMC power line (source)
IVDD
IVDDSDMMC
IVSS
IIO
ΣIIO
IINJ(PIN)
ΣIINJ(PIN)(4)
60
Maximum current into each VDD_x power line (source)(1)
100
Maximum current into VDDSDMMC power line (source): PG[12:9], PD[7:6]
100
Maximum current out of each VSS_x ground line (sink)
(1)
−100
Output current sunk by any I/O and control pin
25
Output current sourced by any I/Os and control pin
−25
Total output current sunk by sum of all I/O and control pins (2)
120
Total output current sunk by sum of all USB I/Os
25
Total output current sunk by sum of all SDMMC I/Os
120
Total output current sourced by sum of all I/Os and control pins except USB I/Os(2)
−120
Injected current on FT, FTf, RST and B pins
Unit
(3)
mA
−5/+0
Injected current on TTa pins(4)
±5
Total injected current (sum of all I/O and control pins)(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN 2.4 V, the compensation cell should be used.
Figure 39. I/O AC characteristics definition
90%
10%
50%
50%
10%
90%
t f(IO)out
t r(IO)out
T
Maximum frequency is achieved with a duty cycle at (45 - 55%) when loaded by the
specified capacitance.
6.3.21
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 66: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 69 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17.
Table 69. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RPU
Weak pull-up equivalent resistor(1)
VIN = VSS
30
40
50
kΩ
-
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Internal Reset source
20
-
-
µs
VF(NRST)
(2)
VNF(NRST)
(2)
TNRST_OUT
NRST Input filtered pulse
NRST Input not filtered pulse
Generated reset pulse duration
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
162/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Figure 40. Recommended NRST pin protection
VDD
External
reset circuit (1)
RPU
NRST (2)
Internal Reset
Filter
0.1 μF
STM32F
ai14132c
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as
possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 66. Otherwise the reset is not taken into account by the device.
6.3.22
TIM timer characteristics
The parameters given in Table 70 are guaranteed by design.
Refer to Section 6.3.20: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 70. TIMx characteristics(1)(2)
Symbol
tres(TIM)
fEXT
ResTIM
tMAX_COUNT
Conditions(3)
Min
Max
Unit
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
216 MHz
1
-
tTIMxCLK
AHB/APBx
prescaler>4, fTIMxCLK =
100 MHz
1
-
tTIMxCLK
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 216 MHz
0
fTIMxCLK/2
MHz
Timer resolution
-
16/32
bit
-
65536 ×
65536
tTIMxCLK
Parameter
Timer resolution time
Maximum possible count
with 32-bit counter
-
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz, by setting the TIMPRE bit in the
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK =
4x PCLKx.
DS11532 Rev 8
163/256
220
Electrical characteristics
6.3.23
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
RTC characteristics
Table 71. RTC characteristics
6.3.24
Symbol
Parameter
Conditions
-
fPCLK1/RTCCLK frequency ratio
Any read/write operation
from/to an RTC register
Min
Max
4
-
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 72 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 17.
Table 72. ADC characteristics
Symbol
VDDA
VREF+
fADC
fTRIG(2)
VAIN
RAIN(2)
Parameter
Power supply
Positive reference voltage
ADC clock frequency
External trigger frequency
Conversion voltage range(3)
External input impedance
RADC(2)(4) Sampling switch resistance
CADC(2)
Internal sample and hold
capacitor
Conditions
Min
Typ
Max
Unit
1.7(1)
-
3.6
V
1.7(1)
-
VDDA
V
0.6
15
18
MHz
VDDA = 2.4 to 3.6 V
0.6
30
36
MHz
fADC = 30 MHz,
12-bit resolution
-
-
1764
kHz
-
-
-
17
1/fADC
-
0
(VSSA or VREFtied to ground)
-
VREF+
V
See Equation 1 for
details
-
-
50
kΩ
-
1.5
-
6
kΩ
-
-
4
7
pF
VDDA −VREF+ < 1.2 V
VDDA =
1.7(1)
to 2.4 V
tlat(2)
Injection trigger conversion
latency
fADC = 30 MHz
-
-
0.100
µs
-
-
-
3(5)
1/fADC
tlatr(2)
Regular trigger conversion
latency
fADC = 30 MHz
-
-
0.067
µs
1/fADC
tS(2)
Sampling time
tSTAB(2)
Power-up time
164/256
-
-
-
2(5)
fADC = 30 MHz
0.100
-
16
µs
-
3
-
480
1/fADC
-
-
2
3
µs
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Table 72. ADC characteristics (continued)
Symbol
tCONV(2)
Parameter
Conditions
Min
Typ
Max
Unit
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
Total conversion time (including
sampling time)
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
Sampling rate
fS(2)
(fADC = 36 MHz, and
tS = 3 ADC cycles)
1/fADC
12-bit resolution
Single ADC
-
-
2.4
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
4.5
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
7.2
Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
-
-
300
500
µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
-
-
1.6
1.8
mA
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.18.2:
Internal reset OFF).
2. Guaranteed by characterization results.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 72.
Equation 1: RAIN max formula
R AIN
( k – 0.5 )
- – R ADC
= --------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
DS11532 Rev 8
165/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 73. ADC static accuracy at fADC = 18 MHz
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA −VREF < 1.2 V
Typ
Max(1)
±3
±4
±2
±3
±1
±3
±1
±2
±2
±3
Unit
LSB
1. Guaranteed by characterization results.
Table 74. ADC static accuracy at fADC = 30 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA −VREF < 1.2 V
Typ
Max(1)
±2
±5
±1.5
±2.5
±1.5
±4
±1
±2
±1.5
±3
Unit
LSB
1. Guaranteed by characterization results.
Table 75. ADC static accuracy at fADC = 36 MHz
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA −VREF < 1.2 V
Typ
Max(1)
±4
±7
±2
±3
±3
±6
±2
±3
±3
±6
Unit
LSB
1. Guaranteed by characterization results.
Table 76. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to-noise and distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
1. Guaranteed by characterization results.
166/256
DS11532 Rev 8
Min
Typ
Max
Unit
10.3
10.4
-
bits
64
64.2
-
64
65
-
− 67
− 72
-
dB
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Table 77. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to noise and distortion ratio
SNR
Signal-to noise ratio
THD
Total harmonic distortion
fADC =36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.6
10.8
-
bits
66
67
-
64
68
-
− 70
− 72
-
dB
1. Guaranteed by characterization results.
Note:
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ∑IINJ(PIN) in
Section 6.3.20 does not affect the ADC accuracy.
Figure 41. ADC accuracy characteristics
[1LSB IDEAL =
V REF+
4096
(or
V DDA
4096
depending on package)]
EG
4095
4094
4093
(2)
ET
(3)
7
(1)
6
5
EO
4
EL
3
ED
2
1L SBIDEAL
1
0
1
2
3
456
V SSA
7
4093 4094 4095 4096
VDDA
ai14395c
1. See also Table 74.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
DS11532 Rev 8
167/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Figure 42. Typical connection diagram when using the ADC with FT/TT pins
featuring analog switch function
VDDA(4)
VREF+(4)
Sample-and-hold ADC converter
I/O
analog
switch
RAIN(1)
RADC
Converter
VAIN
Cparasitic(2)
Ilkg(3)
VSS
CADC
Sampling
switch with
multiplexing
VSS
VSSA
MSv67871V3
1. Refer to Table 72 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
3. Refer to Section Table 66.: I/O static characteristics for the value of lIkg,
4. Refer to Section 6.1.6: Power supply scheme.
168/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 43 or Figure 44,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 43. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F
VREF+ (1)
1 μF // 10 nF
VDDA
1 μF // 10 nF
VSSA/VREF-
(1)
ai17535b
1. VREF+ input is available on all packages except TFBGA100 whereas the VREF– s available only on
UFBGA176 and TFBGA216. When VREF- is not available, it is internally connected to VDDA and VSSA.
Figure 44. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F
VREF+/VDDA (1)
1 μF // 10 nF
VREF-/VSSA
(1)
ai17536c
1. VREF+ input is available on all packages except TFBGA100 whereas the VREF– s available only on
UFBGA176 and TFBGA216. When VREF- is not available, it is internally connected to VDDA and VSSA.
DS11532 Rev 8
169/256
220
Electrical characteristics
6.3.25
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Temperature sensor characteristics
Table 78. Temperature sensor characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VSENSE linearity with temperature
-
±1
±2
°C
Average slope
-
2.5
-
mV/°C
Voltage at 25 °C
-
0.76
-
V
tSTART(2)
Startup time
-
6
10
µs
TS_temp(2)
ADC sampling time when reading the temperature (1 °C accuracy)
10
-
-
µs
TL(1)
Avg_Slope
(1)
V25(1)
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 79. Temperature sensor calibration values
Symbol
Parameter
Memory address
TS_CAL1
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V
0x1FF0 F44C - 0x1FF0 F44D
TS_CAL2
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V
0x1FF0 F44E - 0x1FF0 F44F
6.3.26
VBAT monitoring characteristics
Table 80. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT
-
50
-
KΩ
Q
Ratio on VBAT measurement
-
4
-
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
Er(1)
TS_vbat(2)(2)
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.27
Reference voltage
The parameters given in Table 81 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 81. internal reference voltage
Symbol
VREFINT
TS_vrefint(1)
VREFINT_s(2)
170/256
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
-
10
-
-
µs
VDD = 3V ± 10mV
-
3
5
mV
ADC sampling time when reading the
internal reference voltage
Internal reference voltage spread over the
temperature range
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Table 81. internal reference voltage (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
TCoeff(2)
Temperature coefficient
-
-
30
50
ppm/°C
tSTART(2)
Startup time
-
-
6
10
µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 82. Internal reference voltage calibration values
Symbol
Parameter
VREFIN_CAL
6.3.28
Memory address
Raw data acquired at temperature of 30 °C VDDA = 3.3 V
0x1FF0 F44A - 0x1FF0 F44B
DAC electrical characteristics
Table 83. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
-
VDDA
Analog supply voltage
1.7(1)
-
3.6
V
VREF+
Reference supply voltage
1.7(1)
-
3.6
V
VSSA
Ground
0
-
0
V
-
5
-
kΩ
-
25
-
-
Impedance output with buffer
OFF
-
-
15
When the buffer is OFF, the Minimum
kΩ resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
Capacitive load
-
-
50
pF
DAC_OUT Lower DAC_OUT voltage
with buffer ON
min(2)
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
max(2)
with buffer ON
-
-
VDDA −
0.2
V
DAC_OUT Lower DAC_OUT voltage
with buffer OFF
min(2)
-
0.5
-
mV
-
VREF+ −
1LSB
V
RLOAD
(2)
RO(2)
CLOAD(2)
Connected to
Resistive load VSSA
with buffer ON Connected to
VDDA
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(2)
-
DS11532 Rev 8
VREF+ ≤VDDA
Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
It gives the maximum output excursion of
the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and
(0x1C7) to (0xE38) at VREF+ = 1.7 V
It gives the maximum output excursion of
the DAC.
171/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 83. DAC characteristics (continued)
Symbol
IVREF+(4)
Parameter
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
Min
Typ
Max
-
170
240
Unit
µA
Comments
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
50
75
-
280
380
µA
With no load, middle code (0x800) on the
inputs
-
475
625
µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
Differential non linearity
Difference between two
consecutive code-1LSB)
-
-
±0.5
LSB Given for the DAC in 10-bit configuration.
-
-
±2
LSB Given for the DAC in 12-bit configuration.
-
-
±1
LSB Given for the DAC in 10-bit configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-
-
±4
LSB Given for the DAC in 12-bit configuration.
-
-
±10
mV Given for the DAC in 12-bit configuration
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
-
-
±3
LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
-
-
±0.5
%
Given for the DAC in 12-bit configuration
-
3
6
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
IDDA(4)
DNL(4)
Gain
error(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
Gain error
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
(4)
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±4LSB
THD(4)
Total Harmonic Distortion
Buffer ON
-
-
-
dB
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
172/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Table 83. DAC characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
Comments
Wakeup time from off state
tWAKEUP(4) (Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and highest
possible ones.
Power supply rejection ratio
PSRR+ (2) (to VDDA) (static DC
measurement)
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.18.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results.
Figure 45. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
RL
DAC_OUTx
12-bit
digital to
analog
converter
CL
ai17157V3
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
6.3.29
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
•
Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0410 reference manual) and when the I2CCLK frequency is greater
than the minimum shown in the table below:
DS11532 Rev 8
173/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 84. Minimum I2CCLK frequency in all I2C modes
Symbol
Parameter
Condition
Standard-mode
Fast-mode
f(I2CCLK)
I2CCLK
frequency
Fast-mode Plus
Min
-
2
Analog filter ON
DNF=0
8
Analog filter OFF
DNF=1
9
Analog filter ON
DNF=0
16
Analog filter OFF
DNF=1
16
Unit
MHz
The SDA and SCL I/O requirements are met with the following restrictions:
•
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,
the PMOS connected between the I/O pin and VDD is disabled, but is still present.
•
The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the
maximum load Cload supported in Fm+, which is given by these formulas:
Tr(SDA/SCL)=0.8473xRpxCload
Rp(min)= (VDD-VOL(max))/IOL(max)
Where Rp is the I2C lines pull-up. Refer to Section 6.3.20: I/O port characteristics for the
I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to Table 85 for the analog filter
characteristics:
Table 85. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter
50(2)
70(3)
ns
1. Guaranteed by characterization results.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered.
174/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 86 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 86. SPI dynamic characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Typ
Max
Master mode
SPI1,4,5,6
2.7≤VDD≤3.6
54(2)
Master mode
SPI1,4,5,6
1.71≤VDD≤3.6
27
Master transmitter mode
SPI1,4,5,6
1.71≤VDD≤3.6
54
Slave receiver mode
SPI1,4,5,6
1.71≤VDD≤3.6
54
-
-
MHz
Slave mode transmitter/full
duplex
SPI1,4,5,6
2.7≤VDD≤3.6
50(3)
Slave mode transmitter/full
duplex
SPI1,4,5,6
1.71≤VDD≤3.6
37(3)
Master & Slave mode
SPI2,3
1.71≤VDD≤3.6
27
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4*TPLCK
-
-
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2*TPLCK
-
-
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode
TPLCK - 2
TPLCK
TPLCK + 2
DS11532 Rev 8
Unit
ns
175/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Table 86. SPI dynamic characteristics(1) (continued)
Symbol
Conditions
Min
Typ
Max
Master mode
5
10(4)
-
-
tsu(SI)
Slave mode
4.5
-
-
th(MI)
Master mode
2
0(4)
-
-
Slave mode
2
-
-
tsu(MI)
Parameter
Data input setup time
Data input hold time
th(SI)
ta(SO)
Data output access time
Slave mode
7
-
21
tdis(SO)
Data output disable time
Slave mode
5
-
12
Slave mode 2.7≤VDD≤3.6V
-
6.5
10
Slave mode 1.71≤VDD≤3.6V
-
6.5
13.5
tv(MO)
Master mode
-
2
6
th(SO)
Slave mode
1.71≤VDD≤3.6V
4.5
-
-
Master mode
0
-
-
tv(SO)
Data output valid time
Data output hold time
th(MO)
Unit
ns
1. Guaranteed by characterization results.
2. Excepting SPI1 with SCK IO pin mapped on PA5. In this configuration, Maximum achievable frequency is 40MHz.
3. Maximum Frequency of Slave Transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK
level phase preceding the SCK sampling edge.This value can be achieved when it communicates with a Master having
Tsu(MI)=0 while signal Duty(SCK)=50%.
4. Only for SPI6.
Figure 46. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
SCK input
tsu(NSS)
th(NSS)
tw(SCKH)
tr(SCK)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
ta(SO)
tw(SCKL)
MISO output
tv(SO)
First bit OUT
th(SO)
Next bits OUT
tf(SCK)
tdis(SO)
Last bit OUT
th(SI)
tsu(SI)
MOSI input
First bit IN
Next bits IN
Last bit IN
MSv41658V1
176/256
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Figure 47. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
SCK input
tc(SCK)
tsu(NSS)
tw(SCKH)
ta(SO)
tw(SCKL)
tf(SCK)
th(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
MISO output
tv(SO)
th(SO)
First bit OUT
tsu(SI)
tr(SCK)
Next bits OUT
tdis(SO)
Last bit OUT
th(SI)
First bit IN
MOSI input
Next bits IN
Last bit IN
MSv41659V1
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 48. SPI timing diagram - master mode(1)
High
NSS input
SCK Output
SCK Output
tc(SCK)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tsu(MI)
MISO
INPUT
tw(SCKH)
tw(SCKL)
MSB IN
tr(SCK)
tf(SCK)
BIT6 IN
LSB IN
th(MI)
MOSI
OUTPUT
MSB OUT
tv(MO)
BIT1 OUT
LSB OUT
th(MO)
ai14136c
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
DS11532 Rev 8
177/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 87 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Table 87. I2S dynamic characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
fMCK
I2S Main clock output
-
256x8K
256xFs(2)
MHz
fCK
I2S clock frequency
Master data
-
64xFs
Slave data
-
64xFs
30
70
DCK
I2S clock frequency duty cycle Slave receiver
tv(WS)
WS valid time
Master mode
-
3
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
5
-
th(WS)
WS hold time
Slave mode
2
-
Master receiver
2.5
-
Slave receiver
2.5
-
Master receiver
3.5
-
Slave receiver
2
-
Slave transmitter (after enable edge)
-
12
Master transmitter (after enable edge)
-
3
Slave transmitter (after enable edge)
5
-
Master transmitter (after enable edge)
0
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
tv(SD_MT)
th(SD_ST)
th(SD_MT)
Data input setup time
Data input hold time
Data output valid time
Data output hold time
MHz
%
ns
1. Guaranteed by characterization results.
2. The maximum value of 256xFs is 49.152 MHz (APB1 maximum frequency).
Note:
178/256
Refer to RM0410 reference manual I2S section for more details about the sampling
frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The
values of these parameters might be slightly impacted by the source clock precision. DCK
depends mainly on the value of ODD bit. The digital contribution leads to a minimum value
of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
DS11532 Rev 8
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
Electrical characteristics
Figure 49. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(1)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(1)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
MS46528V1
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 50. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(1)
MSB transmit
SDreceive
LSB receive
LSB transmit
th(SD_MR)
tsu(SD_MR)
(1)
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
MS46529V1
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DS11532 Rev 8
179/256
220
Electrical characteristics
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx
JATG/SWD characteristics
Unless otherwise specified, the parameters given in Table 88 for JTAG/SWD are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage conditions summarized in Table 17, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C=30 pF
•
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
Table 88. Dynamics characteristics: JTAG characteristics
Symbol
Parameter
Fpp
1/tc(TCK)
Conditions
Min
Typ
Max
2.7V